Science.gov

Sample records for acid saline lakes

  1. Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars

    NASA Astrophysics Data System (ADS)

    Story, Stacy; Bowen, Brenda Beitler; Benison, Kathleen Counter; Schulze, Darrell G.

    2010-12-01

    Aluminum- and Fe/Mg-phyllosilicates are considered important geochemical indicators in terrestrial and Martian sedimentary systems. Traditionally, Al-phyllosilicates are characterized as forming and remaining stable under conditions of low to moderate pH, while Fe/Mg-phyllosilicates are considered representative of only dilute and moderate to high pH conditions. However, we have observed Al- and Fe/Mg-phyllosilicates in acid saline lake sediments in Western Australia. Phyllosilicate formation mechanisms in these lake systems include direct precipitation from lake waters, early diagenetic precipitation from shallow groundwaters, and deposition/alteration of detrital grains. X-ray diffraction analysis of silt- and clay-size sediments from two acid saline lakes in Western Australia indicates the presence of several complex mineral assemblages with extreme spatial heterogeneity that reflects the complex geochemistry of these lakes. These assemblages include unique combinations of authigenic and/or detrital phyllosilicates (e.g., kaolinite, smectite, and palygorskite-sepiolite), sulfates (e.g., alunite, jarosite, and gypsum), Fe-oxides (e.g., hematite and goethite), and other silicates (e.g., mullite and heulandite-clinoptilolite). Observations of Fe/Mg-phyllosilicates found in acid saline sediments in southern Western Australia suggest their degradation under conditions of low pH (2.5-5.4) is slowed by the high salinity (5-25%) of the lake and shallow groundwaters. The occurrence of both Al- and Fe/Mg-phyllosilicates in these acid saline lake sediments suggests that environmental interpretations based on the occurrence of phyllosilicates require additional consideration of their spatial distribution and association with other minerals. Moreover, the similarity between the diverse mineral assemblages in these terrestrial acid saline systems and those on Mars indicates similar conditions may have existed on Mars.

  2. Exploring Variability in Acidic Saline Playa Lakes in WA with HyMAP Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Souza Filho, C. R.; Thomson, B. J.; Bridges, N. T.; Crowley, J. K.

    2009-12-01

    Acid saline lakes in Western Australia have been recognized as useful chemical terrestrial analogs for aqueous mineral formation on Mars [e.g., 1]. In these lake systems, large pH and salinity differences are observed both laterally and vertically over scales of a few tens of meters[2, 3]. The variability in these lakes have been offered as an alternate formation mechanism for some of the phyllosilicates and sulfates on Mars, suggesting that these different mineral types may be separated by chemical gradients rather than by temporal boundaries[4]. To assess the ability to detect this variability remotely and to determine the extent of the surface variability, which may not be easily accessible in the field, spectral mapping for two of the acidic saline playa lakes was performed. HyMAP airborne data were acquired in December, 2008, of Lake Gilmore and Lake Chandler in WA. The HyMAP sensors have 126 bands that cover the wavelength range between 0.45 and 2.5 µm. Hyvista Corporation provided atmospherically corrected surface reflectance data at approximately 3m spatial resolution. Using the methodology described by [5] the HyMAP data were analyzed using ENVI to identify spectrally pure endmembers that can be used to distinguish mineralogy in the scene. Relevant (e.g. not roads, water or vegetation) spectral endmembers derived for each scene were identified visually using spectra from the ASTER spectral library[6]. The processing techniques were applied to all flight lines and ultimately a classification map mosaic was produced for selection of relevant and intriguing field sampling sites. The classification maps will be validated using field spectroscopy and visual inspection of representative samples collected from the field sites in October 2009, and laboratory spectroscopy and X-ray diffraction will be performed for further validation. The classification maps confirm variability in mineralogy across the lakes, validating geochemical modeling. There are also some

  3. Growing spherulitic calcite grains in saline, hyperalkaline lakes: experimental evaluation of the effects of Mg-clays and organic acids

    NASA Astrophysics Data System (ADS)

    Mercedes-Martín, R.; Rogerson, M. R.; Brasier, A. T.; Vonhof, H. B.; Prior, T. J.; Fellows, S. M.; Reijmer, J. J. G.; Billing, I.; Pedley, H. M.

