Science.gov

Sample records for acid sa levels

  1. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA)

    PubMed Central

    Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  2. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    PubMed

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis. PMID:26484871

  3. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  4. Level of Need for Cognition and Metacognitive Thinking among Undergraduate Kindergarten Female Students at King Sa'ud University in Sa'udi Arabia

    ERIC Educational Resources Information Center

    Daghistani, Bulquees

    2015-01-01

    This study aims at examining the level of need for cognition and metacognitive thinking among undergraduate kindergarten female students in Education Faculty at King Sa'ud University in Sa'udi Arabia from their own perceptions. Results showed that the need for the cognition level was moderate, but metacognitive thinking level was high. In…

  5. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance.

    PubMed

    Kovács, Viktória; Gondor, Orsolya K; Szalai, Gabriella; Darkó, Eva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-09-15

    Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress. PMID:25113613

  6. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    PubMed Central

    Ruelland, Eric; Pokotylo, Igor; Djafi, Nabila; Cantrel, Catherine; Repellin, Anne; Zachowski, Alain

    2014-01-01

    Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently. PMID:25426125

  7. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology. PMID:24423552

  8. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway.

    PubMed

    Vivancos, Julien; Labbé, Caroline; Menzies, James G; Bélanger, Richard R

    2015-08-01

    On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses. PMID:25346281

  9. Regulation of auxin, abscisic acid and salicylic acid levels by ascorbate application under heat stress in sensitive and tolerant maize leaves.

    PubMed

    Dinler, Burcu Seckin; Demir, Emel; Kompe, Yasemin Ozdener

    2014-12-01

    In the present study, the effect of ascorbic acid (5 mM) on some physiological parameters and three hormones (auxin, abscisic acid, salicylic acid) was determined under heat stress (40 °C) in maize tolerant cv. (MAY 69) and sensitive cv. SHEMAL (SH) at 0 h, 4 h and 8 h. Heat stress reduced total chlorophyll content (CHL), relative water content (RWC) and stomatal conductance (gs) in SH but did not lead to changes in MAY 69 at 4 h and 8 h. However, pretreatment with ascorbic acid increased (CHL), (RWC) and (gs) in SH under heat stress while it reduced MDA content significantly in both cv. We also observed that heat stress led to a reduction in SA level but increased ABA and IAA levels in SH, whereas it increased SA and IAA levels but did not change ABA level in MAY 69 at 4 h. Furthermore, in SH, ASC application under heat stress increased SA level and decreased IAA and ABA levels at 4 h, but it had no effect on SA and ABA at 8 h. PMID:25475985

  10. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals

    NASA Astrophysics Data System (ADS)

    Shkir, Mohd.; Riscob, B.; Ganesh, V.; Vijayan, N.; Gupta, Rahul; Plaza, J. L.; Dieguez, E.; Bhagavannarayana, G.

    2013-10-01

    Sulfamic acid (SA) single crystals, both pure and doped with 1, 2.5 and 5 mol% Nd, were grown successfully in an aqueous solution by the slow cooling method. Powder X-ray diffraction patterns were recorded to check the variation in the lattice parameters and phase of the crystals. The optical transparency was found to be higProd. Type: FTPhest (∼80%) for the 1 mol% Nd3+ doped SA single crystal. The optical band gap was also calculated and found to be ∼4.31, 4.20 and 3.67 eV. The influence of Nd3+ doping on the crystalline perfection was assessed by a high resolution X-ray diffractometer (HRXRD) and shows that the grown crystals could accommodate Nd3+ at the interstitial positions in the crystalline matrix of SA up to some critical concentration without any deterioration in the crystalline perfection. The etching studies were carried out and the etch pits densities were calculated. The mechanical property of grown single crystals was also studied.

  11. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  12. Heavy metals influence on ascorbic acid level

    NASA Astrophysics Data System (ADS)

    Kamaldinov, E. V.; Patrashkov, S. A.; Batenyeva, E. V.; Korotkevich, O. S.

    2003-05-01

    It is well known that heavy metals (HM) are extremely dangerous pollutants influencing to metabolism in animals' organisms. The vitamin C is one of the most important metabolites taking part in many biochemical processes. We studied the influence of main essential HM-Zn and Cu as well as the based supertoxical elements - Cd and Pd on ascorbic acid level in serum. The studies were carried out in Tulinskoe farm of Novosibirsk region. The objects of investigations were piglets (2 month after weaning) and 6-month pigs of Early Ripe Meat breed. The levels of HM in bristle were found by stripping voltammetric analysis using the TA-2 analyzer. Vitamin C content was determined by I.P. Kondrakhin (1985) method using 2,2-dipyridyl. The significant negative correlations between Pb, Cd content and vitamin C (-0.46 ± 0.18, -0.47 ± 0.19) in 6-month pigs were determined. The tendencies of negative correlation between all HM levels in hair and ascorbic acid level in plasma of piglets were revealed. Thus, the obtained correlations let us to suppose that all studied HM influence on 1-gulono-gamma-lactone oxidase and other vitamin C metabolism enzymes activity.

  13. Serum Sialic Acid Level Is Significantly Associated with Nonalcoholic Fatty Liver Disease in a Nonobese Chinese Population: A Cross-Sectional Study

    PubMed Central

    Lu, Zhenya; Ma, Han; Xu, Chengfu; Shao, Zhou; Cen, Chao; Li, Youming

    2016-01-01

    Background/Aim. To investigate the association between serum sialic acid (SA) levels and nonalcoholic fatty liver disease (NAFLD) in a nonobese Chinese population. Methods. A cross-sectional study was performed among the 5916 adults who took their annual health examinations at International Health Care Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, from December 2013 to November 2014. Results. A total of 693 (11.71%) subjects fulfilled the diagnostic criteria of NAFLD, and NAFLD patients had significantly higher serum SA levels than controls (P < 0.001). The prevalence of NAFLD was positively associated with serum SA levels (P for trend <0.001). Serum sialic acid levels are significantly associated with features of metabolic syndrome (Ps < 0.01). Multivariate logistic regression analysis showed that serum SA level was significantly associated with risk for NAFLD (odds ratio: 1.018, 95%; confidence interval: 1.007–1.030; P = 0.002). Conclusions. Our results suggest for the first time that NAFLD patients had higher serum SA level than controls, and increased serum SA level is significantly associated with risk for NAFLD in a large nonobese Chinese population. PMID:27042666

  14. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

  15. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  16. Lysobisphosphatidic acid controls endosomal cholesterol levels.

    PubMed

    Chevallier, Julien; Chamoun, Zeina; Jiang, Guowei; Prestwich, Glenn; Sakai, Naomi; Matile, Stefan; Parton, Robert G; Gruenberg, Jean

    2008-10-10

    Most cell types acquire cholesterol by endocytosis of circulating low density lipoprotein, but little is known about the mechanisms of intra-endosomal cholesterol transport and about the primary cause of its aberrant accumulation in the cholesterol storage disorder Niemann-Pick type C (NPC). Here we report that lysobisphosphatidic acid (LBPA), an unconventional phospholipid that is only detected in late endosomes, regulates endosomal cholesterol levels under the control of Alix/AlP1, which is an LBPA-interacting protein involved in sorting into multivesicular endosomes. We find that Alix down-expression decreases both LBPA levels and the lumenal vesicle content of late endosomes. Cellular cholesterol levels are also decreased, presumably because the storage capacity of endosomes is affected and thus cholesterol clearance accelerated. Both lumenal membranes and cholesterol can be restored in Alix knockdown cells by exogenously added LBPA. Conversely, we also find that LBPA becomes limiting upon pathological cholesterol accumulation in NPC cells, because the addition of exogenous LBPA, but not of LBPA isoforms or analogues, partially reverts the NPC phenotype. We conclude that LBPA controls the cholesterol capacity of endosomes. PMID:18644787

  17. Milk production responses to dietary stearic acid vary by production level in dairy cattle.

    PubMed

    Piantoni, P; Lock, A L; Allen, M S

    2015-03-01

    Effects of stearic acid supplementation on feed intake and metabolic and production responses of dairy cows with a wide range of milk production (32.2 to 64.4 kg/d) were evaluated in a crossover design experiment with a covariate period. Thirty-two multiparous Holstein cows (142±55 d in milk) were assigned randomly within level of milk yield to treatment sequence. Treatments were diets supplemented (2% of diet dry matter) with stearic acid (SA; 98% C18:0) or control (soyhulls). The diets were based on corn silage and alfalfa and contained 24.5% forage neutral detergent fiber, 25.1% starch, and 17.3% crude protein. Treatment periods were 21 d with the final 4 d used for data and sample collection. Compared with the control, SA increased dry matter intake (DMI; 26.1 vs. 25.2 kg/d) and milk yield (40.2 vs. 38.5 kg/d). Stearic acid had no effect on the concentration of milk components but increased yields of fat (1.42 vs. 1.35 kg/d), protein (1.19 vs. 1.14 kg/d), and lactose (1.96 vs. 1.87 kg/d). The SA treatment increased 3.5% fat-corrected milk (3.5% FCM; 40.5 vs. 38.6 kg/d) but did not affect feed efficiency (3.5% FCM/DMI, 1.55 vs. 1.53), body weight, or body condition score compared with the control. Linear interactions between treatment and level of milk yield during the covariate period were detected for DMI and yields of milk, fat, protein, lactose, and 3.5% FCM; responses to SA were positively related to milk yield of cows. The SA treatment increased crude protein digestibility (67.4 vs. 65.5%), tended to increase neutral detergent fiber digestibility (43.6 vs. 42.3%), decreased fatty acid (FA) digestibility (56.6 vs. 76.1%), and did not affect organic matter digestibility. Fatty acid yield response, calculated as the additional FA yield secreted in milk per unit of additional FA intake, was only 13.3% for total FA and 8.2% for C18:0 plus cis-9 C18:1. Low estimated digestibility of the SA supplement was at least partly responsible for the low FA yield response

  18. [Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato].

    PubMed

    Li, Lin-lin; Li, Tian-lai; Jiang, Guo-bin; Jin, Hua; Zou, Ji-xiang

    2015-11-01

    In this study, we investigated the effect of exogenous calcium and salicylic acid (SA) on Botrytis cinerea resistance in tomato seedlings. We treated a tomato strain susceptible to Botrytis cinerea with foliar spraying of water, SA, SA+CaCl2 and SA+EGTA (Ca2+ chelating agent) for one to five days. During the treatment, leaves were collected to analyze the reactive oxygen species (ROS) content, phenylalanine ammonia lyase (PAL) activity, chintase and β-1,3-glucanase levels, and the expression of pathogenesis related protein 1, 2, 3 (PR1, PR2, PR3). Three days after infection, the disease index was 74.8 in control plants, and 46.9, 38.5 and 70.3 in SA, SA+Ca and SA+ EGTA treated plants, respectively. SA treatment significantly increased ROS leaf accumulation, and activities of PAL, chintase and β-1,3-glucanase. These values were further enhanced in SA+Ca treated plants, but decreased in SA+EGTA treated plants. Application of SA significantly increased the expression levels of PR1, PR2a and PR3b, which were further elevated by the combination treatment with Ca2+. These effects were counteracted by the combination treatment of SA and EGTA. The transcription levels of PR2b and PR3a were up-regulated by 1-2 folds, and PR1, 2a and 3b by 2-5 folds in SA- and SA+Ca-treated plants relative to control. These data suggested that application of Ca2+ could synergistically increase SA-induced resistance to B. cinerea. The resistance was associated with ROS accumulation, therefore the increase in resistance might be through ROS ability to increase the activity of defense-related enzymes and expression levels of PR1, PR2a and PR3b. PMID:26915208

  19. Extraction and Analysis of Extracellular Polymeric Substances (EPS): Comparison of Methods and EPS Levels in Salmonella pullorum SA 1685

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The extracellular polymeric substances (EPS) production and composition for Salmonella pullorum SA 1685 exposed to artificial groundwater (AGW) has been examined utilizing three EPS extraction methods: lyophilization, ethanol, and sonication. Experiments were carried out to evaluate the robustness...

  20. The significance of plasma phytanic acid levels in adults.

    PubMed Central

    Britton, T C; Gibberd, F B; Clemens, M E; Billimoria, J D; Sidey, M C

    1989-01-01

    The presence of phytanic acid in tissues and plasma has been considered diagnostic of heredopathia atactica polyneuritiformis (Refsum's disease), but recently slightly raised plasma phytanic acid levels have been reported in other conditions. Forty two normal people were found to have a phytanic acid level of 0-33 mumol/l. Fourteen patients with heredopathia atactica polyneuritiformis had a plasma phytanic acid level before treatment of 992-6400 mumol/l. Five patients with retinitis pigmentosa but not heredopathia atactica polyneuritiformis had plasma levels of 38-192 mumol/l. It was concluded that some patients with retinitis pigmentosa without heredopathia atactica polyneuritiformis but a raised plasma phytanic acid may represent a group of patients with a disease or diseases as yet uncharacterised apart from the retinal condition. PMID:2475586

  1. Ethanol Effects On Physiological Retinoic Acid Levels

    PubMed Central

    Napoli, Joseph L.

    2011-01-01

    Summary All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand whether interference with atRA biosynthesis and/or action may explain (in part) pathology associated with excess ethanol consumption. Ethanol affects many aspects of retinoid metabolism and mechanisms of action site-specifically, but no robust data support inhibition of vitamin A metabolism, resulting in decreased atRA in vivo during normal vitamin A nutriture. Actually, ethanol either has no effect on or increases atRA at select sites. Despite this realization, insight into whether interactions between ethanol and retinoids represent cause vs. effect requires additional research. PMID:21766417

  2. [Serum uric acid levels and risk of developing preeclampsia].

    PubMed

    Corominas, Ana I; Balconi, Silvia M; Palermo, Mario; Maskin, Bernardo; Damiano, Alicia E

    2014-01-01

    It is well known that preeclampsia is associated to high uric acid levels, but the clinical assessment of this relationship is still under consideration. Our research was to evaluate if periodic doses of uric acid during pregnancy might help to identify a high risk group prior to the onset of preeclampsia. We conducted a retrospective investigation in 79 primary gestates with normal blood pressure and 79 women with preeclampsia who were assisted at Hospital Nacional Posadas during 2010. Serum uric acid levels, creatininemia, uremia, and proteinuria data from the clinical records of the pregnant women were considered. Uric acid levels were similar in both groups during the first half of gestation. However, as of the 20th week, uric acid increased 1.5-times in preeclamptic women with no changes in creatinine and urea, confirming that these patients had no renal complications. Furthermore, we noted that higher levels of uric acid correlated with low birth weight. We also observed that pregnant women with a family history of hypertension were more likely to develop this condition. Moreover, we did not find a direct relationship with the fetal sex or the appearance of clinical symptoms. The analytical evidence suggests that changes in uric acid concentrations may be due to metabolic alterations at the initial stages of preeclampsia. Therefore, we propose that monitoring levels of uric acid during pregnancy might contribute to the early control of this condition. PMID:25555007

  3. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid.

    PubMed

    Paterson, John R; Baxter, Gwendoline; Dreyer, Jacob S; Halket, John M; Flynn, Robert; Lawrence, James R

    2008-12-24

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A (13)C(6) benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  4. Salicylic Acid sans Aspirin in Animals and Man: Persistence in Fasting and Biosynthesis from Benzoic Acid

    PubMed Central

    2008-01-01

    Salicylic acid (SA), which is central to defense mechanisms in plants and the principal metabolite of aspirin, occurs naturally in man with higher levels of SA and its urinary metabolite salicyluric acid (SU) in vegetarians overlapping with levels in patients on low-dose aspirin regimens. SA is widely distributed in animal blood. Fasting for major colorectal surgery did not cause disappearance of SA from plasma, even in patients following total proctocolectomy. A 13C6 benzoic acid load ingested by six volunteers led, between 8 and 16 h, to a median 33.9% labeling of urinary salicyluric acid. The overall contribution of benzoic acid (and its salts) to the turnover of circulating SA thus requires further assessment. However, that SA appears to be, at least partially, an endogenous compound should lead to reassessment of its role in human (and animal) pathophysiology. PMID:19053387

  5. Uric Acid Levels in Normotensive Children of Hypertensive Parents

    PubMed Central

    Yildirim, Ali; Keles, Fatma; Kosger, Pelin; Ozdemir, Gokmen; Ucar, Birsen; Kilic, Zubeyir

    2015-01-01

    This study evaluated uric acid concentrations in normotensive children of parents with hypertension. Eighty normotensive children from families with and without a history of essential hypertension were included. Concentrations of lipid parameters and uric acid were compared. Demographic and anthropometric characteristics were similar in the groups. Systolic and diastolic blood pressure were higher in the normotensive children of parents with hypertension without statistically significant difference (P > 0.05). Uric acid concentrations were higher in the normotensive children of parents with hypertension (4.61 versus 3.57 mg/dL, P < 0.01). Total cholesterol and triglyceride concentrations were similar in the two groups. Systolic and diastolic blood pressure were significantly higher in control children aged >10 years (P < 0.01). Uric acid levels were significantly higher in all children with more pronounced difference after age 10 of years (P < 0.001). Positive correlations were found between the level of serum uric acid and age, body weight, body mass index, and systolic and diastolic blood pressure in the normotensive children of parents. The higher uric acid levels in the normotensive children of hypertensive parents suggest that uric acid may be a predeterminant of hypertension. Monitoring of uric acid levels in these children may allow for prevention or earlier treatment of future hypertension. PMID:26464873

  6. [Hydroxycinnamic acid levels of various batches from mugwort flowering tops].

    PubMed

    Fraisse, D; Carnat, A; Carnat, A-P; Guédon, D; Lamaison, J-L

    2003-07-01

    Dried flowering tops of 24 harvested batches (Artemisia vulgaris: 13; Artemisia verlotiorum: 11) and 12 batches of mugwort from commercial origin were examined. The levels of principal compounds averaged respectively: total hydroxycinnamic acids 6.09; 10.29 and 9.13%, chlorogenic acid 0.79; 2.05 and 1.35%, 1,5-dicaffeoylquinic acid 0.51; 4.01 and 1.25%, 3,5-dicaffeoylquinic acid 2.21; 1.25 and 2.60%. Specifications were discussed for an European Pharmacopoeial monography. PMID:12843960

  7. Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen.

    PubMed

    Lee, Hyoung Yool; Byeon, Yeong; Tan, Dun-Xian; Reiter, Russel J; Back, Kyoungwhan

    2015-04-01

    Serotonin N-acetyltransferase (SNAT) is the penultimate enzyme in the melatonin biosynthesis pathway in plants. We examined the effects of SNAT gene inactivation in two Arabidopsis T-DNA insertion mutant lines. After inoculation with the avirulent pathogen Pseudomonas syringe pv. tomato DC3000 harboring the elicitor avrRpt2 (Pst-avrRpt2), melatonin levels in the snat knockout mutant lines were 50% less than in wild-type Arabidopsis Col-0 plants. The snat knockout mutant lines exhibited susceptibility to pathogen infection that coincided with decreased induction of defense genes including PR1, ICS1, and PDF1.2. Because melatonin acts upstream of salicylic acid (SA) synthesis, the reduced melatonin levels in the snat mutant lines led to decreased SA levels compared to wild-type, suggesting that the increased pathogen susceptibility of the snat mutant lines could be attributed to decreased SA levels and subsequent attenuation of defense gene induction. Exogenous melatonin treatment failed to induce defense gene expression in nahG Arabidopsis plants, but restored the induction of defense gene expression in the snat mutant lines. In addition, melatonin caused translocation of NPR1 (nonexpressor of PR1) protein from the cytoplasm into the nucleus indicating that melatonin-elicited pathogen resistance in response to avirulent pathogen attack is SA-dependent in Arabidopsis. PMID:25652756

  8. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  9. Relationship between Uric Acid Level and Achievement Motivation. Final Report.

    ERIC Educational Resources Information Center

    Mueller, Ernst F.; French, John R. P., Jr.

    In an investigation of the relationship of uric acid (a metabolic end product) to achievement, this study hypothesized that a person's serum urate level (a factor often associated with gout) is positively related to achievement need as well as indicators of actual achievement. (Speed of promotion and number of yearly publications were chosen as…

  10. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  11. Puget Sound acidity levels drop after ASARCO shutdown

    SciTech Connect

    Not Available

    1987-07-01

    The levels of acidity in Puget Sound region rainfall have decreased significantly since the shutdown of the ASARCO copper smelter in Tacoma, Washington, according to a study funded by the US Environmental Protection Agency. Results indicate that sulfate and hydrogen ion concentrations obtained from samples taken before the closure were significantly different than those collected after the shutdown. Rainwater samples collected downwind during smelter operation were also significantly different from those collected upwind. Sulfur dioxide is considered to be one of the principal contributors to acid rain. The smelter was a major source of sulfur dioxide emissions in the Puget Sound region before it shut down in March 1985.

  12. Circulating Docosahexaenoic Acid Levels Are Associated with Fetal Insulin Sensitivity

    PubMed Central

    Zhao, Jin-Ping; Levy, Emile; Fraser, William D.; Julien, Pierre; Delvin, Edgard; Montoudis, Alain; Spahis, Schohraya; Garofalo, Carole; Nuyt, Anne Monique; Luo, Zhong-Cheng

    2014-01-01

    Background Arachidonic acid (AA; C20∶4 n-6) and docosahexaenoic acid (DHA; C22∶6 n-3) are important long-chain polyunsaturated fatty acids (LC-PUFA) in maintaining pancreatic beta-cell structure and function. Newborns of gestational diabetic mothers are more susceptible to the development of type 2 diabetes in adulthood. It is not known whether low circulating AA or DHA is involved in perinatally “programming” this susceptibility. This study aimed to assess whether circulating concentrations of AA, DHA and other fatty acids are associated with fetal insulin sensitivity or beta-cell function, and whether low circulating concentrations of AA or DHA are involved in compromised fetal insulin sensitivity in gestational diabetic pregnancies. Methods and Principal Findings In a prospective singleton pregnancy cohort, maternal (32-35 weeks gestation) and cord plasma fatty acids were assessed in relation to surrogate indicators of fetal insulin sensitivity (cord plasma glucose-to-insulin ratio, proinsulin concentration) and beta-cell function (proinsulin-to-insulin ratio) in 108 mother-newborn pairs. Cord plasma DHA levels (in percentage of total fatty acids) were lower comparing newborns of gestational diabetic (n = 24) vs. non-diabetic pregnancies (2.9% vs. 3.5%, P = 0.01). Adjusting for gestational age at blood sampling, lower cord plasma DHA levels were associated with lower fetal insulin sensitivity (lower glucose-to-insulin ratio, r = 0.20, P = 0.036; higher proinsulin concentration, r = −0.37, P <0.0001). The associations remained after adjustment for maternal and newborn characteristics. Cord plasma saturated fatty acids C18∶0 and C20∶0 were negatively correlated with fetal insulin sensitivity, but their levels were not different between gestational diabetic and non-diabetic pregnancies. Cord plasma AA levels were not correlated with fetal insulin sensitivity. Conclusion Low circulating DHA levels are associated with compromised

  13. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco

    SciTech Connect

    Yalpani, N.; Leon, J.; Lawton, M.A.; Raskin, I. )

    1993-10-01

    Salicylic acid (SA) is a likely endogenous regulator of localized and systemic disease resistance in plants. During the hypersensitive response of Nicotiana tabacum L. cv Xanthi-nc to tobacco mosaic virus (TMV), SA levels rise dramatically. We studied Sa biosynthesis in healthy and TMV-inoculated tobacco by monitoring the levels of SA and its likely precursors in extracts of leaves and cell suspensions. In TMV-inoculated leaves, stimulation of Sa accumulation is accompanied by a corresponding increase in the levels of benzoic acid. [sup 14]C-Tracer studies with cell suspensions and mock- or TMV-inoculated leaves indicate that the label moves from trans-cinnamic acid to SA via benzoic acid. In healthy and TMV-inoculated tobacco leaves, benzoic acid induced SA accumulation. o-Coumaric acid, which was previously reported as a possible precursor of SA in other species, did not increase SA levels in tobacco. In healthy tobacco tissue, the specific activity of newly formed SA was equal to that of the supplied [[sup 14]C] benzoic acid, whereas in TMV-inoculated leaves some isotope dilution was observed, presumably because of the increase in the pool of endogenous benzoic acid. We observed accumulation of pathogenesis-related-1 proteins and increased resistance to TMV in benzoic acid but no in 0-coumaric acid-treated tobacco leaves. This is consistent with benzoic acid being the immediate precursor of SA. We conclude that in healthy and virus-inoculated tobacco, SA is formed from cinnamic acid via benzoic acid. 27 refs., 7 figs., 1 tab.

  14. High Level Waste System Impacts from Acid Dissolution of Sludge

    SciTech Connect

    KETUSKY, EDWARD

    2006-04-20

    This research evaluates the ability of OLI{copyright} equilibrium based software to forecast Savannah River Site High Level Waste system impacts from oxalic acid dissolution of Tank 1-15 sludge heels. Without further laboratory and field testing, only the use of oxalic acid can be considered plausible to support sludge heel dissolution on multiple tanks. Using OLI{copyright} and available test results, a dissolution model is constructed and validated. Material and energy balances, coupled with the model, identify potential safety concerns. Overpressurization and overheating are shown to be unlikely. Corrosion induced hydrogen could, however, overwhelm the tank ventilation. While pH adjustment can restore the minimal hydrogen generation, resultant precipitates will notably increase the sludge volume. OLI{copyright} is used to develop a flowsheet such that additional sludge vitrification canisters and other negative system impacts are minimized. Sensitivity analyses are used to assess the processability impacts from variations in the sludge/quantities of acids.

  15. Salicylic Acid Biosynthesis and Metabolism

    PubMed Central

    Dempsey, D'Maris Amick; Vlot, A. Corina; Wildermuth, Mary C.; Klessig, Daniel F.

    2011-01-01

    Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented. PMID:22303280

  16. Does high serum uric acid level cause aspirin resistance?

    PubMed

    Yildiz, Bekir S; Ozkan, Emel; Esin, Fatma; Alihanoglu, Yusuf I; Ozkan, Hayrettin; Bilgin, Murat; Kilic, Ismail D; Ergin, Ahmet; Kaftan, Havane A; Evrengul, Harun

    2016-06-01

    In patients with coronary artery disease (CAD), though aspirin inhibits platelet activation and reduces atherothrombotic complications, it does not always sufficiently inhibit platelet function, thereby causing a clinical situation known as aspirin resistance. As hyperuricemia activates platelet turnover, aspirin resistance may be specifically induced by increased serum uric acid (SUA) levels. In this study, we thus investigated the association between SUA level and aspirin resistance in patients with CAD. We analyzed 245 consecutive patients with stable angina pectoris (SAP) who in coronary angiography showed more than 50% occlusion in a major coronary artery. According to aspirin resistance, two groups were formed: the aspirin resistance group (Group 1) and the aspirin-sensitive group (Group 2). Compared with those of Group 2, patients with aspirin resistance exhibited significantly higher white blood cell counts, neutrophil counts, neutrophil-to-lymphocyte ratios, SUA levels, high-sensitivity C-reactive protein levels, and fasting blood glucose levels. After multivariate analysis, a high level of SUA emerged as an independent predictor of aspirin resistance. The receiver-operating characteristic analysis provided a cutoff value of 6.45 mg/dl for SUA to predict aspirin resistance with 79% sensitivity and 65% specificity. Hyperuricemia may cause aspirin resistance in patients with CAD and high SUA levels may indicate aspirin-resistant patients. Such levels should thus recommend avoiding heart attack and stroke by adjusting aspirin dosage. PMID:26656902

  17. [Effect of amino acid solutions on the blood ammonia level].

    PubMed

    Sanjo, K; Harihara, Y; Kawasaki, S; Umekita, N; Idezuki, Y

    1985-09-01

    We have carried out several basic experiments on artificial liver support and found that the plasma free amino acid balance was lost after treatment according to this procedure. Application of fluid therapy--Using conventional amino acid preparations available on the market--Is not adequate during and after the treatment with artificial liver. Fluid therapy using mainly special amino acid preparations should have been established; preparations, named Todai Hospital fluid (THF), are intended to correct the deranged aminogram, supply nutrition and promote the improvement in symptoms. Furthermore, experimental animals with acute hepatic insufficiency of diverse severity were prepared and basic experiments were performed which these animals to see how the efficacy of THF developed. In the basic experiments, psychoneurotic symptoms and the electroencephalogram were improved with the lowering of the blood ammonia level. Clinically, THF was not only used as a therapeutic agent after treatment by artificial liver support in patients with fulminant hepatitis, but is also served as a further indication in hepatic encephalopathy accompanying chronic liver diseases in late stages. Improvement in encephalopathy was observed immediately after the administration of THF and persisted while the aminogram pattern returned to the premedication representation. There was more improvement in patients in whom ammonemia was complicated, and the blood ammonia level was reduced markedly. PMID:4088243

  18. Serum fluoride and sialic acid levels in osteosarcoma.

    PubMed

    Sandhu, R; Lal, H; Kundu, Z S; Kharb, S

    2011-12-01

    Osteosarcoma is a rare malignant bone tumor most commonly occurring in children and young adults presenting with painful swelling. Various etiological factors for osteosarcoma are ionizing radiation, family history of bone disorders and cancer, chemicals (fluoride, beryllium, and vinyl chloride), and viruses. Status of fluoride levels in serum of osteosarcoma is still not clear. Recent reports have indicated that there is a link between fluoride exposure and osteosarcoma. Glycoproteins and glycosaminoglycans are an integral part of bone and prolonged exposure to fluoride for long duration has been shown to cause degradation of collagen and ground substance in bones. The present study was planned to analyze serum fluoride, sialic acid, calcium, phosphorus, and alkaline phosphatase levels in 25 patients of osteosarcoma and age- and sex-matched subjects with bone-forming tumours other than osteosarcoma and musculo-skeletal pain (controls, 25 each). Fluoride levels were analyzed by ISE and sialic acid was analyzed by Warren's method. Mean serum fluoride concentration was found to be significantly higher in patients with osteosarcoma as compared to the other two groups. The mean value of flouride in patients with other bone-forming tumors was approximately 50% of the group of osteosarcoma; however, it was significantly higher when compared with patients of group I. Serum sialic acid concentration was found to be significantly raised in patients with osteosarcoma as well as in the group with other bone-forming tumors as compared to the group of controls. There was, however, no significant difference in the group of patients of osteosarcoma when compared with group of patients with other bone-forming tumors. These results showing higher level of fluoride with osteosarcoma compared to others suggesting a role of fluoride in the disease. PMID:19390788

  19. Prognostic Significance of Uric Acid Levels in Ischemic Stroke Patients.

    PubMed

    Zhang, Xia; Huang, Zhi-Chao; Lu, Tao-Sheng; You, Shou-Jiang; Cao, Yong-Jun; Liu, Chun-Feng

    2016-01-01

    The importance and function of serum uric acid (UA) levels in patients with cardiovascular disease or stroke are unclear. We sought to evaluate the appropriate UA levels for stroke patients and the association between endogenous UA levels and clinical outcomes in acute ischemic stroke (AIS) patients, particularly regarding the possible interaction between gender and UA levels with respect to AIS prognosis. We examined 303 patients who had an onset of ischemic stroke within 48 h. Of those, 101 patients received thrombolytic treatment. Serum UA (μmol/L) levels were measured the second morning after admission. Patient prognosis was evaluated 90 days after clinical onset by modified Rankin Scale. Patients were divided into four groups according to serum UA quartiles. A binary multivariate logistic regression model was used to assess clinical relevance in regard to functional outcome and endogenous UA levels. Analysis of subgroups by gender and normal glomerular filtration rate were also been done. Poor functional outcome was associated with older age, history of atrial fibrillation, or higher baseline National Institutes of Health Stroke Scale scores. After adjustment for potential confounders, patients with higher UA levels (>380 μmol/L) or lower UA levels (≤250 μmol/L) were 2-3 times more likely to have a poor outcome (OR 2.95, 95% CI 1.14-7.61; OR 2.78, 95% CI 1.02-7.58, respectively) compared to the baseline group (UA level 316-380 μmol/L). The same results were observed in thrombolyzed patients. Patients with high and low UA levels were 9-18 times more likely to having poor outcomes compared to the baseline group (UA level: 316-380 μmol/L; OR 18.50, 95% CI: 2.041-167.67; OR 9.66, 95% CI 1.42-65.88, respectively). In men, patients with high UA levels were 6 times more likely to have poor outcomes compared to the baseline group (UA level: 279-334 μmol/L; OR 6.10, 95% CI 1.62-22.93). However, female patients with UA level 271-337 μmol/L were seven times more

  20. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  1. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro.

    PubMed

    Müller, Werner E G; Wang, Xiaohong; Diehl-Seifert, Bärbel; Kropf, Klaus; Schlossmacher, Ute; Lieberwirth, Ingo; Glasser, Gunnar; Wiens, Matthias; Schröder, Heinz C

    2011-06-01

    Inorganic polymeric phosphate is a physiological polymer that accumulates in bone cells. In the present study osteoblast-like SaOS-2 cells were exposed to this polymer, complexed in a 2:1 stoichiometric ratio with Ca(2+), polyP (Ca(2+) salt). At a concentration of 100 μM, polyP (Ca(2+) salt) caused a strong increase in the activity of the alkaline phosphatase and also an induction of the steady-state expression of the gene encoding this enzyme. Comparative experiments showed that polyP (Ca(2+) salt) can efficiently replace β-glycerophosphate in the in vitro hydroxyapatite (HA) biomineralization assay. In the presence of polyP (Ca(2+) salt) the cells extensively form HA crystallites, which remain intimately associated with or covered by the plasma membrane. Only the tips of the crystallites are directly exposed to the extracellular space. Element mapping by scanning electron microscopy/energy-dispersive X-ray spectroscopy coupled to a silicon drift detector supported the finding that organic material was dispersed within the crystallites. Finally, polyP (Ca(2+) salt) was found to cause an increase in the intracellular Ca(2+) level, while polyP, as well as inorganic phosphate (P(i)) or Ca(2+) alone, had no effect at the concentrations used. These findings are compatible with the assumption that polyP (Ca(2+) salt) is locally, on the surface of the SaOS-2 cells, hydrolyzed to P(i) and Ca(2+). We conclude that the inorganic polymer polyP (Ca(2+) salt) in concert with a second inorganic, and physiologically occurring, polymer, biosilica, activates osteoblasts and impairs the maturation of osteoclasts. PMID:21397057

  2. Role of Salicylic Acid and Benzoic Acid in Flowering of a Photoperiod-Insensitive Strain, Lemna paucicostata LP6 1

    PubMed Central

    Khurana, Jitendra P.; Cleland, Charles F.

    1992-01-01

    Lemna paucicostata LP6 does not normally flower when grown on basal Bonner-Devirian medium, but substantial flowering is obtained when 10 μm salicylic acid (SA) or benzoic acid is added to the medium. Benzoic acid is somewhat more effective than SA, and the threshold level of both SA and benzoic acid required for flower initiation is reduced as the pH of the medium is lowered to 4.0. SA- or benzoic acid-induced flowering is enhanced in the simultaneous presence of 6-benzylaminopurine (BAP), although BAP per se does not influence flowering in strain LP6. Continuous presence of SA or benzoic acid in the culture medium is essential to obtain maximal flowering. A short-term treatment of the plants (for first 24 h) with 10 μm SA or benzoic acid, followed by culture in the basal medium containing 1 μm BAP can, however, stimulate profuse flowering. Benzoic acid is more effective than SA, and the effect is more pronounced at pH 4 than at 5.5. Thus, under these conditions, flowering is of an inductive nature. Experiments with [14C]SA and [14C]benzoic acid have provided evidence that at pH 4 there is relatively more uptake of benzoic acid than SA, thus leading to an increased flowering response. The data obtained from the experiments designed to study the mobility of [14C]SA and [14C]-benzoic acid from mother to daughter fronds indicate that there is virtually no mobility of SA or benzoic acid between fronds. PMID:16653155

  3. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus.

    PubMed

    Nováková, Miroslava; Šašek, Vladimír; Trdá, Lucie; Krutinová, Hana; Mongin, Thomas; Valentová, Olga; Balesdent, Marie-HelEne; Rouxel, Thierry; Burketová, Lenka

    2016-08-01

    To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans. PMID:26575525

  4. Association between serum folic acid level and erectile dysfunction.

    PubMed

    Karabakan, M; Erkmen, A E; Guzel, O; Aktas, B K; Bozkurt, A; Akdemir, S

    2016-06-01

    This study measured the serum folic acid (FA) level in patients with erectile dysfunction (ED) and evaluated the possible association between the serum FA level and erectile function. The study divided 120 patients with ED into 3 groups of 40 patients each: those with severe, moderate and mild ED. Forty healthy men served as controls. Fasting serum samples were obtained, and the total testosterone, cholesterol and FA levels were measured using chemiluminescent immunoassays. There were no significant differences in the mean age, mean body mass index or mean serum total testosterone and cholesterol levels among the three ED groups and controls (P > 0.05). The mean serum FA concentrations were 7.2 ± 3.7, 7.1 ± 3.2, 10.2 ± 4.6 and 10.7 ± 4.6 ng ml(-1) in the severe, moderate and mild ED and control groups respectively. The mean serum FA concentration was significantly higher in the control group than in the severe and moderate ED groups (both P < 0.001), but not the mild ED group (P = 0.95). Considering the significant differences in the serum FA levels between the control and ED groups, serum FA deficiency might reflect the severity of ED. PMID:26302884

  5. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  6. What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels?

    PubMed

    Baack, Michelle L; Puumala, Susan E; Messier, Stephen E; Pritchett, Deborah K; Harris, William S

    2015-09-01

    Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) and arachidonic acid (ARA) are increasingly transferred from mother to fetus late in pregnancy. Infants born before this transfer is complete are at risk for deficiency. This study determines the relationship between gestational age (GA) and circulating LCPUFA levels to better understand the unique needs of premature infants born at various GAs. Whole blood was collected within the first 7 days of life from 60 preterm (≤34 weeks GA) and 30 term infants (≥38 weeks GA) and FA levels were analyzed. Since concurrent intravenous lipid emulsion can skew composition data, blood LCPUFA concentrations were also measured. Levels were compared among groups, and linear regression models were used to examine the association between FA composition and GA. Preterm infants had significantly lower DHA and ARA levels than term peers, and whether assessed as concentrations or compositions, both directly correlated with GA (p<0.0001). Moreover, FA comparisons suggest that premature infants have impaired synthesis of LCPUFAs from precursors and may require preformed DHA and ARA. This study confirms that essential FA status is strongly related to GA, and that those babies born the earliest are at the greatest risk of LCPUFA deficiency. PMID:26205427

  7. Association of Serum Uric Acid Levels in Psoriasis

    PubMed Central

    Li, Xin; Miao, Xiao; Wang, Hongshen; Wang, Yifei; Li, Fulun; Yang, Qiong; Cui, Rutao; Li, Bin

    2016-01-01

    Abstract High levels of serum uric acid (SUAC) are frequently detected in patients with psoriasis. However, the relationship between psoriasis and hyperuricemia remains unknown. Here we conducted a meta-analysis to identify the SUAC levels in subjects with psoriasis and to determine whether there is an associated risk between psoriasis and hyperuricemia. A comprehensive search of the literature from January 1980 to November 2014 across 7 databases (MEDLINE, Embase, Cochrane Central Register, and 4 Chinese databases) was conducted to determine whether there is an associated risk between psoriasis and hyperuricemia. Among the 170 identified reports, 14 observational studies were included in this meta-analysis. We found a significant higher SUAC level (MD 0.68, 95% CI 0.26–1.09; P = 0.002) in patients with psoriasis in Western Europe, but no significant differences were found between the East Asia and India subgroup (MD 1.22, 95% CI –0.13–2.56; P = 0.08) or the Middle East subgroup (MD 0.48, 95% CI –0.49–1.44; P = 0.33). Similar results were obtained from the meta-analysis of SUAC levels in subjects with severe psoriasis. Our meta-analysis showed that the correlation between psoriasis and hyperuricemia was either ethnicity- or region-dependent and that patients with psoriasis in Western Europe were more likely to have hyperuricemia. PMID:27175702

  8. Low irradiances affect abscisic acid, indole-3-acidic acid, and cytokinin levels of wheat (Triticum aestivum L.) tissues

    NASA Technical Reports Server (NTRS)

    Nan, R.; Carman, J. G.; Salisbury, F. B.

    1999-01-01

    Wheat (Triticum aestivum L.) plants were grown under four irradiance levels: 1,400, 400, 200, and 100 micromol m-2 s-1. Leaves and roots were sampled before, during, and after the boot stage, and levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin, zeatin riboside, dihydrozeatin, dihydrozeatin riboside, isopentenyl adenine, and isopentenyl adenosine were quantified using noncompetitive indirect ELISA systems. Levels of IAA in leaves and roots of plants exposed to 100 micromol m-2 s-1 of irradiance were 0.7 and 2.9 micromol kg-1 dry mass (DM), respectively. These levels were 0.2 and 1.0 micromol kg-1 DM, respectively, when plants were exposed to 1,400 micromol m-2 s-1. Levels of ABA in leaves and roots of plants exposed to 100 micromol m-2 s-1 were 0.65 and 0.55 micromol kg-1 DM, respectively. They were 0.24 micromol kg-1 DM (both leaves and roots) when plants were exposed to 1,400 micromol m-2 s-1. Levels of isopentenyl adenosine in leaves (24.3 nmol kg-1 DM) and roots (29.9 nmol kg-1 DM) were not affected by differences in the irradiance regime. Similar values were obtained in a second experiment. Other cytokinins could not be detected (<10 nmol kg 1 DM) in either experiment with the sample sizes used (150-600 mg DM for roots and shoots, respectively).

  9. Unsaturated fatty acids supplementation reduces blood lead level in rats.

    PubMed

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: "super lecithin" (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  10. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  11. Serum uric acid levels during leprosy reaction episodes

    PubMed Central

    Alves-Junior, Eduardo R.; Arruda, Talita A.; Lopes, Jose C.; Fontes, Cor J.F.

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18–69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with

  12. Serum uric acid levels during leprosy reaction episodes.

    PubMed

    Morato-Conceicao, Yvelise T; Alves-Junior, Eduardo R; Arruda, Talita A; Lopes, Jose C; Fontes, Cor J F

    2016-01-01

    Background. Leprosy reactions are acute inflammatory episodes that occur mainly in the multibacillary forms of the disease. The reactions are classified as type 1 (reverse reaction) or type 2 (erythema nodosum leprosum). Leprosy-associated oxidative stress has been widely demonstrated. Several recent studies have shown uric acid (UA) to have antioxidative effects under pathologic conditions. The objective of this study was to assess serum levels of UA in patients with leprosy reactions, with the aim of monitoring their levels before and after treatment, compared with levels in leprosy patients without reactions. Methods. The study included patients aged 18-69 years assisted at a leprosy treatment reference center in the Central Region of Brazil. Patients who were pregnant; were using immunosuppressant drugs or immunobiologicals; or had an autoimmune disease, human immunodeficiency virus infection, acquired immune deficiency syndrome, or tuberculosis were excluded. Upon recruitment, all individuals were clinically assessed for skin lesions and neural or systemic impairment. Some patients had already completed treatment for leprosy, while others were still undergoing treatment or had initiated treatment after being admitted. The treatment of the reactional episode was started only after the initial evaluation. Laboratory assessments were performed upon admission (baseline) and at approximately 30 and 60 days (time points 1 and 2, respectively). Results. A total of 123 leprosy patients were recruited between June 2012 and June 2015; among them, 56, 42, and 25 presented with type 1, type 2, and no reactions, respectively. Serum UA levels were significantly reduced in patients with type 2 leprosy reactions compared with patients in the control group and remained lower in the two subsequent assessments, after initiation of anti-reaction treatments, with similar values to those recorded before the treatment. Discussion. The decreased serum UA levels in patients with type

  13. Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry.

    PubMed

    Liu, Fenghong; Wang, Lei; Gu, Liang; Zhao, Wei; Su, Hongyan; Cheng, Xianhao

    2015-12-01

    In our preliminary study, the ripe fruits of two highbush blueberry (Vaccinium corymbosum L.) cultivars, cv 'Berkeley' and cv 'Bluecrop', were found to contain different levels of ascorbic acid. However, factors responsible for these differences are still unknown. In the present study, ascorbic acid content in fruits was compared with expression profiles of ascorbic acid biosynthetic and recycling genes between 'Bluecrop' and 'Berkeley' cultivars. The results indicated that the l-galactose pathway was the predominant route of ascorbic acid biosynthesis in blueberry fruits. Moreover, higher expression levels of the ascorbic acid biosynthetic genes GME, GGP, and GLDH, as well as the recycling genes MDHAR and DHAR, were associated with higher ascorbic acid content in 'Bluecrop' compared with 'Berkeley', which indicated that a higher efficiency ascorbic acid biosynthesis and regeneration was likely to be responsible for the higher ascorbic acid accumulation in 'Bluecrop'. PMID:26041210

  14. Cutaneous retinoic acid levels determine hair follicle development and downgrowth.

    PubMed

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H; Sakai, Yasuo; Morasso, Maria I

    2012-11-16

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1(-/-)) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/-) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1(-/-) skin and En1Cre;Cyp26b1f/- tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  15. Cutaneous Retinoic Acid Levels Determine Hair Follicle Development and Downgrowth*

    PubMed Central

    Okano, Junko; Levy, Clara; Lichti, Ulrike; Sun, Hong-Wei; Yuspa, Stuart H.; Sakai, Yasuo; Morasso, Maria I.

    2012-01-01

    Retinoic acid (RA) is essential during embryogenesis and for tissue homeostasis, whereas excess RA is well known as a teratogen. In humans, excess RA is associated with hair loss. In the present study, we demonstrate that specific levels of RA, regulated by Cyp26b1, one of the RA-degrading enzymes, are required for hair follicle (hf) morphogenesis. Mice with embryonic ablation of Cyp26b1 (Cyp26b1−/−) have excessive endogenous RA, resulting in arrest of hf growth at the hair germ stage. The altered hf development is rescued by grafting the mutant skin on immunodeficient mice. Our results show that normalization of RA levels is associated with reinitiation of hf development. Conditional deficiency of Cyp26b1 in the dermis (En1Cre;Cyp26b1f/−) results in decreased hair follicle density and specific effect on hair type, indicating that RA levels also influence regulators of hair bending. Our results support the model of RA-dependent dermal signals regulating hf downgrowth and bending. To elucidate target gene pathways of RA, we performed microarray and RNA-Seq profiling of genes differentially expressed in Cyp26b1−/− skin and En1Cre;Cyp26b1f/− tissues. We show specific effects on the Wnt-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families, indicating that RA modulates pathways and factors implicated in hf downgrowth and bending. Our results establish that proper RA distribution is essential for morphogenesis, development, and differentiation of hfs. PMID:23007396

  16. Dependence of intestinal amino acid uptake on dietary protein or amino acid levels

    SciTech Connect

    Karasov, W.H.; Solberg, D.H.; Diamond, J.M.

    1987-05-01

    To understand how intestinal amino acid (AA) transport is regulated by dietary substrate levels, the authors measured uptake of seven radioactively-labelled AAs and glucose across the jejunal brush-border membrane of mice kept on one of three isocaloric rations differing in nitrogen content. In the high-protein ration, uptake increased by 77-81% for the nonessential, less toxic AAs, proline, and aspartate but only by 32-61% for the more toxic essential AAs tested. In the nitrogen-deficient ration, uptake decreased for the nonessential aspartate and proline but stayed constant or increased for essential AAs and for the nonessential alanine. These patterns imply independent regulation of the intestine's various AA transporters. With decreasing dietary AA (or protein), the imino acid and acidic AA private transporters are repressed, while activities of the basic AA transporter and the neutral AA public transporter decrease to an asymptote or else go through a minimum. These regulatory patterns can be understood as a compromise among conflicting constraints imposed by protein's multiple roles as a source of calories, nitrogen, and essential AAs and by the toxicity of essential AAs at high concentrations.

  17. The preliminary study of autophagy induction of SA and MeSA by confocal

    NASA Astrophysics Data System (ADS)

    Yun, Lijuan; Chen, Wenli

    2010-02-01

    Autophagy appears to be a highly conserved process from unicellular to multicellular eukaryotes which contributes to the equilibrium of intracelluar environment. While it would be harmful to the cells when it is excessive by inducing programmed cell death (PCD). It is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Previous studies have demonstrated autophagy can be induced during abiotic or biotic stresses. salicylic acid (SA) and methyl salicytic (MeSA) are endogenous signal molecules. We found SA and MeSA can induce autophagy in Arabidopsis thaliana respectively. While autophagy was not induced by SA or MeSA in tobacco suspension cells under the same concentration and period. The differences in stuctures or physiological states may contribute to the results.

  18. Salicylic acid interferes with clathrin-mediated endocytic protein trafficking.

    PubMed

    Du, Yunlong; Tejos, Ricardo; Beck, Martina; Himschoot, Ellie; Li, Hongjiang; Robatzek, Silke; Vanneste, Steffen; Friml, Jirí

    2013-05-01

    Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology. PMID:23613581

  19. Chicoric Acid Levels in Basil (Ocimum basilicum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported the presence of chicoric acid in basil leaves (confirmed by co-chromatography with purchased standard). Chicoric acid being the chief phenolic of the Echinacea purpurea plant which is popularly consumed as a dietary supplement. For this study, basil products commonly purchased ...

  20. Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes.

    PubMed

    Nanthirudjanar, Tharnath; Furumoto, Hidehiro; Zheng, Jiawen; Kim, Young-Il; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2015-11-01

    Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia. PMID:26399511

  1. Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

    PubMed Central

    Lowe-Power, Tiffany M.; Jacobs, Jonathan M.; Ailloud, Florent; Fochs, Brianna; Prior, Philippe

    2016-01-01

    ABSTRACT Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum. SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA degradation pathway during tomato pathogenesis. Transcriptional analysis revealed that subinhibitory SA levels induced expression of the SA degradation pathway, toxin efflux pumps, and some general stress responses. Interestingly, SA treatment repressed expression of virulence factors, including the type III secretion system, suggesting that this pathogen may suppress virulence functions when stressed. A GMI1000 mutant lacking SA degradation activity was much more susceptible to SA toxicity but retained the wild-type colonization ability and virulence on tomato. This may be because SA is less important than gentisic acid in tomato defense signaling. However, another host, tobacco, responds strongly to SA. To test the hypothesis that SA degradation contributes to virulence on tobacco, we measured the effect of adding this pathway to the tobacco-pathogenic R. solanacearum strain K60, which lacks SA degradation genes. Ectopic addition of the GMI1000 SA degradation locus, including adjacent genes encoding two porins and a LysR-type transcriptional regulator, significantly increased the virulence of strain K60 on tobacco. Together, these results suggest that R. solanacearum degrades plant SA to protect itself from inhibitory levels of this compound and also to enhance its virulence on plant hosts like tobacco that use SA as a defense signal molecule. PMID:27329752

  2. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    PubMed Central

    Saxena, Vartika; Mirza, Anissa Atif; Kumari, Ranjeeta; Sharma, Kapil; Bharadwaj, Jyoti

    2016-01-01

    Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA), and dihydrofolate reductase (DHFR) were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p = 0.790). Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus. PMID:27064332

  3. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  4. Isolation of a haemorrhagic protein toxin (SA-HT) from the Indian venomous butterfish (Scatophagus argus, Linn) sting extract.

    PubMed

    Karmakar, S; Muhuri, D C; Dasgupta, S C; Nagchaudhuri, A K; Gomes, A

    2004-05-01

    A haemorrhagic protein toxin (SA-HT) was isolated and purified from the spine extract of the Indian venomous butterfish, S. argus Linn, by two step ion exchange chromatography. The toxin was homogeneous in native and SDS-PAGE gel. SDS-molecular weight of the toxin was found to be 18.1 +/- 0.09 kDa. SA-HT produced severe haemorrhage on stomach wall but devoid of cutaneous haemorrhage. UV, EDTA, trypsin, protease, cyproheptadine, indomethacin, acetylsalicylic acid and BW755C treatment significantly antagonized the haemorrhagic activity of SA-HT. The toxin produced dose and time dependent oedema on mice hind paw, which was significantly encountered by cyproheptadine, indomethacin and BW755C. SA-HT increased capillary permeability on guinea pig dorsal flank. On isolated guineapig ileum, rat fundus and uterus, SA-HT produced slow contraction which was completely antagonised by prostaglandin blocker SC19220. On isolated rat duodenum, SA-HT produced slow relaxation. SA-HT significantly increased plasma plasmin, serum MDA level and decreased serum SOD level indicating the possible involvement of cyclooxygenase and lipooxygenase pathway. PMID:15233468

  5. Comparison of salicylic acid, benzoic acid and p-hydroxybenzoic acid for their ability to induce flowering in Lemna Gibba G3

    SciTech Connect

    Cleland, F.C.; Kang, B.G.; Khurana, J.P.

    1986-04-01

    The long-day plant Lemna gibba G3 fails to flower under continuous light on NH/sub 4//sup +/-free 0.5 H medium. This inhibition is completely reversed by 10 ..mu..M salicyclic acid (SA) or 32 ..mu..M benzoic acid (BA). By contrast, p-hydroxybenzoic acid (p-OH-BA) has virtually no effect on flowering at levels as high as 320 ..mu..M. Uptake rates for the three compounds are comparable. Competition studies using /sup 14/C-SA indicate that, compared to SA, BA is about 10-fold less effective and p-OH-BA is nearly 100-fold less effective in competing against /sup 14/C-SA uptake. Both the effectiveness of SA for inducing flowering and the uptake of /sup 14/C-SA are substantially increased as the pH of the medium is lowered from 8 to 4.5. Under a nitrogen atmosphere the uptake of /sup 14/C-SA is partially inhibited above pH 5. Phosphate metabolism may be important for flowering since increasing the phosphate level in the medium 10-15 fold results in substantial flowering, and suboptimal levels of Sa and phosphate interact synergistically to stimulate flowering. The interaction of phosphate with BA and p-OH-BA will be presented.

  6. Differential effects of cyclosporin A on transport of bile acids by rat hepatocytes: relationship to individual serum bile acid levels.

