Science.gov

Sample records for acid sa levels

  1. Salicylic acid (SA) bioaccessibility from SA-based poly(anhydride-ester).

    PubMed

    Rogers, Michael A; Yan, Yim-Fan; Ben-Elazar, Karen; Lan, Yaqi; Faig, Jonathan; Smith, Kervin; Uhrich, Kathryn E

    2014-09-08

    The bioaccessibility of salicylic acid (SA) can be effectively modified by incorporating the pharmacological compound directly into polymers such as poly(anhydride-esters). After simulated digestion conditions, the bioaccessibility of SA was observed to be statistically different (p < 0.0001) in each sample: 55.5 ± 2.0% for free SA, 31.2 ± 2.4% the SA-diglycolic acid polymer precursor (SADG), and 21.2 ± 3.1% for SADG-P (polymer). The release rates followed a zero-order release rate that was dependent on several factors, including (1) solubilization rate, (2) macroscopic erosion of the powdered polymer, (3) hydrolytic cleavage of the anhydride bonds, and (4) subsequent hydrolysis of the polymer precursor (SADG) to SA and diglycolic acid.

  2. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  3. Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis.

    PubMed

    Gao, Zhengquan; Meng, Chunxiao; Zhang, Xiaowen; Xu, Dong; Miao, Xuexia; Wang, Yitao; Yang, Liming; Lv, Hongxin; Chen, Lingling; Ye, Naihao

    2012-09-10

    The green alga Haematococcus pluvialis can produce large amounts of pink carotenoid astaxanthin which is a high value ketocarotenoid. In our study, transcriptional expression patterns of eight carotenoid genes in H. pluvialis in response to SA were measured using qRT-PCR. Results indicated that both 25 and 50 mg/L salicylic acid (SA) could increase astaxanthin productivity and enhance transcriptional expression of eight carotenoid genes in H. pluvialis. But these genes exhibited different expression profiles. Moreover, SA25 (25 mg/L SA) induction had a greater effect on the transcriptional expression of ipi-1, psy, pds, crtR-B and lyc (more than 6-fold up-regulation) than on ipi-2, bkt and crtO, but SA50 (50 mg/L SA) treatment had a greater impact on the transcriptional expression of ipi-1, ipi-2, pds, crtR-B and lyc than on psy, bkt and crtO. Furthermore, astaxanthin biosynthesis under SA was up-regulated mainly by ipi-1, ipi-2, psy, crtR-B, bkt and crtO at transcriptional level, lyc at post-transcriptional level and pds at both levels. Summarily, these results suggest that SA constitute molecular signals in the network of astaxanthin biosynthesis. Induction of astaxanthin accumulation by SA without any other stimuli presents an attractive application potential in astaxanthin production with H. pluvialis.

  4. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  5. Level of Need for Cognition and Metacognitive Thinking among Undergraduate Kindergarten Female Students at King Sa'ud University in Sa'udi Arabia

    ERIC Educational Resources Information Center

    Daghistani, Bulquees

    2015-01-01

    This study aims at examining the level of need for cognition and metacognitive thinking among undergraduate kindergarten female students in Education Faculty at King Sa'ud University in Sa'udi Arabia from their own perceptions. Results showed that the need for the cognition level was moderate, but metacognitive thinking level was high. In…

  6. Effects of the new ethacrynic acid derivative SA9000 on intraocular pressure in cats and monkeys.

    PubMed

    Shimazaki, Atsushi; Ichikawa, Masaki; Rao, Ponugoti Vasantha; Kirihara, Tomoko; Konomi, Kouji; Epstein, David Lee; Hara, Hideaki

    2004-07-01

    To evaluate the pharmacological characteristics of the new ethacrynic acid (ECA) derivative SA9000, we examined its ocular hypotensive effects in cats and cynomolgus monkeys, its corneal toxicity in rabbits, and its binding affinities for forty-three receptors, ion channels, and second messenger systems. A 20 microl injection into the anterior chamber of eye (intracameral injection) of 0.1 mM SA9000 significantly reduced intraocular pressure (IOP) 3.8 mmHg in cats. A 10 microl intracameral injection of 1 mM SA9000 significantly reduced IOP 7 mmHg in living monkeys without evidence of in vivo (or in vitro) toxicity. The ocular hypotensive effect of SA9000 in monkeys was greater than that of ECA. The morphology of corneal endothelial and epithelial cells in rabbit eyes after intracameral injection of SA9000 was observed using electron microphotography. SA9000 at 2 mM did not induce any abnormalities, indicating that it has no corneal toxicity at a concentration higher than the minimum needed for an ocular hypotensive effect (1 mM). SA9000 at 0.01 mM showed negligible binding affinity for, or inhibition of, forty-three different receptors, ion channel proteins, and second messenger systems. These findings indicate that SA9000 has the potential to be both effective and safe as an ocular hypotensive drug, although the mechanism of action remains unclear.

  7. Effects of the new ethacrynic acid oxime derivative SA12590 on intraocular pressure in cats and monkeys.

    PubMed

    Shimazaki, Atsushi; Kirihara, Tomoko; Rao, Ponugoti Vasantha; Tajima, Hisashi; Matsugi, Takeshi; Epstein, David Lee

    2007-08-01

    To evaluate the pharmacological characteristics of SA12590, a new oxime-derivative of the ethacrynic acid (ECA) derivative SA9000, we examined both its ocular hypotensive effects (in ocular normotensive cats and cynomolgus monkeys) and its potential corneal toxicity (in rats). A 50 microl topical administration of 3% SA12590 significantly reduced intraocular pressure (IOP) (by 3.5 mmHg) in anesthetized cats (p<0.05). Twenty-four hours after 3 drops (5-min intervals) of 20 microl 3% SA12590, IOP was reduced by 8 mmHg (p<0.05, n=4) in conscious monkeys without evidence of corneal toxicity. Three days' daily single 20 microl dosing with 3% SA12590 reduced IOP by 4 mmHg (p<0.01, n=3) at 72 h after the first administration in conscious monkeys. The toxicity of topically administered 20 microl 3% SA9000 or SA12590 (3 drops with 5-min intervals) on rat corneal epithelium was assessed using a photo-slit lamp. In this study, 3% SA12590, unlike 3% SA9000, exhibited no corneal toxicity. In a glutathione assay for sulfhydryl (SH) reactivity, SA12590, unlike SA9000, displayed no in vitro SH reactivity. Thus, oxime-modification may both improve efficacy towards IOP upon topical administration and improve the safety profile, probably by enhancing corneal penetration and minimizing SH reactivity-related toxicity. These findings indicate that SA12590 has potential as a new ocular hypotensive drug.

  8. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance.

    PubMed

    Kovács, Viktória; Gondor, Orsolya K; Szalai, Gabriella; Darkó, Eva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-09-15

    Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  9. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes.

    PubMed

    Molinari, Sergio; Fanelli, Elena; Leonetti, Paola

    2014-04-01

    The expression pattern of pathogenesis-related genes PR-1, PR-2 and PR-5, considered as markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre-treated with SA and subsequently infected with root-knot nematodes (RKNs) (Meloidogyne incognita). PR-1 was up-regulated in both roots and shoots of SA-treated plants, whereas the expression of PR-5 was enhanced only in roots. The over-expression of PR-1 in the whole plant occurred as soon as 1 day after SA treatment. Up-regulation of the PR-1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA-treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR-1, PR-2 and PR-5 was also examined in the roots and shoots of susceptible and Mi-1-carrying resistant tomato plants infected by RKNs. Nematode infection produced a down-regulation of PR genes in both roots and shoots of SA-treated and untreated plants, and in roots of Mi-carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR-1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR-like response to RKNs in tomato.

  10. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.

    PubMed

    Angulo, Carlos; de la O Leyva, María; Finiti, Ivan; López-Cruz, Jaime; Fernández-Crespo, Emma; García-Agustín, Pilar; González-Bosch, Carmen

    2015-03-01

    Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of

  11. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    PubMed Central

    Ruelland, Eric; Pokotylo, Igor; Djafi, Nabila; Cantrel, Catherine; Repellin, Anne; Zachowski, Alain

    2014-01-01

    Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently. PMID:25426125

  12. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  13. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  14. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    PubMed

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses.

  15. Salivary total sialic acid levels increase in breast cancer patients: a preliminary study.

    PubMed

    Oztürk, Leyla Koç; Emekli-Alturfan, Ebru; Kaşikci, Emel; Demir, Gokhan; Yarat, Aysen

    2011-09-01

    Breast cancer is the most common cancer in women living in the Western world, even though it occurs worldwide. Cancer and cancer therapy induce multiple oral complications including dental and periodontal disease. Saliva is a complex and dynamic biologic fluid, which reflects both oral and systemic changes. While saliva is easily accessible body fluid, there has been little effort to study its value in cancer diagnosis. Sialic acids (SA), the end moieties of the carbohydrate chains, are biologically important and essential for functions of glycoconjugates that are reported to be altered in both blood and saliva of various cancer patients. Increased sialylation has been shown to be a characteristic feature in cancer tissue and blood in breast cancer patients. However, there is no data about salivary SA in breast cancer. The aim of this study was to evaluate salivary total sialic acid (TSA) levels in breast cancer patients who were under chemotheraphy. The study included 15 breast cancer patients in different stages and 10 healthy individuals as age-matched controls. Unstimulated whole saliva was collected. Salivary total protein and SA levels were determined. Flow rate was calculated from salivary volume by the time of secretion. Salivary SA was significantly higher and total protein was lower in breast cancer patients compared to controls. It is concluded that sialylation may be increased in saliva of patients with breast cancer as the same way for cancer tissue and for blood . Increased salivary SA may therefore be useful as a non-invasive predictive marker for breast cancer patients and for the prevention and management of oral complications of cancer and cancer therapy to improve oral function and quality-of-life. The effects of different types of chemotherapies and different stages of the disease on salivary SA levels and salivary sialo-glycomic are worthy of being further investigated in breast cancer patients.

  16. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.

    PubMed

    Li, Feng; Zhu, Lizhong

    2014-07-01

    The effects of the surfactants, Tween 80 and sodium dodecyl benzene sulfonate (SDBS) on a membrane's fatty acid composition and the transmembrane transport of phenanthrene were investigated. The results indicated that both surfactants could modify the composition of fatty acids of Citrobacter sp. Strain SA01 cells, 50 mg L(-1) of both surfactants changed the composition of the fatty acids the most, increasing the amount of unsaturated fatty acids. The comparison of fatty acid profiles with diphenylhexatriene fluorescence anisotropy, a probe for plasma membrane fluidity, suggested that an increased amount of unsaturated fatty acids corresponded to greater membrane fluidity. In addition, increased unsaturated fatty acids promoted phenanthrene to partition from the extracellular matrix to cell debris, which increased reverse partitioning from the cell debris to the cytochylema. The results of this study were expected in that the addition of a surfactant is a simple and effective method for accelerating the rate-limiting step of transmembrane transport of hydrophobic organic compounds (HOCs) in bioremediation.

  17. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    PubMed

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  18. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  19. Amorphous Ca²⁺ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells.

    PubMed

    Müller, Werner E G; Tolba, Emad; Feng, Qingling; Schröder, Heinz C; Markl, Julia S; Kokkinopoulou, Maria; Wang, Xiaohong

    2015-06-01

    Polyphosphate (polyP) is a physiologically occurring polyanion that is synthesized especially in bone-forming osteoblast cells and blood platelets. We used amorphous polyP nanoparticles, complexed with Ca(2+), that have a globular size of ∼100 nm. Because polyP comprises inorganic orthophosphate units that are linked together through high-energy phosphoanhydride bonds, we questioned whether the observed morphogenetic effect, elicited by polyP, is correlated with the energy-generating machinery within the cells. We show that exposure of SaOS-2 osteoblast-like cells to polyP results in a strong accumulation of mitochondria and a parallel translocation of the polyP-degrading enzyme alkaline phosphatase to the cell surface. If SaOS-2 cells are activated by the mineralization activation cocktail (comprising β-glycerophosphate, ascorbic acid and dexamethasone) and additionally incubated with polyP, a tenfold intracellular increase of the ATP level occurs. Even more, in those cells, an intensified release of ATP into the extracellular space is also seen. We propose and conclude that polyP acts as metabolic fuel after the hydrolytic cleavage of the phosphoanhydride linkages, which contributes to hydroxyapatite formation on the plasma membranes of osteoblasts.

  20. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation.

  1. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    PubMed

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and

  2. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  3. Inhibition of the hyperpolarization-activated current (if) of rabbit SA node myocytes by niflumic acid.

    PubMed

    Accili, E A; DiFrancesco, D

    1996-03-01

    The effects of the amphiphilic substance niflumic acid (NFA) were examined in myocytes isolated from the sino-atrial node of the rabbit heart. NFA (50 and 500 microM), for 30-60 s, produced a reversible negative chronotropic effect by reducing the rate of diastolic depolarization, suggesting an inhibitory effect on the hyperpolarization-activated pacemaker current (if). NFA (from 0.05 to 500 microM) inhibited if by modifying the current kinetics, without alteration of the conductance. This was shown by evidence indicating that: (1) NFA inhibited if during hyperpolarizing pulses to the mid-point of if activation but not at fully activating voltages; (2) the slope and reversal potential of the fully activated current/voltage (I/V) relation were not altered by NFA, indicating no change in slope conductance or ion selectivity; and (3) hyperpolarizing ramp protocols confirmed the lack of action of 50 microM NFA on the fully activated current and a shift of approximately -8 mV. Although similar to inhibition by acetylcholine (ACh), inhibition by NFA was only partly additive with the action of ACh and was not altered by atropine or pertussis toxin, both of which eliminated the action of ACh. The effect of NFA was present after stimulation of adenylate cyclase by forskolin and after inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX). In cell-attached patch measurements, NFA applied externally did not affect if measured in the patch. Finally, application of NFA to the cytoplasmic side of excised patches did not alter the current in the absence or presence of adenosine 3',5'-cyclic monophosphate (cAMP). These results suggest an external, membrane-delimited action of NFA on if.

  4. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism

    PubMed Central

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-01-01

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence. PMID:23959884

  5. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.

    PubMed

    Zhang, Kewei; Halitschke, Rayko; Yin, Changxi; Liu, Chang-Jun; Gan, Su-Sheng

    2013-09-03

    The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.

  6. Synovial fluid lactic acid levels in septic arthritis.

    PubMed

    Riley, T V

    1981-01-01

    Synovial fluid lactic acid estimations were carried out on 50 samples by gas liquid chromatography. Specimens from 4 patients with bacteria arthritis, other than gonococcal, had a mean lactic acid concentration of 215 mg/dl. One patient with gonococcal arthritis had a synovial fluid lactic acid of 30 mg/dl. Forty-one patients with inflammatory arthritis and 4 patients with degenerative arthritis had mean synovial fluid lactic acid levels of 27 and 23 mg/dl respectively. The estimation of synovial fluid lactic acid is reliable in differentiating septic arthritis from inflammatory and degenerative arthritis except when the infecting organism is NEisseria gonorrhoeae.

  7. Cerebrospinal fluid ascorbic acid levels in neurological disorders.

    PubMed

    Brau, R H; García-Castiñeiras, S; Rifkinson, N

    1984-02-01

    The ascorbic acid/dehydroascorbic acid system was analyzed in the cerebrospinal fluid (CSF) of 41 patients with different neurological disorders. The chi-square test of covariance analysis revealed in this sample significant differences in the CSF levels of total ascorbic acid when patients were classified by diagnostic categories. The population analyzed contained a group of 18 patients (back pain/sciatica group) in whom no overt neurological abnormalities were disclosed upon evaluation. Taking the CSF levels of total ascorbic acid and dehydroascorbic acid in these patients as the reference (3.57 +/- 0.87 (SD)/100 ml and 0.53 +/- 0.19 mg/100 ml, respectively), it was found that head-traumatized patients showed a significant reduction in the concentration of total ascorbic acid in the CSF. CSF ascorbic acid levels were also significantly lower in patients with increased intracranial pressure (noninfected hydrocephalus group) and in patients with cerebral tumors. Although the CSF concentration of dehydroascorbic acid did not correspondingly increase over the reference values in these three groups of patients, the tendency existed for dehydroascorbic acid to represent in them a higher percentage of total ascorbic acid. After examining different alternatives, it is concluded that the hypothesis of free radical damage to the central nervous system after certain types of injury (trauma, ischemia, and tumors) may provide a satisfactory explanation of our findings. A rationale for the use of vitamin C in the management of some neurological patients is also derived from this work.

  8. Maternal folic acid supplementation to dams on marginal protein level alters brain fatty acid levels of their adult offspring.

    PubMed

    Rao, Shobha; Joshi, Sadhana; Kale, Anvita; Hegde, Mahabaleshwar; Mahadik, Sahebarao

    2006-05-01

    Studies on fetal programming of adult diseases have highlighted the importance of maternal nutrition during pregnancy. Folic acid and long-chain essential polyunsaturated fatty acids (LC-PUFAs) have independent effects on fetal growth. However, folic acid effects may also involve alteration of LC-PUFA metabolism. Because marginal deficiency of LC-PUFAs during critical periods of brain growth and development is associated with risks for adult diseases, it is highly relevant to investigate how maternal supplementation of such nutrients can alter brain fatty acid levels. We examined the impact of folic acid supplementation, conventionally used in maternal intervention, on brain essential fatty acid levels and plasma corticosterone concentrations in adult offspring at 11 months of age. Pregnant female rats from 4 groups (6 in each) were fed with casein diets either with 18 g protein/100 g diet (control diet) or treatment diets that were marginal in protein (MP), such as 12 g protein/100 g diet supplemented with 8 mg folic acid (FAS/MP), 12 g protein/100 g diet without folic acid (FAD/MP), or 12 g protein/100 g diet (MP) with 2 mg folic acid. Pups were weaned to a standard laboratory diet with 18 g protein/100 g diet. All male adult offspring in the FAS/MP group showed lower docosahexaenoic acid (P<.05) as compared with control adult offspring (6.04+/-2.28 vs 10.33+/-0.86 g/100 g fatty acids) and higher n-6/n-3 ratio (P<.05). Docosahexaenoic acid levels in FAS/MP adult offspring were also lower (P<.05) when compared with the MP group. Plasma corticosterone concentrations were higher (P<.05) in male adult offspring from the FAS/MP group compared with control as well as the MP adult offspring. Results suggest that maternal folic acid supplementation at MP intake decreased brain docosahexaenoic acid levels probably involving corticosterone increase.

  9. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    PubMed Central

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P < 0.01). Total cholesterol and triglyceride concentrations were similar in the two groups. Systolic and diastolic blood pressure were significantly higher in control children aged >10 years (P < 0.01). Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P < 0.001). Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension. PMID:26464873

  10. Hydrolysis of substance P in the presence of the osteosarcoma cell line SaOS-2: release of free amino acids.

    PubMed

    Cavazza, Antonella; Marini, Mario; Roda, L Giorgio; Tarantino, Umberto; Valenti, Angela

    2011-12-01

    The possible hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met) in presence of the osteoblastic cell line SaOS-2 was measured by capillary electrophoresis coupled to mass detection. The results obtained indicate that a very rapid disappearance of the intact undecapeptide was associated to a slower appearance of seven of its eight component amino acids. These results can be interpreted as indicating that an extremely fast hydrolysis of substance P by endopeptidases, which released peptidic by-products, was followed by a noticeably slower secondary degradation which released free amino acids. In decreasing quantitative importance, these phenomena appear to originate by the hydrolysis of the Pro(4)-Gln(5) bond, followed by C-terminal sequential degradation of the Arg(1)-Pro(4) tetrapeptide; by the hydrolysis of or Phe(7)-Phe(8) bond (or, possibly, of Gln(6)-Phe(7)) leading to release of free Phe and Gln; by hydrolysis of the Gly(9)-Leu(10) bond with subsequent release of Met and Leu. Results obtained appear to be compatible with the expression by SaOS-2 cells of enzymes already known to catalyze substance P hydrolysis, together with an apparent low efficiency of aminopeptidases. Because of the activity of C-terminal fragments on NK1 receptors, the delay between primary hydrolysis of substance P and secondary hydrolysis of its peptidic fragments indicated by the data shown implies a possible persistence of substance P physiological effects even after degradation of the intact peptide.

  11. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography.

  12. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology.

  13. Serum uric acid levels and cardiovascular disease: the Gordian knot

    PubMed Central

    Tugores, Antonio; Rodríguez-González, Fayna

    2016-01-01

    Hyperuricemia is defined as serum uric acid level of more than 7 mg/dL and blood levels of uric acid are causally associated with gout, as implicated by evidence from randomized clinical trials using urate lowering therapies. Uric acid as a cardiovascular risk factor often accompanies metabolic syndrome, hypertension, diabetes, dyslipidemia, chronic renal disease, and obesity. Despite the association of hyperuricemia with cardiovascular risk factors, it has remained controversial as to whether uric acid is an independent predictor of cardiovascular disease. To settle this issue, and in the absence of large randomized controlled trials, Mendelian randomization analysis in which the exposure is defined based on the presence or absence of a specific allele that influences a risk factor of interest have tried to shed light on this. PMID:28066631

  14. Independence of sialic acid levels in normal and malignant growth.

    PubMed

    Khadapkar, S V; Sheth, N A; Bhide, S V

    1975-06-01

    Sialic acid content in breast or tumor tissue and serum of mouse strains that are either susceptible or resistant to breast cancer was measured at various age periods. Sialic acid content was also studied in normal lung tissue and in lung adenoma and hepatoma. Sialic acid levels during nonmalignant growth of a tissue were measured in breast tissue during pregnancy and lactation, and in regenerating liver, as well as in newborn and postnatal liver. The sialic acid content, when expressed per mg of protein, increased in mammary tumor, lung adenoma, and hepatoma. It also increased in nonmalignant growth of breast tissue during pregnancy and lactation and of regenerating liver and postnatal liver. Increase in sialic acid per mg DNA was observed only in lung tumors, regenerating liver, and postnatal liver. It appears that the changes in sialic acid level are independent of the normal or malignant growth of a tissue and that these changes might be the function of the parameter used to express the sialic acid values, i.e., either the DNA content or protein content of a given tissue.

  15. Plasma amino acid response to graded levels of escape protein.

    PubMed

    Gibb, D J; Klopfenstein, T J; Britton, R A; Lewis, A J

    1992-09-01

    A trial was conducted to examine the potential of using plasma amino acid responses to graded levels of escape protein to determine limiting amino acids in cattle. Growing calves (n = 120; mean BW = 220 +/- 21 kg) were fed a basal diet of corncob:sorghum silage (61:39) and were individually supplemented with distillers' dried grains (DDG), heat-damaged DDG (H-DDG), feather meal (FTH), or urea. The urea supplement was mixed with DDG and H-DDG to allow 0, 20, 35, 50, 65, or 80% of the supplemental CP to come from distillers' protein and maintain an 11.5% CP diet. Urea supplement was mixed with FTH to allow 0, 22, 39, 56, 73, or 90% of the supplemental CP to come from FTH. Dietary CP ranged from 11.5% at the 0% level to 17.3% at the 90% level. Plasma concentration of most essential plasma amino acids responded (P less than .10) linearly and(or) quadratically to increased escape protein. The broken-line response of plasma methionine at low DDG intake suggested that methionine was limiting at low levels of escape protein. An initial decrease followed by a plateau fit by a broken line indicated that histidine became limiting in FTH diets, and lysine eventually became limiting for DDG, H-DDG, and FTH diets before maximum BW gain was reached. Results indicate that plasma amino acid responses may identify amino acids that become limiting with increasing escape protein.

  16. Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl.

    PubMed

    Fraga, Hugo Pacheco de Freitas; Vieira, Leila do Nascimento; Puttkammer, Catarina Corrêa; Dos Santos, Henrique Pessoa; Garighan, Julio de Andrade; Guerra, Miguel Pedro

    2016-12-01

    Here we propose a protocol for embryogenic cultures induction, proliferation and maturation for the Brazilian conifer Podocarpus lambertii, and investigated the effect of abscisic acid (ABA) and glutathione (GSH) supplementation on the maturation phase. ABA, zeatin (Z) and salicylic acid (SA) endogenous levels were quantified. Number of somatic embryos obtained in ABA-supplemented treatment was significant higher than in ABA-free treatment, showing the relevance of ABA supplementation during somatic embryos maturation. Histological analysis showed the stereotyped sequence of developmental stages in conifer somatic embryos, reaching the late torpedo-staged embryo. GSH supplementation in maturation culture medium improved the somatic embryos number and morphological features. GSH 0mM and GSH 0.1mM treatments correlated with a decreased ABA endogenous level during maturation, while GSH 0.5mM treatment showed constant levels. All treatments resulted in decreased Z endogenous levels, supporting the concept that cytokinins are important during the initial cell division but not for the later stages of embryo development. The lowest SA levels found in GSH 0.5mM treatment were coincident with early embryonic development, and this treatment resulted in the highest development of somatic embryos. Thus, a correlation between lower SA levels and improved somatic embryo formation can be hypothesized.

  17. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis.

  18. Association of Renal Manifestations with Serum Uric Acid in Korean Adults with Normal Uric Acid Levels

    PubMed Central

    Jung, Dong-Hyuk; Lee, Yong-Jae; Lee, Hye-Ree; Lee, Jung-Hyun

    2010-01-01

    Several studies have reported that hyperuricemia is associated with the development of hypertension and cardiovascular disease. Increasing evidences also suggest that hyperuricemia may have a pathogenic role in the progression of renal disease. Paradoxically, uric acid is also widely accepted to have antioxidant activity in experimental studies. We aimed to investigate the association between glomerular filtration rate (GFR) and uric acid in healthy individuals with a normal serum level of uric acid. We examined renal function determined by GFR and uric acid in 3,376 subjects (1,896 men; 1,480 women; aged 20-80 yr) who underwent medical examinations at Gangnam Severance Hospital from November 2006 to June 2007. Determinants for renal function and uric acid levels were also investigated. In both men and women, GFR was negatively correlated with systolic and diastolic blood pressures, fasting plasma glucose, total cholesterol, uric acid, log transformed C reactive protein, and log transformed triglycerides. In multivariate regression analysis, total uric acid was found to be an independent factor associated with estimated GFR in both men and women. This result suggests that uric acid appears to contribute to renal impairment in subjects with normal serum level of uric acid. PMID:21165292

  19. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  20. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  1. Puget Sound acidity levels drop after ASARCO shutdown

    SciTech Connect

    Not Available

    1987-07-01

    The levels of acidity in Puget Sound region rainfall have decreased significantly since the shutdown of the ASARCO copper smelter in Tacoma, Washington, according to a study funded by the US Environmental Protection Agency. Results indicate that sulfate and hydrogen ion concentrations obtained from samples taken before the closure were significantly different than those collected after the shutdown. Rainwater samples collected downwind during smelter operation were also significantly different from those collected upwind. Sulfur dioxide is considered to be one of the principal contributors to acid rain. The smelter was a major source of sulfur dioxide emissions in the Puget Sound region before it shut down in March 1985.

  2. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  3. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  4. Altered Serum Uric Acid Level in Lichen Planus Patients

    PubMed Central

    Chakraborti, Goutam; Biswas, Rabindranath; Chakraborti, Sandip; Sen, Pradyot Kumar

    2014-01-01

    Background: Lichen planus (LP) is a common disorder whose etiopathogenesis is not clear. Recently, it has been suggested that increased reactive oxygen species (ROS) play important roles in the underlying mechanism of LP. Objectives: The principal aim of this study was to evaluate serum uric acid (UA) levels as a measure of the antioxidant defense status in LP patients. Methods: Serum UA levels were determined in 58 LP patients and 61 controls. Results: Serum UA levels were significantly decreased in patients with respect to controls. Moreover, serum UA level was decreased according to increasing duration of disease. Conclusions: The results of our study suggest that LP is associated with decrease of UA levels in serum. UA may be a potential, useful biomarker of antioxidant status in LP for elaboration of treatment strategy and monitoring. PMID:25484383

  5. A Mutant of Arabidopsis with Increased Levels of Stearic Acid.

    PubMed Central

    Lightner, J.; Wu, J.; Browse, J.

    1994-01-01

    A mutation at the fab2 locus of Arabidopsis caused increased levels of stearate in leaves. The increase in leaf stearate in fab2 varied developmentally, and the largest increase occurred in young leaves, where stearate accounted for almost 20% of total leaf fatty acids. The fatty acid composition of leaf lipids isolated from the fab2 mutant showed increased stearate in all the major glycerolipids of both the chloroplast and extrachloroplast membranes. Although the stearate content was increased, the fab2 mutant still contained abundant amounts of 18:1, 18:2, and 18:3 fatty acids. These results are consistent with the expectations for a mutation partially affecting the action of the stromal stearoyl-acyl carrier protein desaturase. Positional analysis indicated that the extra 18:0 is excluded with high specificity from the sn-2 position of both chloroplast and extrachloroplast glycerolipids. Although stearate content was increased in all the major leaf membrane lipids, the amount of increase varied considerably among the different lipids, from a high of 25% of fatty acids in phosphatidylcholine to a low of 2.9% of fatty acids in monogalactosyldiacylglycerol. PMID:12232421

  6. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress.

    PubMed

    Yang, Yinong; Qi, Min; Mei, Chuansheng

    2004-12-01

    Salicylic acid (SA) is a key endogenous signal that mediates defense gene expression and disease resistance in many dicotyledonous species. In contrast to tobacco and Arabidopsis, which contain low basal levels of SA, rice has two orders of magnitude higher levels of SA and appears to be insensitive to exogenous SA treatment. To determine the role of SA in rice plants, we have generated SA-deficient transgenic rice by expressing the bacterial salicylate hydroxylase that degrades SA. Depletion of high levels of endogenous SA in transgenic rice does not measurably affect defense gene expression, but reduces the plant's capacity to detoxify reactive oxygen intermediates (ROI). SA-deficient transgenic rice contains elevated levels of superoxide and H2O2, and exhibits spontaneous lesion formation in an age- and light-dependent manner. Exogenous application of SA analog benzothiadiazole complements SA deficiency and suppresses ROI levels and lesion formation. Although an increase of conjugated catechol was detected in SA-deficient rice, catechol does not appear to significantly affect ROI levels based on the endogenous catechol data and exogenous catechol treatment. When infected with the blast fungus (Magnaporthe grisea), SA-deficient rice exhibits increased susceptibility to oxidative bursts elicited by avirulent isolates. Furthermore, SA-deficient rice is hyperresponsive to oxidative damage caused by paraquat treatment. Taken together, our results strongly suggest that SA plays an important role to modulate redox balance and protect rice plants from oxidative stress.

  7. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  8. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage.

  9. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  10. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  11. Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana.

    PubMed

    Koo, Yeon Jong; Kim, Myeong Ae; Kim, Eun Hye; Song, Jong Tae; Jung, Choonkyun; Moon, Joon-Kwan; Kim, Jeong-Han; Seo, Hak Soo; Song, Sang Ik; Kim, Ju-Kon; Lee, Jong Seob; Cheong, Jong-Joo; Choi, Yang Do

    2007-05-01

    We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment. Upon infection with the bacterial pathogen Pseudomonas syringae or the fungal pathogen Golovinomyces orontii, transgenic plants failed to accumulate SA and its glucoside (SAG), becoming more susceptible to disease than wild-type plants. OsBSMT1-overexpressing Arabidopsis showed little induction of PR-1 when treated with SA or G. orontii. Notably, incubation with the transgenic plant was sufficient to trigger PR-1 induction in neighboring wild-type plants. Together, our results indicate that in the absence of SA, MeSA alone cannot induce a defense response, yet it serves as an airborne signal for plant-to-plant communication. We also found that jasmonic acid (JA) induced AtBSMT1, which may contribute to an antagonistic effect on SA signaling pathways by depleting the SA pool in plants.

  12. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  13. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  14. Association between serum folic acid level and erectile dysfunction.

    PubMed

    Karabakan, M; Erkmen, A E; Guzel, O; Aktas, B K; Bozkurt, A; Akdemir, S

    2016-06-01

    This study measured the serum folic acid (FA) level in patients with erectile dysfunction (ED) and evaluated the possible association between the serum FA level and erectile function. The study divided 120 patients with ED into 3 groups of 40 patients each: those with severe, moderate and mild ED. Forty healthy men served as controls. Fasting serum samples were obtained, and the total testosterone, cholesterol and FA levels were measured using chemiluminescent immunoassays. There were no significant differences in the mean age, mean body mass index or mean serum total testosterone and cholesterol levels among the three ED groups and controls (P > 0.05). The mean serum FA concentrations were 7.2 ± 3.7, 7.1 ± 3.2, 10.2 ± 4.6 and 10.7 ± 4.6 ng ml(-1) in the severe, moderate and mild ED and control groups respectively. The mean serum FA concentration was significantly higher in the control group than in the severe and moderate ED groups (both P < 0.001), but not the mild ED group (P = 0.95). Considering the significant differences in the serum FA levels between the control and ED groups, serum FA deficiency might reflect the severity of ED.

  15. Cytokine levels affected by gamma-linolenic acid.

    PubMed

    Dirks, J; van Aswegen, C H; du Plessis, D J

    1998-10-01

    This study was undertaken to assess whether gamma-linolenic acid (GLA) in the form of evening primrose oil (EPO) could affect rat serum cytokines, interferon-gamma (IFN-gamma), monocyte chemotactic protein-1 (MCP-1) and tumour necrosis factor-alpha (TNF-alpha). The following diets were administered: control, glucan, Freund's adjuvant and glucan plus Freund's adjuvant with and without GLA. In the presence of GLA, the IFN-gamma and MCP-1 levels were significantly decreased in contrast to the control group of TNF-alpha, which was significantly stimulated. On account of interaction between diets and GLA, the remaining diet groups of TNF-alpha were either not affected or were inhibited in the presence of GLA. The observations indicate that GLA may modulate the level of serum IFN-gamma, MCP-1 and TNF-alpha, which may be a worthwhile line of treatment in certain human diseases.

  16. A rotamer energy level study of sulfuric acid.

    PubMed

    Partanen, Lauri; Pesonen, Janne; Sjöholm, Elina; Halonen, Lauri

    2013-10-14

    It is a common approach in quantum chemical calculations for polyatomic molecules to rigidly constrain some of the degrees of freedom in order to make the calculations computationally feasible. However, the presence of the rigid constraints also affects the kinetic energy operator resulting in the frozen mode correction, originally derived by Pesonen [J. Chem. Phys. 139, 144310 (2013)]. In this study, we compare the effects of this correction to several different approximations to the kinetic energy operator used in the literature, in the specific case of the rotamer energy levels of sulfuric acid. The two stable conformers of sulfuric acid are connected by the rotations of the O-S-O-H dihedral angles and possess C2 and Cs symmetry in the order of increasing energy. Our results show that of the models tested, the largest differences with the frozen mode corrected values were obtained by simply omitting the passive degrees of freedom. For the lowest 17 excited states, this inappropriate treatment introduces an increase of 9.6 cm(-1) on average, with an increase of 8.7 cm(-1) in the zero-point energies. With our two-dimensional potential energy surface calculated at the CCSD(T)-F12a/VDZ-F12 level, we observe a radical shift in the density of states compared to the harmonic picture, combined with an increase in zero point energy. Thus, we conclude that the quantum mechanical inclusion of the different conformers of sulfuric acid have a significant effect on its vibrational partition function, suggesting that it will also have an impact on the computational values of the thermodynamic properties of any reactions where sulfuric acid plays a role. Finally, we also considered the effect of the anharmonicities for the other vibrational degrees of freedom with a VSCF-calculation at the DF-MP2-F12/VTZ-F12 level of theory but found that the inclusion of the other conformer had the more important effect on the vibrational partition function.

  17. Serum hyaluronic acid levels in patients with ankylosing spondylitis.

    PubMed

    Duruöz, Mehmet Tuncay; Turan, Yasemin; Cerrahoglu, Lale; Isbilen, Banu

    2008-05-01

    Our aim in this study was to investigate serum hyaluronic acid (HA) levels and the relationship between clinical parameters in ankylosing spondylitis (AS). Approximately 30 patients with AS and 30 healthy individuals were recruited in this study consecutively. Cross-sectional study was planned, and demographic, clinical, functional, radiological, and laboratory data of patients were evaluated. Disease activity, functional status, and quality of life were assessed, respectively, with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), and Short-Form 36 (SF-36). Mander Enthesis Index (MEI) was used for evaluation of enthesis involvement. We examined serum concentrations of HA (ng/ml) in patients with AS and controls. The mean ages of patients and control group were 38.3 (SD=10.8) and 42.7 (SD=10.6) years, respectively. The mean of serum HA levels in AS patients was 40.4 (SD=34.8) ng/ml and in controls was 24.9 (SD=20.2). There was significant difference of HA levels between two groups (p=0.04). Furthermore, there was a significant correlation between HA level and distance of hand-floor (r=0.444, p=0.014), modified lumbar Schober's (r= -0.413, p=0.023), distance of chin to chest (r=0.436, p=0.016), right sacroiliit grade (r=0.601, p<0.001), left sacroiliit grade (r=0.610, p<0.001), C reactive protein level (r=0.404, p=0.027), albumin (r= -0.464, p=0.010), C3 (p=0.449, p=0.013), and IgA levels (r=0.369, p=0.045). However, there was no significant correlation between HA levels with MEI, BASFI, BASDAI, and SF-36 (p >or= 0.05). Serum HA level was significantly higher in AS patients than controls. However, there was no significant correlation between serum HA level and disease-specific measures as BASFI and BASDAI; it had significant relation with spinal mobility limitation, sacroiliitis, and laboratory parameters related with acute inflammation. The serum HA level may be a potential biomarker of axial

  18. Regulation of water, salinity, and cold stress responses by salicylic acid.

    PubMed

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  19. Endogenous Levels of Abscisic Acid and Decanoic Acid in Dutch Iris Bulbs and the Influence of Abscisic Acid and Decanoic Acid on Iris Meristems Cultured In Vitro1

    PubMed Central

    Doss, Robert P.; Kimura, Yosh; Christian, James K.

    1983-01-01

    Abscisic acid (ABA) and decanoic acid inhibited shoot elongation and floral development of Dutch iris (Iris hollandica Hoog. cv Ideal) meristems cultured in vitro. No synergism with respect to inhibition of leaf growth between ABA and decanoic acid was observed. With monthly harvest dates, from July 10, 1981 to October 10, 1981, there was a progressive decrease in endogenous level of free ABA in `Ideal' iris bulbs. Bulbs subjected to a full set of the usual preplanting storage conditions flowered, on average, 46 days after planting versus 194 days after planting for bulbs planted directly after harvest. ABA levels at harvest were 4- to 5-fold those after the preplanting storage treatment. In general, ABA levels did not correlate well with the length of time from planting until flowering of iris bulbs. Endogenous decanoic acid levels did not follow any pattern with respect to harvest date or postharvest treatment. After the postharvest high temperature treatment, there was about a 3-fold increase in nonscale decanoic acid concentration. Decanoic acid levels, in nonscale tissue, remained high after each of the other postharvest treatments. It is concluded that there is no good evidence to support the contention that either ABA or decanoic acid is directly involved in iris bulb dormancy. PMID:16663072

  20. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  1. Alterations of amino Acid level in depressed rat brain.

    PubMed

    Yang, Pei; Li, Xuechun; Ni, Jian; Tian, Jingchen; Jing, Fu; Qu, Changhai; Lin, Longfei; Zhang, Hui

    2014-10-01

    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. Several studies have demonstrated the potential of amino acids as a source of neuro-specific biomarkers could be used in future diagnosis of depression. Only partial amino acids such as glycine and asparagine were determined from certain parts of rats' brain included hippocampi and cerebral cortex in previous studies. However, according to systematic biology, amino acids in different area of brain are interacted and interrelated. Hence, the determination of 34 amino acids through entire rats' brain was conducted in this study in order to demonstrate more possibilities for biomarkers of depression by discovering other potential amino acids in more areas of rats' brain. As a result, 4 amino acids (L-aspartic acid, L-glutamine, taurine and γ-amino-n-butyric acid) among 34 were typically identified as potentially primary biomarkers of depression by data statistics. Meanwhile, an antidepressant called Fluoxetine was employed to verify other potential amino acids which were not identified by data statistics. Eventually, we found L-α-amino-adipic acid could also become a new potentially secondary biomarker of depression after drug validation. In conclusion, we suggested that L-aspartic acid, L-glutamine, taurine, γ-amino-n-butyric acid and L-α-amino-adipic acid might become potential biomarkers for future diagnosis of depression and development of antidepressant.

  2. Elevation of serum levels of beta-aminoisobutyric acid in uremic patients and the toxicity of the amino acid.

    PubMed

    Gejyo, F; Kinoshita, Y; Ikenaka, T

    1977-12-01

    A reliable method for the determination of beta-aminoisobutyric acid in serum was developed utilizing an automated amino acid analyzer. The serum concentrations of beta-aminoisobutyric acid were determined in 20 normal subjects and in 71 uremic patients. The mean serum level of beta-aminoisobutyric acid was markedly increased in the uremic patients to 0.856 +/- 0.910 (mean +/- SD) mg/100 ml as compared with a normal value of 0.026 +/- 0.027 mg/100 ml. The distribution of serum beta-aminoisobutyric acid level in uremic patients was wide-spread, and there was no correlation between the serum levels of the amino acid and those of urea nitrogen, creatinine and uric acid. The toxicity of beta-aminoisobutyric acid on mice with acute renal failure induced by uranyl acetate was investigated and compared with that of alpha-amino-n-butyric acid and gamma-amino-n-butyric acid. All mice given more than 4 g/kg body wt of beta-aminoisobutyric acid showed twitching and cramps, and some of them died. However, the control mice given an equivalent dose of alpha-amino-n-butyric acid or gamma-amino-n-butyric acid showed no change. These results suggest that beta-aminoisobutyric acid might be a factor influencing the development and progression of uremic toxemia.

  3. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  4. Acetic acid vapor levels associated with facial prosthetics

    SciTech Connect

    McElroy, T.H.; Guerra, O.N.; Lee, S.A.

    1985-01-01

    The use of Silastic Medical Adhesive Type A in the fabrication of facial prostheses may cause health hazards to the patient and the operator because of acetic acid emissions. Caution must be exercised to remove acetic acid vapors from the air and unliberated acetic acid from material applied directly to the skin.

  5. Lower serum uric acid level predicts mortality in dialysis patients

    PubMed Central

    Bae, Eunjin; Cho, Hyun-Jeong; Shin, Nara; Kim, Sun Moon; Yang, Seung Hee; Kim, Dong Ki; Kim, Yong-Lim; Kang, Shin-Wook; Yang, Chul Woo; Kim, Nam Ho; Kim, Yon Su; Lee, Hajeong

    2016-01-01

    Abstract We evaluated the impact of serum uric acid (SUA) on mortality in patients with chronic dialysis. A total of 4132 adult patients on dialysis were enrolled prospectively between August 2008 and September 2014. Among them, we included 1738 patients who maintained dialysis for at least 3 months and had available SUA in the database. We categorized the time averaged-SUA (TA-SUA) into 5 groups: <5.5, 5.5–6.4, 6.5–7.4, 7.5–8.4, and ≥8.5 mg/dL. Cox regression analysis was used to calculate the hazard ratio (HR) of all-cause mortality according to SUA group. The mean TA-SUA level was slightly higher in men than in women. Patients with lower TA-SUA level tended to have lower body mass index (BMI), phosphorus, serum albumin level, higher proportion of diabetes mellitus (DM), and higher proportion of malnourishment on the subjective global assessment (SGA). During a median follow-up of 43.9 months, 206 patients died. Patients with the highest SUA had a similar risk to the middle 3 TA-SUA groups, but the lowest TA-SUA group had a significantly elevated HR for mortality. The lowest TA-SUA group was significantly associated with increased all-cause mortality (adjusted HR, 1.720; 95% confidence interval, 1.007–2.937; P = 0.047) even after adjusting for demographic, comorbid, nutritional covariables, and medication use that could affect SUA levels. This association was prominent in patients with well nourishment on the SGA, a preserved serum albumin level, a higher BMI, and concomitant DM although these parameters had no significant interaction in the TA-SUA-mortality relationship except DM. In conclusion, a lower TA-SUA level <5.5 mg/dL predicted all-cause mortality in patients with chronic dialysis. PMID:27310949

  6. The preliminary study of autophagy induction of SA and MeSA by confocal

    NASA Astrophysics Data System (ADS)

    Yun, Lijuan; Chen, Wenli

    2010-02-01

    Autophagy appears to be a highly conserved process from unicellular to multicellular eukaryotes which contributes to the equilibrium of intracelluar environment. While it would be harmful to the cells when it is excessive by inducing programmed cell death (PCD). It is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Previous studies have demonstrated autophagy can be induced during abiotic or biotic stresses. salicylic acid (SA) and methyl salicytic (MeSA) are endogenous signal molecules. We found SA and MeSA can induce autophagy in Arabidopsis thaliana respectively. While autophagy was not induced by SA or MeSA in tobacco suspension cells under the same concentration and period. The differences in stuctures or physiological states may contribute to the results.

  7. Is Salicylic Acid a Translocated Signal of Systemic Acquired Resistance in Tobacco?

    PubMed Central

    Shulaev, V.; Leon, J.; Raskin, I.

    1995-01-01

    Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites. PMID:12242358

  8. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'.

  9. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  10. Interaction of aminooxyacetic acid and ethacrynic acid with intense sound at the level of the cochlea.

    PubMed

    Kisiel, D L; Bobbin, R P

    1982-02-01

    Results of previous investigation of the interaction of intense sound and drugs have, in general, failed to show a protective effect mediated by pre-administration with a drug having transient ototoxic effects. The present investigation was designed to further evaluate a protective effect found previously at the anatomical level and explained with an electrochemical theory of noise damage. The alternating current (a.c) potential and compound eighth nerve action potential (CAP) amplitude were monitored in aminooxyacetic acid (AOAA)- or ethacrynic acid (EA)-treated guinea pigs exposed to either moderate or high levels of intense sound and compared to changes observed in the same potentials in animals exposed to the intense sounds alone. Results showed protective effects only in the moderate--intense sound-exposure groups, with changes in sensitivity and voltage on the linear part of the input--output curve of the a.c cochlear potential found to be the only conditions where differences occurred. These results were difficult to interpret in terms of a protective effect and point to the need for obtaining additional data before an electrochemical mechanism is shown to play a role in the effect of intense sound on the cochlea.

  11. Chicoric Acid Levels in Basil (Ocimum basilicum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported the presence of chicoric acid in basil leaves (confirmed by co-chromatography with purchased standard). Chicoric acid being the chief phenolic of the Echinacea purpurea plant which is popularly consumed as a dietary supplement. For this study, basil products commonly purchased ...

  12. Circulating Levels of Uric Acid and Risk for Metabolic Syndrome.

    PubMed

    Rubio-Guerra, Alberto F; Morales-López, Herlinda; Garro-Almendaro, Ana K; Vargas-Ayala, German; Durán-Salgado, Montserrat B; Huerta-Ramírez, Saul; Lozano-Nuevo, Jose J

    2017-01-01

    Hyperuricemia leads to insulin resistance, whereas insulin resistance decreases renal excretion of uric acid, both mechanisms link elevated serum uric acid with metabolic syndrome. The aim of this study is to evaluate the probability for the development of metabolic syndrome in low-income young adults with hyperuricaemia.