    2016-04-01

    The origin of spherical-radial calcite bodies - spherulites - in sublacustrine, hyperalkaline and saline systems is unclear, and therefore their palaeoenvironmental significance as allochems is disputed. Here, we experimentally investigate two hypotheses concerning the origin of spherulites. The first is that spherulites precipitate from solutions super-saturated with respect to magnesium-silicate clays, such as stevensite. The second is that spherulite precipitation happens in the presence of dissolved, organic acid molecules. In both cases, experiments were performed under sterile conditions using large batches of a synthetic and cell-free solution replicating waters found in hyperalkaline, saline lakes (such as Mono Lake, California). Our experimental results show that a highly alkaline and highly saline solution supersaturated with respect to calcite (control solution) will precipitate euhedral to subhedral rhombic and trigonal bladed calcite crystals. The same solution supersaturated with respect to stevensite precipitates sheet-like stevensite crystals rather than a gel, and calcite precipitation is reduced by ~ 50% compared to the control solution, producing a mixture of patchy prismatic subhedral to euhedral, and minor needle-like, calcite crystals. Enhanced magnesium concentration in solution is the likely the cause of decreased volumes of calcite precipitation, as this raised equilibrium ion activity ratio in the solution. On the other hand, when alginic acid was present then the result was widespread development of micron-size calcium carbonate spherulite bodies. With further growth time, but falling supersaturation, these spherules fused into botryoidal-topped crusts made of micron-size fibro-radial calcite crystals. We conclude that the simplest tested mechanism to deposit significant spherical-radial calcite bodies is to begin with a strongly supersaturated solution that contains specific but environmentally-common organic acids. Furthermore, we found

  4. Mineralogy of evaporite deposits on Mars: Constraints from laboratory, field, and remote measurements of analog terrestrial acid saline lakes

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Núñez, J. I.; Seelos, F. P., IV; Hook, S. J.; Baldridge, A. M.; Thomson, B. J.

    2015-12-01

    Remote compositional data from imaging spectrometers such as CRISM, OMEGA, and TES, and high-resolution imagery from MOC, CTX, and HiRISE have provided invaluable information for improving our understanding of the composition and geologic history of the martian surface and identifying potential past and present habitable environments on Mars. Simulated CRISM spectra and summary parameter maps and HiRISE color images were generated using airborne hyperspectral data of two acid-saline lakes in Western Australia. These locations are applicable to Mars, as they contain a suite of clays, sulfates, and salts formed under variable pH and salinity - mineralogies similar to those observed in Noachian and Hesperian terrain. The remote datasets were used to make surface composition predictions which were then verified through field study and sample analysis. We find phyllosilicates intermixed with sulfates in sulfate-rich surfaces exhibit variable spectral responses, even for similar conditions and abundances seen in the field. Where sulfates, such as gypsum and alunite, are found, phyllosilicates are intermixed or reside beneath the surface yet are not always detected. This suggests that geologic complexities may mask phyllosilicate detection at or near the surface on Mars where only sulfates have so far been found.

  5. Effects of salinity and ultraviolet radiation on the bioaccumulation of mycosporine-like amino acids in Artemia from Lake Urmia (Iran).

    PubMed

    Khosravi, Sanaz; Khodabandeh, Saber; Agh, Naser; Bakhtiarian, Mahdieh

    2013-01-01

    We investigated the effects of salinity and artificial UV radiation on the accumulation of mycosporine-like amino acids (MAAs) in sexual and parthenogenetic Artemia from Lake Urmia. The nauplii hatched from the cysts were cultured until adulthood under two salinities (150 and 250 g L(-1) ) and two light treatments (PAR and PAR+UVR) in the laboratory. Finally, the Artemia were analyzed for their concentration of MAAs. In most of the cases, the higher salinity level applied was found to increase the MAA concentrations in both Artemia populations significantly. The acquisition efficiency of MAAs in both Artemia populations increased under exposure to UVR-supplemented photosynthetically active radiation (PAR) compared to those raised under PAR, except for Porphyra-334. It was observed that combination of UV radiation and elevated salinity significantly increased the bioaccumulation of MAAs. Thus, the presence of these compounds in these populations of Artemia may increase their adaptability for living in high-UV and high-salinity conditions prevailing in Lake Urmia. Higher concentrations of MAAs in the parthenogenetic population of Artemia could be probably attributed to its mono sex nature and higher adaptation capacities to extreme environmental conditions.