    PubMed

    Azer, S A; Stacey, N H

    1994-02-01

    Cyclosporin A treatment has been reported to induce hepatotoxicity marked by a rise in total serum bile acid and total bilirubin. The mechanism of cyclosporin A-induced hepatotoxicity seems to be related to interference with hepatocellular transport of these substrates although this remains to be fully substantiated. The purpose of this study was to investigate whether the hepatocellular uptake of the different bile acids, in the presence of cyclosporin A, is consistent with the changes in their respective individual serum bile acid concentrations. High-performance liquid chromatography has been used to assay individual serum bile acids in cyclosporin A-treated rats at doses of 0.1, 1, and 10 mg/kg/day for 4 days. Control rats were treated with Cremophor (1 ml/kg/day). At the higher doses, cyclosporin A produced a significant increase in levels of cholic acid, taurocholic acid, chenodeoxycholic acid, and deoxycholic acid compared with controls. Serum glycocholate was unaffected even at the highest dose. Inhibition of initial rate of uptake and accumulation of [14C]cholic acid, [14C]chenodeoxycholic acid, and [14C]deoxycholic acid by isolated rat hepatocytes was consistent with the changes in their respective serum bile acids. Coincubation of rat hepatocytes with unlabeled cholic acid (100 microM), the major serum bile acid in cyclosporin A-treated rats, showed a further inhibitory effect on [14C]cholic acid and [14C]deoxycholic acid accumulation. The initial rate of uptake of [14C]glycocholate was also inhibited. However, accumulation of glycocholic acid did not show significant changes at the longer incubation times (2-30 min). In addition, coincubation of rat hepatocytes with unlabeled cholic acid (100 microM) plus cyclosporin A did not induce any inhibition of glycocholate accumulation. Together, these differences provide an explanation for the unchanged serum levels of glycocholate. In conclusion, the changes in individual serum bile acids in cyclosporin A

  7. Determination of trans fatty acid levels by FTIR in processed foods in Australia.

    PubMed

    McCarthy, Justine; Barr, Daniel; Sinclair, Andrew

    2008-01-01

    Health authorities around the world advise 'limiting consumption of trans fatty acid', however in Australia the trans fatty acid (TFA) content is not required to be listed in the nutrition information panel unless a declaration or nutrient claim is made about fatty acids or cholesterol. Since there is limited knowledge about trans fatty acid levels in processed foods available in Australia, this study aimed to determine the levels of TFA in selected food items known to be sources of TFA from previously published studies. Food items (n=92) that contain vegetable oil and a total fat content greater than 5% were included. This criterion was used in conjunction with a review of similar studies where food items were found to contain high levels of trans fatty acids. Lipids were extracted using solvents. Gravimetric methods were used to determine total fat content and trans fatty acid levels were quantified by Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. High levels of trans fatty acids were found in certain items in the Australian food supply, with a high degree of variability. Of the samples analysed, 13 contained greater than 1 g of trans fatty acids per serving size, the highest value was 8.1 g/serving. Apart from when the nutrition information panel states that the content is less than a designated low level, food labels sold in Australia do not indicate trans fatty acid levels. We suggested that health authorities seek ways to assist consumers to limit their intakes of trans fatty acids. PMID:18818158

  8. Modulation of sialic acid levels among some organs during insulin resistance or hyperglycemic states.

    PubMed

    Ibrahim, Mohammed Auwal; Abdulkadir, Aisha; Onojah, Alice; Sani, Lawal; Adamu, Auwal; Abdullahi, Hadiza

    2016-01-01

    Previous studies have suggested a possible connection between insulin resistance and chronic hyperglycemia with membrane sialic acid content. In this study, the effects of high (20% ad libitum) fructose and glucose feeding on the sialic acid levels of some organs were investigated in rats. The blood glucose levels of the high fructose- and glucose-fed rats were consistently and significantly (P < 0.05) higher than the normal control throughout the experiment. Free serum sialic acid and total hepatic sialic acid levels were elevated in the high fructose- and glucose-fed rats compared to normal control, but only the data for the high glucose-fed group were significantly (P < 0.05) different from the normal control. Conversely, a significant (P < 0.05) decrease in the pancreatic sialic acid level was observed in high glucose-fed group compared to normal control. Also, the high fructose-fed rats had lower, but insignificant (P > 0.05), pancreatic sialic acid level than the normal control. On the other hand, high fructose and glucose feeding did not significantly (P > 0.05) affect the sialic acid levels of the skeletal muscle and heart, though a tendency to increase the sialic acid level was evident in the heart. In the kidney, the sialic acid level was significantly (P < 0.05) increased in both high fructose- and glucose-fed groups. It was concluded that the liver and kidney tend to stimulate sialic acid synthesis, while the pancreas downregulate sialic acids synthesis and/or promote sialic acid release from glycoconjugates. Also, these organs may contribute to high-serum sialic acid level observed during diabetes. PMID:26468092

  9. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis.

    PubMed

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants. PMID:26175737

  10. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    PubMed Central

    Wei, Liting; Wang, Lina; Yang, Yang; Wang, Pengfei; Guo, Tiancai; Kang, Guozhang

    2015-01-01

    Glutathione (GSH) and ascorbate (ASA) are associated with the abscisic acid (ABA)-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM) of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L.) suffering from 5 days of 15% polyethylene glycol (PEG)-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased content of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Under drought stress conditions, ABA markedly increased content of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR). The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA)-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the content of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants. PMID:26175737

  11. Semi-synthetic mithramycin SA derivatives with improved anticancer activity.

    PubMed

    Scott, Daniel; Chen, Jhong-Min; Bae, Younsoo; Rohr, Jürgen

    2013-05-01

    Mithramycin (MTM) is a potent anti-cancer agent that has recently garnered renewed attention. This manuscript describes the design and development of mithramycin derivatives through a combinational approach of biosynthetic analogue generation followed by synthetic manipulation for further derivatization. Mithramycin SA is a previously discovered analogue produced by the M7W1 mutant strain alongside the improved mithramycin analogues mithramycin SK and mithramycin SDK. Mithramycin SA shows decreased anti-cancer activity compared to mithramycin and has a shorter, two carbon aglycon side chain that is terminated in a carboxylic acid. The aglycon side chain is responsible for an interaction with the DNA-phosphate backbone as mithramycin interacts with its target DNA. It was therefore decided to further functionalize this side chain through reactions with the terminal carboxylic acid in an effort to enhance the interaction with the DNA phosphate backbone and improve the anti-cancer activity. This side chain was modified with a variety of molecules increasing the anti-cancer activity to a comparable level to mithramycin SK. This work shows the ability to transform the previously useless mithramycin SA into a valuable molecule and opens the door to further functionalization and semi-synthetic modification for the development of molecules with increased specificity and/or drug formulation. PMID:23331575

  12. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  13. Plasma Amino Acid Levels in Children with Autism and Their Families.

    ERIC Educational Resources Information Center

    Aldred, Sarah; Moore, Kieran M.; Fitzgerald, Michael; Waring, Rosemary H.

    2003-01-01

    Plasma amino acid levels were measured in autistic (n=12), Asperger syndrome (n=11) patients, their parents and siblings. Patients with autism or Asperger syndrome and their siblings and parents all had raised glutamic acid, phenyalanine, asparagine, tyrosine, alanine, and lysine levels than age-matched controls. Results suggest dysregulated amino…

  14. The Association between Marine n-3 Polyunsaturated Fatty Acid Levels and Survival after Renal Transplantation

    PubMed Central

    Jenssen, Trond; Hartmann, Anders; Diep, Lien M.; Dahle, Dag O.; Reisæter, Anna V.; Bjerve, Kristian S.; Christensen, Jeppe H.; Schmidt, Erik B.; Svensson, My

    2015-01-01

    Background and objectives Several studies have reported beneficial cardiovascular effects of marine n-3 polyunsaturated fatty acids. To date, no large studies have investigated the potential benefits of marine n-3 polyunsaturated fatty acids in recipients of renal transplants. Design, setting, participants, & measurements In this observational cohort study of 1990 Norwegian recipients of renal transplants transplanted between 1999 and 2011, associations between marine n-3 polyunsaturated fatty acid levels and mortality were investigated by stratified analysis and multivariable Cox proportional hazard regression analysis adjusting for traditional and transplant-specific mortality risk factors. Marine n-3 polyunsaturated fatty acid levels in plasma phospholipids were measured by gas chromatography in a stable phase 10 weeks after transplantation. Results There were 406 deaths (20.4%) during a median follow-up period of 6.8 years. Mortality rates were lower in patients with high marine n-3 polyunsaturated fatty acid levels (≥7.95 weight percentage) compared with low levels (<7.95 weight percentage) for all age categories (pooled mortality rate ratio estimate, 0.69; 95% confidence interval, 0.57 to 0.85). When divided into quartiles according to marine n-3 polyunsaturated fatty acid levels, patients in the upper quartile compared with the lower quartile had a 56% lower risk of death (adjusted hazard ratio, 0.44; 95% confidence interval, 0.26 to 0.75) using multivariable Cox proportional hazard regression analysis. There was a lower hazard ratio for death from cardiovascular disease with high levels of marine n-3 polyunsaturated fatty acid and a lower hazard ratio for death from infectious disease with high levels of the marine n-3 polyunsaturated fatty acid eicosapentaenoic acid, whereas there was no association between total or individual marine n-3 polyunsaturated fatty acid levels and cancer mortality. Conclusions Higher plasma phospholipid marine n-3

  15. Methylenetetrahydrofolate reductase deficiency alters levels of glutamate and γ-aminobutyric acid in brain tissue

    PubMed Central

    Jadavji, N.M.; Wieske, F.; Dirnagl, U.; Winter, C.

    2015-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is an enzyme key regulator in folate metabolism. Deficiencies in MTHFR result in increased levels of homocysteine, which leads to reduced levels of S-adenosylmethionine (SAM). In the brain, SAM donates methyl groups to catechol-O-methyltransferase (COMT), which is involved in neurotransmitter analysis. Using the MTHFR-deficient mouse model the purpose of this study was to investigate levels of monoamine neurotransmitters and amino acid levels in brain tissue. MTHFR deficiency affected levels of both glutamate and γ-aminobutyric acid in within the cerebellum and hippocampus. Mthfr−/− mice had reduced levels of glutamate in the amygdala and γ-aminobutyric acid in the thalamus. The excitatory mechanisms of homocysteine through activation of the N-methyl-d-aspartate receptor in brain tissue might alter levels of glutamate and γ-aminobutyric acid. PMID:26937386

  16. What is the intrapatient variability of mycophenolic acid trough levels?

    PubMed

    Todorova, Ekaterina K; Huang, Shih-Han S; Kobrzynski, Marta C; Filler, Guido

    2015-11-01

    TDM of MPA, the active compound of MMF, is rarely used despite its substantial intra- and interpatient variability. Little is known about the utility of long-term MPA TDM. Data are expressed as mean (one standard deviation). All available data from 27 renal transplant recipients (mean age at transplantation: 7.7 [5.0] yr) with an average follow-up of 9.3 (4.6) yr were analyzed. MPA levels were measured using the EMIT. GFR was measured using cystatin C and eGFR was calculated using the Filler formula. Intrapatient CV of the trough level was calculated as the ratio of the mean divided by one standard deviation. Mean cystatin C eGFR was 56.9 (24.4) mL/min/1.73 m(2) . There was a weak but significant correlation between the MPA trough level and the AUC (Spearman r = 0.6592, p < 0.0001). A total of 1964 MPA trough levels (73 [45]/patient) were measured, as compared to 3462 Tac trough levels (144 [71]/patient). The average MPA trough level was 3.01 (1.26) mg/L and the average trough Tac level was 7.3 (1.8) ng/mL. Intrapatient CV was statistically higher (p = 0.00093) for MPA at 0.68 (0.29) when compared to Tac with a CV of 0.46 (0.12). CV did not correlate with eGFR. Intrapatient MPA trough level CV is significantly higher than for Tac, while CV for both MPA and Tac was high. MPA trough level monitoring may be a feasible monitoring option to improve patient exposure and possibly outcomes. PMID:26201386

  17. Hydroxamic acid derivatives of mycophenolic acid inhibit histone deacetylase at the cellular level.

    PubMed

    Batovska, Daniela I; Kim, Dong Hoon; Mitsuhashi, Shinya; Cho, Yoon Sun; Kwon, Ho Jeong; Ubukata, Makoto

    2008-10-01

    Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively. PMID:18838793

  18. Increased Serum Level of Cyclopropaneoctanoic Acid 2-Hexyl in Patients with Hypertriglyceridemia-Related Disorders.

    PubMed

    Mika, Adriana; Stepnowski, Piotr; Chmielewski, Michal; Malgorzewicz, Sylwia; Kaska, Lukasz; Proczko, Monika; Ratnicki-Sklucki, Krzysztof; Sledzinski, Maciej; Sledzinski, Tomasz

    2016-07-01

    We recently reported the presence of various cyclopropane fatty acids-among them, cyclopropaneoctanoic acid 2-hexyl-in the adipose tissue of obese women. The aim of this study was to verify whether the presence of cyclopropaneoctanoic acid 2-hexyl in human serum was associated with obesity or chronic kidney disease (both being related to dyslipidemia), and to find potential associations between the serum level of this compound and specific markers of the these conditions. The serum concentration of cyclopropaneoctanoic acid 2-hexyl was determined by gas chromatography-mass spectrometry (GC-MS) in non-obese controls, obese patients, obese patients after a 3-month low-calorie diet, and individuals with chronic kidney disease. Obese patients and those with chronic kidney disease presented with higher serum levels of cyclopropaneoctanoic acid 2-hexyl than controls. Switching obese individuals to a low-calorie (low-lipid) diet resulted in a reduction in this fatty acid concentration to the level observed in controls. Cyclopropaneoctanoic acid 2-hexyl was also found in foods derived from animal fat. Serum concentrations of triacylglycerols in the analyzed groups followed a pattern similar to that for serum cyclopropaneoctanoic acid 2-hexyl, and these variables were positively correlated with each other among the studied groups. Patients with hypertriglyceridemia-related conditions presented with elevated serum levels of cyclopropaneoctanoic acid 2-hexyl. Our findings suggest that its high serum level is related to high serum triacylglycerol concentrations rather than to body mass or BMI. PMID:27003900

  19. Hippuric Acid Levels in Paint Workers at Steel Furniture Manufacturers in Thailand

    PubMed Central

    Decharat, Somsiri

    2014-01-01

    Background The aims of this study were to determine hippuric acid levels in urine samples, airborne toluene levels, acute and chronic neurological symptoms, and to describe any correlation between urinary hippuric acid and airborne toluene. Methods The hippuric acid concentration in the urine of 87 paint workers exposed to toluene at work (exposed group), and 87 nonexposed people (control group) was studied. Study participants were selected from similar factories in the same region. Urine samples were collected at the end of a shift and analyzed for hippuric acid by high performance liquid chromatography. Air samples for the estimation of toluene exposure were collected with diffusive personal samplers and the toluene quantified using gas–liquid chromatography. The two groups were also interviewed and observed about their work practices and health. Results The median of the 87 airborne toluene levels was 55 ppm (range, 12–198 ppm). The median urinary hippuric acid level was 800 mg/g creatinine (range, 90–2547 mg/g creatinine). A statistically significant positive correlation was found between airborne toluene exposure and urine hippuric acid levels (r = 0.548, p < 0.01). Workers with acute symptoms had significantly higher hippuric acid levels than those who did not (p < 0.05). It was concluded that there was a significant correlation between toluene exposure, hippuric acid levels, and health (p < 0.001). Conclusion There appears to be a significant correlation between workers exposure to toluene at work, their urine hippuric acid levels, and resulting symptoms of poor health. Improvements in working conditions and occupational health education are required at these workplaces. There was good correlation between urinary hippuric acid and airborne toluene levels. PMID:25516817

  20. Genome level analysis of bacteriocins of lactic acid bacteria.

    PubMed

    Singh, Neetigyata Pratap; Tiwari, Abhay; Bansal, Ankiti; Thakur, Shruti; Sharma, Garima; Gabrani, Reema

    2015-06-01

    Bacteriocins are antimicrobial peptides which are ribosomally synthesized by mainly all bacterial species. LABs (lactic acid bacteria) are a diverse group of bacteria that include around 20 genera of various species. Though LABs have a tremendous potential for production of anti-microbial peptides, this group of bacteria is still underexplored for bacteriocins. To study the diversity among bacteriocin encoding clusters and the putative bacteriocin precursors, genome mining was performed on 20 different species of LAB not reported to be bacteriocin producers. The phylogenetic tree of gyrB, rpoB, and 16S rRNA were constructed using MEGA6 software to analyze the diversity among strains. Putative bacteriocins operons identified were found to be diverse and were further characterized on the basis of physiochemical properties and the secondary structure. The presence of at least two cysteine residues in most of the observed putative bacteriocins leads to disulphide bond formation and provide stability. Our data suggests that LABs are prolific source of low molecular weight non modified peptides. PMID:25733445

  1. delta-Aminolevulinic acid dehydratase activity, urinary delta-aminolevulinic acid concentration and zinc protoporphyrin level among people with low level of lead exposure.

    PubMed

    Wang, Qi; Zhao, Huan-hu; Chen, Jian-wei; Hao, Qiao-ling; Gu, Kang-ding; Zhu, Ye-xiang; Zhou, Yi-kai; Ye, Lin-xiang

    2010-01-01

    To evaluate the relationship of delta-aminolevulinic acid dehydratase (ALAD) activity, urinary delta-aminolevulinic acid (ALAU) level and blood zinc protoporphyrin (ZPP) concentration to low blood lead (PbB) levels, these biomarkers were determined for all subjects enrolled from a rural area of southeast China where people had low levels of exposure to lead. The mean values of PbB, ALAD, ALAU and ZPP were 67.11 microg/L (SD: 1.654, range: 10.90-514.04), 339.66 nmol ml(-1)h(-1) (1.419, 78.33-793.13), 20.64 microg/L (1.603, 2.00-326.00), and 0.14 micromol/L (3.437, 0.01-2.26), respectively. ALAD was inversely associated with low levels of PbB. ZPP was inversely related to low levels of PbB but positively related to relatively higher levels of PbB. Alcohol drinking contributed to low ALAD in men. Women had higher ZPP than men. ALAU had no significant association with PbB. In conclusion, ALAD possibly has a non-linear relation with low to moderate levels of PbB. At moderate levels of PbB, ZPP increases with increasing levels of PbB. ALAU is not suitable as an indicator for low levels of lead exposure. PMID:19733117

  2. Plasma and cerebrosponal fluid amino acid levels in diabetic ketoacidosis before and after corrective therapy.

    PubMed

    Aoki, T T; Assal J-P; Manzano, F M; Kozak, G P; Cahill, G F

    1975-05-01

    To evaluate the effect of insulin-saline-bicarbonate therapy on amino acid metabolism in diabetic ketoacidosis, arterial and venous blood samples as well as cerebrospinal fluid (CSF) were obtained from six patients before and after initiation of corrective therapy. Levels of CSF glutamine were decreased while alanine alpha-amino-n-butyrate, valine, isoleucine and leucine were increased significantly compared to a control group composed of six normal, postabsorptive adults free of any neurologic disease. Following therapy, CSF levels of alanine, alpha-amino-n-butyrate, valine, isoleucine, and leucine declined while glutamine levels did not change. Admission arterial plasma levels of the glycogenic amino acids were lower than normal while the branched-chain amino acids were elevated. Plasma alanine and glutamine arterio-venous (A-V) differences across forearm tissue were larger. After four hours of corrective therapy, arterial plasma levels of most of the amino acids had declined sharply and A-V differences for glutamine and alanine were markedly reduced (p smaller than.025 and p smaller than.01, paired t, respectively). Coincident with the decrease in A-V amino acid differences, plasma glucagon and free fatty acid levels declined significantly. These data suggest that the effect exerted by insulin-saline-bicarbonate therapy on amino acid metabolism is manifested by diminished A-V plasma alanine and glutamine differences across forearm tissue. Thus, the role played by the splanchnic bed both before and following corrective measures may be secondary to substrate availability. PMID:805076

  3. Effects of toxic work environments on sperm quality and ascorbic acid levels

    SciTech Connect

    Dawson, E.B.; Harris, W.A.; Powell, L.C. )

    1990-02-26

    Surveys have shown that toxic work environments lower sperm quality, and controlled studies indicate that ascorbic acid supplementation improves sperm viability and agglutination. The sperm quality of 50 subjects each from: (1) office workers, (2) a lead smelter, (3) petroleum refineries, and (4) a herbicide plant were compared with serum and semen ascorbic acid levels. The sperm characteristics studied were: count as million/ml and as percent; viability, motility, clumping, and abnormal morphology. The serum ascorbic acid levels were directly proportional to sperm viability and inversely correlated to clumping of all groups. Moreover, serum ascorbic acid levels were also inversely correlated to twin tail and amorphous forms of abnormal sperm morphology. The results of the study indicate that toxic environments depress sperm quality and suggest that ascorbic acid supplementation will improve sperm quality and fertility.

  4. Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays.

    PubMed

    Couturier, L I E; Rohner, C A; Richardson, A J; Pierce, S J; Marshall, A D; Jaine, F R A; Townsend, K A; Bennett, M B; Weeks, S J; Nichols, P D

    2013-10-01

    Fatty acid (FA) signature analysis has been increasingly used to assess dietary preferences and trophodynamics in marine animals. We investigated FA signatures of connective tissue of the whale shark Rhincodon typus and muscle tissue of the reef manta ray Manta alfredi. We found high levels of n-6 polyunsaturated fatty acids (PUFA), dominated by arachidonic acid (20:4n-6; 12-17 % of total FA), and comparatively lower levels of the essential n-3 PUFA-eicosapentaenoic acid (20:5n-3; ~1 %) and docosahexaenoic acid (22:6n-3; 3-10 %). Whale sharks and reef manta rays are regularly observed feeding on surface aggregations of coastal crustacean zooplankton during the day, which generally have FA profiles dominated by n-3 PUFA. The high levels of n-6 PUFA in both giant elasmobranchs raise new questions about the origin of their main food source. PMID:23975574

  5. Changes in Metabolite Levels in Kalanchoë daigremontiana and the Regulation of Malic Acid Accumulation in Crassulacean Acid Metabolism.

    PubMed

    Cockburn, W; McAulay, A

    1977-03-01

    Changes in glucose-6-P, fructose-6-P, fructose-1,6-diP, 6-phospho-gluconate, phosphoenolpyruvate, 3-phosphoglycerate, and pyruvate levels in the leaves of the Crassulacean plant Kalanchoë daigremontiana Hammet et Perrier were measured enzymically during transitions from CO(2)-free air to air, air to CO(2)-free air, and throughout the course of acid accumulation in darkness. The data are discussed in terms of the involvement of phosphoenolpyruvate carboxylase in malic acid synthesis and in terms of the regulation of the commencement of malic acid synthesis and accumulation through the effects of CO(2) on storage carbohydrate mobilization and its termination through the effects of malic acid on phosphoenolpyruvate carboxylase activity. PMID:16659872

  6. Plasma levels of ursodeoxycholic acid in black bears, Ursus americanus: seasonal changes.

    PubMed

    Solá, Susana; Garshelis, David L; Amaral, Joana D; Noyce, Karen V; Coy, Pam L; Steer, Clifford J; Iaizzo, Paul A; Rodrigues, Cecília M P

    2006-06-01

    To date, no other studies have examined the seasonal changes in circulating levels of various bile acids in the plasma of wild North American black bears, Ursus americanus. Using gas chromatography, bile acid concentrations were measured in plasma samples obtained during either early or late hibernation, and during summer active periods. Thus, specific compositional changes from individual animals were examined through a given year. Total bile acid concentrations in the plasma of these normal animals were found to range between 0.2 and 3.1 micromol/L (0.9 +/- 0.2 micromol/L, mean +/- SEM). Cholic, ursodeoxycholic and chenodeoxycholic acids were the major bile acid species identified. Ursodeoxycholic acid represented 28.0 +/- 2.6% of the total bile acid pool. Deoxycholic and lithocholic acids were found only in small amounts. In addition, total bile acid concentrations were lower in plasma samples obtained during hibernation compared with those obtained during summer active periods (0.6 +/- 0.1 and 1.2 +/- 0.4 micromol/L, respectively; p < 0.05). However, the relative proportion of ursodeoxycholic acid, was significantly greater in winter than in summer (31.5 +/- 3.2% and 22.2 +/- 4.5%, p < 0.05). Finally, taurine-conjugated bile acids were the predominant species in bear plasma, accounting for >67% of the total bile acids. These data demonstrate that ursodeoxycholic acid is a major bile acid in black bear plasma, mostly conjugated with taurine. Further, the finding of seasonal variation in plasma bile acid composition provides evidence to support the possible role that ursodeoxycholic acid may play in cellular protection in hibernating black bears. PMID:16571381

  7. Inhibitions of several antineoplastic drugs on serum sialic Acid levels in mice bearing tumors.

    PubMed

    Lu, Da-Yong; Xu, Jing; Lu, Ting-Ren; Wu, Hong-Ying; Xu, Bin

    2013-03-01

    Six murine tumors, including ascetic tumors HepA, EC, P388 leukemia, S180 and solid tumor S180, and Lewis lung carcinoma, were employed in this work. The free sialic acid concentrations in both blood and ascites were measured in tumor-bearing mice. The results showed that the content of sialic acids in blood was increased in tumor growth and certain tumor types. Higher sialic acid content was observed in ascites than that present in blood. The influence of antineoplastic agents (vincristine, thiotepa, adriamycin, probimane, cisplatin, oxalysine, cortisone, nitrogen mustard, lycobetaine, Ara-C, harringtonine, and cyclophosphamide) on the content of sialic acids in mice blood bearing solid tumors of either S180 or Lewis lung carcinoma was observed. Different inhibitions of antineoplastic drugs on both tumor growth and serum sialic acid levels in mice bearing tumors were found. Among these antineoplastic drugs, probimane, cisplatin, nitrogen mustard, and lycobetaine were able to decrease the serum sialic acid levels in mice bearing tumors. Since these four antineoplastic drugs are all DNA chelating agents, it was proposed that the inhibition of tumor sialic acids by these drugs might be through the DNA template via two ways. Since we have found no effect of antineoplastic drugs on serum sialic acid levels in normal mice, this suggests that the inhibition of antineoplastic drugs on sialic acids is by tumor involvement. PMID:23641340

  8. The Endophytic Bacterium, Sphingomonas SaMR12, Improves the Potential for Zinc Phytoremediation by Its Host, Sedum alfredii

    PubMed Central

    Zhang, Xincheng; Pan, Fengshan; Yang, Xiaoe; Feng, Ying

    2014-01-01

    The endophytic bacterium, Sphingomonas SaMR12, isolated from Sedum alfredii Hance, appears to increase plant biomass and zinc-extraction from contaminated soil; however, the mechanism by which this occurs is not clear. Here, the ability of SaMR12 to promote zinc extraction and its effects on root morphology and exudation were examined in hydroponics. Zinc treatment increased shoot biomass by 30 to 45%, and by a further 10 to 19% when combined with SaMR12 inoculation. Zinc treatment also increased zinc accumulation modestly and this too was enhanced with SaMR12. Both biomass and zinc levels increased in a dose-dependent manner with significant effects seen at 50 µM zinc and apparent saturation at 500 µM. Zinc and the endophyte also increased levels of auxin but not at 50 µM and zinc increased levels of superoxide and hydrogen peroxide but mainly at 500 µM. As for root morphology, SaMR12 increased root branching, the number of root tips, and surface area. Zinc and SaMR12 also increased the exudation of oxalic acid. For most assays the effects of the endophyte and zinc were additive, with the notable exception of SaMR12 strongly reducing the production of reactive oxygen species at 500 µM zinc. Taken together, these results suggest that the promotion of growth and zinc uptake by exposure to zinc and to SaMR12 are independent of reactive oxygen and do not involve increases in auxin. PMID:25198772

  9. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    SciTech Connect

    STALLINGS, MARY

    2004-07-08

    sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).

  10. Biosynthesis and metabolism of salicylic acid

    SciTech Connect

    Lee, H.; Leon, J.; Raskin, I.

    1995-05-09

    Pathways of salicylic acid (SA) biosynthesis and metabolism in tobacco have been recently identified. SA, an endogenous regulator of disease resistance, is a product of phenylpropanoid metabolism formed via decarboxylation of trans-cinnamic acid to benzoic acid and its subsequent 2-hydroxylation to SA. In tobacco mosaic virus-inoculated tobacco leaves, newly synthesized SA is rapidly metabolized to SA O-{beta}-D-glucoside and methyl salicylate. Two key enzymes involved in SA biosynthesis and metabolism: benzoic acid 2-hydroxylase, which converts benzoic acid to SA, and UDPglucose:SA glucosyltransferase (EC 2.4.1.35), which catalyzes conversion of SA to SA glucoside have been partially purified and characterized. Progress in enzymology and molecular biology of SA biosynthesis and metabolism will provide a better understanding of signal transduction pathway involved in plant disease resistance. 62 refs., 1 fig.

  11. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    SciTech Connect

    Wang Zuguang; Chen Hong

    2009-01-23

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear {beta}-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  12. High glucose levels reduce fatty acid oxidation and increase triglyceride accumulation in human placenta.

    PubMed

    Visiedo, Francisco; Bugatto, Fernando; Sánchez, Viviana; Cózar-Castellano, Irene; Bartha, Jose L; Perdomo, Germán

    2013-07-15

    Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides. PMID:23673156

  13. Evaluation of circulating levels and renal clearance of natural amino acids in patients with Cushing's disease.

    PubMed

    Faggiano, A; Pivonello, R; Melis, D; Alfieri, R; Filippella, M; Spagnuolo, G; Salvatore, F; Lombardi, G; Colao, A

    2002-02-01

    Although the hypercortisolism-induced impairment of protein homeostasis is object of several studies, a detailed evaluation of the complete amino acid profile of patients with Cushing's syndrome (CS) has never been performed. The aim of the current open transversal controlled study was to evaluate serum and urinary concentrations as well as renal clearance of the complete series of natural amino acids and their relationship with glucose tolerance in patients with Cushing's disease (CD). Twenty patients with CD (10 active and 10 cured) and 20 sex- and age-matched healthy controls entered the study. Measurement of serum and urinary levels of the complete series of natural amino acids was performed in all patients analyzed by cationic exchange high performance liquid cromatography (HPLC) after 2 weeks of a standardized protein intake regimen. The renal clearance (renal excretion rate) of each amino acid was calculated on the basis of the serum and urinary concentrations of creatinine and the specific amino acid. Fasting glucose and insulin levels, glucose and insulin response to standard glucose load, insulinogenic and homeostasis model insulin resistance (Homa-R) indexes were also evaluated and correlated to the circulating levels and renal clearances of each amino acid. Significantly higher serum (p<0.01) and urinary (p<0.05) levels of alanine and cystine, lower serum and higher urinary levels of leucine, isoleucine and valine (p<0.05) and higher renal excretion rates of leucine, isoleucine and valine (p<0.01) were found in patients with active CD than in patients cured from the disease and in controls. No difference was found between cured patients and controls. Creatinine clearance was similar in active and cured patients and in controls. In patients with active CD, urinary cortisol levels were significantly correlated to urinary cystine levels (r=0.85; p<0.01) and renal excretion rate of leucine (r=-0.76; p<0.05), isoleucine (r=-0.76; p<0.05) and valine (r=-0

  14. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study

    PubMed Central

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  15. Uric Acid Levels Can Predict Metabolic Syndrome and Hypertension in Adolescents: A 10-Year Longitudinal Study.

    PubMed

    Sun, Hai-Lun; Pei, Dee; Lue, Ko-Huang; Chen, Yen-Lin

    2015-01-01

    The relationships between uric acid and chronic disease risk factors such as metabolic syndrome, type 2 diabetes mellitus, and hypertension have been studied in adults. However, whether these relationships exist in adolescents is unknown. We randomly selected 8,005 subjects who were between 10 to 15 years old at baseline. Measurements of uric acid were used to predict the future occurrence of metabolic syndrome, hypertension, and type 2 diabetes. In total, 5,748 adolescents were enrolled and followed for a median of 7.2 years. Using cutoff points of uric acid for males and females (7.3 and 6.2 mg/dl, respectively), a high level of uric acid was either the second or third best predictor for hypertension in both genders (hazard ratio: 2.920 for males, 5.222 for females; p<0.05). However, uric acid levels failed to predict type 2 diabetes mellitus, and only predicted metabolic syndrome in males (hazard ratio: 1.658; p<0.05). The same results were found in multivariate adjusted analysis. In conclusion, a high level of uric acid indicated a higher likelihood of developing hypertension in both genders and metabolic syndrome in males after 10 years of follow-up. However, uric acid levels did not affect the occurrence of type 2 diabetes in both genders. PMID:26618358

  16. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate.

    PubMed

    Tieman, Denise; Zeigler, Michelle; Schmelz, Eric; Taylor, Mark G; Rushing, Sarah; Jones, Jeffrey B; Klee, Harry J

    2010-04-01

    Methyl salicylate (MeSA) is a volatile plant secondary metabolite that is an important contributor to taste and scent of many fruits and flowers. It is synthesized from salicylic acid (SA), a phytohormone that contributes to plant pathogen defense. MeSA is synthesized by members of a family of O-methyltransferases. In order to elaborate the mechanism of MeSA synthesis in tomato, we screened a set of O-methyltransferases for activity against multiple substrates. An enzyme that specifically catalyzes methylation of SA, SlSAMT, as well as enzymes that act upon jasmonic acid and indole-3-acetic acid were identified. Analyses of transgenic over- and under-producing lines validated the function of SlSAMT in vivo. The SlSAMT gene was mapped to a position near the bottom of chromosome 9. Analysis of MeSA emissions from an introgression population derived from a cross with Solanum pennellii revealed a quantitative trait locus (QTL) linked to higher fruit methyl salicylate emissions. The higher MeSA emissions associate with significantly higher SpSAMT expression, consistent with SAMT gene expression being rate limiting for ripening-associated MeSA emissions. Transgenic plants that constitutively over-produce MeSA exhibited only slightly delayed symptom development following infection with the disease-causing bacterial pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). Unexpectedly, pathogen-challenged leaves accumulated significantly higher levels of SA as well as glycosylated forms of SA and MeSA, indicating a disruption in control of the SA-related metabolite pool. Taken together, the results indicate that SlSAMT is critical for methyl salicylate synthesis and methyl salicylate, in turn, likely has an important role in controlling SA synthesis. PMID:20070566

  17. Significant association between parathyroid hormone and uric acid level in men

    PubMed Central

    Chin, Kok-Yong; Ima Nirwana, Soelaiman; Wan Ngah, Wan Zurinah

    2015-01-01

    Background Previous reports of patients undergoing parathyroidectomy and of patients receiving teriparatide as antiosteoporotic treatment have suggested a plausible relationship between parathyroid hormone (PTH) and uric acid. However, similar data at population level were lacking. The current study aimed to determine the relationship between PTH and uric acid in a group of apparently healthy Malaysian men. Methods A cross-sectional study was conducted among 380 Malay and Chinese men aged 20 years and above, residing in the Klang Valley, Malaysia. Their body anthropometry was measured, and their fasting blood samples were collected for biochemical analysis. The relationship between PTH and uric acid was analyzed using regression analysis. Results Increased serum PTH level was significantly associated with increased serum uric acid level (β=0.165; P=0.001). Increased PTH level was also significantly associated with the condition of hyperuricemia in the study population (odds ratio [OR], 1.045; 95% confidence interval [CI], 1.017–1.075; P=0.002). All analyses were adjusted for age, body mass index, vitamin D, total calcium, inorganic phosphate, blood urea nitrogen and creatinine levels. Conclusion There is a significant positive relationship between PTH level and uric acid level in Malaysian men. This relationship and its clinical significance should be further investigated in a larger longitudinal study. PMID:26346636

  18. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  19. Prednisone lowers serum uric acid levels in patients with decompensated heart failure by increasing renal uric acid clearance.

    PubMed

    Liu, Chao; Zhen, Yuzhi; Zhao, Qingzhen; Zhai, Jian-Long; Liu, Kunshen; Zhang, Jian-Xin

    2016-07-01

    Clinical studies have shown that large doses of prednisone could lower serum uric acid (SUA) in patients with decompensated heart failure (HF); however, the optimal dose of prednisone and underlying mechanisms are unknown. Thirty-eight patients with decompensated HF were randomized to receive standard HF care alone (n = 10) or with low-dose (15 mg/day, n = 8), medium-dose (30 mg/day, n = 10), or high-dose prednisone (60 mg/day, n = 10), for 10 days. At the end of the study, only high-dose prednisone significantly reduced SUA, whereas low- and medium-dose prednisone and standard HF care had no effect on SUA. The reduction in SUA in high-dose prednisone groups was associated with a significant increase in renal uric acid clearance. In conclusion, prednisone can reduce SUA levels by increasing renal uric acid clearance in patients with decompensated HF. PMID:27144905

  20. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Dong, Chun-Juan; Li, Liang; Shang, Qing-Mao; Liu, Xin-Yan; Zhang, Zhi-Gang

    2014-10-01

    Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels. PMID:25034826

  1. Regulation of Invertase Levels in Avena Stem Segments by Gibberellic Acid, Sucrose, Glucose, and Fructose 1

    PubMed Central

    Kaufman, Peter B.; Ghosheh, Najati S.; Lacroix, J. Donald; Soni, Sarvjit L.; Ikuma, Hiroshi

    1973-01-01

    Gibberellic acid and sucrose play significant roles in the increases in invertase and growth in Avena stem segments. About 80% of invertase is readily solubilized, whereas the rest is in the cell wall fraction. The levels of both types of invertase change in a similar manner in the response to gibberellic acid and sucrose treatment. The work described here was carried out with only the soluble enzyme. In response to a treatment, the level of invertase activity typically follows a pattern of increase followed by decrease; the increase in activity is approximately correlated with the active growth phase, whereas the decrease in activity is initiated when growth of the segments slows. A continuous supply of gibberellic acid retards the decline of enzyme activity. When gibberellic acid was pulsed to the segments treated with or without sucrose, the level of invertase activity increased at least twice as high in the presence of sucrose as in its absence, but the lag period is longer with sucrose present. Cycloheximide treatments effectively abolish the gibberellic acid-promoted growth, and the level of enzyme activity drops rapidly. Decay of invertase activity in response to cycloheximide treatment occurs regardless of gibberellic acid or sucrose treatment or both, and it is generally faster when the inhibitor is administered at the peak of enzyme induction than when given at its rising phase. Pulses with sucrose, glucose, fructose, or glucose + fructose elevate the level of invertase significantly with a lag of about 5 to 10 hours. The increase in invertase activity elicited by a sucrose pulse is about one-third that caused by a gibberellic acid pulse given at a comparable time during mid-phase of enzyme induction, and the lag before the enzyme activity increases is nearly twice as long for sucrose as for gibberellic acid. Moreover, the gibberellic acid pulse results in about three times more growth than the sucrose pulse. Our studies support the view that gibberellic

  2. Two Levels of Caffeine Ingestion on Blood Lactate and Free Fatty Acid Responses during Incremental Exercise.

    ERIC Educational Resources Information Center

    McNaughton, Lars

    1987-01-01

    Research was conducted to determine the effects of two doses of caffeine on the lactate threshold and also to examine the effects on substrate utilization during incremental cycle ergometry. Results found that caffeine increased heart rates and free fatty acid levels for all workloads and decreased blood lactate levels at some of the workloads.…

  3. Serum homocysteine, vitamin B12, folic acid levels and methylenetetrahydrofolate reductase (MTHFR) gene polymorphism in vitiligo.

    PubMed

    Yasar, Ali; Gunduz, Kamer; Onur, Ece; Calkan, Mehmet

    2012-01-01

    The aim of this study was to determine serum vitamin B12, folic acid and homocysteine (Hcy) levels as well as MTHFR (C677, A1298C) gene polymorphisms in patients with vitiligo, and to compare the results with healthy controls. Forty patients with vitiligo and 40 age and sex matched healthy subjects were studied. Serum vitamin B12 and folate levels were determined by enzyme-linked immunosorbent assay. Plasma Hcy levels and MTHFR polymorphisms were determined by chemiluminescence and real time PCR methods, respectively. Mean serum vitamin B12 and Hcy levels were not significantly different while folic acid levels were significantly lower in the control group. There was no significant relationship between disease activity and vitamin B12, folic acid and homocystein levels. No significant difference in C677T gene polymorphism was detected. Heterozygote A1298C gene polymorphism in the patient group was statistically higher than the control group. There was no significant relationship between MTHFR gene polymorphisms and vitamin B12, folic acid and homocysteine levels. In conclusion, vitamin B12, folate and Hcy levels are not altered in vitiligo and MTHFR gene mutations (C677T and A1298C) do not seem to create susceptibility for vitiligo. PMID:22846211

  4. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck).

    PubMed

    Wang, Yin; Liu, Ji-Hong

    2012-08-15

    Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H₂O₂ level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion. PMID:22658220

  5. Glycodeoxycholic Acid Levels as Prognostic Biomarker in Acetaminophen-Induced Acute Liver Failure Patients

    PubMed Central

    Woolbright, Benjamin L.; McGill, Mitchell R.; Staggs, Vincent S.; Winefield, Robert D.; Gholami, Parviz; Olyaee, Mojtaba; Sharpe, Matthew R.; Curry, Steven C.; Lee, William M.; Jaeschke, Hartmut

    2014-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) remains a major clinical problem. Although a majority of patients recovers after severe liver injury, a subpopulation of patients proceeds to ALF. Bile acids are generated in the liver and accumulate in blood during liver injury, and as such, have been proposed as biomarkers for liver injury and dysfunction. The goal of this study was to determine whether individual bile acid levels could determine outcome in patients with APAP-induced ALF (AALF). Serum bile acid levels were measured in AALF patients using mass spectrometry. Bile acid levels were elevated 5–80-fold above control values in injured patients on day 1 after the overdose and decreased over the course of hospital stay. Interestingly, glycodeoxycholic acid (GDCA) was significantly increased in non-surviving AALF patients compared with survivors. GDCA values obtained at peak alanine aminotransferase (ALT) and from day 1 of admission indicated GDCA could predict survival in these patients by receiver-operating characteristic analysis (AUC = 0.70 for day 1, AUC = 0.68 for peak ALT). Of note, AALF patients also had significantly higher levels of serum bile acids than patients with active cholestatic liver injury. These data suggest measurements of GDCA in this patient cohort modestly predicted outcome and may serve as a prognostic biomarker. Furthermore, accumulation of bile acids in serum or plasma may be a result of liver cell dysfunction and not cholestasis, suggesting elevation of circulating bile acid levels may be a consequence and not a cause of liver injury. PMID:25239633

  6. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma

    PubMed Central

    Chinnannavar, Sangamesh Ningappa; Ashok, Lingappa; Vidya, Kodige Chandrashekhar; Setty, Sunil Mysore Kantharaja; Narasimha, Guru Eraiah; Garg, Ranjana

    2015-01-01

    Background: Detection of cancer at the early stage is of utmost importance to decrease the morbidity and mortality of the disease. Apart from the conventional biopsy, minimally invasive methods like serum evaluation are used for screening large populations. Thus, this study aimed to estimate serum levels of sialic acid and fucose and their ratio in oral cancer patients and in healthy control group to evaluate their role in diagnosis. Materials and Methods: Serum samples were collected from 52 healthy controls (group I) and 52 squamous cell carcinoma patients (group II). Estimation of serum levels of sialic acid and fucose and their ratio was performed. This was correlated histopathologically with the grades of carcinoma. Statistical analysis was done by using analysis of variance (ANOVA) test and unpaired “t” test. Results: Results showed that serum levels of sialic acid and fucose were significantly higher in oral cancer patients compared to normal healthy controls (P < 0.001). The sialic acid to fucose ratio was significantly lower in cancer patients than in normal controls (P < 0.01). However, comparison with histological grading, habits, gender, and age group did not show any significant result. Conclusion: The mean serum sialic acid and fucose levels showed an increasing trend from controls to malignant group and their corresponding ratio showed decreasing trend from controls to malignant group. The ratio of sialic acid to fucose can be a useful diagnostic aid for oral cancer patients. PMID:26759796

  7. Benzoylsalicylic acid isolated from seed coats of Givotia rottleriformis induces systemic acquired resistance in tobacco and Arabidopsis.

    PubMed

    Kamatham, Samuel; Neela, Kishore Babu; Pasupulati, Anil Kumar; Pallu, Reddanna; Singh, Surya Satyanarayana; Gudipalli, Padmaja

    2016-06-01

    Systemic acquired resistance (SAR), a whole plant defense response to a broad spectrum of pathogens, is characterized by a coordinated expression of a large number of defense genes. Plants synthesize a variety of secondary metabolites to protect themselves from the invading microbial pathogens. Several studies have shown that salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. Although SA is a critical signal for SAR, accumulation of endogenous SA levels alone is insufficient to establish SAR. Here, we have identified a new acyl derivative of SA, the benzoylsalicylic acid (BzSA) also known as 2-(benzoyloxy) benzoic acid from the seed coats of Givotia rottleriformis and investigated its role in inducing SAR in tobacco and Arabidopsis. Interestingly, exogenous BzSA treatment induced the expression of NPR1 (Non-expressor of pathogenesis-related gene-1) and pathogenesis related (PR) genes. BzSA enhanced the expression of hypersensitivity related (HSR), mitogen activated protein kinase (MAPK) and WRKY genes in tobacco. Moreover, Arabidopsis NahG plants that were treated with BzSA showed enhanced resistance to tobacco mosaic virus (TMV) as evidenced by reduced leaf necrosis and TMV-coat protein levels in systemic leaves. We, therefore, conclude that BzSA, hitherto unknown natural plant product, is a new SAR inducer in plants. PMID:26988727

  8. Childrens' learning and behaviour and the association with cheek cell polyunsaturated fatty acid levels.

    PubMed

    Kirby, A; Woodward, A; Jackson, S; Wang, Y; Crawford, M A

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs), particularly omega-3, in their red blood cells and plasma, and that supplementation with omega-3 fatty acids may alleviate behavioural symptoms in this population. However, in order to compare levels it seems appropriate to establish fatty acid levels in a mainstream school aged population and if levels relate to learning and behaviour. To date no study has established this. For this study, cheek cell samples from 411 typically developing school children were collected and analysed for PUFA content, in order to establish the range in this population. In addition, measures of general classroom attention and behaviour were assessed in these children by teachers and parents. Cognitive performance tests were also administered in order to explore whether an association between behaviour and/or cognitive performance and PUFA levels exists. Relationships between PUFA levels and socio-economic status were also explored. Measures of reading, spelling and intelligence did not show any association with PUFA levels, but some associations were noted with the level of omega-3 fatty acids and teacher and parental reports of behaviour, with some evidence that higher omega-3 levels were associated with decreased levels of inattention, hyperactivity, emotional and conduct difficulties and increased levels of prosocial behaviour. These findings are discussed in relation to previous findings from omega-3 supplementation studies with children. PMID:20172688

  9. Plasma ascorbic acid level and erythrocyte fragility in preeclampsia and eclampsia.

    PubMed

    Ozan, H; Esmer, A; Kolsal, N; Copur, O U; Ediz, B

    1997-01-01

    An imbalance between oxidants and antioxidants in the circulation is blamed to cause preeclampsia and eclampsia. In this study plasma ascorbic acid level was analysed in 13 eclamptic, 14 mild preeclamptic, 12 severe preeclamptic and 20 uncomplicated pregnancies to see whether there is any correlation with blood pressure, proteinuria, serum triglyceride level, erythrocyte fragility and leukocyte count. Plasma ascorbic acid level was normal and had no significant difference among the groups. Fasting serum triglyceride level was significantly higher in the study group than in the control group but it did not differ among the three study groups. Erythrocyte fragility was found to be increased in all three study groups. Blood leukocyte count was increased in the study groups, especially in the eclampsia group. However, plasma ascorbic acid level and erythrocyte fragility were found to have no significant correlation with blood pressure and proteinuria. It was concluded that though the ascorbic acid levels were normal in both the study and the control groups, erythrocyte fragility increased probably due to an elevation in peroxide and free radical levels in preeclampsia and eclampsia groups, but without any correlation with the severity of the clinical picture. PMID:9031958

  10. Fecal levels of short-chain fatty acids and bile acids as determinants of colonic mucosal cell proliferation in humans.

    PubMed

    Dolara, Piero; Caderni, Giovanna; Salvadori, Maddalena; Morozzi, Guido; Fabiani, Roberto; Cresci, Alberto; Orpianesi, Carla; Trallori, Giacomo; Russo, Antonio; Palli, Domenico

    2002-01-01

    We studied the correlation between fecal levels of short-chain fatty acids (SCFA), bile acids (BA), and colonic mucosal proliferation in humans on a free diet. Subjects [n = 43: 27 men and 16 women; 61 +/- 7 and 59 +/- 6 (SE) yr old, respectively] were outpatients who previously underwent resection of at least two sporadic colon polyps. Mucosal proliferation was determined by [3H]thymidine incorporation in vitro in three colorectal biopsies obtained without cathartics and was expressed as labeling index (LI). BA were analyzed in feces by mass spectrometry and SCFA by gas chromatography. We found that increasing levels of BA in feces did not correlate with higher LI. On the contrary, higher levels of SCFA were significantly associated with lower LI in the colonic mucosa (P for trend = 0.02). In conclusion, in humans on a free diet, intestinal proliferation seems to be regulated by the levels of SCFA in feces and not by BA. Because a lower intestinal proliferation is associated with a decreased colon cancer risk, treatments or diets that increase colonic levels of SCFA might be beneficial for colonic mucosa. PMID:12416258

  11. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. PMID:26802538

  12. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  13. Infantile Refsum Disease: Influence of Dietary Treatment on Plasma Phytanic Acid Levels.

    PubMed

    Sá, Maria João Nabais; Rocha, Júlio C; Almeida, Manuela F; Carmona, Carla; Martins, Esmeralda; Miranda, Vasco; Coutinho, Miguel; Ferreira, Rita; Pacheco, Sara; Laranjeira, Francisco; Ribeiro, Isaura; Fortuna, Ana Maria; Lacerda, Lúcia

    2016-01-01

    Infantile Refsum disease (IRD) is one of the less severe of Zellweger spectrum disorders (ZSDs), a group of peroxisomal biogenesis disorders resulting from a generalized peroxisomal function impairment. Increased plasma levels of very long chain fatty acids (VLCFA) and phytanic acid are biomarkers used in IRD diagnosis. Furthermore, an increased plasma level of phytanic acid is known to be associated with neurologic damage. Treatment of IRD is symptomatic and multidisciplinary.The authors report a 3-year-old child, born from consanguineous parents, who presented with developmental delay, retinitis pigmentosa, sensorineural deafness and craniofacial dysmorphisms. While the relative level of plasma C26:0 was slightly increased, other VLCFA were normal. Thus, a detailed characterization of the phenotype was essential to point to a ZSD. Repeatedly increased levels of plasma VLCFA, along with phytanic acid and pristanic acid, deficient dihydroxyacetone phosphate acyltransferase activity in fibroblasts and identification of the homozygous pathogenic mutation c.2528G>A (p.Gly843Asp) in the PEX1 gene, confirmed this diagnosis. Nutritional advice and follow-up was proposed aiming phytanic acid dietary intake reduction. During dietary treatment, plasma levels of phytanic acid decreased to normal, and the patient's development evaluation showed slow progressive acquisition of new competences.This case report highlights the relevance of considering a ZSD in any child with developmental delay who manifests hearing and visual impairment and of performing a systematic biochemical investigation, when plasma VLCFA are mildly increased. During dietary intervention, a biochemical improvement was observed, and the long-term clinical effect of this approach needs to be evaluated. PMID:26303611

  14. Dietary alpha-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels.

    PubMed

    Barceló-Coblijn, Gwendolyn; Collison, Lauren W; Jolly, Christopher A; Murphy, Eric J

    2005-08-01

    Fish oil-enriched diets increase n-3 FA in tissue phospholipids; however, a similar effect by plant-derived n-3 FA is poorly defined. To address this question, we determined mass changes in phospholipid FA, individual phospholipid classes, and cholesterol in the liver, heart, and brain of rats fed diets enriched in flax oil (rich in 18:3n-3), fish oil (rich in 22:6n-3 and 20:5n-3), or safflower oil (rich in 18:2n-6) for 8 wk. In the heart and liver phospholipids, 22:6n-3 levels increased only in the fish oil group, although rats fed flax oil accumulated 20:5n-3 and 22:5n-3. However, in the brain, the flax and fish oil diets increased the phospholipid 22:6n-3 mass. In all tissues, these diets decreased the 20:4n-6 mass, although the effect was more marked in the fish oil than in the flax oil group. Although these data do not provide direct evidence for 18:3n-3 elongation and desaturation by the brain, they demonstrate that 18:3n-3-enriched diets reduced tissue 20:4n-6 levels and increased cellular n-3 levels in a tissue-dependent manner. We hypothesize, based on the lack of increased 22:6n-3 but increased 18:3n-3 in the liver and heart, that the flax oil diet increased circulating 18:3n-3, thereby presenting tissue with this EFA for further elongation and desaturation. PMID:16296397

  15. Plasma levels of acetylsalicylic acid and salicylic acid after oral ingestion of plain and buffered acetylsalicylic acid in relation to bleeding time and thrombocyte function.