  13. Island Cotton Enhanced Disease Susceptibility 1 Gene Encoding a Lipase-Like Protein Plays a Crucial Role in Response to Verticillium dahliae by Regulating the SA Level and H2O2 Accumulation

    PubMed Central

    Yan, Zhang; Xingfen, Wang; Wei, Rong; Jun, Yang; Zhiying, Ma

    2016-01-01

    Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1). The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA) treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 accumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton. PMID:28018374

  14. Salicylic Acid Is an Uncoupler and Inhibitor of Mitochondrial Electron Transport1

    PubMed Central

    Norman, Christel; Howell, Katharine A.; Millar, A. Harvey; Whelan, James M.; Day, David A.

    2004-01-01

    The effect of salicylic acid (SA) on respiration and mitochondrial function was examined in tobacco (Nicotiana tabacum) suspension cell cultures in the range of 0.01 to 5 mm. Cells rapidly accumulated SA up to 10-fold of the externally applied concentrations. At the lower concentrations, SA accumulation was transitory. When applied at 0.1 mm or less, SA stimulated respiration of whole cells and isolated mitochondria in the absence of added ADP, indicating uncoupling of respiration. However, at higher concentrations, respiration was severely inhibited. Measurements of ubiquinone redox poise in isolated mitochondria suggested that SA blocked electron flow from the substrate dehydrogenases to the ubiquinone pool. This inhibition could be at least partially reversed by re-isolating the mitochondria. Two active analogs of SA, benzoic acid and acetyl-SA, had the same effect as SA on isolated tobacco mitochondria, whereas the inactive p-hydroxybenzoic acid was without effect at the same concentration. SA induced an increase in Aox protein levels in cell suspensions, and this was correlated with an increase in Aox1 transcript abundance. However, when applied at 0.1 mm, this induction was transient and disappeared as SA levels in the cells declined. SA at 0.1 mm also increased the expression of other SA-responsive genes, and this induction was dependent on active mitochondria. The results indicate that SA is both an uncoupler and an inhibitor of mitochondrial electron transport and suggest that this underlies the induction of some genes by SA. The possible implications of this for the interpretation of SA action in plants are discussed. PMID:14684840

  15. Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress.

    PubMed

    Joshi, Rohit; Ramanarao, Mangu Venkata; Baisakh, Niranjan

    2013-04-01

    Salinity is one of the most important environmental constraints limiting agricultural productivity. Considering the importance of the accumulation of osmolytes, myo-inositol in particular, in halophytic plant's adaptive response to salinity, an effort was made to overexpress the SaINO1 gene from the grass halophyte Spartina alterniflora encoding myo-inositol 1-phosphate synthase (MIPS) in Arabidopsis thaliana. We demonstrated that SaINO1 is a stress-responsive gene and its constitutive over expression in Arabidopsis provides significantly improved tolerance to salt stress during germination and seedling growth and development. The transgenics retained more chlorophyll and carotenoid by protecting the photosystem II. The low level of stress-induced cellular damage in the transgenics was clearly evident by lower accumulation of proline in comparison to WT. Our results indicated that possible overaccumulation of MIPS enzyme in the cytosol protected the transgenic Arabidopsis plants overexpressing SaINO1 from the toxic effect of Na(+) under salt stress by reducing cellular damage and chlorophyll loss.

  16. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  17. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  18. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine.

    PubMed

    Naithani, Manisha; Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus.

  19. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  20. Intercellular salicylic acid accumulation during compatible and incompatible Arabidopsis-Pseudomonas syringae interactions.

    PubMed

    Wilson, Daniel C; Carella, Philip; Cameron, Robin K

    2014-01-01

    The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response.

  1. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study.

    PubMed

    Weatherly, Choyce A; Du, Siqi; Parpia, Curran; Santos, Polan T; Hartman, Adam L; Armstrong, Daniel W

    2017-02-16

    The l-enantiomer is the predominant type of amino acid in all living systems. However, d-amino acids, once thought to be "unnatural", have been found to be indigenous even in mammalian systems and increasingly appear to be functioning in essential biological and neurological roles. Both d- and l-amino acid levels in the hippocampus, cortex, and blood samples from NIH Swiss mice are reported. Perfused brain tissues were analyzed for the first time, thereby eliminating artifacts due to endogenous blood, and decreased the mouse-to-mouse variability in amino acid levels. Total amino acid levels (l- plus d-enantiomers) in brain tissue are up to 10 times higher than in blood. However, all measured d-amino acid levels in brain tissue are typically ∼10 to 2000 times higher than blood levels. There was a 13% reduction in almost all measured d-amino acid levels in the cortex compared to those in the hippocampus. There is an approximate inverse relationship between the prevalence of an amino acid and the percentage of its d-enantiomeric form. Interestingly, glutamic acid, unlike all other amino acids, had no quantifiable level of its d-antipode. The bioneurological reason for the unique and conspicuous absence/removal of this d-amino acid is yet unknown. However, results suggest that d-glutamate metabolism is likely a unidirectional process and not a cycle, as per the l-glutamate/glutamine cycle. The results suggest that there might be unreported d-amino acid racemases in mammalian brains. The regulation and function of specific other d-amino acids are discussed.

  2. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  3. Plasma Amino Acid Levels in Children with Autism and Their Families.

    ERIC Educational Resources Information Center

    Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.

    2003-01-01

    Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…

  4. The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation

    PubMed Central

    Jenssen, Trond; Hartmann, Anders; Diep, Lien M.; Dahle, Dag O.; Reisæter, Anna V.; Bjerve, Kristian S.; Christensen, Jeppe H.; Schmidt, Erik B.; Svensson, My

    2015-01-01

    Background and objectives Several studies have reported beneficial cardiovascular effects of marine n-3 polyunsaturated fatty acids. To date, no large studies have investigated the potential benefits of marine n-3 polyunsaturated fatty acids in recipients of renal transplants. Design, setting, participants, & measurements In this observational cohort study of 1990 Norwegian recipients of renal transplants transplanted between 1999 and 2011, associations between marine n-3 polyunsaturated fatty acid levels and mortality were investigated by stratified analysis and multivariable Cox proportional hazard regression analysis adjusting for traditional and transplant-specific mortality risk factors. Marine n-3 polyunsaturated fatty acid levels in plasma phospholipids were measured by gas chromatography in a stable phase 10 weeks after transplantation. Results There were 406 deaths (20.4%) during a median follow-up period of 6.8 years. Mortality rates were lower in patients with high marine n-3 polyunsaturated fatty acid levels (≥7.95 weight percentage) compared with low levels (<7.95 weight percentage) for all age categories (pooled mortality rate ratio estimate, 0.69; 95% confidence interval, 0.57 to 0.85). When divided into quartiles according to marine n-3 polyunsaturated fatty acid levels, patients in the upper quartile compared with the lower quartile had a 56% lower risk of death (adjusted hazard ratio, 0.44; 95% confidence interval, 0.26 to 0.75) using multivariable Cox proportional hazard regression analysis. There was a lower hazard ratio for death from cardiovascular disease with high levels of marine n-3 polyunsaturated fatty acid and a lower hazard ratio for death from infectious disease with high levels of the marine n-3 polyunsaturated fatty acid eicosapentaenoic acid, whereas there was no association between total or individual marine n-3 polyunsaturated fatty acid levels and cancer mortality. Conclusions Higher plasma phospholipid marine n-3

  5. Plasma ω-3 fatty acid levels negatively and ω-6 fatty acid levels positively associated with other cardiovascular risk factors including homocysteine in severe obese subjects.

    PubMed

    Mehmetoglu, Idris; Yerlikaya, F Hümeyra; Kurban, Sevil; Polat, Hakkı

    2012-01-01

    Obesity and homocysteine (tHcy) are important risk factors for cardiovascular diseases (CVD). Plasma omega-3 fatty acids (ω-3 FAs) and omega-6 fatty acids (ω-6 FAs) are essential fatty acids with diverse biological effects in human health and disease. We have investigated the relation of plasma ω-3 FAs and ω-6 FAs levels with other cardiovascular risk factors including tHcy in severe obese subjects. This study was performed on 96 severe obese and 65 normal weight subjects. Plasma fatty acid composition was measured by GC/MS and serum tHcy level was measured by HPLC methods. There were no differences between groups in terms of concentrations of serum tHcy, plasma ω-3 FAs, ω-6 FAs and ω-3/ω-6 ratio, whereas serum vitamin B-12 (p<0.01) and folic acid (p<0.05) levels were lower than those of the normal weight subjects. Homocysteine positively correlated with ω-6 FAs and negatively correlated with ω-3 FAs in severe obese and normal weight subjects. Serum vitamin B-12 positively correlated with ω-3 FAs (p<0.01) and ω-3/ω-6 ratio (p<0.01) and negatively correlated with ω-6 FAs (p<0.05) in severe obese subjects. Serum folic acid positively correlated with ω-3 FAs (p<0.01) in severe obese subjects. Our results suggest an association between the plasma ω-3 FAs and ω-6 FAs and serum tHcy concentrations in severe obese and normal weight subjects. Low levels vitamin B-12 and folic acid may have been responsible for the elevated tHcy levels in severe obese subjects, increasing the risk for future development of cardiovascular diseases.

  6. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    PubMed

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  7. The Effects of Lowering Uric Acid Levels Using Allopurinol on Components of Metabolic Syndrome

    PubMed Central

    Heimbach, Esther J.; Bowden, Rodney G.; Griggs, Jackson O.; Beaujean, A. Alexander; Doyle, Eva I.; Doyle, Robert D.

    2012-01-01

    Background Researchers have reported an independent direct relationship between lipid levels and hyperuricemia with MetS. The purpose of this study was to determine the relationship between serum uric acid levels and lipids among patients on allopurinol. Methods A retrospective secondary data analysis was conducted on 66 adult patients from a family health clinic in Central Texas. Medical records used were recorded during a nine year period (2002 - 2010) ascertaining the relationship between uric acid and lipids. Results Spearman correlations revealed a weak correlation between uric acid and total cholesterol, a weak correlation between uric acid and triglycerides and LDL-C. A weak inverse correlation was discovered between uric acid and HDL-C. A moderate correlation was discovered when all lipid variables combined were compared to uric acid. Conclusions We discovered LDL-C and triglycerides to be significant predictors of uric acid with weak correlations. Additionally, weak correlations existed between uric acid and total cholesterol and HDL-C with an inverse relationship discovered with HDL-C. These findings support the literature suggesting that uric acid is more likely to be associated with total cholesterol and triglycerides. In addition, new discoveries serve as an indication that LDL-C may also be associated with uric acids levels. The mechanism by which uric acid may regulate lipids is elusive but suggestions have included suppression of lipid peroxidase and decreases in critical lipase activity.

  8. SalSA status

    NASA Astrophysics Data System (ADS)

    Connolly, Amy; SalSA Collaboration

    2009-06-01

    I review the status of SalSA, a proposed antenna array in a large volume salt formation for detecting ultra-high energy neutrinos. We report on measurements taken in 2007 of attenuation lengths in the 125-900 MHz frequency range at the Cote Blanche salt mine near New Iberia, Louisiana, which is the most precise in situ measurement of attenuation lengths in salt to date. We comment on the impact of these measurements on the feasibility of SalSA.

  9. Hippuric Acid Levels in Paint Workers at Steel Furniture Manufacturers in Thailand

    PubMed Central

    Decharat, Somsiri

    2014-01-01

    Background The aims of this study were to determine hippuric acid levels in urine samples, airborne toluene levels, acute and chronic neurological symptoms, and to describe any correlation between urinary hippuric acid and airborne toluene. Methods The hippuric acid concentration in the urine of 87 paint workers exposed to toluene at work (exposed group), and 87 nonexposed people (control group) was studied. Study participants were selected from similar factories in the same region. Urine samples were collected at the end of a shift and analyzed for hippuric acid by high performance liquid chromatography. Air samples for the estimation of toluene exposure were collected with diffusive personal samplers and the toluene quantified using gas–liquid chromatography. The two groups were also interviewed and observed about their work practices and health. Results The median of the 87 airborne toluene levels was 55 ppm (range, 12–198 ppm). The median urinary hippuric acid level was 800 mg/g creatinine (range, 90–2547 mg/g creatinine). A statistically significant positive correlation was found between airborne toluene exposure and urine hippuric acid levels (r = 0.548, p < 0.01). Workers with acute symptoms had significantly higher hippuric acid levels than those who did not (p < 0.05). It was concluded that there was a significant correlation between toluene exposure, hippuric acid levels, and health (p < 0.001). Conclusion There appears to be a significant correlation between workers exposure to toluene at work, their urine hippuric acid levels, and resulting symptoms of poor health. Improvements in working conditions and occupational health education are required at these workplaces. There was good correlation between urinary hippuric acid and airborne toluene levels. PMID:25516817

  10. Messenger ribonucleic acid levels in disrupted human anterior cruciate ligaments.

    PubMed

    Lo, Ian K Y; Marchuk, Linda; Hart, David A; Frank, Cyril B

    2003-02-01

    Thirty patients had anterior cruciate ligament reconstruction for ongoing instability. Two groups were defined according to gross morphologic features identified during reconstruction: anterior cruciate ligament disruptions with scars attached to a structure in the joint and disruptions without reattachments. Reverse transcription polymerase chain reaction for a subset of extracellular matrix molecules, proteinases, and proteinase inhibitors was done on samples of scarred anterior cruciate ligament tissue removed during reconstructive surgery. Results of the nonattached scar group showed significantly increased mRNA levels for Type I collagen, and an increased Type I to Type III collagen ratio compared with that for the attached scar group. In the first year after injury, decorin mRNA levels in the nonattached scar group also were significantly higher than in the attached scar group. Biglycan mRNA levels in the nonattached scar group correlated closely with Type I collagen mRNA levels. These results suggest differences in cellular expression in torn anterior cruciate ligaments that attach to structures in the joint versus those which do not. Although the molecular mechanisms responsible for these differences have not been delineated, different molecular signals may influence the gross morphologic features of anterior cruciate ligament disruptions or alternatively, differing gross morphologic features may be subject to different mechanical loads leading to altered molecular expression. However, the finding of endogenous cellular activity in injured anterior cruciate ligaments raises the possibility that this activity may be enhanced to improve outcomes.

  11. Plasma D-lactic acid level: a useful marker to distinguish perforated from acute simple appendicitis.

    PubMed

    Demircan, Mehmet; Cetin, Selma; Uguralp, Sema; Sezgin, Nurzen; Karaman, Abdurrahman; Gozukara, Engin M

    2004-10-01

    Early diagnosis of perforated appendicitis is important for reducing morbidity rates. The aim of this study was to determine the value and utility of plasma D-lactic acid levels in identifying the type of appendicitis. In this clinical study, plasma D-lactic acid levels were assessed in 44 consecutive paediatric patients (23 with acute appendicitis, 21 with perforated appendicitis) before laparotomy. D-lactic acid levels were determined by an enzymatic spectrophotometric technique using a D-lactic acid dehydrogenase kit. Patients with perforated appendicitis had higher D-lactic acid levels (3.970 +/- 0.687 mg/dL) than patients in the control group (0.478 +/- 0.149 mg/dL) and patients with acute appendicitis (1.409 +/- 0.324 mg/dL; p < 0.05). For a plasma D-lactic acid level greater than 2.5 mg/dL, the sensitivity and specificity of the D-lactic acid assay were 96% and 87%, respectively. The positive predictive value was 87%, the negative predictive value was 96%, and the diagnostic value was 91%. These results suggest that the measurement of plasma D-lactic acid levels may be a useful adjunct to clinical and radiological findings in distinguishing perforated from acute non-perforated appendicitis in children.

  12. Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice.

    PubMed

    Li, Yunfeng; Zhang, Zhihui; Nie, Yanfang; Zhang, Lianhui; Wang, Zhenzhong

    2012-08-01

    To probe salicylic acid (SA)-induced sequential events at translational level and factors associated with SA response, we conducted virulence assays and proteomic profiling analysis on rice resistant and susceptible cultivars against Magnaporthe oryzae at various time points after SA treatment. The results showed that SA significantly enhanced rice resistance against M. oryzae. Proteomic analysis of SA-treated leaves unveiled 36 differentially expressed proteins implicated in various functions, including defense, antioxidative enzymes, and signal transduction. Majority of these proteins were induced except three antioxidative enzymes, which were negatively regulated by SA. Consistent with the above findings, SA increased the level of reactive oxygen species (ROS) with resistant cultivar C101LAC showing faster response to SA and producing higher level of ROS than susceptible cultivar CO39. Furthermore, we showed that nucleoside diphosphate kinase 1, which is implicated in regulation of ROS production, was strongly induced in C101LAC but not in CO39. Taken together, the findings suggest that resistant rice cultivar might possess a more sensitive SA signaling system or effective pathway than susceptible cultivar. In addition, our results indicate that SA also coordinates other cellular activities such as photosynthesis and metabolism to facilitate defense response and recovery, highlighting the complexity of SA-induced resistance mechanisms.

  13. Genome level analysis of bacteriocins of lactic acid bacteria.

    PubMed

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides.

  14. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure.

  15. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants.

    PubMed

    Kovácik, Jozef; Grúz, Jirí; Backor, Martin; Strnad, Miroslav; Repcák, Miroslav

    2009-01-01

    The influence of salicylic acid (SA) doses of 50 and 250 microM, for a period of up to 7 days, on selected physiological aspects and the phenolic metabolism of Matricaria chamomilla plants was studied. SA exhibited both growth-promoting (50 microM) and growth-inhibiting (250 microM) properties, the latter being correlated with decrease of chlorophylls, water content and soluble proteins. In terms of phenolic metabolism, it seems that the higher SA dose has a toxic effect, based on the sharp increase in phenylalanine ammonia-lyase (PAL) activity (24 h after application), which is followed by an increase in total soluble phenolics, lignin accumulation and the majority of the 11 detected phenolic acids. Guaiacol-peroxidase activity was elevated throughout the experiment in 250 microM SA-treated plants. In turn, some responses can be explained by mechanisms associated with oxidative stress tolerance; these mitigate acute SA stress (which is indicated by an increase in malondialdehyde content). However, PAL activity decreased with prolonged exposure to SA, indicating its inhibition. Accumulation of coumarin-related compounds (umbelliferone and herniarin) was not affected by SA treatments, while (Z)- and (E)-2-beta-D: -glucopyranosyloxy-4-methoxycinnamic acids increased in the 250 microM SA-treated rosettes. Free SA content in the rosettes increased significantly only in the 250 microM SA treatment, with levels tending to decrease towards the end of the experiment and the opposite trend was observed in the roots.

  16. Salicylic acid treatment of pea seeds induces its de novo synthesis.

    PubMed

    Szalai, Gabriella; Horgosi, Szabina; Soós, Vilmos; Majláth, Imre; Balázs, Ervin; Janda, Tibor

    2011-02-15

    Salicylic acid (SA), which is known as a signal molecule in the induction of defense mechanisms in plants, could be a promising compound for the reduction of stress sensitivity. The aim of the present work was to investigate the distribution of SA in young pea (Pisum sativum L.) seedlings grown from seeds soaked in (3)H-labeled SA solution before sowing, and to study the physiological changes induced by this seed treatment. The most pronounced changes in SA levels occurred in the epicotyl and the seeds. Radioactivity was detected only in the bound form of SA, the majority of which was localized in the seeds, and only a very low level of radioactivity was detected in the epicotyl. SA pre-treatment increased the expression of the chorismate synthase and isochorismate synthase genes in the epicotyl. Pre-soaking the seeds in SA increased the activities of some antioxidant enzymes, namely ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) and the level of ortho-hydroxycinnamic acid, but decreased the level of polyamines. These results suggest that the increased level of free and bound SA detected in plants growing from seeds soaked in SA solution before sowing is the product of de novo synthesis, rather than having been taken up and mobilized by the plants.

  17. Limiting amino acids in bengal gram (Cicer arietinum) as determined from blood amino acid levels and amino acid supplementation studies in the rat.

    PubMed

    Khader, V; Rao, S V

    1982-01-01

    The limiting amino acids of Bengal gram (Cicer arietinum) were determined from plasma amino acid score and ratio and growth response of weanling rats to supplements of amino acids. The results indicated that methionine, threonine and tryptophan are the most limiting amino acids. Protein efficiency ratio of raw and cooked Bengal gram fed at a dietary level of 10% protein increased from 2.7 to 3.7 and 2.4 to 3.4, respectively, on supplementing the diets with methionine, threonine and tryptophan. Plasma levels of lysine, methionine, threonine and tryptophan were similar in rats fed raw or cooked Bengal gram, indicating that the trypsin or other inhibitors that may be present in the raw gram do not affect the biological availability of these amino acids.

  18. Molecular characterization of the level of sialic acids N-acetylneuraminic acid, N-glycolylneuraminic acid, and ketodeoxynonulosonic acid in porcine milk during lactation.

    PubMed

    Jahan, M; Wynn, P C; Wang, B

    2016-10-01

    Sialic acids (Sia) are key monosaccharide constituents of sialylated glycoproteins (Sia-GP), human sialylated milk oligosaccharide (Sia-MOS), and gangliosides. Human milk sialylated glycoconjugates (Sia-GC) are bioactive compounds known to act as prebiotics and promote neurodevelopment, immune function, and gut maturation in newborns. Only limited data are available on the Sia content of porcine milk. The objective of this study was to quantitatively determine the total level of Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and ketodeoxynonulosonic acid (KDN) in porcine milk and to compare these levels in gilt and sow milk during lactation. Milk from 8 gilts and 22 sows was collected at 3 stages of lactation (colostrum, transition, and mature milk). Standard and experimental samples were derivatized using 1,2-diamino-4,5-methylenedioxy-benzene and analyzed by ultra-high-performance liquid chromatography using a fluorescence detector. The following new findings are reported: (1) Gilt and sow milk contained significant levels of total Sia, with the highest concentration in colostrum (1,238.5 mg/L), followed by transition milk (778.3 mg/L) and mature milk (347.2 mg/L); (2) during lactation, the majority of Sia was conjugated to Sia-GP (41-46%), followed by Sia-MOS (31-42%) and a smaller proportion in gangliosides (12-28%); (3) Neu5Ac was the major form of Sia (93-96%), followed by Neu5Gc (3-6%) and then KDN (1-2%), irrespective of milk fraction or stage of lactation; (4) the concentration of Sia in Sia-GP and Sia-MOS showed a significant decline during lactation, but the level of ganglioside Sia remained relatively constant; (5) mature gilt milk contained a significantly higher concentration of Sia-GP than sow milk. The high concentration of total Sia in porcine milk suggests that Sia-GC are important nutrients that contribute to the optimization of neurodevelopment, immune function, and growth and development in piglets. These findings

  19. The Endophytic Bacterium, Sphingomonas SaMR12, Improves the Potential for Zinc Phytoremediation by Its Host, Sedum alfredii

    PubMed Central

    Zhang, Xincheng; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-01-01

    The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin. PMID:25198772

  20. Blood folic acid, vitamin B12, and homocysteine levels in pregnant women with fetal growth restriction.

    PubMed

    Jiang, H L; Cao, L Q; Chen, H Y

    2016-12-19

    Deficiencies in nutrients such as folic acid and vitamin B12 may play a role in fetal growth restriction (FGR). However, whether folic acid, vitamin B12, or homocysteine is associated with FGR in Chinese populations remains unclear. This study investigated the relationship between these nutrient deficiencies and FGR in pregnant Chinese women. We selected 116 mother and infant pairs, and categorized the neonates into the FGR, appropriate for gestational age, and large for gestational age groups. Birth weight, body length, head circumference, body mass index (BMI), and Rohrer's body index of the newborns were measured. Serum folic acid, vitamin B12, and homocysteine levels were measured in mothers during the first three days of their hospital stay. Results showed that the FGR group exhibited reduced folic acid and vitamin B12 levels and elevated homocysteine levels than those in the other two groups. Folic acid and vitamin B12 levels were positively correlated with birth weight, head circumference, and BMI, whereas homocysteine level was negatively correlated with these variables. The FGR ratio in the folic acid and vitamin B12 deficiency group was higher than that in the sufficiency group (χ(2) = 4.717 and 4.437, P = 0.029 and 0.035, respectively). In addition, elevated homocysteine was associated with FGR (χ(2) = 5.366, P = 0.021). In conclusion, we found that folic acid and vitamin B12 deficiency was associated with elevated homocysteine levels, which may increase susceptibility to FGR.

  1. In vivo blockade of thalamic GABA(B) receptors increases excitatory amino-acid levels.

    PubMed

    Nyitrai, G; Emri, Z; Crunelli, V; Kékesi, K A; Dobolyi, A; Juhász, G

    1996-12-30

    The effect of intrathalamic application of GABA(B) receptor antagonists on the basal excitatory amino-acid levels was studied using microdialysis probes implanted in the dorsal lateral geniculate nucleus and in the ventrobasal complex. In both nuclei, continuous perfusion of the GABA(B) receptor antagonist 3-aminopropyl-(diethoxymethyl)-phosphinic acid (CGP 35348) produced an increase in the extracellular concentration of aspartate and (to a lesser extent) glutamate, but no change was observed in the level of taurine, the main amino acid involved in the regulation of brain osmolarity processes. In contrast, 3-amino-2-hydroxy-2-(4-chlorophenyl)-propanesulphonic acid (2-hydroxy-saclofen), another GABA(B) receptor antagonist, failed to affect the extracellular concentration of aspartate, glutamate and taurine. Thus, the basal level of excitatory amino acids in the thalamus in vivo is under the control of CGP 35348-sensitive GABA(B) receptors.

  2. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    PubMed

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source.

  3. Effects of toxic work environments on sperm quality and ascorbic acid levels

    SciTech Connect

    Dawson, E.B.; Harris, W.A.; Powell, L.C. )

    1990-02-26

    Surveys have shown that toxic work environments lower sperm quality, and controlled studies indicate that ascorbic acid supplementation improves sperm viability and agglutination. The sperm quality of 50 subjects each from: (1) office workers, (2) a lead smelter, (3) petroleum refineries, and (4) a herbicide plant were compared with serum and semen ascorbic acid levels. The sperm characteristics studied were: count as million/ml and as percent; viability, motility, clumping, and abnormal morphology. The serum ascorbic acid levels were directly proportional to sperm viability and inversely correlated to clumping of all groups. Moreover, serum ascorbic acid levels were also inversely correlated to twin tail and amorphous forms of abnormal sperm morphology. The results of the study indicate that toxic environments depress sperm quality and suggest that ascorbic acid supplementation will improve sperm quality and fertility.

  4. Pyrazinoic acid decreases the proton motive force, respiratory ATP synthesis activity, and cellular ATP levels.

    PubMed

    Lu, Ping; Haagsma, Anna C; Pham, Hoang; Maaskant, Janneke J; Mol, Selena; Lill, Holger; Bald, Dirk

    2011-11-01

    Pyrazinoic acid, the active form of the first-line antituberculosis drug pyrazinamide, decreased the proton motive force and respiratory ATP synthesis rates in subcellular mycobacterial membrane assays. Pyrazinoic acid also significantly lowered cellular ATP levels in Mycobacterium bovis BCG. These results indicate that the predominant mechanism of killing by this drug may operate by depletion of cellular ATP reserves.

  5. [A retrospective study analysis of urinary hippuric acid levels in occupational toxicology exams].

    PubMed

    Gonzalez, Kelly Cristina; Sagebin, Fernando Rodrigues; Oliveira, Paola Garcia; Glock, Luiz; Thiesen, Flavia Valladão

    2010-06-01

    Hippuric acid is the primary metabolite of toluene, a solvent widely used in industrial processes with considerable toxic effects, a fact which justifies regularly monitoring individuals with occupational exposure to this solvent. This work aims at evaluating urinary hippuric acid levels found in workers subject to biological monitoring. A retrospective study was carried out with data referring from 2002 to 2005, in which exams results and employment status were analyzed (periodic, post-employment, and pre-employment exams). Results indicate a significant reduction in hippuric acid levels for 2005. Periodic exams presented higher results than pre-employment and post-employment exams. No significant difference was found in individuals grouped according to their status in each of the established intervals, their reference numbers, and maximum biological levels allowed. Hippuric acid levels detected indicate low risk of toluene exposure for the population under evaluation, probably due to a growing concern with the deployment of measures regarding occupational hygiene.

  6. Coumarin effects on amino acid levels in mice prefrontal cortex and hippocampus.

    PubMed

    Pereira, Elaine Cristina; Lucetti, Daniel Luna; Barbosa-Filho, José Maria; de Brito, Eliane Magalhães; Monteiro, Valdécio Silvano; Patrocínio, Manoel Cláudio Azevedo; de Moura, Rebeca Ribeiro; Leal, Luzia Kalyne Almeida Moreira; Macedo, Danielle Silveira; de Sousa, Francisca Cléa Florenço; de Barros Viana, Glauce Socorro; Vasconcelos, Silvânia Maria Mendes

    2009-04-24

    Coumarin is a compound known to be present in a wide variety of plants, microorganisms and animal species. Most of its effects were studied in organs and systems other than the central nervous system. The present work evaluated the effect of coumarin administration on the levels of gamma-aminobutyric acid (GABA), glutamate (GLU), glycine (GLY) and taurine (TAU) in the prefrontal cortex and hippocampus of mice. Male Swiss mice were treated with distilled water (controls), coumarin (20 or 40 mg/kg, i.p.) or diazepam (1 mg/kg, i.p.). Results showed that in the prefrontal cortex, coumarin at the lowest dose increased the levels of GLU and TAU, while GABA increased with both doses studied and GLY had its levels increased only at the dose of 40 mg/kg. Diazepam (DZP) increased the levels of GABA and TAU and decreased the levels of GLU and GLY in this area. In the hippocampus, only glutamate had its levels decreased after coumarin treatment, while diazepam increased the levels of GABA and TAU and decreased the levels of GLU in this brain region. We concluded that coumarin stimulates the release of endogenous amino acids, increasing the levels of inhibitory and excitatory amino acids in the prefrontal cortex, and decreasing glutamate levels in the hippocampus. Together, these results are of interest, considering that some neurodegenerative diseases and seizures are related to the imbalance of the amino acid levels in the CNS suggesting a perspective of a therapeutic use of coumarins in these disorders.

  7. Analysis of methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid at low microgram per liter levels in groundwater.

    PubMed

    Sega, G A; Tomkins, B A; Griest, W H

    1997-11-28

    A method is described for determining methylphosphonic acid, ethyl methylphosphonic acid and isopropyl methylphosphonic acid, which are hydrolysis products of the nerve agents VX (S-2-diisopropylaminoethyl O-ethyl methylphosphonothiolate) and GB (sarin, isopropylmethyl phosphonofluoridate). The analytes are extracted from 50 ml groundwater using a solid-phase extraction column packed with 500 mg of silica with a bonded quaternary amine phase, and are eluted and derivatized with methanolic trimethylphenylammonium hydroxide. Separation and quantitation are achieved using a capillary column gas chromatograph equipped with a flame photometric detector operated in its phosphorus-selective mode. Two independent statistically-unbiased procedures were employed to determine the detection limits, which ranged between 3 and 9 micrograms/l, for the three analytes.

  8. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one.

  9. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature.

    PubMed

    Rayapuram, Cbgowda; Baldwin, Ian T

    2007-11-01

    The phytohormone jasmonic acid (JA) is known to mediate herbivore resistance, while salicylic acid (SA) and non-expressor of PR-1 (NPR1) mediate pathogen resistance in many plants. Herbivore attack on Nicotiana attenuata elicits increases in JA and JA-mediated defenses, but also increases SA levels and Na-NPR1 transcripts from the plant's single genomic copy. SA treatment of wild-type plants increases Na-NPR1 and Na-PR1 transcripts. Plants silenced in NPR1 accumulation by RNAi (ir-npr1) are highly susceptible to herbivore and pathogen attack when planted in their native habitat in Utah. They are also impaired in their ability to attract Geocorus pallens predators, due to their decreased ability to release cis-alpha-bergamotene, a JA-elicited volatile 'alarm call'. In the glasshouse, Spodoptera exigua larvae grew better on ir-npr1 plants, which had low levels of JA, JA-isoleucine/leucine, lipoxygenase-3 (LOX3) transcripts and JA-elicited direct defense metabolites (nicotine, caffeoyl putrescine and rutin), but high levels of SA and isochorismate synthase (ICS) transcripts, suggesting de novo biosynthesis of SA. A microarray analysis revealed downregulation of many JA-elicited genes and upregulation of SA biosynthetic genes. JA treatment restored nicotine levels and resistance to S. exigua in ir-npr1 plants. We conclude that, during herbivore attack, NPR1 negatively regulates SA production, allowing the unfettered elicitation of JA-mediated defenses; when NPR1 is silenced, the elicited increases in SA production antagonize JA and JA-related defenses, making the plants susceptible to herbivores.

  10. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  11. Solvent extraction in the treatment of acidic high-level liquid waste : where do we stand?

    SciTech Connect

    Horwitz, E. P.; Schulz, W. W.

    1998-06-18

    During the last 15 years, a number of solvent extraction/recovery processes have been developed for the removal of the transuranic elements, {sup 90}Sr and {sup 137}Cs from acidic high-level liquid waste. These processes are based on the use of a variety of both acidic and neutral extractants. This chapter will present an overview and analysis of the various extractants and flowsheets developed to treat acidic high-level liquid waste streams. The advantages and disadvantages of each extractant along with comparisons of the individual systems are discussed.

  12. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    PubMed

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  13. Genetic loci associated with circulating levels of very long-chain saturated fatty acids[S

    PubMed Central

    Lemaitre, Rozenn N.; King, Irena B.; Kabagambe, Edmond K.; Wu, Jason H. Y.; McKnight, Barbara; Manichaikul, Ani; Guan, Weihua; Sun, Qi; Chasman, Daniel I.; Foy, Millennia; Wang, Lu; Zhu, Jingwen; Siscovick, David S.; Tsai, Michael Y.; Arnett, Donna K.; Psaty, Bruce M.; Djousse, Luc; Chen, Yii-Der I.; Tang, Weihong; Weng, Lu-Chen; Wu, Hongyu; Jensen, Majken K.; Chu, Audrey Y.; Jacobs, David R.; Rich, Stephen S.; Mozaffarian, Dariush; Steffen, Lyn; Rimm, Eric B.; Hu, Frank B.; Ridker, Paul M.; Fornage, Myriam; Friedlander, Yechiel

    2015-01-01

    Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10−13). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10−40) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10−26) and lignoceric acid (P = 3.20 × 10−21). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis. PMID:25378659

  14. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels.

    PubMed

    Chen, Qi; Yang, Xiaoying; Zhang, Huabing; Kong, Xingxing; Yao, Lu; Cui, Xiaona; Zou, Yongkang; Fang, Fude; Yang, Jichun; Chang, Yongsheng

    2017-01-01

    Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis.

  15. Genetic loci associated with circulating levels of very long-chain saturated fatty acids.

    PubMed

    Lemaitre, Rozenn N; King, Irena B; Kabagambe, Edmond K; Wu, Jason H Y; McKnight, Barbara; Manichaikul, Ani; Guan, Weihua; Sun, Qi; Chasman, Daniel I; Foy, Millennia; Wang, Lu; Zhu, Jingwen; Siscovick, David S; Tsai, Michael Y; Arnett, Donna K; Psaty, Bruce M; Djousse, Luc; Chen, Yii-Der I; Tang, Weihong; Weng, Lu-Chen; Wu, Hongyu; Jensen, Majken K; Chu, Audrey Y; Jacobs, David R; Rich, Stephen S; Mozaffarian, Dariush; Steffen, Lyn; Rimm, Eric B; Hu, Frank B; Ridker, Paul M; Fornage, Myriam; Friedlander, Yechiel

    2015-01-01

    Very long-chain saturated fatty acids (VLSFAs) are saturated fatty acids with 20 or more carbons. In contrast to the more abundant saturated fatty acids, such as palmitic acid, there is growing evidence that circulating VLSFAs may have beneficial biological properties. Whether genetic factors influence circulating levels of VLSFAs is not known. We investigated the association of common genetic variation with plasma phospholipid/erythrocyte levels of three VLSFAs by performing genome-wide association studies in seven population-based cohorts comprising 10,129 subjects of European ancestry. We observed associations of circulating VLSFA concentrations with common variants in two genes, serine palmitoyl-transferase long-chain base subunit 3 (SPTLC3), a gene involved in the rate-limiting step of de novo sphingolipid synthesis, and ceramide synthase 4 (CERS4). The SPTLC3 variant at rs680379 was associated with higher arachidic acid (20:0 , P = 5.81 × 10(-13)). The CERS4 variant at rs2100944 was associated with higher levels of 20:0 (P = 2.65 × 10(-40)) and in analyses that adjusted for 20:0, with lower levels of behenic acid (P = 4.22 × 10(-26)) and lignoceric acid (P = 3.20 × 10(-21)). These novel associations suggest an inter-relationship of circulating VLSFAs and sphingolipid synthesis.

  16. Chronic Depression of Serum Sialic Acid Levels in Alloxan-Induced Diabetes

    DTIC Science & Technology

    1974-10-01

    Serum L- Fucose , Protein-Bound Hexose, and Total Protein Levels in Alloxan Diabetic and Control Rats at Various Time Intervals After Treatment 5...ABSTRACT This study was performed to determine whether alloxan treatment of rats alters levels of the terminal carbohydrate residues L- fucose and...occurs with no apparent alteration in the level of L- fucose . The depression in sialic acid level may be attributed in part to decreased activities of

  17. Biosynthesis and metabolism of salicylic acid.

    PubMed Central

    Lee, H I; León, J; Raskin, I

    1995-01-01

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-beta-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. PMID:11607533

  18. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  19. Serum nitrite and nitrate levels in epileptic children using valproic acid or carbamazepine.

    PubMed

    Karabiber, Hamza; Yakinci, Cengiz; Durmaz, Yasar; Temel, Ismail; Mehmet, Nihayet

    2004-01-01

    In experimental epilepsy studies, nitric oxide was found to act as both proconvulsant and anticonvulsant. The objective of this study was to investigate the effects of valproic acid and carbamazepine on serum levels of nitrite and nitrate, which are the metabolites of nitric oxide. To achieve this goal, serum nitrite and nitrate levels were determined in active epileptic 34 children using valproic acid and 23 children using carbamazepine and in non-active epileptic 38 children (control group) not using any antiepileptic drug. In the valproic acid group serum nitrite and nitrate levels were 2.66 +/- 2.11 micromol/l and 69.35 +/- 23.20 micromol/l, 1.89 +/- 1.01 micromol/l and 49.39 +/- 10.61 micromol/l in the carbamazepine group, and 1.22 +/- 0.55 micromol/l, 29.53 +/- 10.05 micromol in the control group, respectively. Nitrite and nitrate levels were significantly high in both valproic acid and carbamazepine groups compared to the control group (P < 0.01). When valproic acid and carbamazepine groups were compared to each other, level of nitrate was found statistically higher in the valproic acid group in relation to the carbamazepine group (P < 0.01), however, there was no statistically significant difference in the levels of nitrite (P > 0.05). No relation could be found between serum drug levels and nitrite and nitrate levels. According to these results, it can be suggested that valproic acid and carbamazepine might have antiepileptic effects through nitric oxide.

  20. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  1. Uric Acid Level and Erectile Dysfunction In Patients With Coronary Artery Disease

    PubMed Central

    Solak, Yalcin; Akilli, Hakan; Kayrak, Mehmet; Aribas, Alpay; Gaipov, Abduzhappar; Turk, Suleyman; Perez-Pozo, Santos E.; Covic, Adrian; McFann, Kim; Johnson, Richard J.; Kanbay, Mehmet

    2013-01-01

    Introduction Erectile dysfunction (ED) is a frequent complaint of elderly subjects, and is closely associated with endothelial dysfunction and cardiovascular disease. Uric acid is also associated with endothelial dysfunction, oxidative stress and cardiovascular disease, raising the hypothesis that an increased serum uric acid might predict erectile dysfunction in patients who are at risk for coronary artery disease. Aim To evaluate the association of serum uric acid levels with presence and severity of ED in patients presenting with chest pain of presumed cardiac origin. Methods This is a cross-sectional study of 312 adult male patients with suspected coronary artery disease who underwent exercise stress test (EST) for workup of chest pain and completed a sexual health inventory for men (SHIM) survey form to determine the presence and severity of ED. Routine serum biochemistry (and uric acid levels) were measured. Logistic regression analysis was used to assess risk factors for ED. Main Outcome Measures The short version of the international index of erectile function (IIEF-5) questionnaire diagnosed ED (cutoff score ≤21). Serum Uric acid levels were determined. Patients with chest pain of suspected cardiac origin underwent an exercise stress test. Results 149 of 312 (47.7%) male subjects had ED by survey criteria. Patients with ED were older and had more frequent CAD, hypertension, diabetes, and impaired renal function, and also had significantly higher levels of uric acid, fibrinogen, glucose, CRP, triglycerides compared with patients without ED. Uric acid levels were associated with ED by univariate analysis (OR = 1.36, p = 0.002); however, this association was not observed in multivariate analysis adjusted for eGFR. Conclusion Subjects presenting with chest pain of presumed cardiac origin are more likely to have ED if they have elevated uric acid levels. PMID:24433559

  2. Polyunsaturated Fatty Acid Levels in Maternal Erythrocytes of Japanese Women during Pregnancy and after Childbirth

    PubMed Central

    Kawabata, Terue; Kagawa, Yasuo; Kimura, Fumiko; Miyazawa, Teruo; Saito, Shoji; Arima, Takahiro; Nakai, Kunihiko; Yaegashi, Nobuo

    2017-01-01

    Background: The transport of polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), to the fetus from maternal stores increases depending on the fetal requirements for PUFA during the last trimester of pregnancy. Therefore, maternal blood PUFA changes physiologically with gestational age. However, the changes in PUFA levels in maternal blood erythrocytes during pregnancy and after childbirth have not been fully investigated in a fish-eating population. Objective: To examine the changes of ARA and DHA levels in maternal erythrocytes with the progress of pregnancy and the relationship between maternal and umbilical cord erythrocyte PUFA levels in pregnant Japanese women who habitually eat fish and shellfish. Design: This study was performed as a part of the adjunct study of the Japan Environment and Children’s Study (JECS). The participants were 74 pregnant women. The maternal blood samples were collected at 27, 30, and 36 weeks of pregnancy, and 2 days and 1 month after delivery, and umbilical cord blood was collected at delivery. The fatty acid levels of erythrocytes in these blood samples were determined. Results: ARA and DHA levels in maternal erythrocytes tended to decrease with the progress of pregnancy. While the DHA level decreased further after delivery, the ARA level returned to the value at 27 weeks of pregnancy within 1 month after delivery. The n-3 and n-6 PUFA levels in maternal erythrocytes at 27, 30, and 36 weeks of pregnancy were significantly positively correlated with the corresponding fatty acid levels in umbilical cord erythrocytes. Conclusion: The present findings showed a significant change in erythrocyte PUFA levels during pregnancy and after childbirth in a fish-eating population. The PUFA levels of maternal blood after the second trimester may be a reliable marker for predicting PUFA levels in infants’ circulating blood. PMID:28272345

  3. Prednisone lowers serum uric acid levels in patients with decompensated heart failure by increasing renal uric acid clearance.

    PubMed

    Liu, Chao; Zhen, Yuzhi; Zhao, Qingzhen; Zhai, Jian-Long; Liu, Kunshen; Zhang, Jian-Xin

    2016-07-01

    Clinical studies have shown that large doses of prednisone could lower serum uric acid (SUA) in patients with decompensated heart failure (HF); however, the optimal dose of prednisone and underlying mechanisms are unknown. Thirty-eight patients with decompensated HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/day, n = 8), medium-dose (30 mg/day, n = 10), or high-dose prednisone (60 mg/day, n = 10), for 10 days. At the end of the study, only high-dose prednisone significantly reduced SUA, whereas low- and medium-dose prednisone and standard HF care had no effect on SUA. The reduction in SUA in high-dose prednisone groups was associated with a significant increase in renal uric acid clearance. In conclusion, prednisone can reduce SUA levels by increasing renal uric acid clearance in patients with decompensated HF.

  4. Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity.

    PubMed

    Lee, Sangmin; Park, Chung-Mo

    2010-12-01

    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the inhibitory effects are reduced in the presence of physiological concentrations of SA. Abiotic stresses, including high salinity, impose oxidative stress on plants. Endogenous contents of H(2)O(2) are higher in the sid2 mutant seeds. However, exogenous application of SA reduces endogenous level of reactive oxygen species (ROS), indicating that SA is involved in plant responses to ROS-mediated damage under abiotic stress conditions. Gibberellic acid (GA), a plant hormone closely associated with seed germination, also reverses the inhibitory effects of high salinity on seed germination and seedling establishment. Under high salinity, GA stimulates SA biosynthesis by inducing the SID2 gene. Notably, SA also induces genes encoding GA biosynthetic enzymes. These observations indicate that SA promotes seed germination under high salinity by modulating antioxidant activity through signaling crosstalks with GA.

  5. Serum homocysteine, vitamin B12, folic acid levels and methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in vitiligo.

    PubMed

    Yasar, Ali; Gunduz, Kamer; Onur, Ece; Calkan, Mehmet

    2012-01-01

    The aim of this study was to determine serum vitamin B12, folic acid and homocysteine (Hcy) levels as well as MTHFR (C677, A1298C) gene polymorphisms in patients with vitiligo, and to compare the results with healthy controls. Forty patients with vitiligo and 40 age and sex matched healthy subjects were studied. Serum vitamin B12 and folate levels were determined by enzyme-linked immunosorbent assay. Plasma Hcy levels and MTHFR polymorphisms were determined by chemiluminescence and real time PCR methods, respectively. Mean serum vitamin B12 and Hcy levels were not significantly different while folic acid levels were significantly lower in the control group. There was no significant relationship between disease activity and vitamin B12, folic acid and homocystein levels. No significant difference in C677T gene polymorphism was detected. Heterozygote A1298C gene polymorphism in the patient group was statistically higher than the control group. There was no significant relationship between MTHFR gene polymorphisms and vitamin B12, folic acid and homocysteine levels. In conclusion, vitamin B12, folate and Hcy levels are not altered in vitiligo and MTHFR gene mutations (C677T and A1298C) do not seem to create susceptibility for vitiligo.

  6. Two Levels of Caffeine Ingestion on Blood Lactate and Free Fatty Acid Responses during Incremental Exercise.

    ERIC Educational Resources Information Center

    McNaughton, Lars

    1987-01-01

    Research was conducted to determine the effects of two doses of caffeine on the lactate threshold and also to examine the effects on substrate utilization during incremental cycle ergometry. Results found that caffeine increased heart rates and free fatty acid levels for all workloads and decreased blood lactate levels at some of the workloads.…

  7. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj; Hedbavny, Josef; Backor, Martin

    2009-07-01

    Influence of 100 mM NaCl and 50 microM salicylic acid (SA) and their combination on the metabolism of chamomile (Matricaria chamomilla) during 7 days was studied. NaCl reduced growth and selected physiological parameters and SA in combined treatment (NaCl + SA) reversed majority of these symptoms. Application of SA reduced NaCl-induced increase of Na+ in the rosettes, but not in the roots. Accumulation of total amino acids was stimulated in NaCl-treated roots, especially due to exceptional increase of proline (4.4-fold). Among phenolic acids, accumulation of protocatechuic acid was the most enhanced in NaCl-exposed leaf rosettes (ca. 3-fold) while chlorogenic and caffeic acids in the roots (2.4- and 2.8-fold, respectively). Total soluble phenols increased after NaCl and SA treatments, but root lignin content was not affected. Activity of phenylalanine ammonia-lyase and shikimate dehydrogenase increased in response to NaCl, but cinnamyl alcohol dehydrogenase was not affected and polyphenol oxidase decreased. Stress parameters were elevated by NaCl treatment (superoxide radical and malondialdehyde content, activities of catalase, ascorbate- and guaiacol-peroxidase) and substantially prevented by SA, while accumulation of hydrogen peroxide decreased. Overall, SA showed strong beneficial properties against NaCl-induced negative symptoms. Protective effect of SA was the most visible at the level of guaiacol-peroxidase and through amelioration of stress parameters and mineral nutrient contents.

  8. Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations

    NASA Astrophysics Data System (ADS)

    Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.

    2008-01-01

    The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.

  9. Fasting levels of monoketonic bile acids in human peripheral and portal circulation.

    PubMed

    Björkhem, I; Angelin, B; Einarsson, K; Ewerth, S

    1982-09-01

    . Einarsson, and S. Ewerth. Fasting levels of monoketonic bile acids in human peripheral and portal circulation.

  10. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma

    PubMed Central

    Chinnannavar, Sangamesh Ningappa; Ashok, Lingappa; Vidya, Kodige Chandrashekhar; Setty, Sunil Mysore Kantharaja; Narasimha, Guru Eraiah; Garg, Ranjana

    2015-01-01

    Background: Detection of cancer at the early stage is of utmost importance to decrease the morbidity and mortality of the disease. Apart from the conventional biopsy, minimally invasive methods like serum evaluation are used for screening large populations. Thus, this study aimed to estimate serum levels of sialic acid and fucose and their ratio in oral cancer patients and in healthy control group to evaluate their role in diagnosis. Materials and Methods: Serum samples were collected from 52 healthy controls (group I) and 52 squamous cell carcinoma patients (group II). Estimation of serum levels of sialic acid and fucose and their ratio was performed. This was correlated histopathologically with the grades of carcinoma. Statistical analysis was done by using analysis of variance (ANOVA) test and unpaired “t” test. Results: Results showed that serum levels of sialic acid and fucose were significantly higher in oral cancer patients compared to normal healthy controls (P < 0.001). The sialic acid to fucose ratio was significantly lower in cancer patients than in normal controls (P < 0.01). However, comparison with histological grading, habits, gender, and age group did not show any significant result. Conclusion: The mean serum sialic acid and fucose levels showed an increasing trend from controls to malignant group and their corresponding ratio showed decreasing trend from controls to malignant group. The ratio of sialic acid to fucose can be a useful diagnostic aid for oral cancer patients. PMID:26759796

  11. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  12. Decreased eicosapentaenoic acid levels in acne vulgaris reveals the presence of a proinflammatory state.

    PubMed

    Aslan, İbrahim; Özcan, Filiz; Karaarslan, Taner; Kıraç, Ebru; Aslan, Mutay

    2017-01-01

    This study aimed to determine circulating levels of polyunsaturated fatty acids (PUFAs), secretory phospholipase A2 (sPLA2), lipoprotein lipase (LPL) and measure circulating protein levels of angiopoietin-like protein 3 (ANGPTL3), ANGPTL4, cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in patients with acne vulgaris. Serum from 21 control subjects and 31 acne vulgaris patients were evaluated for levels of arachidonic acid (AA, C20:4n- 6), dihomo-gamma-linolenic acid (DGLA, C20:3n-6), eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3). PUFA levels were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Lipid profile, routine biochemical and hormone parameters were assayed by standard kit methods Serum EPA levels were significantly decreased while AA/EPA and DGLA/EPA ratio were significantly increased in acne vulgaris patients compared to controls. Serum levels of AA, DGLA and DHA showed no significant difference while activity of sPLA2 and LPL were significantly increased in acne vulgaris compared to controls. Results of this study reveal the presence of a proinflammatory state in acne vulgaris as shown by significantly decreased serum EPA levels and increased activity of sPLA2, AA/EPA and DGLA/EPA ratio. Increased LPL activity in the serum of acne vulgaris patients can be protective through its anti-dyslipidemic actions. This is the first study reporting altered EPA levels and increased sPLA2 activity in acne vulgaris and supports the use of omega-3 fatty acids as adjuvant treatment for acne patients.

  13. Childrens' learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels.

    PubMed

    Kirby, A; Woodward, A; Jackson, S; Wang, Y; Crawford, M A

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs), particularly omega-3, in their red blood cells and plasma, and that supplementation with omega-3 fatty acids may alleviate behavioural symptoms in this population. However, in order to compare levels it seems appropriate to establish fatty acid levels in a mainstream school aged population and if levels relate to learning and behaviour. To date no study has established this. For this study, cheek cell samples from 411 typically developing school children were collected and analysed for PUFA content, in order to establish the range in this population. In addition, measures of general classroom attention and behaviour were assessed in these children by teachers and parents. Cognitive performance tests were also administered in order to explore whether an association between behaviour and/or cognitive performance and PUFA levels exists. Relationships between PUFA levels and socio-economic status were also explored. Measures of reading, spelling and intelligence did not show any association with PUFA levels, but some associations were noted with the level of omega-3 fatty acids and teacher and parental reports of behaviour, with some evidence that higher omega-3 levels were associated with decreased levels of inattention, hyperactivity, emotional and conduct difficulties and increased levels of prosocial behaviour. These findings are discussed in relation to previous findings from omega-3 supplementation studies with children.

  14. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.

  15. Inverse Association Between Serum Uric Acid Levels and Alzheimer's Disease Risk.

    PubMed

    Du, Na; Xu, Donghua; Hou, Xu; Song, Xuejia; Liu, Cancan; Chen, Ying; Wang, Yangang; Li, Xin

    2016-05-01

    The association between Alzheimer's disease and uric acid levels had gained great interest in recent years, but there was still lack of definite evidence. A systematic review and meta-analysis of relevant studies was performed to comprehensively estimate the association. Relevant studies published before October 26, 2014, were searched in PubMed, Embase, and China Biology Medicine (CBM) databases. Study-specific data were combined using random-effects or fixed-effects models of meta-analysis according to between-study heterogeneity. Twenty-four studies (21 case-control and 3 cohort studies) were finally included into the meta-analysis. Those 21 case-control studies included a total of 1128 cases of Alzheimer's disease and 2498 controls without Alzheimer's disease. Those 3 cohort studies included a total of 7327 participants. Meta-analysis showed that patients with Alzheimer's disease had lower levels of uric acid than healthy controls (weighted mean difference (WMD) = -0.77 mg/dl, 95% CI -2.28 to -0.36, P = 0.0002). High serum uric acid levels were significantly associated with decreased risk of Alzheimer's disease (risk ratio (RR) = 0.66, 95% CI 0.52-0.85, P = 0.001). There was low risk of publication bias in the meta-analysis. There is an inverse association between serum uric acid levels and Alzheimer's disease. High serum uric acid level is a protective factor of Alzheimer's disease.

  16. Serum sialic acid and glycoprotein levels in some Libyan cancer patients.

    PubMed

    Balo, N N; Ishaq, M

    1991-01-01

    Sialic acid is a common conjugate of some serum glycoproteins and glycolipids. Elevated levels of serum sialic acid and alterations in serum glycoproteins have been observed in certain types of cancer. In this study sialic acid concentration in the sera of patients with various types of cancer was determined. In addition to this, serum glycoproteins were also analysed by electrophoretic method. Our results indicate that serum sialic acid levels are generally raised in all types of cancer studied. This increase was more pronounced in case of lung, bronchogenic, intestinal and breast cancer. Some alterations in the serum glycoprotein profiles were also observed, particularly in bronchogenic and gall bladder cancer where an additional band in the low molecular weight region was present and in lung, breast and lymphoma where a band in the middle molecular weight region was found missing when compared with normals.

  17. Ascorbic acid inhibits PMP22 expression by reducing cAMP levels.

    PubMed

    Kaya, Ferdinand; Belin, Sophie; Bourgeois, Patrice; Micaleff, Joelle; Blin, Olivier; Fontés, Michel

    2007-03-01

    Charcot-Marie-Tooth [CMT] syndrome is the most common hereditary peripheral neuropathy. CMT1A, which accounts for 50% of all CMT cases, usually results from triploidy of the PMP22 gene. Preclinical trials using an animal model show that disabled mice force-fed with high doses of ascorbic acid partially recover muscular strength after a few months of treatment, and suggest that high doses of ascorbic acid repress PMP22 expression. In this study, we demonstrated that ascorbic acid represses PMP22 gene expression by acting on intracellular cAMP levels and adenylate cyclase activity. This action is dose dependent and specific to ascorbic acid, since repression is not observed after treatment with other antioxidants. The new properties of ascorbic acid are discussed, along with the implications of these findings for CMT disease treatment.

  18. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck).

    PubMed

    Wang, Yin; Liu, Ji-Hong

    2012-08-15

    Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H₂O₂ level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion.

  19. Beta-alanine and beta-aminoisobutyric acid levels in two siblings with dihydropyrimidinase deficiency.

    PubMed

    van Kuilenburg, A B P; Stroomer, A E M; Bosch, A M; Duran, M

    2008-06-01

    Dihydropyrimidinase (DHP) deficiency is an inborn error of the pyrimidine degradation pathway, affecting the hydrolytic ring opening of the dihydropyrimidines. In two siblings with a complete DHP deficiency and a variable clinical presentation, a normal concentration of beta-alanine and strongly decreased levels of beta-aminoisobutyric acid were observed in plasma, urine and CSF. No major differences were observed for the concentrations of the beta-amino acids in plasma and urine between the symptomatic and asymptomatic sibling. Thus, the relevance of the shortage of beta-aminoisobutyric acid for the onset of a clinical phenotype in patients with DHP deficiency remains to be established.

  20. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    PubMed

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  1. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  2. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  3. Serum iron, vitamin B12 and folic acid levels in Parkinson's disease.

    PubMed

    Madenci, Gulizar; Bilen, Sule; Arli, Berna; Saka, Mustafa; Ak, Fikri

    2012-07-01

    We aimed to investigate possible associations between systemic iron metabolism deficiency and Parkinson's disease, and also to research any possible correlations between stage of the disease and vitamin B12 and folic acid levels. 33 male and 27 female patients diagnosed with idiopathic Parkinson's disease and 22 male and 20 female age- and sex-matched controls were enrolled in the study. Having the diagnosis of secondary Parkinsonism or Parkinson plus syndromes, and for the females, not being in the menopausal stage were considered as exclusion criteria. Recordings of blood samples of both groups collected after 8 h fasts were assessed in terms of serum iron, ferritin levels and iron-binding capacity, vitamin B12 and folic acid levels. The Hoehn and Yahr scale was used to determine the stage of the disease. No statistically significant difference was found with respect to mean serum iron, median serum ferritin levels and median serum iron-binding capacity between the groups. A statistically significant but inverse correlation was found between symptoms' duration and serum iron and ferritin levels. There was no statistically significant difference between the groups with respect to vitamin B12 and folic acid levels. However, a statistically significant but inverse correlation was determined between the patients' vitamin B12 levels and the Hoehn and Yahr scores. As Parkinson's disease progresses, serum iron, ferritin and vitamin B12 levels may decrease. The lower levels of these parameters may be the cause of the progression or may be the result of it.

  4. Assessing the Role of ETHYLENE RESPONSE FACTOR Transcriptional Repressors in Salicylic Acid-Mediated Suppression of Jasmonic Acid-Responsive Genes.

    PubMed

    Caarls, Lotte; Van der Does, Dieuwertje; Hickman, Richard; Jansen, Wouter; Verk, Marcel C Van; Proietti, Silvia; Lorenzo, Oscar; Solano, Roberto; Pieterse, Corné M J; Van Wees, Saskia C M

    2016-11-10

    Salicylic acid (SA) and jasmonic acid (JA) cross-communicate in the plant immune signaling network to finely regulate induced defenses. In Arabidopsis, SA antagonizes many JA-responsive genes, partly by targeting the ETHYLENE RESPONSE FACTOR (ERF)-type transcriptional activator ORA59. Members of the ERF transcription factor family typically bind to GCC-box motifs in the promoters of JA- and ethylene-responsive genes, thereby positively or negatively regulating their expression. The GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Here, we investigated whether SA-induced ERF-type transcriptional repressors, which may compete with JA-induced ERF-type activators for binding at the GCC-box, play a role in SA/JA antagonism. We selected ERFs that are transcriptionally induced by SA and/or possess an EAR transcriptional repressor motif. Several of the 16 ERFs tested suppressed JA-dependent gene expression, as revealed by enhanced JA-induced PDF1.2 or VSP2 expression levels in the corresponding erf mutants, while others were involved in activation of these genes. However, SA could antagonize JA-induced PDF1.2 or VSP2 in all erf mutants, suggesting that the tested ERF transcriptional repressors are not required for SA/JA cross-talk. Moreover, a mutant in the co-repressor TOPLESS, that showed reduction in repression of JA signaling, still displayed SA-mediated antagonism of PDF1.2 and VSP2. Collectively, these results suggest that SA-regulated ERF transcriptional repressors are not essential for antagonism of JA-responsive gene expression by SA. We further show that de novo SA-induced protein synthesis is required for suppression of JA-induced PDF1.2, pointing to SA-stimulated production of an as yet unknown protein that suppresses JA-induced transcription.

  5. Autistic Children Exhibit Decreased Levels of Essential Fatty Acids in Red Blood Cells

    PubMed Central

    Brigandi, Sarah A.; Shao, Hong; Qian, Steven Y.; Shen, Yiping; Wu, Bai-Lin; Kang, Jing X.

    2015-01-01

    Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are essential nutrients for brain development and function. However, whether or not the levels of these fatty acids are altered in individuals with autism remains debatable. In this study, we compared the fatty acid contents between 121 autistic patients and 110 non-autistic, non-developmentally delayed controls, aged 3–17. Analysis of the fatty acid composition of red blood cell (RBC) membrane phospholipids showed that the percentage of total PUFA was lower in autistic patients than in controls; levels of n-6 arachidonic acid (AA) and n-3 docosahexaenoic acid (DHA) were particularly decreased (p < 0.001). In addition, plasma levels of the pro-inflammatory AA metabolite prostaglandin E2 (PGE2) were higher in a subset of the autistic participants (n = 20) compared to controls. Our study demonstrates an alteration in the PUFA profile and increased production of a PUFA-derived metabolite in autistic patients, supporting the hypothesis that abnormal lipid metabolism is implicated in autism. PMID:25946342

  6. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    PubMed

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated.

  7. Evaluation of cooling strategies for pumping of milk - impact of fatty acid composition on free fatty acid levels.

    PubMed

    Wiking, Lars; Bertram, Hanne C; Björck, Lennart; Nielsen, Jacob H

    2005-11-01

    Cooling strategies for pumping of raw milk were evaluated. Milk was pumped for 450 s at 31 degrees C, or pumped after cooling to 4 degrees C and subsequently subjected to various incubation times. Two types of milk were used; i.e. milk from cows fed a diet high in saturated fat supplements resulting in significantly larger milk fat globules than the other type of milk which comes from cows fed a low-fat diet that stimulates high de novo fat synthesis. The content of liquid fat was determined by low-field 1H NMR, which showed that milk from cows given the saturated fat diet also contained less liquid fat at both 4 degrees and 31 degrees C than the other type of milk. This can be ascribed to the differences in the fatty acid composition of the milk as a result of the fatty acid composition of the diets. After pumping of the milk at 31 degrees C, measurement of fat globule size distribution revealed a significant coalescence of milk fat globules in the milk obtained from the saturated fat diet due to pumping. Pumping at 4 degrees C or pumping the other type of milk did not result in coalescence of milk fat globules. Formation of free fatty acids increased significantly in both types of milk by pumping at 31 degrees C. Cooling the milk to 4 degrees C immediately before pumping inhibited an increased content of free fatty acids. However, when the milk was incubated at 4 degrees C for 60 min after cooling and then subjected to pumping, a significant increase in the formation of free fatty acids was observed in both types of milk. It is suggested that this increase in free fatty acids is caused by transition of polymorphic crystal forms or higher level of attached lipoprotein lipases to the milk fat globule before pumping.

  8. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Neela, Kishore Babu; Pasupulati, Anil Kumar; Pallu, Reddanna; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2016-06-01

    Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants.

  9. Alterations in the levels of plasma amino acids in polycystic ovary syndrome- A pilot study

    PubMed Central

    Unni, C. Sumithra N.; Lakshman, Lakshmi R.; Vaidyanathan, Kannan; Subhakumari, K.N.; Menon, N. Leela

    2015-01-01

    Background & objectives: Plasma amino acid levels are known to be altered in conditions like sepsis and burns which are situations of metabolic stress. Polycystic ovary syndrome (PCOS), a condition which affects a woman throughout her life, is said to be associated with metabolic stress. This study was undertaken to assess if there were significant alterations in the levels of plasma amino acids in women with PCOS. Methods: Sixty five women with PCOS along with the similar number of age matched normal controls were included in this study. Levels of 14 amino acids were determined using reverse phase high performance liquid chromatography. Results: The levels of methionine, cystine, isoleucine, phenylalanine, valine, tyrosine, proline, glycine, lysine and histidine were found to be significantly (P<0.001) lower in cases than in controls. Arginine and alanine levels were found to be significantly (P<0.001) higher in cases compared with controls. Interpretation & conclusions: Our findings showed significant derangement in the levels of plasma amino acids in women with PCOS which might be due to the oxidative and metabolic stress associated with it. Further studies need to be done to confirm the findings. PMID:26658589

  10. The environmental light influences the circulatory levels of retinoic acid and associates with hepatic lipid metabolism.

    PubMed

    Pang, Wenqiang; Li, Chunying; Zhao, Yue; Wang, Shiming; Dong, Wei; Jiang, Pengjiu; Zhang, Jianfa

    2008-12-01

    Environmental light is involved in the regulation of photochemical reaction in mouse retina. It remains unclear whether light-mediated increase in all-trans retinoic acid (ATRA) synthesis in retina will result in altering the circulatory levels of ATRA and regulating downstream gene expression and physiological function. Here we showed circulatory levels of ATRA decreased in mice under constant darkness and elevated by light exposure. Fat gene pancreatic lipase-related protein 2 (mPlrp2) and its partner procolipase (mClps), but not hepatic lipase (mHl), activated in livers for responding to lack of light illuminating. Light-triggered alterations in circulatory ATRA levels regulated ecto-5'-nucleotidase gene expression by retinoic acid receptor retinoic acid receptor-alpha and modulated 5'-AMP levels in blood and were associated with mPlrp2 and mClps expression in the livers. Mice deficient in adenosine receptors displayed mPlrp2 and mClps expression in livers under 12-h light, 12-h dark cycles. Caffeine blocked adenosine receptors and induced hepatic mPlrp2 and mClps expression in wild-type mice. Mice activated in hepatic mPlrp2 and mClps expression lowered hepatic and serum lipid levels and markedly elevated circulatory levels of all-trans retinol. Our results suggest environmental light influence hepatic lipid homeostasis by light-modulated retinoic acid signaling associated with mPlrp2 and mClps gene expression in livers.

  11. Ursolic acid reduces prostate size and dihydrotestosterone level in a rat model of benign prostatic hyperplasia.

    PubMed

    Shin, In-Sik; Lee, Mee-Young; Jung, Da-Young; Seo, Chang-Seob; Ha, Hye-Kyung; Shin, Hyeun-Kyoo

    2012-03-01

    Benign prostatic hyperplasia (BPH) is characterized by hyperplasia of prostatic stromal and epithelial cells, which can lead to lower urinary tract symptoms. The prevalence of BPH increases in an age-dependent manner. We investigated the protective effect of ursolic acid in BPH development using a testosterone-induced BPH rat model. BPH was induced in experimental groups by daily subcutaneous injections of testosterone propionate (TP), for a period of four weeks. Ursolic acid was administrated daily by oral gavage at a dose level of 5mg/kg during the four weeks of TP injections. Animals were sacrificed on the scheduled termination, before prostates were weighed and subjected to histopathological examination. TP and dihydrotestosterone (DHT) levels in the serum and prostate were also measured. BPH-induced animals displayed an increase in prostate weight with increased testosterone and DHT levels in both the serum and prostate. However, ursolic acid treatment resulted in significant reductions in prostate weight and testosterone and DHT levels in both the serum and prostate, compared with BPH-induced animals. Histopathological examination also showed that ursolic acid treatment suppressed TP-induced prostatic hyperplasia. These findings indicate that ursolic acid may effectively inhibit the development of BPH and it may be a useful agent in BPH treatment.

  12. Fatty acid status and its relationship to cognitive decline and homocysteine levels in the elderly.

    PubMed

    Baierle, Marília; Vencato, Patrícia H; Oldenburg, Luiza; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M; Duarte, Marta M M F; Veit, Juliana C; Somacal, Sabrina; Emanuelli, Tatiana; Grune, Tilman; Breusing, Nicolle; Garcia, Solange C

    2014-09-12

    Polyunsaturated fatty acids (PUFAs), especially the n-3 series, are known for their protective effects. Considering that cardiovascular diseases are risk factors for dementia, which is common at aging, the aim of this study was to evaluate whether fatty acid status in the elderly was associated with cognitive function and cardiovascular risk. Forty-five elderly persons (age ≥ 60 years) were included and divided into two groups based on their Mini-Mental Status Examination score adjusted for educational level: the case group (n = 12) and the control group (n = 33). Serum fatty acid composition, homocysteine (Hcy), hs-CRP, lipid profile and different cognitive domains were evaluated. The case group, characterized by reduced cognitive performance, showed higher levels of 14:0, 16:0, 16:1n-7 fatty acids and lower levels of 22:0, 24:1n-9, 22:6n-3 (DHA) and total PUFAs compared to the control group (p < 0.05). The n-6/n-3 ratio was elevated in both study groups, whereas alterations in Hcy, hs-CRP and lipid profile were observed in the case group. Cognitive function was positively associated with the 24:1n-9, DHA and total n-3 PUFAs, while 14:0, 16:0 and 16:1n-7 fatty acids, the n-6/n-3 ratio and Hcy were inversely associated. In addition, n-3 PUFAs, particularly DHA, were inversely associated with cardiovascular risk, assessed by Hcy levels in the elderly.

  13. Circulating irisin levels are associated with lipid and uric acid metabolism in a Chinese population.

    PubMed

    Tang, Shanshan; Zhang, Rong; Jiang, Feng; Wang, Jie; Chen, Miao; Peng, Danfeng; Yan, Jing; Wang, Shiyun; Bao, Yuqian; Hu, Cheng; Jia, Weiping

    2015-06-26

    Irisin is a novel hormone secreted by skeletal muscle after exercise, which may ameliorate insulin resistance. In this study, we aimed to explore the relationship between circulating irisin levels and type 2 diabetes (T2DM) as well as related metabolic traits in a Chinese population. A total of 203 subjects were recruited. Of these, 68 subjects with NGT, 63 subjects with IGR and 72 subjects with new-onset T2DM. Circulating irisin levels were measured by ELISA. Detailed clinical investigations and biochemistry measurements were carried out in all of the subjects. Multivariate linear regression analysis was performed to assess the association between irisin levels and related metabolic characteristics. All subjects were classified into normal weight and overweight/obese subgroups according to body mass index (BMI). No significant differences in circulating irisin levels were identified among the three groups (p=0.9741). After adjusting for covariates, multiple linear regression analysis revealed that serum irisin level was independently and significantly associated with total cholesterol (p=0.0005), low-density lipoprotein cholesterol (p=0.0014), fasting fatty acids (p=0.0402) and uric acid (p=0.0062). By dividing the serum irisin levels into three tertile group, the values of total cholesterol, low-density lipoprotein cholesterol, fasting fatty acids and uric acid were all increased significantly with the increase of irisin (p<0.05) . Moreover, serum irisin levels remain closely related to total cholesterol in both normal weight and overweight/obese subgroups. Our study suggests that circulating irisin concentrations are significantly associated with lipid and uric acid metabolism in a Chinese population. This article is protected by copyright. All rights reserved.

  14. Serum uric acid levels and long-term outcomes in chronic kidney disease.

    PubMed

    Miyaoka, Tokiko; Mochizuki, Toshio; Takei, Takashi; Tsuchiya, Ken; Nitta, Kosaku

    2014-07-01

    Hyperuricemia is common in chronic kidney disease (CKD), but data regarding the relationship between serum uric acid levels and the long-term outcomes of CKD patients have been limited. The present study evaluated the associations between baseline serum uric acid levels with mortality and end-stage renal disease (ESRD). The subjects of this study were 551 stage 2-4 CKD patients. Cox proportional hazards models were used to evaluate the relationship between serum uric acid tertiles and all-cause mortality, cardiovascular disease (CVD) mortality, 50 % reduction in estimated glomerular filtration rate (eGFR), and development of ESRD, initially without adjustment, and then after adjusting for several groups of covariates. The mean age of the study subjects was 58.5 years, 59.3 % were men, and 10.0 % had diabetes. The mean eGFR was 42.02 ± 18.52 ml/min/1.73 m(2). In all subjects, the mean serum uric acid level was 6.57 ± 1.35 mg/dl, and 52.2 % of study subjects were on hypouricemic therapy (allopurinol; 48.3 %) at baseline. Thirty-one patients (6.1 %) died during a follow-up period of approximately 6 years. There was no significant association between serum uric acid level and all-cause mortality, CVD mortality, development of ESRD and 50 % reduction in eGFR in the unadjusted Cox models. In the adjusted models, hyperuricemia was found to be associated with all-cause mortality and CVD mortality after adjustment with CVD risk factors, kidney disease factors, and allopurinol, but not associated with development of ESRD and 50 % reduction in eGFR. The results of this study showed that hyperuricemia but not serum uric acid levels were associated with all-cause mortality, CVD mortality after adjustments with CVD risk factors, kidney disease factors, and allopurinol in stage 2-4 CKD patients.

  15. Establishing tolerable dungeness crab (Cancer magister) and razor clam (Siliqua patula) domoic acid contaminant levels.

    PubMed

    Mariën, K

    1996-11-01

    Domoic acid has been found in razor clams (Siliqua patula) and dungeness crabs (Cancer magister) in Washington State and elsewhere on the West Coast of the United States. Due to toxic effects associated with domoic acid exposure, an effort has been made to establish tolerable domoic acid levels in crabs and clams obtained from commercial harvest and sale and from individual recreational harvesting. To accomplish this, the amount of clams and crabs consumed by populations of concern was determined, a tolerable daily intake (TDI) was developed for individuals most sensitive to effects of this compound, and the TDI was equated with consumption patterns to determine tolerable clam and crab domoic acid levels. Results indicate that the primary health effects associated with domoic acid toxicity can be averted in populations of concern and for others consuming crabs or clams less frequently (or in lesser quantity) if domoic acid contaminant concentration does not exceed 30 mg/kg in the hepatopancreas and viscera of dungeness crabs or 20 mg/kg in clams.

  16. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening?

    PubMed Central

    Bhat, Manohara A; Prasad, KVV; Trivedi, Dheeraj; Rajeev, BR; Battur, Hemanth

    2016-01-01

    Objective: Cancerous cells show increased glycolysis rate. This will increase overall levels of pyruvate as it is one of the end products of glycolysis. The present on-going study is to estimate the levels of pyruvate in saliva and serum among healthy and oral cancer subjects. Settings and Design: Hospital-based cross-sectional comparative study. Methodology: A total of 50 subjects among healthy and oral cancer subjects were selected based on clinical and histological criteria. Saliva and serum samples were collected and subjected to pyruvate level estimation using biochemical analysis. Statistical Analysis: Descriptive analysis and Mann-Whitney test were used to find the statistical difference between the two independent groups. Results: Serum pyruvic acid levels of the healthy group were 1.09 ± 0.14 and for oral cancer, it was 2.95 ± 0.59 and salivary level were 3.49 ± 0.47 and 1.32 ± 0.10 respectively. Mann-Whitney test showed statistically significant difference in serum and salivary pyruvate level in between two groups (P < 0.000 respectively). Conclusion: The present study showed noticeable variation in the level of pyruvic acid among healthy and oral cancer subjects. This generates the hypothesis that estimation of the pyruvic acid can be a new tool to screening of the cancer. PMID:27194870

  17. Effect of folic acid and zinc sulphate on endocrine parameters and seminal antioxidant level after varicocelectomy.

    PubMed

    Nematollahi-Mahani, S N; Azizollahi, G H; Baneshi, M R; Safari, Z; Azizollahi, S

    2014-04-01

    Varicocele is among the most common problems which may lead to male infertility. Spermatogenesis is impaired as a consequence of this vascular defect, through mechanisms that are not well described. This study aimed to evaluate serum hormonal level (inhibin B, FSH and testosterone) and seminal plasma antioxidant defence levels after folic acid and zinc sulphate administration in varicocelectomised patients. Participants were randomly allocated to four experimental groups. Our randomisation schedule was as follows: zinc sulphate/folic acid, folic acid, zinc sulphate and placebo. The patients underwent varicocelectomy, before which a blood and semen sample were obtained and also three and six months after varicocelectomy for evaluation of blood hormonal level (FSH, testosterone, inhibin B) and seminal oxidative stress status (nitric oxide, superoxide dismutase, total antioxidant capacity). Patients in different groups took orally one capsule per day after dinner following varicocelectomy for 6 months. A significant rise in peripheral blood inhibin B and seminal plasma activity was detected in the zinc sulphate/folic acid group after 6 months. The present clinical trial indicates a change in the hormonal status of varicocelectomised patients following long-term administration of zinc sulphate and folic acid.

  18. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it.

  19. Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River

    PubMed Central

    Gladyshev, Michail I.; Sushchik, Nadezhda N.; Kalachova, Galina S.; Makhutova, Olesia N.

    2012-01-01

    We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous – consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings. PMID:22470513

  20. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy

    PubMed Central

    Munger, Joshua; Bennett, Bryson D; Parikh, Anuraag; Feng, Xiao-Jiang; McArdle, Jessica; Rabitz, Herschel A; Shenk, Thomas; Rabinowitz, Joshua D

    2010-01-01

    Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography–tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells 13C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy. PMID:18820684

  1. [Ecogenetic aspects of the study of phenotypes and levels of beta-aminoisobutyric acid excretion].

    PubMed

    Spitsyn, V A; Afanas'eva, I S; Alekseeva, N V

    1993-11-01

    The levels of excretion of beta-aminoisobutyric acid (BAIB) in urea were examined in five groups. The distribution of BAIB concentration revealed the existence of high and low excretors in each group. Asbestosis patients had the lowest frequency of high excretors. The BAIB concentration among high excretors was similar for all the groups. The BAIB levels of low excretors varied. The most alike were two children groups, asbestosis patients and the workers from the town Asbest.

  2. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  3. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2.

    PubMed Central

    Rao, M V; Paliyath, G; Ormrod, D P; Murr, D P; Watkins, C B

    1997-01-01

    We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed. PMID:9306697

  4. Temporal variability in urinary levels of drinking water disinfection byproducts dichloroacetic acid and trichloroacetic acid among men

    SciTech Connect

    Wang, Yi-Xin; Zeng, Qiang; Wang, Le; Huang, Yue-Hui; Lu, Zhi-Wei; Wang, Peng; He, Meng-Jie; Huang, Xin; Lu, Wen-Qing

    2014-11-15

    Urinary haloacetic acids (HAAs), such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), have been suggested as potential biomarkers of exposure to drinking water disinfection byproducts (DBPs). However, variable exposure to and the short elimination half-lives of these biomarkers can result in considerable variability in urinary measurements, leading to exposure misclassification. Here we examined the variability of DCAA and TCAA levels in the urine among eleven men who provided urine samples on 8 days over 3 months. The urinary concentrations of DCAA and TCAA were measured by gas chromatography coupled with electron capture detection. We calculated the intraclass correlation coefficients (ICCs) to characterize the within-person and between-person variances and computed the sensitivity and specificity to assess how well single or multiple urine collections accurately determined personal 3-month average DCAA and TCAA levels. The within-person variance was much higher than the between-person variance for all three sample types (spot, first morning, and 24-h urine samples) for DCAA (ICC=0.08–0.37) and TCAA (ICC=0.09–0.23), regardless of the sampling interval. A single-spot urinary sample predicted high (top 33%) 3-month average DCAA and TCAA levels with high specificity (0.79 and 0.78, respectively) but relatively low sensitivity (0.47 and 0.50, respectively). Collecting two or three urine samples from each participant improved the classification. The poor reproducibility of the measured urinary DCAA and TCAA concentrations indicate that a single measurement may not accurately reflect individual long-term exposure. Collection of multiple urine samples from one person is an option for reducing exposure classification errors in studies exploring the effects of DBP exposure on reproductive health. - Highlights: • We evaluated the variability of DCAA and TCAA levels in the urine among men. • Urinary DCAA and TCAA levels varied greatly over a 3-month

  5. The TOC159 mutant of Arabidopsis thaliana accumulates altered levels of saturated and polyunsaturated fatty acids.

    PubMed

    Afitlhile, Meshack; Fry, Morgan; Workman, Samantha

    2015-02-01

    We evaluated whether the TOC159 mutant of Arabidopsis called plastid protein import 2-2 (ppi2-2) accumulates normal levels of fatty acids, and transcripts of fatty acid desaturases and galactolipid synthesis enzymes. The ppi2-2 mutant accumulates decreased pigments and total fatty acid content. The MGD1 gene was downregulated and the mutant accumulates decreased levels of monogalactosyldiacylglycerol (MGDG) and 16:3, which suggests that the prokaryotic pathway was impaired in the mutant. The HY5 gene, which encodes long hypocotyl5 transcription factor, was upregulated in the mutant. The DGD1 gene, an HY5 target was marginally increased and the mutant accumulates digalactosyldiacylglycerol at the control level. The mutant had increased expression of 3-ketoacyl-ACP synthase II gene, which encodes a plastid enzyme that elongates 16:0 to 18:0. Interestingly, glycerolipids in the mutant accumulate increased levels of 18:0. A gene that encodes stearoyl-ACP desaturase (SAD) was expressed at the control level and 18:1 was increased, which suggest that SAD may be strongly regulated at the posttranscriptional level. The molar ratio of MGDG to bilayer forming plastid lipids was decreased in the cold-acclimated wild type but not in the ppi2-2 mutant. This indicates that the mutant was unresponsive to cold-stress, and is consistent with increased levels of 18:0, and decreased 16:3 and 18:3 in the ppi2-2 mutant. Overall, these data indicate that a defective Toc159 receptor impaired the synthesis of MGDG, and affected desaturation of 16 and 18-carbon fatty acids. We conclude that expression of the MGD1 gene and synthesis of MGDG are tightly linked to plastid biogenesis.

  6. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  7. Cross-talk between gibberellins and salicylic acid in early stress responses in Arabidopsis thaliana seeds

    PubMed Central

    Alonso-Ramírez, Ana; Rodríguez, Dolores; Reyes, David; Jiménez, Jesús Angel; Nicolás, Gregorio; López-Climent, María; Gómez-Cadenas, Aurelio

    2009-01-01

    Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis. PMID:19820299

  8. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  9. Effect of excitatory amino acids on serum TSH and thyroid hormone levels in freely moving rats.

    PubMed

    Alfonso, M; Durán, R; Arufe, M C

    2000-01-01

    The actions of glutamate (L-Glu), and glutamate receptor agonists on serum thyroid hormones (T4 and T3) and TSH levels have been studied in conscious and freely moving adult male rats. The excitatory amino acids (EAA), L-Glu, N-methyl-D-aspartate (NMDA), kainic acid (KA) and domoic acid (Dom) were administered intraperitoneally. Blood samples were collected through a cannula implanted in the rats jugular 0--60 min after injection. Thyroid hormone concentrations were measured by enzyme immunoassay, and thyrotrophin (TSH) concentrations were determined by radioimmunoassay. The results showed that L-Glu (20 and 25 mg/kg) and NMDA (25 mg/kg) increased serum thyroxine (T4), triiodothyronine (T3) and TSH concentrations. Serum thyroid hormone levels increased 30 min after treatment, while serum TSH levels increased 5 min after i.p. administration, in both cases serum levels remained elevated during one hour. Injection of the non-NMDA glutamatergic agonists KA (30 mg/kg) and Dom (1 mg/kg) produced an increase in serum thyroid hormones and TSH levels. These results suggest the importance of EAAs in the regulation of hormone secretion from the pituitary-thyroid axis, as well as the importance of the NMDA and non-NMDA receptors in this stimulatory effect.

  10. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid

    PubMed Central

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-01-01

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA. PMID:26659305

  11. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Manohar, Murli; Harraz, Maged M; Park, Sang-Wook; Schroeder, Frank C; Snyder, Solomon H; Klessig, Daniel F

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.

  12. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid.

    PubMed

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-12-11

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA.

  13. Vanilmandelic acid and homovanillic acid levels in patients with neural crest tumor: 24-hour urine collection versus random sample.

    PubMed

    Gregianin, L J; McGill, A C; Pinheiro, C M; Brunetto, A L

    1997-01-01

    Neuroblastoma is the most common solid tumor in childhood and is the most frequent neural crest tumor (NCT). More than 90% of the patients excrete high levels of vanilmandelic acid (VMA) and homovanillic acid (HVA) in the urine. Original biochemical methods for measuring these two metabolites of catecholamines employed a collection of urine for 24 hours to avoid errors related to circadian cycle variations. More recently, attempts have been made to replace the 24-hour collections by random samples (RSs). This has practical advantages particularly for young children. The objective of this study is to assess whether urinary VMA related to urinary creatinine levels can be determined reliably by the method of Pisano et al. from RSs in patients with NCT. The determination of the consumption of VMA in urine stored for prolonged periods of time was also studied. We found a good correlation between the values of metabolites of catecholamines in RSs compared with 24-hour urine collections. There was consumption of VMA in urine samples after storage. We conclude that determination of VMA in RSs of urine by Pisano's method may identify NCT production of catecholamines and that the consumption of these catecholamines is an important factor to consider in the interpretation of values obtained with stored urine specimens.

  14. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  15. Serum uric acid levels contribute to new renal damage in systemic lupus erythematosus patients.

    PubMed

    Reátegui-Sokolova, C; Ugarte-Gil, Manuel F; Gamboa-Cárdenas, Rocío V; Zevallos, Francisco; Cucho-Venegas, Jorge M; Alfaro-Lozano, José L; Medina, Mariela; Rodriguez-Bellido, Zoila; Pastor-Asurza, Cesar A; Alarcón, Graciela S; Perich-Campos, Risto A

    2017-04-01

    This study aims to determine whether uric acid levels contribute to new renal damage in systemic lupus erythematosus (SLE) patients. This prospective study was conducted in consecutive patients seen since 2012. Patients had a baseline visit and follow-up visits every 6 months. Patients with ≥2 visits were included; those with end-stage renal disease (regardless of dialysis or transplantation) were excluded. Renal damage was ascertained using the SLICC/ACR damage index (SDI). Univariable and multivariable Cox-regression models were performed to determine the risk of new renal damage. Uric acid was included as a continuous and dichotomous (per receiving operating characteristic curve) variable. Multivariable models were adjusted for age at diagnosis, disease duration, socioeconomic status, SLEDAI, SDI, serum creatinine, baseline use of prednisone, antimalarials, and immunosuppressive drugs. One hundred and eighty-six patients were evaluated; their mean (SD) age at diagnosis was 36.8 (13.7) years; nearly all patients were mestizo. Disease duration was 7.7 (6.8) years. Follow-up time was 2.3 (1.1) years. The SLEDAI was 5.2 (4.3) and the SDI 0.8 (1.1). Uric acid levels were 4.5 (1.3) mg/dl. During follow-up, 16 (8.6%) patients developed at least one new point in the renal domain of the SDI. In multivariable analyses, uric acid levels (continuous and dichotomous) at baseline predicted the development of new renal damage (HR 3.21 (1.39-7.42), p 0.006; HR 18.28 (2.80-119.48), p 0.002; respectively). Higher uric acid levels contribute to the development of new renal damage in SLE patients independent of other well-known risk factors for such occurrence.

  16. Correlation between maternal and childhood VitB12, folic acid and ferritin levels

    PubMed Central

    Zeeshan, Fatima; Bari, Attia; Farhan, Saima; Jabeen, Uzma; Rathore, Ahsan Waheed

    2017-01-01

    Objective: To determine the correlation between serum folic acid, vitamin B12 and ferritin of mother and child and to study various neonatal risk factors as a cause of anemia in children. Methods: One hundred eighty children two months to two years of age admitted in the department of Pediatric Medicine of The Children’s Hospital and The Institute of Child Health Lahore from January 2013 to January 2015 with common medical conditions having anemia were included. Complete blood count (CBC), serum ferritin level, folic acid and Vitamin (Vit) B12 level were sent of children and their mothers. Data was analyzed using SPSS version 20. Results: Out of 180 children with anemia, 66.7% were males. Mean age of children was 7.3months. Fifty-five percent children were malnourished according to z scoring. The mean Hemoglobin (Hb) of children was 8 g/dl. Only 4% children had low ferritin level while 60% had low folic acid and 45% had decreased VitB12. There was significant correlation between Hb of mother and child (p =0.02), Vit B12 deficiency (p=0.008) and iron deficiency (p<0.001). Premature children had lower folic acid levels (p =0.02), while prematurity, IUGR, previous admission and history of sepsis showed no association with anemia in our study. Both breast-feeding and top feeding showed significant association with anemia with p-value of 0.042 and 0.003 respectively while dilution showed no impact on anemia. Conclusion: Maternal anemia has a significant impact on child’s hemoglobin. As compared to previous concept of increased iron deficiency in children we found increased occurrence of folic acid and VitB12 deficiency in children and their mothers. PMID:28367192

  17. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  18. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.).

    PubMed

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them.

  19. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    PubMed

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  20. Fatty acid and prostaglandin metabolism in children with diabetes mellitus. II. The effect of evening primrose oil supplementation on serum fatty acid and plasma prostaglandin levels.

    PubMed

    Arisaka, M; Arisaka, O; Yamashiro, Y

    1991-07-01

    Our previous study demonstrated that levels of dihomo-gamma-linolenic acid (DGLA) and arachidonic acid in serum total lipids decreased in association with increased plasma levels of prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) in patients with insulin-dependent diabetes mellitus. In this study, 11 children with insulin-dependent diabetes mellitus completed a double-blind, placebo-controlled study to assess the effect of dietary supplementation with gamma-linolenic acid (GLA) on serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. GLA was given as the seed oil from the evening primrose (EPO) and all patients received either EPO capsules (containing 45 mg of GLA and 360 mg of linoleic acid) or indistinguishable placebo capsules for 8 months. Initially patients took 2 capsules daily for 4 months then 4 capsules daily for a further 4 months. All patients were assessed at the start of the study, after 4 months and at the end of the study, by measuring serum essential fatty acid and plasma PGE2 and PGF2 alpha levels. After administration of 4 capsules daily the DGLA levels increased and PGE2 levels decreased significantly (p less than 0.01) in the EPO compared with the placebo group. Neither fatty acid nor PGE2 and PGF2 alpha levels were altered by administration of 2 EPO capsules daily. This suggests that the altered essential fatty acid and PG metabolism in diabetes may be reversed by direct GLA supplementation.

  1. The effects of dietary omega fatty acids on pregnancy rate, plasma prostaglandin metabolite levels, serum progesterone levels, and milk fatty-acid profile in beef cows.

    PubMed

    Richardson, Gavin F; McNiven, Mary A; Petit, Hélène V; Duynisveld, John L

    2013-10-01

    The objectives were to determine the effects of feeding supplements rich in omega-6 or omega-3 fatty acids (FA) during the late gestation to the early postpartum and breeding periods on reproduction and milk FA profile in beef cows. For each of two years, at the beginning of period 1 (mid-December), 72 beef cows, calving in January or February, were assigned to diets supplemented with roasted flaxseed (Flax) or roasted soybean (Soybean). For each of two years, after 11 wk (end of period 1), 18 cows of 36 in the Flax group were switched to the soybean supplement and 18 cows of 36 in the Soybean group were switched to the flax supplement (start of Period 2). Cows were bred by timed artificial insemination (TAI) in week 5 of period 2. The FA composition of the milk reflected the FA profile of the oilseed supplements. There were no differences in pregnancy rates among the 4 groups. The treatments had no effect on plasma prostaglandin metabolite levels or ratios at 4 to 11 d postpartum. At 5 to 6 d post- TAI, pregnant cows fed Flax in period 1 had lower (P < 0.05) plasma prostaglandin F metabolite (PGFM) levels and PGFM to prostaglandin E metabolite (PGEM) ratio than cows fed Soybean, but there were no significant differences at 19 to 20 d post-TAI. Cows pregnant from TAI and fed Flax in period 2 had higher (P < 0.05) serum progesterone levels at 5 to 6 d post-TAI than cows fed Soybean, but there was no difference at 19 to 20 d post-TAI. The dietary treatments had no effect on pregnancy rates, but there were some effects on plasma PGFM levels, PGFM to PGEM ratios, and serum progesterone levels. The FA supplements influenced the FA composition of milk.

  2. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    PubMed

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  3. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  4. [Pantothenic acid levels in blood of athletes at rest and after aerobic exercise].

    PubMed

    Rokitzki, L; Sagredos, A; Reuss, F; Petersen, G; Keul, J

    1993-12-01

    Ninety-six high-performance athletes of various disciplines were available for this investigation. All athletes had many years of training and competition experience. The pantothenic acid contents in the blood were determined by means of microbiological measurements. In addition to the pantothenic acid level at rest, measurements were made resp. physical exertion in 14 marathon runners and nine body builders. Blood was collected for determination of pantothenic acid before (a), after (b) and 2 h after exercise. Compared to the reference values for untrained persons (1.34 +/- 0.13 nmol/mL), the marathon runners with 0.76 (0.31-0.94) nmol/mL and soccer players with 1.19 (0.37-2.64) nmol/mL were below the reference values. According to relative frequencies, more than 30% of all athletes were below the lower limit (< 1.20 nmol/mL). The values in body builders/racing cyclists differed significantly from those in marathon racers (p < 0.001), which is presumably due to unallowed supplementation. During exercise, there was a significant increase in the pantothenic acid level in marathon runners (p < 0.01).

  5. [A case of megaloblastic anemia with abnormally high urine level of beta-aminoisobutyric acid].