    PubMed

    Proost, J H; Van Imhoff, G W; Wesseling, H

    1983-02-25

    Buffered acetylsalicylic acid (Alka Seltzer, B-ASA) and plain aspirin (P-ASA) tablets were compared as to their effects on bleeding time and platelet function in eight healthy male volunteers. Two doses (500 and 1000 mg) of each preparation were investigated in a cross-over design, each volunteer being his own control in each dose group (n=4). Both preparations disturbed platelet aggregation to the same extent. Bleeding time increased after both preparations, though significantly more after the buffered preparation than after plain acetylsalicylic acid, irrespective of the dosage. The 1000 mg dose prolonged bleeding time significantly more than the 500 mg dose, irrespective of the preparation. Kinetic analysis showed that B-ASA gave higher peak plasma levels of acetylsalicylic acid (ASA) and accordingly salicylic acid peak levels were also higher after the buffered preparation. It is concluded that B-ASA in equi-analgesic doses prolongs bleeding time more than the plain preparation. Since it is less agressive on the gastro-intestinal mucosa, its use may be advantageous in situations where acetylsalicylic acid induced loss of platelet aggregation is desired. However, the risk of prolonged bleeding--e.g. after tooth extractions--is probably higher after the buffered preparation. PMID:6844122

  16. Total and free valproic acid: plasma level/dose ratio in monotherapy.

    PubMed

    Abadín, J A; Durán, J A; Sánchez, A; Serrano, J S

    1991-04-01

    Free plasma level/dose ratio of valproic acid (L/D-F) can be more effective than total plasma level/dose ratio (L/D-T) in adjusting dosage regimens. The influence of age, dose, and plasma concentration have been studied on L/D-T and L/D-F ratios. L/D-T and L/D-F ratios from 67 outpatients under long-term monotherapy were obtained. Analytical data was carried out by fluorescent polarized immunoassay. L/D-T and L/D-F ratios do not vary according to age. L/D-T and L/D-F ratios decreased while the dosage increased; both ratios increased with an increase in total plasma level of valproic acid. Significant differences were found between L/D-T and L/D-F ratios. Dose and interindividual variations are the factors which most influence L/D ratios of valproic acid. PMID:2051846

  17. Alterations in the levels of plasma amino acids in polycystic ovary syndrome- A pilot study

    PubMed Central

    Unni, C. Sumithra N.; Lakshman, Lakshmi R.; Vaidyanathan, Kannan; Subhakumari, K.N.; Menon, N. Leela

    2015-01-01

    Background & objectives: Plasma amino acid levels are known to be altered in conditions like sepsis and burns which are situations of metabolic stress. Polycystic ovary syndrome (PCOS), a condition which affects a woman throughout her life, is said to be associated with metabolic stress. This study was undertaken to assess if there were significant alterations in the levels of plasma amino acids in women with PCOS. Methods: Sixty five women with PCOS along with the similar number of age matched normal controls were included in this study. Levels of 14 amino acids were determined using reverse phase high performance liquid chromatography. Results: The levels of methionine, cystine, isoleucine, phenylalanine, valine, tyrosine, proline, glycine, lysine and histidine were found to be significantly (P<0.001) lower in cases than in controls. Arginine and alanine levels were found to be significantly (P<0.001) higher in cases compared with controls. Interpretation & conclusions: Our findings showed significant derangement in the levels of plasma amino acids in women with PCOS which might be due to the oxidative and metabolic stress associated with it. Further studies need to be done to confirm the findings. PMID:26658589

  18. The relationship between low leucocyte ascorbic-acid levels and tyrosine metabolism in the elderly.

    PubMed

    Windsor, A C; Hobbs, C B; Treby, D A; Gupta, C B

    1975-11-01

    Twenty-seven elderly men aged 69-94 years had tyrosine tolerance tests measured before and after receiving ascorbic acid 1 g daily for four days. There was a significant rise in the fasting and half-hourly mean plasma tyrosine levels after ascorbic acid administration in those subjects with an initial leucocyte ascorbic-acid level (LAA) below 15 micrograms/10(8) w.c.c. The peak of the tyrosine tolerance curve was also advanced following administration of ascorbic acid in those subjects with an initial LAA below 15 micrograms/10(8) w.c.c. A further ten elderly men aged 73-89 years had simultaneous measurements of the circadian rhythms of LAA, plasma cortisol and plasma tyrosine levels before and after receiving ascorbic acid 1 g daily for four days. All ten subjects showed a peak LAA level at 5 p.m. when saturated with vitamin C but there was no significant correlation between plasma cortisol changes and plasma tyrosine changes. Possible explanations for the results are discussed. PMID:803133

  19. Acute ischemic non-embolic stroke and serum level of uric acid

    PubMed Central

    Sheykholeslami, Nazanin Zia; Gadari, Faranak; Ahmady, Jafar

    2012-01-01

    Background Impact of high level of uric acid on stroke is still controversial. We conducted this study to investigate the relationship between acute ischemic non-embolic stroke and serum levels of uric acid. Methods This was a case-control study on patients with acute ischemic non-embolic stroke in Rafsanjan, Iran. The control group consisted of normal persons who were similar to the case group in terms of age and gender. Serum level of uric acid in the first 24 hours of admission was measured with photometry method. Results In a total of 130 patients (59 mens), hyperuricemia was seen in 13.0% of subjects in the control group and 10.7% of subjects in the case group. Nine patients in case group and 7 patients in control group with hyperuricemia were women. No significant relationship was found between acute ischemic non-embolic stroke and serum level of uric acid. Conclusion There was no relationship between uric acid and acute ischemic non-embolic stroke. PMID:24250850

  20. Newly Identified Targets of Aspirin and Its Primary Metabolite, Salicylic Acid.

    PubMed

    Klessig, Daniel F

    2016-04-01

    Salicylic acid (SA) is a plant hormone, which influences several physiological processes, and is a critical modulator of multiple levels of immunity in plants. Several high-throughput screens, which were developed to identify SA-binding proteins through which SA mediates its many physiological effects in plants, uncovered several novel targets of aspirin and its primary metabolite, SA, in humans. These include glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and high mobility group box 1 (HMGB1), two proteins associated with some of the most prevalent and devastating human diseases. In addition, natural and synthetic SA derivatives were discovered, which are much more potent than SA at inhibiting the disease-associated activities of these targets. PMID:26954428

  1. Serum phytanic and pristanic acid levels and prostate cancer risk in Finnish smokers.

    PubMed

    Wright, Margaret E; Albanes, Demetrius; Moser, Ann B; Weinstein, Stephanie J; Snyder, Kirk; Männistö, Satu; Gann, Peter H

    2014-12-01

    Phytanic acid is a saturated branched-chain fatty acid found predominantly in red meat and dairy products, and may contribute to the elevated risks of prostate cancer associated with higher consumption of these foods. Pristanic acid is formed during peroxisomal oxidation of phytanic acid, and is the direct substrate of α-Methyl-CoA-Racemase (AMACR)--an enzyme that is consistently overexpressed in prostate tumors relative to benign tissue. We measured phytanic and pristanic acids as percentages of total fatty acids by gas chromatography-mass spectrometry in prediagnostic blood samples from 300 prostate cancer cases and 300 matched controls, all of whom were participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study supplementation trial and follow-up cohort. In addition to providing a fasting blood sample at baseline, all men completed extensive diet, lifestyle, and medical history questionnaires. Among controls, the strongest dietary correlates of serum phytanic and pristanic acids were saturated fat, dairy fat, and butter (r = 0.50 and 0.40, 0.46 and 0.38, and 0.40 and 0.37, respectively; all P-values <0.001). There was no association between serum phytanic acid and risk of total or aggressive prostate cancer in multivariate logistic regression models (for increasing quartiles, odds ratios (OR) and 95% confidence intervals (CI) for aggressive cancer were 1.0 (referent), 1.62 (0.97-2.68), 1.12 (0.66-1.90), and 1.14 (0.67-1.94), P(trend) = 0.87). Pristanic acid was strongly correlated with phytanic acid levels (r = 0.73, P < 0.0001), and was similarly unrelated to prostate cancer risk. Significant interactions between phytanic and pristanic acids and baseline circulating β-carotene concentrations were noted in relation to total and aggressive disease among participants who did not receive β-carotene supplements as part of the original ATBC intervention trial. In summary, we observed no overall association between serum phytanic and

  2. Serum phytanic and pristanic acid levels and prostate cancer risk in Finnish smokers

    PubMed Central

    Wright, Margaret E; Albanes, Demetrius; Moser, Ann B; Weinstein, Stephanie J; Snyder, Kirk; Männistö, Satu; Gann, Peter H

    2014-01-01

    Phytanic acid is a saturated branched-chain fatty acid found predominantly in red meat and dairy products, and may contribute to the elevated risks of prostate cancer associated with higher consumption of these foods. Pristanic acid is formed during peroxisomal oxidation of phytanic acid, and is the direct substrate of α-Methyl-CoA-Racemase (AMACR)—an enzyme that is consistently overexpressed in prostate tumors relative to benign tissue. We measured phytanic and pristanic acids as percentages of total fatty acids by gas chromatography-mass spectrometry in prediagnostic blood samples from 300 prostate cancer cases and 300 matched controls, all of whom were participants in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study supplementation trial and follow-up cohort. In addition to providing a fasting blood sample at baseline, all men completed extensive diet, lifestyle, and medical history questionnaires. Among controls, the strongest dietary correlates of serum phytanic and pristanic acids were saturated fat, dairy fat, and butter (r = 0.50 and 0.40, 0.46 and 0.38, and 0.40 and 0.37, respectively; all P-values <0.001). There was no association between serum phytanic acid and risk of total or aggressive prostate cancer in multivariate logistic regression models (for increasing quartiles, odds ratios (OR) and 95% confidence intervals (CI) for aggressive cancer were 1.0 (referent), 1.62 (0.97–2.68), 1.12 (0.66–1.90), and 1.14 (0.67–1.94), Ptrend = 0.87). Pristanic acid was strongly correlated with phytanic acid levels (r = 0.73, P < 0.0001), and was similarly unrelated to prostate cancer risk. Significant interactions between phytanic and pristanic acids and baseline circulating β-carotene concentrations were noted in relation to total and aggressive disease among participants who did not receive β-carotene supplements as part of the original ATBC intervention trial. In summary, we observed no overall association between serum phytanic and

  3. Regulation of plasma lipoprotein levels by dietary triglycerides enriched with different fatty acids.

    PubMed

    Nicolosi, R J; Rogers, E J

    1997-11-01

    Saturated vegetable oils (coconut, palm, and palm kernel oil) containing predominantly saturated fatty acids, lauric (12:0) or myristic (14:0 and palmitic (16:0), raise plasma total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) levels in animals and humans, presumably by decreasing LDL receptor activity and/or increasing LDL-C production rate. Although stearic acid (18:0) is chemically a saturated fatty acid, both human and animal studies suggest it is biologically neutral (neither raising nor lowering) blood cholesterol levels. Although earlier studies indicated that medium chain fatty acids (8:0-10:0) were also thought to be neutral, more recent studies in animals and humans suggest otherwise. Unsaturated vegetable oils such as corn, soybean, olive, and canola oil, by virtue of their predominant levels of either linoleic acid (18:2) or oleic acid (18:1), are hypocholesterolemic, probably as a result of their ability to upregulate LDL receptor activity and/or decrease LDL-C production rate. Whether trans fatty acids such as trans oleate (t18:1), in hydrogenated products such as margarine, are hypercholesterolemic remains controversial. Studies in humans suggest that their cholesterol-raising potential falls between the native nonhydrogenated vegetable oil and the more saturated dairy products such as butter. Assessment of the magnitude of the cholesterolemic response of trans 18:1 is difficult because in most diet studies its addition is often at the expense of cholesterol-lowering unsaturated fatty acids, making an independent evaluation almost impossible. PMID:9372477

  4. Association of the folic acid consumption and its serum levels with preeclampsia in pregnant women

    PubMed Central

    Salehi-PourMehr, Hanieh; Mohamad-Alizadeh, Sakineh; Malakouti, Jamileh; Farshbaf-Khalili, Azizeh

    2012-01-01

    Background and Objectives: Preeclampsia is one of the main causes of maternal and fetal mortality. Despite numerous studies, its etiology is unknown. Recently there has been attention towards Folic acid. This study examined the association of Folic acid consumption and its serum levels with Preeclampsia. Materials and Methods: A case-control study conducted in Tabriz- Alzahra hospital. 52 preeclamptic women in 34-42 weeks and 52 normotensive pregnant women were studied from Jun to Nov 2009. Data was gathered through interview with the women and review of their medical records. Folic acid serum levels were measured by electrochemiluminescence method on Elecsys-2010 system using the Roche brand kit. Data were analyzed by t-test, chi-square, exact fisher and logistic regression. Results: 46% of women in the case group and 71% in the control group regularly consumed Folic acid supplements before and during the first trimester of pregnancy. Frequency of correct pattern of Folic acid consumption in the case group were significantly lower than control group (P = 0.02). Findings about frequency of main food groups’ consumption containing folic acid indicated that the only mean difference between two groups was in relation to fruits (P = 0.002). The mean of Folic Acid serum levels in preeclamptic group was significantly lower than non- preeclamptic group [10.9 (3.9) vs. 13.6 (4.0) ng/ml, P = 0.001]. Conclusion: it is recommended all health care providers educate clients especially high risk women about regular and timely consumption of supplements as well as food groups containing Folic acid specially fruits and its possible role in prevention of preeclampsia. PMID:23922590

  5. Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco

    SciTech Connect

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M.A. )

    1993-10-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco catalyze the 2-hydroxylation of Ba to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h[sup [minus]1] g[sup [minus]1] fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[degrees]C. TMV induction of BA2H activity and Sa accumulation were inhibited when inoculated tobacco plants were incubated for 4 d at 32[degrees]C and then transferred to 24[degrees]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[degrees]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. 33 refs., 6 figs., 3 tabs.

  6. Serum uric acid level in normal pregnant and preeclamptic ladies: a comparative study.

    PubMed

    Pramanik, T; Khatiwada, B; Pradhan, P

    2014-09-01

    Preeclampsia is a serious pregnancy complication characterized by hypertension, proteinuria with or without pathological edema. According to some studies, serum uric acid lacks sensitivity and specificity as a diagnostic tool whereas another group of the researchers indicated uricemia as a predictor of preeclampsia in pregnant ladies. The present study was designed to assess whether serum uric acid can be used as a biochemical indicator or not in preeclamptic patients. Pre-eclamptic patients admitted in Nepal Medical College Teaching Hospital from June 2012 to June 2013 were included in this study. Age matched normal healthy pregnant ladies served as control. The record of their blood pressure and serum uric acid level was evaluated. Results showed significantly high blood pressure [SBP 149.42±12.35 vs 109.00±7.93 mm Hg; DBP 96.85±8.32 vs 72.5±7.10 mm Hg], and serum uric acid level [6.27±1.37 vs 4.27±0.61 mg/dl] in pre-eclamptic patients compared to their healthy counterparts. Uric acid is a terminal metabolite of the degradation of nucleotides, which increases their blood levels in patients with preeclampsia increasing its synthesis by damage and death of trophoblastic cells and proliferation. Uricemia in preeclampsia likely results from reduced uric acid clearance from diminished glomerular filtration, increased tubular reabsorption and decreased secretion. Results of the present study indicated association of elevated serum uric acid level with preeclampsia which could be used as a biochemical indicator of preeclampsia in pregnant women. PMID:25799807

  7. Pyruvic acid levels in serum and saliva: A new course for oral cancer screening?

    PubMed Central

    Bhat, Manohara A; Prasad, KVV; Trivedi, Dheeraj; Rajeev, BR; Battur, Hemanth

    2016-01-01

    Objective: Cancerous cells show increased glycolysis rate. This will increase overall levels of pyruvate as it is one of the end products of glycolysis. The present on-going study is to estimate the levels of pyruvate in saliva and serum among healthy and oral cancer subjects. Settings and Design: Hospital-based cross-sectional comparative study. Methodology: A total of 50 subjects among healthy and oral cancer subjects were selected based on clinical and histological criteria. Saliva and serum samples were collected and subjected to pyruvate level estimation using biochemical analysis. Statistical Analysis: Descriptive analysis and Mann-Whitney test were used to find the statistical difference between the two independent groups. Results: Serum pyruvic acid levels of the healthy group were 1.09 ± 0.14 and for oral cancer, it was 2.95 ± 0.59 and salivary level were 3.49 ± 0.47 and 1.32 ± 0.10 respectively. Mann-Whitney test showed statistically significant difference in serum and salivary pyruvate level in between two groups (P < 0.000 respectively). Conclusion: The present study showed noticeable variation in the level of pyruvic acid among healthy and oral cancer subjects. This generates the hypothesis that estimation of the pyruvic acid can be a new tool to screening of the cancer. PMID:27194870

  8. The GLUT9 Gene Is Associated with Serum Uric Acid Levels in Sardinia and Chianti Cohorts

    PubMed Central

    Maschio, Andrea; Busonero, Fabio; Usala, Gianluca; Mulas, Antonella; Lai, Sandra; Dei, Mariano; Orrù, Marco; Albai, Giuseppe; Bandinelli, Stefania; Schlessinger, David; Lakatta, Edward; Scuteri, Angelo; Najjar, Samer S; Guralnik, Jack; Naitza, Silvia; Crisponi, Laura; Cao, Antonio; Abecasis, Gonçalo; Ferrucci, Luigi; Uda, Manuela; Chen, Wei-Min; Nagaraja, Ramaiah

    2007-01-01

    High serum uric acid levels elevate pro-inflammatory–state gout crystal arthropathy and place individuals at high risk for cardiovascular morbidity and mortality. Genome-wide scans in the genetically isolated Sardinian population identified variants associated with serum uric acid levels as a quantitative trait. They mapped within GLUT9, a Chromosome 4 glucose transporter gene predominantly expressed in liver and kidney. SNP rs6855911 showed the strongest association (p = 1.84 × 10−16), along with eight others (p = 7.75 × 10−16 to 6.05 × 10−11). Individuals homozygous for the rare allele of rs6855911 (minor allele frequency = 0.26) had 0.6 mg/dl less uric acid than those homozygous for the common allele; the results were replicated in an unrelated cohort from Tuscany. Our results suggest that polymorphisms in GLUT9 could affect glucose metabolism and uric acid synthesis and/or renal reabsorption, influencing serum uric acid levels over a wide range of values. PMID:17997608

  9. Large lead/acid batteries for frequency regulation, load levelling and solar power applications

    NASA Astrophysics Data System (ADS)

    Wagner, R.

    Lead/acid batteries are suitable for a multitude of utility applications. This paper presents some examples where large lead/acid batteries have been used for frequency regulation, load levelling and solar power applications. The operational experiences are given together with a discussion about the design and technical specialities of these batteries. In 1986, a 17 MW/14 MWh battery was installed at BEWAG in Berlin which, at that time, was the largest lead/acid battery in the world. Designed to strengthen Berlin's 'island' system, it was used since the beginning of 1987 for frequency regulation and spinning reserve. In December 1993, when Berlin was connected to the electricity grid, frequency regulation was no longer required but the battery was still used for spinning reserve. For many years, the industrial battery plant of Hagen in Soest has used a large lead/acid battery for load levelling. The experience gained during more than ten years shows that load levelling and peak shaving can be a marked benefit for customers and utilities with regard to reducing their peak demand. In the summer of 1992, a 216 V and 2200 Ah lead/acid battery with positive tubular plates and gelled electrolyte was installed at a solar power plant in Flanitzhutte, a small village in the south of Germany which is not connected to the electricity grid. A report is given of the first years of use and includes a discussion about the best charge strategy for such gel batteries when used for solar power applications.

  10. Salicylic Acid Treatment Increases the Levels of Triterpene Glycosides in Black Cohosh (Actaea Racemosa) Rhizomes.

    PubMed

    De Capite, Annette; Lancaster, Tyler; Puthoff, David

    2016-01-01

    Black cohosh (Actaea racemosa) serves as the host plant for the Appalachian azure butterfly, Celastrina neglectamajor. Overharvesting of Black cohosh for the dietary supplement industry may result in its extirpation, and may also cause the elimination of the dependent butterfly. One way to increase or maintain the number of host plants in forested environments would be to reduce the number harvested, for example by increasing the levels of the desired metabolites in Black cohosh rhizomes. The secondary metabolites actein and deoxyactein are triterpene glycosides and are among the compounds associated with the putative activity of Black cohosh extracts. Acetein and deoxyacetein are used to standardize Black cohosh supplements. To gain an understanding of mechanisms that may control actein and deoxyactein accumulation, Black cohosh rhizomes were treated with exogenous salicylic acid, jasmonic acid, or ethylene, or were mechanically wounded. Salicylic acid treatment significantly increased the levels of actein and deoxyactein in the rhizome of Black cohosh, suggesting that the synthesis of triterpene glycosides is controlled in part by salicylic acid. Using salicylic acid or related chemicals to increase the levels of actein and deoxyactein in rhizomes may help supply the supplement industry and, simultaneously, help conserve Black cohosh and species dependent upon it. PMID:26634573

  11. Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics

    PubMed Central

    Guan, Ningzi; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-01-01

    Propionic acid (PA) is an important platform chemical in the food, agriculture, and pharmaceutical industries and is mainly biosynthesized by propionibacteria. Acid tolerance in PA-producing strains is crucial. In previous work, we investigated the acid tolerance mechanism of Propionibacterium acidipropionici at microenvironmental levels by analyzing physiological changes in the parental strain and three PA-tolerant mutants obtained by genome shuffling. However, the molecular mechanism of PA tolerance in P. acidipropionici remained unclear. Here, we performed a comparative proteomics study of P. acidipropionici CGMCC 1.2230 and the acid-tolerant mutant P. acidipropionici WSH1105; MALDI-TOF/MS identified 24 proteins that significantly differed between the parental and shuffled strains. The differentially expressed proteins were mainly categorized as key components of crucial biological processes and the acid stress response. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was used to confirm differential expression of nine key proteins. Overexpression of the secretory protein glyceraldehyde-3-phosphate dehydrogenase and ATP synthase subunit α in Escherichia coli BL21 improved PA and acetic acid tolerance; overexpression of NADH dehydrogenase and methylmalonyl-CoA epimerase improved PA tolerance. These results provide new insights into the acid tolerance of P. acidipropionici and will facilitate the development of PA production through fermentation by propionibacteria. PMID:25377721

  12. Cerebrospinal fluid levels of phenylacetic acid in mental illness: behavioral associations and response to neuroleptic treatment.

    PubMed

    Sharma, R P; Faull, K; Javaid, J I; Davis, J M

    1995-05-01

    Cerebrospinal fluid levels of phenylacetic acid (CSF PAA) were obtained from normal controls and from drug-free psychiatric inpatients (schizophrenia, major depression, mania, and schizoaffective disorder). Post-treatment CSF PAA levels were obtained from 16 patients after 4 weeks of neuroleptic treatment. Phenylacetic acid levels were higher in women and were significantly correlated with age. There were no differences in CSF PAA levels between the various diagnostic groups and no difference between the paranoid and the nonparanoid subtypes of schizophrenia. CSF PAA was significantly correlated with several measures of psychopathology, especially the Brief Psychiatric Rating Scale hostility/suspiciousness factor. Neuroleptic treatment did not result in significant PAA changes. These findings are discussed in light of the amphetamine-like role ascribed to phenylethylamine, the precursor of PAA. PMID:7639084

  13. Temporal variability in urinary levels of drinking water disinfection byproducts dichloroacetic acid and trichloroacetic acid among men

    SciTech Connect

    Wang, Yi-Xin; Zeng, Qiang; Wang, Le; Huang, Yue-Hui; Lu, Zhi-Wei; Wang, Peng; He, Meng-Jie; Huang, Xin; Lu, Wen-Qing

    2014-11-15

    Urinary haloacetic acids (HAAs), such as dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), have been suggested as potential biomarkers of exposure to drinking water disinfection byproducts (DBPs). However, variable exposure to and the short elimination half-lives of these biomarkers can result in considerable variability in urinary measurements, leading to exposure misclassification. Here we examined the variability of DCAA and TCAA levels in the urine among eleven men who provided urine samples on 8 days over 3 months. The urinary concentrations of DCAA and TCAA were measured by gas chromatography coupled with electron capture detection. We calculated the intraclass correlation coefficients (ICCs) to characterize the within-person and between-person variances and computed the sensitivity and specificity to assess how well single or multiple urine collections accurately determined personal 3-month average DCAA and TCAA levels. The within-person variance was much higher than the between-person variance for all three sample types (spot, first morning, and 24-h urine samples) for DCAA (ICC=0.08–0.37) and TCAA (ICC=0.09–0.23), regardless of the sampling interval. A single-spot urinary sample predicted high (top 33%) 3-month average DCAA and TCAA levels with high specificity (0.79 and 0.78, respectively) but relatively low sensitivity (0.47 and 0.50, respectively). Collecting two or three urine samples from each participant improved the classification. The poor reproducibility of the measured urinary DCAA and TCAA concentrations indicate that a single measurement may not accurately reflect individual long-term exposure. Collection of multiple urine samples from one person is an option for reducing exposure classification errors in studies exploring the effects of DBP exposure on reproductive health. - Highlights: • We evaluated the variability of DCAA and TCAA levels in the urine among men. • Urinary DCAA and TCAA levels varied greatly over a 3-month

  14. Intrauterine bacterial inoculation and level of dietary methionine alter amino acid metabolism in nulliparous yearling ewes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using an intrauterine bacterial inoculation method, our objective was to determine the effects of acute sepsis and level of dietary metabolizable-methionine on splanchnic metabolism of amino acids in ewes. Twenty-five nulliparous yearling Rambouillet-cross ewes (initial BW = 65.1 ± 0.6 kg), surgical...

  15. Elevated carbon dioxide levels enhance rosmarinic acid production in spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C20 diterpene rosmarinic acid (RA) is synthesized in the phenylpropanoid pathway and is constitutively expressed in spearmint (Mentha spicata L.) plantlets grown in vitro. RA levels within plantlet leaves were found to be readily manipulated by the nutritional and physical environments. Higher...

  16. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  17. Quantitative analysis of changes in the phosphoproteome of maize induced by the plant hormone salicylic acid

    PubMed Central

    Wu, Liuji; Hu, Xiuli; Wang, Shunxi; Tian, Lei; Pang, Yanjie; Han, Zanping; Wu, Liancheng; Chen, Yanhui

    2015-01-01

    Phytohormone salicylic acid (SA) plays an important role in regulating various physiological and biochemical processes. Our previous study identified several protein kinases responsive to SA, suggesting that phosphorylation events play an important role in the plant response to SA. In this study, we characterized the phosphoproteome of maize in response to SA using isotope tags for relative and absolute quantification (iTRAQ) technology and TiO2 enrichment method. Based on LC-MS/MS analysis, we found a total of 858 phosphoproteins among 1495 phosphopeptides. Among them, 291 phosphopeptides corresponding to 244 phosphoproteins were found to be significantly changed after SA treatment. The phosphoproteins identified are involved in a wide range of biological processes, which indicate that the response to SA encompasses a reformatting of major cellular processes. Furthermore, some of the phosphoproteins which were not previously known to be involved with SA were found to have significantly changed phosphorylation levels. Many of these changes are phosphorylation decreases, indicating that other currently unknown SA signaling pathways that result in decreased phosphorylation of downstream targets must be involved. Our study represents the first attempt at global phosphoproteome profiling in response to SA, and provides a better understanding of the molecular mechanisms regulated by SA. PMID:26659305

  18. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  19. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles.

    PubMed

    Ishizawa, Rie; Masuda, Kazumi; Sakata, Susumu; Nakatani, Akira

    2015-01-01

    Skeletal muscles can adapt to dietary interventions that affect energy metabolism. Dietary intake of medium-chain fatty acids (MCFAs) enhances mitochondrial oxidation of fatty acids (FAO) in type IIa skeletal muscle fibers. However, the effect of MCFAs diet on mitochondrial or cytoplasmic FAO-related protein expression levels in different types of muscle fibers remains unclear. This study aims to examine the effects of a high-fat diet, containing MCFAs, on mitochondrial enzyme activities and heart-type fatty acid-binding protein (H-FABP) levels in different types of skeletal muscle fibers. Five-week-old male Wistar rats were assigned to one of the following three dietary conditions: standard chow (SC, 12% of calories from fat), high-fat MCFA, or high-fat long-chain fatty acids (LCFAs) diet (60% of calories from fat for both). The animals were provided food and water ad libitum for 4 weeks, following which citrate synthase (CS) activity and H-FABP concentration were analyzed. The epididymal fat pads (EFP) were significantly smaller in the MCFA group than in the LCFA group (p < 0.05). MCFA-fed group displayed an increase in CS activity compared with that observed in SC-fed controls in all types of skeletal muscle fibers (triceps, surface portion of gastrocnemius (gasS), deep portion of gastrocnemius (gasD), and soleus; p < 0.05,). H-FABP concentration was significantly higher in the LCFA group than in both the SC-fed and MCFA-fed groups (triceps, gasS, gasD, and soleus; p < 0.05,). However, no significant difference was observed in the H-FABP concentrations between the SC-fed and MCFA-fed groups. The results of this study showed that the MCFA diet can increase the expression of the mitochondrial enzyme CS, but not that of H-FABP, in both fast- and slow-twitch muscle fibers, suggesting that H-FABP expression is dependent on the chain length of fatty acids in the cytoplasm of skeletal muscles cells. PMID:25766930

  20. A high-throughput method for isolation of salicylic acid metabolic mutants

    PubMed Central

    2010-01-01

    Background Salicylic acid (SA) is a key defense signal molecule against biotrophic pathogens in plants. Quantification of SA levels in plants is critical for dissecting the SA-mediated immune response. Although HPLC and GC/MS are routinely used to determine SA concentrations, they are expensive and time-consuming. We recently described a rapid method for a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification, which enables high-throughput analysis. In this study we describe an improved method for fast sample preparation, and present a high-throughput strategy for isolation of SA metabolic mutants. Results On the basis of the previously described biosensor-based method, we simplified the tissue collection and the SA extraction procedure. Leaf discs were collected and boiled in Luria-Bertani (LB), and then the released SA was measured with the biosensor. The time-consuming steps of weighing samples, grinding tissues and centrifugation were avoided. The direct boiling protocol detected similar differences in SA levels among pathogen-infected wild-type, npr1 (nonexpressor of pathogenesis-related genes), and sid2 (SA induction-deficient) plants as did the previously described biosensor-based method and an HPLC-based approach, demonstrating the efficacy of the protocol presented here. We adapted this protocol to a high-throughput format and identified six npr1 suppressors that accumulated lower levels of SA than npr1 upon pathogen infection. Two of the suppressors were found to be allelic to the previously identified eds5 mutant. The other four are more susceptible than npr1 to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 and their identity merits further investigation. Conclusions The rapid SA extraction method by direct boiling of leaf discs further reduced the cost and time required for the biosensor Acinetobacter sp. ADPWH_lux-based SA estimation, and allowed the screening for npr1 suppressors that accumulated less SA than npr1

  1. Inverse Association Between Serum Uric Acid Levels and Alzheimer's Disease Risk.

    PubMed

    Du, Na; Xu, Donghua; Hou, Xu; Song, Xuejia; Liu, Cancan; Chen, Ying; Wang, Yangang; Li, Xin

    2016-05-01

    The association between Alzheimer's disease and uric acid levels had gained great interest in recent years, but there was still lack of definite evidence. A systematic review and meta-analysis of relevant studies was performed to comprehensively estimate the association. Relevant studies published before October 26, 2014, were searched in PubMed, Embase, and China Biology Medicine (CBM) databases. Study-specific data were combined using random-effects or fixed-effects models of meta-analysis according to between-study heterogeneity. Twenty-four studies (21 case-control and 3 cohort studies) were finally included into the meta-analysis. Those 21 case-control studies included a total of 1128 cases of Alzheimer's disease and 2498 controls without Alzheimer's disease. Those 3 cohort studies included a total of 7327 participants. Meta-analysis showed that patients with Alzheimer's disease had lower levels of uric acid than healthy controls (weighted mean difference (WMD) = -0.77 mg/dl, 95 % CI -2.28 to -0.36, P = 0.0002). High serum uric acid levels were significantly associated with decreased risk of Alzheimer's disease (risk ratio (RR) = 0.66, 95 % CI 0.52-0.85, P = 0.001). There was low risk of publication bias in the meta-analysis. There is an inverse association between serum uric acid levels and Alzheimer's disease. High serum uric acid level is a protective factor of Alzheimer's disease. PMID:26084440

  2. Low Serum Levels of Uric Acid are Associated With Development of Poststroke Depression

    PubMed Central

    Gu, Yingying; Han, Bin; Wang, Liping; Chang, Yaling; Zhu, Lin; Ren, Wenwei; Yan, Mengjiao; Zhang, Xiangyang; He, Jincai

    2015-01-01

    Abstract Poststroke depression (PSD) is a frequent complication of stroke that has been associated with poorer outcome of stroke patients. This study sought to examine the possible association between serum uric acid levels and the development of PSD. We recruited 196 patients with acute ischemic stroke and 100 healthy volunteers. Serum uric acid levels were tested by uricase-PAP method within 24 hr after admission. Neuropsychological evaluations were conducted at 3-month poststroke. The 17-item Hamilton Depression Scale was used to assess depressive symptoms. Diagnosis of PSD was made in accordance with DSM-IV criteria for depression. Multivariate analyses were conducted using logistic regression models. Fifty-six patients (28.6%) were diagnosed as having PSD at 3 months. PSD patients showed significantly lower levels of uric acid at baseline as compared to non-PSD patients (237.02 ± 43.43 vs 309.10 ± 67.44 μmol/L, t = −8.86, P < 0.001). In multivariate analyses, uric acid levels (≤239.0 and ≥328.1 μmol/L) were independently associated with the development of PSD (OR, 7.76; 95% confidence interval [CI], 2.56–23.47, P < 0.001 and OR, 0.05; 95% CI, 0.01–0.43, P = 0.01, respectively) after adjustment for possible variables. Serum uric acid levels at admission are found to be correlated with PSD and may predict its development at 3 months after stroke. PMID:26559256

  3. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    PubMed

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status. PMID:24913495

  4. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.)

    PubMed Central

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R.

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  5. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.).

    PubMed

    Ghazijahani, Noushin; Hadavi, Ebrahim; Jeong, Byoung R

    2014-01-01

    The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them. PMID:25400645

  6. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    PubMed Central

    Sawada, Kazutaka

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  7. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation.

    PubMed

    Sawada, Kazutaka; Kitagaki, Hiroshi

    2016-01-01

    Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus). Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation. PMID:26839744

  8. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  9. Serum levels of short-chain fatty acids in cirrhosis and hepatic coma.

    PubMed

    Clausen, M R; Mortensen, P B; Bendtsen, F

    1991-12-01

    Short-chain fatty acids cause reversible coma in animals and may contribute to the pathogenesis of the hepatic coma in humans. The concentrations of short-chain fatty acids in peripheral venous blood were significantly elevated in 15 patients with hepatic encephalopathy caused by cirrhosis (362 +/- 83 mumol/L; mean +/- S.E.M.) compared with 17 cirrhotic patients without encephalopathy (178 +/- 57 mumol/L) and 11 normal individuals (60 +/- 8 mumol/L). However, no correlation between the depth of coma and the level of short-chain fatty acids was found after repetitive measurements in the coma group. Compared with normal individuals, all short-chain fatty acids, except valerate, were elevated in patients with hepatic encephalopathy, whereas only the concentrations of isobutyrate and isovalerate were significantly elevated in cirrhotic patients without encephalopathy. The concentrations of short-chain fatty acids in 21 nonencephalopathic cirrhotic patients who underwent catheterization were equally distributed in the aorta (187 +/- 56 mumol/L), the hepatic vein (212 +/- 75 mumol/L), the azygos vein (140 +/- 37 mumol/L) and the renal vein (135 +/- 43 mumol/L) compared with peripheral venous blood (178 +/- 57 mumol/L). This study does not support the idea that short-chain fatty acids are of major importance in the pathogenesis of hepatic coma in patients with cirrhosis. PMID:1959851

  10. Effect of acidity on the energy level of curcumin dye extracted from Curcuma longa L.

    NASA Astrophysics Data System (ADS)

    Agustia, Yuda Virgantara; Suyitno, Arifin, Zainal; Sutanto, Bayu

    2016-03-01

    The purpose of this research is to investigate the effect of acidity on the energy level of curcumin dye. The natural dye, curcumin, was synthesized from Curcuma longa L. using a simple extraction technique. The purification of curcumin dye was conducted in a column of chromatography and its characteristics were studied. Next, the purified curcumin dye was added by benzoic acids until various acidities of 3.0, 3.5, 4.0, 4.5, and 5.0. The absorbance spectra and the functionality groups found in the dyes were detected by ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy, respectively. Meanwhile, the energy level of the dyes, EHOMO and ELUMO was measured by cyclic voltammetry. The best energy level of curcumin dye was achieved at pH 3.5 where Ered = -0.37V, ELUMO = -4.28 eV, Eox = 1.15V, EHOMO = -5.83 eV, and Eband gap = 1.55 eV. Therefore, the purified curcumin dye added by benzoic acid was promising for sensitizing the dye-sensitized solar cells.

  11. Peanut consumption increases levels of plasma very long chain fatty acids in humans.

    PubMed

    Lam, Christina; Wong, Derek; Cederbaum, Stephen; Lim, Bennie; Qu, Yong

    2012-11-01

    Peanut consumption has been suspected of raising plasma very long chain fatty acid (VLCFA) levels in humans. The effect of peanut consumption on VLCFAs was studied in six human subjects. After 3 to 4h of peanut butter ingestion, plasma C26:0 and C26:0/C22:0 were found to be significantly elevated to levels seen in patients with peroxisomal disorders. These levels returned to normal within 12h. Peanut consumption needs to be accounted for when interpreting VLCFAs. PMID:22864056

  12. Fatty Acid Status and Its Relationship to Cognitive Decline and Homocysteine Levels in the Elderly

    PubMed Central

    Baierle, Marília; Vencato, Patrícia H.; Oldenburg, Luiza; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M.; Duarte, Marta M. M. F.; Veit, Juliana C.; Somacal, Sabrina; Emanuelli, Tatiana; Grune, Tilman; Breusing, Nicolle; Garcia, Solange C.

    2014-01-01

    Polyunsaturated fatty acids (PUFAs), especially the n-3 series, are known for their protective effects. Considering that cardiovascular diseases are risk factors for dementia, which is common at aging, the aim of this study was to evaluate whether fatty acid status in the elderly was associated with cognitive function and cardiovascular risk. Forty-five elderly persons (age ≥60 years) were included and divided into two groups based on their Mini-Mental Status Examination score adjusted for educational level: the case group (n = 12) and the control group (n = 33). Serum fatty acid composition, homocysteine (Hcy), hs-CRP, lipid profile and different cognitive domains were evaluated. The case group, characterized by reduced cognitive performance, showed higher levels of 14:0, 16:0, 16:1n-7 fatty acids and lower levels of 22:0, 24:1n-9, 22:6n-3 (DHA) and total PUFAs compared to the control group (p < 0.05). The n-6/n-3 ratio was elevated in both study groups, whereas alterations in Hcy, hs-CRP and lipid profile were observed in the case group. Cognitive function was positively associated with the 24:1n-9, DHA and total n-3 PUFAs, while 14:0, 16:0 and 16:1n-7 fatty acids, the n-6/n-3 ratio and Hcy were inversely associated. In addition, n-3 PUFAs, particularly DHA, were inversely associated with cardiovascular risk, assessed by Hcy levels in the elderly. PMID:25221976

  13. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    PubMed

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  14. Uric acid or 1-methyl uric acid in the urinary bladder increases serum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats.

    PubMed

    Balasubramanian, T

    2003-10-01

    In animals deprived of food for a long period, a drop in the fat mass below 5% of the total body mass results in an increase in blood glucocorticoids and uric acid levels, followed by foraging activity. Since the glucocorticoids increase the uric acid excretion, an increase in the level of uric acid in the bladder urine could be the signal for this feeding behaviour and subsequent fat storage. Accumulation of fat is associated with hyperglycaemia, hyperinsulinaemia, hyperlipidaemia, and hypercholesterolaemia as seen in the metabolic syndrome or hibernation. It is hypothesized that uric acid or its structurally related compound, 1-methyl uric acid (one of the metabolites of the methyl xanthines namely caffeine, theophylline, and theobromine present in coffee, tea, cocoa, and some drugs), can act on the urinary bladder mucosa and increases the blood glucose, insulin, triglyceride, and cholesterol levels. In rats, perfusion of the urinary bladder with saturated aqueous solution of uric acid or 1-methyl uric acid results in a significant increase in the serum levels of glucose, insulin, true triglyceride, and total cholesterol in comparison with perfusion of the bladder with distilled water at 20, 40, and 80 min. The uric acid or the 1-methyl uric acid acts on the urinary bladder mucosa and increases the serum glucose, insulin, true triglyceride, and total cholesterol levels. PMID:15241498

  15. SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation.

    PubMed

    Miura, Kenji; Ohta, Masaru

    2010-05-01

    Low temperature induces several genes to acquire plant cold tolerance. Here, we demonstrate that accumulation of salicylic acid (SA) is involved in the regulation of the DREB1A/CBF3 regulon and plant tolerance to cold stresses. The SA-accumulating mutant siz1 exhibits sensitivity to chilling and freezing conditions and decreased expression of DREB1A/CBF3 and its regulon genes. Reduction of SA levels in siz1 by nahG restored cold sensitivity and down-regulation of these genes. Database analyses and RT-PCR analysis revealed that the ice1 mutation also increased expression of SA-responsive genes. As well as siz1, another SA-accumulating mutant acd6 exhibited freezing sensitivity and the sensitivity was suppressed in acd6 nahG plants. Taken together, these data indicate that SA is involved in regulation of cold signaling. PMID:19959255

  16. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid

    PubMed Central

    Zhang, Qing-Yu; Zhang, Li-Qing; Song, Li-Li; Duan, Ke; Li, Na; Wang, Yan-Xiu; Gao, Qing-Hua

    2016-01-01

    The disease symptoms recognized as ‘Anthracnose’ are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry–Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens. PMID:27004126

  17. The different interactions of Colletotrichum gloeosporioides with two strawberry varieties and the involvement of salicylic acid.

    PubMed

    Zhang, Qing-Yu; Zhang, Li-Qing; Song, Li-Li; Duan, Ke; Li, Na; Wang, Yan-Xiu; Gao, Qing-Hua

    2016-01-01

    The disease symptoms recognized as 'Anthracnose' are caused by Colletotrichum spp. and lead to large-scale strawberry (Fragaria×ananassa Duchesne) losses worldwide in terms of both quality and production. Little is known regarding the mechanisms underlying the genetic variations in the strawberry-Colletotrichum spp. interaction. In this work, Colletotrichum gloeosporioides (C. gloeosporioides) infection was characterized in two varieties exhibiting different susceptibilities, and the involvement of salicylic acid (SA) was examined. Light microscopic observation showed that C. gloeosporioides conidia germinated earlier and faster on the leaf surface of the susceptible cultivar compared with the less-susceptible cultivar. Several PR genes were differentially expressed, with higher-amplitude changes observed in the less-susceptible cultivar. The less-susceptible cultivar contained a higher level of basal SA, and the SA levels increased rapidly upon infection, followed by a sharp decrease before the necrotrophic phase. External SA pretreatment reduced susceptibility and elevated the internal SA levels in both varieties, which were sharply reduced in the susceptible cultivar upon inoculation. The less-susceptible cultivar also displayed a more sensitive and marked increase in the transcripts of NB-LRR genes to C. gloeosporioides, and SA pretreatment differentially induced transcript accumulation in the two varieties during infection. Furthermore, SA directly inhibited the germination of C. gloeosporioides conidia; NB-LRR transcript accumulation in response to SA pretreatment was both dose- and cultivar-dependent. The results demonstrate that the less-susceptible cultivar showed reduced conidia germination. The contribution of SA might involve microbial isolate-specific sensitivity to SA, cultivar/tissue-specific SA homeostasis and signaling, and the sensitivity of R genes and the related defense network to SA and pathogens. PMID:27004126

  18. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana.

    PubMed

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere. PMID:26494731

  19. Stability of small ubiquitin-like modifier (SUMO) proteases OVERLY TOLERANT TO SALT1 and -2 modulates salicylic acid signalling and SUMO1/2 conjugation in Arabidopsis thaliana

    PubMed Central

    Bailey, Mark; Srivastava, Anjil; Conti, Lucio; Nelis, Stuart; Zhang, Cunjin; Florance, Hannah; Love, Andrew; Milner, Joel; Napier, Richard; Grant, Murray; Sadanandom, Ari

    2016-01-01

    Small ubiquitin-like modifier proteases 1 and 2 (SUMO1/2) have been linked to the regulation of salicylic acid (SA)-mediated defence signalling in Arabidopsis thaliana. In order to define the role of the SUMO proteases OVERLY TOLERANT TO SALT1 and -2 (OTS1/2) in defence and to provide insight into SUMO1/2-mediated regulation of SA signalling, we examined the status of SA-mediated defences in ots1/2 mutants. The ots1 ots2 double mutant displayed enhanced resistance to virulent Pseudomonas syringae and higher levels of SA compared with wild-type (WT) plants. Furthermore, ots1 ots2 mutants exhibited upregulated expression of the SA biosynthesis gene ICS1 in addition to enhanced SA-responsive ICS1 expression beyond that of WT. SA stimulated OTS1/2 degradation and promoted accumulation of SUMO1/2 conjugates. These results indicate that OTS1 and -2 act in a feedback loop in SA signalling and that de novo OTS1/2 synthesis works antagonistically to SA-promoted degradation, adjusting the abundance of OTS1/2 to moderate SA signalling. Accumulation of SUMO1/2 conjugates coincides with SA-promoted OTS degradation and may play a positive role in SA-mediated signalling in addition to its repressive roles reported elsewhere. PMID:26494731

  20. Cochlear ablation effects on amino acid levels in the chinchilla cochlear nucleus.

    PubMed

    Godfrey, D A; Chen, K; Godfrey, M A; Lee, A C; Crass, S P; Shipp, D; Simo, H; Robinson, K T

    2015-06-25

    Inner ear damage can lead to hearing disorders, including tinnitus, hyperacusis, and hearing loss. We measured the effects of severe inner ear damage, produced by cochlear ablation, on the levels and distributions of amino acids in the first brain center of the auditory system, the cochlear nucleus. Measurements were also made for its projection pathways and the superior olivary nuclei. Cochlear ablation produces complete degeneration of the auditory nerve, which provides a baseline for interpreting the effects of partial damage to the inner ear, such as that from ototoxic drugs or intense sound. Amino acids play a critical role in neural function, including neurotransmission, neuromodulation, cellular metabolism, and protein construction. They include major neurotransmitters of the brain - glutamate, glycine, and γ-aminobutyrate (GABA) - as well as others closely related to their metabolism and/or functions - aspartate, glutamine, and taurine. Since the effects of inner ear damage develop over time, we measured the changes in amino acid levels at various survival times after cochlear ablation. Glutamate and aspartate levels decreased by 2weeks in the ipsilateral ventral cochlear nucleus and deep layer of the dorsal cochlear nucleus, with the largest decreases in the posteroventral cochlear nucleus (PVCN): 66% for glutamate and 63% for aspartate. Aspartate levels also decreased in the lateral part of the ipsilateral trapezoid body, by as much as 50%, suggesting a transneuronal effect. GABA and glycine levels showed some bilateral decreases, especially in the PVCN. These results may represent the state of amino acid metabolism in the cochlear nucleus of humans after removal of eighth nerve tumors, which may adversely result in destruction of the auditory nerve. Measurement of chemical changes following inner ear damage may increase understanding of the pathogenesis of hearing impairments and enable improvements in their diagnosis and treatment. PMID:25839146

  1. The effects of dietary omega fatty acids on pregnancy rate, plasma prostaglandin metabolite levels, serum progesterone levels, and milk fatty-acid profile in beef cows.

    PubMed

    Richardson, Gavin F; McNiven, Mary A; Petit, Hélène V; Duynisveld, John L

    2013-10-01

    The objectives were to determine the effects of feeding supplements rich in omega-6 or omega-3 fatty acids (FA) during the late gestation to the early postpartum and breeding periods on reproduction and milk FA profile in beef cows. For each of two years, at the beginning of period 1 (mid-December), 72 beef cows, calving in January or February, were assigned to diets supplemented with roasted flaxseed (Flax) or roasted soybean (Soybean). For each of two years, after 11 wk (end of period 1), 18 cows of 36 in the Flax group were switched to the soybean supplement and 18 cows of 36 in the Soybean group were switched to the flax supplement (start of Period 2). Cows were bred by timed artificial insemination (TAI) in week 5 of period 2. The FA composition of the milk reflected the FA profile of the oilseed supplements. There were no differences in pregnancy rates among the 4 groups. The treatments had no effect on plasma prostaglandin metabolite levels or ratios at 4 to 11 d postpartum. At 5 to 6 d post- TAI, pregnant cows fed Flax in period 1 had lower (P < 0.05) plasma prostaglandin F metabolite (PGFM) levels and PGFM to prostaglandin E metabolite (PGEM) ratio than cows fed Soybean, but there were no significant differences at 19 to 20 d post-TAI. Cows pregnant from TAI and fed Flax in period 2 had higher (P < 0.05) serum progesterone levels at 5 to 6 d post-TAI than cows fed Soybean, but there was no difference at 19 to 20 d post-TAI. The dietary treatments had no effect on pregnancy rates, but there were some effects on plasma PGFM levels, PGFM to PGEM ratios, and serum progesterone levels. The FA supplements influenced the FA composition of milk. PMID:24124276

  2. Chemical enhancement of SA7 virus transformation of hamster embryo cells: evaluation by interlaboratory testing of diverse chemicals.

    PubMed

    Hatch, G G; Anderson, T M; Lubet, R A; Kouri, R E; Putman, D L; Cameron, J W; Nims, R W; Most, B; Spalding, J W; Tennant, R W

    1986-01-01

    Twelve chemicals from diverse structural classes were tested under code for their capacity to enhance the transformation of Syrian hamster embryo cells by simian adenovirus SA7 in two independent laboratories. Pretreatment of hamster cells with eight of those chemicals (reserpine, dichlorvos, methapyrilene hydrochloride, benzidine dihydrochloride, diphenylhydantoin, cinnamyl anthranilate, 11-aminoundecanoic acid, and 4,4'-oxydianiline) produced repeatable enhancement of SA7 transformation at two or more consecutive dose levels, which constitutes clear evidence of enhancing activity in this assay. Both toxic and nontoxic doses of each of these chemicals caused enhancement of virus transformation. Two chemicals (2,6-dichloro-p-phenylenediamine and cinnamaldehyde) produced some evidence of enhancing activity (repeatable transformation enhancement at one dose). Dose ranges for cytotoxicity and enhancement of SA7 transformation were similar in both laboratories for all chemicals producing activity. The final two chemicals, chloramphenicol sodium succinate and ethylene thiourea, failed to reproducibly demonstrate either significant cytotoxicity or enhancement of SA7 transformation at concentrations up to 10-20 mM. The test results for these 12 chemicals were combined with the test results for 9 known carcinogens and noncarcinogens in order to evaluate relationships between activity, dose response, and lowest effective enhancing concentration for these compounds, as well as to correlate them with rodent carcinogenesis classifications. The Syrian hamster embryo cell-SA7 system demonstrated reproducible test responses in both intra- and interlaboratory studies and detected 13 out of 15 known rodent carcinogens. PMID:3732194

  3. Preoperative serum docosahexaenoic acid level predicts prognosis of renal cell carcinoma

    PubMed Central

    TASAKI, SHINSUKE; HORIGUCHI, AKIO; ASANO, TAKAKO; KURODA, KENJI; SATO, AKINORI; ASAKUMA, JUNICHI; ITO, KEIICHI; ASANO, TOMOHIKO; ASAKURA, HIROTAKA

    2016-01-01

    The recent discovery and clinical development of targeted agents have expanded treatment options in metastatic renal cell carcinoma (RCC). However, metastatic RCC remains a lethal disease. Complete response is rare and treatment with targeted agents eventually fails in the majority of the patients. Therefore, there is a need for developing a prognostic tool and a novel therapeutic agent for RCC to improve the follow-up strategy after surgical treatment. Clinical data, including patient characteristics, serum fatty acid profile, clinicopathological parameters and clinical outcome, were obtained from 112 patients with RCC prior to surgical treatment. Preoperative fatty acid levels were grouped according to patient characteristics, such as performance status, body mass index or pathological parameters, and were analyzed using the Mann-Whitney U test. Cancer-specific survival in the high and low docosahexaenoic acid (DHA) level groups were compared using the Kaplan-Meier method. Cox proportional hazards models were applied to determine the independent prognostic factors associated with shortened cancer-specific survival. The serum DHA level in patients with metastasis was significantly lower compared with that in patients without metastasis (P=0.047). Low serum DHA level, presence of metastasis and cachexia were independent predictors of shortened cancer-specific survival in a multivariate Cox proportional hazard model (P=0.033, hazard ratio = 4.43). Patients with a serum DHA level below the median value exhibited significantly shorter cancer-specific survival compared with those with a higher serum DHA level (P=0.008). Thus, according to our results, the preoperative serum DHA level may be able to predict the surgical outcome of RCC. However, this finding requires validation by large-scale prospective studies. PMID:27330769

  4. Effects of Alterations of Plasma Free Fatty Acid Levels on Pancreatic Glucagon Secretion in Man

    PubMed Central

    Gerich, John E.; Langlois, Maurice; Schneider, Victor; Karam, John H.; Noacco, Claudio

    1974-01-01

    The present investigation was undertaken to ascertain whether alterations in plasma free fatty acids (FFA) affect pancreatic glucagon secretion in man since FFA have been reported to influence pancreatic alpha cell function in other species. Elevation of plasma FFA from a mean (±SE) basal level of 0.478±0.036 mM to 0.712±0.055 mM after heparin administration caused plasma glucagon levels to fall approximately 50%, from a basal value of 122±15 pg/ml to 59±14 pg/ml (P < 0.001). Lowering of plasma FFA from a basal level of 0.520±0.046 mM to 0.252±0.041 mM after nicotinic acid administration raised plasma glucagon from a basal level of 113±18 pg/ml to 168±12 pg/ml (P < 0.005). Infusion of glucose elevated plasma glucose levels to the same degree that heparin raised plasma FFA levels. This resulted in suppression of plasma glucagon despite the fact that plasma FFA levels also were suppressed. Glucagon responses to arginine were diminished after elevation of plasma FFA (P < 0.01) and during infusion of glucose (P < 0.01). Diminution of plasma FFA by nicotinic acid did not augment glucagon responses to arginine. These results thus demonstrate that rather small alterations in plasma FFA within the physiologic range have a significant effect on glucagon secretion in man. Although the effects of glucose appear to predominate over those of FFA, alterations in plasma FFA may nevertheless exert an important physiologic influence over human pancreatic alpha cell function, especially in the postabsorptive state. PMID:4825225

  5. The effects of changing dairy intake on trans and saturated fatty acid levels- results from a randomized controlled study

    PubMed Central

    2014-01-01

    Background Dairy food is an important natural source of saturated and trans fatty acids in the human diet. This study evaluates the effect of dietary advice to change dairy food intake on plasma fatty acid levels known to be present in milk in healthy volunteers. Methods Twenty one samples of whole fat dairy milk were analyzed for fatty acids levels. Changes in levels of plasma phospholipid levels were evaluated in 180 healthy volunteers randomized to increase, not change or reduce dairy intake for one month. Fatty acids were measured by gas chromatography–mass spectrometry and levels are normalized to d-4 alanine. Results The long chain fatty acids palmitic (13.4%), stearic (16.7%) and myristic (18.9%) acid were most common saturated fats in milk. Four trans fatty acids constituted 3.7% of the total milk fat content. Increased dairy food intake by 3.0 (± 1.2) serves/ day for 1 month was associated with small increases in plasma levels of myristic (+0.05, 95% confidence level-0.08 to 0.13, p = 0.07), pentadecanoic (+0.014, 95% confidence level -0.016 to 0.048, p = 0.02) and margaric acid (+0.02, -0.03 to 0.05, p = 0.03). There was no significant change in plasma levels of 4 saturated, 4 trans and 10 unsaturated fatty acids. Decreasing dairy food intake by 2.5 (± 1.2) serves per day was not associated with change in levels of any plasma fatty acid levels. Conclusion Dietary advice to change dairy food has a minor effect on plasma fatty acid levels. Trial registration ACTRN12612000574842. PMID:24708591

  6. Amino acid and vascular endothelial growth factor levels in subretinal fluid in rhegmatogenous retinal detachment

    PubMed Central

    Buyukuysal, Rifat Levent; Gelisken, Oner; Buyukuysal, Cagatay; Can, Basak

    2014-01-01

    Purpose To study the concentrations of amino acids and vascular endothelial growth factor (VEGF) in subretinal fluid (SRF) of cases with rhegmatogenous retinal detachment (RRD). The relevance of the results with postoperative anatomic and functional success in RRD was investigated. Methods Fifty-three patients were included in this prospective study. The study group consisted of 46 patients who had scleral buckling surgery with the diagnosis of RRD, and SRF was obtained during the surgery. The control specimens consisted of vitreous samples of seven patients who were diagnosed with pars plana vitrectomy without RRD. Study cases were divided into three groups, corresponding to the duration of retinal detachment. Clinical characteristics, including best corrected visual acuity (BCVA) and anatomic status at month 6, were recorded. Concentrations of 15 selected amino acids were quantified by using high performance liquid chromatography, and VEGF levels were measured with enzyme immunoassay. Results When compared with the control group, SRF concentrations of aspartate, citrulline, glutamate, and glycine increased significantly in the study group (p<0.05). Statistical analysis showed that concentrations of alanine, isoleucine, leucine, methionine, phenylalanine, threonine, tyrosine, and valine decreased (p<0.05). SRF levels of glutamine, taurine, and serine had no significant change. SRF VEGF levels were significantly higher than the vitreous samples of the controls (p<0.001). Time-dependent changes and interactions between VEGF and amino acids were observed. There was no correlation between the concentrations of amino acids or VEGF with the parameters of BCVA and anatomical success. Conclusions Significant changes occur in concentrations of amino acids and VEGF in SRF of cases with RRD. Our results suggest that several mechanisms contribute to the pathophysiology. PMID:25352742

  7. Genome-Wide Analysis of Branched-Chain Amino Acid Levels in Arabidopsis Seeds[W

    PubMed Central

    Angelovici, Ruthie; Lipka, Alexander E.; Deason, Nicholas; Gonzalez-Jorge, Sabrina; Lin, Haining; Cepela, Jason; Buell, Robin; Gore, Michael A.; DellaPenna, Dean

    2013-01-01

    Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two BRANCHED-CHAIN AMINO ACID TRANSFERASES, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds. PMID:24368787

  8. Evaluation of Warm Acid Strike Treatment for Silicon Analysis in High Level Waste

    SciTech Connect

    Pennebaker, F.M.