    PubMed

    Konjiki, O; Yoneda, Y; Sato, Y; Oosawa, Y; Imamura, T; Takasaki, M

    1993-01-01

    A 78-year-old man was admitted to our hospital with anemia and jaundice. Hematological studies revealed hyperchromic macrocytic anemia, and biochemical studies revealed findings of hemolysis. The folic acid level was low and megaloblasts were observed in the bone marrow. From these findings, the patient was diagnosed as having megaloblastic anemia due to folic acid deficiency. This patient had been a heavy alcohol drinker in the habit of drinking alcohol without meals. He began to eat regular meals in the hospital, and the anemia and jaundice improved gradually. Since liver cirrhosis was suspected, amino acid analysis of the urine was performed, and abnormal excretion of beta-amino-isobutyric acid (BAIB) was found. According to the amount of BAIB excreted, the Japanese population can be divided into low and high BAIB excretors comprising 65% and 36%, respectively. BAIB is also considered to reflect dissimilation of thymine. The present patient was included in the high excretion group because of the abnormally high urine level of BAIB, which was considered to be caused by ineffective hematopoiesis in the bone marrow as a result of his megaloblastic anemia. For this reason, dissimilation of thymine was considered to have been active in this patient.

  6. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study

    PubMed Central

    2014-01-01

    Background Dairy food is an important natural source of saturated and trans fatty acids in the human diet. This study evaluates the effect of dietary advice to change dairy food intake on plasma fatty acid levels known to be present in milk in healthy volunteers. Methods Twenty one samples of whole fat dairy milk were analyzed for fatty acids levels. Changes in levels of plasma phospholipid levels were evaluated in 180 healthy volunteers randomized to increase, not change or reduce dairy intake for one month. Fatty acids were measured by gas chromatography–mass spectrometry and levels are normalized to d-4 alanine. Results The long chain fatty acids palmitic (13.4%), stearic (16.7%) and myristic (18.9%) acid were most common saturated fats in milk. Four trans fatty acids constituted 3.7% of the total milk fat content. Increased dairy food intake by 3.0 (± 1.2) serves/ day for 1 month was associated with small increases in plasma levels of myristic (+0.05, 95% confidence level-0.08 to 0.13, p = 0.07), pentadecanoic (+0.014, 95% confidence level -0.016 to 0.048, p = 0.02) and margaric acid (+0.02, -0.03 to 0.05, p = 0.03). There was no significant change in plasma levels of 4 saturated, 4 trans and 10 unsaturated fatty acids. Decreasing dairy food intake by 2.5 (± 1.2) serves per day was not associated with change in levels of any plasma fatty acid levels. Conclusion Dietary advice to change dairy food has a minor effect on plasma fatty acid levels. Trial registration ACTRN12612000574842. PMID:24708591

  7. Abscisic Acid Levels during Early Seed Development in Sechium edule Sw

    PubMed Central

    Vernieri, Paolo; Perata, Pierdomenico; Lorenzi, Roberto; Ceccarelli, Nello

    1989-01-01

    The time-course growth of single tissues in pollinated and unpollinated ovules of Sechium edule Sw. is described in relation to the endogenous levels of abscisic acid. Quantitation of abscisic acid (ABA) in the minute amounts of material obtained after ovule dissection has been performed by using a highly specific and sensitive solid-phase radioimmunoassay based on a monoclonal antibody raised against free (S)-ABA. While the absolute amount of ABA rises in both types of ovules, only in unpollinated ones does this leads to an increase in the hormone concentration. Infact in pollinated ovules the rapid growth following pollination prevents, through a dilution effect, the increase in ABA concentration. Growth patterns and endogenous ABA levels are similar for integuments and nucellus tissues either in pollinated or unpollinated ovules. It is suggested that the growth inhibition induced by the increase in ABA concentration after anthesis could be counteracted by the pollination triggered fast ovule growth. PMID:16667185

  8. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana.

    PubMed

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere.

  9. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  10. Characterization of influenza virus sialic acid receptors in minor poultry species.

    PubMed

    Kimble, Brian; Nieto, Gloria Ramirez; Perez, Daniel R

    2010-12-09

    It is commonly accepted that avian influenza viruses (AIVs) bind to terminal α2,3 sialic acid (SA) residues whereas human influenza viruses bind to α2,6 SA residues. By a series of amino acid changes on the HA surface protein, AIVs can switch receptor specificity and recognize α2,6 SA positive cells, including human respiratory epithelial cells. Animal species, like pigs and Japanese quail, that contain both α2,3 and α2,6 SA become ideal environments for receptor switching. Here, we describe the SA patterns and distributions in 6 common minor domestic poultry species: Peking duck, Toulouse geese, Chinese ring-neck pheasant, white midget turkey, bobwhite quail, and pearl guinea fowl. Lectins specific to α2,3 and α2,6 SA (Maakia amurensis agglutinin and Sambuca nigra agglutinin, respectively) were used to detect SA by an alkaline phosphotase-based method and a fluorescent-based method. Differences in SA moieties and their ability to bind influenza viruses were visualized by fluorescent labeling of 4 different H3N2 influenza viruses known to be specific for one receptor or the other. The geese and ducks showed α2,3 SA throughout the respiratory tract and marginal α2,6 SA only in the colon. The four other avian species showed both α2,3 and α2,6 SA in the respiratory tract and the intestines. Furthermore, the turkey respiratory tract showed a positive correlation between age and α2,6 SA levels. The fact that these birds have both avian and human flu receptors, combined with their common presence in backyard farms and live bird markets worldwide, mark them as potential mixing bowl species and necessitates improved surveillance and additional research about the role of these birds in influenza host switching.

  11. R4SA for Controlling Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  12. Membrane Level of Omega-3 Docosahexaenoic Acid Is Associated with Severity of Obstructive Sleep Apnea

    PubMed Central

    Ladesich, James B.; Pottala, James V.; Romaker, Ann; Harris, William S.

    2011-01-01

    Background: Patients with obstructive sleep apnea (OSA) are at increased risk of cardiovascular disease (CVD). The omega-3 fatty acid docosahexaenoic acid (DHA) is a major component of neural tissues, and supplementation with fish oils improves autonomic tone and reduces risk for CVD. A link between low DHA status and less mature sleep patterns was observed in newborns. Methods: We investigated the relations between red blood cell (RBC) levels of DHA and OSA severity in 350 sequential patients undergoing sleep studies. Severity categories were defined as none/mild, moderate, and severe, based on apnea hypopnea index (AHI) scores of 0 to 14, 15 to 34, and > 34, respectively. Results: After controlling for age, sex, race, smoking, BMI, alcohol intake, fish intake, and omega-3 supplementation, RBC DHA was inversely related with OSA severity. For each 1-SD increase in DHA levels, a patient was about 50% less likely to be classified with severe OSA. The odds ratios (95% CI) were 0.47 (0.28 to 0.80) and 0.55 (0.31 to 0.99) for being in the severe group versus the none/mild or moderate groups, respectively. Conclusion: These findings suggest that disordered membrane fatty acid patterns may play a causal role in OSA and that the assessment of RBC DHA levels might help in the diagnosis of OSA. The effects of DHA supplementation on OSA should be explored. Citation: Ladesich JB; Pottala JV; Romaker A; Harris WS. Membrane level of omega-3 docosahexaenoic acid is associated with severity of obstructive sleep apnea. J Clin Sleep Med 2011;7(4):391-396. PMID:21897776

  13. Lamotrigine, carbamazepine and phenytoin differentially alter extracellular levels of 5-hydroxytryptamine, dopamine and amino acids.

    PubMed

    Ahmad, Shagufta; Fowler, Leslie J; Whitton, Peter S

    2005-02-01

    We have studied the effects of treatment with the anticonvulsants lamotrigine (LTG), phenytoin (PHN) and carbamazepine (CBZ) on basal and stimulated extracellular aspartate (ASP), glutamate (GLU), taurine (TAU), GABA, 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of freely moving rats using microdialysis. All of the drugs investigated have had inhibition of Na(+) channel activity implicated as their principal mechanism of action. Neither LTG (10-20 mg/kg), PHN (20-40 mg/kg) or CBZ (10-20 mg/kg) had an effect on the basal extracellular concentrations of any of the amino acids studied with the exception of glutamate, which was decreased at the highest LTG dose. However, when amino acid transmitter levels were increased with 50 microM veratridine, LTG was found to cause a dose-dependent decrease in dialysate levels of all four amino acids, with the effect being most pronounced for glutamate. In contrast, PHN decreased extracellular aspartate levels but had no effect on evoked-extracellular GLU, TAU or GABA. Somewhat unexpectedly, CBZ did not alter the stimulated increase in the excitatory amino acids, GLU and ASP, but, rather surprisingly for an antiepileptic drug, markedly decreased that of the inhibitory substances TAU and GABA. The three drugs had differing effects on basal extracellular 5-HT and DA. LTG caused a dose-dependent decrease in both, while CBZ and PHN both increased extracellular 5-HT and DA. When extracellular 5-HT and DA was evoked by veratridine LTG had no significant effect on this, while PHN but not CBZ increased stimulated extracellular 5-HT and both PHN and CBZ augmented DA. Thus, the effects of the three drugs studied seemed to depend on whether extracellular transmitter levels are evoked or basal and the particular transmitter in question. This suggests that there are marked differences in the neurochemical mechanisms of antiepileptic drug action of the three compounds studied.

  14. Effect of brown seaweed lipids on fatty acid composition and lipid hydroperoxide levels of mouse liver.

    PubMed

    Airanthi, M K Widjaja-Adhi; Sasaki, Naoya; Iwasaki, Sayaka; Baba, Nobuko; Abe, Masayuki; Hosokawa, Masashi; Miyashita, Kazuo

    2011-04-27

    Brown seaweed lipids from Undaria pinnatifida (Wakame), Sargassum horneri (Akamoku), and Cystoseira hakodatensis (Uganomoku) contained several bioactive compounds, namely, fucoxanthin, polyphenols, and omega-3 polyunsaturated fatty acids (PUFA). Fucoxanthin and polyphenol contents of Akamoku and Uganomoku lipids were higher than those of Wakame lipids, while Wakame lipids showed higher total omega-3 PUFA content than Akamoku and Uganomoku lipids. The levels of docosahexaenoic acid (DHA) and arachidonic acid (AA) in liver lipids of KK-A(y) mouse significantly increased by Akamoku and Uganomoku lipid feeding as compared with the control, but not by Wakame lipid feeding. Fucoxanthin has been reported to accelerate the bioconversion of omega-3 PUFA and omega-6 PUFA to DHA and AA, respectively. The higher hepatic DHA and AA level of mice fed Akamoku and Uganomoku lipids would be attributed to the higher content of fucoxanthin of Akamoku and Uganomoku lipids. The lipid hydroperoxide levels of the liver of mice fed brown seaweed lipids were significantly lower than those of control mice, even though total PUFA content was higher in the liver of mice fed brown seaweed lipids. This would be, at least in part, due to the antioxidant activity of fucoxanthin metabolites in the liver.

  15. Normal level of sepsis-associated phenylcarboxylic acids in human serum.

    PubMed

    Beloborodova, N V; Moroz, V V; Osipov, A A; Bedova, A Yu; Olenin, A Yu; Getsina, M L; Karpova, O V; Olenina, E G

    2015-03-01

    Previous studies showed that large amounts of phenylcarboxylic acids (PhCAs) are accumulated in a septic patient's blood due to increased endogenous and microbial phenylalanine and tyrosine biotransformation. Frequently, biochemical aromatic amino acid transformation into PhCAs is considered functionally insignificant for people without monogenetic hereditary diseases. The blood of healthy people contains the same PhCAs that are typical for septic patients as shown in this paper. The overall serum PhCAs level was 6 µM on average as measured by gas chromatography with flame ionization detection. This level is a stable biochemical parameter indicating the normal metabolism of aromatic amino acids. The concentrations of PhCAs in the metabolic profile of healthy people are distributed as follows: phenylacetic ≈ p-hydroxyphenyllactic > p-hydroxyphenylacetic > phenyllactic ≈ phenylpropionic > benzoic. We conclude that maintaining of stable PhCAs level in the serum is provided as the result of integration of human endogenous metabolic pathways and microbiota.

  16. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  17. Impact of HIV Infection and Zidovudine Therapy on RBC Parameters and Urine Methylmalonic Acid Levels.

    PubMed

    Adediran, Adewumi; Osunkalu, Vincent; Wakama, Tamunomieibi; John-Olabode, Sarah; Akinbami, Akinsegun; Uche, Ebele; Akanmu, Sulaimon

    2016-01-01

    Background. Anaemia is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to investigate the impact of HIV infection and zidovudine on red blood cells (RBC) parameters and urine methylmalonic acid (UMMA) levels in patients with HIV infection. Material and Methods. A cross-sectional study involving 114 subjects, 94 of which are HIV-infected nonanaemic and 20 HIV negative subjects (Cg) as control. Full blood count parameters and urine methylmalonic acid (UMMA) level of each subject were determined. Associations were determined by Chi-square test and logistic regression statistics where appropriate. Results. Subjects on zidovudine-based ART had mean MCV (93 fL) higher than that of control group (82.9 fL) and ART-naïve (85.9 fL) subjects and the highest mean RDW. Mean UMMA level, which reflects vitamin B12 level status, was high in all HIV-infected groups but was significantly higher in ART-naïve subjects than in ART-experienced subjects. Conclusion. Although non-zidovudine therapy may be associated with macrocytosis (MCV > 95 fL), zidovudine therapy and ART naivety may not. Suboptimal level of vitamin B12 as measured by high UMMA though highest in ART-naïve subjects was common in all HIV-infected subjects.

  18. Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels.

    PubMed

    Kayaaltı, Zeliha; Sert, Selda; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2016-01-01

    Lead inhibits the delta-aminolevulinic acid dehydratase (ALAD) activity and results in neurotoxic aminolevulinic acid accumulation in the blood. During pregnancy, lead in the maternal blood can easily cross the placenta. The aim of this study was to determine whether the maternal ALAD G177C polymorphism (rs1800435) was related to the placental lead levels. The study population comprised 97 blood samples taken from mothers to investigate ALAD G177C polymorphism and their placentas to measure lead levels. ALAD G177C polymorphism was detected by standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique and atomic absorption spectrometry (AAS) equipped with a graphite furnace and Zeeman background correction system was used for lead determination. The median placental lead levels for ALAD1-1, ALAD1-2 and ALAD2-2 genotypes were 7.54 μg/kg, 11.78 μg/kg and 18.53 μg/kg, respectively. Statistically significant association was found between the maternal ALAD G177C polymorphism and placental lead levels (p<0.05). This study suggested that maternal ALAD G177C polymorphism was associated with placental lead levels.

  19. Salicylic acid retention impairs aspirin reactivity in type 2 diabetes.

    PubMed

    Zhang, Haowen; Xie, Hao; Zheng, Xiao; Chai, Yingying; Tang, Zhiyuan; Chen, Hanyu; Li, Feiyan; Christoph, Heier; Chen, Jiandong; Sun, Weixin; Ye, Hui; Wang, Shiguang; Hao, Haiping; Chen, Xiaohu

    2017-01-05

    High on-aspirin platelet reactivity (HAPR) has been associated with compromised aspirin efficacy in patients with diabetes suffering from acute cardiovascular events, but the key mechanisms remain elusive. The objective of this study was to uncover the potential link between pathogenic accumulation of salicylic acid (SA), the major metabolite of aspirin, and HAPR in diabetic state. Aspirin failed to inhibit platelet CD62P expression and thromboxane (TX) B2/6-keto-prostaglandin(PG)F1α ratio in a type 2 diabetes mellitus (T2DM) mice model, particularly in the female, which were unanimously accompanied by significantly higher plasma SA concentrations. Pre-administration with SA increased both platelet CD62P expression and TXB2/6-keto-PGF1α ratio in female T2DM mice, while pretreatment with NaHCO3 caused the opposite effect. On the in vitro human umbilical vein endothelial cells (HUVECs)-platelet interaction assay, SA suppressed inflammation-induced cyclooxygenase-2 upregulation on HUVECs and attenuated their inhibitory effect on platelet aggregation in a dose-dependent manner. The prolonged retention of SA in diabetes may be partially explained by the downregulation of various SA efflux transporters in the kidney and the decreased urine pH. Importantly, in female aspirin non-responsive patients, the trough plasma concentration of SA are markedly increased with T2DM treated with long-term aspirin, and TXB2/6-keto-PGF1α ratio and uric acid level in plasma are positively correlated with SA concentration. Our findings support that the accumulation of SA represents an important factor in causing HAPR in diabetes, and that targeting impaired SA excretion may become a novel intervention strategy to diabetes-associated HAPR.

  20. SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes.

    PubMed

    Hassannejad, Sahar; Bernard, Françoise; Mirzajani, Fateme; Gholami, Morteza

    2012-02-01

    In shoot cultures of Thymus daenensis, hyperhydricity syndrome promoted by benzyladenine (BA) is characterised by the development of chlorophyll-deficient shoots with a high water content and reduced growth that is less differentiated. By removing the BA from the culture medium, the hyperhydricity was reversed, and the reversion toward a normal growth in vitro was more efficient in shoots treated with 5 μM of salicylic acid (SA), showing a significant increase in chlorophyll b after 4 weeks of culture. In the present study, the effect of salicylic acid on the reversion of shoot hyperhydricity was investigated at the level of the free, soluble and insoluble conjugated polyamine content. In T. daenensis micropropagated shoots, the level of polyamines was high, with a predominance of putrescine. BA, which triggered hyperhydricity, caused a reduction of the polyamine (PA) content by one-half due to a decrease in the putrescine content and insoluble conjugated PAs that were not detected in the hyperhydric shoots. In the reverted shoots, changes of the free polyamines, spermidine and, more notably, spermine, were shown. The spermine content doubled after 4 weeks of culture, and its amount was the same as that found in normal shoots, suggesting that free spermine could be particularly involved in the reversion of hyperhydricity. In the SA-reverted tissues, the PA pattern was marked with a transient increase of free putrescine, spermidine and spermine and an enhancement of soluble conjugated spermine. This transitory SA-dependent amplification of PAs was concomitant with a remarkable transient increase of H(2)O(2), suggesting that SA may be implicated in PA signalling pathways for tissue differentiation during the reversion of hyperhydricity in T. daenensis.

  1. The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid.

    PubMed

    Afitlhile, Meshack; Duffield-Duncan, Kayla; Fry, Morgan; Workman, Samantha; Hum-Musser, Sue; Hildebrand, David

    2015-11-01

    A null and heterozygous mutant for the Arabidopsis thaliana TOC132 and TOC120 genes accumulates increased levels of 16:0 and decreased 16:3, suggesting altered homeostasis in fatty acid synthesis. The FAD5 gene encodes a plastid desaturase that catalyzes the first step in the synthesis of 16:3 in monogalactosyldiacylglycerol (MGDG). In non-acclimated toc132toc120+/- mutant plants, the FAD5 gene was repressed and this correlated with decreased levels of 16:3. In cold-acclimated mutant however, the FAD5 gene was upregulated and there was a small increase in 16:3 levels relative to the non-acclimated mutant plants. The MGD1 gene was expressed at control levels and the mutant accumulated levels of MGDG that were similar to the wild type. In the mutant however, MGDG had decreased 16:3 levels, suggesting that the activity of FAD5 desaturase was compromised. In the mutant, the FAD2 and FAD3 genes were downregulated but levels of 18:3-PC were increased, suggesting posttranscriptional regulation for the ER-localized fatty acid desaturases. The Toc120 or Toc159 receptor is likely to compensate for a defective Toc132 receptor. In the cold-acclimated mutant, the TOC159 gene was repressed ca. 300-fold, whereas the TOC120 gene was repressed 7-fold relative to the non-acclimated wild type. Thus, the TOC159 gene is more sensitive to cold-stress and might not compensate for defect in the TOC132 gene under these conditions. Overall, these data show that a mutation in the TOC132 gene results in decreased 16:3 levels, indicating the need for an intact Toc132/Toc120 receptor, presumably to facilitate the import of the FAD5 preprotein into chloroplasts.

  2. Influence of age, dietary cholic acid, and calcium levels on performance, utilization of free fatty acids, and bone mineralization in broilers.

    PubMed

    Atteh, J O; Leeson, S

    1985-10-01

    The effects of age on the utilization of dietary palmitic or a 50/50 mixture of palmitic and oleic acid at the 8% inclusion level in the absence or presence of .2% cholic acid and also in the presence of low (.8%) or high (1.2%) calcium were investigated using broiler chicks from 1 to 56 days of age. Significant interactions (P less than .01) were observed between the type of fatty acid supplemented and the presence or absence of cholic acid on weight gain and feed efficiency. Supplementing diets with a mixture of equal weights of palmitic and oleic acid, reduced feed intake relative to control diets and diets supplemented with palmitic acid alone. There was an interaction between the age of the bird and the type of fatty acid supplemented on fat retention and metabolizable energy (ME) of diets (P less than .01). There was also a significant interaction between the type of fatty acid supplemented and the addition of cholic acid on fat retention and ME of diets. While cholic acid reduced soap formation during the process of digestion (P less than .05), increasing dietary calcium level increased the proportion of the digesta fat that was present as soap (P less than .01). The proportion of digesta and excreta fat, present as soap, depended on the type of fatty acid supplemented. The addition of free fatty acids to broiler diets resulted in a decrease in bone ash and bone calcium content relative to those birds fed the control diet. It is concluded that the ability of broilers to utilize dietary free fatty acids depends on the age at which they are fed, although in all cases supplemental cholic acid enhances fatty acid utilization.

  3. Elevation of cellular NAD levels by nicotinic acid and involvement of nicotinic acid phosphoribosyltransferase in human cells.

    PubMed

    Hara, Nobumasa; Yamada, Kazuo; Shibata, Tomoko; Osago, Harumi; Hashimoto, Tatsuya; Tsuchiya, Mikako

    2007-08-24

    NAD plays critical roles in various biological processes through the function of SIRT1. Although classical studies in mammals showed that nicotinic acid (NA) is a better precursor than nicotinamide (Nam) in elevating tissue NAD levels, molecular details of NAD synthesis from NA remain largely unknown. We here identified NA phosphoribosyltransferase (NAPRT) in humans and provided direct evidence of tight link between NAPRT and the increase in cellular NAD levels. The enzyme was abundantly expressed in the small intestine, liver, and kidney in mice and mediated [(14)C]NAD synthesis from [(14)C]NA in human cells. In cells expressing endogenous NAPRT, the addition of NA but not Nam almost doubled cellular NAD contents and decreased cytotoxicity by H(2)O(2). Both effects were reversed by knockdown of NAPRT expression. These results indicate that NAPRT is essential for NA to increase cellular NAD levels and, thus, to prevent oxidative stress of the cells. Kinetic analyses revealed that NAPRT, but not Nam phosphoribosyltransferase (NamPRT, also known as pre-B-cell colony-enhancing factor or visfatin), is insensitive to the physiological concentration of NAD. Together, we conclude that NA elevates cellular NAD levels through NAPRT function and, thus, protects the cells against stress, partly due to lack of feedback inhibition of NAPRT but not NamPRT by NAD. The ability of NA to increase cellular NAD contents may account for some of the clinically observed effects of the vitamin and further implies a novel application of the vitamin to treat diseases such as those associated with the depletion of cellular NAD pools.

  4. Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model

    PubMed Central

    Chan, Yiumo Michael; Lee, Paul; Jungles, Steve; Morris, Gabrielle; Cadaoas, Jaclyn; Skrinar, Alison; Vellard, Michel; Kakkis, Emil

    2017-01-01

    GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM

  5. Effects of folic acid supplementation on serum homocysteine and lipoprotein (a) levels during pregnancy

    PubMed Central

    Hekmati Azar Mehrabani, Zohreh; Ghorbanihaghjo, Amir; Sayyah Melli, Manizheh; Hamzeh-Mivehroud, Maryam; Fathi Maroufi, Nazila; Bargahi, Nasrin; Bannazadeh Amirkhiz, Maryam; Rashtchizadeh, Nadereh

    2015-01-01

    Introduction:There are many ideas concerning the etiology and pathogenesis of preeclampsia including endothelial dysfunction, inflammation and angiogenesis. Elevated levels of total homocysteine (Hcy) and lipoprotein (a) [Lp(a)] are risk factors for endothelial dysfunction. This study aimed to evaluate the effect of high dose folic acid (FA) on serum Hcy and Lp(a) concentrations with respect to methylenetetrahydrofolate reductase (MTHFR) polymorphisms 677C→T during pregnancy. Methods: In a prospective uncontrolled intervention, 90 pregnant women received 5 mg FA supplementation before pregnancy till 36th week of pregnancy. The MTHFR polymorphisms 677C→T, serum lactate dehydrogenase activity, urine protein and creatinine concentrations were measured before starting folic acid administration. Serum levels of Hcy and Lp(a) were determined before and after completion of folic acid supplementation period. Results: Supplementation of the patients with FA for 36 week decreased the median (minimum– maximum) levels of serum Hcy from 11.40 μmol/L (4.40-28.70) to 9.70 (1.60-20.80) μmol/L (p=0.001). There was no significant change in serum Lp(a) after FA supplementation (p=0.17). The overall prevalence of genotypes in pregnant women that were under study for MTHFR C677T polymorphism was 53.3% CC, 26.7% CT and 20.0% TT. There was no correlation between decreasing level of serum Hcy in the patients receiving FA and MTHFR polymorphisms. Conclusion:Although FA supplementation decreased serum levels of Hcy in different MTHFR genotypes, serum Lp(a) was not changed by FA supplements. Our data suggests that FA supplementation effects on serum Hcy is MTHFR genotype independent in pregnant women. PMID:26929921

  6. Uric acid plasma level and urine pH in rats treated with ambroxol.

    PubMed

    Drewa, Tomasz; Wolski, Zbigniew; Gruszka, Marzena; Misterek, Bartosz; Lysik, Joanna

    2007-01-01

    It was a chance discovery that ambroxol parenteral administration led to urinary bladder stone formation in rats. This study was undertaken to examine the serum uric acid levels and urine pH in rats after ambroxol parenteral treatment. Ambroxol influence on the uric acid level was measured in 5 rats (Rattus sp.) treated with 60 mg/kg (dissolved in injection water, sc, daily) during 2 weeks. Ambroxol influence on urine pH was examined on 45 rats divided into 3 groups. Rats from the 1st and 2nd group received 30 and 60 mg/kg/24h ambroxol, respectively. Urine was collected once daily and measured with strip kit. All values were presented as the means with standard deviations. The Student t test was used to compare the means, p < 0.05 was considered as significant. Dynamics of pH changes was measured in 4 rats treated with 60 mg/kg/24h of ambroxol. Controls received 1 mL of injection water sc. Serum uric acid level increased up to 8.7 +/- 1.0 mg/dL vs. 5.7 +/- 1.0 mg/dL in control (p < 0.002). In the 1st and 2nd group urine pH increased up to 7.5 +/- 0.5 and 7.6 +/- 0.5 vs. 6.7 +/- 0.4 (p < 0.05). Ambroxol withdrawal resulted in sequential urine pH decrease. 11 days after interruption of ambroxol therapy pH reached the starting value. Urine pH changes and possible disturbances in uric acid metabolic pathway may influence on the stone formation in rats after ambroxol parenteral treatment. The influence of ambroxol on urinary tract GAG layer and the balance between xanthine and CaOx in the urine should be checked.

  7. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms.

  8. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    PubMed Central

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  9. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk.

    PubMed

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-Zheng; Hicks, Derrick; Souza, Amancio de; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-03-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context.

  10. A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.).

    PubMed

    Singh, Amit Pal; Dixit, Garima; Kumar, Amit; Mishra, Seema; Kumar, Navin; Dixit, Sameer; Singh, Pradyumna Kumar; Dwivedi, Sanjay; Trivedi, Prabodh Kumar; Pandey, Vivek; Dhankher, Om Prakash; Norton, Gareth J; Chakrabarty, Debasis; Tripathi, Rudra Deo

    2017-02-24

    Nitric oxide (NO) and salicylic acid (SA) are important signaling molecules in plant system. In the present study both NO and SA showed a protective role against arsenite (As(III)) stress in rice plants when supplied exogenously. The application of NO and SA alleviated the negative impact of As(III) on plant growth. Nitric oxide supplementation to As(III) treated plants greatly decreased arsenic (As) accumulation in the roots as well as shoots/roots translocation factor. Arsenite exposure in plants decreased the endogenous levels of NO and SA. Exogenous supplementation of SA not only enhanced endogenous level of SA but also the level of NO through enhanced nitrate reductase (NR) activity, whether As(III) was present or not. Exogenously supplied NO decreased the NR activity and level of endogenous NO. Arsenic accumulation was positively correlated with the expression level of OsLsi1, a transporter responsible for As(III) uptake. The endogenous level of NO and SA were positively correlated to each other either when As(III) was present or not. This close relationship indicates that NO and SA work in harmony to modulate the signaling response in As(III) stressed plants.

  11. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  12. Effects of Uric Acid on Lipid Levels in CKD Patients in a Randomized Controlled Trial

    PubMed Central

    Bowden, Rodney G.; Shelmadine, Brian D.; Moreillon, Jennifer J.; Deike, Erika; Griggs, Jackson O.; Wilson, Ronald L.

    2013-01-01

    Background Few studies have been conducted that compared lipid levels and uric acid in CKD or End-Stage Renal Disease (ESRD) patients with most using animal models. The purpose of the study was to explore effects on lipids while controlling uric acid levels in CKD patients. Methods Twenty-four CKD patients (N = 24) volunteered to participate in this study. The study was conducted using a double-blind, randomized, placebo controlled experimental protocol. The experimental group was prescribed 300 mg of allopurinol PO daily by their treating physician and followed prospectively for 8-weeks. The control group consumed a similar pill once a day for 8-weeks. Results ANCOVA revealed significant differences in total cholesterol (P = 0.009) and Apo B (P = 0.006) with lower levels in the allopurinol group. A trend emerged with LDL (P = 0.052) with lower levels in the allopurinol group. No significant differences were discovered in triglycerides (P = 0.403), HDL (P = 0.762) and total Cholesterol/HDL Ratio (P = 0.455). Conclusions After statistically controlling for compliance and inflammation significant differences between groups were observed for total cholesterol and Apo B. In both instances the allopurinol group had lower concentrations than the placebo group. Similarly, a trend was observed in LDL with the allopurinol group having lower concentrations than the placebo group.

  13. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels.

    PubMed

    Park, Woo Hyun

    2017-02-01

    Gallic acid (GA; 3,4,5-triphydroxyl-benzoic acid) is widely dispersed in various plants, fruits and foods and it shows various biological properties including anticancer effects. This study investigated the effects of GA on HeLa cervical cancer cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). GA dose-dependently inhibited the growth of HeLa cells and human umbilical vein endothelial cells (HUVEC) at 24 or 72 h. The susceptibility of HeLa cells to GA was higher than that of HUVEC. GA induced apoptosis in HeLa cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆ψm). GA increased ROS levels including O2•- in HeLa cells at 24 h and it also induced GSH depletion. N-acetyl cysteine (NAC) increased the growth inhibition of GA-treated HeLa cells and enhanced the death of these cells. NAC differently influenced ROS levels in GA-treated HeLa cells and significantly increased GSH depletion in these cells. L-buthionine sulfoximine (BSO) increased MMP (∆ψm) loss, ROS levels and GSH depletion in GA-treated HeLa cells. In conclusion, GA significantly inhibited the growth of HeLa cells. GA-induced HeLa cell death was tightly related to GSH depletion rather than ROS level changes.

  14. Extracellular amino acid levels in the interpositus nucleus during classical eyeblink conditioning in alert cats.

    PubMed

    Jiménez-Díaz, Lydia; Gruart, Agnès; Miñano, Francisco Javier; Delgado-García, José María

    2007-10-01

    The extracellular levels of selected amino acids in the cerebellar posterior interpositus nucleus (PIN) during classical eyeblink conditioning was analyzed in alert cats using a delay paradigm. Animals were prepared for the chronic recording of eyelid movements (with the magnetic search-coil technique) and the electromyographic activity of the orbicularis oculi muscle. With the help of a guide and push-pull cannulae, selected PIN sites were perfused daily during classical eyeblink conditioning. The perfusate was sampled at intervals of 5 min and analyzed with a high-pressure liquid chromatography- electrochemical detection (HPLC-EC) method. The analysis of push-pull perfusate revealed a significant increase in the release of glycine, taurine, and glutamate across the successive conditioning sessions, in parallel with the acquisition of eyelid conditioned responses (CRs). Both CRs and extracellular levels of these three amino acids returned to control values during extinction. Other amino acids (alanine, GABA, glutamine, serine, and threonine) did not undergo modifications in their extracellular concentrations across the training. Results are discussed with regard to the role of PIN in this type of associative learning.

  15. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  16. Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation

    PubMed Central

    Xu, Xiaojun; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Ruskeepää, Anna-Liisa; Aye, Cho Cho; Carson, Brian P.; Mora, Silvia; Orešič, Matej; Teleman, Aurelio A.

    2012-01-01

    The insulin/IGF signaling pathway is a highly conserved regulator of metabolism in flies and mammals, regulating multiple physiological functions including lipid metabolism. Although insulin signaling is known to regulate the activity of a number of enzymes in metabolic pathways, a comprehensive understanding of how the insulin signaling pathway regulates metabolic pathways is still lacking. Accepted knowledge suggests the key regulated step in triglyceride (TAG) catabolism is the release of fatty acids from TAG via the action of lipases. We show here that an additional, important regulated step is the activation of fatty acids for beta-oxidation via Acyl Co-A synthetases (ACS). We identify pudgy as an ACS that is transcriptionally regulated by direct FOXO action in Drosophila. Increasing or reducing pudgy expression in vivo causes a decrease or increase in organismal TAG levels respectively, indicating that pudgy expression levels are important for proper lipid homeostasis. We show that multiple ACSs are also transcriptionally regulated by insulin signaling in mammalian cells. In sum, we identify fatty acid activation onto CoA as an important, regulated step in triglyceride catabolism, and we identify a mechanistic link through which insulin regulates lipid homeostasis. PMID:22275878

  17. The Impact of Selection at the Amino Acid Level on the Usage of Synonymous Codons

    PubMed Central

    Błażej, Paweł; Mackiewicz, Dorota; Wnętrzak, Małgorzata; Mackiewicz, Paweł

    2017-01-01

    There are two main forces that affect usage of synonymous codons: directional mutational pressure and selection. The effectiveness of protein translation is usually considered as the main selectional factor. However, biased codon usage can also be a byproduct of a general selection at the amino acid level interacting with nucleotide replacements. To evaluate the validity and strength of such an effect, we superimposed >3.5 billion unrestricted mutational processes on the selection of nonsynonymous substitutions based on the differences in physicochemical properties of the coded amino acids. Using a modified evolutionary optimization algorithm, we determined the conditions in which the effect on the relative codon usage is maximized. We found that the effect is enhanced by mutational processes generating more adenine and thymine than guanine and cytosine, as well as more purines than pyrimidines. Interestingly, this effect is observed only under an unrestricted model of nucleotide substitution, and disappears when the mutational process is time-reversible. Comparison of the simulation results with data for real protein coding sequences indicates that the impact of selection at the amino acid level on synonymous codon usage cannot be neglected. Furthermore, it can considerably interfere, especially in AT-rich genomes, with other selections on codon usage, e.g., translational efficiency. It may also lead to difficulties in the recognition of other effects influencing codon bias, and an overestimation of protein coding sequences whose codon usage is subjected to adaptational selection. PMID:28122952

  18. Serum uric acid levels in patients with myasthenia gravis are inversely correlated with disability

    PubMed Central

    Yang, Dehao; Weng, Yiyun; Lin, Haihua; Xie, Feiyan; Yin, Fang; Lou, Kangliang; Zhou, Xuan; Han, Yixiang; Li, Xiang

    2016-01-01

    Uric acid (UA), the final product of purine metabolism, has been reported to be reduced in patients with various neurological disorders and is considered to be a possible indicator for monitoring the disability and progression of multiple sclerosis. However, it remains unclear whether there is a close relationship between UA and myasthenia gravis (MG), or whether UA is primarily deficient or secondarily reduced because of its peroxynitrite scavenging activity. We investigated the correlation between serum UA levels and the clinical characteristics of MG. We assessed 338 serum UA levels obtained in 135 patients with MG, 47 patients with multiple sclerosis, and 156 healthy controls. In addition, we compared serum UA levels when MG patients were stratified according to disease activity and classifications performed by the Myasthenia Gravis Foundation of America, age of onset, duration, and thymus histology (by means of MRI or computed tomography). MG patients had significantly lower serum UA levels than the controls (P<0.001). Moreover, UA levels in patients with MG were inversely correlated with disease activity and disease progression (P=0.013). However, UA levels did not correlate significantly with disease duration, age of onset, and thymus histology. Our findings suggest that serum level of UA was reduced in patients with MG and serum UA might be considered a surrogate biomarker of MG disability and progression. PMID:26836463

  19. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    PubMed Central

    2012-01-01

    Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA)-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs), salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK) and WIPK (irWIPK) benefits the growth and fitness of plants competiting with wild type (WT) plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3) levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels resulted from

  20. Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya.

    PubMed

    Were, Faridah H; Kamau, Geoffrey N; Shiundu, Paul M; Wafula, Godfrey A; Moturi, Charles M

    2012-01-01

    The concentration of airborne and blood lead (Pb) was assessed in a Pb acid battery recycling plant and in a Pb acid battery manufacturing plant in Kenya. In the recycling plant, full-shift area samples taken across 5 days in several production sections showed a mean value ± standard deviation (SD) of 427 ± 124 μg/m(3), while area samples in the office area had a mean ± SD of 59.2 ± 22.7 μg/m(3). In the battery manufacturing plant, full-shift area samples taken across 5 days in several production areas showed a mean value ± SD of 349 ± 107 μg/m(3), while area samples in the office area had a mean ± SD of 55.2 ± 33.2 μg/m(3). All these mean values exceed the U.S. Occupational Safety and Health Administration's permissible exposure limit of 50 μg/m(3) as an 8-hr time-weighted average. In the battery recycling plant, production workers had a mean blood Pb level ± SD of 62.2 ± 12.7 μg/dL, and office workers had a mean blood Pb level ± SD of 43.4 ± 6.6 μg/dL. In the battery manufacturing plant, production workers had a mean blood Pb level ± SD of 59.5 ± 10.1 μg/dL, and office workers had a mean blood Pb level ± SD of 41.6 ± 7.4 μg/dL. All the measured blood Pb levels exceeded 30 μg/dL, which is the maximum blood Pb level recommended by the ACGIH(®). Observations made in these facilities revealed numerous sources of Pb exposure due to inadequacies in engineering controls, work practices, respirator use, and personal hygiene.

  1. Correlation between n-3 polyunsaturated fatty acids consumption and BDNF peripheral levels in adolescents

    PubMed Central

    2014-01-01

    Background Although several studies have reported an association between mental disorders and serum levels of brain-derived neurotrophic factor (BDNF), this association is still poorly understood. The study of factors associated with both BDNF levels and mental disorders, such as n-3 polyunsaturated fatty acids (n-3 PUFAs), may help to elucidate the mechanisms mediating the relationship between the two variables. Therefore, the present study aimed to evaluate whether the intake n-3 PUFAs correlates with serum levels of BDNF. Findings This study involved 137 adolescents drawn from a community sample, including a group with high levels of anxiety, assessed using the Screen for Children and Anxiety Related Emotional Disorders. Blood samples were collected and serum BDNF levels were measured. n-3 PUFAs were estimated using a food frequency questionnaire for adolescents. Correlations were performed to assess the association between n-3 PUFAs intake and BDNF levels. Effects of potential confounders (total fat consumption, age, gender and anxiety) were examined using linear regression models. There was a direct correlation between n-3 PUFAs consumption and serum BDNF levels, which remained significant even after accounting for potential confounders. Conclusions We were able to detect a correlation between n-3 PUFAs intake and peripheral BDNF levels. Our study was limited by its small sample size, and our external validity may be restricted by the oversampling of anxious adolescents. Our findings may help determine the nature of the association between mental disorders and serum levels of BDNF. However, more studies are needed to elucidate the possible mechanisms by which n-3 PUFAs intake affects BDNF levels, and how this may lead to an increased vulnerability to psychiatric disorders. PMID:24593295

  2. Resistance Training in Type 2 Diabetic Patients Improves Uric Acid levels

    PubMed Central

    Sousa, Moisés S.S.R.; Saavedra, Francisco J.F.; Neto, Gabriel R.; Novaes, Giovanni S.; Souza, Antonio C. R.; Salerno, Verônica P.; Novaes, Jefferson S.

    2014-01-01

    Resistance training (RT) can provide several benefits for individuals with Type 2 diabetes. The aim of this study was to investigate the effects of resistance training on the strength levels and uric acid (UA) concentration in individuals with Type 2 diabetes. The study included 68 patients (57.7±9.0 years) that participated in an organized program of RT for 12 weeks. The volunteers were divided into two groups: an experimental group (EG; n=34) that performed the resistance training program consisting of seven exercises executed in an alternating order based on segments; and a control group (CG; n=34) that maintained their normal daily life activities. Muscle strength and uric acid were measured both pre- and post-experiment. The results showed a significant increase in strength of the subjects in the EG for all exercises included in the study (p<0.001). Comparing the strength levels of the post-test, intergroup differences were found in supine sitting (p<0.001), leg extension (p<0.001), shoulder press (p<0.001), leg curl (p=0.001), seated row (p<0.001), leg press (p=0.001) and high pulley (p<0.001). The measured uric acid was significantly increased in both experimental and control groups (p<0.001 and p=0.001, respectively). The intergroup comparison showed a significant increase for the EG (p=0.024). We conclude that the training program was effective for strength gains despite an increase in uric acid in Type 2 diabetics. PMID:25713640

  3. Adenosine plasma level correlates with homocysteine and uric acid concentrations in patients with coronary artery disease.

    PubMed

    Fromonot, J; Deharo, P; Bruzzese, L; Cuisset, T; Quilici, J; Bonatti, S; Fenouillet, E; Mottola, G; Ruf, J; Guieu, R

    2016-03-01

    The role of hyperhomocysteinemia in coronary artery disease (CAD) patients remains unclear. The present study evaluated the relationship between homocysteine (HCys), adenosine plasma concentration (APC), plasma uric acid, and CAD severity evaluated using the SYNTAX score. We also evaluated in vitro the influence of adenosine on HCys production by hepatoma cultured cells (HuH7). Seventy-eight patients (mean age ± SD: 66.3 ± 11.3; mean SYNTAX score: 19.9 ± 12.3) and 30 healthy subjects (mean age: 61 ± 13) were included. We incubated HuH7 cells with increasing concentrations of adenosine and addressed the effect on HCys level in cell culture supernatant. Patients vs. controls had higher APC (0.82 ± 0.5 μmol/L vs 0.53 ± 0.14 μmol/L; p < 0.01), HCys (15 ± 7.6 μmol/L vs 6.8 ± 3 μmol/L, p < 0.0001), and uric acid (242.6 ± 97 vs 202 ± 59, p < 0.05) levels. APC was correlated with HCys and uric acid concentrations in patients (Pearson's R = 0.65 and 0.52; p < 0.0001, respectively). The SYNTAX score was correlated with HCys concentration. Adenosine induced a time- and dose-dependent increase in HCys in cell culture. Our data suggest that high APC is associated with HCys and uric acid concentrations in CAD patients. Whether the increased APC participates in atherosclerosis or, conversely, is part of a protective regulation process needs further investigations.

  4. ProtSA: a web application for calculating sequence specific protein solvent accessibilities in the unfolded ensemble

    PubMed Central

    Estrada, Jorge; Bernadó, Pau; Blackledge, Martin; Sancho, Javier

    2009-01-01

    Background The stability of proteins is governed by the heat capacity, enthalpy and entropy changes of folding, which are strongly correlated to the change in solvent accessible surface area experienced by the polypeptide. While the surface exposed in the folded state can be easily determined, accessibilities for the unfolded state at the atomic level cannot be obtained experimentally and are typically estimated using simplistic models of the unfolded ensemble. A web application providing realistic accessibilities of the unfolded ensemble of a given protein at the atomic level will prove useful. Results ProtSA, a web application that calculates sequence-specific solvent accessibilities of the unfolded state ensembles of proteins has been developed and made freely available to the scientific community. The input is the amino acid sequence of the protein of interest. ProtSA follows a previously published calculation protocol which uses the Flexible-Meccano algorithm to generate unfolded conformations representative of the unfolded ensemble of the protein, and uses the exact analytical software ALPHASURF to calculate atom solvent accessibilities, which are averaged on the ensemble. Conclusion ProtSA is a novel tool for the researcher investigating protein folding energetics. The sequence specific atom accessibilities provided by ProtSA will allow obtaining better estimates of the contribution of the hydrophobic effect to the free energy of folding, will help to refine existing parameterizations of protein folding energetics, and will be useful to understand the influence of point mutations on protein stability. PMID:19356231

  5. Diurnal Changes in Metabolite Levels and Crassulacean Acid Metabolism in Kalanchoë daigremontiana Leaves 1

    PubMed Central

    Kenyon, William H.; Holaday, A. Scott; Black, Clanton C.

    1981-01-01

    Diurnal changes in levels of selected metabolites associated with glycolysis, the C3 cycle, C4-organic acids, and storage carbohydrates were analyzed in active Kalanchoë daigremontiana Crassulacean acid metabolism leaves. Three metabolic transition periods occurred each day. During the first two hours of light, nearly all of the metabolite pools underwent transient changes. Beginning at daylight, stomata opened transiently and closed again within 30 minutes; malate synthesis continued for about 1 hour into the light; C3 photosynthesis began within 30 minutes; and net quantities of starch and glucan began to accumulate after 2 hours, continuing linearly throughout the rest of the day. The second transition occurred in midafternoon: stomata reopened; malate decarboxylation nearly terminated; and the assimilation of ambient CO2 occurred primarily via the C3 cycle. The third transition occurred at dark: stomata transiently closed before opening again; the C3 cycle stopped; malate synthesis started in about 1 hour; starch and glucan degradation began within 1 hour; and the bulk of carbon flow was through glycolysis leading to the synthesis and accumulation of malate throughout the night. At night, the levels of metabolites involved in acidification and glycolysis (except for phosphoenolpyruvate) generally accumulated. Phosphoenolpyruvate levels peaked near midday and were minimal at night. The ribulose 1,5-bisphosphate pool was depleted at night, while sedoheptulose 1,7-bisphosphate, fructose 1,6-bisphosphate, glucose 6-phosphate, and fructose 6-phosphate accumulated. Images PMID:16662040

  6. Axillary versus peripheral blood levels of sialic acid, ferritin, and CEA in patients with breast cancer.

    PubMed

    Monti, M; Catania, S; Locatelli, E; Gandini, R; Reggiani, A; Cunietti, E

    1990-12-01

    Serum levels of total sialic acid, carcinoembryonic antigen (CEA), ferritin, lactate dehydrogenase, and creatine phosphokinase were measured both in tumor drainage blood (axillary vein) and in peripheral blood obtained from 121 breast cancer patients during surgery. No significant differences between mean values in peripheral and tumor draining blood, between cancer patients and healthy controls, or between patients with or without axillary lymph node metastases were found for any of the markers. Both ferritin and CEA levels were higher in axillary and peripheral blood from patients with central breast cancer versus other sites but the difference was significant only for CEA (p less than 0.05). CEA levels were significantly higher (p less than 0.01) in patients with greater than 2 cm diameter carcinomas versus T1 stage patients in axillary but not in peripheral blood. When the cephalic vein was clamped before the axillary sample was taken, ferritin showed a significant increase (p less than 0.05). We conclude that measurement of sialic acid, CEA, and ferritin in axillary venous blood in breast cancer patients is not of clinical benefit, although further data are needed to clarify whether other advantages can be derived.