    2003-03-20

    Savannah River Technology Center (SRTC) has developed a simpler, faster and more accurate method of analysis for the measurement of silicon in High Level Waste (HLW) supernate samples prior to evaporation. The warm acid strike method compared favorably to the current filtration method in the measurement of five samples from three different waste tanks. The technical enhancement of the warm acid strike method is that it will help dissolve small solid particles of silicon-bearing materials that contribute to the scatter in measurements. The method is not intended to measure silicon in samples that have significant quantities of entrained waste tank sludge or DWPF frit particles. Since the method is simple, multiple waste tank samples can be prepared and analyzed at the same time. This improvement should significantly reduce turnaround time for Evaporator Qualification samples at SRTC. Enhanced QC and blind standards have been incorporated into the method for better traceability and overall accuracy. ADS recommends that High Level Waste switch to the Acid Strike Methodology using 3 M acid and 4 hours of heating for Evaporator Qualification samples as soon as possible. Extra work is necessary before transfer of the method to C-Lab for routine measurements.

  9. Mutations in a novel 9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2-4 % of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process...

  10. Postoperative enteral hyperalimentation results in earlier elevation of serum branched-chain amino acid levels.

    PubMed

    Moss, G; Naylor, E D

    1994-07-01

    To objectively document the immediate maintenance and successful exploitation of postoperative gastrointestinal (GI) function, elemental diet was infused into the more distal duodenum of 30 cholecystectomy patients at 300 kcal per hour, beginning on arrival at the recovery room. Approximately 4,600 kcal and 190 grams of amino acids were absorbed during the initial 16 hours. Serum branched-chain amino acids (BCAAs) had risen above basal levels at 4 hours, statistically significant only for leucine (+64%). The higher concentrations had reached statistical significance for all BCAAs by 6 hours, when leucine had risen by 83%, isoleucine by 54%, and valine by 47%. The elevated BCAA and glucose levels sustained throughout the hyperalimentation period objectively verify that postoperative GI function can be safely exploited, and may contribute to improved wound healing and sepsis resistance. PMID:8024096

  11. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    PubMed Central

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  12. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  13. The plastidial retrograde signal methyl erythritol cyclopyrophosphate is a regulator of salicylic acid and jasmonic acid crosstalk

    PubMed Central

    Lemos, Mark; Xiao, Yanmei; Bjornson, Marta; Wang, Jin-zheng; Hicks, Derrick; de Souza, Amancio; Wang, Chang-Quan; Yang, Panyu; Ma, Shisong; Dinesh-Kumar, Savithramma; Dehesh, Katayoon

    2016-01-01

    The exquisite harmony between hormones and their corresponding signaling pathways is central to prioritizing plant responses to simultaneous and/or successive environmental trepidations. The crosstalk between jasmonic acid (JA) and salicylic acid (SA) is an established effective mechanism that optimizes and tailors plant adaptive responses. However, the underlying regulatory modules of this crosstalk are largely unknown. Global transcriptomic analyses of mutant plants (ceh1) with elevated levels of the stress-induced plastidial retrograde signaling metabolite 2-C-methyl-D-erythritol cyclopyrophosphate (MEcPP) revealed robustly induced JA marker genes, expected to be suppressed by the presence of constitutively high SA levels in the mutant background. Analyses of a range of genotypes with varying SA and MEcPP levels established the selective role of MEcPP-mediated signal(s) in induction of JA-responsive genes in the presence of elevated SA. Metabolic profiling revealed the presence of high levels of the JA precursor 12-oxo-phytodienoic acid (OPDA), but near wild type levels of JA in the ceh1 mutant plants. Analyses of coronatine-insensitive 1 (coi1)/ceh1 double mutant plants confirmed that the MEcPP-mediated induction is JA receptor COI1 dependent, potentially through elevated OPDA. These findings identify MEcPP as a previously unrecognized central regulatory module that induces JA-responsive genes in the presence of high SA, thereby staging a multifaceted plant response within the environmental context. PMID:26733689

  14. Increased tachykinin levels in induced sputum from asthmatic and cough patients with acid reflux

    PubMed Central

    Patterson, Robert N; Johnston, Brian T; Ardill, Joy E S; Heaney, Liam G; McGarvey, Lorcan P A

    2007-01-01

    Background Acid reflux may aggravate airway disease including asthma and chronic cough. One postulated mechanism concerns a vagally‐mediated oesophageal‐tracheobronchial reflex with airway sensory nerve activation and tachykinin release. Aim To test the hypothesis that patients with airways disease and reflux have higher airway tachykinin levels than those without reflux. Methods Thirty‐two patients with airways disease (16 with mild asthma and 16 non‐asthmatic subjects with chronic cough) underwent 24 h oesophageal pH monitoring. Acid reflux was defined as increased total oesophageal acid exposure (% total time pH <4 of >4.9% at the distal probe). All subjects underwent sputum induction. Differential cell counts and concentrations of substance P (SP), neurokinin A (NKA), albumin and α2‐macroglobulin were determined. Results SP and NKA levels were significantly higher in patients with reflux than in those without (SP: 1434 (680) pg/ml vs 906 (593) pg/ml, p = 0.026; NKA: 81 (33) pg/ml vs 52 (36) pg/ml, p = 0.03). Significantly higher tachykinin levels were also found in asthmatic patients with reflux than in asthmatic patients without reflux (SP: 1508 (781) pg/ml vs 737 (512) pg/ml, p = 0.035; NKA: median (interquartile range 108 (85–120) pg/ml vs 75 (2–98) pg/ml, p = 0.02). In patients with asthma there was a significant positive correlation between distal oesophageal acid exposure and SP levels (r = 0.59, p = 0.01) and NKA levels (r = 0.56, p = 0.02). Non‐significant increases in SP and NKA were measured in patients with cough with reflux (SP: 1534.71 (711) pg/ml vs 1089 (606) pg/ml, p = 0.20; NKA: 56 (43) pg/ml vs 49 (17) pg/ml, p = 0.71). No significant difference in differential cell counts or any other biochemical parameter was noted between study groups. Conclusion This study demonstrates increased airway tachykinin levels in patients with asthma and cough patients with

  15. Calcium mobilization in salicylic acid-induced Salvia miltiorrhiza cell cultures and its effect on the accumulation of rosmarinic acid.

    PubMed

    Guo, Hongbo; Zhu, Nan; Deyholos, Michael K; Liu, Jun; Zhang, Xiaoru; Dong, Juane

    2015-03-01

    Ca(2+) serves as a second messenger in plant responses to different signals, and salicylic acid (SA) has been recognized as a signal mediating plant responses to many stresses. We recently found that SA treatment led to the cytoplasmic acidification of Salvia miltiorrhiza cells and alkalinization of extracellular medium. Here, we demonstrate that SA can rapidly induce Ca(2+) mobilization in protoplasts, but the induction can be blocked with a channel blocker of either plasma or organellar membranes. Following SA, A 23187, or 10 mmol/L Ca(2+) treatment, rosmarinic acid (RA) accumulation reached the highest level at 16 h, whereas the peak was found at 10 h if plasma membrane channel blockers were used. By contrast, the highest accumulation of RA occurred at 16 h when organellar channels were blocked, exhibiting the same tendency with SA-induced cells. In agreement with these observations, both phenylalanine ammonia-lyase (PAL) activity and its gene expression detected by real-time PCR also showed the same patterns. These results indicate that SA treatment firstly results in calcium release from internal stores, which in turn leads to PAL activity increase, RA accumulation, and a large amount of Ca(2+) influx from apoplast after 10 h of SA induction. PMID:25561058

  16. Ascorbic acid serum levels are reduced in patients with hematological malignancies

    PubMed Central

    Huijskens, Mirelle J.A.J.; Wodzig, Will K.W.H.; Walczak, Mateusz; Germeraad, Wilfred T.V.; Bos, Gerard M.J.

    2016-01-01

    In this paper we demonstrate that patients treated with chemotherapy and/or hematopoietic stem cell transplantation (HSCT) have highly significant reduced serum ascorbic acid (AA) levels compared to healthy controls. We recently observed in in vitro experiments that growth of both T and NK cells from hematopoietic stem cells is positively influenced by AA. It might be of clinical relevance to study the function and recovery of immune cells after intensive treatment, its correlation to AA serum levels and the possible effect of AA supplementation. PMID:27014565

  17. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  18. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels.

    PubMed

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m(2); all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  19. Serum uric acid levels in patients with infections of central nervous system.

    PubMed

    Liu, Jia; Li, Min; Wang, Xuan; Yi, Huan; Xu, Li; Zhong, Xiu-Feng; Peng, Fu-Hua

    2016-09-01

    The lower levels of serum uric acid (UA) correlated with meningitis have been reported. However, comparison of UA levels among different kinds of infections of central nervous system (CNS) and changes of UA levels before and after treatment are unknown. Our study aimed to investigate the antioxidant status of serum UA in five common types of CNS infections. We retrospectively evaluated serum UA levels of 399 patients with different types of CNS infections including viral meningitis or meningoencephalitis (VM), brain cysticercosis (BC), tuberculous meningitis or meningoencephalitis (TM), cryptococcus meningitis or meningoencephalitis (CM) and bacterial meningitis or meningoencephalitis (BM), and 119 healthy controls. The changes of serum UA were examined and analyzed. The serum levels of UA in patients with CNS infections were significantly lower than those in normal subjects and among in TM, CM and BM groups were apparently lower when compared with VM and BC groups; otherwise, after effective therapy, serum UA levels were obviously higher than before. Our findings showed that patients with CNS infections had lower serum UA levels, which was independent of the classification and the serum UA levels increased obviously after valid treatment, the variation of UA levels might be considered as an indicator of clinical curative effect in patients with CNS infections. PMID:26612048

  20. Association between delta-aminolevulinic acid dehydratase polymorphism and placental lead levels.

    PubMed

    Kayaaltı, Zeliha; Sert, Selda; Kaya-Akyüzlü, Dilek; Söylemez, Esma; Söylemezoğlu, Tülin

    2016-01-01

    Lead inhibits the delta-aminolevulinic acid dehydratase (ALAD) activity and results in neurotoxic aminolevulinic acid accumulation in the blood. During pregnancy, lead in the maternal blood can easily cross the placenta. The aim of this study was to determine whether the maternal ALAD G177C polymorphism (rs1800435) was related to the placental lead levels. The study population comprised 97 blood samples taken from mothers to investigate ALAD G177C polymorphism and their placentas to measure lead levels. ALAD G177C polymorphism was detected by standard polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) technique and atomic absorption spectrometry (AAS) equipped with a graphite furnace and Zeeman background correction system was used for lead determination. The median placental lead levels for ALAD1-1, ALAD1-2 and ALAD2-2 genotypes were 7.54 μg/kg, 11.78 μg/kg and 18.53 μg/kg, respectively. Statistically significant association was found between the maternal ALAD G177C polymorphism and placental lead levels (p<0.05). This study suggested that maternal ALAD G177C polymorphism was associated with placental lead levels. PMID:26701682

  1. Impact of HIV Infection and Zidovudine Therapy on RBC Parameters and Urine Methylmalonic Acid Levels

    PubMed Central

    Adediran, Adewumi; Osunkalu, Vincent; Wakama, Tamunomieibi; John-Olabode, Sarah; Akinbami, Akinsegun; Uche, Ebele; Akanmu, Sulaimon

    2016-01-01

    Background. Anaemia is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to investigate the impact of HIV infection and zidovudine on red blood cells (RBC) parameters and urine methylmalonic acid (UMMA) levels in patients with HIV infection. Material and Methods. A cross-sectional study involving 114 subjects, 94 of which are HIV-infected nonanaemic and 20 HIV negative subjects (Cg) as control. Full blood count parameters and urine methylmalonic acid (UMMA) level of each subject were determined. Associations were determined by Chi-square test and logistic regression statistics where appropriate. Results. Subjects on zidovudine-based ART had mean MCV (93 fL) higher than that of control group (82.9 fL) and ART-naïve (85.9 fL) subjects and the highest mean RDW. Mean UMMA level, which reflects vitamin B12 level status, was high in all HIV-infected groups but was significantly higher in ART-naïve subjects than in ART-experienced subjects. Conclusion. Although non-zidovudine therapy may be associated with macrocytosis (MCV > 95 fL), zidovudine therapy and ART naivety may not. Suboptimal level of vitamin B12 as measured by high UMMA though highest in ART-naïve subjects was common in all HIV-infected subjects. PMID:26989408

  2. Impact of HIV Infection and Zidovudine Therapy on RBC Parameters and Urine Methylmalonic Acid Levels.

    PubMed

    Adediran, Adewumi; Osunkalu, Vincent; Wakama, Tamunomieibi; John-Olabode, Sarah; Akinbami, Akinsegun; Uche, Ebele; Akanmu, Sulaimon

    2016-01-01

    Background. Anaemia is a common complication of human immunodeficiency virus (HIV) infection. The aim of this study was to investigate the impact of HIV infection and zidovudine on red blood cells (RBC) parameters and urine methylmalonic acid (UMMA) levels in patients with HIV infection. Material and Methods. A cross-sectional study involving 114 subjects, 94 of which are HIV-infected nonanaemic and 20 HIV negative subjects (Cg) as control. Full blood count parameters and urine methylmalonic acid (UMMA) level of each subject were determined. Associations were determined by Chi-square test and logistic regression statistics where appropriate. Results. Subjects on zidovudine-based ART had mean MCV (93 fL) higher than that of control group (82.9 fL) and ART-naïve (85.9 fL) subjects and the highest mean RDW. Mean UMMA level, which reflects vitamin B12 level status, was high in all HIV-infected groups but was significantly higher in ART-naïve subjects than in ART-experienced subjects. Conclusion. Although non-zidovudine therapy may be associated with macrocytosis (MCV > 95 fL), zidovudine therapy and ART naivety may not. Suboptimal level of vitamin B12 as measured by high UMMA though highest in ART-naïve subjects was common in all HIV-infected subjects. PMID:26989408

  3. Blood levels of ammonia and nitrogen scavenging amino acids in patients with inherited hyperammonemia.

    PubMed

    Tuchman, M; Yudkoff, M

    1999-01-01

    Plasma levels of glutamine (456 determinations), alanine (434 determinations), and asparagine (431 determinations) and corresponding ammonia levels (260 determinations) were retrospectively analyzed in 30 patients with hyperammonemia secondary to urea cycle disorders (including 3 patients with amino acid transport defects) and 5 patients with propionic acidemia (PA). All patients had elevated glutamine levels on one or more testing except for 2 patients with severe PA and 1 patient with a mild urea cycle disorder. All but 4 patients with urea cycle disorders showed a maximal glutamine level higher than 100 micromol/dl, and 3 patients had a maximal glutamine level of higher than 200 micromol/dl. The only exceptions were 2 asymptomatic ornithine transcarbamylase (OTC)-deficient females, 1 male with mild OTC deficiency, and 1 patient with citrullinemia (CIT) whose plasma glutamine levels were never above 100 micromol/L. Patients with CIT and argininosuccinic aciduria (ASA) showed statistically significant lower levels of glutamine than patients with other urea cycle disorders. However, the maximal glutamine level did not directly correlate with severity of the disorder and within disorders correlated inversely with severity of outcome. Patients with PA showed statistically significant lower glutamine, alanine, and asparagine levels than patients with urea cycle disorders and the severity of this disorder correlated inversely with plasma glutamine levels. Plasma ammonia levels showed a positive correlation with glutamine in patients with carbamyl phosphate synthetase I and OTC deficiency and a negative correlation in patients with PA. Although, most patients also showed elevated levels of alanine and asparagine, their levels generally did not show a good correlation with glutamine (R2 = 0.25 and 0.34, respectively). PMID:9973542

  4. Effects of folic acid supplementation on serum homocysteine and lipoprotein (a) levels during pregnancy

    PubMed Central

    Hekmati Azar Mehrabani, Zohreh; Ghorbanihaghjo, Amir; Sayyah Melli, Manizheh; Hamzeh-Mivehroud, Maryam; Fathi Maroufi, Nazila; Bargahi, Nasrin; Bannazadeh Amirkhiz, Maryam; Rashtchizadeh, Nadereh

    2015-01-01

    Introduction:There are many ideas concerning the etiology and pathogenesis of preeclampsia including endothelial dysfunction, inflammation and angiogenesis. Elevated levels of total homocysteine (Hcy) and lipoprotein (a) [Lp(a)] are risk factors for endothelial dysfunction. This study aimed to evaluate the effect of high dose folic acid (FA) on serum Hcy and Lp(a) concentrations with respect to methylenetetrahydrofolate reductase (MTHFR) polymorphisms 677C→T during pregnancy. Methods: In a prospective uncontrolled intervention, 90 pregnant women received 5 mg FA supplementation before pregnancy till 36th week of pregnancy. The MTHFR polymorphisms 677C→T, serum lactate dehydrogenase activity, urine protein and creatinine concentrations were measured before starting folic acid administration. Serum levels of Hcy and Lp(a) were determined before and after completion of folic acid supplementation period. Results: Supplementation of the patients with FA for 36 week decreased the median (minimum– maximum) levels of serum Hcy from 11.40 μmol/L (4.40-28.70) to 9.70 (1.60-20.80) μmol/L (p=0.001). There was no significant change in serum Lp(a) after FA supplementation (p=0.17). The overall prevalence of genotypes in pregnant women that were under study for MTHFR C677T polymorphism was 53.3% CC, 26.7% CT and 20.0% TT. There was no correlation between decreasing level of serum Hcy in the patients receiving FA and MTHFR polymorphisms. Conclusion:Although FA supplementation decreased serum levels of Hcy in different MTHFR genotypes, serum Lp(a) was not changed by FA supplements. Our data suggests that FA supplementation effects on serum Hcy is MTHFR genotype independent in pregnant women. PMID:26929921

  5. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97

    PubMed Central

    Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol

    2015-01-01

    A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428

  6. Low-ppm-Level colorimetric acid detection using gold nanoparticles with electro-steric stabilization.

    PubMed

    Bae, Doo Ri; Lee, You-Jin; Lee, Sung Woo; Han, Young-Kyu; Yoon, Jae-Sik; Lee, Ji-Hyun; Lee, Sang-Gil; Chang, Ki Soo; Yi, Gi-Ra; Lee, Gaehang

    2014-12-01

    Electro-sterically stabilized gold suspensions were employed in a colorimetric system for the detection of strong acid in water. Using oleyamine and oleic acid as steric stabilizer in 1,2-dichlorobenzene, hydrophobic gold nanoparticles were first synthesized by a reduction reaction of gold salts and were then transferred into water with a cationic surfactant. When the hydrochlo- ric acid solution higher than critical concentration was injected, particles were quickly aggregated and precipitated, creating a clear solution from the colored suspension. The particles were stable against chemical etching by corrosive ion such as chloride. Critical concentration was dependent of the size and concentration of the particles. The minimum concentration of dramatic color change was at 5 ppm level of hydrochloric acid, in which the largest colloidal gold nanoparticles (54 nm) were used. Furthermore, because of their steric repulsive soft layer on particles, particles could be reused for further detection experiments after regeneration by the simple pH-neutralization and washing process. PMID:25971086

  7. Association of elevated levels of cellular lipoteichoic acids of group B streptococci with human neonatal disease.

    PubMed Central

    Nealon, T J; Mattingly, S J

    1983-01-01

    Cell-associated lipoteichoic acids (LTAs) from late-exponential-phase cultures (serotypes Ia, Ib, Ic, II, and III) of group B streptococci isolated from infected and asymptomatically colonized infants were quantitated and characterized by growing the organisms in a chemically defined medium containing [3H]glycerol and [14C]acetate. Cell pellets were extracted with 45% aqueous phenol and chloroform-methanol and subjected to DEAE-Sephacel anion-exchange chromatography. Elution profiles resolved three major peaks, I, II, and III, with glycerol and phosphate present in a 1:1 molar ratio in each peak, and results obtained by Ouchterlony immunodiffusion analysis confirmed the presence of poly(glycerol phosphate). Saponification indicated that [14C]acetate was incorporated into fatty acids of peaks I and II only, suggesting that these were cell-associated LTAs. Peak II was of small molecular weight (less than 10,000) and probably represented another species of LTA. Peaks I and II were further demonstrated to be LTA by their ability to sensitize human type O erythrocytes. Peak III lacked fatty acids and was shown to probably be deacylated LTA. Quantitation of cell-associated teichoic acid material produced by the group B streptococcal strains indicated that the clinical isolates from infants with early- or late-onset disease possessed significantly higher levels than did the asymptomatic (clinical isolates from infants without symptoms of disease) group B streptococcal strains. Images PMID:6341233

  8. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia.

    PubMed

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia. PMID:27274867

  9. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth.

    PubMed

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  10. Increased tissue levels of omega-3 polyunsaturated fatty acids prevents pathological preterm birth

    PubMed Central

    Yamashita, Aki; Kawana, Kei; Tomio, Kensuke; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Masuda, Koji; Furuya, Hitomi; Nagamatsu, Takeshi; Nagasaka, Kazunori; Arimoto, Takahide; Oda, Katsutoshi; Wada-Hiraike, Osamu; Yamashita, Takahiro; Taketani, Yuji; Kang, Jing X.; Kozuma, Shiro; Arai, Hiroyuki; Arita, Makoto; Osuga, Yutaka; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) have anti-inflammatory effects. Preterm birth is an important problem in modern obstetrics and one of the main causes is an inflammation. We here showed that abundance of omega-3 fatty acids reduced the incidence of preterm birth induced by LPS with fat-1 mice, capable of converting omega-6 to omega-3 fatty acids. We also indicated that the gene expression of IL-6 and IL-1β in uteruses and the number of cervical infiltrating macrophages were reduced in fat-1 mice. The analyses of lipid metabolomics showed the high level of 18-hydroxyeicosapentaenoate in fat-1 mice, which was derived from EPA and was metabolized to anti-inflammatory product named resolvin E3 (RvE3). We finally showed that the administration of RvE3 to LPS-exposed pregnant wild type mice lowered the incidence of preterm birth. Our data suggest that RvE3 could be a potential new therapeutic for the prevention of preterm birth. PMID:24177907

  11. Postprandial Levels of Branch Chained and Aromatic Amino Acids Associate with Fasting Glycaemia

    PubMed Central

    Ottosson, Filip; Ericson, Ulrika; Almgren, Peter; Nilsson, Jeanette; Magnusson, Martin; Fernandez, Céline; Melander, Olle

    2016-01-01

    High fasting plasma concentrations of isoleucine, phenylalanine, and tyrosine have been associated with increased risk of hyperglycaemia and incidence of type 2 diabetes. Whether these associations are diet or metabolism driven is unknown. We examined how the dietary protein source affects the postprandial circulating profile of these three diabetes associated amino acids (DMAAs) and tested whether the postprandial DMAA profiles are associated with fasting glycaemia. We used a crossover design with twenty-one healthy individuals and four different isocaloric test meals, containing proteins from different dietary sources (dairy, fish, meat, and plants). Analysis of the postprandial DMAAs concentrations was performed using targeted mass spectrometry. A DMAA score was defined as the sum of all the three amino acid concentrations. The postprandial area under the curve (AUC) of all the three amino acids and the DMAA score was significantly greater after intake of the meal with dairy protein compared to intake of the three other meals. The postprandial AUC for the DMAA score and all the three amino acids strongly associated with fasting glucose level and insulin resistance. This indicates the importance of the postprandial kinetics and metabolism of DMAAs in understanding the overall association between DMAAs and glycaemia. PMID:27274867

  12. R4SA for Controlling Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand

    2009-01-01

    The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

  13. Changes in intramuscular amino acid levels in submaximally exercised horses - a pilot study.

    PubMed

    van den Hoven, R; Bauer, A; Hackl, S; Zickl, M; Spona, J; Zentek, J

    2010-08-01

    The time-dependent changes in intramuscular amino acid (AA) levels caused by exercise and by feeding a protein/AA supplement were analysed in nine horses. Horses were submitted to a total of four standardized exercise tests (SETs). Amino acid concentrations were determined prior to, immediately after, 4 and 18 h after exercise. The experiment was subdivided into two consecutive periods of 3 weeks. In each period two SETs were performed. In the second period, horses were given a protein/AA supplement within 1 h after exercise. Significant changes in mean plasma AA levels similar to previous studies were noted to be time-dependent and to be associated with feeding the supplement. The intramuscular concentrations of the free AA in relation to pre-exercise levels showed significant time-dependent changes for alanine, asparagine, aspartate, citrulline, glutamine, glycine, isoleucine, leucine, methionine, serine, taurine, threonine, tyrosine and valine. Feeding the supplement significantly increased the 4 h post-exercise intramuscular concentration of alanine, isoleucine, methionine and tyrosine. At 18 h after exercise, apart from isoleucine and methionine, levels were still increased and also those of asparagine, histidine and valine in relation to none treatment. Hence, it was concluded that AA mixtures administered orally to horses within 1 h after exercise increased intramuscular AA pool. PMID:19663973

  14. Acid Secretion and Serum Gastrin Levels in the Zollinger-Ellison Syndrome

    PubMed Central

    Sanchez, R. Edward; Longmire, William P.; Passaro, Edward

    1972-01-01

    Thirteen cases of patients with the Zollinger-Ellison syndrome were reviewed. In two cases the diagnosis was made by incidental biopsy of small liver nodules at operation for peptic ulcer disease. Seven patients had gastric secretory tests which showed a basal acid output to maximum acid output ratio of more than 65 percent. Five patients had bao:mao ratios less than 50 percent. A 30-month interval between incidental discovery of tumor and clinically evident disease was observed in two patients. Recurrence of symptoms after excision of tumor was noted after a similar interval in another case. Serum gastrin levels, before total gastrectomy, were elevated in all cases. The lowest preoperative level in this series of patients was 550 picograms per ml (normal 100 to 150 picograms). They were diagnostic in two patients with normal gastric secretory studies. The levels fell to normal following total gastrectomy in six patients. Two patients still had elevated levels five years and 14 years after total gastrectomy. One was discovered to have a parathyroid adenoma with hypercalcemia. Total gastrectomy was curative in all the patients with the Zollinger-Ellison syndrome; lesser operations were not. ImagesFigure 1.Figure 2.Figure 3.Figure 3.Figure 4. PMID:5031740

  15. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  16. Is Serum Uric Acid Level Correlated with Erectile Dysfunction in Coronary Artery Disease Patients?

    PubMed

    Salavati, Alborz; Mehrsai, Abdolrasoul; Allameh, Farzad; Alizadeh, Farimah; Namdari, Farshad; Hosseinian, Mehdi; Salimi, Elaheh; Heidari, Fariba; Pourmand, Gholamreza

    2016-03-01

    Coronary artery disease (CAD) and vascular insufficiency are consequences of modern lifestyle, and vasogenic erectile dysfunction (ED) is one of the leading causes of sexual dysfunction which could be prevented like ischemic heart disease if the risk factors are discovered and managed. Seventy-five men scheduled for coronary angiography were asked to fill out the IIEF5 questionnaire and underwent serum lipoprotein-a, uric acid, lipid profile, testosterone, Sex Hormone Binding Globulin (SHBG), dehyderoepiandrostendion sulfate (DHEAS) tests; and the results were compared with those of erectile dysfunction patients with and without coronary artery disease. Ten out of 32 CAD patients (30%) and 6 of 43 normal coronary men had ED Prevalence (P=0.04). The average serum uric acid in ED patients with normal coronary was 5.6 (± 0.68) 6.5 ±078 mg/dl in ED patients of CAD group P=0.034. Men with both ED and CAD had significantly higher levels of lipoprotein-a compared to those CAD patients with normal sexual function. Higher uric acid and lipoprotein-a levels are correlated with the presence of ED in patients with CAD. PMID:27107521

  17. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.

    PubMed

    Yelin, Ronit; Schyr, Racheli Ben-Haroush; Kot, Hadas; Zins, Sharon; Frumkin, Ayala; Pillemer, Graciela; Fainsod, Abraham

    2005-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer. PMID:15708568

  18. High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degeneration.

    PubMed

    Tanito, Masaki; Brush, Richard S; Elliott, Michael H; Wicker, Lea D; Henry, Kimberly R; Anderson, Robert E

    2009-05-01

    The fat-1 gene cloned from C. elegans encodes an n-3 fatty acid desaturase that converts n-6 to n-3 PUFA. Mice carrying the fat-1 transgene and wild-type controls were fed an n-3-deficient/n-6-enriched diet [fat-1- safflower oil (SFO) and wt-SFO, respectively]. Fatty acid profiles of rod outer segments (ROS), cerebellum, plasma, and liver demonstrated significantly lower n-6/n-3 ratios and higher docosahexaenoic acid (DHA) levels in fat-1-SFO compared with wt-SFO. When mice were exposed to light stress: 1) the outer nuclear layer (ONL) thickness was reduced; 2) amplitudes of the electroretinogram (ERG) were lower; 3) the number of apoptotic photoreceptor cells was greater; and 4) modification of retinal proteins by 4-hydroxyhexenal (4-HHE), an end-product of n-3 PUFA oxidation was increased in both fat-1-SFO and wt mice fed a regular lab chow diet compared with wt-SFO. The results indicate a positive correlation between the level of DHA, the degree of n-3 PUFA lipid peroxidation, and the vulnerability of the retina to photooxidative stress. In mice not exposed to intense light, the reduction in DHA resulted in reduced efficacy in phototransduction gain steps, while no differences in the retinal morphology or retinal biochemistry. These results highlight the dual roles of DHA in cellular physiology and pathology. PMID:19023138

  19. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  20. Serum uric acid levels in patients with myasthenia gravis are inversely correlated with disability

    PubMed Central

    Yang, Dehao; Weng, Yiyun; Lin, Haihua; Xie, Feiyan; Yin, Fang; Lou, Kangliang; Zhou, Xuan; Han, Yixiang; Li, Xiang

    2016-01-01

    Uric acid (UA), the final product of purine metabolism, has been reported to be reduced in patients with various neurological disorders and is considered to be a possible indicator for monitoring the disability and progression of multiple sclerosis. However, it remains unclear whether there is a close relationship between UA and myasthenia gravis (MG), or whether UA is primarily deficient or secondarily reduced because of its peroxynitrite scavenging activity. We investigated the correlation between serum UA levels and the clinical characteristics of MG. We assessed 338 serum UA levels obtained in 135 patients with MG, 47 patients with multiple sclerosis, and 156 healthy controls. In addition, we compared serum UA levels when MG patients were stratified according to disease activity and classifications performed by the Myasthenia Gravis Foundation of America, age of onset, duration, and thymus histology (by means of MRI or computed tomography). MG patients had significantly lower serum UA levels than the controls (P<0.001). Moreover, UA levels in patients with MG were inversely correlated with disease activity and disease progression (P=0.013). However, UA levels did not correlate significantly with disease duration, age of onset, and thymus histology. Our findings suggest that serum level of UA was reduced in patients with MG and serum UA might be considered a surrogate biomarker of MG disability and progression. PMID:26836463

  1. [Uric acid and purine plasma levels as plausible markers for placental dysfunction in pre-eclampsia].

    PubMed

    Escudero, Carlos; Bertoglia, Patricio; Muñoz, Felipe; Roberts, James M

    2013-07-01

    Uric acid is the final metabolite of purine break down, such as ATP, ADP, AMP, adenosine, inosine and hypoxanthine. The metabolite has been used broadly as a renal failure marker, as well as a risk factor for maternal and neonatal morbidity during pre-eclamptic pregnancies. High purine levels are observed in pre-eclamptic pregnancies, but the sources of these purines are unknown. However, there is evidence that pre-eclampsia (mainly severe pre-eclampsia) is associated with an increased release of cellular fragments (or microparticles) from the placenta to the maternal circulation. These in fact could be the substrate for purine metabolism. Considering this background, we propose that purines and uric acid are part of the same physiopathological phenomenon in pre-eclampsia (i.e., placental dysfunction) and could become biomarkers for placental dysfunction and postnatal adverse events. PMID:24356738

  2. Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya.

    PubMed

    Were, Faridah H; Kamau, Geoffrey N; Shiundu, Paul M; Wafula, Godfrey A; Moturi, Charles M

    2012-01-01

    The concentration of airborne and blood lead (Pb) was assessed in a Pb acid battery recycling plant and in a Pb acid battery manufacturing plant in Kenya. In the recycling plant, full-shift area samples taken across 5 days in several production sections showed a mean value ± standard deviation (SD) of 427 ± 124 μg/m(3), while area samples in the office area had a mean ± SD of 59.2 ± 22.7 μg/m(3). In the battery manufacturing plant, full-shift area samples taken across 5 days in several production areas showed a mean value ± SD of 349 ± 107 μg/m(3), while area samples in the office area had a mean ± SD of 55.2 ± 33.2 μg/m(3). All these mean values exceed the U.S. Occupational Safety and Health Administration's permissible exposure limit of 50 μg/m(3) as an 8-hr time-weighted average. In the battery recycling plant, production workers had a mean blood Pb level ± SD of 62.2 ± 12.7 μg/dL, and office workers had a mean blood Pb level ± SD of 43.4 ± 6.6 μg/dL. In the battery manufacturing plant, production workers had a mean blood Pb level ± SD of 59.5 ± 10.1 μg/dL, and office workers had a mean blood Pb level ± SD of 41.6 ± 7.4 μg/dL. All the measured blood Pb levels exceeded 30 μg/dL, which is the maximum blood Pb level recommended by the ACGIH(®). Observations made in these facilities revealed numerous sources of Pb exposure due to inadequacies in engineering controls, work practices, respirator use, and personal hygiene. PMID:22512792

  3. False in vitro and in vivo elevations of uric acid levels in mouse blood.

    PubMed

    Watanabe, Tamaki; Tomioka, Naoko H; Watanabe, Shigekazu; Tsuchiya, Masao; Hosoyamada, Makoto

    2014-01-01

    Uric acid (UA) levels in mouse blood have been reported to range widely from 0.1 μM to 760 μM. The aim of this study was to demonstrate false in vitro and in vivo elevations of UA levels in mouse blood. Male ICR mice were anesthetized with pentobarbital (breathing mice) or sacrificed with overdose ether (non-breathing mice). Collected blood was dispensed into MiniCollect® tubes and incubated in vitro for 0 or 30 min at room temperature. After separation of plasma or serum, the levels of UA and hypoxanthine were determined using HPLC. From the non-incubated plasma of breathing mice, the true value of UA level in vivo was 13.5±1.4 μM. However, UA levels in mouse blood increased by a factor of 3.9 following incubation in vitro. This "false in vitro elevation" of UA levels in mouse blood after blood sampling was inhibited by allopurinol, a xanthine oxidase inhibitor. Xanthine oxidase was converted to UA in mouse serum from hypoxanthine which was released from blood cells during incubation. Plasma UA levels from non-breathing mice were 19 times higher than those from breathing mice. This "false in vivo elevation" of UA levels before blood sampling was inhibited by pre-treatment with phentolamine, an α-antagonist. Over-anesthesia with ether might induce α-vasoconstriction and ischemia and thus degrade intracellular ATP to UA. For the accurate measurement of UA levels in mouse blood, the false in vitro and in vivo elevations of UA level must be avoided by immediate separation of plasma after blood sampling from anesthetized breathing mice. PMID:24940669

  4. Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses.

    PubMed

    Ghoshal, Angana; Gerwig, Gerrit J; Kamerling, Johannis P; Mandal, Chitra

    2010-05-01

    The presence of different derivatives of sialic acids (SA) on Leishmania donovani instigated us to investigate their status on different strains of Leishmania sp. causing different forms of the disease. Leishmania tropica (K27), Leishmania major (JISH118) and Leishmania mexicana (LV4) responsible for cutaneous, Leishmania braziliensis (L280) and Leishmania amazonensis (LV81) causing diffuse and Leishmania infantum (MON29) responsible for visceral leishmaniasis were included in this study. The strains showed a differential distribution of SA in spite of their close resemblance in pathogenesis. K27, JISH118, L280 and MON29 were categorized as high SA-containing strains having enhanced 9-O-acetyl sialic acid (9-O-AcSA(high)) whereas LV4 and LV81 evidenced considerably reduced SA. Interestingly, 9-O-AcSA(high) promastigotes showed significant viability as compared to their de-O-acetylated forms after exposure to NaNO(2) suggesting the involvement of 9-O-AcSA in conferring nitric oxide (NO) resistance. Enhanced intracellular survivability was demonstrated following infection of human macrophages with 9-O-AcSA(high) promastigotes in contrast to their de-O-acetylated forms indicating their contribution in bestowing a survival benefit. Additionally, reduced accumulation of NO, interleukin-12 and interferon-gamma in the supernatant of macrophages infected with 9-O-AcSA(high) promastigotes indicated suppression of leishmanicidal host responses. However, LV4 and LV81 with least 9-O-AcSA, before and after de-O-acetylation, showed unaltered NO resistance, multiplicity and host responses signifying the probable involvement of other determinants which may be a function of their inherent parasitic attribute. Hence, enhanced levels of 9-O-AcSA serve as one of the potential determinants responsible for increased NO resistance and survivability of parasites by inhibition of host responses. PMID:20085901

  5. Sex differences in lipid peroxidation and fatty acid levels in recent onset schizophrenia.

    PubMed

    Ramos-Loyo, Julieta; Medina-Hernández, Virginia; Estarrón-Espinosa, Mirna; Canales-Aguirre, Alejandro; Gómez-Pinedo, Ulises; Cerdán-Sánchez, Luis F

    2013-07-01

    Sex differences in the symptomatology and course of illness have been reported among schizophrenic patients. Hence, the principal objective of the present study was to investigate sex differences in the concentrations of the lipid peroxidation metabolites MDA and 4-HNE, and in the membrane phospholipid levels of ARA, EPA and DHA in patients with schizophrenia. A total of 46 paranoid schizophrenics (25 women) with short-term evolution who were in an acute psychotic stage and 40 healthy controls (23 women) participated in the study. Psychopathology was evaluated by BPRS and PANSS. Lipid peroxidation sub-products (MDA, 4-HNE) and fatty acid levels (ARA, EPA, DHA) were determined in erythrocyte membranes. The men in both groups showed higher lipid peroxidation levels and those values were higher in schizophrenic patients than controls, with only EPA fatty acid concentrations found to be lower in the former than the latter. These results suggest that men may suffer greater oxidative neuronal damage than women, and that this could worsen the course of illness and result in greater disease severity. PMID:23421976

  6. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions.

    PubMed

    Muñoz-Espinoza, Valeria A; López-Climent, María F; Casaretto, José A; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  7. Water Stress Responses of Tomato Mutants Impaired in Hormone Biosynthesis Reveal Abscisic Acid, Jasmonic Acid and Salicylic Acid Interactions

    PubMed Central

    Muñoz-Espinoza, Valeria A.; López-Climent, María F.; Casaretto, José A.; Gómez-Cadenas, Aurelio

    2015-01-01

    To investigate the putative crosstalk between JA and ABA in Solanum lycopersicum plants in response to drought, suppressor of prosystemin-mediated responses2 (spr2, JA-deficient) and flacca (flc, ABA-deficient) mutants together with the naphthalene/salicylate hydroxylase (NahG) transgenic (SA-deficient) line were used. Hormone profiling and gene expression of key enzymes in ABA, JA and SA biosynthesis were analyzed during early stages of drought. ABA accumulation was comparable in spr2 and wild type (WT) plants whereas expression of 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) and NCED2 was different, implying a compensation mechanism between NCED genes and an organ-specific regulation of NCED1 expression. JA levels and 12-oxo-phytodienoic acid reductase 3 (OPR3) expression in flc plants suggest that ABA regulates the induction of the OPR3 gene in roots. By contrast, ABA treatment to flc plants leads to a reduction of JA and SA contents. Furthermore, different pattern of SA accumulation (and expression of isochorismate synthase and phenylalanine ammonia lyase 1) was observed between WT seedlings and mutants, suggesting that SA plays an important role on the early response of tomato plants to drought and also that JA and ABA modulate its biosynthesis. Finally, hormone profiling in spr2 and NahG plants indicate a crosstalk between JA and SA that could enhance tolerance of tomato to water stress. PMID:26635826

  8. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids.

    PubMed

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  9. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids

    PubMed Central

    Yang, Li; Li, Bosheng; Zheng, Xiao-yu; Li, Jigang; Yang, Mei; Dong, Xinnian; He, Guangming; An, Chengcai; Deng, Xing Wang

    2015-01-01

    Heterosis, the phenotypic superiority of a hybrid over its parents, has been demonstrated for many traits in Arabidopsis thaliana, but its effect on defence remains largely unexplored. Here, we show that hybrids between some A. thaliana accessions show increased resistance to the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Comparisons of transcriptomes between these hybrids and their parents after inoculation reveal that several key salicylic acid (SA) biosynthesis genes are significantly upregulated in hybrids. Moreover, SA levels are higher in hybrids than in either parent. Increased resistance to Pst DC3000 is significantly compromised in hybrids of pad4 mutants in which the SA biosynthesis pathway is blocked. Finally, increased histone H3 acetylation of key SA biosynthesis genes correlates with their upregulation in infected hybrids. Our data demonstrate that enhanced activation of SA biosynthesis in A. thaliana hybrids may contribute to their increased resistance to a biotrophic bacterial pathogen. PMID:26065719

  10. Ingestion of a single serving of saury alters postprandial levels of plasma n-3 polyunsaturated fatty acids and long-chain monounsaturated fatty acids in healthy human adults

    PubMed Central

    2012-01-01

    Background Saury oil contains considerable amounts of n-3 polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) with long aliphatic tails (>18C atoms). Ingestion of saury oil reduces the risk of developing metabolic syndrome concomitant with increases in n-3 PUFA and long-chain MUFA in plasma and organs of mice. We therefore evaluated changes in postprandial plasma fatty acid levels and plasma parameters in healthy human subjects after ingestion of a single meal of saury. Findings Five healthy human adults ingested 150 g of grilled saury. Blood was collected before the meal and at 2, 6, and 24 hr after the meal, and plasma was prepared. Plasma levels of eicosapentaenoic acid, docosahexaenoic acid, and long-chain MUFA (C20:1 and C22:1 isomers combined) increased significantly throughout the postprandial period compared with the pre-meal baseline. Postprandial plasma insulin concentration increased notably, and plasma levels of glucose and free fatty acids decreased significantly and subsequently returned to the pre-meal levels. Conclusions Our study suggests that a single saury meal may alter the postprandial plasma levels of n-3 PUFA and long-chain MUFA in healthy human subjects. PMID:22846384

  11. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders.

    PubMed

    Schaefer, Carola; Enning, Frank; Mueller, Juliane K; Bumb, J Malte; Rohleder, Cathrin; Odorfer, Thorsten M; Klosterkötter, Joachim; Hellmich, Martin; Koethe, Dagmar; Schmahl, Christian; Bohus, Martin; Leweke, F Markus

    2014-08-01

    Borderline personality (BPD) and complex posttraumatic stress disorders (PTSD) are both powerfully associated with the experience of interpersonal violence during childhood and adolescence. The disorders frequently co-occur and often result in pervasive problems in, e.g., emotion regulation and altered pain perception, where the endocannabinoid system is deeply involved. We hypothesize an endocannabinoid role in both disorders. We investigated serum levels of the endocannabinoids anandamide and 2-arachidonoylglycerol and related fatty acid ethanolamides (FAEs) in BPD, PTSD, and controls. Significant alterations were found for both endocannabinoids in BPD and for the FAE oleoylethanolamide in PTSD suggesting a respective link to both disorders. PMID:24253425

  12. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors. PMID:27165526

  13. Association Between Serum Levels of Adipocyte Fatty Acid-binding Protein and Free Thyroxine

    PubMed Central

    Tseng, Fen-Yu; Chen, Pei-Lung; Chen, Yen-Ting; Chi, Yu-Chao; Shih, Shyang-Ron; Wang, Chih-Yuan; Chen, Chi-Ling; Yang, Wei-Shiung

    2015-01-01

    Abstract Adipocyte fatty acid-binding protein (AFABP) has been shown to be a biomarker of body weight change and atherosclerosis. Changes in thyroid function are associated with changes in body weight and risks of cardiovascular diseases. The association between AFABP and thyroid function status has been seldom evaluated. The aim of this study was to compare the serum AFABP concentrations in hyperthyroid patients and those in euthyroid individuals, and to evaluate the associations between serum AFABP and free thyroxine (fT4) levels. For this study, 30 hyperthyroid patients and 30 euthyroid individuals at a referral medical center were recruited. The patients with hyperthyroidism were treated with antithyroid regimens as clinically indicated. No medication was given to the euthyroid individuals. The body weight, body mass index, thyroid function, serum levels of AFABP, and biochemical data of both groups at baseline and at the 6th month were compared. Associations between AFABP and fT4 levels were also analyzed. At the baseline, the hyperthyroid patients had significantly higher serum AFABP levels than the euthyroid individuals (median [Q1, Q3]: 22.8 [19.4, 30.6] ng/mL vs 18.6 [15.3, 23.2] ng/mL; P = 0.038). With the antithyroid regimens, the AFABP serum levels of the hyperthyroid patients decreased to 16.6 (15.0, 23.9) ng/mL at the 6th month. No difference in the AFABP level was found between the hyperthyroid and the euthyroid groups at the 6th month. At baseline, sex (female vs male, ß = 7.65, P = 0.022) and fT4 level (ß = 2.51, P = 0.018) were significantly associated with AFABP levels in the univariate regression analysis. At the 6th month, sex and fT4 level (ß = 8.09, P < 0.001 and ß = 3.61, P = 0.005, respectively) were also significantly associated with AFABP levels. The associations between sex and fT4 level with AFABP levels remained significant in the stepwise multivariate regression analysis, both at baseline and at

  14. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    PubMed

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress. PMID:26264736

  15. Justification for Selecting Level A vs. Level B Personal Protective Equipment to Remediate a Room Containing Concentrated Acids, Bases and Radiological Constituents

    SciTech Connect

    Hylko, J. M.; Thompson, A. L.; Walter, J. F.; Deecke, T. A.

    2002-02-25

    Selecting the appropriate personal protective equipment (PPE) is based on providing an adequate level of employee protection relative to the task-specific conditions and hazards. PPE is categorized into four ensembles, based on the degree of protection afforded; e.g., Levels A (most restrictive), B, C, and D (least restrictive). What is often overlooked in preparing an ensemble is that the PPE itself can create significant worker hazards; i.e., the greater the level of PPE, the greater the associated risks. Furthermore, there is confusion as to whether a more ''conservative approach'' should always be taken since Level B provides the same level of respiratory protection as Level A but less skin protection. This paper summarizes the Occupational Safety and Health Administration regulations addressing Level A versus Level B, and provides justification for selecting Level B over Level A without under-protecting the employee during a particular remediation scenario. The scenario consisted of an entry team performing (1) an initial entry into a room containing concentrated acids (e.g., hydrofluoric acid), bases, and radiological constituents; (2) sampling and characterizing container contents; and (3) retrieving characterized containers. The invasive nature of the hydrofluoric acid sampling and characterization scenario created a high potential for splash, immersion, and exposure to hazardous vapors, requiring additional skin protection. The hazards associated with this scenario and the chemical nature of hydrofluoric acid provided qualitative evidence to justify Level A. Once the hydrofluoric acid was removed from the room, PPE performance was evaluated against the remaining chemical inventory. If chemical breakthrough from direct contact was not expected to occur and instrument readings confirmed the absence of any hazardous vapors, additional skin protection afforded by wearing a vapor-tight, totally-encapsulated suit was not required. Therefore, PPE performance and

  16. Salicylic Acid Alleviates the Cadmium Toxicity in Barley Seedlings1

    PubMed Central

    Metwally, Ashraf; Finkemeier, Iris; Georgi, Manfred; Dietz, Karl-Josef

    2003-01-01

    Salicylic acid (SA) plays a key role in plant disease resistance and hypersensitive cell death but is also implicated in hardening responses to abiotic stressors. Cadmium (Cd) exposure increased the free SA contents of barley (Hordeum vulgare) roots by a factor of about 2. Cultivation of dry barley caryopses presoaked in SA-containing solution for only 6 h or single transient addition of SA at a 0.5 mm concentration to the hydroponics solution partially protected the seedlings from Cd toxicity during the following growth period. Both SA treatments had little effect on growth in the absence of Cd, but increased root and shoot length and fresh and dry weight and inhibited lipid peroxidation in roots, as indicated by malondialdehyde contents, in the presence of Cd. To test whether this protection was due to up-regulation of antioxidant enzymes, activities and transcript levels of the H2O2-metabolizing enzymes such as catalase and ascorbate peroxidase were measured in control and SA-treated seedlings in the presence or absence of 25 μm Cd. Cd stress increased the activity of these enzymes by variable extent. SA treatments strongly or completely suppressed the Cd-induced up-regulation of the antioxidant enzyme activities. Slices from leaves treated with SA for 24 h also showed an increased level of tolerance toward high Cd concentrations as indicated by chlorophyll a fluorescence parameters. The results support the conclusion that SA alleviates Cd toxicity not at the level of antioxidant defense but by affecting other mechanisms of Cd detoxification. PMID:12746532

  17. Human Insulin Resistance Is Associated With Increased Plasma Levels of 12α-Hydroxylated Bile Acids

    PubMed Central

    Haeusler, Rebecca A.; Astiarraga, Brenno; Camastra, Stefania; Accili, Domenico; Ferrannini, Ele

    2013-01-01

    Bile acids (BAs) exert pleiotropic metabolic effects, and physicochemical properties of different BAs affect their function. In rodents, insulin regulates BA composition, in part by regulating the BA 12α-hydroxylase CYP8B1. However, it is unclear whether a similar effect occurs in humans. To address this question, we examined the relationship between clamp-measured insulin sensitivity and plasma BA composition in a cohort of 200 healthy subjects and 35 type 2 diabetic (T2D) patients. In healthy subjects, insulin resistance (IR) was associated with increased 12α-hydroxylated BAs (cholic acid, deoxycholic acid, and their conjugated forms). Furthermore, ratios of 12α-hydroxylated/non–12α-hydroxylated BAs were associated with key features of IR, including higher insulin, proinsulin, glucose, glucagon, and triglyceride (TG) levels and lower HDL cholesterol. In T2D patients, BAs were nearly twofold elevated, and more hydrophobic, compared with healthy subjects, although we did not observe disproportionate increases in 12α-hydroxylated BAs. In multivariate analysis of the whole dataset, controlling for sex, age, BMI, and glucose tolerance status, higher 12α-hydroxy/non–12α-hydroxy BA ratios were associated with lower insulin sensitivity and higher plasma TGs. These findings suggest a role for 12α-hydroxylated BAs in metabolic abnormalities in the natural history of T2D and raise the possibility of developing insulin-sensitizing therapeutics based on manipulations of BA composition. PMID:23884887

  18. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    SciTech Connect

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-15

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  19. Plasma Circulating Nucleic Acids Levels Increase According to the Morbidity of Plasmodium vivax Malaria

    PubMed Central

    Franklin, Bernardo S.; Vitorino, Barbara L. F.; Coelho, Helena C.; Menezes-Neto, Armando; Santos, Marina L. S.; Campos, Fernanda M. F.; Brito, Cristiana F.; Fontes, Cor J.; Lacerda, Marcus V.; Carvalho, Luzia H.

    2011-01-01

    Background Given the increasing evidence of Plasmodium vivax infections associated with severe and fatal disease, the identification of sensitive and reliable markers for vivax severity is crucial to improve patient care. Circulating nucleic acids (CNAs) have been increasingly recognized as powerful diagnostic and prognostic tools for various inflammatory diseases and tumors as their plasma concentrations increase according to malignancy. Given the marked inflammatory status of P. vivax infection, we investigated here the usefulness of CNAs as biomarkers for malaria morbidity. Methods and Findings CNAs levels in plasma from twenty-one acute P. vivax malaria patients from the Brazilian Amazon and 14 malaria non-exposed healthy donors were quantified by two different methodologies: amplification of the human telomerase reverse transcriptase (hTERT) genomic sequence by quantitative real time PCR (qPCR), and the fluorometric dsDNA quantification by Pico Green. CNAs levels were significantly increased in plasma from P. vivax patients as compared to healthy donors (p<0.0001). Importantly, plasma CNAs levels were strongly associated with vivax morbidity (p<0.0001), including a drop in platelet counts (p = 0.0021). These findings were further sustained when we assessed CNAS levels in plasma samples from 14 additional P. vivax patients of a different endemic area in Brazil, in which CNAS levels strongly correlated with thrombocytopenia (p = 0.0072). We further show that plasma CNAs levels decrease and reach physiological levels after antimalarial treatment. Although we found both host and parasite specific genomic sequences circulating in plasma, only host CNAs clearly reflected the clinical spectrum of P. vivax malaria. Conclusions Here, we provide the first evidence of increased plasma CNAs levels in malaria patients and reveal their potential as sensitive biomarkers for vivax malaria morbidity. PMID:21611202

  20. Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves

    SciTech Connect

    Enyedi, A.J.; Raskin, I. )

    1993-04-01

    Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco masaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g[sup [minus]1] fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-GTase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7--27.0 [mu]g g[sup [minus]1] fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity. 21 refs., 5 figs.

  1. Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures

    PubMed Central

    Meï, Coline; Michaud, Morgane; Cussac, Mathilde; Albrieux, Catherine; Gros, Valérie; Maréchal, Eric; Block, Maryse A.; Jouhet, Juliette; Rébeillé, Fabrice

    2015-01-01

    In higher plants, fatty acids (FAs) with 18 carbons (18C) represent about 70% of total FAs, the most abundant species being 18:2 and 18:3. These two polyunsaturated FAs (PUFAs) represent about 55% of total FAs in Arabidopsis cell suspension cultures, whereas 18:1 represents about 10%. The level of PUFAs may vary, depending on ill-defined factors. Here, we compared various sets of plant cell cultures and noticed a correlation between the growth rate of a cell population and the level of unsaturation of 18C FAs. These observations suggest that the final level of PUFAs might depend in part on the rate of cell division, and that FAD2 and FAD3 desaturases, which are respectively responsible for the formation of 18:2 and 18:3 on phospholipids, have limiting activities in fast-growing cultures. In plant cell culture, phosphate (Pi) deprivation is known to impair cell division and to trigger lipid remodeling. We observed that Pi starvation had no effect on the expression of FAD genes, and that the level of PUFAs in this situation was also correlated with the growth rate. Thus, the level of PUFAs appears as a hallmark in determining cell maturity and aging. PMID:26469123

  2. The relationship between serum uric acid levels and β-cell functions in nondiabetic subjects.

    PubMed

    Shimodaira, M; Niwa, T; Nakajima, K; Kobayashi, M; Hanyu, N; Nakayama, T

    2014-12-01

    High serum uric acid (UA) levels are believed to be an independent risk factor for the development of diabetes. We aimed to investigate the relationship between serum UA concentrations and early-phase insulin secretion following a 75 g oral glucose tolerance test (OGTT) in nondiabetic subjects. We enrolled 570 Japanese subjects (354 males and 216 females, aged 50.5 ± 8.9 years and 52.6 ± 7.3 years, respectively), who underwent the 75 g OGTT during their annual health examination. The OGTT confirmed their nondiabetic status. Insulin secretion was estimated by the disposition index (DI) [(Δ insulin/Δ glucose (0-30 min) × (1/HOMA-IR)], which is an adjusted measure of β-cell function relative to variations in insulin sensitivity. Simple linear regression analysis showed negative correlations between serum UA levels and DI, when examined in the whole study population and female subjects only (r = -0.209, p < 0.001 and r = -0.232, p < 0.001, respectively). However, in male subjects, UA levels did not correlate with DI. In females, multivariate linear regression analysis revealed that serum UA levels were the major predictors of DI, explaining 16.4% of its variation (p < 0.001). Serum UA levels significantly correlate with early-phase insulin secretion in nondiabetic Japanese women. It may be an independent risk factor for predicting β-cell function in women. PMID:25295417

  3. Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish).

    PubMed

    Wang, Zhuo; Jia, Caihong; Li, Jingyang; Huang, Suzhen; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubens (Foc) is the most serious disease that attacks banana plants. Salicylic acid (SA) can play a key role in plant-microbe interactions. Our study is the first to examine the role of SA in conferring resistance to Foc TR4 in banana (Musa acuminata L. AAA group, cv. Cavendish), which is the greatest commercial importance cultivar in Musa. We used quantitative real-time reverse polymerase chain reaction (qRT-PCR) to analyze the expression profiles of 45 genes related to SA biosynthesis and downstream signaling pathways in a susceptible banana cultivar (cv. Cavendish) and a resistant banana cultivar (cv. Nongke No. 1) inoculated with Foc TR4. The expression of genes involved in SA biosynthesis and downstream signaling pathways was suppressed in a susceptible cultivar and activated in a resistant cultivar. The SA levels in each treatment arm were measured using high-performance liquid chromatography. SA levels were decreased in the susceptible cultivar and increased in the resistant cultivar. Finally, we examined the contribution of exogenous SA to Foc TR4 resistance in susceptible banana plants. The expression of genes involved in SA biosynthesis and signal transduction pathways as well as SA levels were significantly increased. The results suggest that one reason for banana susceptibility to Foc TR4 is that expression of genes involved in SA biosynthesis and SA levels are suppressed and that the induced resistance observed in banana against Foc TR4 might be a case of salicylic acid-dependent systemic acquired resistance. PMID:25277445

  4. Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels

    PubMed Central

    Coessens, Elise; Manifava, Maria; Georgiev, Plamen; Pettitt, Trevor; Wood, Eleanor; Garcia-Murillas, Isaac; Okkenhaug, Hanneke; Trivedi, Deepti; Zhang, Qifeng; Razzaq, Azam; Zaid, Ola; Wakelam, Michael; O'Kane, Cahir J; Ktistakis, Nicholas

    2009-01-01

    Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis. PMID:19349583

  5. Cypermethrin alters Glial Fibrillary Acidic Protein levels in the rat brain.

    PubMed

    Malkiewicz, Katarzyna; Koteras, Marcin; Folkesson, Ronnie; Brzezinski, Jacek; Winblad, Bengt; Szutowski, Miroslaw; Benedikz, Eirikur

    2006-01-01

    Pyrethroids, widely used insecticides, are biologically active in neurons. Whether they act on the non-neuronal brain cells remains an open question. Thus, the aim of this study was to examine whether Cypermethrin intoxication affects astroglial cells in the rat brain. The levels of Glial Fibrillary Acidic Protein (GFAP) in different brain regions were measured by ELISA following oral treatment with 5 or 10% of LD(50) of Cypermethrin per day for 6 days. A significant decrease of GFAP was observed in different brain regions of treated animals. The cerebral cortex showed the most pronounced effect with GFAP levels reduced to 81% of the controls 2 days after treatment and 77% 21 days after treatment. Although we did not find profound changes in the morphology of astrocytes in Cypermethrin treated animals, the decrease in GFAP suggests that astrocytes were affected by low doses of pyrethroids. The possible consequences were discussed. PMID:21783638

  6. Effect of fluoride exposure on serum glycoprotein pattern and sialic acid level in rabbits.

    PubMed

    Ciftci, Gulay; Cenesiz, Sena; Yarim, Gul Fatma; Nisbet, Ozlem; Nisbet, Cevat; Cenesiz, Metin; Guvenc, Dilek

    2010-01-01

    This study describes the effects of fluoride exposure on the protein profile, glycoprotein pattern, and total sialic acid concentration of serum in rabbits. For this aim; 20 healthy New Zealand rabbits were used. The rabbits were divided into two equal groups each with ten animals according to their weighing: control group and experimental group. The rabbits in control group were given drinking tap water containing 0.29 mg/l sodium fluoride and experimental group received the same tap water to which was added 40 mg/l sodium fluoride for 70 days. Blood samples were taken from each rabbit on day 70. Serum fluoride concentrations were measured by a fluoride-specific ion electrode in serum. The fluoride levels in the serum were found as 18.4 (+/-1.58) microg/L in control and 301.3 (+/-52.18) microg/L in fluoride exposed rabbits. The sialic acid levels were found as 69.2 (+/-0.32) mg/dL in control and 43.4 (+/-0.13) mg/dL in fluoride exposed group. The electrophoretic patterns of serum proteins, glycoproteins, and total sialic acid concentration were determined. Fifteen different protein fractions with molecular weights ranging from 22 to 249 kDa were displayed in the serum protein electrophoretic gel of both groups. The raw concentrations of the protein fractions decreased in fluoride exposed rabbits as compared with the control rabbits. The serum glycoprotein pattern revealed seven major protein bands from 47 to 167 kDa in experimental and control groups. The slight decrease of raw concentration of the protein bands in glycoprotein pattern of serum was observed in fluoride toxication comparing to control. The results suggest that serum TSA determination and serum protein electrophoresis can be used to evaluate prognosis of fluoride exposure as a supplementary laboratory test in combination with clinical and other laboratory findings of fluorosis. PMID:19904501

  7. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist.

    PubMed

    Sayin, Sama I; Wahlström, Annika; Felin, Jenny; Jäntti, Sirkku; Marschall, Hanns-Ulrich; Bamberg, Krister; Angelin, Bo; Hyötyläinen, Tuulia; Orešič, Matej; Bäckhed, Fredrik

    2013-02-01

    Bile acids are synthesized from cholesterol in the liver and further metabolized by the gut microbiota into secondary bile acids. Bile acid synthesis is under negative feedback control through activation of the nuclear receptor farnesoid X receptor (FXR) in the ileum and liver. Here we profiled the bile acid composition throughout the enterohepatic system in germ-free (GF) and conventionally raised (CONV-R) mice. We confirmed a dramatic reduction in muricholic acid, but not cholic acid, levels in CONV-R mice. Rederivation of Fxr-deficient mice as GF demonstrated that the gut microbiota regulated expression of fibroblast growth factor 15 in the ileum and cholesterol 7α-hydroxylase (CYP7A1) in the liver by FXR-dependent mechanisms. Importantly, we identified tauro-conjugated beta- and alpha-muricholic acids as FXR antagonists. These studies suggest that the gut microbiota not only regulates secondary bile acid metabolism but also inhibits bile acid synthesis in the liver by alleviating FXR inhibition in the ileum. PMID:23395169

  8. Functional interplay between protein kinase CK2 and salicylic acid sustains PIN transcriptional expression and root development.

    PubMed

    Armengot, Laia; Marquès-Bueno, María Mar; Soria-Garcia, Angel; Müller, Maren; Munné-Bosch, Sergi; Martínez, María Carmen

    2014-05-01

    We have previously reported that CK2-defective Arabidopsis thaliana plants (CK2mut plants) were impaired severely in root development and auxin polar transport, and exhibited transcriptional misregulation of auxin-efflux transporters (Plant J., 67, 2011a, 169). In this work we show that CK2mut roots accumulate high levels of salicylic acid (SA) and that the gene that encodes isochorismate synthase (SID2) is overexpressed, strongly suggesting that CK2 activity is required for SA biosynthesis via the shikimate pathway. Moreover, SA activates transcription of CK2-encoding genes and, thus, SA and CK2 appear to be part of an autoregulatory feed-back loop to fine-tune each other's activities. We also show that exogenous SA and constitutive high SA levels in cpr mutants reproduce the CK2mut root phenotypes (decrease of root length and of number of lateral roots), whereas inhibition of CK2 activity in SA-defective and SA-signalling mutants lead to less severe phenotypes, suggesting that the CK2mut root phenotypes are SA-mediated effects. Moreover, exogenous SA mediates transcriptional repression of most of PIN-FORMED (PIN) genes, which is the opposite effect observed in CK2mut roots. These results prompted us to propose a model in which CK2 acts as a link between SA homeostasis and transcriptional regulation of auxin-efflux transporters. We also show that CK2 overexpression in Arabidopsis has neither impact on SA biosynthesis nor on auxin transport, but it improves the Arabidopsis root system. Thus, unlike the outcome in mammals, an excess of CK2 in plant cells does not produce neoplasia, but it might be advantageous for plant fitness. PMID:24547808

  9. Whiteflies glycosylate salicylic acid and secrete the conjugate via their honeydew.

    PubMed

    VanDoorn, Arjen; de Vries, Michel; Kant, Merijn R; Schuurink, Robert C

    2015-01-01

    During insect feeding, a complex interaction takes place at the feeding site, with plants deciphering molecular information associated with the feeding herbivore, resulting in the upregulation of the appropriate defenses, and the herbivore avoiding or preventing these defenses from taking effect. Whiteflies can feed on plants without causing significant damage to mesophyll cells, making their detection extra challenging for the plant. However, whiteflies secrete honeydew that ends up on the plant surface at the feeding site and on distal plant parts below the feeding site. We reasoned that this honeydew, since it is largely of plant origin, may contain molecular information that alerts the plant, and we focused on the defense hormone salicylic acid (SA). First, we analyzed phloem sap from tomato plants, on which the whiteflies are feeding, and found that it contained salicylic acid (SA). Subsequently, we determined that in honeydew more than 80% of SA was converted to its glycoside (SAG). When whiteflies were allowed to feed from an artificial diet spiked with labeled SA, labeled SAG also was produced. However, manually depositing honeydew on undamaged plants resulted still in a significant increase in endogenous free SA. Accordingly, transcript levels of PR1a, an SA marker gene, increased whereas those of PI-II, a jasmonate marker gene, decreased. Our results indicate that whiteflies manipulate the SA levels within their secretions, thus influencing the defense responses in those plant parts that come into contact with honeydew. PMID:25563984

  10. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis

    PubMed Central

    Ding, Yezhang; Shaholli, Danjela; Mou, Zhonglin

    2014-01-01

    Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants. PMID:25610446

  11. Modulation of human stratum corneum properties by salicylic acid and all-trans-retinoic acid.

    PubMed

    Piérard-Franchimont, C; Goffin, V; Piérard, G E

    1998-01-01

    Topical all-trans-retinoic acid (RA) has been reported to decrease the in vivo skin response to sodium lauryl sulfate (SLS). The converse was also shown with a synergistic effect of RA following prior applications of SLS. The reason for such effects is not clear. We employed measures of transepidermal water loss (TEWL), squamometry and sequential corneosurfametry to explore the protective activity of a 0.05% RA cream at the level of the stratum corneum. Nonionic oil-in-water emulsions with or without 5% salicylic acid (SA) served as test product references. Data indicated that the RA formulation was responsible for a stochastic impairment in the TEWL and for an increased intercorneocyte cohesion. SA and the unmedicated emulsion did not lead to similar TEWL changes. The squamometry test proved to be very sensitive to disclose the effects of SA and RA without, however, allowing to distinguish the difference in the physiological processes involved. The corneosurfametry bioassay did not show any protection or synergistic effect between RA or SA and SLS challenge on the stratum corneum. This is in contrast to a previous work showing a positive protective effect afforded by retinol against SLS. The combined effects of irritant compounds affecting the stratum corneum are complex. The precise reason for some of their biological consequences remains a conundrum. On balance, products such as SA and RA do not appear to afford protection or impairment to a surfactant challenge at the level of the stratum corneum. PMID:9885411

  12. Plasma hyaluronic acid level as a prognostic and monitoring marker of metastatic breast cancer.

    PubMed

    Peng, Cike; Wallwiener, Markus; Rudolph, Anja; Ćuk, Katarina; Eilber, Ursula; Celik, Muhabbet; Modugno, Caroline; Trumpp, Andreas; Heil, Jörg; Marmé, Frederik; Madhavan, Dharanija; Nees, Juliane; Riethdorf, Sabine; Schott, Sarah; Sohn, Christof; Pantel, Klaus; Schneeweiss, Andreas; Chang-Claude, Jenny; Yang, Rongxi; Burwinkel, Barbara

    2016-05-15

    Conventional tumor markers have limited value for prognostication and treatment monitoring in metastatic breast cancer (MBC) patients and novel circulating tumor markers therefore need to be explored. Hyaluronic acid (HA) is a major macropolysaccharide in the extracellular matrix and is reported to be associated with tumor progression. In our study, we investigated plasma HA level with respect to progression free survival (PFS) and overall survival (OS), as well as the treatment monitoring value in MBC patients. The prognostic value of plasma HA level was investigated in a discovery cohort of 212 MBC patients with 2.5-year follow-up and validated in an independent validation cohort of 334 patients with 5-year follow-up. The treatment monitoring value of plasma HA level was investigated in 61 MBC patients from discovery cohort who had been radiographically examined after first complete cycle of chemo therapy. We found a robust association between high plasma HA level and poor prognosis of MBC patients in both discovery (pPFS  = 7.92 × 10(-6) and pOS  = 5.27 × 10(-5) ) and validation studies (pPFS  = 3.66 × 10(-4) and pOS  = 1.43 × 10(-4) ). In the discovery cohort, the plasma HA level displayed independent prognostic value after adjusted for age and clinicopathological factors, with respect to PFS and OS. Further, the decrease of plasma HA level displayed good concordance with treatment response evaluated by radiographic examination (AUC = 0.79). Plasma HA level displays prognostic value, as well as treatment monitoring value for MBC patients. PMID:26686298

  13. The Relationship between Uric Acid Levels and Huntington’s Disease Progression

    PubMed Central

    Auinger, Peggy; Kieburtz, Karl; McDermott, Michael P.

    2009-01-01

    Uric acid (UA) may be associated with the progression of Parkinson’s disease and related neurodegenerative conditions; however, its association with Huntington’s disease (HD) progression has not been explored. A secondary analysis of 347 subjects from the CARE-HD clinical trial was performed to examine the relationship between baseline UA levels and the level of functional decline in HD. Outcomes included change in scores at 30 months for the Unified Huntington’s Disease Rating Scale components. There was less worsening of total functional capacity over time with increasing baseline UA levels (adjusted mean worsening in scores: 3.17, 2.99, 2.95, 2.28, 2.21, from lowest to highest UA quintile, p=0.03). These data suggest a possible association between higher UA levels and slower HD progression, particularly as measured by total functional capacity. If confirmed, UA could be an important predictor and potentially modifiable factor affecting the rate of HD progression. PMID:20063429

  14. Sulforaphane reduces the alterations induced by quinolinic acid: modulation of glutathione levels.

    PubMed

    Santana-Martínez, R A; Galván-Arzáte, S; Hernández-Pando, R; Chánez-Cárdenas, M E; Avila-Chávez, E; López-Acosta, G; Pedraza-Chaverrí, J; Santamaría, A; Maldonado, P D

    2014-07-11

    Glutamate-induced excitotoxicity involves a state of acute oxidative stress, which is a crucial event during neuronal degeneration and is part of the physiopathology of neurodegenerative diseases. In this work, we evaluated the ability of sulforaphane (SULF), a natural dietary isothiocyanate, to induce the activation of transcription factor Nrf2 (a master regulator of redox state in the cell) in a model of striatal degeneration in rats infused with quinolinic acid (QUIN). Male Wistar rats received SULF (5mg/kg, i.p.) 24h and 5min before the intrastriatal infusion of QUIN. SULF increased the reduced glutathione (GSH) levels 4h after QUIN infusion, which was associated with its ability to increase the activity of glutathione reductase (GR), an antioxidant enzyme capable to regenerate GSH levels at 24h. Moreover, SULF treatment increased glutathione peroxidase (GPx) activity, while no changes were observed in γ-glutamyl cysteine ligase (GCL) activity. SULF treatment also prevented QUIN-induced oxidative stress (measured by oxidized proteins levels), the histological damage and the circling behavior. These results suggest that the protective effect of SULF could be related to its ability to preserve GSH levels and increase GPx and GR activities. PMID:24814729

  15. Association of Serum Uric Acid Levels in Psoriasis: A Systematic Review and Meta-Analysis.

    PubMed

    Li, Xin; Miao, Xiao; Wang, Hongshen; Wang, Yifei; Li, Fulun; Yang, Qiong; Cui, Rutao; Li, Bin

    2016-05-01

    High levels of serum uric acid (SUAC) are frequently detected in patients with psoriasis. However, the relationship between psoriasis and hyperuricemia remains unknown. Here we conducted a meta-analysis to identify the SUAC levels in subjects with psoriasis and to determine whether there is an associated risk between psoriasis and hyperuricemia.A comprehensive search of the literature from January 1980 to November 2014 across 7 databases (MEDLINE, Embase, Cochrane Central Register, and 4 Chinese databases) was conducted to determine whether there is an associated risk between psoriasis and hyperuricemia.Among the 170 identified reports, 14 observational studies were included in this meta-analysis. We found a significant higher SUAC level (MD 0.68, 95% CI 0.26-1.09; P = 0.002) in patients with psoriasis in Western Europe, but no significant differences were found between the East Asia and India subgroup (MD 1.22, 95% CI -0.13-2.56; P = 0.08) or the Middle East subgroup (MD 0.48, 95% CI -0.49-1.44; P = 0.33). Similar results were obtained from the meta-analysis of SUAC levels in subjects with severe psoriasis.Our meta-analysis showed that the correlation between psoriasis and hyperuricemia was either ethnicity- or region-dependent and that patients with psoriasis in Western Europe were more likely to have hyperuricemia. PMID:27175702

  16. The deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid profile.

    PubMed

    Raes, Katleen; Huyghebaert, Gerard; De Smet, Stefaan; Nollet, Lode; Arnouts, Sven; Demeyer, Daniel

    2002-02-01

    The objective of this study was to investigate the incorporation of conjugated linoleic acid (CLA) into eggs and its effect on the fatty acid metabolism when layers are fed diets with different fat sources and fat levels. Layers were fed either a low fat diet (LF) or one of three high fat diets based on soybean oil (SB), animal fat (AF) or flaxseed oil (FSO). CLA was added at a concentration of 1 g/100 g feed from two different CLA premixes with a different CLA profile. For the trial, 144 laying hens were allocated to 12 treatments (4 basal fat sources x 3 CLA treatments) with 3 replicates of 4 hens each. No significant differences were observed in feed intake, egg weight, feed conversion or laying rate between chickens fed control and CLA-supplemented diets. Differences in yolk fat, cholesterol or yolk color were not clearly related to the dietary CLA. However, the supplementation of CLA to the diets had clear effects on the fatty acid composition, i.e., a decrease in monounsaturated fatty acids (MUFA) and an increase in saturated fatty acids (SFA) was observed, whereas the polyunsaturated fatty acids (PUFA) content were essentially unaffected. The results suggest that CLA may influence the activity of the desaturases to a different extent in the synthesis of (n-6) and (n-3) long-chain fatty acids. These effects of CLA depend on the level of (n-6) and (n-3) fatty acids available in the feed. The apparent deposition rate (%) is clearly higher for the c9, t11 isomer than for the t10, c12 isomer. Adding CLA to layers diets rich in (n-3) fatty acids produces eggs that could promote the health of the consumer in terms of a higher intake of (n-3) fatty acids and CLA. PMID:11823576

  17. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    PubMed Central

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-01-01

    Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403

  18. SA- AND NO- MEDIATED SIGNALLING IN PLANT DISEASE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid and nitric oxide mediated signalling are two key regulators of plant disease resistance mechanisms. Using multiple Arabidopsis mutants that are positive or negative regulators of the SA response we are dissecting the signal transduction chain. To elucidate the components associated w...

  19. LC-MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children.

    PubMed

    Chen, Yue; Pan, Lili; Liu, Ni; Troy, Frederic A; Wang, Bing

    2014-01-28

    Red meat and dairy products contain high sialic acid (Sia) levels, but the metabolic fate and health impact in children remain unknown. The aims of the present study were to quantify the levels of urinary Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and ketodeoxynonulosonic acid (KDN) and to determine their relationship with dietary Sia intake. Spot urine samples were collected from 386 healthy children aged 3 (n 108), 4 (n 144) and 5 (n 134) years at 06.30-07.00, 11.30-12.00 and 16.30-17.00 hours. Food intake levels were recorded on the day of urine sample collection. Sia levels were quantified using LC-MS/MS with [13C3]Sia as an internal standard. We found that (1) total urinary Sia levels in healthy pre-school children ranged from 40 to 79 mmol Sia/mol creatinine; (2) urinary Sia levels were independent of age and consisted of conjugated Neu5Ac (approximately 70·8 %), free Neu5Ac (approximately 21·3 %), conjugated KDN (approximately 4·2 %) and free KDN (approximately 3·7 %); Neu5Gc was detected in the urine of only one 4-year-old girl; (3) total urinary Sia levels were highest in the morning and declined over time in 4- and 5-year-old children (P< 0·05), but not in 3-year-old children; (4) Sia intake levels at breakfast and lunch were approximately 2·5 and 0·16 mg Sia/kg body weight; and (5) there was no significant correlation between dietary Sia intake levels and urinary Sia levels. Urinary Sia levels varied with age and time of day, but did not correlate with Sia intake in 3- to 5-year-old children. The difference in urinary Sia levels in children of different age groups suggests that the metabolism and utilisation rates of dietary Sia are age dependent. PMID:23915700

  20. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  1. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  2. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. PMID:26213045

  3. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: The Diabetes Autoimmunity Study in the Young

    PubMed Central

    Norris, Jill M.; Kroehl, Miranda; Fingerlin, Tasha E.; Frederiksen, Brittni N.; Seifert, Jennifer; Wong, Randall; Clare-Salzler, Michael; Rewers, Marian

    2013-01-01

    Aims/hypotheses We previously reported that lower n-3 fatty acid intake and levels in erythrocyte membranes were associated with increased risk of islet autoimmunity (IA) but not progression to type 1 diabetes in children at increased risk for diabetes. We hypothesise that specific n-3 fatty acids and genetic markers contribute synergistically to this increased risk of IA in the Diabetes Autoimmunity Study in the Young (DAISY). Methods DAISY is following 2547 children at increased risk for type 1 diabetes for the development of IA, defined as being positive for glutamic acid decarboxylase (GAD)65, IA-2 or insulin autoantibodies on two consecutive visits. Using a case-cohort design, erythrocyte membrane fatty acids and dietary intake were measured prospectively in 58 IA-positive children and 299 IA-negative children. Results Lower membrane levels of the n-3 fatty acid, docosapentaenoic acid (DPA), were predictive of IA (HR 0.23; 95% CI 0.09,0.55), while alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not, adjusting for HLA and diabetes family history. We examined whether the effect of dietary intake of the n-3 fatty acid ALA on IA risk was modified by fatty acid elongation and desaturation genes. Adjusting for HLA, diabetes family history, ethnicity, energy intake and questionnaire type, ALA intake was significantly more protective for IA in the presence of an increasing number of minor alleles at FADS1 rs174556 (pinteraction=0.017), at FADS2 rs174570 (pinteraction=0.016) and at FADS2 rs174583 (pinteraction=0.045). Conclusions/interpretation The putative protective effect of n-3 fatty acids on IA may result from a complex interaction between intake and genetically-controlled fatty acid desaturation. PMID:24240437

  4. What is the safe upper intake level of folic acid for the nervous system? Implications for folic acid fortification policies.

    PubMed

    Reynolds, E H

    2016-05-01

    Between 1945 and 1959 it was convincingly documented that folic acid can precipitate or aggravate the neurological and haematological consequences of vitamin B12 deficiency by increasing the demand for vitamin B12. Since then there has been much misunderstanding of the issues, mainly by advocates of folic acid fortification who have been inclined to minimise or even dismiss the risks by misinterpreting the evidence as only a 'masking' of the anaemia of pernicious anaemia. Recent studies in the era of fortification are rediscovering the risks to the nervous system, especially cognitive function, of excess folate in the presence of vitamin B12 deficiency. I have reviewed the Reports of four Expert Advisory Committees in Europe and the USA, which suggest that the safe upper tolerable limit (UL) for folic acid is 1 mg in adults. These reports are unsound and there is already evidence of neurological harm from long-term exposure to doses of folic acid between 0.5 and 1 mg in the presence of vitamin B12 deficiency. There is an urgent need to review the safe UL for folic acid and to consider the addition of vitamin B12 to folic acid fortification policies. PMID:26862004

  5. Uric acid blood levels and relationship with the components of metabolic syndrome in hypertensive patients.

    PubMed

    Papavasileiou, M V; Karamanou, A G; Kalogeropoulos, P; Moustakas, G; Patsianis, S; Pittaras, A

    2016-07-01

    Associations between high serum uric acid (SUA) levels and high blood pressure (BP), as well as between SUA levels and metabolic syndrome (MetS) have already been reported. The aim of the study was to investigate the relationship between the components of MetS with the SUA levels as also between SUA and apolipoproteins A1 and B (apoA1 and apoB) ratio in hypertensive patients. A total of 2577 consecutive hypertensive patients (1193 male and 1384 female) aged 57.5±13.3 years, were enrolled in our research. Samples were taken to measure SUA, glucose, triglycerides, high density lipoprotein (HDL-C), components of the MetS and apoA1 and apoB. The study population was divided into two groups: group A: SUA levels above normal range (men ⩾7 mg dl(-1), women ⩾6 mg dl(-1)) and group B: SUA levels within normal range. In the overall study population, SUA levels showed a statistically significant correlation with waist circumference (WC; r=0.293, P<0.000), triglycerides (r=0.197, P<0.000), glucose (r=0.085, P<0.000), apoB/apoA1 (r=0.136, P<0.000) and HDL-C (r=-0.235, P<0,001). In newly diagnosed untreated hypertensive patients there was also a statistically significant correlation of SUA levels with WC (r=0.331, P<0.001), triglycerides (r=0.228, P<0.001) apoB/apoA1 ratio (r=0.202, P<0.001) and HDL-C (r=-0.278, P<0.001). In hyperurecemic hypertensives there was a statistically significant correlation between SUA levels with WC (r=0.168, P=0.007), apoB/apoA1 ratio (r=0.256, P=0.003) and HDL-C (r=-0.202, P<0.001). SUA levels correlate significantly with all the components of MetS, as well as with the risk factor apoB/apoA1 ratio, in hypertensive patients. PMID:26134624

  6. Phytochemicals from Tradescantia albiflora Kunth Extracts Reduce Serum Uric Acid Levels in Oxonate-induced Rats

    PubMed Central

    Wang, Wen-Ling; Sheu, Shi-Yuan; Huang, Wen-Dar; Chuang, Ya-Ling; Tseng, Han-Chun; Hwang, Tzann-Shun; Fu, Yuan-Tsung; Kuo, Yueh-Hsiung; Yao, Chun-Hsu; Kuo, Tzong-Fu

    2016-01-01

    Background: Tradescantia albiflora (TA) Kunth (Commelinaceae) has been used for treating gout and hyperuricemia as folklore remedies in Taiwan. Therefore, it is worthwhile to study the effect of TA extracts on lowering uric acid activity. The hypouricemic effects of TA extracts on potassium oxonate (PO)-induced acute hyperuricemia were investigated for the first time. Materials and Methods: All treatments at the same volume (1 ml) were orally administered to the abdominal cavity of PO-induced hyperuricemic rats. One milliliter of TA extract in n-hexane (HE), ethyl acetate (EA), n-butanol (BuOH), and water fractions has 0.28, 0.21, 0.28, and 1.03 mg TA, respectively; and the plasma uric acid (PUA) level was measured for a consecutive 4 h after administration. Results: All four fractions' extracts derived from TA were observed to significantly reduce PUA compared with the PO group. The EA-soluble fraction (TA-EA) exhibited the best xanthine oxidase (XO) inhibitory activity. Following column chromatography, 12 phytochemicals were isolated and identified from the EA fraction. The IC50 values of isolated phytochemicals indicated that bracteanolide A (AR11) showed the remarkable XO inhibitory effect (IC50 value of 76.4 μg/ml). These findings showed that the in vivo hypouricemic effect in hyperuricemic rats was consistent with in vitro XO inhibitory activity, indicating that TA extracts and derived phytochemicals could be potential candidates as hypouricemic agents. SUMMARY Tradescantia albiflora extracts possess in vivo hypouricemic action in hyperuricemic ratsT. albiflora extracts exhibited strong inhibitory activity against xanthine oxidase (XO)Butenolide may play an important role in XO inhibitionThe extract bracteanolide A was demonstrated potent XO inhibitory activity in vitro. Abbreviations used: TA: Tradescantia albiflora, PO: potassium oxonate, HE: n-hexane, EA: ethyl acetate, BuOH: n-butanol, PUA: plasma uric acid, XO: xanthine oxidase, MeOH: methanol, IP

  7. Effect of 3-methylcholanthrene-induced increases in ascorbic acid levels on tissue. beta. -glucuronidase activity in rats

    SciTech Connect

    Calabrese, E.J.; Barrett, T.J.; Leonard, D.A.; Horton, H.M.; Kenyon, E.M.

    1988-01-01

    The interrelationship between tissue ascorbic acid levels and tissue ..beta..-glucuronidase activity was examined in rats injected with 3-methylcholanthrene, an agent which induces ascorbic acid synthesis in rats. Six Fisher 344 rats were dosed intraperitoneally (IP) with 30 mg/kg of 3-methylcholanthrene. Ascorbic acid levels and ..beta..-glucuronidase (..beta..-G) activity were determined for lung, liver and kidney tissues. In a follow-up study, rats were dosed for three consecutive days with 3-methylcholanthrene. Controls in both groups were dosed IP with Emulphor (EL-620). Animals were sacrificed one week after the final dosage and lung, liver and kidney tissues were examined.

  8. Serum Uric Acid Level and Diverse Impacts on Regional Arterial Stiffness and Wave Reflection

    PubMed Central

    Bian, Suyan; Guo, Hongyang; Ye, Ping; Luo, Leiming; Wu, Hongmei; Xiao, Wenkai

    2012-01-01

    Background: Both increased arterial stiffness and hyperuricaemia are associated with elevated cardiovascular risks. Little is known about the relations of serum uric acid (UA) level to regional arterial stiffness and wave reflection. The aim of the study was to investigate the gender-specific association of serum UA and indices of arterial function in a community-based investigation in China. Methods: Cross-sectional data from 2374 adults (mean age 58.24 years) who underwent routine laboratory tests, regional pulse wave velocity (PWV) and pulse wave analysis measurements were analyzed in a gender-specific manner. None of the participants had atherosclerotic cardiovascular disease, chronic renal failure, systemic inflammatory disease, gout, or were under treatment which would affect serum UA level. Results: Men had higher serum UA level than women. Subjects with hyperuricaemia had significantly higher carotid-ankle PWV in both genders (P< 0.05), and the carotid-femoral PWV (PWVc-f) was higher in women (P< 0.001) while the augmentation index was marginally lower in men (P = 0.049). Multiple regression analysis showed that serum UA was an independent determinant only for PWVc-f in women (β = 0.104, P = 0.027) when adjusted for atherogenic confounders. No other independent relationship was found between UA level and other surrogates of arterial stiffness. Conclusions: Serum UA levels are associated with alterations in systemic arterial stiffness that differ in men and women. Women might be more susceptible to large vascular damage associated with hyperuricaemia. PMID:23113222

  9. Lysophosphatidic Acid Level and the Incidence of Silent Brain Infarction in Patients with Nonvalvular Atrial Fibrillation

    PubMed Central

    Li, Zhen-Guang; Yu, Zhan-Cai; Yu, Yong-Peng; Ju, Wei-Ping; Wang, Dao-Zhen; Zhan, Xia; Wu, Xi-Juan; Zhou, Li

    2010-01-01

    Lysophosphatidic acid (LPA), which is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity and reproduction, may be involved in the etiology of some diseases such as atherosclerosis, cancer, obesity or myocardial infarction. Abnormal findings, including silent brain infarction (SBI), are frequently observed by magnetic resonance imaging (MRI) in patients with nonvalvular atrial fibrillation (NVAF). However, whether there is a relationship between LPA level and the prevalence of SBI has not been extensively studied. In the present study, the association between them was investigated. 235 patients with NVAF, 116 cases of SBI without NVAF and 120 cases of healthy volunteers (control group), who did not receive any antithrombotic therapy, were enrolled in this study. Plasma LPA levels in the NVAF with SBI group were significantly higher than that in the control group (p < 0.01), NVAF without SBI group (p < 0.01) and SBI without NVAF group (p < 0.01). The LPA levels are lower in the control group than in the NVAF without SBI and SBI without NVAF groups (p < 0.01), however, the latter two groups did not significantly differ from each other for LPA levels (p > 0.05) There were significant differences in the positive rate of platelet activation between each of the groups (p < 0.01). The positive rate of platelet activation was significantly higher in the NVAF with SBI group. We suggest that LPA might be a novel marker for estimation of the status of platelet activation and the risk factor for SBI onset in NVAF patients. We expected that plasma LPA levels could predict the occurrence of SBI in NVAF patients. PMID:21152315

  10. Elevation of the level and activity of acid ceramidase in Alzheimer's disease brain.

    PubMed

    Huang, Yu; Tanimukai, Hitoshi; Liu, Fei; Iqbal, Khalid; Grundke-Iqbal, Inge; Gong, Cheng-Xin

    2004-12-01

    Protein glycosylation modifies the processing of several key proteins involved in the molecular pathogenesis of Alzheimer's disease (AD). Aberrant glycosylation of tau and down-regulation of sialyltransferase in AD brain suggest a possible dysregulation of protein glycosylation that may play a role in AD. We therefore isolated major glycoproteins from AD brain by using lectin-affinity chromatographies and ion-exchange chromatography and further separated them using SDS-polyacylamide gel electrophoresis. Mass spectrometry analysis of 11 isolated glycoproteins led to their identification as: neuronal cell adhesion molecule, beta-globin, IgM heavy chain VH1 region precursor, contactin precursor, dipeptidylpeptidase VI, CD81 partner 3, prenylcysteine lyase, adipocyte plasma-associated protein, acid ceramidase and two novel proteins. We found that the level and activity of acid ceramidase (AC), one of the major identified human brain glycoproteins, were significantly elevated in AD brain. Immunohistochemical staining indicated that AC was located mainly in the cell bodies of neurons and colocalized with neurofibrillary tangles. Our findings suggest that AC might play a role in controlling neuronal apoptosis and that AC-mediated signalling pathways might be involved in the molecular mechanism of AD. PMID:15610181

  11. Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia

    PubMed Central

    Kaczocha, Martin; Rebecchi, Mario J.; Ralph, Brian P.; Teng, Yu-Han Gary; Berger, William T.; Galbavy, William; Elmes, Matthew W.; Glaser, Sherrye T.; Wang, Liqun; Rizzo, Robert C.; Deutsch, Dale G.; Ojima, Iwao

    2014-01-01

    The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors. Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics. PMID:24705380

  12. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis.

    PubMed

    Colizzi, Francesco; Masetti, Matteo; Recanatini, Maurizio; Cavalli, Andrea

    2016-08-01

    During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process. PMID:27409360

  13. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes.

    PubMed

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  14. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation. PMID:19515264

  15. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  16. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  17. Serum uric acid level in patients with relapsing-remitting multiple sclerosis.

    PubMed

    Ashtari, Fereshteh; Bahar, Mohammadali; Aghaei, Maryam; Zahed, Arash

    2013-05-01

    Uric acid (UA) is a hydrophilic antioxidant product associated with multiple sclerosis (MS). We conducted a randomized case-control study to evaluate the serum level of UA in different phases of MS in comparison with levels in a healthy control population. Serum UA was checked in 130 patients with relapsing-remitting MS (85 patients in remitting and 45 patients in relapsing phase) and 50 age-matched controls using a quantitative enzyme-linked immunosorbent assay (ELISA). The mean concentrations of UA in serum was 6.41(±3.18)mg/dL in patients with remitting MS, 4.76(±1.66)mg/dL in patients with relapsing MS and 6.33(±2.94)mg/dL in controls. There was a significant difference between mean UA concentration in relapsing MS and remitting MS (p<0.001), and between patients with relapsing MS and controls (p=0.002); however, the difference between levels for patients in the remitting phase of MS and the control group was not significant (p=0.87). It seems probable that UA has a role in the prevention of disease activity in MS. PMID:23528410

  18. Plasma Elaidic Acid Level as Biomarker of Industrial Trans Fatty Acids and Risk of Weight Change: Report from the EPIC Study

    PubMed Central

    Chajès, Véronique; Biessy, Carine; Ferrari, Pietro; Romieu, Isabelle; Freisling, Heinz; Huybrechts, Inge; Scalbert, Augustin; Bueno de Mesquita, Bas; Romaguera, Dora; Gunter, Marc J.; Vineis, Paolo; Hansen, Camilla Plambeck; Jakobsen, Marianne Uhre; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Boutron-Ruault, Marie-Christine; Katzke, Verana; Neamat-Allah, Jasmine; Boeing, Heiner; Bachlechner, Ursula; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Pala, Valeria; Masala, Giovanna; Mattiello, Amalia; Skeie, Guri; Weiderpass, Elisabete; Agudo, Antonio; Huerta, Jose Maria; Ardanaz, Eva; Sánchez, Maria Jose; Dorronsoro, Miren; Quirós, Jose Ramon; Johansson, Ingegerd; Winkvist, Anna; Sonested, Emily; Key, Tim; Khaw, Kay-Tee; Wareham, Nicolas J.; Peeters, Petra H.M.; Slimani, Nadia

    2015-01-01

    Background Few epidemiological studies have examined the association between dietary trans fatty acids and weight gain, and the evidence remains inconsistent. The main objective of the study was to investigate the prospective association between biomarker of industrial trans fatty acids and change in weight within the large study European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods Baseline plasma fatty acid concentrations were determined in a representative EPIC sample from the 23 participating EPIC centers. A total of 1,945 individuals were followed for a median of 4.9 years to monitor weight change. The association between elaidic acid level and percent change of weight was investigated using a multinomial logistic regression model, adjusted by length of follow-up, age, energy, alcohol, smoking status, physical activity, and region. Results In women, doubling elaidic acid was associated with a decreased risk of weight loss (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.55-0.88, p = 0.002) and a trend was observed with an increased risk of weight gain during the 5-year follow-up (OR = 1.23, 95% CI = 0.97-1.56, p = 0.082) (p-trend<.0001). In men, a trend was observed for doubling elaidic acid level and risk of weight loss (OR = 0.82, 95% CI = 0.66-1.01, p = 0.062) while no significant association was found with risk of weight gain during the 5-year follow-up (OR = 1.08, 95% CI = 0.88-1.33, p = 0.454). No association was found for saturated and cis-monounsaturated fatty acids. Conclusions These data suggest that a high intake of industrial trans fatty acids may decrease the risk of weight loss, particularly in women. Prevention of obesity should consider limiting the consumption of highly processed foods, the main source of industrially-produced trans fatty acids. PMID:25675445

  19. Structure of a Microbial Community in Soil after Prolonged Addition of Low Levels of Simulated Acid Rain

    PubMed Central

    Pennanen, Taina; Fritze, Hannu; Vanhala, Pekka; Kiikkilä, Oili; Neuvonen, Seppo; Bååth, Erland

    1998-01-01

    Humus samples were collected 12 growing seasons after the start of a simulated acid rain experiment situated in the subarctic environment. The acid rain was simulated with H2SO4, a combination of H2SO4 and HNO3, and HNO3 at two levels of moderate acidic loads close to the natural anthropogenic pollution levels of southern Scandinavia. The higher levels of acid applications resulted in acidification, as defined by humus chemistry. The concentrations of base cations decreased, while the concentrations of exchangeable H+, Al, and Fe increased. Humus pH decreased from 3.83 to 3.65. Basal respiration decreased with decreasing humus pH, and total microbial biomass, measured by substrate-induced respiration and total amount of phospholipid fatty acids (PLFA), decreased slightly. An altered PLFA pattern indicated a change in the microbial community structure at the higher levels of acid applications. In general, branched fatty acids, typical of gram-positive bacteria, increased in the acid plots. PLFA analysis performed on the bacterial community growing on agar plates also showed that the relative amount of PLFA specific for gram-positive bacteria increased due to the acidification. The changed bacterial community was adapted to the more acidic environment in the acid-treated plots, even though bacterial growth rates, estimated by thymidine and leucine incorporation, decreased with pH. Fungal activity (measured as acetate incorporation into ergosterol) was not affected. This result indicates that bacteria were more affected than fungi by the acidification. The capacity of the bacterial community to utilize 95 different carbon sources was variable and only showed weak correlations to pH. Differences in the toxicities of H2SO4 and HNO3 for the microbial community were not found. PMID:9603831

  20. Acid-Base Interactions at the Molecular Level: Adhesion and Friction Studies with Interfacial Force Microscopy

    SciTech Connect

    Burns, A.R.; Carpick, R.W.; Houston, J.E.; Michalske, T.A.

    1998-12-09

    To examine the forces of acid-base adhesive interactions at the molecular level, we utilize the scanning probe Interracial Force Microscope (IFM). Unlike cantilever-based atomic force microscopes, the EM is a non-compliant, mechanically stable probe that provides a complete adhesive profile without jump-to-contact. In this way, we are able to quantitatively measure the work of adhesion and bond energies at well-defined, nanometer-scale single asperity contacts. In particular, we will discuss the displacement-controlled adhesive forces between self-assembled monolayer of functionalized alkanethiols strongly bound to a gold substrate and a similarly functionalized tip. We also discuss a method utilizing decoupled lateral and normal force sensors to simultaneously observe the onset of both friction and chemical bond formation. Measurements show that friction can be directly attributed to bond formation and rupture well before repulsive contact.

  1. Study of dynamic process of acetic acid induced-whitening in epithelial tissues at cellular level

    NASA Astrophysics Data System (ADS)

    Wu, Tao T.; Qu, Jianan Y.; Cheung, Tak Hong; Yim, So Fan; Wong, Yick Fu

    2005-06-01

    Acetic acid, inducing transient whitening (acetowhitening) when applied to epithelial tissues, is a commonly used contrast agent for detecting early cervical cancer. The goals of this research are to investigate the temporal characteristics of acetowhitening process in cervical epithelial tissue at cellular level and develop a clear understanding of the diagnostic information carried in the acetowhitening signal. A system measuring time-resolved reflectance was built to study the rising and decay processes of acetowhitening signal from the monolayered cell cultures of normal and cancerous cervical squamous cells. It is found that the dynamic processes of acetowhitening in normal and cancerous cells are significantly different. The results of this study provide insight valuable to further understand the acetowhitening process in epithelial cells and to encourage the development of an objective procedure to detect the early cervical cancers based on quantitative monitoring of the dynamic process of acetowhitening

  2. Low levels of haptoglobin and putative amino acid sequence in Taiwanese Lanyu miniature pigs.

    PubMed

    Yueh, Sunny C H; Wang, Yao Horng; Lin, Kuan Yu; Tseng, Chi Feng; Chu, Hsien Pin; Chen, Kuen Jaw; Wang, Shih Sheng; Lai, I Hsiang; Mao, Simon J T

    2008-04-01

    Porcine haptoglobin (Hp) is an acute phase protein. Its plasma level increases significantly during inflammation and infection. One of the main functions of Hp is to bind free hemoglobin (Hb) and inhibit its oxidative activity. In the present report, we studied the Hp phenotype of Taiwanese Lanyu miniature pigs (TLY minipigs; n=43) and found their Hp structure to be a homodimer (beta-alpha-alpha-beta) similar to human Hp 1-1. Interestingly, Western blot and high performance liquid chromatographic (HPLC) analysis showed that 25% of the TLY minipigs possessed low or no plasma Hp level (<0.05 mg/ml). The Hp cDNA of these TLY minipigs was then cloned, and the translated amino acid sequence was analyzed. No sequences were found to be deficient; they showed a 99.7% identity with domestic pigs (NP_999165). The mean overall Hp level of the TLY minipigs (0.21 +/- 0.25 mg/ml; n=43) determined by enzyme-linked immunosorbent assay (ELISA) was markedly lower than that of domestic pigs (0.78 +/- 0.45 mg/ml; p<0.001), while 25% of the TLY minipigs had an Hp level that was extremely low (<0.05 mg/ml). In addition, the initial recovery rate (first 40 min) in the circulation of infused fluorescein isothiocyanate (FITC)-Hb was significantly higher in the TLY minipigs with extremely low Hp levels than those with high levels. This data suggests that the low concentration of Hp-Hb complex is responsible for the higher recovery rate of Hb in the circulation. TLY minipigs have been used as an experimental model for cardiovascular diseases; whether they can be used as a model for inflammatory diseases, with Hp as a marker, remains a topic of interest. However, since the Hp level varies significantly among individual TLY minipigs, it is necessary to prescreen the Hp levels of the animals to minimize variation in the experimental baseline. The present study may provide a reference value for future use of the TLY minipig as an animal model for inflammation-associated diseases. PMID:18460833

  3. Low and high dietary folic acid levels perturb postnatal cerebellar morphology in growing rats.

    PubMed

    Partearroyo, Teresa; Pérez-Miguelsanz, Juliana; Peña-Melián, Ángel; Maestro-de-Las-Casas, Carmen; Úbeda, Natalia; Varela-Moreiras, Gregorio

    2016-06-01

    The brain is particularly sensitive to folate metabolic disturbances, because methyl groups are critical for brain functions. This study aimed to investigate the effects of different dietary levels of folic acid (FA) on postnatal cerebellar morphology, including the architecture and organisation of the various layers. A total of forty male OFA rats (a Sprague-Dawley strain), 5 weeks old, were classified into the following four dietary groups: FA deficient (0 mg/kg FA); FA supplemented (8 mg/kg FA); FA supra-supplemented (40 mg/kg FA); and control (2 mg/kg FA) (all n 10 per group). Rats were fed ad libitum for 30 d. The cerebellum was quickly removed and processed for histological and immunohistochemical analysis. Slides were immunostained for glial fibrillary acidic protein (to label Bergmann glia), calbindin (to label Purkinje cells) and NeuN (to label post-mitotic neurons). Microscopic analysis revealed two types of defect: partial disappearance of fissures and/or neuronal ectopia, primarily in supra-supplemented animals (incidence of 80 %, P≤0·01), but also in deficient and supplemented groups (incidence of 40 %, P≤0·05), compared with control animals. The primary fissure was predominantly affected, sometimes accompanied by defects in the secondary fissure. Our findings show that growing rats fed an FA-modified diet, including both deficient and supplemented diets, have an increased risk of disturbances in cerebellar corticogenesis. Defects caused by these diets may have functional consequences in later life. The present study is the first to demonstrate that cerebellar morphological defects can arise from deficient, as well as high, FA levels in the diet. PMID:27153204

  4. Domain-level rocking motion within a polymerase that translocates on single-stranded nucleic acid

    SciTech Connect

    Li, Huiyung; Li, Changzheng; Zhou, Sufeng; Poulos, Thomas L.; Gershon, Paul David

    2013-04-01

    An X-ray crystallographic structure is described for unliganded Vaccinia virus poly(A) polymerase monomer (VP55), showing the first domain-level structural isoforms among either VP55, it’s processivity factor VP39, or the VP55-VP39 heterodimer. The occurrence of domain-level motion specifically in monomeric VP55 is consistent with the finding that the monomeric protein undergoes saltatory translocation whereas the heterodimer does not. Vaccinia virus poly(A) polymerase (VP55) is the only known polymerase that can translocate independently with respect to single-stranded nucleic acid (ssNA). Previously, its structure has only been solved in the context of the VP39 processivity factor. Here, a crystal structure of unliganded monomeric VP55 has been solved to 2.86 Å resolution, showing the first backbone structural isoforms among either VP55 or its processivity factor (VP39). Backbone differences between the two molecules of VP55 in the asymmetric unit indicated that unliganded monomeric VP55 can undergo a ‘rocking’ motion of the N-terminal domain with respect to the other two domains, which may be ‘rigidified’ upon VP39 docking. This observation is consistent with previously demonstrated experimental molecular dynamics of the monomer during translocation with respect to nucleic acid and with different mechanisms of translocation in the presence and absence of processivity factor VP39. Side-chain conformational changes in the absence of ligand were observed at a key primer contact site and at the catalytic center of VP55. The current structure completes the trio of possible structural forms for VP55 and VP39, namely the VP39 monomer, the VP39–VP55 heterodimer and the VP55 monomer.

  5. Serum uric acid levels in normal pregnancy with observations on the renal excretion of urate in pregnancy

    PubMed Central

    Boyle, James A.; Campbell, Stuart; Duncan, Anne M.; Greig, William R.; Buchanan, W. Watson

    1966-01-01

    Serum uric acid estimations were performed in 106 healthy pregnant women during early, middle, and late pregnancy, using an automated colorimetric method. The mean serum uric acid level was significantly lower during early and middle pregnancy than that of 64 age-matched female controls. The serum uric acid level was not significantly different in late pregnancy from the control group. Studies of the daily urinary urate excretion in 31 pregnant women showed normal urinary urate excretion in early pregnancy and enhanced renal loss of urate in middle and late pregnancy. It appears that the renal clearance of urate in pregnancy is high, especially in the middle period when the serum level is low in spite of the increased production of uric acid by the foetus. PMID:5919366

  6. Omega-3 fatty acids protect renal functions by increasing docosahexaenoic acid-derived metabolite levels in SHR.Cg-Lepr(cp)/NDmcr rats, a metabolic syndrome model.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Al Mamun, Abdullah; Tanabe, Yoko; Iwamoto, Ryo; Arita, Makoto; Tsuchikura, Satoru; Shido, Osamu

    2014-01-01

    The omega-3 polyunsaturated fatty acids (ω-3 PUFAs) docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA) protect against diabetic nephropathy by inhibiting inflammation. The aim of this study was to assess the effects of highly purified DHA and EPA or EPA only administration on renal function and renal eicosanoid and docosanoid levels in an animal model of metabolic syndrome, SHR.Cg-Lepr(cp)/NDmcr (SHRcp) rats. Male SHRcp rats were divided into 3 groups. Control (5% arabic gum), TAK-085 (300 mg/kg/day, containing 467 mg/g EPA and 365 mg/g DHA), or EPA (300 mg/kg/day) was orally administered for 20 weeks. The urinary albumin to creatinine ratio in the TAK-085-administered group was significantly lower than that in other groups. The glomerular sclerosis score in the TAK-085-administered group was significantly lower than that in the other groups. Although DHA levels were increased in total kidney fatty acids, the levels of nonesterified DHA were not significantly different among the 3 groups, whereas the levels of protectin D1, resolvin D1, and resolvin D2 were significantly increased in the TAK-085-administered group. The results show that the use of combination therapy with DHA and EPA in SHRcp rats improved or prevented renal failure associate with metabolic syndrome with decreasing triglyceride levels and increasing ω-3 PUFA lipid mediators. PMID:24642910

  7. Excessive versus physiologically relevant levels of retinoic acid in embryonic stem cell differentiation.

    PubMed

    Sheikh, Bilal N; Downer, Natalie L; Kueh, Andrew J; Thomas, Tim; Voss, Anne K

    2014-06-01

    Over the past two decades, embryonic stem cells (ESCs) have been established as a valuable system to study the complex molecular events that underlie the collinear activation of Hox genes during development. When ESCs are induced to differentiate in response to retinoic acid (RA), Hox genes are transcriptionally activated in their chromosomal order, with the most 3' Hox genes activated first, sequentially followed by more 5' Hox genes. In contrast to the low levels of RA detected during gastrulation (∼33 nM), a time when Hox genes are induced during embryonic development, high levels of RA are used to study Hox gene activation in ESCs in vitro (1-10 µM). This compelled us to compare RA-induced ESC differentiation in vitro with Hox gene activation in vivo. In this study, we show that treatment of ESCs for 2 days with RA best mimics activation of Hox genes during embryonic development. Furthermore, we show that defects in Hox gene expression known to occur in embryos lacking the histone acetyltransferase MOZ (also called MYST3 or KAT6A) were masked in Moz-deficient ESCs when excessive RA (0.5-5 µM) was used. The role of MOZ in Hox gene activation was only evident when ESCs were differentiated at low concentrations of RA, namely 20 nM, which is similar to RA levels in vivo. Our results demonstrate that using RA at physiologically relevant levels to study the activation of Hox genes, more accurately reflects the molecular events during the early phase of Hox gene activation in vivo. PMID:25099890

  8. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats.

    PubMed

    Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami

    2016-03-01

    Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property. PMID:27570270

  9. Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain

    SciTech Connect

    Farahani, H.; Hasan, M. )

    1992-02-01

    The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration was increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.

  10. The Effect of Temperature on the Level and Biosynthesis of Unsaturated Fatty Acids in Diacylglycerols of Brassica napus Leaves 1

    PubMed Central

    Williams, John P.; Khan, Mobashsher U.; Mitchell, Kirk; Johnson, Geoff

    1988-01-01

    Experiments on the effects of temperature on the levels of unsaturated fatty acids and their rates of desaturation in Brassica napus leaf lipids have shown that significant differences occur in the composition of all diacylglycerols in the leaf between plants grown at high and low temperatures. In the major thylakoid diacylglycerols, monogalactosyl-diacylglycerol and digalactosyldiacylglycerol, not only is there an increase in the level of unsaturation at low temperatures, but there is a change in the balance between molecular species of chloroplastic origin (16/18C) and cytosolic origin (18/18C). Radioactivity tracer data indicate that at low temperatures there are two distinct phases of desaturation in the fatty acids of the major diacylglycerols of these leaves. A rapid phase, which appears in plants grown at low temperatures and results in the desaturation of palmitic acid to hexadecadienoic acid and oleic acid to linoleic acid may explain the high levels of unsaturated fatty acids found in the leaf diacylglycerols from plants grown at low temperatures. The appearance of this rapid phase is controlled by the temperature at which the plant is grown and is not subject to rapid variations in environmental temperature. PMID:16666243

  11. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  12. Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.

    PubMed

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna; Pesce, C Gustavo

    2013-12-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  13. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    EPA Science Inventory

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  14. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  15. In-Use Evaluation of Peracetic Acid for High-Level Disinfection of Endoscopes.

    PubMed

    Chenjiao, Wu; Hongyan, Zhang; Qing, Gu; Xiaoqi, Zhong; Liying, Gu; Ying, Fang

    2016-01-01

    Many high-level disinfectants have been used for disinfection of endoscopes such as 2% glutaraldehyde (GA), 0.55% ortho-phthalaldehyde (OPA), and peracetic acid (PAA). Both GA and OPA are widely used in disinfection of endoscopes and have been previously discussed, but there is little research on the practical use of PAA as an endoscope disinfectant. An experimental model of a flexible gastrointestinal endoscope being contaminated with 9 strains of microorganism was designed. After the cleaning and disinfecting procedure was completed, we evaluated the biocidal activity (850 ppm PAA, 2% GA, and 0.55% OPA) on our flexible gastrointestinal endoscope model. We also evaluated sterilization effectiveness of PAA on other bacteria, including some antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile). The residual bacterial colony count number of the PAA-disinfected endoscope was significantly lower than that of the GA- and OPA-disinfected endoscopes. The biocidal effect and efficiency of the endoscope disinfection by PAA appeared to be better than either the GA- or OPA-disinfected endoscope. PAA has demonstrated a good sterilization effect on other bacterial species; of particular note are common antibiotic-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and Clostridium difficile. The results of this study demonstrate that PAA is a fast and effective high-level disinfectant for use in the reprocessing of flexible endoscopes. PMID:27070796

  16. Gender-dependent levels of hyaluronic acid in cerebrospinal fluid of patients with neurodegenerative dementia.

    PubMed

    Nielsen, Henrietta M; Palmqvist, Sebastian; Minthon, Lennart; Londos, Elisabet; Wennström, Malin

    2012-03-01

    Numerous reports over the years have described neuroinflammatory events and vascular changes in neurodegenerative diseases such as Alzheimers disease (AD) and Dementia with Lewy bodies (DLB). Interestingly, recent reports from other research areas suggest that inflammatory and vascular processes are influenced by gender. These findings are intriguing from the perspective that women show a higher incidence of AD and warrant investigations on how gender influences various processes in neurodegenerative dementia. In the current study we measured the cerebrospinal fluid (CSF) and plasma concentrations of hyaluroinic acid (HA), an adhesionmolecule known to regulate both vascular and inflammatory processes, in AD and DLB patients as well as in healthy elders. Our analysis showed that male AD and DLB patients had almost double the amount of HA compared to female patients whereas no gender differences were observed in the controls. Furthermore, we found that CSF levels of HA in foremost female AD patients correlated with various AD related biomarkers. Correlations between HA levels and markers of inflammation and vascular changes were only detected in female AD patients but in both male and female DLB patients. We conclude that HA may be linked to several pathological events present in AD, as reflected in CSF protein concentrations. The HA profile in CSF, but not in plasma, and associations to other markers appear to be gender-dependent which should be taken into account in clinical examinations and future biomarker studies. PMID:22191565

  17. Uric acid level and elevated blood pressure in US adolescents: National Health and Nutrition Examination Survey, 1999-2006.