  7. Effects of domoic acid on serum levels of TSH and thyroid hormones.

    PubMed

    Arufe, M C; Arias, B; Durán, R; Alfonso, M

    1995-08-01

    The actions of Domoic Acid (Dom), a marine toxin, on the levels of serum TSH and thyroid hormones (T4 and T3) has been studied to determine if these actions could be mediated by the serotoninergic system. In all the experiments, adult male Wistar rats were used. The Dom dissolved in saline was administered via i.p. in doses of 0.5 and 1 mg/kg. The T4 and T3 concentrations were determined by enzimoinmunoassay and TSH concentration was determined by radioinmunoassay. The results show that Dom 1 mg/kg increases the serum T4 levels one hour after treatment and decreases these levels 2 and 3 hr after treatment. Dom 0.5 mg/kg decreased the serum T4 levels 2 and 3 hr after treatment. The concentrations of T3 in serum were unchanged by both doses of Dom. The concentration of TSH was increased by Dom. In order to study the possible mediation of the serotoninergic system in the effect of Dom on the hormone levels, PCPA, a tryptophan hydroxylase inhibitor, was administered i.p. 90 min before blood sampling. In this case, with both doses of Dom a decrease in the levels of both hormones occurred with respect to the PCPA group. These results indicate that the serotoninergic system could affect the actions of Dom on TSH and thyroid hormone secretion.

  8. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  9. Hypouricemia in severely disabled children II: influence of elemental enteral nutrition on the serum uric acid levels.

    PubMed

    Yoshikawa, Hideto; Yamazaki, Sawako; Abe, Tokinari

    2004-01-01

    The previous study showed that both valproic acid (VPA) and a bedridden state decreased the serum uric acid level, and VPA-induced renal tubular dysfunction was suspected to be one cause of hypouricemia in severely disabled children. However, it was uncertain what factor of bedridden state influences the uric acid level in severely disabled children. Among many factors of a bedridden state that might influence the uric acid level, we examined the influence of elemental nutrition on the serum uric acid level in severely disabled children because many severely disabled children with marked hypouricemia receive elemental nutrition. Thirty-one severely disabled children were included in this study, who were divided into two groups-group A: 11 patients with elemental nutrition; group B: 20 patients with non-elemental nutrition. The laboratory data in both groups were analyzed statistically, using the t-test. The uric acid level was significantly decreased in group A compared with group B (p < 0.01) without elevation of urinary excretion of uric acid. Other laboratory data, except phosphate and potassium, did not differ between the two groups significantly. An elemental diet may be one factor that decreases the uric acid level in severely disabled children.

  10. Differences in the fatty-acid composition of rodent spermatozoa are associated to levels of sperm competition.

    PubMed

    delBarco-Trillo, Javier; Mateo, Rafael; Roldan, Eduardo R S

    2015-03-20

    Sperm competition is a prevalent phenomenon that drives the evolution of sperm function. High levels of sperm competition lead to increased metabolism to fuel higher sperm velocities. This enhanced metabolism can result in oxidative damage (including lipid peroxidation) and damage to the membrane. We hypothesized that in those species experiencing high levels of sperm competition there are changes in the fatty-acid composition of the sperm membrane that makes the membrane more resistant to oxidative damage. Given that polyunsaturated fatty acids (PUFAs) are the most prone to lipid peroxidation, we predicted that higher sperm competition leads to a reduction in the proportion of sperm PUFAs. In contrast, we predicted that levels of sperm competition should not affect the proportion of PUFAs in somatic cells. To test these predictions, we quantified the fatty-acid composition of sperm, testis and liver cells in four mouse species (genus Mus) that differ in their levels of sperm competition. Fatty-acid composition in testis and liver cells was not associated to sperm competition levels. However, in sperm cells, as predicted, an increase in sperm competition levels was associated with an increase in the proportion of saturated fatty-acids (the most resistant to lipid peroxidation) and by a concomitant decrease in the proportion of PUFAs. Two particular fatty acids were most responsible for this pattern (arachidonic acid and palmitic acid). Our findings thus indicate that sperm competition has a pervasive influence in the composition of sperm cells that ultimately may have important effects in sperm function.

  11. Absolute identification of muramic acid, at trace levels, in human septic synovial fluids in vivo and absence in aseptic fluids.

    PubMed

    Fox, A; Fox, K; Christensson, B; Harrelson, D; Krahmer, M

    1996-09-01

    This is the first report of a study employing the state-of-the-art technique of gas chromatography-tandem mass spectrometry for absolute identification of muramic acid (a marker for peptidoglycan) at trace levels in a human or animal body fluid or tissue. Daughter mass spectra of synovial fluid muramic acid peaks (> or = 30 ng/ml) were identical to those of pure muramic acid. Absolute chemical identification at this level represents a 1,000-fold increase in sensitivity over previous gas chromatography-mass spectrometry identifications. Muramic acid was positively identified in synovial fluids during infection and was eliminated over time but was absent from aseptic fluids.

  12. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    PubMed

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  13. Tissue Specific Expression Levels of Apoptosis Involved Genes Have Correlations with Codon and Amino Acid Usage

    PubMed Central

    Sadeghi, Iman; Salavaty, Abbas; Nasiri, Habib

    2016-01-01

    Different mechanisms, including transcriptional and post transcriptional processes, regulate tissue specific expression of genes. In this study, we report differences in gene/protein compositional features between apoptosis involved genes selectively expressed in human tissues. We found some correlations between codon/amino acid usage and tissue specific expression level of genes. The findings can be significant for understanding the translational selection on these features. The selection may play an important role in the differentiation of human tissues and can be considered for future studies in diagnosis of some diseases such as cancer. PMID:28154517

  14. Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents

    SciTech Connect

    Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

    2002-02-25

    Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and

  15. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis

    PubMed Central

    Wen, Min; Zhou, Bo; Chen, Yun-Hua; Ma, Zhao-Lei; Gou, Yun; Zhang, Chun-Lin; Yu, Wen-Feng; Jiao, Ling

    2017-01-01

    Background Lower serum uric acid (UA) levels have been reported as a risk factor in Parkinson’s disease (PD). However, the results have been inconsistent so far. Objectives The aim of the present study was to clarify the potential relationship of uric acid with PD. Methods Comprehensive electronic search in pubmed, web of science, and the Cochrane Library database to find original articles about the association between PD and serum uric acid levels published before Dec 2015. Literature quality assessment was performed with the Newcastle-Ottawa Scale. Random-effects model was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (CIs). Heterogeneity across studies was assessed using I2 and H2 statistics. Sensitivity analyses to assess the influence of individual studies on the pooled estimate. Publication bias was investigated using funnel plots and Egger’s regression test. Analyses were performed by using Review Manager 5.3 and Stata 11.0. Results Thirteen studies with a total of 4646 participants (2379 PD patients and 2267 controls) were included in this meta-analysis. The current results showed that the serum UA levels in PD patients were significantly lower compared to sex and age-matched healthy controls (SMD: -0.49, 95% CI: [-0.67, -0.30], Z = 5.20, P < 0.001) and these results showed no geographic regional (Asia: SMD = −0.65, 95% CI [−0.84, −0.46], Z = 6.75, p <0.001; Non-Asia: SMD = −0.25, 95% CI [−0.43, −0.07], Z = 2.70, p = 0.007) and sex differences (women: SMD = −0.53, 95% CI [−0.70, −0.35], z = 5.98, p <0.001; men: SMD = −0.66, 95% CI [−0.87, −0.44], z = 6.03, p <0.001). Serum UA levels in middle-late stage PD patients with higher H&Y scales were significantly lower than early stage PD patients with lower H&Y scales (SMD = 0.63, 95% CI [0.36,0.89], z = 4.64, p <0.001). Conclusions Our study showed that the serum UA levels are significantly lower in PD and the level is further decreased as the

  16. Lower levels of uric acid and striatal dopamine in non-tremor dominant Parkinson's disease subtype

    PubMed Central

    Huertas, Ismael; Jesús, Silvia; Lojo, José Antonio; García-Gómez, Francisco Javier; Cáceres-Redondo, María Teresa; Oropesa-Ruiz, Juan Manuel; Carrillo, Fátima; Vargas-Gonzalez, Laura; Martín Rodríguez, Juan Francisco; Gómez-Garre, Pilar; García-Solís, David; Mir, Pablo

    2017-01-01

    Parkinson’s disease (PD) patients who present with tremor and maintain a predominance of tremor have a better prognosis. Similarly, PD patients with high levels of uric acid (UA), a natural neuroprotectant, have also a better disease course. Our aim was to investigate whether PD motor subtypes differ in their levels of UA, and if these differences correlate with the degree of dopamine transporter (DAT) availability. We included 75 PD patients from whom we collected information about their motor symptoms, DAT imaging and UA concentration levels. Based on the predominance of their motor symptoms, patients were classified into postural instability and gait disorder (PIGD, n = 36), intermediate (I, n = 22), and tremor-dominant (TD, n = 17) subtypes. The levels of UA and striatal DAT were compared across subtypes and the correlation between these two measures was also explored. We found that PIGD patients had lower levels of UA (3.7 vs 4.5 vs 5.3 mg/dL; P<0.001) and striatal DAT than patients with an intermediate or TD phenotype. Furthermore, UA levels significantly correlated with the levels of striatal DAT. We also observed that some PIGD (25%) and I (45%) patients had a predominance of tremor at disease onset. We speculate that UA might be involved in the maintenance of the less damaging TD phenotype and thus also in the conversion from TD to PIGD. Low levels of this natural antioxidant could lead to a major neuronal damage and therefore influence the conversion to a more severe motor phenotype. PMID:28358829

  17. Effects of dietary saturated or unsaturated fatty acids and calcium levels on performance and mineral metabolism of broiler chicks.

    PubMed

    Atteh, J O; Leeson, S

    1984-11-01

    The effects of inclusion of 8% oleic, palmitic, or a 50/50 mixture of oleic and palmitic acids as the major source of fat in the presence of .8, 1.2, or 1.6% calcium in broiler diets was investigated using broiler chicks from day-old to 3 weeks of age. Supplementation of broiler diets with oleic acid reduced feed intake (P less than .05) and improved feed efficiency (P less than .01) compared to other treatments. Chicks fed diets supplemented with oleic acid or a mixture of oleic and palmitic acid gained more weight (P less than .01) over a 3-week period. Significant interactions were observed between type of dietary fatty acid and calcium level on metabolizable energy of diets (P less than .01), magnesium retention (P less than .05), calcium and fat retention (P less than .01), and proportion of excreta fatty acid that was present as soap (P less than .01). Although all fatty acids tested formed soap in the small intestine, soaps of oleic acid were efficiently utilized as opposed to soaps of palmitic acid. There was a significant (P less than .05) reduction in bone ash and bone calcium content of chicks fed diets supplemented with palmitic acid. There was a significant interaction (P less than .05) between type of fatty acid and calcium level on bone magnesium content. Increasing the calcium content of diets aggravated the decrease in calcium retention and bone calcium content associated with addition of fat.

  18. Predictors of Urinary 3-Phenoxybenzoic Acid Levels in 50 North Carolina Adults

    PubMed Central

    Morgan, Marsha; Jones, Paul; Sobus, Jon; Boyd Barr, Dana

    2016-01-01

    Limited data are available on the non-chemical stressors that impact adult exposures to pyrethroid insecticides based on urinary biomonitoring. The urinary metabolite, 3-phenoxybenzoic acid (3-PBA), is commonly used to assess human exposure to a number of pyrethroids. In a further analysis of published study data, we quantified urinary 3-PBA levels of 50 adults over a single, 24-h sampling period and examined the associations between the biomarker measurements and selected non-chemical stressors (demographic, lifestyle, and dietary factors). A convenience sample of 50 adults was recruited in North Carolina in 2009–2011. Participants collected individual urine voids (up to 11) and filled out activity, food, and pesticide use diaries over a 24-h sampling period. Urine voids (n = 326) were analyzed for 3-PBA concentrations using high-performance liquid chromatography-tandem mass spectrometry. 3-PBA was detected in 98% of the 24-h composited urine samples. The geometric mean urinary 3-PBA level was 1.68 ng/mL in adults. Time spent outside (p = 0.0006) was a highly significant predictor of natural log-transformed (ln) urinary 3-PBA levels, while consumption of coffee (p = 0.007) and breads (p = 0.019) and ln creatinine levels (p = 0.037) were significant predictors of urinary 3-PBA levels. In conclusion, we identified specific factors that substantially increased adult exposures to pyrethroids in their everyday environments. PMID:27886113

  19. Receptor-level interrelationships of amino acids and the adequate amino acid type hormones in Tetrahymena: a receptor evolution model.

    PubMed

    Csaba, G; Darvas, Z

    1986-01-01

    Histidine stimulates the phagocytosis of Tetrahymena to the same extent as histamine, and also stimulates its division, which histamine does not. Tyrosine and diiodotyrosine equally stimulate the growth of the Tetrahymena. Both amino acids inhibit the characteristic influence of the adequate amino acid hormone when added to Tetrahymena culture 72 h in advance of it. Primary interaction with diiodotyrosine and tyrosine notably increases the cellular growth rate. Histamine has a similar, although less notable effect than histidine. In the light of these experimental observations there is reason to postulate that the receptors of the amino acid hormones have developed from amino acid receptors.

  20. Sulfur-rich geothermal emissions elevate acid aerosol levels in metropolitan Taipei.

    PubMed

    Lin, Chih-Hung; Mao, I-Fang; Tsai, Pei-Hsien; Chuang, Hsin-Yi; Chen, Yi-Ju; Chen, Mei-Lien

    2010-08-01

    Several studies have demonstrated that millions of people globally are potentially exposed to volcanic gases. Hydrogen sulfide is a typical gas in volcanic and geothermal areas. The gas is toxic at high concentrations that predominantly affects the nervous, cardiovascular, and respiratory systems. The WHO air quality guideline for hydrogen sulfide is 150 microg m(-3) (105 ppb). The northwest part of Taipei is surrounded by sulfur-rich geothermal and hot springs. Active fumaroles and bubbling springs around the geothermal area emit acidic gases. In combination with automobile emissions, the pollution of acid aerosols is characteristic of the metropolis. This study considered sulfur-rich geothermal, suburban and downtown locations of this metropolis to evaluate geothermally emitted acid aerosol and H(2)S pollution. Acid aerosols were collected using a honeycomb denuder filter pack sampling system (HDS), and then analyzed by ion chromatography (IC). Results indicated that long-term geothermal emissions, automobile emissions and photochemical reactions have led to significant variations in air pollution among regions of metropolitan Taipei. The highest H(2)S concentration was 1705 ppb in the geothermal area with low traffic density and the mean concentration was 404.06 ppb, which was higher than WHO guideline and might cause eye irritation. The SO(2) concentrations were relatively low (mean concentration was 3.9 ppb) in this area. It may partially result from the chemical reduction reaction in the geothermal emission, which converted the SO(2) gas into SO(4)(2-) and H(2)S. Consequently, very high sulfate concentrations (mean concentration higher than 25.0 microg m(-3)) were also observed in the area. The geothermal areas also emitted relatively high levels of aerosol acidity, Cl(-), F(-), PO(4)(3-), and N-containing aerosols. As a result, concentrations of HNO(3), NO(2)(-), PO(4)(3-), and SO(4)(2-) in metropolitan Taipei are significantly higher than those in other

  1. The Association of Fatty Acid Levels and Gleason Grade among Men Undergoing Radical Prostatectomy

    PubMed Central

    Zhao, Zhiguo; Reinstatler, Lael; Klaassen, Zachary; Xu, Yi; Yang, Xiaoyu; Madi, Rabii; Terris, Martha K.; Qian, Steven Y.; Kelavkar, Uddhav; Moses, Kelvin A.

    2016-01-01

    Background Epidemiological data suggest that omega-6 (ω-6) fatty acids (FAs) may be associated with cancer incidence and/or cancer mortality, whereas ω-3 FAs are potentially protective. We examined the association of the ratio of ω-6 to ω-3 FA (ω-6:ω-3) and individual FA components with pathological results among men with prostate cancer (PCa) undergoing radical prostatectomy. Methods Sixty-nine men were included in the study. Components of ω-6 (linoleic acid (LA), arachidonic acid (AA), and dihomo-γ-linolenic acid (DGLA)) and ω-3 (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) were analyzed by liquid chromatography/mass selective detector separation. Logistic regression analysis was performed to determine association of FA with pathological high grade (Gleason ≥4+3) disease. Results The were 35 men with low grade disease (Gleason ≤3+4) and 34 men with high grade disease. Men with low grade disease were significantly younger (58y vs 61y, p = 0.012) and had lower D’Amico clinical classification (p = 0.001) compared to men with high grade disease. There was no significant association of ω-6:ω-3 with high grade disease (OR 0.93, p = 0.78), however overall ω-6, ω-3, and individual components of ω-6 and ω-3 FAs except EPA were significantly associated with high grade disease (ω-6: OR 3.37, 95% CI: 1.27,8.98; LA: OR 3.33, 95% CI:1.24,8.94; AA: OR 2.93, 95% CI:1.24,6.94; DGLA: OR 3.21, 95% CI:1.28,8.04; ω-3: OR 3.47, 95% CI:1.22,9.83; DHA: OR 3.13, 95% CI:1.26,7.74). ω-6 and ω-3 FA components were highly correlated (Spearman ρ = 0.77). Conclusion Higher levels of individual components of ω-6 and ω-3FAs may be associated with higher-grade PCa. Impact Studies into the causative factors/pathways regarding FAs and prostate carcinogenesis may prove a potential association with PCa aggressiveness. PMID:27880795

  2. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  3. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  4. Reconsideration of the significance of substrate-level phosphorylation in the citric acid cycle*.

    PubMed

    Lambeth, David O

    2006-01-01

    For nearly 50 years, students of metabolism in animals have been taught that a substrate-level phosphorylation in the Krebs citric acid cycle produces GTP that subsequently undergoes a transphosphorylation with ADP catalyzed by nucleoside diphosphate kinase. Research in the past decade has revealed that animals also express an ADP-forming succinate-CoA ligase whose activity exceeds that of the GDP-forming enzyme in some tissues. Here I argue that the primary fate of GTP is unlikely to be transphosphorylation with ADP. Rather, two succinate-CoA ligases with different nucleotide specificities have evolved to better integrate and regulate the central metabolic pathways that involve the citric acid cycle. The products of substrate-level phosphorylation, ATP and/or GTP, may represent a pool of nucleotide that has a different phosphorylation potential than the ATP made by oxidative phosphorylation and may be channeled to meet specific needs within mitochondria and the cell. Further research is needed to determine the applicable mechanisms and how they vary in tissues.

  5. Effect of somatostatin on nonesterified fatty acid levels modifies glucose homeostasis during fasting

    SciTech Connect

    Hendrick, G.K.; Frizzell, R.T.; Cherrington, A.D. )

    1987-10-01

    In the 7-days fasted conscious dog, unlike the postabsorptive conscious dog, somatostatin infusion results in decreased levels of nonesterified fatty acids (NEFA) and increased glucose utilization (R{sub d}) even when insulin and glucagon levels are held constant. The aim of this study was to determine whether NEFA replacement in such animals would prevent the increase in R{sub d}. In each of three protocols there was an 80-min tracer equilibration period, a 40-min basal period, and a 3-h test period. During the test period in the first protocol saline was infused, in the second protocol somatostatin was infused along with intraportal replacement amounts of insulin and glucagon (hormone replacement), while in the third protocol somatostatin plus the pancreatic hormones were infused with concurrent heparin plus Intralipid infusion. Glucose turnover was assessed using (3-{sup 3}H)glucose. The peripheral levels of insulin, glucagon, and glucose were similar and constant in all three protocols; however, during somatostatin infusion, exogenous glucose infusion was necessary to maintain euglycemia. The NEFA level was constant during saline infusion and decreased in the hormone replacement protocol. In the hormone replacement plus NEFA protocol, the NEFA level did not change during the first 90-min period and then increased during the second 90-min period. After a prolonged fast in the dog, (1) somatostatin directly or indirectly inhibits adipose tissue NEFA release and causes a decrease in the plasma NEFA level, and (2) this decrease in the NEFA level causes an increase in R{sub d}.

  6. Factors affecting production of the group A streptococcus bacteriocin SA-FF22.

    PubMed

    Jack, R W; Tagg, J R

    1992-02-01

    Factors influencing the production of streptococcin A-FF22 (SA-FF22) in liquid media were examined. Despite good growth of the producer strain, no SA-FF22 was detected during incubation at 40 degrees C, at pH 7, in Brain Heart Infusion Broth or in Mg(2+)-supplemented media. Optimal SA-FF22 production occurred at 32 degrees C, at pH 6.7, in cultures in Tryptic Soy Broth supplemented with glucose 2.25% and yeast extract 1%. Under these conditions SA-FF22 remained cell-associated but could be extracted with acid.

  7. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities.

  8. Elevated Serum Uric Acid Levels Are Related to Cognitive Deterioration in an Elderly Japanese Population

    PubMed Central

    Suzuki, Kazushi; Koide, Daisuke; Fujii, Kurumi; Yamazaki, Tsutomu; Tsuji, Shoji; Iwata, Atsushi

    2016-01-01

    Aims The association between serum uric acid (UA) levels and cognitive function is controversial since UA can be a risk factor for cerebral ischemia as well as acting as a neuroprotective antioxidant. Methods We conducted a cross-sectional analysis of 228 elderly participants and examined neuropsychological test results, clinical data as well as brain magnetic resonance imaging data. Patients Overall, 64 participants were diagnosed with cognitive deterioration. To control for the effect of sex differences, 2 independent sets of single-variable and multivariate logistic regression analyses were performed with quartiles divided into non-sex-specific and sex-specific cutoff values for UA. Results In non-sex-specific quartiles, the participants in the highest quartiles of UA levels were found to be at a significantly higher risk of cognitive deterioration than those in the lowest quartiles. In sex-specific quartiles, the highest quartile showed an increased risk of cognitive deterioration, and a greater than fourfold increase in the risk in the highest quartiles was confirmed using multivariate regression models. However, no significant association was observed between serum UA levels and the presence of white matter lesions. Conclusions Elevated serum UA levels were independently associated with cognitive deterioration. UA might have unknown adverse effects on cognitive function, other than causing vascular pathology. PMID:28203247

  9. Effects of composite restorations on nitric oxide and uric acid levels in saliva

    PubMed Central

    Akgul, Nilgun; Gul, Pinar; Alp, Hamit Hakan; Kiziltunc, Ahmet

    2015-01-01

    Background and Aims: Dental materials that are used in dentistry should be harmless to oral tissues, and should, therefore, not contain any leachable toxic and diffusible substances capable of causing side effects. This study was intended to investigate the effects on salivary nitric oxide (NO) and uric acid (UA) levels after application of dental composite filling materials to healthy volunteers. Materials and Methods: A total of 52 individuals (32 female and 20 male) participated in the study. Filtek Z250 composite filling material (3M ESPE, St Paul, MN, USA) was applied to healthy volunteers. Saliva samples were collected before restoration (baseline) and 1 h, 1-day, 7 days, and 30 days after restoration. NO concentrations were measured using the Griess reaction method, and UA was measured using an enzymatic method. Data were analyzed using repeated measures ANOVA and the Bonferroni post-hoc test (α =5%). Results: NO values increased statistically significant after 7 days (P < 0.05). In addition, lower UA levels were determined compared to the baseline levels, but the difference was not statistically significant (P > 0.05). There was no correlation between NO and UA levels in saliva (P > 0.05). Conclusion: Composite resins activated the antioxidant system in saliva. However, further studies are now needed to confirm our findings and to permit a definitive conclusion. PMID:26321839

  10. Plasma ammonia levels in preterm infants receiving parenteral nutrition with crystalline L-amino acids.

    PubMed

    Shohat, M; Wielunsky, E; Reisner, S H

    1984-01-01

    In order to investigate the severity and incidence of hyperammonemia in preterm infants receiving total parenteral nutrition (TPN) with crystalline L-amino acids having high arginine content (Travasol), we determined the plasma ammonia (PA) levels in a group of 29 preterm infants on TPN, weekly and 1 wk posttherapy. Their mean gestational age was 29.9 +/- 2.6 wk and mean birth weight 1208 +/- 262 g. Thirty five blood samples obtained from 15 preterm infants not on TPN with mean gestational age 32.2 +/- 1.9 wk and a birth weight of 1495 +/- 161 g served as a control. In the parenteral nutrition group the mean PA level (140 +/- 58 micrograms/100 ml) was significantly higher (p less than 0.001) than that in the same group one week post TPN (97 +/- 34 micrograms/100 ml) and in the control group (86 +/- 35 micrograms/100 ml). The incidence of hyperammonemia (greater than 160 micrograms/100 ml) was 30% in the TPN group versus 3% in the controls (p less than 0.01). Maximal PA level during that treatment was 405 versus 216 micrograms/100 ml 1 wk post-TPN versus 163 micrograms/100 ml in the controls. The data show a significant increase in PA levels in preterm infants receiving TPN with Travasol, possibly because of its high glycine content.

  11. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance.

  12. Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves

    SciTech Connect

    Enyedi, A.J.; Raskin, I. )

    1993-04-01

    Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco masaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g[sup [minus]1] fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-GTase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7--27.0 [mu]g g[sup [minus]1] fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity. 21 refs., 5 figs.

  13. Serum Uric Acid Levels in Patients with Alzheimer's Disease: A Meta-Analysis

    PubMed Central

    Chen, Xueping; Guo, Xiaoyan; Huang, Rui; Chen, Yongping; Zheng, Zhenzhen; Shang, Huifang

    2014-01-01

    Background Serum uric acid (UA) could exert neuro-protective effects against Alzheimer's disease (AD) via its antioxidant capacities. Many studies investigated serum UA levels in AD patients, but to date, results from these observational studies are conflicting. Methods We conducted a meta-analysis to compare serum UA levels between AD patients and healthy controls by the random-effects model. Studies were identified by searching PubMed, ISI Web of Science, EMBASE, and the Cochrane library databases from 1966 through July 2013 using the Medical Subject Headings and keywords without restriction in languages. Only case-control studies were included if they had data on serum UA levels in AD patients and healthy controls. Begg's funnel plot and Egger's regression test were applied to assess the potential publication bias. Sensitivity analyses and meta-regression were conducted to explore possible explanations for heterogeneity. Results A total of 11 studies met the inclusion criteria including 2708 participants were abstracted. Serum UA levels were not significantly different in AD patients compared to healthy controls (standardized mean difference (SMD) = −0.50; 95% confidence interval (CI): −1.23 to 0.22). Little evidence of publication bias was observed. Sensitivity analyses showed that the combined SMD was consistent every time omitting any one study, except only one study which greatly influenced the overall results. Meta-regression showed that year of publication, race, sample size, and mean age were not significant sources of heterogeneity. Conclusion Our meta-analysis of case-control studies suggests that serum UA levels do not differ significantly in AD patients, but there may be a trend toward decreased UA in AD after an appropriate interpretation. More well-designed investigations are needed to demonstrate the potential change of serum UA levels in AD patients. PMID:24714617

  14. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis.

    PubMed

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants.

  15. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract.

    PubMed

    Park, Ki-Bum; Oh, Suk-Heung

    2007-05-01

    Yogurt with high levels of gamma-aminobutyric acid (GABA), free amino acids and isoflavones was developed using lactic acid bacteria (LAB) and germinated soybean extract. Fermented soya milk (GABA soya yogurt) produced with starter and substrate had the GABA concentration of 424.67 microg/gDW, whereas fermented milk produced by a conventional method had GABA less than 1.5 microg/gDW. The GABA soya yogurt also contained significantly high levels of free amino acids and isoflavones compared with other conventional yogurts. The results suggested that the Lactobacillus brevis OPY-1 and germinated soybean possessed a prospect to be applied in dairy and other health products with high nutritive values and functional properties.

  16. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2(-/-) Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy.

  17. Modulation of human stratum corneum properties by salicylic acid and all-trans-retinoic acid.

    PubMed

    Piérard-Franchimont, C; Goffin, V; Piérard, G E

    1998-01-01

    Topical all-trans-retinoic acid (RA) has been reported to decrease the in vivo skin response to sodium lauryl sulfate (SLS). The converse was also shown with a synergistic effect of RA following prior applications of SLS. The reason for such effects is not clear. We employed measures of transepidermal water loss (TEWL), squamometry and sequential corneosurfametry to explore the protective activity of a 0.05% RA cream at the level of the stratum corneum. Nonionic oil-in-water emulsions with or without 5% salicylic acid (SA) served as test product references. Data indicated that the RA formulation was responsible for a stochastic impairment in the TEWL and for an increased intercorneocyte cohesion. SA and the unmedicated emulsion did not lead to similar TEWL changes. The squamometry test proved to be very sensitive to disclose the effects of SA and RA without, however, allowing to distinguish the difference in the physiological processes involved. The corneosurfametry bioassay did not show any protection or synergistic effect between RA or SA and SLS challenge on the stratum corneum. This is in contrast to a previous work showing a positive protective effect afforded by retinol against SLS. The combined effects of irritant compounds affecting the stratum corneum are complex. The precise reason for some of their biological consequences remains a conundrum. On balance, products such as SA and RA do not appear to afford protection or impairment to a surfactant challenge at the level of the stratum corneum.

  18. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation.

  19. The Prevalence of Nonalcoholic Fatty Liver Disease and Relationship with Serum Uric Acid Level in Uyghur Population

    PubMed Central

    Cai, Wen; Song, Jiang-mei; Zhang, Bei; Sun, Yu-ping; Yao, Hua; Zhang, Yue-xin

    2014-01-01

    Objective. To investigate the prevalence of nonalcoholic fatty liver disease (NAFLD) and the association of serum uric acid level with NAFLD in Uygur people, Xinjiang. Methods. A total of 2241 Uyghur persons (1214 males and 1027 females) were interviewed for physical checkups from 2011 to 2012. The clinical data of questionnaire survey, body mass index (BMI), abdominal circumference, blood pressure, blood sugar, blood lipid, and serum uric acid level were collected for analysis. Results. The prevalence rates of NAFLD determined by abdominal ultrasound examination and hyperuricemia were 43.9% and 8.4%, respectively. The persons with NAFLD had significantly higher serum uric acid levels than those without NAFLD (320 ± 88 versus 254 ± 80 μmol/L; P < 0.001). The prevalence rate of NAFLD was significantly higher in subjects with hyperuricemia than that in those without hyperuricemia (78.19% versus 40.83%; P < 0.001), and the prevalence rate increased with progressively higher serum uric acid levels (P < 0.001). Multiple regression analysis showed that hyperuricemia was associated with an increased risk of NAFLD (odds ratio (OR): 2.628, 95% confidence interval (CI): 1.608–4.294, and P < 0.001). Conclusion. Serum uric acid level was significantly associated with NAFLD, and the prevalence rate of NAFLD increased with progressively higher serum uric acid levels. PMID:24516367

  20. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings.

    PubMed

    Zengin, Fikriye Kirbag; Kirbag, Sevda

    2007-07-01

    The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01). It was observed that the level of chlorophyll (a+b) and total protein (p < 0.05 or p < 0.01) remarkably decreased as copper concentration increased to 0.6 mM, although the levels of proline and abscisic acid in the leaves of plants were increased--a dose-depended behavior The same trends were also observed with the level of abscisic acid of stems and roots. Copper has dose- depended effects on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.

  1. Phytochemicals from Tradescantia albiflora Kunth Extracts Reduce Serum Uric Acid Levels in Oxonate-induced Rats

    PubMed Central

    Wang, Wen-Ling; Sheu, Shi-Yuan; Huang, Wen-Dar; Chuang, Ya-Ling; Tseng, Han-Chun; Hwang, Tzann-Shun; Fu, Yuan-Tsung; Kuo, Yueh-Hsiung; Yao, Chun-Hsu; Kuo, Tzong-Fu

    2016-01-01

    Background: Tradescantia albiflora (TA) Kunth (Commelinaceae) has been used for treating gout and hyperuricemia as folklore remedies in Taiwan. Therefore, it is worthwhile to study the effect of TA extracts on lowering uric acid activity. The hypouricemic effects of TA extracts on potassium oxonate (PO)-induced acute hyperuricemia were investigated for the first time. Materials and Methods: All treatments at the same volume (1 ml) were orally administered to the abdominal cavity of PO-induced hyperuricemic rats. One milliliter of TA extract in n-hexane (HE), ethyl acetate (EA), n-butanol (BuOH), and water fractions has 0.28, 0.21, 0.28, and 1.03 mg TA, respectively; and the plasma uric acid (PUA) level was measured for a consecutive 4 h after administration. Results: All four fractions' extracts derived from TA were observed to significantly reduce PUA compared with the PO group. The EA-soluble fraction (TA-EA) exhibited the best xanthine oxidase (XO) inhibitory activity. Following column chromatography, 12 phytochemicals were isolated and identified from the EA fraction. The IC50 values of isolated phytochemicals indicated that bracteanolide A (AR11) showed the remarkable XO inhibitory effect (IC50 value of 76.4 μg/ml). These findings showed that the in vivo hypouricemic effect in hyperuricemic rats was consistent with in vitro XO inhibitory activity, indicating that TA extracts and derived phytochemicals could be potential candidates as hypouricemic agents. SUMMARY Tradescantia albiflora extracts possess in vivo hypouricemic action in hyperuricemic ratsT. albiflora extracts exhibited strong inhibitory activity against xanthine oxidase (XO)Butenolide may play an important role in XO inhibitionThe extract bracteanolide A was demonstrated potent XO inhibitory activity in vitro. Abbreviations used: TA: Tradescantia albiflora, PO: potassium oxonate, HE: n-hexane, EA: ethyl acetate, BuOH: n-butanol, PUA: plasma uric acid, XO: xanthine oxidase, MeOH: methanol, IP

  2. Effects of allopurinol on plasma uric acid levels in normouricaemic and hyperuricaemic green iguanas (Iguana iguana).

    PubMed

    Hernandez-Divers, S J; Martinez-Jimenez, D; Bush, S; Latimer, K S; Zwart, P; Kroeze, E J B Veldhuis

    2008-01-26

    A two-phase cross-over therapeutic study was performed with 19 green iguanas (Iguana iguana) maintained within a preferred optimum temperature range of 26 to 37 degrees C. During phase 1, they were fed a normal vegetarian diet and medicated orally with either allopurinol or a placebo control once a day for seven days. Uric acid concentrations, total protein, packed-cell volumes (pcv) and bodyweights were recorded from each lizard before and after treatment to determine the effects of allopurinol. In phase 2, after a 10-day washout period, the iguanas were fed a high protein diet to induce hyperuricaemia. Normo- and hyperuricaemic iguanas that received 24.2 (3.2) mg/kg allopurinol had significantly lower mean (sd) uric acid concentrations (100.3 [53.1] micromol/l) than the controls (159.3 [100.3] micromol/l). There were no detectable interactions between the doses of allopurinol or placebo, and the iguanas' diet, weight, pcv or total protein. The allopurinol was well tolerated, and there was no significant clinical, gross or histological evidence of hepatic or renal toxicity in the iguanas that received the drug. However, in the kidneys of the hyperuricaemic iguanas that did not receive allopurinol there were proliferative changes in the glomeruli and degeneration of tubular epithelia. Allopurinol given orally at 25 mg/kg daily is able to reduce plasma uric acid levels by 41 to 45 per cent, and is therefore recommended for the treatment of hyperuricaemia in the green iguana.

  3. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels

    PubMed Central

    Shen, Meng-Chieh; Quinlivan, Vanessa; Anderson, Jennifer L.; Farber, Steven A.

    2017-01-01

    ABSTRACT Caveolae and their structural protein caveolin 1 (CAV1) have roles in cellular lipid processing and systemic lipid metabolism. Global deletion of CAV1 in mice results in insulin resistance and increases in atherogenic plasma lipids and cholesterol, but protects from diet-induced obesity and atherosclerosis. Despite the fundamental role of the intestinal epithelia in the regulation of dietary lipid processing and metabolism, the contributions of CAV1 to lipid metabolism in this tissue have never been directly investigated. In this study the cellular dynamics of intestinal Cav1 were visualized in zebrafish and the metabolic contributions of CAV1 were determined with mice lacking CAV1 in intestinal epithelial cells (CAV1IEC-KO). Live imaging of Cav1–GFP and fluorescently labeled caveolae cargos shows localization to the basolateral and lateral enterocyte plasma membrane (PM), suggesting Cav1 mediates transport between enterocytes and the submucosa. CAV1IEC-KO mice are protected from the elevation in circulating fasted low-density lipoprotein (LDL) cholesterol associated with a high-fat diet (HFD), but have increased postprandial LDL cholesterol, total free fatty acids (FFAs), palmitoleic acid, and palmitic acid. The increase in circulating FAs in HFD CAV1IEC-KO mice is mirrored by decreased hepatic FAs, suggesting a non-cell-autonomous role for intestinal epithelial cell CAV1 in promoting hepatic FA storage. In conclusion, CAV1 regulates circulating LDL cholesterol and several FA species via the basolateral PM of enterocytes. These results point to intestinal epithelial cell CAV1 as a potential therapeutic target to lower circulating FFAs and LDL cholesterol, as high levels are associated with development of type II diabetes and cardiovascular disease. PMID:28130355

  4. ClC-7 expression levels critically regulate bone turnover, but not gastric acid secretion.

    PubMed

    Supanchart, C; Wartosch, L; Schlack, C; Kühnisch, J; Felsenberg, D; Fuhrmann, J C; de Vernejoul, M-C; Jentsch, T J; Kornak, U

    2014-01-01

    Mutations in the 2Cl(-)/1H(+)-exchanger ClC-7 impair osteoclast function and cause different types of osteoclast-rich osteopetrosis. However, it is unknown to what extent ClC-7 function has to be reduced to become rate-limiting for bone resorption. In osteoclasts from osteopetrosis patients expression of the mutated ClC-7 protein did not correlate with disease severity and resorption impairment. Therefore, a series of transgenic mice expressing ClC-7 in osteoclasts at different levels was generated. Crossing of these mice with Clcn7(-/-) mutants rescued the osteopetrotic phenotype to variable degrees. One resulting double transgenic line mimicked human autosomal dominant osteopetrosis. The trabecular bone of these mice showed a reduction of osteoblast numbers, osteoid, and osteoblast marker gene expression indicative of reduced osteoblast function. In osteoclasts from these mutants ClC-7 expression levels were 20 to 30% of wildtype levels. These reduced levels not only impaired resorptive activity, but also increased numbers, size and nucleus numbers of osteoclasts differentiated in vitro. Although ClC-7 was expressed in the stomach and PTH levels were high in Clcn7(-/-) mutants loss of ClC-7 did not entail a relevant elevation of gastric pH. In conclusion, we show that in our model a reduction of ClC-7 function by approximately 70% is sufficient to increase bone mass, but does not necessarily enhance bone formation. ClC-7 does not appear to be crucially involved in gastric acid secretion, which explains the absence of an osteopetrorickets phenotype in CLCN7-related osteopetrosis.

  5. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  6. Effect of different levels of supplied cobalt on the fatty acid composition of bovine milk.

    PubMed

    Karlengen, Inger J; Taugbøl, Ole; Salbu, Brit; Aastveit, Are H; Harstad, Odd M

    2013-03-14

    In previous studies, administration of high amounts of Co decreased the proportion of MUFA in bovine milk. The present study was conducted to examine the amount of Co needed to obtain this effect. High-yielding dairy cows (n 4), equipped with ruminal cannulas, were used in a 4 × 4 Latin square design study. The basal diet consisted of concentrate mixture (9 kg/d) without added Co and grass silage (ad libitum). The following four levels of Co were administrated as cobalt acetate dissolved in distilled water: no Co (treatment 1, T1); 4·0 mg Co/d (T2); 380 mg Co/d (T3); 5300 mg Co/d (T4). Each period lasted for 18 d, including 11 d of treatment. During the treatment periods, the solutions were continuously infused into the rumen. Milk yield and milk concentration of fat, fatty acids (FA), protein, lactose, Co, Zn, Fe and Cu were determined. Blood plasma was analysed with respect to FA, Co, Zn, Fe and Cu. Feed intake and total tract digestibility of feed components were also determined. There was a linear effect of increasing the level of Co on milk FA composition. The effects of Co on FA composition in blood were insignificant compared with the effects on milk. In milk fat, the concentration of cis-9-18 : 1 was reduced by as much as 38 % on T4 compared with T1. Feed intake and milk yield were negatively affected by increasing the Co level.

  7. Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower 1

    PubMed Central

    Robertson, J. Mason; Pharis, Richard P.; Huang, Yan Y.; Reid, David M.; Yeung, Edward C.

    1985-01-01

    Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature. PMID:16664535

  8. Urinary D-glucaric acid and serum hepatic enzyme levels in chronic alcoholics.

    PubMed

    Tutor, J C; Alvarez-Prechous, A; Bernabeu, F; Pardiñas, M C; Paz, J M; Lareu, V

    1988-06-01

    Urinary D-glucaric acid (DGA) and the activities of gamma-glutamyl transferase (GGT) and other hepatic enzymes in serum were determined in 33 noncirrhotic male alcoholics who had continued to consume alcohol until at least 24 h prior to the taking of samples. DGA excretion was significantly greater in them than in a group of 30 healthy controls (p less than 0.001), exceeding the upper reference level in 38% of the alcoholic cases (as compared with 88% for GGT). In the alcoholic patients, there was highly significant correlation between urinary DGA and serum GGT (r = 0.613, p less than 0.001), suggesting that in both cases the increased levels are due to enzyme induction. None of the biochemical variables studied were significantly correlated with estimated daily alcohol consumption. Urinary DGA levels fell off rapidly with abstinence, and in 31 alcoholic patients who had consumed no alcohol for 5 days, there was no statistically significant correlation between DGA excretion and serum GGT (r = 0.158, p congruent to 0.4).

  9. Lipid-associated sialic acid levels in human breast cyst fluids.

    PubMed

    Mannello, F; Bocchiotti, G; Troccoli, R; Gazzanelli, G

    1992-01-01

    Benign mammary gross cystic disease is the most common breast lesion. Women with apocrine changes of epithelium lining the cysts are at higher risk for developing breast cancer than the normal female population. Sialic acid has drawn considerable interest because of carbohydrate aberrations in malignant cells. The current investigation determined the concentrations of lipid-associated sialic acid (LASA) in 62 breast cyst fluids and sera. Data analyses show a significant increase in the mean values of LASA in metabolically active apocrine cysts when compared to the cysts with Na+/K+ > 3 (flattened cysts) (p < 0.001). The greater LASA levels in cyst fluids with lower intracystic Na+/K+ ratios could represent an altered expression of biosynthetic activity of the surrounding apocrine cell surface sialoglycolipid metabolism, providing a possible explanation of why women with apocrine cysts may be at greater cancer risk and being useful in further studies on functional stage changes in the cysts and their relationship to breast cancer.

  10. [Ascorbic acid consumption and serum levels in smokers and non-smokers adult men in Hermosillo, Sonora, México].

    PubMed

    Méndez, Rosa Olivia; Wyatt, C Jane; Saavedra, Javier; Ornelas, Alicia

    2002-12-01

    Ascorbic acid is one of the important antioxidant nutrients that can aid in the prevention of oxidative cellular damage. Adequate dietary intake is essential as humans can not synthesize this vitamin. It has been reported that smokers require higher dietary intakes to maintain their serum levels. The objective of this study was to determine serum levels of ascorbic acid in young male smokers and non smokers in the city of Hermosillo, Sonora, Mexico. In addition, their dietary intake of ascorbic acid was determined by a 24 h dietary recall. The dietary intake of ascorbic acid in 12 smokers was 64 +/- 11 mg/d and in 13 non smokers it was 70 +/- 12 mg/d. The smokers in this study did not meet the dietary recommendation of 100 mg/d. Serum ascorbic acid values in smokers and non smokers were 24.2 +/- 6.9 mumol/L and 30.9 +/- 3.7 mumol/L respectively. No significant difference was found among the 2 groups. Although the average serum ascorbic acid values fell within the range considered normal, 50% of the smokers had individual values that were below 23 mumol/L, indicating that these subjects have hipovitaminosis. A positive correlation between intake and serum levels was obtained for smokers (r = 0.71; p = 0.03). The results of this study suggest smokers may be at increased risk for chronic diseases due to their low intake and low serum levels of ascorbic acid.

  11. Quantification of jasmonic and salicylic acids in rice seedling leaves.

    PubMed

    Cho, Kyoungwon; Han, Oksoo; Tamogami, Shigeru; Shibato, Junko; Kubo, Akihiro; Agrawal, Ganesh Kumar; Rakwal, Randeep

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) are critical signaling components involved in various aspects of plant growth, development, and defense. Their constitutive levels vary from plant to plant and also from tissue to tissue within the same plant. Moreover, their quantitative levels change when plant is exposed to biotic and abiotic stresses. To better understand the JA- and SA-mediated signaling and metabolic pathways, it is important to precisely quantify their levels in plants/tissues/organs. However, their extraction and quantification are not trivial and still technically challenging. An effort has been made in various laboratories to develop a simple and standard procedure that can be utilized for quantification of JA and SA. Here, we present the experimental procedure and our decade of experience on extracting and quantifying them in an absolute manner in leaves of rice seedlings. We must mention that this method has been applied to both monocotyledonous and dicotyledonous plants for absolute quantification of JA and SA. As collaboration is the key towards rapid progress in science and technology, we are always open to sharing our experience in this field with any active research group with an aim to improve the procedure further and eventually to connect the importance of their (JA and SA) quantitative levels with networks of signaling and metabolic pathways in plants.

  12. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes

    PubMed Central

    Oxenkrug, Gregory F

    2015-01-01

    About 350 million people worldwide have type 2 diabetes (T2D). The major risk factor of T2D is impaired glucose tolerance (pre-diabetes) with 10% of pre-diabetes subjects develop T2D every year. Understanding of mechanisms of development of T2D from pre-diabetes is important for prevention and treatment of T2D. Chronic stress and chronic low grade inflammation are prominent risk factors for T2D development in pre-diabetic subjects. However, molecular mechanisms mediating effect of stress and inflammation on development of T2D from pre-diabetes remain unknown. One of such mechanisms might involve kynurenine (KYN) pathway (KP) of tryptophan (TRP) metabolism. We suggested that chronic stress- or chronic low grade inflammation-induced upregulation of formation of upstream KTP metabolites, KYN and 3-hydroxyKYN, combined with chronic stress or chronic low grade inflammation-induced deficiency of pyridoxal 5'-phosphate, a cofactor of downstream enzymes of KTP, triggers overproduction of diabetogenic downstream KYN metabolites, kynurenic acid (KYNA) and 3-hydroxyKYNA (also known as xanthurenic acid (XA)). As the initial assessment of our working hypothesis, we evaluated plasma levels of up- and down-stream KP metabolites in the same samples of T2D patients. KYN, XA and KYNA levels in plasma samples of T2D patients were higher than in samples of non-diabetic subjects. Our results provide further support of “kynurenine hypothesis of insulin resistance and its progression to T2D” that suggested that overproduction of diabetogenic KP metabolites, induced by chronic stress- or chronic low grade inflammation, is one of the mechanisms promoting development of T2D from pre-diabetes. Downstream metabolites of KP might serve as biomarkers of T2D and targets for clinical intervention. PMID:26055228

  13. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    PubMed

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet.