    PubMed

    Loeffler, Lauren F; Navas-Acien, Ana; Brady, Tammy M; Miller, Edgar R; Fadrowski, Jeffrey J

    2012-04-01

    Uric acid is associated with cardiovascular disease and cardiovascular disease risk factors in adults, including chronic kidney disease, coronary artery disease, stroke, diabetes mellitus, preeclampsia, and hypertension. We examined the association between uric acid and elevated blood pressure in a large, nationally representative cohort of US adolescents, a population with a relatively low prevalence of cardiovascular disease and cardiovascular disease risk factors. Among 6036 adolescents 12 to 17 years of age examined in the 1999-2006 National Health and Nutrition Examination Survey, the mean age was 14.5 years, 17% were obese (body mass index: ≥95th percentile), and 3.3% had elevated blood pressure. Mean serum uric acid level was 5.0 mg/dL, and 34% had a uric acid level ≥5.5 mg/dL. In analyses adjusted for age, sex, race/ethnicity, and body mass index percentile, the odds ratio of elevated blood pressure, defined as a systolic or diastolic blood pressure ≥95th percentile for age, sex, and height, for each 0.1-mg/dL increase in uric acid level was 1.38 (95% CI: 1.16-1.65). Compared with <5.5 mg/dL, participants with a uric acid level ≥5.5 mg/dL had a 2.03 times higher odds of having elevated blood pressure (95% CI: 1.38-3.00). In conclusion, increasing levels of serum uric acid are associated with elevated blood pressure in healthy US adolescents. Additional prospective studies and clinical trials are needed to determine whether uric acid is merely a marker in a complex metabolic pathway or causal of hypertension and, thus, a potential screening and therapeutic target. PMID:22353609

  18. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  19. Predictors of urinary levels of 2,4-dichlorophenoxyacetic acid, 3,5,6-trichloro-2-pyridinol, 3-phenoxybenzoic acid, and pentachlorophenol in 121 adults in Ohio

    EPA Science Inventory

    Limited data exist on the driving factors that influence the non-occupational exposures of adults to pesticides using urinary biomonitoring. In this work, the objectives were to quantify the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloro-2-pyridinol (TC...

  20. Effects of dietary pantethine levels on contents of fatty acids and thiobarbituric acid reactive substances in the liver of rats orally administered varying amounts of autoxidized linoleate.

    PubMed

    Hiramatsu, N; Kishida, T; Hamano, T; Natake, M

    1991-02-01

    The effects of dietary pantethine levels on the contents and compositions of fatty acids and on the levels of lipid peroxides were investigated with rat liver and its S-9 fraction under administration of 0 (non), 0.2 (low dose), and 0.35 ml (high dose) of autoxidized linoleate (AL) per 100 g body weight of the rats per day for 5 days. AL having 800 meq/kg of peroxide value (PV) and 1,700 meq/kg of carbonyl value (CV) was dosed to the rats of each group given drinking water containing 0 mg% (deficient), 6.25 mg% (adequate), and 125 mg% pantethine (excess). In the pantethine-deficient and -adequate groups, the contents of fatty acids both in the liver homogenate and in the S-9 fraction were correspondingly decreased by increasing dose levels of AL, and the decrease was remarkable especially in the pantethine-deficient group, but was not significant in the pantethine-excess group even by a high dose of AL. Particularly, in the high dose of AL, the notable decreases of oleic acid (C18:1) contents in both the liver and the S-9 fraction were observed in rats of the pantethine-deficient and -adequate groups. The thiobarbituric acid (TBA) values in the liver homogenate and the S-9 fraction were increased correspondingly by increasing dose levels of AL, and the increases were repressed in the pantethine-excess group. PMID:1880633

  1. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  2. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6.

    PubMed

    Zhang, Zhongqin; Shrestha, Jay; Tateda, Chika; Greenberg, Jean T

    2014-08-01

    ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses. PMID:24923602

  3. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  4. Antiepileptic Potential of Matrine via Regulation the Levels of Gamma-Aminobutyric Acid and Glutamic Acid in the Brain

    PubMed Central

    Xiang, Jun; Jiang, Yugang

    2013-01-01

    Our present study aimed to determine the antiepileptic activity of matrine, and explore the possible molecular mechanism. To evaluate the antiepileptic activity of matrine, seizures in mice induced by PTZ and MES were established, then the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests in mice were also carried out. For the molecular mechanism investigations, contents of aspartic acid (Asp), gamma-aminobutyric acid (GABA), glutamic acid (Glu), glycine (Gly) in seizures mice were determined; then, the chronic seizures rats induced by PTZ were prepared, and western blotting was used to determine the expressions of GAD 65, GABAA and GABAB in the brains. In the results, matrine showed significant antiepileptic effects on seizures mice induced by MES and PTZ. Moreover, the pentobarbital sodium-induced anaesthetizing time and locomotor activity tests were also demonstrated that matrine had obvious antiepileptic effects. Additionally, our results revealed that after treatment with matrine, contents of GABA can be elevated, and the contents of Glu were obviously decreased. Furthermore, western blotting revealed that the mechanism regarding the antiepileptic effect of may be related to the up-regulations of GAD 65 and GABAA in the brain. Collectively, we suggested that matrine can be developed as an effective antiseptic drug. PMID:24317434

  5. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities. PMID:20614900

  6. [Possible role of altered levels of plasma docosahexaenoic acid in the pathogenesis of retinitis pigmentosa. Preliminary results].

    PubMed

    Simonelli, F; Milone, A; Iura, A; Picardi, C; La Banca, A M; Cotticelli, L; Rinaldi, E

    1990-09-01

    Plasma samples obtained from Retinitis Pigmentosa (R.P.) patients and controls were assayed for docosahexaenoic acid (DXA), the major fatty acid in photoreceptor cells, in order to evaluate the possibility that abnormalities in PUFA metabolism could be involved in R.P. pathogenesis. Our preliminary results show levels of plasma DXA in dominantly inherited R.P. lower than in the recessive forms and controls. PMID:2149985

  7. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules

    PubMed Central

    2014-01-01

    Background Soybean (Glycine max) seeds are the primary source of edible oil in the United States. Despite its widespread utility, soybean oil is oxidatively unstable. Until recently, the majority of soybean oil underwent chemical hydrogenation, a process which also generates trans fats. An alternative to chemical hydrogenation is genetic modification of seed oil through identification and introgression of mutant alleles. One target for improvement is the elevation of a saturated fat with no negative cardiovascular impacts, stearic acid, which typically constitutes a minute portion of seed oil (~3%). Results We examined radiation induced soybean mutants with moderately increased stearic acid (10-15% of seed oil, ~3-5 X the levels in wild-type soybean seeds) via comparative whole genome hybridization and genetic analysis. The deletion of one SACPD isoform encoding gene (SACPD-C) was perfectly correlated with moderate elevation of seed stearic acid content. However, SACPD-C deletion lines were also found to have altered nodule fatty acid composition and grossly altered morphology. Despite these defects, overall nodule accumulation and nitrogen fixation were unaffected, at least under laboratory conditions. Conclusions Although no yield penalty has been reported for moderate elevated seed stearic acid content in soybean seeds, our results demonstrate that genetic alteration of seed traits can have unforeseen pleiotropic consequences. We have identified a role for fatty acid biosynthesis, and SACPD activity in particular, in the establishment and maintenance of symbiotic nitrogen fixation. PMID:24886084

  8. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  9. Risk factors for suicide among patients with schizophrenia: a cohort study focused on cerebrospinal fluid levels of homovanillic acid and 5-hydroxyindoleacetic acid

    PubMed Central

    Neider, Daniel; Lindström, Leif H; Bodén, Robert

    2016-01-01

    Background The objective of this study was to investigate the association between 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) in cerebrospinal fluid (CSF), bullying, and later suicide among patients with schizophrenia. Methods Ninety-nine patients with schizophrenia were included. Correlations of clinical factors, 5-HIAA and HVA, and later suicide were investigated. Results Twelve patients committed suicide (12%) during a 28-year follow-up period. Later suicide was correlated to bullying in childhood (P=0.02) and a lower quotient of HVA/5-HIAA in CSF (P<0.05). Conclusion Suicide in schizophrenia is related to childhood exposedness and CSF neurotransmitter levels. PMID:27468235

  10. Determination of Critical Point of pO2 Level in the Production of Lactic Acid by Lactobacillus rhamnosus

    NASA Astrophysics Data System (ADS)

    Mel, Maizirwan; Karim, Mohamed Ismail Abdul; Salleh, Mohamad Ramlan Mohamed; Abdullah, Rohane

    The study was conducted to determine the critical point of pO2 level in the production of lactic acid by Lactobacillus rhamnosus. The fermentation process was successfully carried out in laboratory scale fermenter/bioreactor using different pO2 level (the main parameter that significantly affects the growth of L. rhamnosus and lactic acid production) together with two other parameters; the agitation rate and pH. From the result, it was observed that the best production of lactic acid with the concentration of 16.85 g L-1 or 1.68% production yield has been obtained at the operating parameters of 5% pO2 level, agitation speed of 100 rpm and sample pH 6. The critical point of pO2 was found to be between 5 and 10%.

  11. Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test.

    PubMed

    Schauder, P; Matthaei, D; Henning, H V; Scheler, F; Langenbeck, U

    1981-08-01

    The effect of an oral glucose tolerance test (oGTT) on serum levels of branched-chain keto acids (BCKA), i.e. alpha-keto-isocaproic acid (KICA), alpha-keto-isovaleric acid (KIVA) and alpha-keto-beta methyl-n-valeric acid (KMVA) as well as on serum insulin, C-peptide and blood glucose levels was determined in uremic patients and in healthy control subjects. In controls, blood levels of KICA, KMVA and KIVA declined significantly following oral administration of 100 glucose. In uremic patients no decline of KICA was observed. The fall of KMVA was diminished, while suppression of KIVA blood levels in response to the oGGT remained unimpaired. Although serum insulin and C-peptide levels in uremic patients were not significantly different from the controls before and throughout the oGTT, six out of eight displayed abnormal glucose tolerance. It is suggested that the response of blood BCKA levels to an oGTT is altered in uremia, an abnormality restricted primarily to KICA and possibly explained by insulin antagonism and/or by insufficient insulin secretion. PMID:7021997

  12. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios. PMID:24035981

  13. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish

    PubMed Central

    Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.

    2011-01-01

    SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739

  14. Acute Effects of Lysergic Acid Diethylamide on Circulating Steroid Levels in Healthy Subjects.

    PubMed

    Strajhar, P; Schmid, Y; Liakoni, E; Dolder, P C; Rentsch, K M; Kratschmar, D V; Odermatt, A; Liechti, M E

    2016-03-01

    Lysergic acid diethylamide (LSD) is a serotonin 5-hydroxytryptamine-2A (5-HT2A ) receptor agonist that is used recreationally worldwide. Interest in LSD research in humans waned after the 1970s, although the use of LSD in psychiatric research and practice has recently gained increasing attention. LSD produces pronounced acute psychedelic effects, although its influence on plasma steroid levels over time has not yet been characterised in humans. The effects of LSD (200 μg) or placebo on plasma steroid levels were investigated in 16 healthy subjects using a randomised, double-blind, placebo-controlled, cross-over study design. Plasma concentration-time profiles were determined for 15 steroids using liquid-chromatography tandem mass-spectrometry. LSD increased plasma concentrations of the glucocorticoids cortisol, cortisone, corticosterone and 11-dehydrocorticosterone compared to placebo. The mean maximum concentration of LSD was reached at 1.7 h. Mean peak psychedelic effects were reached at 2.4 h, with significant alterations in mental state from 0.5 h to > 10 h. Mean maximal concentrations of cortisol and corticosterone were reached at 2.5 h and 1.9 h, and significant elevations were observed 1.5-6 h and 1-3 h after drug administration, respectively. LSD also significantly increased plasma concentrations of the androgen dehydroepiandrosterone but not other androgens, progestogens or mineralocorticoids compared to placebo. A close relationship was found between plasma LSD concentrations and changes in plasma cortisol and corticosterone and the psychotropic response to LSD, and no clockwise hysteresis was observed. In conclusion, LSD produces significant acute effects on circulating steroids, especially glucocorticoids. LSD-induced changes in circulating glucocorticoids were associated with plasma LSD concentrations over time and showed no acute pharmacological tolerance. PMID:26849997

  15. Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns.

    PubMed

    Cariou, Ronan; Veyrand, Bruno; Yamada, Ami; Berrebi, Alain; Zalko, Daniel; Durand, Sophie; Pollono, Charles; Marchand, Philippe; Leblanc, Jean-Charles; Antignac, Jean-Philippe; Le Bizec, Bruno

    2015-11-01

    One major concern regarding perfluoroalkyl acids (PFAAs) is their potential role in onset of health troubles consecutive to early exposure during the perinatal period. In the present work, the internal exposure levels of 18 targeted PFAAs were determined in ca. 100 mother-newborn pairs recruited in France between 2010 and 2013. In serum, the cumulated concentrations of the 7 most frequently detected compounds were 5.70ng/mL and 2.83ng/mL (median values) in maternal and cord serum, respectively. Perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexylesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) contributed to around 90% of the total PFAAs contamination, with concentration levels and contamination profiles in accordance with other published work in Europe. Levels measured in breast milk were far lower (20 to 150 fold) than those determined in serum. Associations between the different monitored substances as well as between levels determined in the different investigated biological matrices mostly do not appear statistically significant. The estimated materno-foetal transfer would be thus substance-dependant, mainly driven by the physico-chemical properties of the different PFAAs (nature of polar group and length of alkylated side chain). We conclude that trans-placental passage and breastfeeding are both significant routes of human exposure to PFAAs. PMID:26232143

  16. Life evaluation of valve-regulated lead-acid batteries for load-leveling applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Miller, J. F.; Webster, C. E.; Hogrefe, R. L.

    Argonne National Laboratory (ANL) has initiated a test program to evaluate the suitability of valve-regulated lead-acid (VRLA) batteries for use in deep-discharge cycling applications. The program includes the examination of VRLA batteries of the gelled-electrolyte design and the absorbed-electrolyte type. This work is sponsored by the Electric Power Research Institute (EPRI) and the International Lead Zinc Research Organization (ILZRO). While VRLA batteries have found use in standby and uninterruptable power source applications, insufficient data are available to determine their performance and life in repetitive cycling applications. The objectives of the ANL test plan are: (1) to use accelerated testing techniques to obtain evidence within a 6 month test period that indicate an expected life in a utility operating environment; (2) to determine VRLA battery life within a 2 to 3 year time period under conditions (temperature and depth-of-discharge) that closely simulate those encountered in load-leveling operations; and (3) to assess the applicability and usefulness of accelerated testing procedures for deep-discharge cycling applications.

  17. Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy.

    PubMed

    Hadera, Mussie G; Smeland, Olav B; McDonald, Tanya S; Tan, Kah Ni; Sonnewald, Ursula; Borges, Karin

    2014-04-01

    Triheptanoin, the triglyceride of heptanoate, is anticonvulsant in various epilepsy models. It is thought to improve energy metabolism in the epileptic brain by re-filling the tricarboxylic acid (TCA) cycle with C4-intermediates (anaplerosis). Here, we injected mice with [1,2-(13) C]glucose 3.5-4 weeks after pilocarpine-induced status epilepticus (SE) fed either a control or triheptanoin diet. Amounts of metabolites and incorporations of (13) C were determined in extracts of cerebral cortices and hippocampal formation and enzyme activity and mRNA expression were quantified. The percentage enrichment with two (13) C atoms in malate, citrate, succinate, and GABA was reduced in hippocampal formation of control-fed SE compared with control mice. Except for succinate, these reductions were not found in triheptanoin-fed SE mice, indicating that triheptanoin prevented a decrease of TCA cycle capacity. Compared to those on control diet, triheptanoin-fed SE mice showed few changes in most other metabolite levels and their (13) C labeling. Reduced pyruvate carboxylase mRNA and enzyme activity in forebrains and decreased [2,3-(13) C]aspartate amounts in cortex suggest a pyruvate carboxylation independent source of C-4 TCA cycle intermediates. Most likely anaplerosis was kept unchanged by carboxylation of propionyl-CoA derived from heptanoate. Further studies are proposed to fully understand triheptanoin's effects on neuroglial metabolism and interaction. PMID:24236946

  18. Blood Lead Levels and Health Problems of Lead Acid Battery Workers in Bangladesh

    PubMed Central

    Ahmad, Sk. Akhtar; Khan, Manzurul Haque; Khandker, Salamat; Sarwar, A. F. M.; Yasmin, Nahid; Faruquee, M. H.; Yasmin, Rabeya

    2014-01-01

    Introduction. Use of lead acid battery (LAB) in Bangladesh has risen with sharp rise of motor vehicles. As result, manufacture of LAB is increasing. Most of the lead used by these industries comes from recycling of LAB. Workers in LAB industry are at risk of exposure lead and thus development of lead toxicity. Objective. The objective of this study was to measure the blood lead concentration and to assess the magnitude of health problems attributable to lead toxicity among the LAB manufacturing workers. Methods. A cross-sectional study was conducted among the workers of LAB manufacturing industries located in Dhaka city. Result. Mean blood lead level (BLL) among the workers was found to be high. They were found to be suffering from a number of illnesses attributable to lead toxicity. The common illnesses were frequent headache, numbness of the limbs, colic pain, nausea, tremor, and lead line on the gum. High BLL was also found to be related to hypertension and anemia of the workers. Conclusion. High BLL and illnesses attributable to lead toxicity were prevalent amongst workers of the LAB manufacturing industries, and this requires attention especially in terms of occupational hygiene and safety. PMID:24707223

  19. Influence of Dietary Selenium Species on Selenoamino Acid Levels in Rainbow Trout.

    PubMed

    Godin, Simon; Fontagné-Dicharry, Stéphanie; Bueno, Maïté; Tacon, Philippe; Prabhu, Philip Antony Jesu; Kaushik, Sachi; Médale, Françoise; Bouyssiere, Brice

    2015-07-22

    Two forms of selenium (Se) supplementation of fish feeds were compared in two different basal diets. A 12-week feeding trial was performed with rainbow trout fry using either a plant-based or a fish meal-based diet. Se yeast and selenite were used for Se supplementation. Total Se and Se speciation were determined in both diets and whole body of trout fry using inductively coupled plasma mass spectrometry (ICP MS) and high-performance liquid chromatography (HPLC). The two selenoamino acids, selenomethionine (SeMet) and selenocysteine (SeCys), were determined in whole body of fry after enzymatic digestion using protease type XIV with a prior derivatization step in the case of SeCys. The plant-based basal diet was found to have a much lower total Se than the fish meal-based basal diet with concentrations of 496 and 1222 μg(Se) kg(-1), respectively. Dietary Se yeast had a higher ability to raise whole body Se compared to selenite. SeMet concentration in the fry was increased only in the case of Se yeast supplementation, whereas SeCys levels were similar at the end of the feeding trial for both Se supplemented forms. The results show that the fate of dietary Se in fry is highly dependent on the form brought through supplementation and that a plant-based diet clearly benefits from Se supplementation. PMID:26161943

  20. Trifluoroacetic Acid Level in the Atmosphere of Beijing and Its Relationship with PM2.5

    NASA Astrophysics Data System (ADS)

    Guo, Junyu; Zhang, Jianbo

    2016-04-01

    Atmospheric concentrations of Trifluoroacetic Acid (TFA), one of the main degradation products of HCFC-123, HCFC-124 and HFC-134a, were detected in Beijing, China between 2013 and 2014. By analyzing the 137 atmospheric samples, the results showed that the annual mean atmospheric concentration of TFA was 1459±223 pg•m-3. TFA was mainly distributed in gaseous phase, for the concentration was 1396±225 pg•m-3, while that in particle phase was 62±8 pg•m-3. Considering the frequent occurrence of hazy weather in Beijing, the relationship between TFA and PM2.5 in atmosphere was analyzed. The correlation analysis shows that the proportion of particle phase in atmosphere concentration of TFA and mass concentration of PM2.5 are positively correlated with each other (P<0.001), indicating the particles have an absorption effect on TFA. At the same time, when mass concentration of PM2.5 in atmosphere is high, atmospheric concentration of TFA is relatively low. According to the correlation analysis, mass concentration of PM2.5 and atmospheric concentration of TFA are negatively correlated with each other (P=0.005). The main reason is very likely that particle's extinction for light can be enhanced as particle level rises, which causes TFA precursors photolysis to weaken. The results indicate that PM2.5 has a significant impact on TFA.

  1. Serum Uric Acid Level Predicts Progression of IgA Nephropathy in Females but Not in Males

    PubMed Central

    Shoji, Tatsuya; Shinzawa, Maki; Hasuike, Yukiko; Nagatoya, Katsuyuki; Yamauchi, Atsushi; Hayashi, Terumasa; Kuragano, Takayuki; Moriyama, Toshiki; Isaka, Yoshitaka; Nakanishi, Takeshi

    2016-01-01

    Background Immunoglobulin A nephropathy (IgAN) is one of most common forms of glomerulonephritis. At this point, the clinical impact of hyperuricemia on IgAN is not clear. The aim of the present study was to explore the clinical impact of hyperuricemia on the progression of IgAN. Study Design Multicenter retrospective cohort study. Setting & Participants 935 IgAN patients who were diagnosed by kidney biopsy at Osaka University Hospital, Osaka General Hospital, and Osaka Rosai Hospital. were included in this study. Predictor Uric acid levels at renal biopsy. Outcomes The outcome of interest was the time from the kidney biopsy to the time when a 50% increase in the baseline serum creatinine level was observed, which was defined as "progression". Measurements The baseline characteristics according to the kidney biopsy at the time of diagnosis were collected from the medical records, and included age, gender, body mass index, hypertension, diabetes (use of antidiabetic drugs), serum levels of creatinine, urinary protein, smoking status, RAAS blockers and steroid therapy. Results An elevated serum uric acid level was an independent risk factor for progression in female patients (per 1.0 mg/dL, multivariate-adjusted incident rate ratio 1.33 [95% confidence interval 1.07, 1.64], P = 0.008) but not in male patients (1.02 [0.81, 1.29], P = 0.855). To control a confounding effect of renal function on an association between serum uric acid level and progression in female patients, age- and serum creatinine-matched and propensity score-matched analyses were performed, and these results also supported the effect by uric acid on kidney disease progression independent of basal kidney function. Limitations A cohort analyzed retorospectively. Conclusions This study revealed that an elevated uric acid level was an independent risk factor for ESKD in female IgAN patients. Therefore, uric acid might be a treatable target in female IgAN patients. PMID:27560997

  2. Intensive lifestyle intervention provides rapid reduction of serum fatty acid levels in women with severe obesity without lowering omega-3 to unhealthy levels.

    PubMed

    Lin, C; Andersen, J R; Våge, V; Rajalahti, T; Mjøs, S A; Kvalheim, O M

    2016-08-01

    Serum fatty acid (FA) levels were monitored in women with severe obesity during intensive lifestyle intervention. At baseline, total FA levels and most individual FAs were elevated compared to a matching cohort of normal and overweight women (healthy controls). After 3 weeks of intensive lifestyle intervention, total level was only 11-12% higher than in the healthy controls and with almost all FAs being significantly lower than at baseline, but with levels of omega-3 being similar to the healthy controls. This is contrary to observations for patients subjected to bariatric surgery where omega-3 levels dropped to levels significantly lower than in the lifestyle patients and healthy controls. During the next 3 weeks of treatment, the FA levels in lifestyle patients were unchanged, while the weight loss continued at almost the same rate as in the first 3 weeks. Multivariate analysis revealed that weight loss and change of serum FA patterns were unrelated outcomes of the intervention for lifestyle patients. For bariatric patients, these processes were associated probably due to reduced dietary input and increased input from the patients' own fat deposits, causing a higher rate of weight loss and simultaneous reduction of the ratio of serum eicosapentaenoic to arachidonic acid. PMID:27334055

  3. The effect of humic acids on the element release from high level waste glass

    SciTech Connect

    Wei, J.; Van Iseghem, P.

    1997-12-31

    Eu and Am doped glasses were interacted with synthetic interstitial clay water (SiC) and corresponding reference leachant, humic acids free interstitial solution (IS) to investigate the influence of humic acids on the leaching behavior of the waste glass. Static leach tests were carried out at 40 C and 90 C. The release of the lanthanide Eu and the actinide Am from the glass was obviously enhanced by the presence of humic acids. The leaching of transition elements, Fe and Ti strongly depends on the humic acids concentration. The leaching of glass matrix components, Al and B was also influenced by the concentrations of humic acids. However, humic acids have little effect on the leaching of glass matrix element Si.

  4. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVEHIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    SciTech Connect

    Ketusky, E

    2008-07-11

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned.

  5. Dataset on inflammatory proteins expressions and sialic acid levels in apolipoprotein E-deficient mice with administration of N-acetylneuraminic acid and/or quercetin.

    PubMed

    Dong, Rongrong; Li, Fahui; Qin, Shucun; Wang, Yi; Si, Yanhong; Xu, Xuelian; Tian, Hua; Zhai, Lei; Zhang, Guangjie; Li, Yongjun; Zhou, Yawei; Zhang, Ying; Zhang, Nan; Guo, Shoudong

    2016-09-01

    The data presented in this article describe an effect of N-acetylneuraminic acid and/or quercetin on the inflammatory proteins expressions (TNF-α, ICAM-1, VCAM-1 and MOMA-2) and the N-acetylneuraminic acid (NANA) levels of apolipoprotein E-deficient mice that are given a high-fat diet. Protein expression was performed by immunohistochemical imaging and NANA was quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) or semi-quantified using Image-Pro Plus software after ligation with fluorescein-5-thiosemicarbazide (FTSC). Further interpretation and discussion could be found at our research article entitled "Exogenous supplement of N-acetylneuraminic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice" (Guo et al., 2016) [1]. PMID:27419199

  6. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    PubMed

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-01

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles. PMID:26061529

  7. Number of SA Astronomy Researchers

    NASA Astrophysics Data System (ADS)

    Glass, I. S.

    2015-12-01

    The SA professional astronomical community has grown enormously in recent years with the advent of SALT, SKA/MeerKAT/KAT and HESS (Namibia). In this article I have made an attempt to list the people involved, namely those with doctorates working in fields of astronomy and related technologies, cosmic rays, cosmology and space science.

  8. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    PubMed

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress. PMID:25205121

  9. The antiepileptic drug valproic acid and other medium-chain fatty acids acutely reduce phosphoinositide levels independently of inositol in Dictyostelium

    PubMed Central

    Chang, Pishan; Orabi, Benoit; Deranieh, Rania M.; Dham, Manik; Hoeller, Oliver; Shimshoni, Jakob A.; Yagen, Boris; Bialer, Meir; Greenberg, Miriam L.; Walker, Matthew C.; Williams, Robin S. B.

    2012-01-01

    SUMMARY Valproic acid (VPA) is the most widely prescribed epilepsy treatment worldwide, but its mechanism of action remains unclear. Our previous work identified a previously unknown effect of VPA in reducing phosphoinositide production in the simple model Dictyostelium followed by the transfer of data to a mammalian synaptic release model. In our current study, we show that the reduction in phosphoinositide [PtdInsP (also known as PIP) and PtdInsP2 (also known as PIP2)] production caused by VPA is acute and dose dependent, and that this effect occurs independently of phosphatidylinositol 3-kinase (PI3K) activity, inositol recycling and inositol synthesis. In characterising the structural requirements for this effect, we also identify a family of medium-chain fatty acids that show increased efficacy compared with VPA. Within the group of active compounds is a little-studied group previously associated with seizure control, and analysis of two of these compounds (nonanoic acid and 4-methyloctanoic acid) shows around a threefold enhanced potency compared with VPA for protection in an in vitro acute rat seizure model. Together, our data show that VPA and a newly identified group of medium-chain fatty acids reduce phosphoinositide levels independently of inositol regulation, and suggest the reinvestigation of these compounds as treatments for epilepsy. PMID:21876211

  10. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and gamma-aminobutyric acid (GABA) metabolism in the mouse.

    PubMed

    Nau, H; Löscher, W

    1982-03-01

    The slow onset and carry-over effect of valproic acid (VPA) therapy observed in some clinical as well as experimental animal studies have been examined by parallel pharmacokinetic and pharmacological investigations in a mouse model. VPA was rapidly transferred into brain and was cleared from that tissue with rates which exceeded plasma clearance rates. Of several VPA metabolites present in plasma, only one could be found in the brain: 2-propyl-2-pentenoic acid. This metabolite was cleared from plasma and from brain slower than the parent drug. gamma-Aminobutyric acid (GABA) concentrations were increased within 15 min after VPA injection and remained significantly elevated for at least 8 h. A similar time course was found in regard to the increase of the electroconvulsive threshold (maximal seizures) induced by VPA administration. The activity of glutamic acid decarboxylase rose parallel to the elevation of brain GABA levels, whereas the activity of GABA aminotransferase was not affected. Whereas the rapid onset of the effect on electroconvulsive threshold and on GABA metabolism can be explained by the rapid entrance of VPA into brain, the carry-over effects observed correlated with the kinetics of the metabolite 2-propyl-2-pentenoic acid better than with those of VPA due to the persistence of this metabolite in brain. PMID:6801254

  11. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings.

    PubMed

    Nordström, A C; Jacobs, F A; Eliasson, L

    1991-07-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by (1)H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  12. Hydrogen Peroxide Is a Second Messenger in the Salicylic Acid-Triggered Adventitious Rooting Process in Mung Bean Seedlings

    PubMed Central

    Yang, Wei; Zhu, Changhua; Ma, Xiaoling; Li, Guijun; Gan, Lijun; Ng, Denny; Xia, Kai

    2013-01-01

    In plants, salicylic acid (SA) is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR) and hypertensive response (HR). SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF) in mung bean (Phaseolus radiatus L) hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2) were also elucidated. Pretreatment of mung bean explants with N, N’-dimethylthiourea (DMTU), a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI), a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings. PMID:24386397

  13. Childrens' Learning and Behaviour and the Association with Cheek Cell Polyunsaturated Fatty Acid Levels

    ERIC Educational Resources Information Center

    Kirby, A.; Woodward, A.; Jackson, S.; Wang, Y.; Crawford, M. A.

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs),…

  14. Chicoric Acid Levels in Commercial Basil (Ocimum basilicum) and Echinacea purpurea Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we reported fresh basil (Ocimum basilicum) leaves contain chicoric acid, which is the principal phenolic compound in Echinacea purpurea and purportedly an active ingredient in dietary supplements derived from E. purpurea. Here we present the results from a study evaluating chicoric acid co...

  15. ZAP1-mediated modulation of triacylglycerol levels in yeast by transcriptional control of mitochondrial fatty acid biosynthesis.

    PubMed

    Singh, Neelima; Yadav, Kamlesh Kumar; Rajasekharan, Ram

    2016-04-01

    The transcriptional activator Zap1p maintains zinc homeostasis in Saccharomyces cerevisiae. In this study, we examined the role of Zap1p in triacylglycerol (TAG) metabolism. The expression of ETR1 is reduced in zap1Δ. The altered expression of ETR1 results in reduced mitochondrial fatty acid biosynthesis and reduction in lipoic acid content in zap1Δ. The transcription factor Zap1 positively regulates ETR1 expression. Deletion of ETR1 also causes the accumulation of TAG, and the introduction of ETR1 in zap1Δ strain rescues the TAG level. These results demonstrated that the compromised mitochondrial fatty acid biosynthesis causes a reduction in lipoic acid and loss of mitochondrial function in zap1Δ. Functional mitochondria are required for the ATP production and defect in mitochondria slow down the process which may channeled carbon towards lipid biosynthesis and stored in the form of TAG. PMID:26711224

  16. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt.

    PubMed

    Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

    2011-09-14

    Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ∼5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer. PMID:21819143

  17. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    NASA Astrophysics Data System (ADS)

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    Sources, composition and occurrence of secondary organic aerosols (SOA) in the Arctic were investigated at Zeppelin Mountain, Svalbard, and Station Nord, northeast Greenland, during the full annual cycle of 2008 and 2010 respectively. We focused on the speciation of three types of SOA tracers: organic acids, organosulfates and nitrooxy organosulfates from both anthropogenic and biogenic precursors, here presenting organosulfate concentrations and compositions during a full annual cycle and chemical speciation of organosulfates in Arctic aerosols for the first time. Aerosol samples were analysed using High Performance Liquid Chromatography coupled to a quadrupole Time-of-Flight mass spectrometer (HPLC-q-TOF-MS). A total of 11 organic acids (terpenylic acid, benzoic acid, phthalic acid, pinic acid, suberic acid, azelaic acid, adipic acid, pimelic acid, pinonic acid, diaterpenylic acid acetate (DTAA) and 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA)), 12 organosulfates and one nitrooxy organosulfate were identified at the two sites. Six out of the 12 organosulfates are reported for the first time. Concentrations of organosulfates follow a distinct annual pattern at Station Nord, where high concentration were observed in late winter and early spring, with a mean total concentration of 47 (±14) ng m-3, accounting for 7 (±2)% of total organic matter, contrary to a considerably lower organosulfate mean concentration of 2 (±3) ng m-3 (accounting for 1 (±1)% of total organic matter) observed during the rest of the year. The organic acids followed the same temporal trend as the organosulfates at Station Nord; however the variations in organic acid concentrations were less pronounced, with a total mean organic acid concentration of 11.5 (±4) ng m-3 (accounting for 1.7 (±0.6)% of total organic matter) in late winter and early spring, and 2.2 (±1) ng m-3 (accounting for 0.9 (±0.4)% of total organic matter) during the rest of the year. At Zeppelin Mountain

  18. Monitoring of ppm level humic acid in surface water using ZnO-chitosan nano-composite as fluorescence probe

    NASA Astrophysics Data System (ADS)

    Basumallick, Srijita; Santra, Swadeshmukul

    2015-05-01

    Surface water contains natural pollutants humic acid (HA) and fulvic acid at ppm level which form carcinogenic chloro-compounds during chlorination in water treatment plants. We report here synthesis of ZnO-chitosan (CS) nano-composites by simple hydrothermal technique and examined their application potential as fluorescent probe for monitoring ppm level HA. These ZnO-CS composites have been characterized by HRTEM, EDX, FTIR, AFM and Fluorescence Spectra. HRTEM images show the formation of ZnO-CS nano-composites of average diameter of 50-250 nm. Aqueous dispersions of these nano-composites show fluorescence emission at 395 nm when excited at 300 nm which is strongly quenched by ppm level HA indicating their possible use in monitoring ppm level HA present in surface water.

  19. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid

    PubMed Central

    Zheng, Xiao-yu; Zhou, Mian; Yoo, Heejin; Pruneda-Paz, Jose L.; Spivey, Natalie Weaver; Kay, Steve A.; Dong, Xinnian

    2015-01-01

    The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-LIKE 9 (NTL9) and CCA1 HIKING EXPEDITION (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, PHYTOALEXIN-DEFICIENT 4 (PAD4) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators CALMODULIN BINDING PROTEIN 60g (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production. PMID:26139525

  20. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives.

    PubMed

    Choi, Hyong Woo; Tian, Miaoying; Manohar, Murli; Harraz, Maged M; Park, Sang-Wook; Schroeder, Frank C; Snyder, Solomon H; Klessig, Daniel F

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA's multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson's drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  1. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  2. Shallow hypothermia depends on the level of fatty acid unsaturation in adipose and liver tissues in a tropical heterothermic primate.

    PubMed

    Vuarin, Pauline; Henry, Pierre-Yves; Guesnet, Philippe; Alessandri, Jean-Marc; Aujard, Fabienne; Perret, Martine; Pifferi, Fabien

    2014-07-01

    Optimal levels of unsaturated fatty acids have positive impacts on the use of prolonged bouts of hypothermia in mammalian hibernators, which generally have to face low winter ambient temperatures. Unsaturated fatty acids can maintain the fluidity of fat and membrane phospholipids at low body temperatures. However, less attention has been paid to their role in the regulation of shallow hypothermia, and in tropical species, which may be challenged more by seasonal energetic and/or water shortages than by low temperatures. The present study assessed the relationship between the fatty acids content of white adipose and liver tissues and the expression of shallow hypothermia in a tropical heterothermic primate, the gray mouse lemur (Microcebus murinus). The adipose tissue is the main tissue for fat storage and the liver is involved in lipid metabolism, so both tissues were expected to influence hypothermia dependence on fatty acids. As mouse lemurs largely avoid deep hypothermia (i.e. torpor) use under standard captive conditions, the expression of hypothermia was triggered by food-restricting experimental animals. Hypothermia depth increased with time, with a stronger increase for individuals that exhibited higher contents of unsaturated fatty acids suggesting that they were more flexible in their use of hypothermia. However these same animals delayed the use of long hypothermia bouts relative to individuals with a higher level of saturated fatty acids. This study evidences for the first time that body fatty acids unsaturation levels influence the regulation of body temperature not only in cold-exposed hibernators but also in tropical, facultative heterotherms. PMID:24956961

  3. Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level.

    PubMed

    Bahrami, Soroush Alaghehband; Bakhtiari, Nuredin

    2016-08-01

    We previously reported that Ursolic Acid (UA) ameliorates skeletal muscle performance through satellite cells proliferation and cellular energy status. In studying the potential role of the hypothalamus in aging, we developed a strategy to pursue UA effects on the hypothalamus anti-aging proteins such as; SIRT1, SIRT6, PGC-1β and α-Klotho. In this study, we used a model of aging animals (C57BL/6). UA dissolved in Corn oil (20mg/ml) and then administrated (200mg/Kg i.p injection) to mice, twice daily for 7days. After treatment times, the mice perfused and the hypothalamus isolated for preparing of tissue to Immunofluorescence microscopy. The data illustrated that UA significantly increased SIRT1 (∼3.5±0.3 folds) and SIRT-6 (∼1.5±0.2 folds) proteins overexpression (P<0.001). In addition, our results showed that UA enhanced α-Klotho (∼3.3±0.3) and PGC-1β (∼2.6±0.2 folds) proteins levels (P<0. 01). In this study, data were analyzed using SPSS 16 (ANOVA test). To the best of our knowledge, it seems that UA through enhancing of anti-aging biomarkers (SIRT1 and SIRT6) and PGC-1β in hypothalamus regulates aging-process and attenuates mitochondrial-related diseases. In regard to the key role of α-Klotho in aging, our data indicate that UA may be on the horizon to forestall diseases of aging. PMID:27470332

  4. The electronic origin and vibrational levels of the first excited singlet state of isocyanic acid (HNCO)

    SciTech Connect

    Berghout, H. Laine; Crim, F. Fleming; Zyrianov, Mikhail; Reisler, Hanna

    2000-04-15

    The combination of vibrationally mediated photofragment yield spectroscopy, which excites molecules prepared in single vibrational states, and multiphoton fluorescence spectroscopy, which excites molecules cooled in a supersonic expansion, provides detailed information on the energetics and vibrational structure of the first excited singlet state (S{sub 1}) of isocyanic acid (HNCO). Dissociation of molecules prepared in individual vibrational states by stimulated Raman excitation probes vibrational levels near the origin of the electronically excited state. Detection of fluorescence from dissociation products formed by multiphoton excitation through S{sub 1} of molecules cooled in a supersonic expansion reveals the vibrational structure at higher energies. Both types of spectra show long, prominent progressions in the N-C-O bending vibration built on states with different amounts of N-C stretching excitation and H-N-C bending excitation. Analyzing the spectra locates the origin of the S{sub 1} state at 32 449{+-}20 cm{sup -1} and determines the harmonic vibrational frequencies of the N-C stretch ({omega}{sub 3}=1034{+-}20 cm{sup -1}), the H-N-C bend ({omega}{sub 4}=1192{+-}19 cm{sup -1}), and the N-C-O bend ({omega}{sub 5}=599{+-}7 cm{sup -1}), values that are consistent with several ab initio calculations. The assigned spectra strongly suggest that the N-C stretching vibration is a promoting mode for internal conversion from S{sub 1} to S{sub 0}. (c) 2000 American Institute of Physics.

  5. Convulsant and subconvulsant doses of norfloxacin in the presence and absence of biphenylacetic acid alter extracellular hippocampal glutamate but not gamma-aminobutyric acid levels in conscious rats.

    PubMed

    Smolders, I; Gousseau, C; Marchand, S; Couet, W; Ebinger, G; Michotte, Y

    2002-02-01

    Fluoroquinolones are antibiotics with central excitatory side effects. These adverse effects presumably result from inhibition of gamma-aminobutyric acid (GABA) binding to GABA(A) receptors. This GABA antagonistic effect is greatly potentiated by the active metabolite of fenbufen, biphenylacetic acid (BPAA). Nevertheless, it remains questionable whether GABA receptor antagonism alone can explain the convulsant activity potentials of these antimicrobial agents. The present study was undertaken to investigate the possible effects of norfloxacin, both in the absence and in the presence of BPAA, on the extracellular hippocampal levels of GABA and glutamate, the main central inhibitory and excitatory amino acid neurotransmitters, respectively. This in vivo microdialysis approach with conscious rats allows monitoring of behavioral alterations and concomitant transmitter modulation in the hippocampus. Peroral administration of 100 mg of BPAA per kg of body weight had no effect on behavior and did not significantly alter extracellular GABA or glutamate concentrations. Intravenous perfusion of 300 mg of norfloxacin per kg did not change the rat's behavior or the concomitant neurotransmitter levels in about half of the experiments, while the remaining animals exhibited severe seizures. These norfloxacin-induced convulsions did not affect extracellular hippocampal GABA levels but were accompanied by enhanced glutamate concentrations. Half of the rats receiving both 100 mg of BPAA per kg and 50 mg of norfloxacin per kg displayed lethal seizures, while the remaining animals showed no seizure-related behavior. In the latter subgroup, again no significant alterations in extracellular GABA levels were observed, but glutamate overflow remained significantly elevated for at least 3 h. In conclusion, norfloxacin exerts convulsant activity in rats, accompanied by elevations of extracellular hippocampal glutamate levels but not GABA levels, even in the presence of BPAA. PMID:11796360

  6. Convulsant and Subconvulsant Doses of Norfloxacin in the Presence and Absence of Biphenylacetic Acid Alter Extracellular Hippocampal Glutamate but Not Gamma-Aminobutyric Acid Levels in Conscious Rats

    PubMed Central

    Smolders, I.; Gousseau, C.; Marchand, S.; Couet, W.; Ebinger, G.; Michotte, Y.

    2002-01-01

    Fluoroquinolones are antibiotics with central excitatory side effects. These adverse effects presumably result from inhibition of γ-aminobutyric acid (GABA) binding to GABAA receptors. This GABA antagonistic effect is greatly potentiated by the active metabolite of fenbufen, biphenylacetic acid (BPAA). Nevertheless, it remains questionable whether GABA receptor antagonism alone can explain the convulsant activity potentials of these antimicrobial agents. The present study was undertaken to investigate the possible effects of norfloxacin, both in the absence and in the presence of BPAA, on the extracellular hippocampal levels of GABA and glutamate, the main central inhibitory and excitatory amino acid neurotransmitters, respectively. This in vivo microdialysis approach with conscious rats allows monitoring of behavioral alterations and concomitant transmitter modulation in the hippocampus. Peroral administration of 100 mg of BPAA per kg of body weight had no effect on behavior and did not significantly alter extracellular GABA or glutamate concentrations. Intravenous perfusion of 300 mg of norfloxacin per kg did not change the rat's behavior or the concomitant neurotransmitter levels in about half of the experiments, while the remaining animals exhibited severe seizures. These norfloxacin-induced convulsions did not affect extracellular hippocampal GABA levels but were accompanied by enhanced glutamate concentrations. Half of the rats receiving both 100 mg of BPAA per kg and 50 mg of norfloxacin per kg displayed lethal seizures, while the remaining animals showed no seizure-related behavior. In the latter subgroup, again no significant alterations in extracellular GABA levels were observed, but glutamate overflow remained significantly elevated for at least 3 h. In conclusion, norfloxacin exerts convulsant activity in rats, accompanied by elevations of extracellular hippocampal glutamate levels but not GABA levels, even in the presence of BPAA. PMID:11796360

  7. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. PMID:27131397

  8. Production of lipids containing high levels of docosahexaenoic acid from empty palm fruit bunches by Aurantiochytrium sp. KRS101.

    PubMed

    Hong, Won-Kyung; Yu, Anna; Heo, Sun-Yeon; Oh, Baek-Rock; Kim, Chul Ho; Sohn, Jung-Hoon; Yang, Ji-Won; Kondo, Akihiko; Seo, Jeong-Woo

    2013-07-01

    The oleaginous microalga Aurantiochytrium sp. KRS101 was cultivated in enzymatic hydrolysates of alkali-pretreated empty palm fruit bunches (EFBs), without prior detoxification process. The maximal levels of lipid and docosahexaenoic acid synthesized were 12.5 and 5.4 g L⁻¹ after cultivation for 36 h. Similar lipid levels were also obtained via simultaneous saccharification and cultivation. The results suggested that EFB is a promising source for production of useful lipids by the microalgal strain. PMID:23053417

  9. Sialic Acid-Imprinted Fluorescent Core-Shell Particles for Selective Labeling of Cell Surface Glycans.

    PubMed

    Shinde, Sudhirkumar; El-Schich, Zahra; Malakpour, Atena; Wan, Wei; Dizeyi, Nishtman; Mohammadi, Reza; Rurack, Knut; Gjörloff Wingren, Anette; Sellergren, Börje

    2015-11-01

    The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core-shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 10(5) M(-1) in 2% water, 5.9 × 10(3) M(-1) in 98% water, B(max) ≈ 10 μmol g(-1)), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 10(3) M(-1) in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin. PMID:26414878

  10. Effects of conjugated linoleic acid supplementation and feeding level on dairy performance, milk fatty acid composition, and body fat changes in mid-lactation goats.

    PubMed

    Ghazal, S; Berthelot, V; Friggens, N C; Schmidely, P

    2014-11-01

    The objective of this trial was to study the interaction between the supplementation of lipid-encapsulated conjugated linoleic acid (CLA; 4.5 g of cis-9,trans-11 C18:2 and 4.5 g of trans-10,cis-12 C18:2) and feeding level to test if milk performance or milk fatty acid (FA) profile are affected by the interaction between CLA and feeding level. Twenty-four dairy goats were used in an 8-wk trial with a 3-wk adaptation to the experimental ration that contained corn silage, beet pulp, barley, and a commercial concentrate. During the third week, goats were assigned into blocks of 2 goats according to their dry matter intake (DMI), raw milk yield, and fat yield. Each block was randomly allocated to control (45 g of Ca salt of palm oil/d) or CLA treatment. Within each block, one goat was fed to cover 100% (FL100) of the calculated energy requirements and the other was fed 85% of the DMI of the first goat (FL85). Individual milk production and composition were recorded weekly, and milk FA composition was analyzed in wk 3, 5, and 7. Conjugated linoleic acid supplementation reduced milk fat content and fat yield by 17 and 19%, respectively, independent of the feeding level. It reduced both the secretion of milk FA synthesized de novo, and those taken up from the blood. No interaction between CLA and feeding level was observed on milk secretion of any group of FA. The CLA supplementation had no effect on DMI, milk yield, protein, and lactose yields but it improved calculated net energy for lactation balance. Goats fed the FL100 × CLA diet tended to have the highest DMI and protein yield. The interaction between CLA and feeding level was not significant for any other variables. Compared with the goats fed FL100, those fed FL85 had lower DMI, lower net energy for lactation balance, and lower digestible protein in the intestine balance. The body weight; milk yield; milk fat, protein, and lactose yields; and fat, protein, lactose, and urea contents in milk were not affected by

  11. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol.

    PubMed

    Afitlhile, Meshack; Workman, Samantha; Duffield, Kayla; Sprout, Danielle; Berhow, Mark

    2013-12-01

    Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured fatty acid composition and transcript levels of plastid-localized fatty acid desaturases in the wild type and ppi2 mutant. The objective was to evaluate whether the Toc159 receptor was critical in the import of lipid-synthesizing enzymes. The ppi2 mutant accumulated decreased levels of oleic acid (18:1) and α-linolenic acid (18:3). The mutant accumulated drastically reduced amounts of the chloroplast lipid monogalactosyldiacylglycerol (MGDG), which contains more than 80% of 18:3. The expression of genes that encode stearoyl-ACP desaturase and MGD1 synthase were down-regulated in the ppi2 mutant, and this corresponded to decreased levels of 18:1 and MGDG, respectively. We conclude that in the ppi2 mutant the impaired synthesis of MGDG resulted in decreased amounts of 18:3. The mutant however, had a 30-fold increase in fad5 transcript levels; this increase was mirrored by a 16- to 50-fold accumulation of hexadecatrienoic acid (16:3), a fatty acid found exclusively in MGDG. Taken together, these data suggest that the Toc159 receptor is required in the import of stearoyl-ACP desaturase and MGD1 synthase into the chloroplasts. Since the expression of fad5 gene was up-regulated in the ppi2 mutant, we propose that fad5 desaturase is imported into plastids through the atToc132/atToc120 protein import pathway. PMID:24184455

  12. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of protein, on the performance of sows during first and subsequent parity. Sixty-four pregnant gilts with BW of 195.0 ± 2.1 kg and backfat (BF) thickness of 12.9 ± 0.2 ...

  13. Effect of dietary supplementation of omega-3 fatty acids and high levels of dietary protein on performance of sows.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to determine the effect of dietary supplementation of omega-3 fatty acids (O3FA), with or without high levels of dietary protein supplementation, on the performance of sows and their litters during first and subsequent parities. Sixty-four pregnant gilts with body weight (BW...

  14. Method development for liquid chromatographic/triple quadrupole mass spectrometric analysis of trace level perfluorocarboxylic acids in articles of commerce

    EPA Science Inventory

    An analytical method to identify and quantify trace levels of C5 to C12 perfluorocarboxylic acids (PFCAs) in articles of commerce (AOC) is developed and rigorously validated. Solid samples were extracted in methanol, and liquid samples were diluted with a solvent consisting of 60...

  15. Histologic changes in channel catfish, Ictalurus punctatus Rafinesque, fed diets containing graded levels of gossypol-acetic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was performed to evaluate the histologic changes among fingerling channel catfish (Ictalurus punctatus) fed purified diets containing graded levels of gossypol from gossypol–acetic acid. The catfish were maintained on diets with 0, 300, 600, 900, 1200 or 1500 mg gossypol kg-1 diet for 12 we...

  16. Genetic Association Mapping Identifies Single Nucleotide Polymorphisms in Genes that Affect Abscisic Acid Levels in Maize Floral Tissues During Drought

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In maize, development of the female inflorescence and its floral parts is vulnerable to water stress at flowering, which causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basi...

  17. Physiological effects of sublethal levels of acid water on three species of fishes

    SciTech Connect

    Pegg, W.J.

    1984-01-01

    Static toxicity tests revealed the need to assess the effect of acid mine water using some procedure that would gradually increase the concentration of acidity over a period of time. A relatively long-term (2-5 days) experiment involving the devlopment of a sublethal acid treatment gradient was chosen as potentially being the most representative of natural environments which are periodically subjected to changing inputs from coal mine drainage. Since respiratory change is an indication of physiological stress, the measurement of oxygen consumption rate was chosen as the major variable representing the effect of acid waters on fishes. Bluegill sunfish Lepomes macrochirus Rafinesque, pumpkinseed sunfish, Lepomis gibbosus (Linnaeus), and brown bullhead, Ictalurus nebulosus (LeSueur) were collected from the Monongahela River and backwater areas in the region of Morgantown, West Virginia. The sublethal acid water treatments decreased the oxygen consumption rates for brown bullhead and bluegill sunfish, while increasing the oxygen consumption rate for pumpkinseed sunfish. Further, the rhythms of the oxygen consumption rates were generally modified in both frequency and amplitude as a result of exposure to acid water. Acid water treatments also caused negative phase shifts in oxygen consumption rate for brown bullhead sand bluegill sunfish, while positive phase shifts occurred for pumpkinseed sunfish.

  18. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production.

    PubMed

    Song, Hyohak; Lee, Jeong Wook; Choi, Sol; You, Jong Kyun; Hong, Won Hi; Lee, Sang Yup

    2007-12-15

    A capnophilic rumen bacterium Mannheimia succiniciproducens produces succinic acid as a major fermentation end product under CO(2)-rich anaerobic condition. Since succinic acid is produced by carboxylation of C3 compounds during the fermentation, intracellular CO(2) availability is important for efficient succinic acid formation. Here, we investigated the metabolic responses of M. succiniciproducens to the different dissolved CO(2) concentrations (0-260 mM). Cell growth was severely suppressed when the dissolved CO(2) concentration was below 8.74 mM. On the other hand, cell growth and succinic acid production increased proportionally as the dissolved CO(2) concentration increased from 8.74 to 141 mM. The yields of biomass and succinic acid on glucose obtained at the dissolved CO(2) concentration of 141 mM were 1.49 and 1.52 times higher, respectively, than those obtained at the dissolved CO(2) concentration of 8.74 mM. It was also found that the additional CO(2) source provided in the form of NaHCO(3), MgCO(3), or CaCO(3) had positive effects on cell growth and succinic acid production. However, growth inhibition was observed when excessive bicarbonate salts were added. By the comparison of the activities of key enzymes, it was found that PEP carboxylation by PEP carboxykinase (PckA) is the most important for succinic acid production as well as the growth of M. succiniciproducens by providing additional ATP. PMID:17570706

  19. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    PubMed

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato. PMID:26032615

  20. Induction of Benzoic Acid 2-Hydroxylase in Virus-Inoculated Tobacco.

    PubMed Central

    Leon, J.; Yalpani, N.; Raskin, I.; Lawton, M. A.

    1993-01-01

    Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article (N. Yalpani, J. Leon, M.A. Lawton, I. Raskin [1993] Plant Physiol 103: 315-321) shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco (Nicotiana tabacum L. cv Xanthi-nc) catalyze the 2-hydroxylation of BA to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h-1 g-1 fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[deg]C. TMV induction of BA2H activity and SA accumulation were inhibited when inoculated tobacco plants were incubated at 32[deg]C. However, when inoculated plants were incubated for 4 d at 32[deg]C and then transferred to 24[deg]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[deg]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco. PMID:12231939

  1. Linking pattern recognition and salicylic acid responses in Arabidopsis through ACCELERATED CELL DEATH6 and receptors

    PubMed Central

    Tateda, Chika; Zhang, Zhongqin; Greenberg, Jean T

    2015-01-01

    The Arabidopsis membrane protein ACCELERATED CELL DEATH 6 (ACD6) and the defense signal salicylic acid (SA) are part of a positive feedback loop that regulates the levels of at least 2 pathogen-associated molecular patterns (PAMP) receptors, including FLAGELLIN SENSING 2 (FLS2) and CHITIN ELICITOR RECEPTOR (LYSM domain receptor-like kinase 1, CERK1). ACD6- and SA-mediated regulation of these receptors results in potentiation of responses to FLS2 and CERK1 ligands (e.g. flg22 and chitin, respectively). ACD6, FLS2 and CERK1 are also important for callose induction in response to an SA agonist even in the absence of PAMPs. Here, we report that another receptor, EF-Tu RECEPTOR (EFR) is also part of the ACD6/SA signaling network, similar to FLS2 and CERK1. PMID:26442718

  2. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. PMID:24833131

  3. Relationship between Indole-3-Acetic Acid Levels in Apple (Malus pumila Mill) Rootstocks Cultured in Vitro and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid.