  14. Value of random urinary homovanillic acid and vanillylmandelic acid levels in the diagnosis and management of patients with neuroblastoma: comparison with 24-hour urine collections.

    PubMed

    Tuchman, M; Morris, C L; Ramnaraine, M L; Bowers, L D; Krivit, W

    1985-02-01

    Urinary homovanillic acid (HVA) and vanillylmandelic acid (VMA) levels were determined in random samples and in 24-hour collections from 13 patients with neuroblastoma and 22 patients without neuroblastoma. Random sample levels were compared with levels in 24-hour collections and showed a positive correlation of 95% for HVA (N = 59) and 93% for VMA (N = 52). No false positives or false negatives occurred using random samples for diagnosis. Nonneuroblastoma (normal) HVA (N = 126) and VMA (N = 119) levels are reported for different age groups. Sequential random HVA and VMA determinations in patients with neuroblastoma during and after therapy are shown. Random urinary HVA and VMA levels are shown to be adequate for utilization in the diagnosis of neuroblastoma and sequential determinations of random HVA and VMA are shown to be helpful in the follow-up of those patients.

  15. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  16. Effects of Exogenous Salicylic Acid on Ganoderic Acid Biosynthesis and the Expression of Key Genes in the Ganoderic Acid Biosynthesis Pathway in the Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes).

    PubMed

    Cao, Peng-Fei; Wu, Chen-Gao; Dang, Zhi-Hao; Shi, Liang; Jiang, Ai-Liang; Ren, Ang; Zhao, Ming-Wen

    2017-01-01

    We demonstrate herein that salicylic acid (SA) can enhance ganoderic acid (GA) accumulation in the lingzhi or reishi medicinal mushroom Ganoderma lucidum. Following treatment with different concentrations of SA, the GA content was increased 22.72% to 43.04% compared with the control group. When the fungi were treated with 200 μmol/L SA at different times, the GA content was improved 10.21% to 35.24% compared with the control group. By choosing the optimum point based on response surface methodology, the GA content could be increased up to 229.03 μg/100 mg, which was improved 66.38% compared with the control group. When the fungi were treated with 200 μmol/L SA, the transcription levels of key genes in the GA biosynthesis pathway-squalene (SQ) synthase (sqs), lanosterol (Lano; osc), and hydroxy-3-methylglutaryl-coenzyme A reductase (hmgr)-were improved 119.6-, 3.2-, and 4.2-fold, respectively. In addition, following treatment with 100 μmol/L SA, the levels of Lano and SQ, which are intermediate metabolites of GA biosynthesis, were increased 2.8- and 1.4-fold, respectively. These results indicate that SA can regulate the expression of genes related to GA biosynthesis and increases the metabolic levels of Lano and SQ, thereby resulting in the accumulation of GA.

  17. Blood lead levels among rural Thai children exposed to lead-acid batteries from solar energy conversion systems.

    PubMed

    Swaddiwudhipong, Witaya; Tontiwattanasap, Worawit; Khunyotying, Wanlee; Sanreun, Cherd

    2013-11-01

    We evaluate blood lead levels among Thai children to determine if exposure to lead-acid batteries is associated with elevated blood lead levels (EBLL). We screened 254 children aged 1-14 years old from 2 rural Thai villages for blood lead levels. We also screened 18 of 92 houses in these 2 villages for the presence of environmental lead. The overall prevalence of EBLL (> or = 10 microg/dl) was 43.3% and the mean lead level among study subjects was 9.8 +/- 5.1 microg/dl. The blood lead levels significantly decreased with increasing age. Fifty point eight percent of children who lived in a house with vented lead-acid batteries had EBLL while 23.3% of children who lived in a house without vented lead-acid batteries had EBLL. Multiple logistic regression analysis revealed a significant positive association between the presence of vented lead-acid batteries and EBLL, after adjusting for other variables. Forty-two point nine percent of house floor dust samples collected near the batteries had elevated lead levels, 7.1% of house floor dust samples collected from other areas in the house had elevated lead levels and 0% of the house floor dust samples collected in houses without vented lead-acid batteries had elevated lead levels. In the sampled houses with vented lead-acid batteries, lead contamination was found in the drinking-water kept in household containers, but not in the tap water or other village sources of water. Improper care and placement of vented lead-acid batteries can result in lead contamination in the home environment causing EBLL in exposed children.

  18. Sedimentation properties in density gradients correspond with levels of sperm DNA fragmentation, chromatin compaction and binding affinity to hyaluronic acid.

    PubMed

    Torabi, Forough; Binduraihem, Adel; Miller, David

    2017-03-01

    Mature spermatozoa bind hyaluronic acid in the extracellular matrix via hyaladherins. Immature spermatozoa may be unable to interact because they do not express the appropriate hyaladherins on their surface. Fresh human semen samples were fractionated using differential density gradient centrifugation (DDGC) and the ability of these fractions to bind hyaluronic acid was evaluated. The presence of sperm hyaladherins was also assessed. CD44 was located mainly on the acrosome and equatorial segment and became more restricted to the equatorial segment in capacitated spermatozoa. Hyaluronic acid-TRITC (hyaluronic acid conjugated with tetramethylrhodamine isothiocyanante), a generic hyaluronic-acid-binding reagent, labelled the membrane and the neck region, particularly after capacitation. Sperm populations obtained after DDGC or after interaction with hyaluronic acid were assessed for DNA fragmentation and chromatin maturity. Strong relationships between both measures and sperm sedimentation and hyaluronic-acid-binding profiles were revealed. Capacitation enhanced hyaluronic acid binding of both DDGC-pelleted sperm and sperm washed free of seminal fluid. In conclusion, hyaladherins were detected on human sperm and a higher capacity for sperm hyaluronic-acid-binding was shown to correspond with their DDGC sedimentation profiles and with lower levels of DNA fragmentation and better chromatin maturity. Capacitation induced changes in the distribution and presence of hyaladherins may enhance hyaluronic-acid-binding.

  19. Plasma Elaidic Acid Level as Biomarker of Industrial Trans Fatty Acids and Risk of Weight Change: Report from the EPIC Study

    PubMed Central

    Chajès, Véronique; Biessy, Carine; Ferrari, Pietro; Romieu, Isabelle; Freisling, Heinz; Huybrechts, Inge; Scalbert, Augustin; Bueno de Mesquita, Bas; Romaguera, Dora; Gunter, Marc J.; Vineis, Paolo; Hansen, Camilla Plambeck; Jakobsen, Marianne Uhre; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verana; Neamat-Allah, Jasmine; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Pala, Valeria; Masala, Giovanna; Mattiello, Amalia; Skeie, Guri; Weiderpass, Elisabete; Agudo, Antonio; Huerta, Jose Maria; Ardanaz, Eva; Sánchez, Maria Jose; Dorronsoro, Miren; Quirós, Jose Ramon; Johansson, Ingegerd; Winkvist, Anna; Sonested, Emily; Key, Tim; Khaw, Kay-Tee; Wareham, Nicolas J.; Peeters, Petra H.M.; Slimani, Nadia

    2015-01-01

    Background Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. Results In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. Conclusions These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids. PMID:25675445

  20. A higher baseline plasma uric acid level is an independent predictor of arterial stiffness

    PubMed Central

    Ding, Xiao-Han; Wang, Xiaona; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei; Ye, Ping

    2017-01-01

    Abstract Hyperuricemia has been demonstrated to be a risk factor for cardiovascular diseases. Though the association between uric acid (UA) and arterial stiffness has been investigated previously in patients with basic diseases, the predictive value of baseline UA level for arterial stiffness has not been conducted. We aimed at identifying the predictive role of UA for arterial stiffness prospectively. A longitudinal follow-up study in a routine health check-up population was performed with an average follow-up of 4.8 years. The demographic information, baseline and follow-up anthropometric parameters, arterial stiffness (pulse-wave velocity, PWV), and biomarker variables including UA have been measured and analyzed. A total of 1447 valid follow-ups were available for the final analysis. Both of the baseline and follow-up UA levels were significantly higher in the arterial stiffness groups than that in the nonarterial stiffness groups (all P values <0.001). The follow-up carotid-femoral PWV [(cf-PWV), r = 0.161, P < 0.001] was strongly correlated with baseline UA. At the follow-up cross-section, cf-PWV was also closely associated with UA (r = 0.101, P < 0.001). Logistic regressions revealed that a higher baseline UA level was an independent predictor of follow-up arterial stiffness assessed by cf-PWV [odds ratio (OR): 1.824; P = 0.046]. A higher baseline level of UA is closely related to arterial stiffness and is an independent predictor of arterial stiffening. PMID:28178136

  1. C-reactive protein and alpha 1-acid glycoprotein levels in dogs infected with Ehrlichia canis.

    PubMed Central

    Rikihisa, Y; Yamamoto, S; Kwak, I; Iqbal, Z; Kociba, G; Mott, J; Chichanasiriwithaya, W

    1994-01-01

    To elucidate whether acute-phase protein responses occur in dogs infected with Ehrlichia canis, C-reactive protein (CRP) and alpha 1-acid glycoprotein (AAG) levels were serially measured in the plasma of five dogs experimentally inoculated with E. canis and 10 sham-inoculated or noninoculated control dogs. The CRP concentration was measured by a canine-specific capture enzyme-linked immunosorbent assay, and the AAG concentration was measured by a canine-specific radial immunodiffusion method. In all E. canis-inoculated dogs, a 3.3- to 6.5-fold increase in the plasma CRP concentration and a 1.9- to 8.6-fold increase in the plasma AAG concentration over the preinoculation level occurred at days 4 to 6 postexposure. Despite the persistence of E. canis and high antibody titers, both CRP and AAG concentrations gradually declined to preexposure levels by day 34 postexposure. E. canis-infected dogs had mild and transient clinical signs which resolved without treatment by day 14 postexposure. The CRP and AAG concentrations in control inoculated or nontreated dogs remained within the normal range throughout the experimental period. Of 12 dogs naturally infected with E. canis, 75% had greater than 50 micrograms of CRP per ml and 83% had greater than 500 micrograms of AAG per ml. All of these 12 dogs had chronic and severe clinical signs of canine ehrlichiosis. Thus, elevations in the levels of acute-phase proteins occur in both acute and chronic canine ehrlichiosis. Determination of CRP and AAG concentrations may help in assessing the severity of inflammatory damage in dogs with E. canis infections. PMID:8027343

  2. Trans fatty acids: current contents in Canadian foods and estimated intake levels for the Canadian population.

    PubMed

    Ratnayake, W M Nimal; L'Abbe, Mary R; Farnworth, Sara; Dumais, Lydia; Gagnon, Claude; Lampi, Brian; Casey, Valerie; Mohottalage, Dayani; Rondeau, Isabelle; Underhill, Lynne; Vigneault, Michele; Lillycrop, William; Meleta, Mary; Wong, Lynn Y; Ng, Tran; Gao, Yu; Kwong, Keri; Chalouh, Shirley; Pantazopoulos, Peter; Gunaratna, Hasantha; Rahardja, Adeline; Blagden, Richard; Roscoe, Veronica; Krakalovich, Thomas; Neumann, Gary; Lombaert, Gary A

    2009-01-01

    Research conducted in the mid-1990s indicated that the levels of trans fats in Canadian diets were among the highest in the world. The consumption of trans fats raises blood levels of low-density lipoprotein (LDL)-cholesterol, while reducing levels of high-density lipoprotein (HDL)-cholesterol. In June 2007, Health Canada called on the food industry to voluntarily reduce levels of trans fats in vegetable oils and soft (tub)-margarines to < 2% of total fat, and in all other foods, to < 5%. Industry must show satisfactory progress by June 2009, or Health Canada might have to introduce legislation to ensure that recommended limits are achieved. Since 2005, Health Canada has been performing a national assessment of prepackaged and restaurant foods that likely contain trans fats. From 2005 to 2009, 1120 samples were analyzed, of which 852 or approximately 76% met the recommended trans fat limits. As a result of reformulation, most of the products had decreased trans + saturated fat content. The estimated average intake of trans fatty acids (TFA) in Canada significantly dropped from the high value of 8.4 g/day in the mid-1990s to 3.4 g/day (or 1.4% food energy) in 2008. However, this TFA intake of 1.4% of energy is still above the World Health Organization recommended limit of TFA intake of < 1% of energy, which suggests that the Canadian food industry needs to put more effort into reducing the TFA content in its products, especially in tub-margarines, donuts, and bakery products.

  3. Oral folic acid supplementation decreases palate and/or lip cleft occurrence in Pug and Chihuahua puppies and elevates folic acid blood levels in pregnant bitches.

    PubMed

    Domosławska, A; Jurczak, A; Janowski, T

    2013-01-01

    The aim of this study was to compare the frequency of the occurrence of lip and/or palate cleft (CL/CP) in new-borns of two breeds, Pugs and Chihuahuas, and to measure the folic acid blood levels in bitches during gestations both with and without folic acid oral supplementation. Bitches of 13 Pugs and 17 Chihuahuas with CL/CP cases were used in the study. In trial 1, the animals of the experimental group (n=25) were given additional folic acid from the onset of heat till the 40th day of gestation. The females of the control group (n=12) were fed a traditional diet. From all the animals blood was collected at the onset of heat, 14 days later and on the 30th day of the gestation to estimate folic acid concentration. In trial 2, the prevalence of CP/CL cases in litters from pregnancies before and after supplementation was compared. The percentage of puppies with CL/CP after supplementation decreased in both Pugs and Chihuahua puppies (10.86% and 15.78% vs. 4.76% and 4.8% respectively). On Day 0, the concentrations of folic acid were at a low physiological level (around 8 ng/ml) in all the animals. In bitches of the experimental group the blood level of folic acid on day 14th and 30th of the treatment showed an increase in both breeds (13.65 +/- 4.27 ng/ml in Pugs, 10.79 +/- 2.84 ng/ml in Chihuahuas, and 14.94 +/- 3.22 ng/ml in Pugs, 12.95 +/- 3.58 in Chihuahuas, respectively) while in the control group, this level decreased with time of gestation both in Pugs and in Chihuahuas (around 6 ng/ml). Folic acid supplementation seems to be a simple, effective preventive method to reduce the risk of CL/CP, especially in the predisposed breeds.

  4. The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice.

    PubMed

    Wilkerson, Jenny L; Ghosh, Sudeshna; Mustafa, Mohammed; Abdullah, Rehab A; Niphakis, Micah J; Cabrera, Roberto; Maldonado, Rafael L; Cravatt, Benjamin F; Lichtman, Aron H

    2017-03-01

    Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB)1 and CB2 receptors; however, only CB2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present

  5. Serum free fatty acid levels in PCOS patients treated with glucophage, magnesium oxide and spironolactone.

    PubMed

    Muneyyirci-Delale, Ozgul; Kaplan, Julie; Joulak, Ibrahim; Yang, Lianfu; Von Gizycki, Hans; Nacharaju, Vijaya L

    2013-05-01

    To assess the effect of glucophage, magnesium oxide and spironolactone in altering free fatty acids (FFAs), 36 PCOS women were randomly divided into three groups. Group 1 (n = 14) was treated with 500 mg glucophage po bid, group 2 (n = 10) was treated with 400 mg magnesium oxide po bid and group 3 (n = 12) was treated with 50 mg spironolactone po bid for 12 weeks. A glucose tolerance test with 75 g glucose load was performed before and after treatment, collecting blood at 0, 1 and 2 h for insulin, glucose, FFA and aldosterone. Amount of FFA before and after treatment were compared by repeated measure ANOVA and represented as area under the curve. FFA levels before treatment were 0.83 ± 0.23, 0.77 ± 0.15 and 0.85 ± 0.28 and after treatment were 0.77 ± 0.48, 0.71 ± 0.18 and 0.66 ± 0.25 for glucophage, magnesium oxide and spironolactone-treated patients, respectively. The FFA levels were unchanged in the groups treated with glucophage and magnesium oxide but were significantly (p < 0.03) decreased in the group treated with spironolactone. Since FFAs are known to be involved in the development of insulin resistance, these results suggest that spironolactone may be useful for lowering insulin resistance in PCOS patients.

  6. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    PubMed Central

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  7. Early Effects of Boron Deficiency on Indoleacetic Acid Oxidase Levels of Squash Root Tips

    PubMed Central

    Bohnsack, Charles W.; Albert, Luke S.

    1977-01-01

    The indoleacetic acid (IAA) oxidase activity of root tips of boron-sufficient, -deficient, recovering, and IAA-treated boron-sufficient squash plants (Cucurbita pepo L.) was determined. Apical and subapical root sections displayed an increase in IAA oxidase activity between 6 and 9 hours after boron was withheld, and after 24 hours the activity of the apical sections showed a 20-fold increase over +B controls. Root elongation of -B plants was inhibited before an increase in oxidase activity could be detected. Roots of plants subjected to 12 hours of -B treatment and then transferred to +B treatment for recovery regained normal elongation rates and oxidase activity within 18 to 20 hours. IAA treatment of +B plants increased IAA oxidase activity of apical and subapical root sections and also inhibited root elongation and caused symptoms similar to -B treatments. These results have demonstrated the earliest enzymic change for intact boron-deficient plants. The results are in agreement with the theory that boron deficiency symptoms may be the result of supraoptimal endogenous levels of IAA. These high levels of IAA may inhibit cell division and lead to an induction of the IAA oxidase enzyme. PMID:16659990

  8. The putative effects of D-Aspartic acid on blood testosterone levels: A systematic review

    PubMed Central

    Roshanzamir, Farzad; Safavi, Seyyed Morteza

    2017-01-01

    Background: D-Aspartic acid (D-Asp) is in invertebrate and vertebrate neuroendocrine tissues, where it carries out important physiological functions. Recently, it has been reported that D-Asp is involved in the synthesis and release of testosterone and is assumed can be used as a testosterone booster for infertile men, and by athletes to increase muscle mass and strength. Objective: The aim of this review is to summarize available evidence related to the effects of D-Asp on serum testosterone levels. Materials and Methods: We conducted a systematic review of all type studies, which evaluated the effect of the D-Asp on blood testosterone including published papers until October 2015, using PubMed, ISI Web of Science, ProQuest and Scopus database. Results: With 396 retrieved records, 23 animal studies and 4 human studies were included. In vivo and in vitro animal studies revealed the effect of D-Asp depending on species, sex and organ-specific. Our results showed that exogenous D-Asp enhances testosterone levels in male animal’s studies, whereas studies in human yielded inconsistent results. The evidence for this association in man is still sparse, mostly because of limited number and poor quality studies. Conclusion: There is an urgent need for more and well-designed human clinical trials with larger sample sizes and longer duration to investigate putative effects of D-Asp on testosterone concentrations. PMID:28280794

  9. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.

  10. In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.

    PubMed

    Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang

    2016-01-01

    Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes.

  11. Effects of Rosuvastatin Alone or in Combination with Omega-3 Fatty Acid on Adiponectin Levels and Cardiometabolic Profile

    PubMed Central

    Al-Kuraishy, Hayder M.; Al-Gareeb, Ali I.

    2016-01-01

    Background: Adiponectin is an important adipocyte-related protein that has been postulated to participate in prevention of the development of metabolic syndrome. The relationship between adiponectin serum levels and risk of coronary artery disease (CAD) has been widely investigated and remains controversial. The aim of the present study was to evaluate the effects of rosuvastatin and/or omega-3 fatty acid on adiponectin serum levels in patients with insulin resistance (IR) and CAD. Patients and Methods: This study involved 87 patients with CADs and IR of different etiology, the patients were divided into three groups; 24 patients on treatment with rosuvastatin, 22 patients on treatment with omega-3 fatty acid, 23 patients on treatment with omega-3 fatty acid and rosuvastatin, 18 patients were not previously or currently treated with either rosuvastatin or omega-3 fatty acid, those regarded as control patients. Anthropometric measures, adiponectin serum levels, and other biochemical parameters were assessed in each treated group. Results: Rosuvastatin therapy leads to a significant elevation in adiponectin serum levels from 4.1 ± 0.99 ng/mL to 6.76 ± 1.03 ng/mL compared to control P < 0.01. Omega-3 fatty acid therapy leads to a significant elevation in adiponectin serum levels from 4.1 ± 0.99 ng/mL to 6.11 ± 1.29 ng/mL compared to control P < 0.01. Rosuvastatin plus omega-3 fatty acid therapy lead to a significant elevation in adiponectin serum levels from 4.1 ± 0.99 ng/mL to 7.99 ± 1.76 ng/mL compared to control P < 0.01. Conclusions: Rosuvastatin and/or omega-3 fatty acid lead to significant cardiometabolic protection through an increment in adiponectin serum levels. PMID:28104968

  12. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  13. Salicylic acid beyond defence: its role in plant growth and development.

    PubMed

    Rivas-San Vicente, Mariana; Plasencia, Javier

    2011-06-01

    In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

  14. Inactivation of cystein-aspartic acid protease (caspase)-1 by saikosaponin A.

    PubMed

    Han, Na-Ra; Kim, Hyung-Min; Jeong, Hyun-Ja

    2011-01-01

    This work investigates the anti-inflammatory mechanism of saikosaponin A (SA), a major component of Bupleurum falcatum LINNE. SA significantly inhibited phorbol myristate acetate (PMA) plus A23187-induced the production and expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in human mast cell (HMC)-1 cells. SA suppressed PMA plus A23187-induced phosphorylation of extracellular signal-regulated kinase and p38. When HMC-1 cells were treated with SA, translocation of nuclear factor (NF)-κB/Rel A into nucleus and degradation of inhibitor of NF-κB (IκB) in cytoplasm were inhibited. SA decreased PMA plus A23187-induced cysteine-aspartic acid protease (caspase)-1 activity. IL-1β production was also inhibited by SA. Finally, SA significantly decreased the number of nasal rubs and serum TNF-α level in the ovalbumin-sensitized allergic rhinitis mouse model. The underlying mechanism involves, at least in part, inactivation of caspase-1, which provides new evidence for therapeutic application of SA to target inflammatory processes.

  15. Effect of rosmarinic acid on sertoli cells apoptosis and serum antioxidant levels in rats after exposure to electromagnetic fields.

    PubMed

    Hajhosseini, Laleh; Khaki, Arash; Merat, Ehsan; Ainehchi, Nava

    2013-01-01

    Rosmarinic acid belongs to the group of polyphenols; it has antioxidant, anti-inflammatory and antimicrobial activities and help to prevent cell damage caused by free radicals. The objective was to study the effect of Rosmarinic acid on sertolli cells apoptosis and serum antioxidant levels in rats after they were exposed to electromagnetic fields. Male Wistar rats (n=40) were allocated into three groups: control group (n=10) that received 5 cc normal saline (0.9% NaCl) daily by gavage method, Rosmarinic acid group that received 5mg/rat (gavage) (n=10), electromagnetic fields (EMF) group that had exposure with 50 hz (n=20) which was subdivided to two groups of 10; EMF group and treatment group. Treatment group received 5mg/rat (gavage) Rosmarinic acid daily for 6 weeks, respectively. However, the control group just received an equal volume of distilled water daily (gavage). On the 42nd day of research, 5 cc blood was collected to measure testosterone hormones, total antioxidant capacity (TAC), levels from whole group's analysis. Level of malondialdehyde (MDA) levels and sertoli cells apoptosis significantly decreased in the group that received 5mg/rat of Rosmarinic acid (P<0.05) in comparison with experimental groups. Level of testosterone, total antioxidant capacity (TAC), significantly increased in groups that received Rosmarinic acid (P<0.05). Since in our study 5mg/rat of Rosmarinic acid showed significantly preventive effect on cell damages especial sertoli cells apoptosis that caused with EMF, it seems that using Rosmarinic acid as food additive can be effective for supporting people living under EMF environmental pollution.

  16. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels.

    PubMed

    Barceló-Coblijn, Gwendolyn; Murphy, Eric J

    2009-11-01

    There is little doubt regarding the essential nature of alpha-linolenic acid (ALA), yet the capacity of dietary ALA to maintain adequate tissue levels of long chain n-3 fatty acids remains quite controversial. This simple point remains highly debated despite evidence that removal of dietary ALA promotes n-3 fatty acid inadequacy, including that of docosahexaenoic acid (DHA), and that many experiments demonstrate that dietary inclusion of ALA raises n-3 tissue fatty acid content, including DHA. Herein we propose, based upon our previous work and that of others, that ALA is elongated and desaturated in a tissue-dependent manner. One important concept is to recognize that ALA, like many other fatty acids, rapidly undergoes beta-oxidation and that the carbons are conserved and reused for synthesis of other products including cholesterol and fatty acids. This process and the differences between utilization of dietary DHA or liver-derived DHA as compared to ALA have led to the dogma that ALA is not a useful fatty acid for maintaining tissue long chain n-3 fatty acids, including DHA. Herein, we propose that indeed dietary ALA is a crucial dietary source of n-3 fatty acids and its dietary inclusion is critical for maintaining tissue long chain n-3 levels.

  17. CSF levels of heart fatty acid binding protein are altered during early phases of Alzheimer's disease.

    PubMed

    Chiasserini, Davide; Parnetti, Lucilla; Andreasson, Ulf; Zetterberg, Henrik; Giannandrea, David; Calabresi, Paolo; Blennow, Kaj

    2010-01-01

    Heart fatty acid binding protein (HFABP) has been proposed as a putative marker for dementia disorders. To evaluate the value of this protein as an early marker of Alzheimer's disease (AD), we analyzed HFABP level and the classical biomarkers amyloid-β (Aβ)1-42, total tau (t-tau), and phosphorylated tau (p-tau) in cerebrospinal fluid (CSF) of patients with mild cognitive impairment (MCI) followed up for four years (n=41), AD (n=32), and subjects with other neurological diseases without dementia (OND, n=25). HFABP levels were higher in AD patients and in MCI converting to AD (MCI-AD) with respect to OND and to cognitively stable MCI patients (MCI-MCI). The receiver operator characteristics analysis for HFABP alone showed a sensitivity of 87% and a specificity of 81% for AD versus OND (area under the curve, AUC=0.83); sensitivity and specificity were 46% and 94%, respectively, when comparing MCI-MCI versus MCI-AD. CSF HFABP levels showed a strong positive correlation with both t-tau and p-tau. Interestingly, the ratio between HFABP and Aβ1-42 improved the performance in distinguishing AD from OND (sensitivity: 90%; specificity 82%, AUC=0.89), and gave the best accuracy in discriminating MCI-AD from MCI-MCI (sensitivity: 80%; specificity 100%, AUC=0.90). Survival analysis by means of Kaplan-Meier curve showed a significantly higher proportion of MCI patients converting to AD in the group with higher values of HFABP/Aβ1-42 ratio (cut-off=0.7). A significant correlation between HFABP/Aβ1-42 ratio and MMSE annual decrease rate was also documented (p<0.0001). HFABP /Aβ1-42 ratio might be a useful predictor of conversion in MCI patients.

  18. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone.

    PubMed

    Kaya, Armagan; Yigit, Emel

    2014-08-01

    In this study, we comparatively evaluated the effects of the flurochloridone as well as flurochloridone and exogenously applied salicylic acid (SA) on Helianthus annuus L. to find out herbicide-induced toxicity reducing influence of SA. We examined and compared the physiological and biochemical effects of different concentrations of flurochloridone (11, 32 and 72 mM) in both the SA pre-treated and non-treated plants. The plants treated with flurochloridone exhibited reduced total chlorophyll, carotenoid, and relative water content compared to the control group, whereas the plants that were pre-treated with SA exhibited relatively higher values for the same physiological parameters. In the SA non-treated plants, the superoxide dismutase, glutathione reductase and glutathione S-transferase activities were increased in the treatment groups compared to the control group. In the treatment groups, these enzyme activities were decreased in the SA-pre-treated plants compared to the non-treated plants. Ascorbate peroxidase and catalase activities decreased in the flurochloridone-treated plants compared to the control plants. The ascorbate peroxidase activity increased in the control groups but decreased in the treatment groups in the SA pre-treated plants compared to the non-treated plants. However, SA treatment decreased the activity of catalase in the control and treatment groups compared to the plants that were not treated with SA. Flurochloridone treatment increased the malondialdehyde content in the treated groups compared to the control groups, whereas SA-pretreatment decreased malondialdehyde content compared to plants that were not treated with SA. Flurochloridone treatment increased endogenous SA content compared to the control. Although the residual levels of herbicide in the plants increased proportionately with increasing herbicide concentrations, the SA-pre-treated plants exhibited reduced residual herbicide levels compared to the plants that were not treated

  19. Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element.

    PubMed Central

    Qin, X F; Holuigue, L; Horvath, D M; Chua, N H

    1994-01-01

    Transgenic tobacco plants carrying a number of regulatory sequences derived from the cauliflower mosaic virus 35S promoter were tested for their response to treatment with salicylic acid (SA), an endogenous signal involved in plant defense responses. beta-Glucuronidase (GUS) gene fusions with the full-length (-343 to +8) 35S promoter or the -90 truncation were found to be induced by SA. Time course experiments revealed that, in the continuous presence of SA, the -90 promoter construct (-90 35S-GUS) displayed rapid and transient induction kinetics, with maximum RNA levels at 1 to 4 hr, which declined to low levels by 24 hr. Induction was still apparent in the presence of the protein synthesis inhibitor cycloheximide (CHX). Moreover, mRNA levels continued to accumulate over 24 hr rather than to decline. By contrast, mRNA from the endogenous pathogenesis-related protein-1a (PR-1a) gene began to accumulate at later times during SA treatment and steadily increased through 24 hr; transcription of this gene was almost completely blocked by the presence of CHX. Further dissection of the region from -90 and -46 of the 35S promoter revealed that the SA-responsive element corresponds to the previously characterized activation sequence-1 (as-1). These results represent a definitive analysis of immediate early responses to SA, relative to the late induction of PR genes, and potentially elucidate the early events of SA signal transduction during the plant defense response. PMID:8061520

  20. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  1. Predictors of urinary levels of 2,4-dichlorophenoxyacetic acid, 3,5,6-trichloro-2-pyridinol, 3-phenoxybenzoic acid, and pentachlorophenol in 121 adults in Ohio

    EPA Science Inventory

    Limited data exist on the driving factors that influence the non-occupational exposures of adults to pesticides using urinary biomonitoring. In this work, the objectives were to quantify the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloro-2-pyridinol (TC...

  2. A Study of Reverse Causation: Examining the Associations of Perfluorooctanoic Acid Serum Levels with Two Outcomes

    PubMed Central

    Dhingra, Radhika; Winquist, Andrea; Darrow, Lyndsey A.; Klein, Mitchel; Steenland, Kyle

    2016-01-01

    Background: Impaired kidney function and earlier menopause were associated with perfluorooctanoic acid (PFOA) serum levels in previous cross-sectional studies. Reverse causation, whereby health outcomes increase serum PFOA, may underlie these associations.Background: Impaired kidney function and earlier menopause were associated with perfluorooctanoic acid (PFOA) serum levels in previous cross-sectional studies. Reverse causation, whereby health outcomes increase serum PFOA, may underlie these associations. Objective: We compared measured (subject to reverse causation) versus modeled (unaffected by reverse causation) serum PFOA in association with these outcomes to examine the possible role of reverse causation in these associations.Objective: We compared measured (subject to reverse causation) versus modeled (unaffected by reverse causation) serum PFOA in association with these outcomes to examine the possible role of reverse causation in these associations. Methods: In cross-sectional analyses, we analyzed PFOA in relation to self-reported menopause among women (n = 9,192) 30–65 years old and in relation to kidney function among adults > 20 years old (n = 29,499) in a highly exposed Mid-Ohio Valley cohort. Estimated glomerular filtration rate (eGFR, a marker of kidney function) and serum PFOA concentration were measured in blood samples collected during 2005–2006. Retrospective year-specific serum PFOA estimates were modeled independently of measured PFOA based on residential history and plant emissions. Using measured and modeled PFOA in 2005 or 2006 (predictor variables), cross-sectional associations were assessed for eGFR and menopause (yes/no). We also analyzed measured PFOA (dependent variable) in relation to the number of years since menopause.Methods: In cross-sectional analyses, we analyzed PFOA in relation to self-reported menopause among women (n = 9,192) 30–65 years old and in relation to kidney function among adults > 20 years old (n = 29

  3. Number of SA Astronomy Researchers

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-12-01

    The SA professional astronomical community has grown enormously in recent years with the advent of SALT, SKA/MeerKAT/KAT and HESS (Namibia). In this article I have made an attempt to list the people involved, namely those with doctorates working in fields of astronomy and related technologies, cosmic rays, cosmology and space science.

  4. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  5. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew.

    PubMed

    Tayeh, Christine; Randoux, Béatrice; Bourdon, Natacha; Reignault, Philippe

    2013-12-15

    Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.

  6. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid.

    PubMed

    Huang, Yao-Xiong; Tuo, Wei-Wei; Wang, Di; Kang, Li-Li; Chen, Xing-Yao; Luo, Man

    2016-02-01

    Membrane sialic acid (SA) plays an important role in the survival of red blood cells (RBCs), the age-related reduction in SA content negatively impacts both the structure and function of these cells. We have therefore suggested that remodelling the SA in the membrane of aged cells would help recover cellular functions characteristic of young RBCs. We developed an effective method for the re-sialylation of aged RBCs by which the cells were incubated with SA in the presence of cytidine triphosphate (CTP) and α-2,3-sialytransferase. We found that RBCs could be re-sialylated if they had available SA-binding groups and after the re-sialylation, aged RBCs could restore their membrane SA to the level in young RBCs. Once the membrane SA was restored, the aged RBCs showed recovery of their biophysical and biochemical properties to similar levels as in young RBCs. Their life span in circulation was also extended to twofold. Our findings indicate that remodelling membrane SA not only helps restore the youth of aged RBCs, but also helps recover injured RBCs.

  7. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  8. Antiepileptic potential of matrine via regulation the levels of gamma-aminobutyric acid and glutamic acid in the brain.

    PubMed

    Xiang, Jun; Jiang, Yugang

    2013-12-05

    Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug.

  9. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-08-01

    Sources, composition and occurrence of secondary organic aerosols in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeastern Greenland, during the full annual cycle of 2008 and 2010, respectively. Speciation of organic acids, organosulfates and nitrooxy organosulfates - from both anthropogenic and biogenic precursors were in focus. A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate and 3-methyl-1,2,3-butanetricarboxylic acid), 12 organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean concentrations of organosulfates (47 ± 14 ng m-3) and organic acids (11.5 ± 4 ng m-3) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 ± 3 ng m-3) and organic acids (2.2 ± 1 ng m-3) observed during the rest of the year. At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 ± 4 ng m-3 and 3.9 ± 1 ng m-3, respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. Elevated organosulfate and organic acid concentrations coincided with the Arctic haze period at both stations, where northern Eurasia was identified as the main source region. Air mass transport from northern Eurasia to Zeppelin Mountain was associated with a 100% increase in the number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. The results from this

  10. Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation.

    PubMed

    Chaman, Mercedes E; Copaja, Sylvia V; Argandoña, Victor H

    2003-04-09

    It has been suggested that salicylic acid (SA) is a signal in acquired resistance to pathogens in several plants. Also, it has been suggested that infestation of plants causes an increase in the activity of phenylalanine ammonia-lyase (PAL), a key phenolic biosynthesis enzyme. The purpose of this work was to investigate whether the induction of SA and PAL activity is related to the susceptibility of barley to aphid infestation. The induction of free and conjugated SA in two barley cultivars that differ in susceptibility to aphids was analyzed. Analyses of several physiological parameters showed that cv. UNA-80 was more susceptible to the aphid Schizaphis graminum than cv. LM-109. Salicylic acid was not detected in noninfested plants. Levels of free and conjugated SA in cv. LM-109 and of conjugated SA in cv. UNA-80 increased with aphid infestation, whereas the levels of free SA in cv. UNA-80 remained high under all infestation degrees. Maximum values reached in both cultivars were not significantly different. With respect to PAL activity, cv. LM-109 showed a significantly higher specific activity than cv. UNA-80, the more susceptible cultivar. The relationship between the susceptibility of a plant to aphid and SA induction and PAL activity is discussed.

  11. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  12. Effects of dietary folic acid level and symbiotic folate production on fitness and development in the fruit fly Drosophila melanogaster.

    PubMed

    Blatch, Sydella A; Meyer, Kyle W; Harrison, Jon F

    2010-01-01

    Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.

  13. Intensive lifestyle intervention provides rapid reduction of serum fatty acid levels in women with severe obesity without lowering omega-3 to unhealthy levels.

    PubMed

    Lin, C; Andersen, J R; Våge, V; Rajalahti, T; Mjøs, S A; Kvalheim, O M

    2016-08-01

    Serum fatty acid (FA) levels were monitored in women with severe obesity during intensive lifestyle intervention. At baseline, total FA levels and most individual FAs were elevated compared to a matching cohort of normal and overweight women (healthy controls). After 3 weeks of intensive lifestyle intervention, total level was only 11-12% higher than in the healthy controls and with almost all FAs being significantly lower than at baseline, but with levels of omega-3 being similar to the healthy controls. This is contrary to observations for patients subjected to bariatric surgery where omega-3 levels dropped to levels significantly lower than in the lifestyle patients and healthy controls. During the next 3 weeks of treatment, the FA levels in lifestyle patients were unchanged, while the weight loss continued at almost the same rate as in the first 3 weeks. Multivariate analysis revealed that weight loss and change of serum FA patterns were unrelated outcomes of the intervention for lifestyle patients. For bariatric patients, these processes were associated probably due to reduced dietary input and increased input from the patients' own fat deposits, causing a higher rate of weight loss and simultaneous reduction of the ratio of serum eicosapentaenoic to arachidonic acid.

  14. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios.

  15. Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects.

    PubMed

    Strajhar, P; Schmid, Y; Liakoni, E; Dolder, P C; Rentsch, K M; Kratschmar, D V; Odermatt, A; Liechti, M E

    2016-03-01

    Lysergic acid diethylamide (LSD) is a serotonin 5-hydroxytryptamine-2A (5-HT2A ) receptor agonist that is used recreationally worldwide. Interest in LSD research in humans waned after the 1970s, although the use of LSD in psychiatric research and practice has recently gained increasing attention. LSD produces pronounced acute psychedelic effects, although its influence on plasma steroid levels over time has not yet been characterised in humans. The effects of LSD (200 μg) or placebo on plasma steroid levels were investigated in 16 healthy subjects using a randomised, double-blind, placebo-controlled, cross-over study design. Plasma concentration-time profiles were determined for 15 steroids using liquid-chromatography tandem mass-spectrometry. LSD increased plasma concentrations of the glucocorticoids cortisol, cortisone, corticosterone and 11-dehydrocorticosterone compared to placebo. The mean maximum concentration of LSD was reached at 1.7 h. Mean peak psychedelic effects were reached at 2.4 h, with significant alterations in mental state from 0.5 h to > 10 h. Mean maximal concentrations of cortisol and corticosterone were reached at 2.5 h and 1.9 h, and significant elevations were observed 1.5-6 h and 1-3 h after drug administration, respectively. LSD also significantly increased plasma concentrations of the androgen dehydroepiandrosterone but not other androgens, progestogens or mineralocorticoids compared to placebo. A close relationship was found between plasma LSD concentrations and changes in plasma cortisol and corticosterone and the psychotropic response to LSD, and no clockwise hysteresis was observed. In conclusion, LSD produces significant acute effects on circulating steroids, especially glucocorticoids. LSD-induced changes in circulating glucocorticoids were associated with plasma LSD concentrations over time and showed no acute pharmacological tolerance.

  16. Serum uric acid levels and freezing of gait in Parkinson's disease.

    PubMed

    Ou, Ruwei; Cao, Bei; Wei, Qianqian; Hou, Yanbing; Xu, Yaqian; Song, Wei; Zhao, Bi; Shang, Huifang

    2017-03-01

    Uric acid (UA) is a natural antioxidant and iron scavenger in the human body, which has been hypothesized to exert an anti-oxidative effect in Parkinson's disease (PD). This study aimed to investigate the relationship between serum UA levels and freezing of gait (FOG) in PD. A total of 321 Chinese PD patients with fasting serum UA evaluated were included in the cross-sectional study. Demographics, clinical features, and therapeutic regimen were collected. The Unified PD Rating Scale (UPDRS) III and Hoehn and Yahr (H and Y) stage were used to evaluate the severity of disease, and the Frontal Assessment Battery (FAB) and Montreal Cognitive Assessment (MoCA) scales were used to assess the cognitive function. Patients with FOG showed lower proportion of male, longer disease duration, lower body mass index, lower concentrations of serum UA, higher total levodopa equivalent daily dosage, higher UPDRS III score, greater median H and Y stage, lower scores of FAB and MoCA, and higher frequencies of motor fluctuation, dyskinesia, falls, and festination compared to patients without FOG (P < 0.05). The binary logistic regression model indicated that high UPDRS III score (OR = 1.049, P < 0.001), fluctuation (OR = 2.677, P = 0.035), dyskinesia (OR = 6.294, P = 0.003), festination (OR = 3.948, P < 0.001), falls (OR = 7.528, P < 0.001), and low serum UA levels (OR = 0.990, P < 0.001) were associated with FOG. Our study suggests that low serum UA concentration is associated with the occurrence of FOG in PD.

  17. Glycyrrhizic acid attenuates growth of Leishmania donovani by depleting ergosterol levels.

    PubMed

    Dinesh, Neeradi; Neelagiri, Soumya; Kumar, Vinay; Singh, Sushma

    2017-02-24

    In the present study, glycyrrhizic acid (GA) the main component of Glycyrrhiza glabra was evaluated for its efficacy as antileishmanial agent and its mode of action explored. GA inhibits promastigotes and intracellular amastigotes in a dose dependent manner at an IC50 value of 34 ± 3.0 μM and 20 ± 4.2 μM respectively. GA was non-toxic against THP-1 macrophage host cell line. GA was found to inhibit recombinant Leishmania donovani HMG-CoA reductase (LdHMGR) enzyme at the half-maximum inhibitory concentration of 24 ± 4.3 μM indicating the sensitivity and specificity of GA towards the enzyme. However, GA could cause only 30% reduction in HMGR activity when measured in Leishmania promastigotes treated with 34 μM of GA. Interestingly western blot analysis revealed fivefold reduced HMGR expression in GLA treated promastigotes. To further study the mode of action of GA, we used transgenic parasites overexpressing LdHMGR. Results indicated that ∼2 fold resistance was exhibited by LdHMGR overexpressing promastigotes to GA with an IC50 value of 74 μM compared to the wild type parasite. This explained the specific binding of GA to LdHMGR enzyme. There was ∼2 fold depletion in ergosterol levels in wild type promastigotes compared to the HMGR overexpressors. This data was further validated by exogenous supplementation of GA treated cells with ergosterol and 40% reversal of growth inhibition was observed. The results obtained suggested that GA kills the parasite by affecting sterol biosynthetic pathway, especially by inhibiting the L. donovani HMGR and altering ergosterol levels. The finding from the current study shows that GA is a potential antileishmanial chemotherapeutic agent.

  18. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules

    PubMed Central

    2014-01-01

    Background Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). Results We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. Conclusions Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation. PMID:24886084

  19. Effect of dietary starch level and its rumen degradability on lamb meat fatty acid composition.

    PubMed

    Oliveira, Maria A; Alves, Susana P; Santos-Silva, José; Bessa, Rui J B

    2017-01-01

    Forty lambs were fed one of four diets supplemented with a linseed and sunflower oil blend but differing in starch level (mid, ≈35 vs. high, ≈50%) and starch rumen degradability (mid, ≈70 vs. high, ≈80%). The effects of diet on growth, carcass traits and meat fatty acid (FA) composition, with emphasis on biohydrogenation intermediates were evaluated. Lambs stayed on trial for 5weeks until slaughter. Treatment had no effect on animal performance and carcass traits. High-degradability diets decreased (P=0.04) meat shear force compared with mid-degradability diets. Lipid content of meat was unaffected by the diet. Mid-starch diets increased (P<0.05) the saturated FA and cis-MUFA but decreased (P<0.05) the trans-MUFA, particularly the t10-18:1, when compared with high-starch diets. The t11-18:1 (0.7% of total FA) and c9,t11-18:2 (<0.3%) remained low and the 18:3n-3 remained high (1.74%) and unaffected by diet.

  20. Risk factors for suicide among patients with schizophrenia: a cohort study focused on cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid

    PubMed Central

    Neider, Daniel; Lindström, Leif H; Bodén, Robert

    2016-01-01

    Background The objective of this study was to investigate the association between 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) in cerebrospinal fluid (CSF), bullying, and later suicide among patients with schizophrenia. Methods Ninety-nine patients with schizophrenia were included. Correlations of clinical factors, 5-HIAA and HVA, and later suicide were investigated. Results Twelve patients committed suicide (12%) during a 28-year follow-up period. Later suicide was correlated to bullying in childhood (P=0.02) and a lower quotient of HVA/5-HIAA in CSF (P<0.05). Conclusion Suicide in schizophrenia is related to childhood exposedness and CSF neurotransmitter levels. PMID:27468235

  1. Serum Uric Acid Level Predicts Progression of IgA Nephropathy in Females but Not in Males

    PubMed Central

    Shoji, Tatsuya; Shinzawa, Maki; Hasuike, Yukiko; Nagatoya, Katsuyuki; Yamauchi, Atsushi; Hayashi, Terumasa; Kuragano, Takayuki; Moriyama, Toshiki; Isaka, Yoshitaka; Nakanishi, Takeshi

    2016-01-01

    Background Immunoglobulin A nephropathy (IgAN) is one of most common forms of glomerulonephritis. At this point, the clinical impact of hyperuricemia on IgAN is not clear. The aim of the present study was to explore the clinical impact of hyperuricemia on the progression of IgAN. Study Design Multicenter retrospective cohort study. Setting & Participants 935 IgAN patients who were diagnosed by kidney biopsy at Osaka University Hospital, Osaka General Hospital, and Osaka Rosai Hospital. were included in this study. Predictor Uric acid levels at renal biopsy. Outcomes The outcome of interest was the time from the kidney biopsy to the time when a 50% increase in the baseline serum creatinine level was observed, which was defined as "progression". Measurements The baseline characteristics according to the kidney biopsy at the time of diagnosis were collected from the medical records, and included age, gender, body mass index, hypertension, diabetes (use of antidiabetic drugs), serum levels of creatinine, urinary protein, smoking status, RAAS blockers and steroid therapy. Results An elevated serum uric acid level was an independent risk factor for progression in female patients (per 1.0 mg/dL, multivariate-adjusted incident rate ratio 1.33 [95% confidence interval 1.07, 1.64], P = 0.008) but not in male patients (1.02 [0.81, 1.29], P = 0.855). To control a confounding effect of renal function on an association between serum uric acid level and progression in female patients, age- and serum creatinine-matched and propensity score-matched analyses were performed, and these results also supported the effect by uric acid on kidney disease progression independent of basal kidney function. Limitations A cohort analyzed retorospectively. Conclusions This study revealed that an elevated uric acid level was an independent risk factor for ESKD in female IgAN patients. Therefore, uric acid might be a treatable target in female IgAN patients. PMID:27560997

  2. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  3. High saturated fatty acid intake induces insulin secretion by elevating gastric inhibitory polypeptide levels in healthy individuals.