    PubMed

    Alvarez, R; Nissen, S J; Sutter, E G

    1989-02-01

    In vitro rooting response and indole-3-acetic acid (IAA) levels were examined in two genetically related dwarfing apple (Malus pumila Mill) rootstocks. M.26 and M.9 were cultured in vitro using Linsmaier-Skoog medium supplemented with benzyladenine (BA), indole-3-butyric acid (IBA), and 1,3,5-trihydroxybenzoic acid (PG). Rooting response was tested in Lepoivre medium supplemented with IBA and PG. IBA concentrations of 12.0 and 4.0 micromolar induced the maximum rooting percentages for M.9 and M.26, respectively. At these concentrations rooting response was 100% for M.26 and 80% for M.9. Free and conjugated IAA levels were determined in M.26 and M.9 shoots prior to root inducing treatment by high performance liquid chromatography with fluorescence detection and validated by gas chromatography-mass spectrometry using (13)[C(6)]IAA as internal standard. Basal sections of M.26 shoots contained 2.8 times more free IAA than similar tissue in M.9 (477.1 +/- 6.5 versus 166.6 +/- 6.7 nanograms per gram fresh weight), while free IAA levels in apical sections of M.26 and M.9 shoots were comparable (298.0 +/- 4.4 versus 263.7 +/- 9.3 nanograms per gram fresh weight). Conjugated IAA levels were significantly higher in M.9 than in M.26 indicating that a greater proportion of total IAA was present as a conjugate in M.9. These data suggest that differences between M.26 and M.9 rooting responses may be related to differences in free IAA levels in the shoot base. PMID:16666562

  4. A new approach for noninvasive transdermal determination of blood uric acid levels

    PubMed Central

    Ching, Congo Tak-Shing; Yong, Kok-Khun; Yao, Yan-Dong; Shen, Huan-Ting; Hsieh, Shiu-Man; Jheng, Deng-Yun; Sun, Tai-Ping; Shieh, Hsiu-Li

    2014-01-01

    The aims of this study were to investigate the most effective combination of physical forces from laser, electroporation, and reverse iontophoresis for noninvasive transdermal extraction of uric acid, and to develop a highly sensitive uric acid biosensor (UAB) for quantifying the uric acid extracted. It is believed that the combination of these physical forces has additional benefits for extraction of molecules other than uric acid from human skin. A diffusion cell with porcine skin was used to investigate the most effective combination of these physical forces. UABs coated with ZnO2 nanoparticles and constructed in an array configuration were developed in this study. The results showed that a combination of laser (0.7 W), electroporation (100 V/cm2), and reverse iontophoresis (0.5 mA/cm2) was the most effective and significantly enhanced transdermal extraction of uric acid. A custom-designed UAB coated with ZnO2 nanoparticles and constructed in a 1×3 array configuration (UAB-1×3-ZnO2) demonstrated enough sensitivity (9.4 μA/mM) for quantifying uric acid extracted by the combined physical forces of laser, electroporation, and RI. A good linear relationship (R2=0.894) was demonstrated to exist between the concentration of uric acid (0.2–0.8 mM) inside the diffusion cell and the current response of the UAB-1×3-ZnO2. In conclusion, a new approach to noninvasive transdermal extraction and quantification of uric acid has been established. PMID:25061289

  5. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  6. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-01-01

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels. PMID:22576912

  7. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006-2015.

    PubMed

    Sprague, M; Dick, J R; Tocher, D R

    2016-01-01

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids. PMID:26899924

  8. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015

    PubMed Central

    Sprague, M.; Dick, J.R.; Tocher, D.R.

    2016-01-01

    As the global population and its demand for seafood increases more of our fish will come from aquaculture. Farmed Atlantic salmon are a global commodity and, as an oily fish, contain a rich source of the health promoting long-chain omega-3 fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Replacing the traditional finite marine ingredients, fishmeal and fish oil, in farmed salmon diets with sustainable alternatives of terrestrial origin, devoid of EPA and DHA, presents a significant challenge for the aquaculture industry. By comparing the fatty acid composition of over 3,000 Scottish Atlantic salmon farmed between 2006 and 2015, we find that terrestrial fatty acids have significantly increased alongside a decrease in EPA and DHA levels. Consequently, the nutritional value of the final product is compromised requiring double portion sizes, as compared to 2006, in order to satisfy recommended EPA + DHA intake levels endorsed by health advisory organisations. Nevertheless, farmed Scottish salmon still delivers more EPA + DHA than most other fish species and all terrestrial livestock. Our findings highlight the global shortfall of EPA and DHA and the implications this has for the human consumer and examines the potential of microalgae and genetically modified crops as future sources of these important fatty acids. PMID:26899924

  9. AquaLite, a bioluminescent label for immunoassay and nucleic acid detection: quantitative analyses at the attomol level

    NASA Astrophysics Data System (ADS)

    Smith, David F.; Stults, Nancy L.

    1996-04-01

    AquaLiteR is a direct, bioluminescent label capable of detecting attomol levels of analyte in clinical immunoassays and assays for the quantitative measurement of nucleic acids. Bioluminescent immunoassays (BIAs) require no radioisotopes and avoid complex fluorescent measurements and many of the variables of indirect enzyme immunoassays (EIAs). AquaLite, a recombinant form of the photoprotein aequorin from a bioluminescent jellyfish, is coupled directly to antibodies to prepare bioluminescent conjugates for assay development. When the AquaLite-antibody complex is exposed to a solution containing calcium ions, a flash of blue light ((lambda) max equals 469 nm) is generated. The light signal is measured in commercially available luminometers that simultaneously inject a calcium solution and detect subattomol photoprotein levies in either test tubes or microtiter plates. Immunometric or 'sandwich' type assays are available for the quantitative measurement of human endocrine hormones and nucleic acids. The AquaLite TSH assay can detect 1 attomol of thyroid stimulating hormone (TSH) in 0.2 mL of human serum and is a useful clinical tool for diagnosing hyperthyroid patients. AquaLite-based nucleic acid detection permits quantifying attomol levels of specific nucleic acid markers and represents possible solution to the difficult problem of quantifying the targets of nucleic acid amplification methods.

  10. Early membrane events induced by salicylic acid in motor cells of the Mimosa pudica pulvinus.

    PubMed

    Saeedi, Saed; Rocher, Françoise; Bonmort, Janine; Fleurat-Lessard, Pierrette; Roblin, Gabriel

    2013-04-01

    Salicylic acid (o-hydroxy benzoic acid) (SA) induced a rapid dose-dependent membrane hyperpolarization (within seconds) and a modification of the proton secretion (within minutes) of Mimosa pudica pulvinar cells at concentrations higher than 0.1mM. Observations on plasma membrane vesicles isolated from pulvinar tissues showed that SA acted directly at the membrane level through a protonophore action as suggested by the inhibition of the proton gradient and the lack of effect on H(+)-ATPase catalytic activity. Comparative data obtained with protonophores (carbonylcyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol) and inhibitors of ATPases (vanadate, N,N'-dicyclohexylcarbodiimide, and diethylstilbestrol) corroborated this conclusion. Consequently, the collapse of the proton motive force led to an impairment in membrane functioning. This impairment is illustrated by the inhibition of the ion-driven turgor-mediated seismonastic reaction of the pulvinus following SA treatment. SA acted in a specific manner as its biosynthetic precursor benzoic acid induced much milder effects and the m- and p-OH benzoic acid derivatives did not trigger similar characteristic effects. Therefore, SA may be considered both a membrane signal molecule and a metabolic effector following its uptake in the cells. PMID:23487303

  11. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  12. Omega-3 Fatty Acid Enriched Chevon (Goat Meat) Lowers Plasma Cholesterol Levels and Alters Gene Expressions in Rats

    PubMed Central

    Rajion, Mohamed Ali; Meng, Goh Yong; Soleimani Farjam, Abdoreza

    2014-01-01

    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression. PMID:24719886

  13. Omega-3 fatty acid enriched chevon (goat meat) lowers plasma cholesterol levels and alters gene expressions in rats.

    PubMed

    Ebrahimi, Mahdi; Rajion, Mohamed Ali; Meng, Goh Yong; Soleimani Farjam, Abdoreza

    2014-01-01

    In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression. PMID:24719886

  14. Serum Metabolomics Reveals Higher Levels of Polyunsaturated Fatty Acids in Lepromatous Leprosy: Potential Markers for Susceptibility and Pathogenesis

    PubMed Central

    Al-Mubarak, Reem; Vander Heiden, Jason; Broeckling, Corey D.; Balagon, Marivic; Brennan, Patrick J.; Vissa, Varalakshmi D.

    2011-01-01

    Background Leprosy is a disease of the skin and peripheral nervous system caused by the obligate intracellular bacterium Mycobacterium leprae. The clinical presentations of leprosy are spectral, with the severity of disease determined by the balance between the cellular and humoral immune response of the host. The exact mechanisms that facilitate disease susceptibility, onset and progression to certain clinical phenotypes are presently unclear. Various studies have examined lipid metabolism in leprosy, but there has been limited work using whole metabolite profiles to distinguish the clinical forms of leprosy. Methodology and Principal Findings In this study we adopted a metabolomics approach using high mass accuracy ultrahigh pressure liquid chromatography mass spectrometry (UPLC-MS) to investigate the circulatory biomarkers in newly diagnosed untreated leprosy patients. Sera from patients having bacterial indices (BI) below 1 or above 4 were selected, subjected to UPLC-MS, and then analyzed for biomarkers which distinguish the polar presentations of leprosy. We found significant increases in the abundance of certain polyunsaturated fatty acids (PUFAs) and phospholipids in the high-BI patients, when contrasted with the levels in the low-BI patients. In particular, the median values of arachidonic acid (2-fold increase), eicosapentaenoic acid (2.6-fold increase) and docosahexaenoic acid (1.6-fold increase) were found to be greater in the high-BI patients. Significance Eicosapentaenoic acid and docosahexaenoic acid are known to exert anti-inflammatory properties, while arachidonic acid has been reported to have both pro- and anti-inflammatory activities. The observed increase in the levels of several lipids in high-BI patients may provide novel clues regarding the biological pathways involved in the immunomodulation of leprosy. Furthermore, these results may lead to the discovery of biomarkers that can be used to investigate susceptibility to infection, facilitate

  15. Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves1[W][OA

    PubMed Central

    Rodríguez, Víctor M.; Chételat, Aurore; Majcherczyk, Paul; Farmer, Edward E.

    2010-01-01

    Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of α -linolenic acid oxygenation and has higher than wild-type levels of the α -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3′(2′), 5′-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3′-phospho-5′-adenosine phosphosulfate to 5′-adenosine phosphosulfate or in a closely related reaction (e.g. 3′,5′-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3′-phospho-5′-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels. PMID:20053710

  16. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice

    PubMed Central

    Jones, Ryan D.; Lopez, Adam M.; Tong, Ernest Y.; Posey, Kenneth S.; Chuang, Jen-Chieh; Repa, Joyce J.; Turley, Stephen D.

    2014-01-01

    Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1−/−mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1−/− mice fed chenodeoxycholic acid (CDCA) at a level of 0.06 % (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA)(>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1−/− and matching Cyp7a1+/+ mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18 days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1−/− mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1+/+ controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition. PMID:25447797

  17. Characterization of an inducible UDP-glucose:salicylic acid O-glucosyltransferase from oat roots

    SciTech Connect

    Yalpani, N.; Schulz, M.; Balke, N.E. )

    1990-05-01

    Phytotoxicity of salicylic acid (SA), a phenolic acid that inhibits ion absorption in plant roots, is reduced in oat roots by the action of a UDP-glucose:SA glucosyltransferase (GTase). GTase activity, extracted from oat roots and assayed with ({sup 14}C)SA, was present at low constitutive levels but increased within 1.5 h of incubation of roots in 0.5 mM SA at pH 6.5. This induction was the result of de novo RNA and protein synthesis. Induction was highly specific towards SA as the inducer. The partially purified, soluble enzyme has a M{sub t} of about 50,000 and high specificity towards UDP-glucose as the sugar donor (K{sub m} = 0.28 mM) and SA as the glucose acceptor (K{sub m} = 0.11 mM). 2-D PAGE of ({sup 35}S)methionine-labeled proteins extracted from induced and uninduced roots revealed a candidate peptide representing the GTase. This peptide was also present on gels of partially purified GTase.

  18. Protocatechuic Acid Levels Discriminate Between Organic and Conventional Wheat from Denmark.

    PubMed

    Weesepoel, Yannick; Heenan, Samuel; Boerrigter-Eenling, Rita; Venderink, Tjerk; Blokland, Marco; van Ruth, Saskia

    2016-01-01

    Organic wheat retails at higher market prices than the conventionally grown counterparts. In view of fair competition and sustainable consumer confidence, the organic nature of organic wheat needs to be assured. Amongst other controls this requires analytical tests based on discriminating traits. In this paper, phenolic acids were examined by liquid chromatography analysis as biomarkers for discriminating between the two groups by means of a controlled grown full factorial design Danish wheat sample set. By combining baseline and retention-time correction pre-treatments and principal component analysis, discrimination between organic and conventional produce was found to be expressed in the first principal component (93%), whilst the second principal component accounted for the production year (4%). Upon examination of the loadings plot, a single chromatographic peak was found to account for a large part in the discrimination between the two wheat production systems. This was further underpinned by statistically significant differences found in concentrations between the organic and conventional production systems of this phenolic acid (ANOVA, P<0.05). The phenolic acid was tentatively identified as protocatechuic acid by negative mode mass spectrometry. The results obtained implied that protocatechuic acid may serve as a single marker for discrimination between organic and conventional produced wheat. PMID:27198816

  19. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  20. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels.

    PubMed

    Lei, Shi; Sun, Run-Zhu; Wang, Di; Gong, Mei-Zhen; Su, Xiang-Ping; Yi, Fei; Peng, Zheng-Wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using (14)C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  1. Determination of uric acid level by polyaniline and poly (allylamine): Based biosensor.

    PubMed

    Wathoni, Nasrul; Hasanah, Aliya Nur; Gozali, Dolih; Wahyuni, Yeni; Fauziah, Lia Layusa

    2014-01-01

    The uric acid biosensor has been much developed by immobilizing uricase enzyme into the membrane of conductive polymer and the membrane of polyelectrolyte such as polyaniline (PANI) and poly (allylamine) (PAA) respectively. The purpose of this research was to create a new amperometric uric acid biosensor by immobilization of uricase in combination between PANI and PAA membranes. The working electrode was Pt plate (0.5 mm). The auxiliary and the reference electrode were Pt wire 0.4 mm and Ag/AgCl respectively. Uricase, uric acid, PAA, pyrrole and glutaraldehyde were supplied from Sigma. All other chemical was obtained from Merck. The biosensor was created by immobilizing of uricase by a glutaraldehyde crosslinking procedure on PANI composite film on the surface of a platinum electrode while the polyelectrolyte layer of PAA were prepared via layer-by-layer assembly on the electrode, functioning as H2O2-selective film. Standard of deviation, coefficient of variation (CV) and coefficient of correlation (r) analysis were used in this study. The biosensor had a good linearity with a correlation coefficient of 0.993 and it could be used up to 27 times with the CV value of 3.97%. The presence of other compounds such as glucose and ascorbic acid gave 1.3 ± 1.13% and 3.27 ± 2.29% respectively on the interference effect toward the current response of uric acid biosensor. The polymer combination of PANI and PAA can be used as a selective matrix of uric acid biosensor. PMID:24696812

  2. Increased glutamate and homocysteine and decreased glutamine levels in autism: a review and strategies for future studies of amino acids in autism.

    PubMed

    Ghanizadeh, Ahmad

    2013-01-01

    There are many reports about the significant roles of some amino acids in neurobiology and treatment of autism. This is a critical review of amino acids levels in autism. No published review article about the level of amino acids in autism was found. The levels of glutamate and homocystein are increased in autism while the levels of glutamine and tryptophan are decreased. Findings regarding the plasma levels of taurine and lysine are controversial. The urinary levels of homocysteine and essential amino acids in both the untreated and treated autistic children are significantly less than those in the controls. The current literature suffers from many methodological shortcomings which needed to be considered in future studies. Some of them are age, gender, developmental level, autism symptoms severity, type of autism spectrum disorders, medical comorbidities, intelligent quotient, diet, concomitant medications, body mass index, and technical method of assessment of amino acids. PMID:24167375

  3. Evidence for a relationship between recovery from anaesthesia, modified state of consciousness and striatal voltammetric levels of ascorbic acid.

    PubMed

    Crespi, F; Möbius, C; Keane, P

    1992-01-01

    The effects of various procedures which modify consciousness were studied on the extracellular concentration of ascorbic acid (AA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5HIAA) in rat striatum, as measured by differential pulse voltammetry (DPV) with electrically pretreated carbon fibre micro-electrodes (CFE). Recovery from anaesthesia (produced by 500 mg/kg i.p. chloral hydrate) was accompanied by a six-fold increase in extracellular striatal AA levels, while negligible changes in DOPAC and 5HIAA occurred. Following complete recovery from anaesthesia, the animals were re-injected with the same dose of anaesthetic which specifically reduced AA levels by 90% (DOPAC levels were unchanged and 5HIAA concentrations slightly reduced). In conscious rats, the neuroleptic haloperidol (1 mg/kg i.p., n = 5) and the minor tranquillizer diazepam (10 mg/kg i.p., n = 5), both considered as behaviourally depressant drugs, reduced extracellular AA levels to 50% of controls. The psychomotor stimulant D-amphetamine (1 mg/kg i.p., n = 5) increased AA levels by 90% over controls. Stress activation of animals (handling for 10 min, n = 10) also produced a transient, significant increase (180% of control values) in this striatal parameter. Taken together with previous reports, our results suggest a close relationship between the state of consciousness and extracellular AA levels in the rat striatum and that this relationship appears to be more correlated to AA as no such clear interdependence was noted between the levels of consciousness and extracellular striatal DOPAC or 5HIAA. PMID:1381092

  4. Effects of aspartame and glucose administration on brain and plasma levels of large neutral amino acids and brain 5-hydroxyindoles.

    PubMed

    Yokogoshi, H; Roberts, C H; Caballero, B; Wurtman, R J

    1984-07-01

    Administration of the artificial sweetener aspartame (L-aspartylphenylalanylmethyl ester; 200 mg/kg) by gavage to rats caused large increments in brain and plasma levels of phenylalanine and its product tyrosine. Glucose administration (3 g/kg, by gavage, a dose sufficient to cause insulin-mediated reductions in plasma levels of the large neutral amino acids leucine, isoleucine, and valine) also elevated brain phenylalanine and tyrosine, and enhanced the increments caused by the aspartame, nearly doubling the rise in brain phenylalanine. Each animal's brain phenylalanine or tyrosine levels were highly correlated (r = 0.97 and 0.99, respectively) with its plasma phenylalanine or tyrosine ratios, affirming that aspartame's effects on the brain amino acids result from the changes it produces in plasma composition. As described previously, glucose consumption increased brain tryptophan levels, and consequently, brain levels of the 5-hydroxyindoles serotonin and 5-hydroxyindoleacetic acid. Aspartame alone had no effect on these compounds but completely blocked the changes in 5-hydroxyindoles caused by glucose. Each animal's brain level of tryptophan (r = 0.89) and 5-hydroxyindoles (r = 0.74) was also significantly correlated with its plasma tryptophan ratio, affirming that the effects of glucose or aspartame on these brain constituents also result from the changes they produce in plasma composition. The aspartame-glucose combination also reduced brain levels of leucine, isoleucine, and valine to a significantly greater extent than aspartame or glucose alone. These observations indicate that high aspartame doses can generate major neurochemical changes in rats, especially when consumed along with carbohydrate-containing foods. However, they should not in any way be interpreted as demonstrating that aspartame significantly affects the human brain. PMID:6204522

  5. Alterations of endothelial nucleotide levels by mycophenolic acid result in changes of membrane glycosylation and E-selectin expression.

    PubMed

    Bertalanffy, P; Dubsky, P; Wolner, E; Weigel, G

    1999-03-01

    The effect of the inhibitor of inosine-5'-monophosphate dehydrogenase (IMPDH), mycophenolic acid, on intracellular nucleotides and the synthesis of cellular glycoproteins was evaluated in human umbilical vein endothelial cells. A clinically attainable concentration (10 micromol/l) of mycophenolic acid decreased guanosine-5'-triphosphate (GTP) levels significantly and led to a strong elevation of uridine-5'-triphosphate (UTP), whereas intracellular adenosine-5'-triphosphate (ATP) pools remained unaffected. The staining of the endothelial cell membranes with lectins specific for fucose and mannose (Ulex europaeus- and Galanthus nivalis agglutinin, respectively) was reduced, reflecting an inhibition of fucose and mannose incorporation into endothelial glycoproteins. The surface expression of E-selectin, an important determinant for leuko-endothelial interactions decreased significantly. Guanine and guanosine prevented the actions of mycophenolic acid and reversed the drug-induced decrease in GTP and its associated effects. The findings that mycophenolic acid produces alterations in the formation of glycoproteins and in the membrane architecture are indicative of metabolic lesions induced by an agent that depresses guanine nucleotide synthesis through inhibition of IMPDH. The pronounced reduction of E-selectin surface expression on endothelial cells accompanied by changes of endothelial cell fucosylation, a prerequisite for the contact with lymphocytic L-selectin, indicates an inhibitory effect of mycophenolic acid in the rolling phase of leukocyte recruitment and strongly implies a new and additional immunosuppressive mechanism of this agent. PMID:10353469

  6. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby ...

  7. Determination of nucleic acids at nanogram level using resonance light scattering technique with Congo Red

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Wang, Yuebo; Wang, Minqin; Sun, Shuna; Yang, Jinghe; Luan, Yuxia

    2005-01-01

    Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0×10 -9 to 1.0×10 -6 g ml -1, 7.5×10 -8 to 1.0×10 -6 g ml -1 and 7.5×10 -8 to 2.5×10 -6 g ml -1 for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml -1 ( S/ N = 3), respectively. Actual biological samples were satisfactorily determined.

  8. Effects of organic acid-surfactant mixtures on levels of bacteria and beef quality traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Organic acid efficacy as an antimicrobial treatment of beef carcass surfaces may be increased through the addition of surfactants. However, the effects of antimicrobial-surfactant mixtures on beef quality traits such as flavor and color stability may make their use unacceptable. Purp...

  9. Quantification of rosmarinic acid levels by near infrared spectroscopy in laboratory culture grown spearmint plantlets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method for the rapid quantization of rosmarinic acid (RA) in tissues of spearmint using near-infrared (NIR) spectroscopy was developed by correlating with the results of methanol extracts analyzed on a HPLC photo-diode array (PDA) system. NIR and HPLC analyses performed on over 500 samples were u...

  10. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  11. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  12. Dietary Triacylglycerols with Palmitic Acid in the sn-2 Position Modulate Levels of N-Acylethanolamides in Rat Tissues

    PubMed Central

    Lisai, Sara; Sirigu, Annarita; Piras, Antonio; Collu, Maria; Batetta, Barbara; Gambelli, Luisa; Banni, Sebastiano

    2015-01-01

    Background Several evidences suggest that the position of palmitic acid (PA) in dietary triacylglycerol (TAG) influences different biological functions. We aimed at evaluating whether dietary fat with highly enriched (87%) PA in sn-2 position (Hsn-2 PA), by increasing PA incorporation into tissue phospholipids (PL), modifies fatty acid profile and biosynthesis of fatty acid—derived bioactive lipids, such as endocannabinoids and their congeners. Study Design Rats were fed for 5 weeks diets containing Hsn-2 PA or fat with PA randomly distributed in TAG with 18.8% PA in sn-2 position (Lsn-2 PA), and similar total PA concentration. Fatty acid profile in different lipid fractions, endocannabinoids and congeners were measured in intestine, liver, visceral adipose tissue, muscle and brain. Results Rats on Hsn-2 PA diet had lower levels of anandamide with concomitant increase of its congener palmitoylethanolamide and its precursor PA into visceral adipose tissue phospholipids. In addition, we found an increase of oleoylethanolamide, an avid PPAR alpha ligand, in liver, muscle and brain, associated to higher levels of its precursor oleic acid in liver and muscle, probably derived by elongation and further delta 9 desaturation of PA. Changes in endocannabinoids and congeners were associated to a decrease of circulating TNF alpha after LPS challenge, and to an improved feed efficiency. Conclusions Dietary Hsn-2 PA, by modifying endocannabinoids and congeners biosynthesis in different tissues may potentially concur in the physiological regulation of energy metabolism, brain function and body fat distribution. PMID:25775474

  13. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner

    PubMed Central

    Toth, Zsofia; Winterhagen, Patrick; Kalapos, Balazs; Su, Yingcai; Kovacs, Laszlo; Kiss, Erzsebet

    2016-01-01

    Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner. PMID:27488171

  14. Expression of a Grapevine NAC Transcription Factor Gene Is Induced in Response to Powdery Mildew Colonization in Salicylic Acid-Independent Manner.

    PubMed

    Toth, Zsofia; Winterhagen, Patrick; Kalapos, Balazs; Su, Yingcai; Kovacs, Laszlo; Kiss, Erzsebet

    2016-01-01

    Tissue colonization by grape powdery mildew (PM) pathogen Erysiphe necator (Schw.) Burr triggers a major remodeling of the transcriptome in the susceptible grapevine Vitis vinifera L. While changes in the expression of many genes bear the signature of salicylic acid (SA) mediated regulation, the breadth of PM-induced changes suggests the involvement of additional regulatory networks. To explore PM-associated gene regulation mediated by other SA-independent systems, we designed a microarray experiment to distinguish between transcriptome changes induced by E. necator colonization and those triggered by elevated SA levels. We found that the majority of genes responded to both SA and PM, but certain genes were responsive to PM infection alone. Among them, we identified genes of stilbene synthases, PR-10 proteins, and several transcription factors. The microarray results demonstrated that the regulation of these genes is either independent of SA, or dependent, but SA alone is insufficient to bring about their regulation. We inserted the promoter-reporter fusion of a PM-responsive transcription factor gene into a wild-type and two SA-signaling deficient Arabidopsis lines and challenged the resulting transgenic plants with an Arabidopsis-adapted PM pathogen. Our results provide experimental evidence that this grape gene promoter is activated by the pathogen in a SA-independent manner. PMID:27488171

  15. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  16. Increased plasma levels of competing amino acids, rather than lowered plasma tryptophan levels, are associated with a non-response to treatment in major depression.

    PubMed

    Ormstad, Heidi; Dahl, Johan; Verkerk, Robert; Andreassen, Ole A; Maes, Michael

    2016-08-01

    Lowered plasma tryptophan (TRP) and TRP/competing amino acid (CAA) ratio may be involved in the pathophysiology of major depression (MDD). Increased cortisol and immune-inflammatory mediators in MDD may affect the availability of TRP to the brain. We investigated whether baseline or post-treatment TRP, CAAs and TRP/CAA ratio are associated with a treatment response in MDD and whether these effects may be mediated by cortisol or immune biomarkers. We included 50 medication-free MDD patients with a depressive episode (DSM diagnosis) and assessed symptom severity with the Inventory of Depressive Symptomatology (IDS) before and after treatment as usual for 12 weeks (endpoint). Plasma levels of TRP, CAAs, the ratio, cortisol, CRP and 6 selected cytokines were assayed. The primary outcome was a 50% reduction in the IDS, while the secondary was a remission of the depressive episode. In IDS non-responders, CAAs increased and the TRP/CAA ratio decreased, while in IDS responders CAAs decreased and the TRP/CAA ratio increased from baseline to endpoint. In patients who were still depressed at endpoint TRP and CAAs levels had increased from baseline, while in remitted patients no such effects were found. Increases in CAAs were inversely correlated with changes in interleukin-1 receptor antagonist levels. The results show that increased CAA levels from baseline to endpoint are associated with a non-response to treatment in MDD patients. This suggests that the mechanism underpinning the CAA-related treatment resistance may be related to changes in immune pathways. CAA levels and amino acid metabolism may be new drug targets in depression. PMID:27237997

  17. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses.

    PubMed

    Mutka, Andrew M; Fawley, Stephen; Tsao, Tiffany; Kunkel, Barbara N

    2013-06-01

    Auxin is a key plant growth regulator that also impacts plant-pathogen interactions. Several lines of evidence suggest that the bacterial plant pathogen Pseudomonas syringae manipulates auxin physiology in Arabidopsis thaliana to promote pathogenesis. Pseudomonas syringae strategies to alter host auxin biology include synthesis of the auxin indole-3-acetic acid (IAA) and production of virulence factors that alter auxin responses in host cells. The application of exogenous auxin enhances disease caused by P. syringae strain DC3000. This is hypothesized to result from antagonism between auxin and salicylic acid (SA), a major regulator of plant defenses, but this hypothesis has not been tested in the context of infected plants. We further investigated the role of auxin during pathogenesis by examining the interaction of auxin and SA in the context of infection in plants with elevated endogenous levels of auxin. We demonstrated that elevated IAA biosynthesis in transgenic plants overexpressing the YUCCA 1 (YUC1) auxin biosynthesis gene led to enhanced susceptibility to DC3000. Elevated IAA levels did not interfere significantly with host defenses, as effector-triggered immunity was active in YUC1-overexpressing plants, and we observed only minor effects on SA levels and SA-mediated responses. Furthermore, a plant line carrying both the YUC1-overexpression transgene and the salicylic acid induction deficient 2 (sid2) mutation, which impairs SA synthesis, exhibited additive effects of enhanced susceptibility from both elevated auxin levels and impaired SA-mediated defenses. Thus, in IAA overproducing plants, the promotion of pathogen growth occurs independently of suppression of SA-mediated defenses. PMID:23521356

  18. Free fatty acid levels in fluid of dominant follicles at the preferred insemination time in dairy cows are not affected by early postpartum fatty acid stress.

    PubMed

    Aardema, Hilde; Gadella, Bart M; van de Lest, Chris H A; Brouwers, Jos F H M; Stout, Tom A E; Roelen, Bernard A J; Vos, Peter L A M

    2015-04-01

    The fertility of high-yielding dairy cows has declined during the last 3 decades, in association with a more profound negative energy balance (NEB) during the early weeks postpartum. One feature of this NEB is a marked elevation in circulating free fatty acid (FFA) concentrations. During the early postpartum period (≤ d 42), circulatory FFA levels were measured weekly, and progesterone concentrations and the diameter of the dominant follicles were determined thrice weekly. Retrospectively, cows that ovulated within 35 d postpartum were grouped as "normal ovulating" cows (n = 5), and the others were grouped as "delayed ovulating" cows (n = 5). In both groups, high total FFA levels (>500 µM) were evident immediately postpartum. Interestingly, cows with delayed ovulation had higher plasma FFA concentrations in the first weeks postpartum compared with normal ovulating cows. In both cow groups, FFA decreased to control levels of non-NEB cows within 3 wk postpartum. The FFA compositions and concentrations in fluids from the dominant follicles of postpartum cows were not different between the normal and delayed ovulating cows when measured at potential insemination points: d 55, 80, and 105 postpartum. Interestingly, the concentration of monounsaturated oleic acid was higher and that of saturated stearic acid lower in follicular fluids of both groups compared with that in blood. The level of FFA in follicular fluid was correlated with the ratio of 17β-estradiol (E2) to progesterone (P4) in follicular fluid, with a relatively high level of unsaturated FFA in follicles with a low E2:P4 ratio. Taken together, these results indicate that a more severe NEB early postpartum is related to a delay in the first postpartum ovulation and does not affect FFA composition in follicular fluid at the preferred insemination time. The high FFA level in dominant follicles with a low E2:P4 ratio may be due to a different FFA metabolism in these follicles. The diagnostic value of this

  19. p38 MAPK Is Activated but Does Not Play a Key Role during Apoptosis Induction by Saturated Fatty Acid in Human Pancreatic β-Cells

    PubMed Central

    Šrámek, Jan; Němcová-Fürstová, Vlasta; Balušíková, Kamila; Daniel, Petr; Jelínek, Michael; James, Roger F.; Kovář, Jan

    2016-01-01

    Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis. PMID:26861294

  20. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres

    PubMed Central

    Bisht, Kamlesh K.; Daniloski, Zharko; Smith, Susan

    2013-01-01

    Summary Sister chromatid cohesion relies on cohesin, a complex comprising a tri-partite ring and a peripheral subunit Scc3, which is found as two related isoforms SA1 and SA2 in vertebrates. There is a division of labor between the vertebrate cohesin complexes; SA1-cohesin is required at telomeres and SA2-cohesin at centromeres. Depletion of SA1 has dramatic consequences for telomere function and genome integrity, but the mechanism by which SA1-cohesin mediates cohesion at telomeres is not well understood. Here we dissect the individual contribution of SA1 and the ring subunits to telomere cohesion and show that telomeres rely heavily on SA1 and to a lesser extent on the ring for cohesion. Using chromatin immunoprecipitation we show that SA1 is highly enriched at telomeres, is decreased at mitosis when cohesion is resolved, and is increased when cohesion persists. Overexpression of SA1 alone was sufficient to induce cohesion at telomeres, independent of the cohesin ring and dependent on its unique (not found in SA2) N-terminal domain, which we show binds to telomeric DNA through an AT-hook motif. We suggest that a specialized cohesion mechanism may be required to accommodate the high level of DNA replication-associated repair at telomeres. PMID:23729739

  1. The relationship between blood lead levels and morbidities among workers employed in a factory manufacturing lead-acid storage battery.

    PubMed

    Kalahasthi, Ravi Babu; Barman, Tapu; Rajmohan, H R

    2014-01-01

    The present study was carried out to find the relationship between blood lead levels (BLLs) and morbidities among 391 male workers employed in a factory manufacturing lead-acid storage batteries. A predesigned questionnaire was used to collect information on subjective health complaints and clinical observation made during a clinical examination. In addition to monitoring of BLL, other laboratory parameters investigated included hematological and urine-δ-aminolevulinic acid levels. Logistic regression method was used to evaluate the relationship between BLL and morbidities. The BLL among workers was associated with an odd ratio of respiratory, gastrointestinal (GI), and musculoskeletal (MSD) morbidities. Mean corpuscular hemoglobin and packed cell volume variables were associated with respiratory problems. The variables of alcohol consumption and hematological parameters were associated with GI complaints. Systolic blood pressure was related to MSD in workers exposed to Pb during the manufacturing process. PMID:23859360

  2. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh

    SciTech Connect

    Huda, Nazmul; Hossain, Shakhawoat; Rahman, Mashiur; Karim, Md. Rezaul; Islam, Khairul; Mamun, Abdullah Al; Hossain, Md. Imam; Mohanto, Nayan Chandra; Alam, Shahnur; Aktar, Sharmin; Arefin, Afroza; Ali, Nurshad; Salam, Kazi Abdus; Aziz, Abdul; Saud, Zahangir Alam; Miyataka, Hideki; Himeno, Seiichiro; Hossain, Khaled

    2014-11-15

    Blood uric acid has been recognized as a putative marker for cardiovascular diseases (CVDs). CVDs are the major causes of arsenic-related morbidity and mortality. However, the association of arsenic exposure with plasma uric acid (PUA) levels in relation to CVDs has not yet been explored. This study for the first time demonstrated the associations of arsenic exposure with PUA levels and its relationship with hypertension. A total of 483 subjects, 322 from arsenic-endemic and 161 from non-endemic areas in Bangladesh were recruited as study subjects. Arsenic concentrations in the drinking water, hair and nails of the study subjects were measured by inductively coupled plasma mass spectroscopy. PUA levels were measured using a colorimetric method. We found that PUA levels were significantly (p < 0.001) higher in males and females living in arsenic-endemic areas than those in non-endemic area. Arsenic exposure (water, hair and nail arsenic) levels showed significant positive correlations with PUA levels. In multiple regression analyses, arsenic exposure levels were found to be the most significant contributors on PUA levels among the other variables that included age, body mass index, blood urea nitrogen, and smoking. There were dose–response relationships between arsenic exposure and PUA levels. Furthermore, diastolic and systolic blood pressure showed significant positive correlations with PUA levels. Finally, the average PUA levels were significantly higher in the hypertensive group than those in the normotensive group in both males and females living in arsenic-endemic areas. These results suggest that arsenic exposure-related elevation of PUA levels may be implicated in arsenic-induced CVDs. - Highlights: • PUA levels were higher in arsenic-endemic subjects than in non-endemic subjects. • Drinking water, hair and nail arsenic showed significant associations with PUA levels. • Drinking water, hair and nail arsenic showed dose–response relationships with

  3. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth.

    PubMed Central

    Rate, D N; Cuenca, J V; Bowman, G R; Guttman, D S; Greenberg, J T

    1999-01-01

    We isolated a dominant gain-of-function Arabidopsis mutant, accelerated cell death 6 (acd6), with elevated defenses, patches of dead and enlarged cells, reduced stature, and increased resistance to Pseudomonas syringae. The acd6-conferred phenotypes are suppressed by removing a key signaling molecule, salicylic acid (SA), by using the nahG transgene, which encodes SA hydroxylase. This suppression includes phenotypes that are not induced by application of SA to wild-type plants, indicating that SA acts with a second signal to cause many acd6-conferred phenotypes. acd6-nahG plants show hyperactivation of all acd6-conferred phenotypes after treatment with a synthetic inducer of the SA pathway, benzo(1,2, 3)thiadiazole-7-carbothioic acid (BTH), suggesting that SA acts with and also modulates the levels and/or activity of the second defense signal. acd6 acts partially through a NONEXPRESSOR OF PR 1 (NPR1) gene-independent pathway that activates defenses and confers resistance to P. syringae. Surprisingly, BTH-treated acd6-nahG plants develop many tumor-like abnormal growths, indicating a possible role for SA in modulating cell growth. PMID:10488236

  4. Chronic low-level domoic acid exposure alters gene transcription and impairs mitochondrial function in the CNS

    PubMed Central

    Hiolski, Emma M; Kendrick, Preston S; Frame, Elizabeth R; Myers, Mark S; Bammler, Theo K; Beyer, Richard P; Farin, Federico M; Wilkerson, Hui-wen; Smith, Donald R; Marcinek, David J; Lefebvre, Kathi A

    2014-01-01

    Domoic acid is an algal-derived seafood toxin that functions as a glutamate agonist and exerts excitotoxicity via overstimulation of glutamate receptors (AMPA, NMDA) in the central nervous system (CNS). At high (symptomatic) doses, domoic acid is well-known to cause seizures, brain lesions and memory loss; however, a significant knowledge gap exists regarding the health impacts of repeated low-level (asymptomatic) exposure. Here, we investigated the impacts of low-level repetitive domoic acid exposure on gene transcription and mitochondrial function in the vertebrate CNS using a zebrafish model in order to: 1) identify transcriptional biomarkers of exposure; and 2) examine potential pathophysiology that may occur in the absence of overt excitotoxic symptoms. We found that transcription of genes related to neurological function and development were significantly altered, and that asymptomatic exposure impaired mitochondrial function. Interestingly, the transcriptome response was highly-variable across the exposure duration (36 weeks), with little to no overlap of specific genes across the six exposure time points (2, 6, 12, 18, 24, and 36 weeks). Moreover, there were no apparent similarities at any time point with the gene transcriptome profile exhibited by the glud1 mouse model of chronic moderate excess glutamate release. These results suggest that although the fundamental mechanisms of toxicity may be similar, gene transcriptome responses to domoic acid exposure do not extrapolate well between different exposure durations. However, the observed impairment of mitochondrial function based on respiration rates and mitochondrial protein content suggests that repetitive low-level exposure does have fundamental cellular level impacts that could contribute to chronic health consequences. PMID:25033243

  5. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells.

    PubMed

    Wang, Songbo; Xiang, Nana; Yang, Liusong; Zhu, Canjun; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Shu, Gang; Jiang, Qingyan

    2016-03-18

    The regulation of food intake is a promising way to combat obesity. It has been implicated that various fatty acids exert different effects on food intake and body weight. However, the underlying mechanism remains poorly understood. The aim of the present study was to investigate the effects of linoleic acid (LA) and stearic acid (SA) on agouti-related protein (AgRP) expression and secretion in immortalized mouse hypothalamic N38 cells and to explore the likely underlying mechanisms. Our results demonstrated that LA inhibited, while SA stimulated AgRP expression and secretion of N38 cells in a dose-dependent manner. In addition, LA suppressed the protein expression of toll-like receptor 4 (TLR4), phosphorylation levels of JNK and IKKα/β, suggesting the inhibition of TLR4-dependent inflammation pathway. However, the above mentioned inhibitory effects of LA were eliminated by TLR4 agonist lipopolysaccharide (LPS). In contrast, SA promoted TLR4 protein expression and activated TLR4-dependent inflammation pathway, with elevated ratio of p-JNK/JNK. While TLR4 siRNA reversed the stimulatory effects of SA on AgRP expression and TLR4-dependent inflammation. Moreover, we found that TLR4 was also involved in LA-enhanced and SA-impaired leptin/insulin signal pathways in N38 cells. In conclusion, our findings indicated that LA elicited inhibitory while SA exerted stimulatory effects on AgRP expression and secretion via TLR4-dependent inflammation and leptin/insulin pathways in N38 cells. These data provided a better understanding of the mechanism underlying fatty acids-regulated food intake and suggested the potential role of long-chain unsaturated fatty acids such as LA in reducing food intake and treating obesity. PMID:26879142

  6. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  7. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro.

    PubMed

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-11-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10(-4) mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  8. Expression Levels of PPARγ and CYP-19 in Polycystic Ovarian Syndrome Primary Granulosa Cells: Influence of ω-3 Fatty Acid

    PubMed Central

    Zaree, Mina; Shahnazi, Vahideh; Fayezi, Shabnam; Darabi, Maryam; Mehrzad-Sadaghiani, Mahzad; Darabi, Masoud; Khani, Sajjad; Nouri, Mohammad

    2015-01-01

    Background The omega-3 fatty acid (ω-3 fatty acid) such as eicosapentaenoic acid (EPA) is currently used in the clinic as a nutritional supplement in the treatment of poly- cystic ovarian syndrome (PCOS). The present study was designed to investigate the ef- fect of EPA on the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and cytochrome P450 aromatase (encoded by the CYP-19) in primary cultured granulosa cells (GC) from patients undergoing in vitro fertilization (IVF), and also to compare these effects with those in GC of PCOS patients. Materials and Methods In this experimental study, human GC were isolated, pri- mary cultured in vitro, exposed to a range of concentrations of the EPA and in- vestigated with respect to gene expression levels of PPARγ and CYP-19 using real time-polymerase chain reaction (PCR). The participants (n=30) were the patients admitted to the IVF Center in February-March 2013 at Alzahra Hospital, Tabriz, Iran, who were divided into two groups as PCOS (n=15) and non-PCOS (n=15) women (controls). Results All doses of the EPA significantly induced PPARγ mRNA gene expression level as compared to the control recombinant follicle stimulating hormone (rFSH) alone condi- tion. High doses of EPA in the presence of rFSH produced a stimulatory effect on expres- sion level of PPARγ (2.15-fold, P=0.001) and a suppressive effect (0.56-fold, P=0.01) on the expression level of CYP-19, only in the PCOS GC. Conclusion EPA and FSH signaling pathway affect differentially on the gene ex- pression levels of PPARγ and CYP-19 in PCOS GC. Altered FSH-induced PPARγ activity in PCOS GC may modulate the CYP-19 gene expression in response to EPA, and possibly modulates the subsequent steroidogenesis of these cells. PMID:26246878

  9. Large neutral amino acids levels in primate cerebrospinal fluid do not confirm competitive transport under baseline conditions.

    PubMed

    Bongiovanni, Rodolfo; Mchaourab, Ali S; McClellan, Frances; Elsworth, John; Double, Manda; Jaskiw, George E

    2016-10-01

    In rodents, transport of large neutral amino acids (LNAAs) across the blood brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier is mediated by high affinity carriers. Net brain LNAA levels are thought to be determined mainly by this competitive transport from plasma. Since the affinity for LNAA transport at the BBB in primates is considerably higher than in rodents, brain influx and by extension LNAA brain levels, should be even more dependent on competitive transport. Given that LNAA levels in CSF and brain interstitial fluid are usually similar, we analyzed serum and CSF of fasted subjects (n=24) undergoing spinal anesthesia and calculated brain influx and transporter occupancy using a conventional model of transport. Despite predicted near-full transporter saturation (99.7%), correlations between CSF levels and brain influx were modest, limited to tyrosine (r=0.60, p<0.002) and tryptophan (r=0.50, p<0.01) and comparable to correlations between CSF and serum levels. We also analyzed serum and CSF in (n=5) fasted vervet monkeys. Tyrosine and phenylalanine levels in CSF were positively correlated with those in serum, but correlations with calculated brain influx, which takes competition into account, were weaker or absent. We conclude that in primates i) baseline CSF LNAA levels do not confirm competitive transport, ii) brain LNAA levels should not be estimated on the basis of serum indices alone. This has implications for amino acid challenge studies and for neuropsychiatric disorders associated with dysregulated LNAA transport in which quantitative information about brain LNAA levels is needed. PMID:27521685

  10. Can combined use of low-level lasers and hyaluronic acid injections prolong the longevity of degenerative knee joints?

    PubMed Central

    Ip, David; Fu, Nga Yue

    2015-01-01

    Background This study evaluated whether half-yearly hyaluronic acid injection together with low-level laser therapy in addition to standard conventional physical therapy can successfully postpone the need for joint replacement surgery in elderly patients with bilateral symptomatic tricompartmental knee arthritis. Methods In this prospective, double-blind, placebo-controlled study, 70 consecutive unselected elderly patients with bilateral tricompartmental knee arthritis were assigned at random to either one of two conservative treatment protocols to either one of the painful knees. Protocol A consisted of conventional physical therapy plus a sham light source plus saline injection, and protocol B consisted of protocol A with addition of half-yearly hyaluronic acid injection as well as low-level laser treatment instead of using saline and a sham light source. Treatment failure was defined as breakthrough pain necessitating joint replacement. Results Among the 140 painful knees treated with either protocol A or protocol B, only one of the 70 painful knees treated by protocol B required joint replacement, whereas 15 of the 70 painful knees treated by protocol A needed joint replacement surgery (P<0.05). Conclusion We conclude that half-yearly hyaluronic acid injections together with low-level laser therapy should be incorporated into the standard conservative treatment protocol for symptomatic knee arthritis, because it may prolong the longevity of the knee joint without the need for joint replacement. PMID:26346122

  11. Metabolic engineering of seeds can achieve levels of omega-7 fatty acids comparable to the highest levels found in natural plant sources

    SciTech Connect

    Nguyen, H.T.; Shanklin, J.; Mishra, G.; Whittle, E.; Bevan, S. A.; Merlo, A. O.; Walsh, T. A.

    2010-12-01

    Plant oils containing {omega}-7 fatty acids (FAs; palmitoleic 16:1{Delta}{sup 9} and cis-vaccenic 18:1{Delta}{sup 11}) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of {omega}-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1{Delta}{sup 9} with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased {omega}-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the {beta}-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of {omega}-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased {omega}-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds.

  12. Metabolic Engineering of Seeds Can Achieve Levels of ω-7 Fatty Acids Comparable with the Highest Levels Found in Natural Plant Sources1[OA

    PubMed Central

    Nguyen, Huu Tam; Mishra, Girish; Whittle, Edward; Pidkowich, Mark S.; Bevan, Scott A.; Merlo, Ann Owens; Walsh, Terence A.; Shanklin, John

    2010-01-01

    Plant oils containing ω-7 fatty acids (FAs; palmitoleic 16:1Δ9 and cis-vaccenic 18:1Δ11) have potential as sustainable feedstocks for producing industrially important octene via metathesis chemistry. Engineering plants to produce seeds that accumulate high levels of any unusual FA has been an elusive goal. We achieved high levels of ω-7 FA accumulation by systematic metabolic engineering of Arabidopsis (Arabidopsis thaliana). A plastidial 16:0-ACP desaturase has been engineered to convert 16:0 to 16:1Δ9 with specificity >100-fold than that of naturally occurring paralogs, such as that from cat's claw vine (Doxantha unguis-cati). Expressing this engineered enzyme (Com25) in seeds increased ω-7 FA accumulation from <2% to 14%. Reducing competition for 16:0-ACP by down-regulating the β-ketoacyl-ACP synthase II 16:0 elongase further increased accumulation of ω-7 FA to 56%. The level of 16:0 exiting the plastid without desaturation also increased to 21%. Coexpression of a pair of fungal 16:0 desaturases in the cytosol reduced the 16:0 level to 11% and increased ω-7 FA to as much as 71%, equivalent to levels found in Doxantha seeds. PMID:20943853

  13. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    PubMed

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P < 0.05). These results indicate that GAA as a preferred alternative to creatine for improved bioenergetics in energy-demanding tissues. PMID:27560540

  14. Predictors of urinary levels of 2,4-dichlorophenoxyacetic acid, 3,5,6-trichloro-2-pyridinol, 3-phenoxybenzoic acid, and pentachlorophenol in 121 adults in Ohio.

    PubMed

    Morgan, Marsha K

    2015-07-01

    Limited data exist on the driving factors that influence the non-occupational exposures of adults to pesticides using urinary biomonitoring. In this work, the objectives were to quantify the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloro-2-pyridinol (TCP), 3-phenoxybenzoic acid (3-PBA), and pentachlorophenol (PCP) in 121 adults over a 48-h monitoring period and to examine the associations between selected sociodemographic and lifestyle factors and urinary levels of each pesticide biomarker. Adults, ages 20-49 years old, were recruited from six counties in Ohio (OH) in 2001. The participants collected 4-6 spot urine samples and completed questionnaires and diaries at home over a 48-h monitoring period. Urine samples were analyzed for 2,4-D, TCP, 3-PBA, and PCP by gas chromatography/mass spectrometry. Multiple regression modeling was used to determine the impact of selected sociodemographic and lifestyle factors on the log-transformed (ln) levels of each pesticide biomarker in adults. The pesticide biomarkers were detected in ≥ 89% of the urine samples, except for 3-PBA (66%). Median urinary levels of 2,4-D, TCP, 3-PBA, and PCP were 0.7, 3.4, 0.3, and 0.5 ng/mL, respectively. Results showed that 48-h sweet/salty snack consumption, 48-h time spend outside at home, and ln(creatinine) levels were significant predictors (p < 0.05), and race was a marginally significant predictor (p = 0.093) of the adults' ln(urinary 2,4-D) concentrations. Strong predictors (p < 0.05) of the adults' ln(urinary TCP) concentrations were urbanicity, employment status, sampling season, and ln(creatinine) levels. For 3-PBA, sampling season, pet ownership and removal of shoes before entering the home were significant predictors (p < 0.05) of the adults' ln(urinary 3-PBA) levels. Finally for PCP, removal of shoes before entering the home and ln(creatinine) levels were significant predictors (p < 0.05), and pet ownership was a marginally significant predictor (p = 0

  15. Research, development and demonstration of advanced lead-acid batteries for utility load leveling

    NASA Astrophysics Data System (ADS)

    1983-08-01

    An advanced lead acid storage battery was developed to the preprototype cell and module design stage. Each module is equipped with a low cost tray, automatic watering system, and air-lift pumps for increased acid circulation in each cell. With the qualified alloy catastrophic positive grid corrosion will not limit cell cycle life. An accelerated shallow cycle regime at room ambient tested 60 cell designs for the active material shedding failure mode. It is found that an antishedding active material additive reduces positive active material shedding significantly and extend the cycle life of both the positive and the negative plate. Equations relating cell design to deep cycle life are developed from the factorial tests on the 60 cells.

  16. Effects of acute exercise on the levels of iron, magnesium, and uric acid in liver and spleen tissues.

    PubMed

    Kaptanoğlu, B; Turgut, G; Genç, O; Enli, Y; Karabulut, I; Zencir, M; Turgut, S

    2003-02-01

    In this study, we investigated the effects of acute exercise on tissue levels of iron, magnesium, and uric acid of rats. Twenty adult Wistar albino rats were used for the study. They were divided into two groups: controls (n=10) and the study group (n=10). The study group was left into a small water pool and allowed to do swimming exercise for 30 min while controls rested. All of the animals were sacrificed, and their livers and spleens removed and homogenized immediately. The iron, magnesium, and uric acid levels of the homogenates were measured by an autoanalyzer (ILAB 900, Italy) with commercial kits from the same company. Results were evaluated by the Mann-Whitney U-test. According to our results, the liver iron levels increased significantly with exercise, whereas spleen iron levels decreased significantly (p<0.05) compared to controls. We found no significant differences in the levels of the other two parameters with exercise. These results show that the iron distribution in organs changes with exercise. PMID:12719612

  17. Testing and evaluation of an industrial lead-acid battery for utility load-leveling

    SciTech Connect

    Varma, R.; Corp, D.; Folke, E.; Tillery, G.; Loutfy, R.O.

    1986-01-01

    Constant-power/constant-voltage charging, as well as constant-current/constant-voltage charging, was investigated. Electrolyte stratification observed in the battery during cycling indicates discharge of the battery from the top down. Uneven concentration of acid during charge may be avoided by mixing. This study shows that a minimization in cycle time can be achieved by proper choice of charge/discharge parameters.

  18. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight's upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket

  19. Saturn I (SA-4) Launch

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern. Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight's upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for 'Project Highwater' physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket

  20. A newly synthesized sinapic acid derivative inhibits endothelial activation in vitro and in vivo.

    PubMed

    Zeng, Xiaoyun; Zheng, Jinhong; Fu, Chenglai; Su, Hang; Sun, Xiaoli; Zhang, Xuesi; Hou, Yingjian; Zhu, Yi

    2013-05-01

    Inhibition of oxidative stress and inflammation in vascular endothelial cells (ECs) may represent a new therapeutic strategy against endothelial activation. Sinapic acid (SA), a phenylpropanoid compound, is found in natural herbs and high-bran cereals and has moderate antioxidant activity. We aimed to develop new SA agents with the properties of antioxidation and blocking EC activation for possible therapy of cardiovascular disease. We designed and synthesized 10 SA derivatives according to their chemical structures. Preliminary screening of the compounds involved scavenging hydroxyl radicals and 2,2-diphenyl-1-picrylhydrazyl (DPPH(⋅)), croton oil-induced ear edema in mice, and analysis of the mRNA expression of adhesion molecules in ECs. 1-Acetyl-sinapic acyl-4-(3'-chlorine-)benzylpiperazine (SA9) had the strongest antioxidant and anti-inflammatory activities both in vitro and in vivo. Thus, the effect of SA9 was further studied. SA9 inhibited tumor necrosis factor α-induced upregulation of adhesion molecules in ECs at both mRNA and protein levels, as well as the consequent monocyte adhesion to ECs. In vivo, result of face-to-face immunostaining showed that SA9 reduced lipopolysaccharide-induced expression of intercellular adhesion molecule-1 in mouse aortic intima. To study the molecular mechanism, results from luciferase assay, nuclear translocation of NF-κB, and Western blot indicated that the mechanism of the anti-inflammatory effects of SA9 might be suppression of intracellular generation of ROS and inhibition of NF-κB activation in ECs. SA9 is a prototype of a novel class of antioxidant with anti-inflammatory effects in ECs. It may represent a new therapeutic approach for preventing endothelial activation in cardiovascular disorders. PMID:23470287

  1. Human GAPDH Is a Target of Aspirin’s Primary Metabolite Salicylic Acid and Its Derivatives

    PubMed Central

    Manohar, Murli; Harraz, Maged M.; Park, Sang-Wook; Schroeder, Frank C.; Snyder, Solomon H.; Klessig, Daniel F.