    PubMed

    Itoh, Kazue; Moriguchi, Ririko; Yamada, Yuichiro; Fujita, Misuzu; Yamato, Takako; Oumi, Masayo; Holst, Jens Juul; Seino, Yutaka

    2014-08-01

    Insulin resistance is central to the etiology of the metabolic syndrome cluster of diseases. Evidence suggests that a high-fat diet is associated with insulin resistance, which may be modulated by dietary fatty acid composition. We hypothesized that high saturated fatty acid intake increases insulin and gastric inhibitory polypeptide (GIP) secretion. To clarify the effect of ingested fatty acid composition on glucose levels, we conducted an intervention study to investigate the insulin and plasma GIP responses in 11 healthy women, including a dietary control. Subjects were provided daily control meals (F-20; saturated fatty acids/monounsaturated fatty acids/polyunsaturated fatty acids [S/M/P] ratio, 3:4:3) with 20 energy (E) % fat, followed by 2 isoenergetic experimental meals for 7 days each. These meals comprised 60 E% carbohydrate, 15 E% protein, and 30 E% fat (FB-30; high saturated fatty acid meal; S/M/P, 5:4:1; F-30: reduced saturated fatty acid meal; S/M/P, 3:4:3). On the second day of the F-20 and the last day of F-30 and FB-30, blood samples were taken before and 30, 60, and 120 minutes after a meal tolerance test. The plasma glucose responses did not differ between F-20 and FB-30 or F-30. However, insulin levels were higher after the FB-30 than after the F-20 (P < .01). The GIP response after the FB-30 was higher than that after the F-30 (P < .05). In addition, the difference in the incremental GIP between FB-30 and F-30 correlated significantly and positively with that of the insulin. These results suggest that a high saturated fatty acid content stimulates postprandial insulin release via increased GIP secretion.

  4. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  5. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress.

    PubMed

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A

    2015-01-01

    Ascorbate (AsA)-glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants.

  6. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis.

    PubMed

    Lemarié, Séverine; Robert-Seilaniantz, Alexandre; Lariagon, Christine; Lemoine, Jocelyne; Marnet, Nathalie; Jubault, Mélanie; Manzanares-Dauleux, Maria J; Gravot, Antoine

    2015-11-01

    The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.

  7. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure.

    PubMed

    Pan, Fengshan; Luo, Sha; Shen, Jing; Wang, Qiong; Ye, Jiayuan; Meng, Qian; Wu, Yingjie; Chen, Bao; Cao, Xuerui; Yang, Xiaoe; Feng, Ying

    2017-02-23

    A hydroponic experiment was conducted to investigate the effects of an endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion accumulation, chlorophyll concentration, and the expression of three metal transporter families, zinc-regulated transporters, iron-regulated transporter-like protein (ZIP); natural resistance-associated macrophage protein; and heavy metal ATPase (HMA) at different Cd treatment levels. The results showed that at relatively low Cd conditions (≤25 μM), SaMR12 demonstrated a 19.5-27.5% increase in Fe, a 46.7-90.7% increase in Zn, and a 7.9-43.7% increase in Cu content in the shoot and elevated expression of SaIRT1, SaZIP3, SaHMA2, and SaNramp3 in the shoot and SaZIP1, SaHMA2, SaNramp1, and SaNramp3 in the root. At high Cd conditions (100 and 400 μM), SaMR12 demonstrated a 16.4-18.5% increase in leaf chlorophyll concentration, a 18.9-23.2% increase in Fe, and a 15.4-17.5% increase in Mg content in the shoot and elevated expression of SaZIP3, SaNramp6, SaHMA2, and SaHMA3 in the shoot and SaZIP3, SaNarmp1, SaNarmp3, and SaNarmp6 in the root. These results indicated that SaMR12 can elevate essential metal ion uptake and regulate the expression of transport genes to promote plant growth and enhance Cd tolerance and uptake to improve Cd accumulation up to 118-130%.

  8. Differential levels of long chain polyunsaturated fatty acids in women with preeclampsia delivering male and female babies.

    PubMed

    Roy, Suchitra; Dhobale, Madhavi; Dangat, Kamini; Mehendale, Savita; Wagh, Girija; Lalwani, Sanjay; Joshi, Sadhana

    2014-11-01

    Maternal long chain polyunsaturated fatty acids (LCPUFA) play a key role in fetal growth and development. This study for the first time examines the maternal and cord LCPUFA levels in preeclamptic mothers delivering male and female infants. In this study 122 normotensive control pregnant women (gestation≥37 weeks) and 90 women with preeclampsia were recruited. Results indicate lower maternal plasma docosahexaenoic acid (DHA) levels (p<0.05) in women with preeclampsia delivering male babies as compared to normotensive control women delivering male babies. Similarly, cord nervonic acid levels were lower (p<0.01) in women with preeclampsia delivering male babies as compared to normotensive control group. However, cord nervonic acid levels were comparable in women with preeclampsia and normotensive control women delivering female babies. This data suggests that male babies born to mothers with preeclampsia may be at an increased risk of developing neurodevelopmental disorders as compared to female babies. Future studies need to follow up both male and female children born to mothers with preeclampsia since altered levels of LCPUFA at birth may have differential implications for the growth and development.

  9. Co-supplementation of healthy women with fish oil and evening primrose oil increases plasma docosahexaenoic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid levels without reducing arachidonic acid concentrations.

    PubMed

    Geppert, Julia; Demmelmair, Hans; Hornstra, Gerard; Koletzko, Berthold

    2008-02-01

    Fish oil supplementation during pregnancy not only improves maternal and neonatal DHA status, but often reduces gamma-linolenic acid (GLA), dihomo-GLA (DGLA), and arachidonic acid (ARA) levels also, which may compromise foetal and infant development. The present study investigated the effects of a fish oil/evening primrose oil (FSO/EPO) blend (456 mg DHA/d and 353 mg GLA/d) compared to a placebo (mixture of habitual dietary fatty acids) on the plasma fatty acid (FA) composition in two groups of twenty non-pregnant women using a randomised, double-blind, placebo-controlled parallel design. FA were quantified in plasma total lipids, phospholipids, cholesterol esters, and TAG at weeks 0, 4, 6 and 8. After 8 weeks of intervention, percentage changes from baseline values of plasma total lipid FA were significantly different between FSO/EPO and placebo for GLA (+49.9 % v. +2.1 %, means), DGLA (+13.8 % v. +0.7 %) and DHA (+59.6 % v. +5.5 %), while there was no significant difference for ARA ( - 2.2 % v. - 5.9 %). FA changes were largely comparable between plasma lipid fractions. In both groups three subjects reported mild adverse effects. As compared with placebo, FSO/EPO supplementation did not result in any physiologically relevant changes of safety parameters (blood cell count, liver enzymes). In women of childbearing age the tested FSO/EPO blend was well tolerated and appears safe. It increases plasma GLA, DGLA, and DHA levels without impairing ARA status. These data provide a basis for testing this FSO/EPO blend in pregnant women for its effects on maternal and neonatal FA status and infant development.

  10. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    PubMed

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress.

  11. Type IV resistant starch increases cecum short chain fatty acids level in rats.

    PubMed

    Le Thanh-Blicharz, Joanna; Anioła, Jacek; Kowalczewski, Przemysław; Przygoński, Krzysztof; Zaborowska, Zofia; Lewandowicz, Grażyna

    2014-01-01

    Resistant starches are type of dietary fibers. However, their physiological effects depend on the way they resist digestion in the gastrointestinal tract. The objective of this study was to examine the hypothesis that new type of RS4 preparations, of in vitro digestibility of about 50%, obtained by cross-linking and acetylation, acts as a prebiotic by increasing short chain fatty acids content in cecum digesta. The rats were fed with diet containing pregelatinized, cross-linked and acetylated starches as a main carbohydrate source. Pregelatinized, but not chemically modified, potato starch was used in the composition of the control diet. After two weeks of experiment the increase of short chain fatty acids contents in ceceum digesta was observed. The intake of starch A, cross-linked only with adipic acid, resulted in increase of about 40% of short chain fatty acids content, whereas starch PA cross-linked with sodium trimetaphosphate and adipic acid of about 50%. The utmost twofold increase was observed in the case of the production of propionic acid. In contrast, the content of butyric acid increased (12%) only as an effect of consumption of starch PA and even decreased (about 30%) in case of starch A. Both RS4 starches caused an increase of the production of acetic acid by more than 40%. No changes in serum biochemistry, liver cholesterol and organ weights of rats were stated.

  12. Chicoric Acid Levels in Commercial Basil (Ocimum basilicum) and Echinacea purpurea Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported fresh basil (Ocimum basilicum) leaves contain chicoric acid, which is the principal phenolic compound in Echinacea purpurea and purportedly an active ingredient in dietary supplements derived from E. purpurea. Here we present the results from a study evaluating chicoric acid co...

  13. Childrens' Learning and Behaviour and the Association with Cheek Cell Polyunsaturated Fatty Acid Levels

    ERIC Educational Resources Information Center

    Kirby, A.; Woodward, A.; Jackson, S.; Wang, Y.; Crawford, M. A.

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs),…

  14. Expression of EBV antibody EA-IgA, Rta-IgG and VCA-IgA and SA in serum and the implication of combined assay in nasopharyngeal carcinoma diagnosis.

    PubMed

    Xia, Cui; Zhu, Kang; Zheng, Guoxi

    2015-01-01

    Epstein-Barr virus (EBV) is an important non-invasive index for nasopharyngeal carcinoma. Serum sialic acid (SA) level was known to be related with tumor progression. Rta protein antibody IgG (Rta-IgG), early antigen antibody (EA-IgA) and viral capsid antibody (VCA-IgA) levels in serum can also be used to effectively monitor the progression of cancer. This study investigated serum level of SA, Rta-IgG, EA-IgA and VCA-IgA in nasopharyngeal cancer patients and the diagnostic value of combined assay. A total of 64 nasopharyngeal cancer patients were recruited, in parallel with 60 benign rhinitis and 60 healthy individuals. Serum SA, EA-IgA, Rta-IgG and VCA-IgA levels were measured by enzyme-linked immunosorbent assay (ELISA). The diagnostic value of these indexes was further evaluated by ROC curve analysis. Logistic regression model was used to analyze the diagnostic implication of combined assay. The expression levels of SA, EA-IgA, Rta-IgG, and VCA-IgA were highest in nasopharyngeal cancer patients. Those indexes were also increased with advanced TNM stage of cancer. The overall diagnostic efficacy was ranked as: VCA-IgA, Rta-IgA, EA-IgA and SA. The combined diagnosis increased the sensitivity to 98.44% and the negative predictive value to 99.03%, without compromising specificity. SA, EA-IgA, Rta-IgG and VCA-IgA expression levels were elevated in nasopharyngeal patients. The combined diagnosis of those serum indexes may improve the diagnostic efficacy of nasopharyngeal carcinoma.

  15. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  16. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems.

    PubMed

    Ponnampalam, Eric N; Butler, Kym L; Jacob, Robin H; Pethick, David W; Ball, Alex J; Edwards, Janelle E Hocking; Geesink, Geert; Hopkins, David L

    2014-02-01

    The variation in levels of the health claimable long chain omega-3 fatty acids, eicosapentaenoic acid (EPA, 20:5n-3) plus docosahexaenoic acid (DHA, 22:6n-3) across production regions of Australia was studied in 5726 lambs over 3 years completed in 87 slaughter groups. The median level of EPA plus DHA differed dramatically between locations and sometimes between slaughters from the same location. The ratio of EPA plus DHA from lambs with high values (97.5% quantile) to lambs with low values (2.5% quantile) also differed dramatically between locations, and between slaughters from the same location. Consistency between years, at a location, was less for the high to low value ratio of EPA plus DHA than for the median value of EPA plus DHA. To consistently obtain high levels of omega-3 fatty acids in Australian lamb, there must be a focus on lamb finishing diets which are likely to need a supply of α-linolenic acid (18:3n-3), the precursor for EPA and DHA.

  17. Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress.

    PubMed

    Wang, Chao; Zhang, Songhe; Wang, Peifang; Hou, Jun; Qian, Jin; Ao, Yanhui; Lu, Jie; Li, Li

    2011-06-01

    In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a+b) and increased malondialdehyde and O(2-) and H(2)O(2) content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA+50 μM Pb or 100 μM SA+50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O(2-) and H(2)O(2) content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.

  18. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection.

    PubMed

    Liu, Yongjian; Mou, Shifen

    2003-05-16

    Disinfection by products of haloacetic acids and perchlorate pose significant health risks, even at low microg/l levels in drinking water. A new method for the simultaneous determination of nine haloacetic acids (HAAs) and perchlorate as well as some common anions in one run with ion chromatography was developed. The HAAs tested included mono-, di-, trichloroacetic acids, mono, di-, tribromoacetic acids, bromochloroacetic acid, dibromochloroacetic acid, and bromodichloroacetic acid. Two high-capacity anion-exchange columns, a carbonate-selective column and a hydroxide-selective hydrophilic one, were used for the investigation. With the carbonate-selective column, the nine HAAs as well as fluoride, chloride, nitrite, nitrate, phosphate and sulfate could be well separated and determined in one run. With the very hydrophilic column and a gradient elution of sodium hydroxide, methanol and deionized water, the nine HAAs, fluoride, chloride, nitrite, nitrate as well as perchlorate could be simultaneously determined in one run within 34 min. The detection limits for HAAs were between 1.11 and 9.32 microg/l. For perchlorate, it was 0.60 microg/l.

  19. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt.

    PubMed

    Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

    2011-09-14

    Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ∼5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer.

  20. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil1[OPEN

    PubMed Central

    Stymne, Sten

    2017-01-01

    Acyltransferases are key contributors to triacylglycerol (TAG) synthesis and, thus, are of great importance for seed oil quality. The effects of increased or decreased expression of ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) or PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE (PDAT) on seed lipid composition were assessed in several Camelina sativa lines. Furthermore, in vitro assays of acyltransferases in microsomal fractions prepared from developing seeds of some of these lines were performed. Decreased expression of DGAT1 led to an increased percentage of 18:3n-3 without any change in total lipid content of the seed. The tri-18:3 TAG increase occurred predominantly in the cotyledon, as determined with matrix-assisted laser desorption/ionization-mass spectrometry, whereas species with two 18:3n-3 acyl groups were elevated in both cotyledon and embryonal axis. PDAT overexpression led to a relative increase of 18:2n-6 at the expense of 18:3n-3, also without affecting the total lipid content. Differential distributions of TAG species also were observed in different parts of the seed. The microsomal assays revealed that C. sativa seeds have very high activity of diacylglycerol-phosphatidylcholine interconversion. The combination of analytical and biochemical data suggests that the higher 18:2n-6 content in the seed oil of the PDAT overexpressors is due to the channeling of fatty acids from phosphatidylcholine into TAG before being desaturated to 18:3n-3, caused by the high activity of PDAT in general and by PDAT specificity for 18:2n-6. The higher levels of 18:3n-3 in DGAT1-silencing lines are likely due to the compensatory activity of a TAG-synthesizing enzyme with specificity for this acyl group and more desaturation of acyl groups occurring on phosphatidylcholine. PMID:28235891

  1. The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium.

    PubMed

    Chang, Pishan; Orabi, Benoit; Deranieh, Rania M; Dham, Manik; Hoeller, Oliver; Shimshoni, Jakob A; Yagen, Boris; Bialer, Meir; Greenberg, Miriam L; Walker, Matthew C; Williams, Robin S B

    2012-01-01

    Valproic acid (VPA) is the most widely prescribed epilepsy treatment worldwide, but its mechanism of action remains unclear. Our previous work identified a previously unknown effect of VPA in reducing phosphoinositide production in the simple model Dictyostelium followed by the transfer of data to a mammalian synaptic release model. In our current study, we show that the reduction in phosphoinositide [PtdInsP (also known as PIP) and PtdInsP(2) (also known as PIP(2))] production caused by VPA is acute and dose dependent, and that this effect occurs independently of phosphatidylinositol 3-kinase (PI3K) activity, inositol recycling and inositol synthesis. In characterising the structural requirements for this effect, we also identify a family of medium-chain fatty acids that show increased efficacy compared with VPA. Within the group of active compounds is a little-studied group previously associated with seizure control, and analysis of two of these compounds (nonanoic acid and 4-methyloctanoic acid) shows around a threefold enhanced potency compared with VPA for protection in an in vitro acute rat seizure model. Together, our data show that VPA and a newly identified group of medium-chain fatty acids reduce phosphoinositide levels independently of inositol regulation, and suggest the reinvestigation of these compounds as treatments for epilepsy.

  2. The impact of a ketogenic diet and liver dysfunction on serum very long-chain fatty acids levels.

    PubMed

    Stradomska, T J; Bachański, M; Pawłowska, J; Syczewska, M; Stolarczyk, A; Tylki-Szymańska, A

    2013-04-01

    Peroxisomes play an essential role in mammalian cellular metabolism, particularly in oxidation fatty acid pathways. Serum very long-chain fatty acids (VLCFA), the main biochemical diagnostic parameters for peroxisomal disorders, were examined in 25 neurological patients with epilepsy on a ketogenic diet and 27 patients with liver dysfunction. The data show that patients on a ketogenic diet have increased levels of C22:0 and C24:0, but not C26:0, and normal C24:0/C22:0 and C26:0/C22:0. Patients with liver insufficiency showed a slightly elevated level of C26:0, a normal level of C24:0 and a decreased level of C22:0; thus in 21/27 the ratio of C24:0/C22:0 was increased and 15/27 the ratio of C26:0/C22:0 was increased.

  3. Effects of plant species, stage of maturity, and level of formic acid addition on lipolysis, lipid content, and fatty acid composition during ensiling.

    PubMed

    Koivunen, E; Jaakkola, S; Heikkilä, T; Lampi, A-M; Halmemies-Beauchet-Filleau, A; Lee, M R F; Winters, A L; Shingfield, K J; Vanhatalo, A

    2015-09-01

    Forage type and management influences the nutritional quality and fatty acid composition of ruminant milk. Replacing grass silage with red clover (RC; L.) silage increases milk fat 18:3-3 concentration. Red clover has a higher polyphenol oxidase (PPO) activity compared with grasses, which has been suggested to decrease lipolysis and . The present study characterized the abundance and fatty acid composition of esterified lipid and NEFA before and after ensiling of grass and RC to investigate the influence of forage species, growth stage, and extent of fermentation on lipolysis. A randomized block design with a 2 × 3 × 4 factorial arrangement of treatments was used. Treatments comprised RC or a mixture of timothy ( L.) and meadow fescue ( Huds.) harvested at 3 growth stages and treated with 4 levels of formic acid (0, 2, 4, and 6 L/t). Lipid in silages treated with 0 or 6 L/t formic acid were extracted and separated into 4 fractions by TLC. Total PPO activity in fresh herbage and the content of soluble bound phenols in all silages were determined. Concentrations of 18:3-3 and total fatty acids (TFA) were higher ( < 0.001) for RC than for grass. For both forage species, 18:3-3 and TFA content decreased linearly ( < 0.001) with advancing growth stage, with the highest abundance at the vegetative stage. Most of lipid in fresh RC and grass herbage (97%) was esterified, whereas NEFA accounted for 71% of TFA in both silages. Ensiling resulted in marginal increases in TFA content and the amounts of individual fatty acids compared with fresh herbages. Herbage total PPO activity was higher ( < 0.001) for RC than grass (11 vs. 0.11 μkatal/g leaf fresh weight). Net lipolysis during ensiling was extensive for both forage species (660 to 759 g/kg fatty acid for grass and 563 to 737 g/kg fatty acid for RC). Formic acid application (0 vs. 6 L/t) resulted in a marked decrease ( = 0.026) in net lipolysis during the ensiling of RC, whereas the opposite was true ( = 0.026) for grass

  4. Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulfur, and sugar contents.

    PubMed

    Lee, Eun Jin; Yoo, Kil Sun; Jifon, John; Patil, Bhimanagouda S

    2009-08-01

    This study was conducted to characterize shortday onions of 3 pungency levels with regard to the composition of flavor related compounds. A total of 9 onion breeding lines/cultivars were selected, per each of low, medium, and high pungency level, with pyruvic acid contents of 1.9 to 2.8, 4.8 to 5.4, and 7.2 to 8.3 micromoles/mL, respectively. The contents of flavor precursors (S-1-propenyl-L-cysteine sulfoxide [1-PeCSO] and S-methyl-L-cysteine-sulfoxide [MCSO]), free amino acids, free sugars, soluble solids (SSC), and total sulfur (S) in onion bulbs were measured. The flavor precursor contents ranged from 0.03 to 0.16 mg/g fresh weight (FW) for MCSO, 0.07 to 0.65 mg for 1-PeCSO, and 0.12 to 0.77 mg in total, and precursor contents increased with the pungency levels. Onions of different pungency levels did not differ in the contents of individual or total free amino acids, and the most abundant amino acids were glutamine and arginine. The total sugar contents ranged from 50 to 75 mg/g FW, and total S contents (3.5 to 5.1 mg/g dry weight) were not correlated with the pungency levels. However, pungency levels were correlated inversely with bulb weight and positively with SSC, presumably by the effect of dilution. This study indicates that onion pungency is primarily determined by the content of flavor precursor compounds and not by total S, total sugars, or individual/total free amino acids in shortday bulbs.

  5. Shallow hypothermia depends on the level of fatty acid unsaturation in adipose and liver tissues in a tropical heterothermic primate.

    PubMed

    Vuarin, Pauline; Henry, Pierre-Yves; Guesnet, Philippe; Alessandri, Jean-Marc; Aujard, Fabienne; Perret, Martine; Pifferi, Fabien

    2014-07-01

    Optimal levels of unsaturated fatty acids have positive impacts on the use of prolonged bouts of hypothermia in mammalian hibernators, which generally have to face low winter ambient temperatures. Unsaturated fatty acids can maintain the fluidity of fat and membrane phospholipids at low body temperatures. However, less attention has been paid to their role in the regulation of shallow hypothermia, and in tropical species, which may be challenged more by seasonal energetic and/or water shortages than by low temperatures. The present study assessed the relationship between the fatty acids content of white adipose and liver tissues and the expression of shallow hypothermia in a tropical heterothermic primate, the gray mouse lemur (Microcebus murinus). The adipose tissue is the main tissue for fat storage and the liver is involved in lipid metabolism, so both tissues were expected to influence hypothermia dependence on fatty acids. As mouse lemurs largely avoid deep hypothermia (i.e. torpor) use under standard captive conditions, the expression of hypothermia was triggered by food-restricting experimental animals. Hypothermia depth increased with time, with a stronger increase for individuals that exhibited higher contents of unsaturated fatty acids suggesting that they were more flexible in their use of hypothermia. However these same animals delayed the use of long hypothermia bouts relative to individuals with a higher level of saturated fatty acids. This study evidences for the first time that body fatty acids unsaturation levels influence the regulation of body temperature not only in cold-exposed hibernators but also in tropical, facultative heterotherms.

  6. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  7. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings

    PubMed Central

    Nordström, Ann-Caroline; Jacobs, Fernando Alvarado; Eliasson, Lennart

    1991-01-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by 1H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  8. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of dietary protein supplementation, on the performance of sows and their litters during first and subsequent parities. Sixty-four pregnant gilts with body weight (BW...

  9. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of protein, on the performance of sows during first and subsequent parity. Sixty-four pregnant gilts with BW of 195.0 ± 2.1 kg and backfat (BF) thickness of 12.9 ± 0.2 ...

  10. Comparison of physiological and acid-base balance response during uphill, level and downhill running performed at constant velocity.

    PubMed

    Maciejczyk, Marcin; Więcek, M; Szymura, J; Szyguła, Z

    2013-09-01

    The purpose of this study was to compare the physiological and the acid-base balance response to running at various slope angles. Ten healthy men 22.3 ± 1.56 years old participated in the study. The study consisted of completing the graded test until exhaustion and three 45-minute runs. For the first 30 minutes, runs were performed with an intensity of approximately 50% VO2max, while in the final 15 minutes the slope angle of treadmill was adjusted (0°; +4.5°; -4.5°), and a fixed velocity of running was maintained. During concentric exercise, a significant increase in the levels of physiological indicators was reported; during eccentric exercise, a significant decrease in the level of the analyzed indicators was observed. Level running did not cause significant changes in the indicators of acid-base balance. The indicators of acid-base balance changed significantly in the case of concentric muscle work (in comparison to level running) and after the eccentric work, significant and beneficial changes were observed in most of the biochemical indicators. The downhill run can be used for a partial regeneration of the body during exercise, because during this kind of effort an improvement of running economy was observed, and this type of effort did not impair the acid-base balance of body.

  11. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce

    EPA Science Inventory

    An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...

  12. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  13. Vitamin B(12) and folic acid levels as therapeutic target in preserving bone mineral density (BMD) of older men.

    PubMed

    Naharci, Ilkin; Bozoglu, Ergun; Karadurmus, Nuri; Emer, Ozdes; Kocak, Necmettin; Kilic, Selim; Doruk, Huseyin; Serdar, Muhittin

    2012-01-01

    The knowledge about vitamin B(12) and folic acid levels in preserving bone mass in older men is limited. In this retrospective study, we aimed to find out whether levels of vitamin B(12) and folic acid are related to BMD in older men. Two hundred and sixty-nine older men were included in the study. Forty-two (15.6%) of them had osteoporotic, 150 (55.8%) had osteopenic, and 77 (28.6%) had normal BMD. Vitamin B(12) and folic acid levels were categorized as indicating normal, borderline, or low vitamin statuses. Femur neck densities showed statistically significant differences in subjects having low, borderline, and normal vitamin B(12), respectively. There were no significant differences between the three tertiles of vitamin B(12) in femur total, trochanteric, and intertrochanteric densities. After adjustment for age, body mass index (BMI), alcohol, smoking, and exercise with analysis of covariance, the difference was still statistically significant between two groups for femur neck density (p=0.011). No significant difference was observed between the groups of folic acid in any femur sites. We found that the normal level of vitamin B(12) in older men may be related to a decrease of femur neck bone loss.

  14. Genetic Association Mapping Identifies Single Nucleotide Polymorphisms in Genes that Affect Abscisic Acid Levels in Maize Floral Tissues During Drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In maize, development of the female inflorescence and its floral parts is vulnerable to water stress at flowering, which causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basi...

  15. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  16. Comparison of the Effects of Eicosapentaenoic Acid With Docosahexaenoic Acid on the Level of Serum Lipoproteins in Helicobacter pylori: A Randomized Clinical Trial

    PubMed Central

    Agah, Shahram; Shidfar, Farzad; Khandouzi, Nafiseh; Baghestani, Ahmad Reza; Hosseini, Sharieh

    2014-01-01

    Background: Helicobacter pylori infection is the most common chronic bacterial infection around the world and an important cause of gastrointestinal disorders, which might be involved in the pathogenesis of some extragastrointestinal disturbances as well as changes in serum lipid profile. Hypolipemic properties of omega-3 fatty acids have been studied in several studies. Objectives: The present study aimed to compare the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation on the level of serum lipoproteins in H. pylori. Patients and Methods: In a randomized, double-blinded, placebo-controlled clinical trial in Iran, 105 Helicobacter pylori were randomly allocated to receive 2 g of daily EPA (35 patients), DHA (35 patients), or medium-chain triglyceride (MCT) oil as placebo (33 patients) along with conventional tetra-drug H. pylori eradication regimen for 12 weeks. Results: From 105 included patients, 97 (31 in EPA, 33 in DHA, and 33 in control groups) completed the study and were included in final analysis. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and the ratios of TG/HDL-C, TC/HDL-C, and LDL-C/HDL-C were not significantly different among the three groups, while the level of triglyceride (TG) was statistically different. DHA (-16.6 ± 30.34) and control (+ 15.32 ± 56.47) groups were statistically different with regard to changes in TG levels (P = 0.000). Conclusions: There was no difference between the effects of 2 g of EPA or DHA supplementation for 12 weeks on the levels of total cholesterol, LDL-C, HDL-C, TC/HDL-C, TG/HDL-C, and LDL-C/HDL-C; however, it had a desirable effect on the level of TG in a way that the effect of DHA was clearer. PMID:25763259

  17. Effects of conjugated linoleic acid supplementation and feeding level on dairy performance, milk fatty acid composition, and body fat changes in mid-lactation goats.

    PubMed

    Ghazal, S; Berthelot, V; Friggens, N C; Schmidely, P

    2014-11-01

    The objective of this trial was to study the interaction between the supplementation of lipid-encapsulated conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) and feeding level to test if milk performance or milk fatty acid (FA) profile are affected by the interaction between CLA and feeding level. Twenty-four dairy goats were used in an 8-wk trial with a 3-wk adaptation to the experimental ration that contained corn silage, beet pulp, barley, and a commercial concentrate. During the third week, goats were assigned into blocks of 2 goats according to their dry matter intake (DMI), raw milk yield, and fat yield. Each block was randomly allocated to control (45 g of Ca salt of palm oil/d) or CLA treatment. Within each block, one goat was fed to cover 100% (FL100) of the calculated energy requirements and the other was fed 85% of the DMI of the first goat (FL85). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 3, 5, and 7. Conjugated linoleic acid supplementation reduced milk fat content and fat yield by 17 and 19%, respectively, independent of the feeding level. It reduced both the secretion of milk FA synthesized de novo, and those taken up from the blood. No interaction between CLA and feeding level was observed on milk secretion of any group of FA. The CLA supplementation had no effect on DMI, milk yield, protein, and lactose yields but it improved calculated net energy for lactation balance. Goats fed the FL100 × CLA diet tended to have the highest DMI and protein yield. The interaction between CLA and feeding level was not significant for any other variables. Compared with the goats fed FL100, those fed FL85 had lower DMI, lower net energy for lactation balance, and lower digestible protein in the intestine balance. The body weight; milk yield; milk fat, protein, and lactose yields; and fat, protein, lactose, and urea contents in milk were not affected by

  18. High-level production of poly (β-L: -malic acid) with a new isolated Aureobasidium pullulans strain.

    PubMed

    Zhang, Huili; Cai, Jin; Dong, Jiaqi; Zhang, Danping; Huang, Lei; Xu, Zhinan; Cen, Peilin

    2011-10-01

    Poly (β-L: -malic acid) (PMLA) is a water-soluble polyester with many attractive properties in chemical industry and medicine development. However, the low titer of PMLA in the available producer strains limits further industrialization efforts and restricts its many potential applications. In order to solve this problem, a new strain with the distinguished high productivity of PMLA was isolated from fresh plants samples. It was characterized as the candidate of Aureobasidium pullulans based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences. After the optimization of culture conditions, the highest PMLA concentration (62.27 g l(-1)) could be achieved in the shake flask scale. In addition, the contribution of the carbon flux to exopolysaccharide (EPS) and PMLA could be regulated by the addition of CaCO₃ in the medium. This high-level fermentation process was further scaled up in the 10 l benchtop fermentor with a high PMLA concentration (57.2 g l(-1)) and productivity (0.35 g l(-1) h(-1)), which are the highest level in all the literature. Finally, the suitable acid hydrolysis conditions of PMLA were also investigated with regard to the production of L: -malic acid, and the kinetics of PMLA acid hydrolysis was modeled to simulate the whole degradation process. The present work paved the road to produce this multifunctional biomaterial (PMLA) at industrial scale and promised one alternative method to produce L: -malic acid in the future.

  19. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    PubMed

    Sprague, M; Dick, J R; Tocher, D R

    2016-02-22

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids.

  20. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  1. AquaLite, a bioluminescent label for immunoassay and nucleic acid detection: quantitative analyses at the attomol level

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Stults, Nancy L.

    1996-04-01

    AquaLiteR is a direct, bioluminescent label capable of detecting attomol levels of analyte in clinical immunoassays and assays for the quantitative measurement of nucleic acids. Bioluminescent immunoassays (BIAs) require no radioisotopes and avoid complex fluorescent measurements and many of the variables of indirect enzyme immunoassays (EIAs). AquaLite, a recombinant form of the photoprotein aequorin from a bioluminescent jellyfish, is coupled directly to antibodies to prepare bioluminescent conjugates for assay development. When the AquaLite-antibody complex is exposed to a solution containing calcium ions, a flash of blue light ((lambda) max equals 469 nm) is generated. The light signal is measured in commercially available luminometers that simultaneously inject a calcium solution and detect subattomol photoprotein levies in either test tubes or microtiter plates. Immunometric or 'sandwich' type assays are available for the quantitative measurement of human endocrine hormones and nucleic acids. The AquaLite TSH assay can detect 1 attomol of thyroid stimulating hormone (TSH) in 0.2 mL of human serum and is a useful clinical tool for diagnosing hyperthyroid patients. AquaLite-based nucleic acid detection permits quantifying attomol levels of specific nucleic acid markers and represents possible solution to the difficult problem of quantifying the targets of nucleic acid amplification methods.

  2. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-04-03

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels.

  3. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be

  4. Using high dose omega-3 fatty acid supplements to lower triglyceride levels in 10–19 year-olds

    PubMed Central

    de Ferranti, Sarah D.; Milliren, Carly E.; Denhoff, Erica R.; Steltz, Sarah K.; Selamet Tierney, Elif Seda; Feldman, Henry A.; Osganian, Stavroula K.

    2015-01-01

    Background Omega-3 fatty acids (FA) supplements lower triglyceride (TG) levels in adults; little pediatric information is available. We evaluated their effect in hypertriglyceridemic adolescents. Methods 25 patients ages 10–19 years with TG levels 150–1000 mg/dL were randomized to 6 months double-blind trial of Lovaza [∼3360 mg docosahexaenoic acid + eicosapentaenoic acid/day] vs. Placebo. Results Baseline mean TG levels were 227 mg/dl (SD 49). TG levels declined at 3 months in the Lovaza group by 54 ± 27 mg/dL [mean ± standard error (SE)] (p=0.02) and by 34 ± 26 mg/dL (p=0.16) in the Placebo group. The difference in TG lowering between groups was not significant (p=0.52). There were no between-group differences in endothelial function, blood pressure, body mass index, C-reactive protein or side effects. Conclusions High dose omega-3 FA supplements are well tolerated in adolescents. However, declines in TG levels did not differ significantly from Placebo in this small study. PMID:24707021

  5. Omega—3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials

    PubMed Central

    Hawkey, Elizabeth; Nigg, Joel T.

    2015-01-01

    Interest in the value of Omega—3 (n—3) fatty acid supplementation for treatment of ADHD remains high. No prior meta-analysis has examined whether ADHD is associated with alterations in blood lipid levels and meta-analyses of supplementation have reached conflicting conclusions. Methods We report two new meta-analyses. Study 1 examined blood levels of Omega—3 fatty acids in relation to ADHD. Study 2 examined a larger sample of randomized intervention trials than previously reported. Results Study 1 included 9 studies (n = 586) and found lower overall blood levels of n—3 in individuals with ADHD versus controls (g = 0.42, 95% CI = 0.26–0.59; p < .001). Study 2 included 16 studies (n = 1408) and found that n—3 supplementation improved ADHD composite symptoms; using the best available rating and reporter (g = 0.26, 95% CI = 0.15–0.37; p < .001). Supplementation showed reliable effects on hyperactivity by parent and teacher report, but reliable effects for inattention only by parent report. Conclusions Omega—3 levels are reduced in children with ADHD. Dietary supplementation appears to create modest improvements in symptoms. There is sufficient evidence to consider Omega—3 fatty acids as a possible supplement to established therapies. However it remains unclear whether such intervention should be confined to children with below normal blood levels. PMID:25181335

  6. Leveling

    USGS Publications Warehouse

    1966-01-01

    Geodetic leveling by the U.S. Geological Survey provides a framework of accurate elevations for topographic mapping. Elevations are referred to the Sea Level Datum of 1929. Lines of leveling may be run either with automatic or with precise spirit levels, by either the center-wire or the three-wire method. For future use, the surveys are monumented with bench marks, using standard metal tablets or other marking devices. The elevations are adjusted by least squares or other suitable method and are published in lists of control.

  7. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism.

    PubMed Central

    Machleder, D; Ivandic, B; Welch, C; Castellani, L; Reue, K; Lusis, A J

    1997-01-01

    Inbred strains of mice differ in susceptibility to atherogenesis when challenged with a high fat, high cholesterol diet containing 0.5% cholic acid. Studies of recombinant inbred (RI) strains derived from the susceptible strain C57BL/6J (B6) and the resistant strains C3H/HeJ (C3H) and BALB/cJ have revealed an association between fatty streak lesion size and a decrease in high density lipoprotein (HDL) levels on the diet. To better understand the genetic factors contributing to HDL metabolism and atherogenesis in response to the diet, we studied mice derived from an intercross between B6 and C3H using a complete linkage map approach. A total of 185 female progeny were typed for 134 genetic markers spanning the mouse genome, resulting in an average interval of about 10 cM between markers. A locus on distal chromosome 1 containing the apolipoprotein AII gene was linked to HDL-cholesterol levels on both the chow and the atherogenic diets, but this locus did not contribute to the decrease in HDL-cholesterol in response to the diet. At least three distinct genetic loci, on chromosomes 3, 5, and 11, exhibited evidence of linkage to a decrease in HDL-cholesterol after a dietary challenge. Since a bile acid (cholic acid) is required for the diet induced changes in HDL levels and for atherogenesis in these strains, we examined cholesterol-7-alpha hydroxylase (C7AH) expression. Whereas B6 mice exhibited a large decrease in C7AH mRNA levels in response to the diet, C3H showed an increase. Among the intercross mice, multiple loci contributed to the regulation of C7AH mRNA levels in response to the diet, the most notable of which coincided with the loci on chromosomes 3, 5, and 11 controlling HDL levels in response to the diet. None of these loci were linked to the C7AH structural gene which we mapped to proximal chromosome 4. These studies reveal coordinate regulation of C7AH expression and HDL levels, and they indicate that the genetic factors controlling HDL levels are more

  8. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    PubMed

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.

  9. Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code

    NASA Astrophysics Data System (ADS)

    Seligmann, Hervé; Amzallag, Nissim

    2002-11-01

    The emergence of the genetic code remains an enigma. Proposed mechanisms are based on random, historical, thermodynamic and natural selection. However, they introduce chance as a key factor for overcoming the difficulties encountered by the model. We propose here a model in which three successive levels of chemical specificity generated the nucleotide assignments of amino acids in the genetic code. The first level results from hydrophobic and stereospecific interactions between amino acids and short oligonucleotides (termed oligons). The second and third levels of specificity are determined by conditions of energy transfer from loaded oligons (amino acid-oligomer covalently linked) to formation of phosphodiester bond (second level of specificity) and peptidic bond (third level of specificity), while these reactions are catalyzed by RNA templates. This model is sustained by the relationships observed between dipole moments of the nucleotides (forming the anticodon) and reactivity of the amino acyl linkage of the loaded oligon. Moreover, analysis of modern tRNAs reveals that they were probably generated by loose duplication of the nucleotide sequence forming the oligons, after emergence of the 'genetic code.' Indeed, the similarity of nucleotide composition with that of the anticodon decreases with the tRNA domain's distance from the anticodon, but the acceptor stem is relatively more similar to the anticodon than other stems closer to it. This would be because energy transfer constraints that existed between anticodon and amino acid in prebiotic loaded oligonucleotides still affect the structures of modern tRNA acceptor stems. In the model presented, the genetic code is inherent to the most archaic 'molecular physiology' in protolife, even before emergence of a functional 'protein world.' Simple physical processes, in which a level of specificity is integrated in an emerging meta-structure expressing new properties, generate a parsimonious and realistic explanation

  10. First direct sulfuric acid detection in the exhaust plume of a jet aircraft in flight

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Sierau, B.; Arnold, F.; Baumann, R.; Busen, R.; Schulte, P.; Schumann, U.

    Sulfuric acid (SA) was for the first time directly detected in the exhaust plume of a jet aircraft in flight. The measurements were made by a novel aircraft-based VACA (Volatile Aerosol Component Analyzer) instrument of MPI-K Heidelberg while the research aircraft Falcon was chasing another research aircraft ATTAS. The VACA measures the total SA in the gas and in volatile submicron aerosol particles. During the chase the engines of the ATTAS alternatively burned sulfur-poor and sulfur-rich fuel. In the sulfur-rich plume very marked enhancements of total SA were observed of up to 1300 pptv which were closely correlated with ΔCO2 and ΔT and were far above the local ambient atmospheric background-level of typically 15-50 pptv. Our observations indicate a lower limit for the efficiency ɛ for fuel-sulfur conversion to SA of 0.34 %.

  11. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants.

  12. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice.

    PubMed

    Jones, Ryan D; Lopez, Adam M; Tong, Ernest Y; Posey, Kenneth S; Chuang, Jen-Chieh; Repa, Joyce J; Turley, Stephen D

    2015-01-01

    Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1(-/-) mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1(-/-) mice fed chenodeoxycholic acid (CDCA) at a level of 0.06% (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA) (>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1(-/-) and matching Cyp7a1(+/+) mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1(-/-) mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs. 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1(+/+) controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition.

  13. L-4F Differentially Alters Plasma Levels of Oxidized Fatty Acids Resulting in more Anti-Inflammatory HDL in Mice

    PubMed Central

    Imaizumi, Satoshi; Grijalva, Victor; Navab, Mohamad; Van Lenten, Brian J.; Wagner, Alan C.; Anantharamaiah, G.M.; Fogelman, Alan M.; Reddy, Srinivasa T.

    2011-01-01

    To determine in vivo if L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL. Injecting L-4F into apoE null mice resulted in a significant reduction in plasma levels of 15-HETE, 5-HETE, 13-HODE and 9-HODE. In contrast, plasma levels of 20-HETE were not reduced and plasma levels of 14,15-EET, which are derived from the cytochrome P450 pathway, were elevated after injection of L-4F. Injection of 13(S)-HPODE into wild-type C57BL/6J mice caused an increase in plasma levels of 13-HODE and 9-HODE and was accompanied by a significant loss in the anti-inflammatory properties of HDL. The response of atherosclerosis resistant C3H/HeJ mice to injection of 13(S)-HPODE was similar but much more blunted. Injection of L-4F at a site different from that at which the 13(S)-HPODE was injected resulted in significantly lower plasma levels of 13-HODE and 9-HODE and significantly less loss of HDL anti-inflammatory properties in both strains. i) L-4F differentially alters plasma levels of oxidized fatty acids in vivo. ii) The resistance of the C3H/HeJ strain to atherosclerosis may in part be mediated by a reduced reaction of this strain to these potent lipid oxidants. L-4F differentially alters plasma levels of oxidized fatty acids in mice and the resistance of C3H/HeJ mice to atherosclerosis may be mediated by a reduced reaction of this strain to these potent lipid oxidants. PMID:20642447

  14. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  15. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  16. Low-serum GTA-446 anti-inflammatory fatty acid levels as a new risk factor for colon cancer.

    PubMed

    Ritchie, Shawn A; Tonita, Jon; Alvi, Riaz; Lehotay, Denis; Elshoni, Hoda; Myat, Su-; McHattie, James; Goodenowe, Dayan B

    2013-01-15

    Gastrointestinal tract acid-446 (GTA-446) is a long-chain polyunsaturated fatty acid present in the serum. A reduction of GTA-446 levels in colorectal cancer (CRC) patients has been reported previously. Our study compared GTA-446 levels in subjects diagnosed with CRC at the time of colonoscopy to the general population. Serum samples and pathology data were collected from 4,923 representative subjects undergoing colonoscopy and from 964 subjects from the general population. Serum GTA-446 levels were determined using a triple-quadrupole tandem mass spectrometry method. A low-serum GTA-446 level was based on the bottom tenth percentile of subjects with low risk based on age (40-49 years old) in the general population. Eighty-six percent of newly diagnosed CRC subjects (87% for stages 0-II and 85% for stages III-IV) showed low-serum GTA-446 levels. A significant increase in the CRC incidence rate with age was observed in subjects with low GTA-446 levels (p = 0.019), but not in subjects with normal levels (p = 0.86). The relative risk of CRC given a low GTA-446 level was the highest for subjects under age 50 (10.1, 95% confidence interval [C.I.] = 6.4-16.4 in the reference population, and 7.7, 95% C.I. = 4.4-14.1 in the colonoscopy population, both p < 0.0001), and declined with age thereafter. The CRC incidence rate in subjects undergoing colonoscopy with low GTA-446 levels was over six times higher than for subjects with normal GTA-446 levels and twice that of subjects with gastrointestinal symptoms. The results show that a low-serum GTA-446 level is a significant risk factor for CRC, and a sensitive predictor of early-stage disease.

  17. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres.

    PubMed

    Bisht, Kamlesh K; Daniloski, Zharko; Smith, Susan

    2013-08-01

    Sister chromatid cohesion relies on cohesin, a complex comprising a tri-partite ring and a peripheral subunit Scc3, which is found as two related isoforms SA1 and SA2 in vertebrates. There is a division of labor between the vertebrate cohesin complexes; SA1-cohesin is required at telomeres and SA2-cohesin at centromeres. Depletion of SA1 has dramatic consequences for telomere function and genome integrity, but the mechanism by which SA1-cohesin mediates cohesion at telomeres is not well understood. Here we dissect the individual contribution of SA1 and the ring subunits to telomere cohesion and show that telomeres rely heavily on SA1 and to a lesser extent on the ring for cohesion. Using chromatin immunoprecipitation we show that SA1 is highly enriched at telomeres, is decreased at mitosis when cohesion is resolved, and is increased when cohesion persists. Overexpression of SA1 alone was sufficient to induce cohesion at telomeres, independent of the cohesin ring and dependent on its unique (not found in SA2) N-terminal domain, which we show binds to telomeric DNA through an AT-hook motif. We suggest that a specialized cohesion mechanism may be required to accommodate the high level of DNA replication-associated repair at telomeres.

  18. Lovastatin and sodium phenylacetate normalize the levels of very long chain fatty acids in skin fibroblasts of X- adrenoleukodystrophy.

    PubMed

    Singh, I; Pahan, K; Khan, M

    1998-04-24

    The present study underlines the importance of lovastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, and the sodium salt of phenylacetic acid (NaPA), an inhibitor of mevalonate pyrophosphate decarboxylase, in normalizing the pathognomonic accumulation of saturated very long chain fatty acids (VLCFA) in cultured skin fibroblasts of X-adrenoleukodystrophy (X-ALD) in which the ALD gene is either mutated or deleted. Lovastatin or NaPA alone or in combination stimulated the beta-oxidation of lignoceric acid (C24:0) and normalized the elevated levels of VLCFA in skin fibroblasts of X-ALD. Ability of lovastatin and NaPA to normalize the pathognomonic accumulation of VLCFA in skin fibroblasts of X-ALD may identify these drugs as possible therapeutics for X-ALD.

  19. Effect of Accessions and Environment Conditions on Coumarin, O-Coumaric and Kaurenoic Acids Levels of Mikania laevigata.

    PubMed

    Agostini-Costa, Tânia da Silveira; Gomes, Ismael Silva; Fonseca, Maira Christina Marques; Alonso, Araci Molnar; Pereira, Rita de Cassia Alves; Montanari Junior, Ilio; da Silva, Joseane Padilha; Pereira, Ana Maria Soares; da Silva, Dijalma Barbosa; Vieira, Roberto Fontes; Vaz, Ana Paula Artimonte

    2016-11-01

    Coumarin, o-coumaric, and kaurenoic acid are bioactive compounds usually found in the leaves of Mikania laevigata. Genetic and environmental variations in the secondary metabolites of plants may have implications for their biological effects. Three different accessions of M. laevigata cultivated in four sites between the Equator and the Tropic of Capricorn in Brazil were evaluated aiming to present potential raw materials and discuss relationships among these three bioactive compounds. The results revealed effects of plant accessions and environmental factors and suggested two contrasting chemical phenotypes of M. laevigata. The first phenotype presented the highest levels of kaurenoic acid (2283 ± 316 mg/100 g) besides lower levels of coumarin (716 ± 61 mg/100 g), which was also stimulated by the environment and mild climate at the site nearest to the Tropic of Capricorn. The other phenotype presented the lowest levels of kaurenoic acid (137 ± 17 mg/100 g) besides higher levels of coumarin (1362 ± 108 mg/100 g), which was also stimulated by the environment and tropical climate at the site nearest to the Equatorial beach.

  20. Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation.

    PubMed

    Koch, J R; Creelman, R A; Eshita, S M; Seskar, M; Mullet, J E; Davis, K R

    2000-06-01

    Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.

  1. Folic Acid Fortification and Women’s Folate Levels in Selected Communities in Brazil – A First Look

    PubMed Central

    Chakraborty, Hrishikesh; Nyarko, Kwame A.; Goco, Norman; Moore, Janet; Moretti-Ferreira, Danilo; Murray, Jeffrey C.; Wehby, George L.

    2015-01-01

    Background Several countries have implemented a mandatory folic acid fortification of wheat flour and selected grain products to increase folate intake of reproductive-aged women. Brazil implemented a folic acid fortification program in 2004. No previous studies have examined folate differences among Brazilian women following the mandate. Objective We evaluate differences in serum and red blood cell (RBC) folate concentrations between two samples of women of childbearing age from selective communities in Brazil, one tested before (N=116) and the other after the mandate (N=240). Methods We compared baseline folate levels from women enrolled into a prevention study shortly before the fortification mandate was implemented, to baseline levels of women from the same communities enrolled in the same study shortly after fortification began. Participants were women enrolled in a folate supplementation clinical trial, at a hospital specialized in treating craniofacial anomalies in the city of Bauru from January 29, 2004 to April 27, 2005. We only compared baseline folate levels before the women received OCPP folic acid supplements. Results Women enrolled after the fortification mandate had higher means of serum folate (20.3 versus 11.2 nmol/L; p < 0.001) and RBC folate (368.3 versus 177.6 nmol/L; p < 0.001) than women enrolled before the mandate. Differences in folate levels between the two groups remained after adjusting for several co-variables. Conclusions The results suggest that serum and RBC folate levels among women of childbearing age have increased after implementing the folic acid fortification mandate in Brazil. PMID:26255550

  2. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment.

    PubMed

    Iwasa, Motoh; Ishihara, Tomoaki; Mifuji-Moroka, Rumi; Fujita, Naoki; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Iwata, Kazuko; Kaito, Masahiko; Takei, Yoshiyuki

    2015-01-01

    Diabetes mellitus (DM), non-alcoholic fatty liver (NAFL), and obesity are associated with elevated branched-chain amino acid (BCAA) levels, but the mechanism and significance of this has not been elucidated. Eighty-four subjects were enrolled including 43 with DM. Serum BCAA levels were positively correlated with waist-hip ratio and ALT. Serum BCAA levels in subjects with DM were higher than non-DM and those in subjects with NAFL were also higher than non-NAFL. Treatment with pioglitazone and alogliptin (19 of 43 DM subjects) improved serum haemoglobin A1c and decreased BCAA levels. The decrease in BCAAs with improved glucose metabolism suggests that abnormal glucose metabolism is also a factor in elevated BCAA levels.

  3. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression.

    PubMed

    Ormstad, Heidi; Dahl, Johan; Verkerk, Robert; Andreassen, Ole A; Maes, Michael

    2016-08-01

    Lowered plasma tryptophan (TRP) and TRP/competing amino acid (CAA) ratio may be involved in the pathophysiology of major depression (MDD). Increased cortisol and immune-inflammatory mediators in MDD may affect the availability of TRP to the brain. We investigated whether baseline or post-treatment TRP, CAAs and TRP/CAA ratio are associated with a treatment response in MDD and whether these effects may be mediated by cortisol or immune biomarkers. We included 50 medication-free MDD patients with a depressive episode (DSM diagnosis) and assessed symptom severity with the Inventory of Depressive Symptomatology (IDS) before and after treatment as usual for 12 weeks (endpoint). Plasma levels of TRP, CAAs, the ratio, cortisol, CRP and 6 selected cytokines were assayed. The primary outcome was a 50% reduction in the IDS, while the secondary was a remission of the depressive episode. In IDS non-responders, CAAs increased and the TRP/CAA ratio decreased, while in IDS responders CAAs decreased and the TRP/CAA ratio increased from baseline to endpoint. In patients who were still depressed at endpoint TRP and CAAs levels had increased from baseline, while in remitted patients no such effects were found. Increases in CAAs were inversely correlated with changes in interleukin-1 receptor antagonist levels. The results show that increased CAA levels from baseline to endpoint are associated with a non-response to treatment in MDD patients. This suggests that the mechanism underpinning the CAA-related treatment resistance may be related to changes in immune pathways. CAA levels and amino acid metabolism may be new drug targets in depression.

  4. Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI

    PubMed Central

    Ma, Fei; Wu, Tianfeng; Zhao, Jiangang; Song, Aili; Liu, Huan; Xu, Weili; Huang, Guowei

    2016-01-01

    This study aimed to evaluate whether folic acid supplementation would improve cognitive performance by reducing serum inflammatory cytokine concentrations. This RCT was performed in Tianjin, China. Participants with mild cognitive impairment (MCI) were randomly assigned to the folic acid (400 μg/day) or conventional treatment groups. Neuropsychological tests were administered, and folate, homocysteine, vitamin B12, IL-6, TNF-α, Aβ-42, and Aβ-40 were measured at baseline and at 6- and 12-month time points.152 participants (folic acid: 77, conventional: 75) completed the trial. Significant improvements in folate (ηp2 = 0.703, P = 0.011), homocysteine (ηp2 = 0.644, P = 0.009), Aβ-42 (ηp2 = 0.687, P = 0.013), peripheral IL-6 (ηp2 = 0.477, P = 0.025), TNF-α (ηp2 = 0.709, P = 0.009) levels were observed in folic acid group compared with conventional group. Folic acid supplementation improved the Full Scale Intelligence Quotient (P = 0.028; effect size d = 0.153), Information (P = 0.031; d = 0.157) and Digit Span (P = 0.009; d = 0.172) scores at 12 months compared with conventional treatment. Based on these findings, daily oral administration of a 400-μg folic acid supplement to MCI subjects for 12 months can significantly improve cognitive performance and reduce peripheral inflammatory cytokine levels. PMID:27876835

  5. Determination of nucleic acids at nanogram level using resonance light scattering technique with Congo Red

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wang, Yuebo; Wang, Minqin; Sun, Shuna; Yang, Jinghe; Luan, Yuxia

    2005-01-01

    Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0×10 -9 to 1.0×10 -6 g ml -1, 7.5×10 -8 to 1.0×10 -6 g ml -1 and 7.5×10 -8 to 2.5×10 -6 g ml -1 for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml -1 ( S/ N = 3), respectively. Actual biological samples were satisfactorily determined.

  6. Impact of the dietary fatty acid intake on C-reactive protein levels in US adults.

    PubMed

    Mazidi, Mohsen; Gao, Hong-Kai; Vatanparast, Hassan; Kengne, Andre Pascal

    2017-02-01

    Growing evidence suggests that the effects of diet on cardiovascular disease (CVD) occur through mechanisms involving subclinical inflammation. We assessed whether reported dietary fatty acid intake correlates with a serum high-sensitivity C-reactive protein (hs-CRP) concentration in a population-based sample of US men and women.In this cross-sectional analysis, participants were selected from the US National Health and Nutrition Examination Survey (NHANES) and restricted to those with available data on dietary intake, biochemical and anthropometric measurements from 2001 to 2010. All statistical analyses accounted for the survey design and sample weights by using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY).Of the 17,689 participants analyzed, 8607 (48.3%) were men. The mean age was 45.8 years in the overall sample, 44.9 years in men, and 46.5 years in women (P = 0.047). The age-, race-, and sex-adjusted mean dietary intakes of total polyunsaturated fatty acids (PUFAs), PUFAs 18:2 (octadecadienoic), and PUFAs 18:3 (octadecatrienoic) monotonically decreased across hs-CRP quartiles (P < 0.001), whereas dietary cholesterol increased across hs-CRP quartiles (P < 0.001)This study provides further evidence of an association between fatty acid intake and subclinical inflammation markers. hs-CRP concentrations are likely modulated by dietary fatty acid intake. However, the causality of this association needs to be demonstrated in clinical trials.

  7. Mutations in soybean KASIIa gene are correlated with high levels of seed palmitic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A complete understanding of the biosynthetic pathways involved in the formation of soybean seed oils is required to develop lines with useful oil profiles. In particular, modification of the content of saturated fatty acids using genetics has been a target for soybean breeders for many years. One st...

  8. Quantification of rosmarinic acid levels by near infrared spectroscopy in laboratory culture grown spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid quantization of rosmarinic acid (RA) in tissues of spearmint using near-infrared (NIR) spectroscopy was developed by correlating with the results of methanol extracts analyzed on a HPLC photo-diode array (PDA) system. NIR and HPLC analyses performed on over 500 samples were u...

  9. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  10. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  11. Predictors of Urinary 3-Phenoxybenzoic Acid Levels in 50 North Carolina Adults

    EPA Science Inventory

    Limited data are available on the non-chemical stressors that impact adult exposures to pyrethroid insecticides based on urinary biomonitoring. The urinary metabolite, 3-phenoxybenzoic acid (3-PBA), is commonly used to assess human exposure to a number of pyrethroids. In a furthe...

  12. Effects of organic acid-surfactant mixtures on levels of bacteria and beef quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Organic acid efficacy as an antimicrobial treatment of beef carcass surfaces may be increased through the addition of surfactants. However, the effects of antimicrobial-surfactant mixtures on beef quality traits such as flavor and color stability may make their use unacceptable. Purp...

  13. Impact of the dietary fatty acid intake on C-reactive protein levels in US adults

    PubMed Central

    Mazidi, Mohsen; Gao, Hong-Kai; Vatanparast, Hassan; Kengne, Andre Pascal

    2017-01-01

    Abstract Growing evidence suggests that the effects of diet on cardiovascular disease (CVD) occur through mechanisms involving subclinical inflammation. We assessed whether reported dietary fatty acid intake correlates with a serum high-sensitivity C-reactive protein (hs-CRP) concentration in a population-based sample of US men and women. In this cross-sectional analysis, participants were selected from the US National Health and Nutrition Examination Survey (NHANES) and restricted to those with available data on dietary intake, biochemical and anthropometric measurements from 2001 to 2010. All statistical analyses accounted for the survey design and sample weights by using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY). Of the 17,689 participants analyzed, 8607 (48.3%) were men. The mean age was 45.8 years in the overall sample, 44.9 years in men, and 46.5 years in women (P = 0.047). The age-, race-, and sex-adjusted mean dietary intakes of total polyunsaturated fatty acids (PUFAs), PUFAs 18:2 (octadecadienoic), and PUFAs 18:3 (octadecatrienoic) monotonically decreased across hs-CRP quartiles (P < 0.001), whereas dietary cholesterol increased across hs-CRP quartiles (P < 0.001) This study provides further evidence of an association between fatty acid intake and subclinical inflammation markers. hs-CRP concentrations are likely modulated by dietary fatty acid intake. However, the causality of this association needs to be demonstrated in clinical trials. PMID:28207502

  14. Neurites outgrowth and amino acids levels in goldfish retina under hypo-osmotic or hyper-osmotic conditions.

    PubMed

    Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey

    2012-02-01

    Amino acids are known to play relevant roles as osmolytes in various tissues, including the retina. Taurine is one of these active molecules. In addition, taurine stimulates outgrowth from the goldfish retina by mechanisms that include extracellular matrix, calcium fluxes and protein phosphorylation. The present report aims to explore the effect of medium osmolarity on goldfish retinal outgrowth and the possible modifications produced by changing eye osmolarity on amino acid levels in the retina. Goldfish retinal explants were obtained 10 days after crush of the optic nerve and cultured under iso-, hypo- or hyper-osmotic conditions. Hypo-osmotic medium was prepared by diluting the solutions 10% twice, preserving fetal calf serum concentration. Hyper-osmotic medium was done by adding 50 or 100 mM urea or mannitol. Evaluation of length and density of neurites was performed 5 days after plating. Outgrowth was reduced in hypo- and in hyper-osmotic conditions. Taurine, 4 mM, increased length and density of neurites in iso-osmotic, and produced stimulatory effects under both hyper-osmotic conditions. The in vivo modification of osmolarity by intraocular injection of water or 100 mM urea modified levels of free amino acids in the retina. Taurine and aspartate retinal levels increased in a time-dependent manner after hypo- and hyper-osmotic solution injections. Serine, threonine, arginine, γ-aminobutyric acid, alanine and tyrosine were elevated in hyper-osmotic conditions. Outgrowth in vitro, after in vivo osmolarity changes, was higher in the absence of taurine, but did not increase in the presence of the amino acid. The fact that certain outgrowth took place in these conditions support that the impairment was not due to tissue damage. Rather, the effects might be related to the cascade of kinase events described during osmolarity variations. The time course under these conditions produced adjustments in ganglion cells probably related to taurine transporter, and

  15. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    SciTech Connect

    Yalpani, N.; Schulz, M.; Balke, N.E. )

    1990-05-01

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with ({sup 14}C)SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a M{sub t} of about 50,000 and high specificity towards UDP-glucose as the sugar donor (K{sub m} = 0.28 mM) and SA as the glucose acceptor (K{sub m} = 0.11 mM). 2-D PAGE of ({sup 35}S)methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase.

  16. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity.

    PubMed

    Yücel Candan, Nilgün; Heybet Elif, Haklı

    2016-12-01

    Seed vigor is a complex physiological trait required to ensure the rapid and uniform emergence of plants in the field under different environmental conditions. Therefore, salicylic acid (SA, 0.5 mM) and calcium (Ca2+, 50 mM) priming were used as exogenous growth enhancers to stimulate wheat (Triticum durum Desf. cv. Yelken) seed vigor under high salinity. The main aim was to address whether priming of wheat with SA, Ca2+ and SA+Ca (SA, 0.5 mM + Ca2+, 50 mM; their combination) could bring about supplementary agronomic benefits particularly under stressful environments such as salinity. Exogenous application of SA or Ca2+ alone improved plant behavior in the presence of salinity stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic - flavonoids, chlorophyll - carotenoids contents and phenylalanine ammonia-lyase (PAL), ascorbic acide oxidase (AAO) activities and lipid peroxidation levels (LPO) were obtained in response to the combined SA+Ca treatment.

  17. Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease

    PubMed Central

    Barton, Erik S.; Youree, Bryan E.; Ebert, Daniel H.; Forrest, J. Craig; Connolly, Jodi L.; Valyi-Nagy, Tibor; Washington, Kay; Wetzel, J. Denise; Dermody, Terence S.

    2003-01-01

    Infection of neonatal mice with some reovirus strains produces a disease similar to infantile biliary atresia, but previous attempts to correlate reovirus infection with this disease have yielded conflicting results. We used isogenic reovirus strains T3SA– and T3SA+, which differ solely in the capacity to bind sialic acid as a coreceptor, to define the role of sialic acid in reovirus encephalitis and biliary tract infection in mice. Growth in the intestine was equivalent for both strains following peroral inoculation. However, T3SA+ spread more rapidly from the intestine to distant sites and replicated to higher titers in spleen, liver, and brain. Strikingly, mice infected with T3SA+ but not T3SA– developed steatorrhea and bilirubinemia. Liver tissue from mice infected with T3SA+ demonstrated intense inflammation focused at intrahepatic bile ducts, pathology analogous to that found in biliary atresia in humans, and high levels of T3SA+ antigen in bile duct epithelial cells. T3SA+ bound 100-fold more efficiently than T3SA– to human cholangiocarcinoma cells. These observations suggest that the carbohydrate-binding specificity of a virus can dramatically alter disease in the host and highlight the need for epidemiologic studies focusing on infection by sialic acid–binding reovirus strains as a possible contributor to the pathogenesis of neonatal biliary atresia. PMID:12813018

  18. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity.

    PubMed

    Gémes, Katalin; Poór, Péter; Horváth, Edit; Kolbert, Zsuzsanna; Szopkó, Dóra; Szepesi, Agnes; Tari, Irma

    2011-06-01

    Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.

  19. Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids.

    PubMed

    Skerratt, Jennifer H; Bowman, John P; Nichols, Peter D

    2002-11-01

    Two polyunsaturated fatty acid (PUFA) producing strains (ACEM 6 and ACEM 9(T)) isolated from a temperate, humic-rich river estuary in Tasmania, Australia, were found to be members of the genus Shewanella. These strains were able to utilize humic compounds (tannic acid) and derivatives (2,6-anthraquinone disulfonate) as sole carbon sources and as electron acceptors for anaerobic respiration. The major fatty acids were typical of the genus Shewanella; however, PUFAs mostly made up of eicosapentaenoic acid were produced at high levels (10.2-23.6% of total fatty acids) and at relatively high incubation temperatures (10.2% at 24 degrees C). Sequence analysis indicated that ACEM 6 and ACEM 9(T) had identical 16S rDNA sequences and were most closely related to Shewanella japonica (sequence similarity 97.1%). DNA hybridization and phenotypic characteristics confirmed that the isolates constituted a novel species of the genus Shewanella, which is designated Shewanella olleyana sp. nov. (type strain ACEM 9(T) = ACAM 644(T) = LMG 21437(T)).

  20. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.

    PubMed

    Yu, J; Wang, J

    2001-06-20

    Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that the acetate detoxification by high cell mass concentration is attributed to the increased fluxes at high extracellular acetate concentrations. The fluxes could be doubled to reduce and hence detoxify the accumulated intracellular acetate anions.

  1. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh

    SciTech Connect

    Huda, Nazmul; Hossain, Shakhawoat; Rahman, Mashiur; Karim, Md. Rezaul; Islam, Khairul; Mamun, Abdullah Al; Hossain, Md. Imam; Mohanto, Nayan Chandra; Alam, Shahnur; Aktar, Sharmin; Arefin, Afroza; Ali, Nurshad; Salam, Kazi Abdus; Aziz, Abdul; Saud, Zahangir Alam; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2014-11-15

    Blood uric acid has been recognized as a putative marker for cardiovascular diseases (CVDs). CVDs are the major causes of arsenic-related morbidity and mortality. However, the association of arsenic exposure with plasma uric acid (PUA) levels in relation to CVDs has not yet been explored. This study for the first time demonstrated the associations of arsenic exposure with PUA levels and its relationship with hypertension. A total of 483 subjects, 322 from arsenic-endemic and 161 from non-endemic areas in Bangladesh were recruited as study subjects. Arsenic concentrations in the drinking water, hair and nails of the study subjects were measured by inductively coupled plasma mass spectroscopy. PUA levels were measured using a colorimetric method. We found that PUA levels were significantly (p < 0.001) higher in males and females living in arsenic-endemic areas than those in non-endemic area. Arsenic exposure (water, hair and nail arsenic) levels showed significant positive correlations with PUA levels. In multiple regression analyses, arsenic exposure levels were found to be the most significant contributors on PUA levels among the other variables that included age, body mass index, blood urea nitrogen, and smoking. There were dose–response relationships between arsenic exposure and PUA levels. Furthermore, diastolic and systolic blood pressure showed significant positive correlations with PUA levels. Finally, the average PUA levels were significantly higher in the hypertensive group than those in the normotensive group in both males and females living in arsenic-endemic areas. These results suggest that arsenic exposure-related elevation of PUA levels may be implicated in arsenic-induced CVDs. - Highlights: • PUA levels were higher in arsenic-endemic subjects than in non-endemic subjects. • Drinking water, hair and nail arsenic showed significant associations with PUA levels. • Drinking water, hair and nail arsenic showed dose–response relationships with

  2. Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable to the highest levels found in natural plant sources

    SciTech Connect

    Nguyen, H.T.; Shanklin, J.; Mishra, G.; Whittle, E.; Bevan, S. A.; Merlo, A. O.; Walsh, T. A.

    2010-12-01

    Plant oils containing {omega}-7 fatty acids (FAs; palmitoleic 16:1{Delta}{sup 9} and cis-vaccenic 18:1{Delta}{sup 11}) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of {omega}-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1{Delta}{sup 9} with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased {omega}-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the {beta}-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of {omega}-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased {omega}-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds.

  3. Metabolic Engineering of Seeds Can Achieve Levels of ω-7 Fatty Acids Comparable with the Highest Levels Found in Natural Plant Sources1[OA

    PubMed Central

    Nguyen, Huu Tam; Mishra, Girish; Whittle, Edward; Pidkowich, Mark S.; Bevan, Scott A.; Merlo, Ann Owens; Walsh, Terence A.; Shanklin, John

    2010-01-01

    Plant oils containing ω-7 fatty acids (FAs; palmitoleic 16:1Δ9 and cis-vaccenic 18:1Δ11) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of ω-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1Δ9 with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased ω-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the β-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of ω-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased ω-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds. PMID:20943853

  4. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid.

    PubMed

    Jones, Ryan D; Repa, Joyce J; Russell, David W; Dietschy, John M; Turley, Stephen D

    2012-07-15

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

  5. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  6. Enhancement of acid phosphatase secretion and Pi acquisition in Suaeda fruticosa on calcareous soil by high saline level.

    PubMed

    Labidi, Nehla; Snoussi, Sana; Ammari, Manel; Metoui, Wissal; Ben Yousfi, N; Hamrouni, Lamia; Abdelly, C

    2010-12-01

    The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (-30%) and to the low alkaline phosphatases (Pases) activities (-50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

  7. Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals

    PubMed Central

    2014-01-01

    Background A link between uric acid (UA) levels and cardiovascular diseases has been previously reported. However, its importance as a risk factor is still controversial. This study sought to determine whether elevated serum uric acid levels are associated with cardiovascular disease (CVD) in middle-aged and elderly Chinese individuals. Methods We conducted a population-based cross-sectional study in Shanghai, with a total of 8510 participants aged ≥40 years. The CVD included diagnosed coronary heart disease (CHD) and stroke. MetS was defined according to the updated National Cholesterol Education Program Adult Treatment Panel III criteria for Asian Americans. Results Uric acid levels were positively associated with BMI, waist circumference, triglycerides, systolic blood pressure, diastolic blood pressure, glycohemoglobin, fasting plasma glucose, postprandial 2-hour plasma glucose (all P < 0.05), and negatively associated with HDL-cholesterol (P < 0.001). The prevalence of CVD significantly increased with increasing quartiles of UA in those without MetS group (p trend < 0.001), but not necessarily increased in those with MetS. After adjustment for metabolic syndrome and other cardiovascular risk factors, multivariate logistic regression analysis showed that odds ratios (OR) for CHD, stroke, and CVD in those in the fourth quartiles were 2.34 (95% confidence interval [CI] 1.73 to 3.45), 2.18 (95% CI 1.86 to 3.28), and 2.16 (95% CI 1.80 to 3.29), respectively, compared with those in the first quartile of UA. Conclusions Elevated serum uric acid level was associated with CVD, independent of conventional cardiovascular disease risk factors and metabolic syndrome. PMID:24568132

  8. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  9. Serum Uric Acid Levels and Diabetic Peripheral Neuropathy in Type 2 Diabetes: a Systematic Review and Meta-analysis.

    PubMed

    Yu, Shuai; Chen, Ying; Hou, Xu; Xu, Donghua; Che, Kui; Li, Changgui; Yan, Shengli; Wang, Yangang; Wang, Bin

    2016-03-01

    Previous studies suggested a possible association between serum uric acid levels and peripheral neuropathy in patients with type 2 diabetes, but no definite evidence was available. A systematic review and meta-analysis of relevant studies were performed to comprehensively estimate the association. Pubmed, Web of Science, Embase, and China Biology Medicine (CBM) databases were searched for eligible studies. Study-specific data were combined using random-effect or fixed-effect models of meta-analysis according to between-study heterogeneity. Twelve studies were finally included into the meta-analysis, which involved a total of 1388 type 2 diabetic patients with peripheral neuropathy and 4746 patients without peripheral neuropathy. Meta-analysis showed that there were obvious increased serum uric acid levels in diabetic patients with peripheral neuropathy (weighted mean difference [WMD] = 50.03 μmol/L, 95% confidence interval [95%CI] 22.14-77.93, P = 0.0004). Hyperuricemia was also significantly associated with increased risk of peripheral neuropathy in patients with type 2 diabetes (risk ratio [RR] = 2.83, 95%CI 2.13-3.76, P < 0.00001). Meta-analysis of two studies with adjusted risk estimates showed that hyperuricemia was independently associated with increased risk of peripheral neuropathy in type 2 diabetic patients (RR = 1.95, 95%CI 1.23-3.11, P = 0.005). Type 2 diabetic patients with peripheral neuropathy have obvious increased serum uric acid levels, and hyperuricemia is associated with increased risk of peripheral neuropathy. Further prospective cohort studies are needed to validate the impact of serum uric acid levels on peripheral neuropathy risk.

  10. Are Uric Acid Levels Different from Healthy Subjects in Bipolar Affective Disorder and Schizophrenia?: Relationship Between Clinical Improvement and Episode Severity in Male Patients

    PubMed Central

    GÜLTEKİN, Bülent Kadri; KESEBİR, Sermin; KABAK, Sevgi Gül; ERGÜN, Ferzan Fikret; TATLIDİL YAYLACI, Elif

    2014-01-01

    Introduction Purinergic system dysfunction has been shown both in patients with bipolar disorder (BD) and those with schizophrenia. The aim of this study was to evaluate whether uric acid levels in male BD patients with manic episode and schizophrenia patients with psychotic relapse differ from healthy male subjects. Secondly to assess whether uric acid levels in both patient groups correlate with episode severity and if a decrease in uric acid levels correlate with clinical improvement. Method A total of 55 BD patients with manic episode and 59 schizophrenic patients with psychotic relapse were evaluated at baseline and at weeks 1, 2, 3 using the Young Mania Rating Scale (YMRS) and the Positive and Negative Syndrome Scale (PANSS), and their plasma uric acid levels were measured. 60 age-matched healthy males without history of any previous or current psychiatric diagnosis and treatment constituted the control group. In order to determine plasma uric acid levels, blood samples were centrifuged at 3000 × g for 15 minutes, stored at −80°C and measured in milligrams per deciliter. Results Uric acid levels in both patient groups with manic episode and psychotic relapse were found higher than in healthy controls (f=6.122, p=.027). The difference between repeated measurements of uric acid levels in BD patient group was found to be between baseline and first week measurements (after Bonferroni correction) (p<.001). No correlation was found between YMRS and PANSS scores and uric acid levels at 4 assessment times. Conclusion Uric acid levels in male BD and schizophrenia patients with manic episode and psychotic relapse were similar with each other, and higher than in healthy males. No correlation was found between uric acid levels and episode severity in both groups. However, for patients with BD, a decrease in uric acid levels between baseline and first week seems to be correlated with clinical improvement.

  11. Significance of serum fucose, sialic acid, haptoglobine and phospholipids levels in the evolution and treatment of breast cancer.

    PubMed

    Kiricuta, I; Bojan, O; Comes, R; Cristian, R

    1979-01-01

    Serum fucose, sialic acid, haptoglobine and phospholipids were determined in 167 women with breast cancer stages I--III, 30 with benign lesions of the breast, 42 women in various physiological states of the mammary gland (pregnancy, early childbed and lactation) and compared with 30 healthy women as control. Serial determinations of these parameters during the radio-surgical treatment were done in 28 patients with breast cancer stage III. Fucose and phospholipids levels were significantly increased respectively decreased in the group of patients with breast cancers but unmodified in the others. Sialic acid and haptoglobine -- increased in patients with cancer -- were also elevated in patients with early childbed and benign affections of the breast. The surveillance of these four parameters during the radio-surgical treatment of breast cancer evidenced a good correlation between their modified levels and clinical state of the patients. The increase in fucose, sialic acid and haptoglobine respectively the decrease in phospholipids levels was associated with the clinical evidence of recurrences and metastases.

  12. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    PubMed

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P < 0.05). These results indicate that GAA as a preferred alternative to creatine for improved bioenergetics in energy-demanding tissues.

  13. Associations Between Whole Blood and Dietary Omega-3 Polyunsaturated Fatty Acid Levels in Collegiate Athletes.

    PubMed

    Wilson, Patrick B; Madrigal, Leilani A

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have important physiological functions and may offer select benefits for athletic performance and recovery. The purpose of this investigation was to assess dietary and whole blood omega-3 PUFAs among collegiate athletes. In addition, a brief questionnaire was evaluated as a valid tool for quantifying omega-3 PUFA intake. Fifty-eight athletes (9 males, 49 females) completed a 21-item questionnaire developed to assess omega-3 PUFA intake and provided dried whole blood samples to quantify α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and the HS-Omega-3 Index. Geometric means (95% confidence intervals) for the HS-Omega-3 Index were 4.79% (4.37-5.25%) and 4.75% (4.50-5.01%) for males and females, respectively. Median dietary intakes of ALA, EPA, and DHA were all below 100 mg. Among females, several dietary omega-3 PUFA variables were positively associated with whole blood EPA, with total EPA (rho = 0.67, p < .001) and total DHA (rho = 0.69, p < .001) intakes showing the strongest correlations. Whole blood DHA among females showed positive associations with dietary intakes, with total EPA (rho = 0.62, p < .001) and total DHA (rho = 0.64, p < .001) intakes demonstrating the strongest correlations. The HS-Omega-3 Index in females was positively correlated with all dietary variables except ALA. Among males, the only significant correlation was between food and whole blood EPA (rho = 0.83, p < .01). Collegiate athletes had relatively low intakes of omega-3 PUFAs. A 21-item questionnaire may be useful for screening female athletes for poor omega-3 PUFA status.

  14. Rapid adjustment of guard-cell abscisic acid levels to current leaf-water status

    SciTech Connect

    Harris, M.J.; Outlaw, W.H. Jr. )

    1991-01-01

    Detached broad bean (Vicia faba L.) leaflets were water stressed; within 15 minutes, guard-cell abscisic acid (ABA) concentration increased ninefold. This result eliminates the apparent discrepancy raised by reports of no correlation between initial water-stress effects on stomata and leaf ABA concentration. Six hours after stress relief, guard-cell ABA concentration was near the prestress value, which would seem to implicate other factors in stress after-effects on stomata.

  15. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-02-01

    A mercury resistant bacterial strain, SA2, was isolated from soil contaminated with mercury. The 16S rRNA gene sequence of this isolate showed 99% sequence similarity to the genera Sphingobium and Sphingomonas of α-proteobacteria group. However, the isolate formed a distinct phyletic line with the genus Sphingobium suggesting the strain belongs to Sphingobium sp. Toxicity studies indicated resistance to high levels of mercury with estimated EC50 values 4.5 mg L(-1) and 44.15 mg L(-1) and MIC values 5.1 mg L(-1) and 48.48 mg L(-1) in minimal and rich media, respectively. The strain SA2 was able to volatilize mercury by producing mercuric reductase enzyme which makes it potential candidate for remediating mercury. ICP-QQQ-MS analysis of Hg supplemented culture solutions confirmed that almost 79% mercury in the culture suspension was volatilized in 6 h. A very small amount of mercury was observed to accumulate in cell pellets which was also evident according to ESEM-EDX analysis. The mercuric reductase gene merA was amplified and sequenced. The deduced amino acid sequence demonstrated sequence homology with α-proteobacteria and Ascomycota group.

  16. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner

    PubMed Central

    Toth, Zsofia; Winterhagen, Patrick; Kalapos, Balazs; Su, Yingcai; Kovacs, Laszlo; Kiss, Erzsebet

    2016-01-01

    Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner. PMID:27488171

  17. Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments.

    PubMed

    Radwan, Deya Eldeen Mohammed; Fayez, Khalaf Ali; Mahmoud, Sabry Younis; Hamad, Ahmed; Lu, Guoquan

    2007-01-01

    The changes of some physiological and biochemical parameters in pumpkin (Cucurbita pepo cv Eskandarani) leaves associated with zucchini yellow mosaic virus (ZYMV) infection and the effect of exogenous application of salicylic acid (SA) were studied in this paper. In comparison to the untreated leaves, ZYMV infected leaves showed many symptoms, including severe mosaic, size reduction, stunting and deformation. Results from analysis of physiological parameters indicated that viral infection and SA treatments affected metabolism. Viral infection decreased pigment, protein and carbohydrate levels. But with all SA treatments, the protein and carbohydrate contents are noticeably increased. Moreover, the other biochemical parameters showed variable alterations. The peroxidase (POX, EC 1.11.1.7) activity and proline contents were induced by both viral infection and SA treatments. In addition, protein patterns represent some newly synthesized polypeptides which reflect formation of pathogenesis related proteins in all treatments. SA treatment increases the plant resistance against ZYMV. This can be noticed through reduction of percentage of the infected plants, decrease in disease severity and virus concentration of the plants treated with SA then inoculated with virus. All results show significant changes in metabolism affected by either viral infection or SA treatments and also indicate that exogenous SA plays an important role in induction of defense mechanism against ZYMV infection.

  18. p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Balušíková, Kamila; Daniel, Petr; Jelínek, Michael; James, Roger F.; Kovář, Jan

    2016-01-01

    Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis. PMID:26861294

  19. [Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage].

    PubMed

    Bosch, Virgilio; Golfetto, Iván; Alonso, Hilda; Laurentin, Zuly; Materan, Mercedes; García, Ninoska

    2009-03-01

    Fatty acids in mature breast milk from low socioeconomic levels of Venezuelan women: influence of temperature and time of storage. Breast milk is the main food in infants from birth until six months old. It is important to know if precarious life conditions could limit some nutrients in mother's milk. The objective of this study is to evaluate the total fat and essential long chain fatty acids in mature breast milk from low socioeconomic levels in Venezuelan women. The values of total fat (3.56 +/- 1.18 g/%) are similar that reported in the literature, however the sume of LC-PUFA n-3 was 0.3 +/- 0.04% which is related whith low n-3 fatty acid maternal diet.The sume LC-PUFA n-3 contained in this study is below most of the reviewed publications. The average amount of 22:6 n-3 in breast milk offered to newborn one month old (750 ml/day) is below estimated requirements (70 mg/day). The majority of these samples provide to the infants, the amount of DHA estimated as convenient to sustain normal growth. Also it was explored how the time (8h to 24 h) and temperatura (+4 degrees C, +15 degrees C, and +25 degrees C) can affect its composition. This data will permit to select the best condiitions of sampling and storage of mother's milk in future investigations in different regions of Venezuela. Most of the breast milk fatty acids tolerate some hours at room temperature (25 degrees C) but essential long chain fatty acids are very vulnerable. We propose that, in consequence, that samples should be transported in sterile conditions in dry ice to the laboratory in a few hours and should be kept at -70 degrees C until their analysis.

  20. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS.

  1. Salicylic acid attenuates gentamicin-induced nephrotoxicity in rats.

    PubMed

    Randjelovic, Pavle; Veljkovic, Slavimir; Stojiljkovic, Nenad; Jankovic-Velickovic, Ljubinka; Sokolovic, Dusan; Stoiljkovic, Milan; Ilic, Ivan

    2012-01-01

    Gentamicin (GM) is a widely used antibiotic against serious and life-threatening infections, but its usefulness is limited by the development of nephrotoxicity. The present study was designed to determine the protective effect of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rats. Quantitative evaluation of gentamicin-induced structural alterations and degree of functional alterations in the kidneys were performed by histopathological and biochemical analyses in order to determine potential beneficial effects of SA coadministration with gentamicin. Gentamicin was observed to cause a severe nephrotoxicity which was evidenced by an elevation of serum urea and creatinine levels. The significant increases in malondialdehyde (MDA) levels and protein carbonyl groups indicated that GM-induced tissue injury was mediated through oxidative reactions. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. Exposure to GM caused necrosis of tubular epithelial cells. Necrosis of tubules was found to be prevented by SA pretreatment. The results from our study indicate that SA supplement attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation in gentamicin-treated rats.

  2. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.

    PubMed

    Gunes, Aydin; Inal, Ali; Alpaslan, Mehmet; Eraslan, Figen; Bagci, Esra Guneri; Cicek, Nuray

    2007-06-01

    It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of varying salicylic acid (SA) supply (0, 0.1, 0.5 and 1.0mM) on growth, mineral uptake, membrane permeability, lipid peroxidation, H(2)O(2) concentration, UV-absorbing substances, chlorophyll and carotenoid concentrations of NaCl (40 mM) stressed maize (Zea mays L.) was investigated. Exogenously applied SA increased plant growth significantly both in saline and non-saline conditions. As a consequence of salinity stress, lipid peroxidation, measured in terms of malondialdehyde (MDA) content and membrane permeability was decreased by SA. UV-absorbing substances (UVAS) and H(2)O(2) concentration were increased by increasing levels of SA. SA also strongly inhibited Na(+) and Cl(-) accumulation, but stimulated N, Mg, Fe, Mn and Cu concentrations of salt stressed maize plants. These results suggest that SA could be used as a potential growth regulator to improve plant salinity stress resistance.

  3. Derivation of a drinking water equivalent level (DWEL) related to the maximum contaminant level goal for perfluorooctanoic acid (PFOA), a persistent water soluble compound.

    PubMed

    Tardiff, Robert G; Carson, M Leigh; Sweeney, Lisa M; Kirman, Christopher R; Tan, Yu-Mei; Andersen, Melvin; Bevan, Christopher; Gargas, Michael L

    2009-10-01

    Water soluble compounds persistent in humans and the environment pose a challenge for estimating safe levels in tap water. A viable approach to estimate a drinking water equivalent level (DWEL) for perfluorooctanoic acid (PFOA) was applied to its extensive relevant information from human and laboratory animal studies. PFOA has been identified at 3.5 microg/L (mean) in tap water in proximity to a manufacturing facility; however, in most supplies, the levels were below 7.5 ng/L (usual limit of detection). PFOA has an average half-life in humans of 3.5years. From animal studies, PFOA is considered a possible hepatotoxicant and developmental toxicant for humans. Based on two chronic studies, PFOA was judged to be a possible human carcinogen, whose mode-of-action was likely to be related to receptor activation but not genotoxicity. The Benchmark Dose-Uncertainty Factor approach was selected for dose-response for noncancer and cancer. Based on internal dose of PFOA, the DWEL protective against cancer is 7.7 microgPFOA/L tap water, and the noncancer DWELs range from 0.88 to 2.4 microg/L. These DWELs can be considered a reliable, albeit conservative, basis to set a Maximum Concentration Level Goal under the US Safe Drinking Water Act.

  4. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications.

  5. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  6. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats.

    PubMed

    Kalonia, H; Kumar, P; Kumar, A; Nehru, B

    2010-11-24

    The present study has been designed to explore the protective effect of montelukast (leukotriene receptor antagonist) against intrastriatal quinolinic acid (QA; 300 nmol) and malonic acid (MA; 6 μmol) induced Huntington's like symptoms in rats. Quinolinic acid has been reported to induce excitotoxicity by stimulating the N-methyl-D-aspartate receptor, causing calcium overload which in turn leads to the neurodegeneration. On the other hand, MA, being a reversible inhibitor of mitochondrial enzyme complex-II, leads to energy crisis and free radical generation. Recent studies have reported the therapeutic potential of leukotriene receptor antagonists in different neurodegenerative disorders. However, their exact role is yet to be established. The present study accordingly, is an attempt to investigate the effect of montelukast against QA and MA induced behavioral, biochemical and molecular alterations in rat striatum. Oxidative stress, mitochondrial enzyme complex and tumor necrosis factor-alpha (TNF-α) were evaluated on day 21st and 14th post intrastriatal QA and MA treatment, respectively. Findings of the present study demonstrate significant alteration in the locomotor activity and motor coordination as well as oxidative burden (increased lipid peroxidation, nitrite concentration and decreased endogenous antioxidants), mitochondrial enzyme complex (I, II and IV) activities and TNF-α level, in both intrastriatal QA and MA treated animals. Further, montelukast (0.4, 0.8 mg/kg p.o.) treatment for 21 and 14 days respectively, attenuated the behavioral alterations, oxidative stress, mitochondrial dysfunction and TNF-α level in these models of Huntington's disease in a significant manner. In conclusion, the present study emphasizes the neuroprotective potential of montelukast in the therapeutic management of Huntington like symptoms.

  7. The effect of stress level, amino acid formula, and nitrogen dose on nitrogen retention in traumatic and septic stress.

    PubMed Central

    Cerra, F; Blackburn, G; Hirsch, J; Mullen, K; Luther, W

    1987-01-01

    Eighty-seven patients were entered into a randomized, prospective, double-blind, six-center study to evaluate the effect of amino acid loading and a formula that was branched chain enriched (50%) on nitrogen retention in metabolic stress. The patients had varying levels of metabolic stress (0-3) after major surgery, polytrauma, or surgical sepsis. The study was isocaloric and isonitrogenous and lasted for 7 days. The patients received either a standard amino acid formula (SAA) (Travasol) or a 50% branched chain enriched formula that was equimolar, leucine, isoleucine, and valine (MAA) (Travasol + Branchamin concentrate) at a dose of 1.0-2.0 g/kg/day in a fixed ratio with 114 glucose calories per gram of nitrogen administered. The nitrogen retention was proportionate to the nitrogen (and, therefore, caloric) load in both groups. The MAA group, however, had better nitrogen retention, reached nitrogen equilibrium at a lower dose of amino acids, and had less urinary nitrogen excretion per gram of nitrogen administered. Since the groups were isonitrogenous and the calorie to nitrogen ratios were fixed, it appears that nitrogen equilibrium in surgical stress is proportionate to the amino acid load over a range of 0.05-0.4 g/kg/day of nitrogen; and that MAA are more efficient at inducing nitrogen retention and a reduction in urea excretion. These effects on nitrogen retention were more significant at level 2 stress or greater. At these higher stress levels, a dose of 2 +/- 0.2 g/kg/day of MAA seemed most efficient in promoting nitrogen retention. PMID:3548612

  8. The effect of stress level, amino acid formula, and nitrogen dose on nitrogen retention in traumatic and septic stress.

    PubMed

    Cerra, F; Blackburn, G; Hirsch, J; Mullen, K; Luther, W

    1987-03-01

    Eighty-seven patients were entered into a randomized, prospective, double-blind, six-center study to evaluate the effect of amino acid loading and a formula that was branched chain enriched (50%) on nitrogen retention in metabolic stress. The patients had varying levels of metabolic stress (0-3) after major surgery, polytrauma, or surgical sepsis. The study was isocaloric and isonitrogenous and lasted for 7 days. The patients received either a standard amino acid formula (SAA) (Travasol) or a 50% branched chain enriched formula that was equimolar, leucine, isoleucine, and valine (MAA) (Travasol + Branchamin concentrate) at a dose of 1.0-2.0 g/kg/day in a fixed ratio with 114 glucose calories per gram of nitrogen administered. The nitrogen retention was proportionate to the nitrogen (and, therefore, caloric) load in both groups. The MAA group, however, had better nitrogen retention, reached nitrogen equilibrium at a lower dose of amino acids, and had less urinary nitrogen excretion per gram of nitrogen administered. Since the groups were isonitrogenous and the calorie to nitrogen ratios were fixed, it appears that nitrogen equilibrium in surgical stress is proportionate to the amino acid load over a range of 0.05-0.4 g/kg/day of nitrogen; and that MAA are more efficient at inducing nitrogen retention and a reduction in urea excretion. These effects on nitrogen retention were more significant at level 2 stress or greater. At these higher stress levels, a dose of 2 +/- 0.2 g/kg/day of MAA seemed most efficient in promoting nitrogen retention.

  9. Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.).

    PubMed

    Singh, Amit P; Dixit, Garima; Mishra, Seema; Dwivedi, Sanjay; Tiwari, Manish; Mallick, Shekhar; Pandey, Vivek; Trivedi, Prabodh K; Chakrabarty, Debasis; Tripathi, Rudra D

    2015-01-01

    Arsenic (As) is posing serious health concerns in South East Asia where rice, an efficient accumulator of As, is prominent crop. Salicylic acid (SA) is an important signaling molecule and plays a crucial role in resistance against biotic and abiotic stress in plants. In present study, ameliorative effect of SA against arsenate (As(V)) toxicity has been investigated in rice (Oryza sativa L.). Arsenate stress hampered the plant growth in terms of root, shoots length, and biomass as well as it enhanced the level of H2O2 and MDA in dose dependent manner in shoot. Exogenous application of SA, reverted the growth, and oxidative stress caused by As(V) and significantly decreased As translocation to the shoots. Level of As in shoot was positively correlated with the expression of OsLsi2, efflux transporter responsible for root to shoot translocation of As in the form of arsenite (As(III)). SA also overcame As(V) induced oxidative stress and modulated the activities of antioxidant enzymes in a differential manner in shoots. As treatment hampered the translocation of Fe in the shoot which was compensated by the SA treatment. The level of Fe in root and shoot was positively correlated with the transcript level of transporters responsible for the accumulation of Fe, OsNRAMP5, and OsFRDL1, in the root and shoot, respectively. Co-application of SA was more effective than pre-treatment for reducing As accumulation as well as imposed toxicity.

  10. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    PubMed

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk.

  11. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells.

    PubMed

    Wang, Songbo; Xiang, Nana; Yang, Liusong; Zhu, Canjun; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-03-18

    The regulation of food intake is a promising way to combat obesity. It has been implicated that various fatty acids exert different effects on food intake and body weight. However, the underlying mechanism remains poorly understood. The aim of the present study was to investigate the effects of linoleic acid (LA) and stearic acid (SA) on agouti-related protein (AgRP) expression and secretion in immortalized mouse hypothalamic N38 cells and to explore the likely underlying mechanisms. Our results demonstrated that LA inhibited, while SA stimulated AgRP expression and secretion of N38 cells in a dose-dependent manner. In addition, LA suppressed the protein exp