    2015-01-01

    The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death. PMID:26606248

  2. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS. PMID:27507559

  3. Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans.

    PubMed

    Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla; Lee, Tammy C; Morgan, Timothy M; Nicklas, Barbara J; Mathias, Rasika A; Chilton, Floyd H

    2016-01-28

    Numerous studies have examined relationships between disease biomarkers (such as blood lipids) and levels of circulating or cellular fatty acids. In such association studies, fatty acids have typically been expressed as the percentage of a particular fatty acid relative to the total fatty acids in a sample. Using two human cohorts, this study examined relationships between blood lipids (TAG, and LDL, HDL or total cholesterol) and circulating fatty acids expressed either as a percentage of total or as concentration in serum. The direction of the correlation between stearic acid, linoleic acid, dihomo-γ-linolenic acid, arachidonic acid and DHA and circulating TAG reversed when fatty acids were expressed as concentrations v. a percentage of total. Similar reversals were observed for these fatty acids when examining their associations with the ratio of total cholesterol:HDL-cholesterol. This reversal pattern was replicated in serum samples from both human cohorts. The correlations between blood lipids and fatty acids expressed as a percentage of total could be mathematically modelled from the concentration data. These data reveal that the different methods of expressing fatty acids lead to dissimilar correlations between blood lipids and certain fatty acids. This study raises important questions about how such reversals in association patterns impact the interpretation of numerous association studies evaluating fatty acids and their relationships with disease biomarkers or risk. PMID:26615716

  4. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk.

    PubMed

    Viazzi, Francesca; Rebora, Paola; Giussani, Marco; Orlando, Antonina; Stella, Andrea; Antolini, Laura; Valsecchi, Maria Grazia; Pontremoli, Roberto; Genovesi, Simonetta

    2016-05-01

    Primary hypertension is a growing concern in children because of the obesity epidemic largely attributable to western lifestyles. Serum uric acid is known to be influenced by dietary habits, correlates with obesity, and could represent a risk factor for hypertension. Preliminary studies in children highlighted uric acid as a potentially modifiable risk factor for the prevention and treatment of hypertension. The effect of lifestyle changes (increase of physical activity and dietary modifications) on blood pressure values, weight status, and serum uric acid levels in a cohort of 248 children referred for cardiovascular risk assessment were evaluated over a mean 1.5-year follow-up. At baseline, 48% of children were obese and 50% showed blood pressure values >90th percentile. At follow-up, a significant improvement in weight class (24% obese;P<0.0001) and blood pressure category (22% >90th percentile;P<0.0001) was found. Systolic blood pressure z-score (P<0.0001), uric acid value (P=0.0056), and puberty at baseline (P=0.0048) were independently associated with higher systolic blood pressure z-score at follow-up, whereas a negative association was observed with body mass index z-score decrease during follow-up (P=0.0033). The risk of hypertension at follow-up was associated with body mass index (P=0.0025) and systolic blood pressure (P<0.0001) z-score at baseline and inversely related to delta body mass index (P=0.0002), whereas the risk of showing hypertension ≥99th percentile was more than doubled for each baseline 1 mg/dL increase of serum uric acid (P=0.0130). Uric acid is a powerful determinant of blood pressure over time, independent of lifestyle modifications. PMID:27021006

  5. Genetic variants of the fatty acid desaturase gene cluster are associated with plasma LDL cholesterol levels in Japanese males.

    PubMed

    Sone, Yasuko; Kido, Toshimi; Ainuki, Tomomi; Sonoda, Mariko; Ichi, Ikuyo; Kodama, Satoru; Sone, Hirohito; Kondo, Kazuo; Morita, Yutaka; Egawa, Shigenobu; Kawahara, Kazuo; Otsuka, Yuzuru; Fujiwara, Yoko

    2013-01-01

    Fatty acid (FA) compositions in tissues are related to metabolic disorders, and consequently the appropriate management of underlying FA compositions in tissues is considered to be important. However, the relationship among the serum lipid profiles, the FA composition of the red blood cell (RBC) membranes and genetic variations in the fatty acid desaturase (FADS) genes in Japanese men is unclear. In this study, the subjects recruited were 137 Japanese men, 40 to 60 y old, who had a regular health checkup. Their serum lipid profile and the relative FA composition of the RBC membranes were measured. They were genotyped for the single nucleotide polymorphisms (SNPs) rs174553, rs174546, rs99780 and rs174583 in FADS gene. Multiple regression analysis was conducted to detect the relationship among hyperlipidemia, the FA composition of the RBC and the FADS genotypes. As a result, the homozygous genotype for the minor alleles in rs174553, rs174546, rs99780 were found to be associated with lower low-density lipoprotein cholesterol (LDL-C) levels and a lower LDL-C/total-cholesterol ratio. The homozygous genotype for the minor alleles reduced the risk of high LDL-C level (R2=0.50, β=-0.20, p=0.009), whereas, the arachidonic acid (AA) levels in the carriers of the homozygous genotype for the minor alleles tended to be lower compared with the carriers of the major alleles. However, no significant differences were observed in any FA level among the three genotypes for four SNPs. These results indicate that the appropriate management of serum LDL-C levels depending on genetic predisposition in FADS genotypes should be encouraged. PMID:24064733

  6. Effects of Diaceto-Dipropyl-Disulphide on Plasma Sialic Acid and Renal Tissue Thiol Levels in Alloxan Diabetic Rats

    PubMed Central

    Vickram; Thirumalarao, Kashinath Rattihalli; Raiker, Veena Gajana; Puttaswamy, Sandhya Hanumanthappa

    2016-01-01

    Introduction Plasma sialic acid levels are elevated in Diabetes Mellitus (DM) patients with proteinuria. Renal damage is mainly caused by free radicals that are excessively generated in DM. Thiols play an important role in the cellular antioxidative defence mechanisms mainly through thiol-disulphide exchange reaction. Diallyl disulphide, a garlic oil principle component, is known for its anti-diabetic properties. Its structural analogue, Diaceto-Dipropyl Disulphide (DADPDS), is a less toxic and more palatable disulphide and possesses similar anti-diabetic actions. Aim This study was undertaken to assess the usefulness of DADPDS in prevention of de-sialation of Glomerular Basement Membrane (GBM) in alloxan diabetic rats and to assess effect of DADPDS on renal tissue thiol levels. Materials and Methods Rats were divided into Normal, Diabetic and DADPDS treated diabetic groups. Diabetes was induced by intraperitoneal injection (IP) of alloxan. DADPDS was fed by gastric intubation. Plasma Sialic acid was determined by Ehrlich’s method and renal tissue thiol levels by Nitroprusside reaction method. Results This study showed a significant decrease (p<0.001) in plasma sialic acid, plasma glucose and renal tissue TBARS levels along with significant increase (p<0.001) in renal tissue thiol levels in DADPDS treated alloxan diabetic rats when compared to diabetic control rats. Conclusion Hence it may be concluded that DADPDS helps in preventing de-sialation of GBM in alloxan diabetic rats and improves renal tissue antioxidant defence mechanisms, may be through thiol-disulphide exchange reaction and thereby exhibits a possible clinical use in prevention of renal complications like diabetic nephropathy. PMID:27504279

  7. Influence of levels of information as presented by different technologies on students' understanding of acid, base, and ph concepts

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;

  8. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin.

    PubMed

    Levrat, M A; Rémésy, C; Demigné, C

    1991-11-01

    The digestive and metabolic effects of inulin (from chicory) were studied in rats adapted to semipurified diets containing 0, 5, 10 or 20% inulin (wt/wt). Moderate levels of inulin (5-10%) did not significantly affect food intake or body weight gain. Dietary inulin resulted in considerably greater cecal fermentation and a significantly greater intraluminal concentration of propionate (peaking at 58.4 mmol/L). A lower concentration of acetate (42.6 mmol/L) was observed in rats fed 20% inulin. Lactic fermentations were observed in rats fed the 10 or 20% inulin diets. The cecal pool of volatile fatty acids tended to reach a plateau in rats fed diets containing more than 10% inulin (up to 600-700 mumol), but volatile fatty acid absorption was a slightly hyperbolic function of the dietary inulin level. Butyrate absorption was proportionally lower than that of propionate. Inulin-containing diets induced an enlargement of the cecal pool of calcium, phosphate and (to a lesser extent) magnesium. There was also an enhanced absorption of these divalent cations. The cecal pool of bile acids was greater in rats fed inulin, and this oligosaccharide displayed a slight hypocholesterolemic effect, even in rats fed the 5% inulin diet. However, plasma triglycerides were depressed only in rats fed the 20% inulin diet. In conclusion, inulin seems very effective in promoting propionic fermentation and in enhancing the calcium content of the large intestine. However, high levels of inulin (greater than 10%) may affect growth in rats and lead to acidic (pH 5.65) cecal fermentation. PMID:1941180

  9. Altered Levels of Zinc and N-methyl-D-aspartic Acid Receptor Underlying Multiple Organ Dysfunctions After Severe Trauma

    PubMed Central

    Wang, Guanghuan; Yu, Xiaojun; Wang, Dian; Xu, Xiaohu; Chen, Guang; Jiang, Xuewu

    2015-01-01

    Background Severe trauma can cause secondary multiple organ dysfunction syndrome (MODS) and death. Oxidative stress and/or excitatory neurotoxicity are considered as the final common pathway in nerve cell injuries. Zinc is the cofactor of the redox enzyme, and the effect of the excitatory neurotoxicity is related to N-methyl-D-aspartic acid receptor (NMDAR). Material/Methods We investigated the levels of zinc and brainstem NMDAR in a rabbit model of severe trauma. Zinc and serum biochemical profiles were determined. Immunohistochemistry was used to detect brainstem N-methyl-D-aspartic acid receptor 1 (NR1), N-methyl-D-aspartic acid receptor 2A (NR2A), and N-methyl-D-aspartic acid receptor 2B (NR2B) expression. Results Brain and brainstem Zn levels increased at 12 h, but serum Zn decreased dramatically after the trauma. NR1 in the brainstem dorsal regions increased at 6 h after injury and then decreased. NR2A in the dorsal regions decreased to a plateau at 12 h after trauma. The levels of NR2B were lowest in the death group in the brainstem. Serum zinc was positively correlated with NR2A and 2B and negatively correlated with zinc in the brain. Correlations were also found between the brainstem NR2A and that of the dorsal brainstem, as well as between brainstem NR2A and changes in NR2B. There was a negative correlation between zinc and NR2A. Conclusions Severe trauma led to an acute reduction of zinc enhancing oxidative stress and the changes of NMDAR causing the neurotoxicity of the nerve cells. This may be a mechanism for the occurrence of MODS or death after trauma. PMID:26335029

  10. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants.

    PubMed

    DebRoy, Sruti; Thilmony, Roger; Kwack, Yong-Bum; Nomura, Kinya; He, Sheng Yang

    2004-06-29

    Salicylic acid (SA)-mediated host immunity plays a central role in combating microbial pathogens in plants. Inactivation of SA-mediated immunity, therefore, would be a critical step in the evolution of a successful plant pathogen. It is known that mutations in conserved effector loci (CEL) in the plant pathogens Pseudomonas syringae (the Delta CEL mutation), Erwinia amylovora (the dspA/E mutation), and Pantoea stewartii subsp. stewartii (the wtsE mutation) exert particularly strong negative effects on bacterial virulence in their host plants by unknown mechanisms. We found that the loss of virulence in Delta CEL and dspA/E mutants was linked to their inability to suppress cell wall-based defenses and to cause normal disease necrosis in Arabidopsis and apple host plants. The Delta CEL mutant activated SA-dependent callose deposition in wild-type Arabidopsis but failed to elicit high levels of callose-associated defense in Arabidopsis plants blocked in SA accumulation or synthesis. This mutant also multiplied more aggressively in SA-deficient plants than in wild-type plants. The hopPtoM and avrE genes in the CEL of P. syringae were found to encode suppressors of this SA-dependent basal defense. The widespread conservation of the HopPtoM and AvrE families of effectors in various bacteria suggests that suppression of SA-dependent basal immunity and promotion of host cell death are important virulence strategies for bacterial infection of plants. PMID:15210989

  11. Effect of temperature and concentration on benzoyl peroxide bleaching efficacy and benzoic acid levels in whey protein concentrate.

    PubMed

    Smith, T J; Gerard, P D; Drake, M A

    2015-11-01

    Much of the fluid whey produced in the United States is a by-product of Cheddar cheese manufacture and must be bleached. Benzoyl peroxide (BP) is currently 1 of only 2 legal chemical bleaching agents for fluid whey in the United States, but benzoic acid is an unavoidable by-product of BP bleaching. Benzoyl peroxide is typically a powder, but new liquid BP dispersions are available. A greater understanding of the bleaching characteristics of BP is necessary. The objective of the study was to compare norbixin destruction, residual benzoic acid, and flavor differences between liquid whey and 80% whey protein concentrates (WPC80) bleached at different temperatures with 2 different benzoyl peroxides (soluble and insoluble). Two experiments were conducted in this study. For experiment 1, 3 factors (temperature, bleach type, bleach concentration) were evaluated for norbixin destruction using a response surface model-central composite design in liquid whey. For experiment 2, norbixin concentration, residual benzoic acid, and flavor differences were explored in WPC80 from whey bleached by the 2 commercially available BP (soluble and insoluble) at 5 mg/kg. In liquid whey, soluble BP bleached more norbixin than insoluble BP, especially at lower concentrations (5 and 10 mg/kg) at both cold (4°C) and hot (50°C) temperatures. The WPC80 from liquid whey bleached with BP at 50°C had lower norbixin concentration, benzoic acid levels, cardboard flavor, and aldehyde levels than WPC80 from liquid whey bleached with BP at 4°C. Regardless of temperature, soluble BP destroyed more norbixin at lower concentrations than insoluble BP. The WPC80 from soluble-BP-bleached wheys had lower cardboard flavor and lower aldehyde levels than WPC80 from insoluble-BP-bleached whey. This study suggests that new, soluble (liquid) BP can be used at lower concentrations than insoluble BP to achieve equivalent bleaching and that less residual benzoic acid remains in WPC80 powder from liquid whey

  12. Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt.

    PubMed

    Villa, Federica; Remelli, William; Forlani, Fabio; Vitali, Alberto; Cappitelli, Francesca

    2012-07-01

    Zosteric acid sodium salt is a powerful antifouling agent. However, the mode of its antifouling action has not yet been fully elucidated. Whole cell proteome of Escherichia coli was analysed to study the different protein patterns expressed by the surface-exposed planktonic cells without and with sublethal concentrations of the zosteric acid sodium salt. Proteomic analysis revealed that at least 27 proteins showed a significant (19 upregulated and 8 downregulated, P < 0.001) altered expression level in response to the antifoulant. The proteomic signatures of zosteric acid sodium salt-treated cells are characterized by stress-associated (e.g. AhpC, OsmC, SodB, GroES, IscU, DnaK), motility-related (FliC), quorum-sensing-associated (LuxS) and metabolism/biosynthesis-related (e.g. PptA, AroA, FabD, FabB, GapA) proteins. Consistent with the overexpression of LuxS enzyme, the antifouling agent increased autoinducer-2 (AI-2) concentration by twofold. Moreover, treated cells experienced a statistically significant but modest increase of reactive oxygen species (+ 23%), tryptophanase (1.2-fold) and indole (1.2-fold) synthesis. Overall, our data suggest that zosteric acid sodium salt acts as environmental cue leading to global stress on E. coli cells, which favours the expression of various protective proteins, the AI-2 production and the synthesis of flagella, to escape from adverse conditions. PMID:22176949

  13. Physicochemical properties, fatty acid profile and sensory characteristics of sheep and goat meat sausages manufactured with different pork fat levels.

    PubMed

    Leite, Ana; Rodrigues, Sandra; Pereira, Etelvina; Paulos, Kátia; Oliveira, António Filipe; Lorenzo, José Manuel; Teixeira, Alfredo

    2015-07-01

    The effect of three pork backfat levels (0% vs. 10% vs. 30%) on chemical composition, fatty acid profile and sensory properties on sheep and goat meat sausages was studied. All physicochemical parameters were affected by the addition of pork backfat in both types of sausages. Sausages manufactured with 30% of pork backfat showed the lowest moisture and protein contents and the highest total fat content. The lower a(w) values in sausages manufactured with higher fat content while in pH happened the reverse situation. The addition of pork backfat modified the total fatty acid profile, prompting a significant drop in the relative percentages of C14:0, C16:0, C17:0, C17:1, C18:0 and TVA (trans-vaccenic acid), together with a marked increase in oleic and linoleic acids. Finally, in goat sausages, the fat content significantly affected sensory parameters: taste, texture and overall acceptability (P<0.05). As expected, all physicochemical parameters were affected by the addition of pork backfat in both types of sausages. PMID:25839884

  14. Changes in the levels of major sulfur metabolites and free amino acids in pea cotyledons recovering from sulfur deficiency

    SciTech Connect

    Macnicol, P.K.; Randall, P.J.

    1987-02-01

    Changes in levels of sulfur metabolites and free amino acids were followed in cotyledons of sulfur-deficient, developing pea seeds (Pisum sativum L.) for 24 hours after resupply of sulfate, during which time the legumin mRNA levels returned almost to normal. Two recovery situations were studied: cultured seeds, with sulfate added to the medium, and seeds attached to the intact plant, with sulfate added to the roots. In both situations the levels of cysteine, glutathione, and methionine rose rapidly, glutathione exhibiting an initial lag. In attached but not cultured seeds methionine markedly overshot the level normally found in sulfur-sufficient seeds. In the cultured seed S-adenosylmethionine (AdoMet), but not S-methylmethionine, showed a sustained rise; in the attached seed the changes were slight. The composition of the free amino acid pool did not change substantially in either recovery situation. In the cultured seed the large rise in AdoMet level occurred equally in nonrecovering seeds. It was accompanied by 6-fold and 10-fold increases in ..gamma..-aminobutyrate and alanine, respectively. These effects are attributed to wounding resulting from excision of the seed. /sup 35/S-labeling experiments showed that there was no significant accumulation of label in unidentified sulfur-containing amino compounds in either recovery situation. It was concluded from these results and those of other workers that, at the present level of knowledge, the most probable candidate for a signal compound, eliciting recovery of legumin mRNA level in response to sulfur-feeding, is cysteine.

  15. Effect of smoking on serum xanthine oxidase, malondialdehyde, ascorbic acid and α-tocopherol levels in healthy male subjects

    PubMed Central

    Shah, Ali Akbar; Khand, Fatehuddin; Khand, Tayyab Uddin

    2015-01-01

    Objective: To examine the effect of smoking on serum xanthine oxidase, malondialdehyde, α- tocopherol and ascorbic acid levels in healthy adult male subjects. Methods: This cross-sectional comparative study was carried out at Isra University Hyderabad from July 2012 to December 2012. One hundred and twenty apparently healthy adult male subjects (60 smokers and 60 non-smokers) included in present study, were recruited from Jaindal kot, a small village located midway between Hyderabad and Matiari. Serum samples from smokers and non-smokers were analyzed for xanthine oxidase and malondialdehyde levels by standard kit methods, while for ascorbic acid and alpha- tocopherol by spectrophotometric methods. Results: The mean xanthine oxidase and malondialdehyde levels measured in healthy smokers were 0.30±0.05 mg/dl and 37.50±4.05 µmoles/l respectively as against 0.25±0.04 mg/dl and 19.86±2.21µmoles/l in non-smokers. Both xanthine oxidase and malondialdehyde levels were significantly (p<0.001) raised in healthy smokers than in non-smokers. Likewise, mean vitamin E and vitamin C levels were respectively 0.69±0.37 mg/dl and 0.80±0.16 mg/dl in healthy smokers compared to 1.14±0.43 mg/dl and 1.22±0.29 mg/dl in non-smokers. The concentrations of both these vitamins were significantly (p<0.001) lower in smokers than in non-smokers. Conclusion: The results of present study demonstrate that smoking had significantly increased xanthine oxidase and malondialdehyde levels and decreased vitamins C and E (antioxidants) levels. These findings suggest that smokers have to take additional amounts of vitamins C and E in order to avoid deleterious effects of smoking on their health. PMID:25878632

  16. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis

    SciTech Connect

    Wu, M.-M.; Chiou, H.-Y. . E-mail: hychiou@tmu.edu.tw; Hsueh, Y.-M.; Hong, C.-T.; Su, C.-L.; Chang, S.-F.; Huang, W.-L.; Wang, H.-T.; Wang, Y.-H.; Hsieh, Y.-C.; Chen, C.-J.

    2006-10-01

    Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA{sup V}) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA{sup V} (MMA%) was calculated by dividing with total arsenic species in urine, including arsenite, arsenate, MMA{sup V}, and dimethylarsinic acid (DMA{sup V}). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% ({>=}16.5%) and high homocysteine levels ({>=}12.7 {mu}mol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 {mu}mol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine.

  17. Low taurine, gamma-aminobutyric acid and carnosine levels in plasma of diabetic pregnant rats: consequences for the offspring.

    PubMed

    Aerts, L; Van Assche, F A

    2001-01-01

    Gestational diabetes compromises fetal development and induces a diabetogenic effect in the offspring, including the development of gestational diabetes and the transmission of the effect to the next generation. Changes are not limited to glucose and insulin metabolism, and appear to be modulated by alterations at the hypothalamo-hypophyseal axis. In the present work, serum concentrations are given for the non-protein amino-acids taurine and gamma-aminobutyric acid (GABA), both neurotransmitters essential for normal brain development, and for the endogenous neuroprotector carnosine, a known anti-oxydans. Taurine levels are significantly below normal values in mildly diabetic mothers, in their fetal and adult offspring, virgin and pregnant, and in the fetuses of these pregnant offspring. GABA and carnosine levels are at the limit of detection in the diabetic mothers and their offspring at every stage. It is concluded that the low taurine, GABA and carnosine levels in diabetic mothers and their fetuses might compromise the normal structural and functional development of the fetal brain. When adult, these offspring present a deficiency of the circulating levels of these neurotransmitters involved in the hypothalamo-hypophyseal regulation of insulin secretion. This might contribute to the development of impaired glucose tolerance and gestational diabetes, thereby transmitting the effect to the next generation. PMID:11234622

  18. Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.

    PubMed

    Mandal, Shantanu; Upadhyay, Shivangi; Wajid, Saima; Ram, Mauji; Jain, Dharam Chand; Singh, Ved Pal; Abdin, Malik Zainul; Kapoor, Rupam

    2015-07-01

    It is becoming increasingly evident that the formation of arbuscular mycorrhiza (AM) enhances secondary metabolite production in shoots. Despite mounting evidence, relatively little is known about the underlying mechanisms. This study suggests that increase in artemisinin concentration in Artemisia annua colonized by Rhizophagus intraradices is due to altered trichome density as well as transcriptional patterns that are mediated via enhanced jasmonic acid (JA) levels. Mycorrhizal (M) plants had higher JA levels in leaf tissue that may be due to induction of an allene oxidase synthase gene (AOS), encoding one of the key enzymes for JA production. Non-mycorrhizal (NM) plants were exogenously supplied with a range of methyl jasmonic acid concentrations. When leaves of NM and M plants with similar levels of endogenous JA were compared, these matched closely in terms of shoot trichome density, artemisinin concentration, and transcript profile of artemisinin biosynthesis genes. Mycorrhization increased artemisinin levels by increasing glandular trichome density and transcriptional activation of artemisinin biosynthesis genes. Transcriptional analysis of some rate-limiting enzymes of mevalonate and methyl erythritol phosphate (MEP) pathways revealed that AM increases isoprenoids by induction of the MEP pathway. A decline in artemisinin concentration in shoots of NM and M plants treated with ibuprofen (an inhibitor of JA biosynthesis) further confirmed the implication of JA in the mechanism of artemisinin production. PMID:25366131

  19. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  20. Untangling the Effect of Fatty Acid Addition at Species Level Revealed Different Transcriptional Responses of the Biogas Microbial Community Members.

    PubMed

    Treu, Laura; Campanaro, Stefano; Kougias, Panagiotis G; Zhu, Xinyu; Angelidaki, Irini

    2016-06-01

    In the present study, RNA-sequencing was used to elucidate the change of anaerobic digestion metatranscriptome after long chain fatty acids (oleate) exposure. To explore the general transcriptional behavior of the microbiome, the analysis was first performed on shotgun reads without considering a reference metagenome. As a second step, RNA reads were aligned on the genes encoded by the microbial community, revealing the expression of more than 51 000 different transcripts. The present study is the first research which was able to dissect the transcriptional behavior at a single species level by considering the 106 microbial genomes previously identified. The exploration of the metabolic pathways confirmed the importance of Syntrophomonas species in fatty acids degradation, and also highlighted the presence of protective mechanisms toward the long chain fatty acid effects in bacteria belonging to Clostridiales, Rykenellaceae, and in species of the genera Halothermothrix and Anaerobaculum. Additionally, an interesting transcriptional activation of the chemotaxis genes was evidenced in seven species belonging to Clostridia, Halothermothrix, and Tepidanaerobacter. Surprisingly, methanogens revealed a very versatile behavior different from each other, even among similar species of the Methanoculleus genus, while a strong increase of the expression level in Methanosarcina sp. was evidenced after oleate addition. PMID:27154312

  1. Serum uric acid level in newly diagnosed essential hypertension in a Nepalese population: A hospital based cross sectional study

    PubMed Central

    Poudel, Bibek; Yadav, Binod Kumar; Kumar, Arun; Jha, Bharat; Raut, Kanak Bahadur

    2014-01-01

    Objective To develop the missing link between hyperuricemia and hypertension. Methods The study was conducted in Department of Biochemistry in collaboration with Nephrology Unit of Internal Medicine Department. Hypertension was defined according to blood pressure readings by definitions of the Seventh Report of the Joint National Committee. Totally 205 newly diagnosed and untreated essential hypertensive cases and age-sex matched normotensive controls were enrolled in the study. The potential confounding factors of hyperuricemia and hypertension in both cases and controls were controlled. Uric acid levels in all participants were analyzed. Results Renal function between newly diagnosed hypertensive cases and normotensive healthy controls were adjusted. The mean serum uric acid observed in newly diagnosed hypertensive cases and in normotensive healthy controls were (290.05±87.05) µmol/L and (245.24±99.38) µmol/L respectively. A total of 59 (28.8%) participants of cases and 28 (13.7%) participants of controls had hyperuricemia (odds ratio 2.555 (95% CI: 1.549-4.213), P<0.001). Conclusions The mean serum uric acid levels and number of hyperuricemic subjects were found to be significantly higher in cases when compared to controls. PMID:24144132

  2. Effects of the lipid regulating drug clofibric acid on PPARα-regulated gene transcript levels in common carp (Cyprinus carpio) at pharmacological and environmental exposure levels

    PubMed Central

    Corcoran, Jenna; Winter, Matthew J.; Lange, Anke; Cumming, Rob; Owen, Stewart F.; Tyler, Charles R.

    2015-01-01

    In mammals, the peroxisome proliferator-activated receptor α (PPARα) plays a key role in regulating various genes involved in lipid metabolism, bile acid synthesis and cholesterol homeostasis, and is activated by a diverse group of compounds collectively termed peroxisome proliferators (PPs). Specific PPs have been detected in the aquatic environment; however little is known on their pharmacological activity in fish. We investigated the bioavailability and persistence of the human PPARα ligand clofibric acid (CFA) in carp, together with various relevant endpoints, at a concentration similar to therapeutic levels in humans (20 mg/L) and for an environmentally relevant concentration (4 μg/L). Exposure to pharmacologically-relevant concentrations of CFA resulted in increased transcript levels of a number of known PPARα target genes together with increased acyl-coA oxidase (Acox1) activity, supporting stimulation of lipid metabolism pathways in carp which are known to be similarly activated in mammals. Although Cu,Zn-superoxide dismutase (Sod1) activity was not affected, mRNA levels of several biotransformation genes were also increased, paralleling previous reports in mammals and indicating a potential role in hepatic detoxification for PPARα in carp. Importantly, transcription of some of these genes (and Acox1 activity) were affected at exposure concentrations comparable with those reported in effluent discharges. Collectively, these data suggest that CFA is pharmacologically active in carp and has the potential to invoke PPARα-related responses in fish exposed in the environment, particularly considering that CFA may represent just one of a number of PPAR-active compounds present to which wild fish may be exposed. PMID:25749508

  3. Identification, characterization, and expression levels of putative adhesive proteins from the tube-dwelling polychaete Sabellaria alveolata.

    PubMed

    Becker, Pierre T; Lambert, Aurélie; Lejeune, Annabelle; Lanterbecq, Déborah; Flammang, Patrick

    2012-10-01

    The shelter of the tube-dwelling polychaete Sabellaria alveolata is composed of mineral particles assembled with spots of a proteinaceous cement. The adhesive proteins constituting the cement were identified on the basis of their sequence similarity with proteins of a phylogenetically related species, Phragmatopoma californica. Two positively charged proteins, Sa-1 and Sa-2, share common features: they both have a mass of 22 kDa; are rich in glycine, tyrosine and basic residues; and show repeated peptide motifs. The consensus repeat of Sa-1 is KGAYGAKGLGYGNKAGYGAYG (occurring 6-8 times), while Sa-2 displays the consensus heptapeptide VHKAAWG (5 times) and undecapeptide VHKAAGYGGYG (8 times). Two variants of a serine-rich protein, Sa-3A (22 kDa) and Sa-3B (21 kDa), were also identified. Their serine residues account for 75 mol% and are probably phosphorylated, meaning that Sa-3 is very acidic and negatively charged. Moreover, tyrosine residues of all adhesive proteins are presumably modified into DOPA. Although protein sequences are not well-conserved between S. alveolata and P. californica, their main characteristics (including amino acid composition, post-translational modifications, repeated patterns, isoelectric point, and mass) are shared by both species. This suggests that these features are more important for their function than the primary structure of the proteins. The mRNA abundance for each protein was estimated by quantitative real-time PCR, revealing relative expression levels of about 5, 11, 1.5, and 1 for Sa-1, -2, -3A, and -3B, respectively. These levels could be indicative of charge neutralization phenomena or could reflect their function (interface vs. bulk) in the cement. PMID:23111133

  4. Influence of contaminated drinking water on perfluoroalkyl acid levels in human serum--A case study from Uppsala, Sweden.

    PubMed

    Gyllenhammar, Irina; Berger, Urs; Sundström, Maria; McCleaf, Philip; Eurén, Karin; Eriksson, Sara; Ahlgren, Sven; Lignell, Sanna; Aune, Marie; Kotova, Natalia; Glynn, Anders

    2015-07-01

    In 2012 a contamination of drinking water with perfluoroalkyl acids (PFAAs) was uncovered in the City of Uppsala, Sweden. The aim of the present study was to determine how these substances have been distributed from the contamination source through the groundwater to the drinking water and how the drinking water exposure has influenced the levels of PFAAs in humans over time. The results show that PFAA levels in groundwater measured 2012-2014 decreased downstream from the point source, although high ΣPFAA levels (>100ng/L) were still found several kilometers from the point source in the Uppsala aquifer. The usage of aqueous film forming fire-fighting foams (AFFF) at a military airport in the north of the city is probably an important contamination source. Computer simulation of the distribution of PFAA-contaminated drinking water throughout the City using a hydraulic model of the pipeline network suggested that consumers in the western and southern parts of Uppsala have received most of the contaminated drinking water. PFAA levels in blood serum from 297 young women from Uppsala County, Sweden, sampled during 1996-1999 and 2008-2011 were analyzed. Significantly higher concentrations of perfluorobutane sulfonic acid (PFBS) and perfluorohexane sulfonic acid (PFHxS) were found among women who lived in districts modeled to have received contaminated drinking water compared to unaffected districts both in 1996-1999 and 2008-2011, indicating that the contamination was already present in the late 1990s. Isomer-specific analysis of PFHxS in serum showed that women in districts with contaminated drinking water also had an increased percentage of branched isomers. Our results further indicate that exposure via contaminated drinking water was the driving factor behind the earlier reported increasing temporal trends of PFBS and PFHxS in blood serum from young women in Uppsala. PMID:26079316

  5. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis.

    PubMed

    Balaji, C; Muthukumaran, J; Nalini, N

    2014-12-01

    Sinapic acid (SA) is a naturally occurring phenolic acid found in various herbal plants which is attributed with numerous pharmacological properties. This study was aimed to investigate the chemopreventive effect of SA on 1,2-dimethylhydrazine (DMH)-induced rat colon carcinogenesis. Rats were treated with DMH injections (20 mg kg(-1) bodyweight (b.w.) subcutaneously once a week for the first 4 consecutive weeks and SA (20, 40 and 80 mg kg(-1) b.w.) post orally for 16 weeks. At the end of the 16-week experimental period, all the rats were killed, and the tissues were evaluated biochemically. Our results reveal that DMH alone treatment decreased the levels/activities of lipid peroxidation by-products such as thiobarbituric acid reactive substances, conjugated dienes and antioxidants such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and reduced glutathione in the intestine and colonic tissues which were reversed on supplementation with SA. Moreover, the activities of drug-metabolizing enzymes of phase I (cytochrome P450 and P4502E1) were enhanced and those of phase II (glutathione-S-transferase, DT-diaphorase and uridine diphosphate glucuronosyl transferase) were diminished in the liver and colonic mucosa of DMH alone-treated rats and were reversed on supplementation with SA. All the above changes were supported by the histopathological observations of the rat liver and colon. These findings suggest that SA at the dose of 40 mg kg(-1) b.w. was the most effective dose against DMH-induced colon carcinogenesis, and thus, SA could be used as a potential chemopreventive agent. PMID:24532707

  6. Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.

    PubMed

    Davis, Sarah C; Ming, Ray; LeBauer, David S; Long, Stephen P

    2015-10-01

    Systems-level analyses have become prominent tools for assessing the yield, viability, economic consequences and environmental impacts of agricultural production. Such analyses are well-developed for many commodity crops that are used for food and biofuel, but have not been developed for agricultural production systems based on drought-tolerant plants that use crassulacean acid metabolism (CAM). We review the components of systems-level evaluations, and identify the information available for completing such analyses for CAM cropping systems. Specific needs for developing systems-level evaluations of CAM agricultural production include: improvement of physiological models; assessment of product processing after leaving the farm gate; and application of newly available genetic tools to the optimization of CAM species for commercial production. PMID:26094655

  7. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk

    PubMed Central

    Zhang, Peng-Jun; Huang, Fang; Zhang, Jin-Ming; Wei, Jia-Ning; Lu, Yao-Bin

    2015-01-01

    Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses. PMID:25790868

  8. Body condition loss and increased serum levels of nonesterified fatty acids enhance progesterone levels at estrus and reduce estrous activity and insemination rates in postpartum dairy cows.

    PubMed

    Lüttgenau, J; Purschke, S; Tsousis, G; Bruckmaier, R M; Bollwein, H

    2016-03-01

    Data from 96 Holstein Friesian cows on a commercial dairy farm were used to investigate whether body condition and serum levels of nonesterified fatty acids (NEFAs) postpartum (pp) affect progesterone (P4) levels, estrous activity, and fertility in dairy cows. The examination period started 14 days before the expected calving date and ended either when a cow was inseminated or at a maximum of 90 days pp. Body condition score (BCS; 1-5 scale) and backfat thickness (BFT) were determined every 2 weeks. Blood for analysis of NEFA and P4 concentrations was sampled weekly during the first 35 days pp and then every 48 hours until an ovulation was observed. Transrectal ultrasonography of the ovaries started at 21 days pp and was performed after blood sampling. If cows were not inseminated because of silent ovulation, sampling and ultrasonography continued on Days 7, 14, and 18 after ovulation and again every 48 hours until the next ovulation. Estrous activity was continuously measured with the Heatime estrus detection system. Pregnancy controls were performed ultrasonographically 28 and 42 days after AI. Cows with increased NEFA levels at 28 days pp had an increased risk of maintaining minimum P4 levels above 0.4 ng/mL at first recognized estrus (P = 0.03). Higher NEFA levels at Day 7 were associated with lower probability for a cow to have elevated P4 levels (≥2 ng/mL) by Day 35 pp, indicating delayed commencement of luteal activity (C-LA). Estrous activity was not influenced (P > 0.10) by minimum P4 concentrations at estrus, but more animals with C-LA until Day 35 pp showed estrous activity compared to cows without C-LA throughout this period (P = 0.006). Estrous activity was lower in cows with a low BCS 14 days pp (P = 0.02) and with a low BFT 42 days pp (P = 0.03). Moreover, the probability to exhibit estrus was reduced with higher NEFA levels at 21 days pp (P = 0.01). Eighty-five cows were inseminated and 37 (44%) got pregnant after insemination. Higher NEFA levels

  9. Solidification of low-level radioactive wastes in masonry cement. [Masonry cement-boric acid waste forms

    SciTech Connect

    Zhou, H.; Colombo, P.

    1987-03-01

    Portland cements are widely used as solidification agents for low-level radioactive wastes. However, it is known that boric acid wastes, as generated at pressurized water reactors (PWR's) are difficult to solidify using ordinary portland cements. Waste containing as little as 5 wt % boric acid inhibits the curing of the cement. For this purpose, the suitability of masonry cement was investigated. Masonry cement, in the US consists of 50 wt % slaked lime (CaOH/sub 2/) and 50 wt % of portland type I cement. Addition of boric acid in molar concentrations equal to or less than the molar concentration of the alkali in the cement eliminates any inhibiting effects. Accordingly, 15 wt % boric acid can be satisfactorily incorporated into masonry cement. The suitability of masonry cement for the solidification of sodium sulfate wastes produced at boiling water reactors (BWR's) was also investigated. It was observed that although sodium sulfate - masonry cement waste forms containing as much as 40 wt % Na/sub 2/SO/sub 4/ can be prepared, waste forms with more than 7 wt % sodium sulfate undergo catastrophic failure when exposed to an aqueous environment. It was determined by x-ray diffraction that in the presence of water, the sulfate reacts with hydrated calcium aluminate to form calcium aluminum sulfate hydrate (ettringite). This reaction involves a volume increase resulting in failure of the waste form. Formulation data were identified to maximize volumetric efficiency for the solidification of boric acid and sodium sulfate wastes. Measurement of some of the waste form properties relevant to evaluating the potential for the release of radionuclides to the environment included leachability, compression strengths and chemical interactions between the waste components and masonry cement. 15 refs., 19 figs., 9 tabs.

  10. Deciphering the link between salicylic acid signaling and sphingolipid metabolism

    PubMed Central

    Sánchez-Rangel, Diana; Rivas-San Vicente, Mariana; de la Torre-Hernández, M. Eugenia; Nájera-Martínez, Manuela; Plasencia, Javier

    2015-01-01

    The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host–pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules – MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide – could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling. PMID:25806037

  11. An improved dinitrosalicylic acid method for determining blood and cerebrospinal fluid sugar levels.

    PubMed

    MOHUN, A F; COOK, I J

    1962-03-01

    A development of a technique for estimating sugar in blood, cerebrospinal fluid, etc., is described, using 3:5-dinitrosalicylic acid (D.N.S.A.) originally introduced by Sumner (1921). Results can be obtained in less than 10 minutes if required. The method is well suited to the estimation of random blood sugars and the handling of diabetic clinic requirements in hospital laboratories. The reagents are cheap, stable, and easily prepared. The results are very close to true glucose values in blood and cerebrospinal fluid. The technique has justified its existence in a busy clinical laboratory on the grounds of simplicity and rapidity, and is sufficiently precise for all ordinary work. PMID:14475095

  12. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    PubMed Central

    Lassandro, Carlotta; Banderali, Giuseppe; Radaelli, Giovanni; Borghi, Elisa; Moretti, Francesca; Verduci, Elvira

    2015-01-01

    Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF) criteria has been suggested in children. Docosahexaenoic acid (DHA) has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure) and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome. PMID:26307979

  13. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  14. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    SciTech Connect

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-05-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy`s DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H{sub 2} generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H{sub 2} generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H{sub 2} in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H{sub 2} monitors were recommended to the DWPF to control the generation of H{sub 2} during melter feed preparation by fuel dilution.

  15. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA. PMID:25133582

  16. A pilot, short-term dietary manipulation of branched chain amino acids has modest influence on fasting levels of branched chain amino acids

    PubMed Central

    Cavallaro, Nicole Landa; Garry, Jamie; Shi, Xu; Gerszten, Robert E.; Anderson, Ellen J.; Walford, Geoffrey A.

    2016-01-01

    Background Elevated fasting levels of branched chain amino acids (BCAAs: valine, isoleucine, leucine) in venous blood are associated with a variety of metabolic impairments, including increased risk of type 2 diabetes (T2D). Fasting BCAA levels are influenced by non-dietary factors. However, it is unknown whether fasting BCAAs can be altered through manipulation of dietary intake alone. Objective To test whether a specific dietary intervention, using differences in BCAA intake, alters fasting BCAA levels independent of other factors. Design Five healthy male volunteers underwent 4 days of a low and 4 days of a high BCAA content dietary intervention (ClinicalTrials.gov [NCT02110602]). All food and supplements were provided. Fasting BCAAs were measured from venous blood samples by mass spectrometry at baseline and after each intervention. Results Diets were isocaloric; contained equal percentages of calories from carbohydrate, fats, and protein; and differed from each other in BCAA content (1.5±0.1 vs. 14.0±0.6 g for valine; 4.5±0.9 g vs. 13.8±0.5 g for isoleucine; 2.1±0.2 g vs. 27.1±1.0 g for leucine; p<0.0001 for all). Fasting valine was significantly lower (p=0.02) and fasting isoleucine and leucine were numerically lower following the low BCAA content vs. the high BCAA content diet levels. The inter-individual response to the dietary interventions was variable and not explained by adherence. Conclusion Short-term dietary manipulation of BCAA intake led to modest changes in fasting levels of BCAAs. The approach from our pilot study can be expanded to test the metabolic implications of dietary BCAA manipulation. PMID:26781817

  17. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    PubMed

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. PMID:27139585

  18. Characteristics of U.S. Adults with Usual Daily Folic Acid Intake above the Tolerable Upper Intake Level: National Health and Nutrition Examination Survey, 2003–2010

    PubMed Central

    Orozco, Angela M.; Yeung, Lorraine F.; Guo, Jing; Carriquiry, Alicia; Berry, Robert J.

    2016-01-01

    The Food and Drug Administration mandated that by 1998, all enriched cereal grain products (ECGP) be fortified with folic acid in order to prevent the occurrence of neural tube defects. The Institute of Medicine established the tolerable upper intake level (UL) for folic acid (1000 µg/day for adults) in 1998. We characterized U.S. adults with usual daily folic acid intake exceeding the UL. Using NHANES 2003–2010 data, we estimated the percentage of 18,321 non-pregnant adults with usual daily folic acid intake exceeding the UL, and among them, we calculated the weighted percentage by sex, age, race/ethnicity, sources of folic acid intake, supplement use and median usual daily folic acid intakes. Overall, 2.7% (standard error 0.6%) of participants had usual daily intake exceeding the UL for folic acid; 62.2% were women; 86.3% were non-Hispanic whites; and 98.5% took supplements containing folic acid. When stratified by sex and age groups among those with usual daily folic acid intake exceeding the UL, 20.8% were women aged 19–39 years. Those with usual daily intake exceeding the folic acid UL were more likely to be female, non-Hispanic white, supplement users or to have at least one chronic medical condition compared to those not exceeding the folic acid UL. Among those with usual daily folic acid intake exceeding the UL who also took supplements, 86.6% took on average >400 µg of folic acid/day from supplements. Everyone with usual daily folic acid intake exceeding the UL consumed folic acid from multiple sources. No one in our study population had usual daily folic acid intake exceeding the UL through consumption of mandatorily-fortified enriched cereal grain products alone. Voluntary consumption of supplements containing folic acid is the main factor associated with usual daily intake exceeding the folic acid UL. PMID:27043623

  19. Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder.

    PubMed

    Bollmann, S; Ghisleni, C; Poil, S-S; Martin, E; Ball, J; Eich-Höchli, D; Edden, R A E; Klaver, P; Michels, L; Brandeis, D; O'Gorman, R L

    2015-01-01

    While the neurobiological basis and developmental course of attention-deficit/hyperactivity disorder (ADHD) have not yet been fully established, an imbalance between inhibitory/excitatory neurotransmitters is thought to have an important role in the pathophysiology of ADHD. This study examined the changes in cerebral levels of GABA+, glutamate and glutamine in children and adults with ADHD using edited magnetic resonance spectroscopy. We studied 89 participants (16 children with ADHD, 19 control children, 16 adults with ADHD and 38 control adults) in a subcortical voxel (children and adults) and a frontal voxel (adults only). ADHD adults showed increased GABA+ levels relative to controls (P = 0.048), while ADHD children showed no difference in GABA+ in the subcortical voxel (P > 0.1), resulting in a significant age by disorder interaction (P = 0.026). Co-varying for age in an analysis of covariance model resulted in a nonsignificant age by disorder interaction (P = 0.06). Glutamine levels were increased in children with ADHD (P = 0.041), but there was no significant difference in adults (P > 0.1). Glutamate showed no difference between controls and ADHD patients but demonstrated a strong effect of age across both groups (P < 0.001). In conclusion, patients with ADHD show altered levels of GABA+ in a subcortical voxel which change with development. Further, we found increased glutamine levels in children with ADHD, but this difference normalized in adults. These observed imbalances in neurotransmitter levels are associated with ADHD symptomatology and lend new insight in the developmental trajectory and pathophysiology of ADHD. PMID:26101852

  20. Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder

    PubMed Central

    Bollmann, S; Ghisleni, C; Poil, S-S; Martin, E; Ball, J; Eich-Höchli, D; Edden, R A E; Klaver, P; Michels, L; Brandeis, D; O'Gorman, R L

    2015-01-01

    While the neurobiological basis and developmental course of attention-deficit/hyperactivity disorder (ADHD) have not yet been fully established, an imbalance between inhibitory/excitatory neurotransmitters is thought to have an important role in the pathophysiology of ADHD. This study examined the changes in cerebral levels of GABA+, glutamate and glutamine in children and adults with ADHD using edited magnetic resonance spectroscopy. We studied 89 participants (16 children with ADHD, 19 control children, 16 adults with ADHD and 38 control adults) in a subcortical voxel (children and adults) and a frontal voxel (adults only). ADHD adults showed increased GABA+ levels relative to controls (P=0.048), while ADHD children showed no difference in GABA+ in the subcortical voxel (P>0.1), resulting in a significant age by disorder interaction (P=0.026). Co-varying for age in an analysis of covariance model resulted in a nonsignificant age by disorder interaction (P=0.06). Glutamine levels were increased in children with ADHD (P=0.041), but there was no significant difference in adults (P>0.1). Glutamate showed no difference between controls and ADHD patients but demonstrated a strong effect of age across both groups (P<0.001). In conclusion, patients with ADHD show altered levels of GABA+ in a subcortical voxel which change with development. Further, we found increased glutamine levels in children with ADHD, but this difference normalized in adults. These observed imbalances in neurotransmitter levels are associated with ADHD symptomatology and lend new insight in the developmental trajectory and pathophysiology of ADHD. PMID:26101852

  1. Salicylic acid elicitation during cultivation of the peppermint plant improves anti-diabetic effects of its infusions.

    PubMed

    Figueroa-Pérez, Marely G; Gallegos-Corona, Marco A; Ramos-Gomez, Minerva; Reynoso-Camacho, Rosalía

    2015-06-01

    Peppermint (Mentha piperita) infusions represent an important source of bioactive compounds with health benefits, which can be enhanced by applying salicylic acid (SA) during plant cultivation. The aim of this study was to evaluate the effect of SA (0, 0.5 and 2 mM) during peppermint cultivation on the chemical profile of saponins and alkaloids, as well as the anti-diabetic properties of the resulting infusions. The results showed that a 2 mM SA treatment significantly improved the chemical profiles of the infusions. Furthermore, the administration of 2 mM SA-treated peppermint infusions for 4 weeks to a high-fat diet/streptozotocin-induced diabetic rats decreased serum glucose levels (up to 25%) and increased serum insulin levels (up to 75%) as compared with the diabetic control. This can be related to the observed protection on pancreatic β-cells. Furthermore, 0.5 and 2 mM SA-treated peppermint infusions decreased LDL (24 and 47%, respectively) and increased HDL levels (18 and 37%, respectively). In addition, all groups treated with peppermint infusions had lower serum and liver triglyceride contents, where 2 mM SA peppermint infusion showed the highest effect (44% and 56%, respectively). This is probably caused by its higher capacity to inhibit pancreatic lipase activity and lipid absorption. Moreover, SA-treated peppermint infusions improved the steatosis score in diabetic rat liver and decreased serum transaminase levels, probably as a result of the increase in steroidal saponins and alkaloids, such as trigonellin. Therefore, the application of 2 mM SA during cultivation of peppermint could be used to improve the anti-diabetic properties of peppermint infusions. PMID:25940690

  2. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue. PMID:26013807

  3. Dietary histidine increases mouse skin urocanic acid levels and enhances UVB-induced immune suppression of contact hypersensitivity.

    PubMed

    Reilly, S K; De Fabo, E C

    1991-04-01

    Urocanic Acid (UCA) exists in mammalian skin primarily as the trans isomer and is photoisomerized to cis UCA upon UVB absorption. Our previous studies indicated that the photoisomerization of UCA is the initiating event in UBV-induced suppression of cell-mediated immunity (tUCA----cUCA----immune suppression). The purpose of this study was to verify the role of UCA in UV-induced immune suppression of contact hypersensitivity (CHS) in BALB/c mice. Since UCA is a metabolite of the amino acid L-histidine, we reasoned that increased dietary levels of histidine should raise skin tUCA levels. If skin tUCA is the UVB photoreceptor for immune suppression, this increase should enhance UV-induced suppression of CHS. HPLC analysis of skin from BALB/c mice given a histidine-rich diet (10%) showed that the total amount of UCA is significantly higher in these animals than in mice fed a normal diet. Further, levels of suppression of CHS of 3% and 49% in control fed mice, induced by 4.8 and 7.2 kJ/m2 UVB were significantly increased to 21% and 71% respectively in histidine-fed animals at these same UVB doses. These findings provide additional support for the UCA model for immune suppression, and provide the first evidence that UV-induced immune suppression can be enhanced by a dietary component, L-histidine. PMID:1857737

  4. Association between serum free thyroxine (FT4) and uric acid levels in populations without overt thyroid dysfunction.

    PubMed

    Ye, Yicong; Gai, Xiaorong; Xie, Hongzhi; Jiao, Li; Zhang, Shuyang

    2015-01-01

    In this study, we investigated the relationship between thyroid function and serum uric acid (UA) levels in subjects without overt thyroid dysfunction. A total of 6,085 patients were included in this cross-sectional study. Free thyroxine (FT4) levels were positively and linearly associated with serum UA levels (p<0.001), even after adjusting for age, thyroid-stimulating hormone, renal function, and other metabolic components (B 37.13; 95%CI 25.99-48.28; p<0.001). Furthermore, quartile analysis indicated that the prevalence of hyperuricemia was significantly elevated with increasing FT4 levels (quartile II: OR 1.232, 95%CI 1.022-1.486, p=0.029; quartile III: OR 1.234, 95%CI 1.025-1.486, p=0.026; quartile IV: OR 1.409, 95%CI 1.168-1.701, p<0.001). In summary, FT4 is linearly associated with serum UA levels in subjects lacking clinical thyroid dysfunction, and the prevalence of hyperuricemia is elevated with increasing FT4 levels. PMID:25696010

  5. Molecular cloning of otoconin-22 complementary deoxyribonucleic acid in the bullfrog endolymphatic sac: effect of calcitonin on otoconin-22 messenger ribonucleic acid levels.

    PubMed

    Yaoi, Yuichi; Suzuki, Masakazu; Tomura, Hideaki; Sasayama, Yuichi; Kikuyama, Sakae; Tanaka, Shigeyasu

    2003-08-01

    Anuran amphibians have a special organ called the endolymphatic sac (ELS), containing many calcium carbonate crystals, which is believed to have a calcium storage function. The major protein of aragonitic otoconia, otoconin-22, which is considered to be involved in the formation of calcium carbonate crystals, has been purified from the saccule of the Xenopus inner ear. In this study, we cloned a cDNA encoding otoconin-22 from the cDNA library constructed for the paravertebral lime sac (PVLS) of the bullfrog, Rana catesbeiana, and sequenced it. The bullfrog otoconin-22 encoded a protein consisting of 147 amino acids, including a signal peptide of 20 amino acids. The protein had cysteine residues identical in a number and position to those conserved among the secretory phospholipase A(2) family. The mRNA of bullfrog otoconin-22 was expressed in the ELS, including the PVLS and inner ear. This study also revealed the presence of calcitonin receptor-like protein in the ELS, with the putative seven-transmembrane domains of the G protein-coupled receptors. The ultimobranchialectomy induced a prominent decrease in the otoconin-22 mRNA levels of the bullfrog PVLS. Supplementation of the ultimobranchialectomized bullfrogs with synthetic salmon calcitonin elicited a significant increase in the mRNA levels of the sac. These findings suggest that calcitonin secreted from the ultimobranchial gland, regulates expression of bullfrog otoconin-22 mRNA via calcitonin receptor-like protein on the ELS, thereby stimulating the formation of calcium carbonate crystals in the lumen of the ELS. PMID:12865304

  6. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    PubMed

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. PMID:25043715

  7. Docosahexaenoic acid levels in the lipids of spotted mackerel Scomber australasicus.

    PubMed

    Osako, Kazufumi; Saito, Hiroaki; Hossain, Mohammed Anwar; Kuwahara, Koichi; Okamoto, Akira

    2006-07-01

    The lipid and FA compositions of various organs and of the stomach contents of Scomber australasicus were analyzed. DHA was characteristically the major FA of all the major lipid classes of all organs except for liver TAG. The mean DHA contents of the various organs accounted for more than 17% of the total FA (TFA), whereas those in the stomach contents, originating from the prey, fluctuated and were generally low. In particular, the DHA levels in the TAG from all organs of S. australasicus accounted for up to 17% of TFA, even though it is a neutral depot lipid. S. australasicus contained markedly high levels of DHA, even though it is a small-sized Scombridae species, and its high levels of DHA were close to those in large-sized highly migratory tuna species. Furthermore, DHA levels in its muscle TAG were consistently high, compared with those in the visceral TAG, which might be directly influenced by the prey lipids. These phenomena suggest that long-distance migration has a close relationship with high accumulation of DHA in fish tissues, since S. australasicus is reported to migrate in offshore water, similar to highly migratory tuna species. Additionally, the physiological selective accumulation of DHA in the muscle during migration is caused by in vivo metabolism of FA in the vascular system, suggesting that DHA is poorly used as a source of migration energy, though it is provided abundantly through the prey lipids. PMID:17069355

  8. Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot

    USGS Publications Warehouse

    Watson-Lamprey, J. A.; Boore, D.M.

    2007-01-01

    In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.

  9. Modulation of blood oxylipin levels by long-chain omega-3 fatty acid supplementation in hyper- and normolipidemic men

    PubMed Central

    <