  6. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of

  7. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    USGS Publications Warehouse

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  8. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Hook, S. J.; Crowley, J. K.; Marion, G. M.; Kargel, J. S.; Michalski, J. L.; Thomson, B. J.; de Souza Filho, C. R.; Bridges, N. T.; Brown, A. J.

    2009-10-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation. Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines.

  9. Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake.

    PubMed

    Tomonaga, Yama; Brennwald, Matthias S; Livingstone, David M; Kwiecien, Olga; Randlett, Marie-Ève; Stockhecke, Mona; Unwin, Katie; Anselmetti, Flavio S; Beer, Jürg; Haug, Gerald H; Schubert, Carsten J; Sturm, Mike; Kipfer, Rolf

    2017-03-22

    In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about -200 m at about 30 ka BP during the last ice age.

  10. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes

    USGS Publications Warehouse

    Yechieli, Y.; Wood, W.W.

    2002-01-01

    Pans, playas, sabkhas, salinas, saline lakes, and salt flats are hydrologically similar, varying only in their boundary conditions. Thus, in evaluating geochemical processes in these systems, a generic water and solute mass-balance approach can be utilized. A conceptual model of a coastal sabkha near the Arabian Gulf is used as an example to illustrate the various water and solute fluxes. Analysis of this model suggests that upward flux of ground water from underlying formations could be a major source of solutes in the sabkha, but contribute only a small volume of the water. Local rainfall is the main source of water in the modeled sabkha system with a surprisingly large recharge-to-rainfall ratio of more than 50%. The contribution of seawater to the solute budget depends on the ratio of the width of the supratidal zone to the total width and is generally confined to a narrow zone near the shoreline of a typical coastal sabkha. Because of a short residence time of water, steady-state flow is expected within a short time (50,000 years). The solute composition of the brine in a closed saline system depends largely on the original composition of the input water. The high total ion content in the brine limits the efficiency of water-rock interaction and absorption. Because most natural systems are hydrologically open, the chemistry of the brines and the associated evaporite deposits may be significantly different than that predicted for hydrologically closed systems. Seasonal changes in temperature of the unsaturated zone cause precipitation of minerals in saline systems undergoing evaporation. Thus, during the hot dry season months, minerals exhibit retrograde solubility so that gypsum, anhydrite and calcite precipitate. Evaporation near the surface is also a major process that causes mineral precipitation in the upper portion of the unsaturated zone (e.g. halite and carnallite), provided that the relative humidity of the atmosphere is less than the activity of water

  11. Water Budget and Salinity of Walker Lake, western Nevada

    USGS Publications Warehouse

    Thomas, James M.

    1995-01-01

    Walker Lake is one of the rare perennial, terminal lakes in the Great Basin of the western United States. The lake is the terminus for all surface- water and ground-water flow in the Walker River Basin Hydrographic Region that is not consumed by evaporation, sublimation, or transpiration. The concentration of dissolved solids (salts) in the lake-surface altitude depend primarily on the amounts of water entering and evaporation from the lake. Because Walker Lake is a terminal sink--it has no documented surface- or ground-water outflow--dissolved solids that enter it accumulate as the lake water evaporates. Declining lake levels, owing to natural and anthropogenic processes, have resulted in most Great Basin terminal lakes being too saline to support fish. In Nevada, the only terminal lakes that contain fish are Pyramid Lake, Ruby Lake, and Walker Lake. Dissolved-solids concentration in Walker Lake increased from about 2,500 milligrams per liter in 1882 to 13,300 milli- grams per liter in July 1994 (U.S. Geological Survey analysis), as the lake-surface altitude declined from about 4,080 to 3,944 feet above sea level. This dramatic increase in dissolved-solids concentration threatens the Walker Lake ecosystem and the fish that depend on this ecosystem.

  12. Increase of urban lake salinity by road deicing salt.

    PubMed

    Novotny, Eric V; Murphy, Dan; Stefan, Heinz G

    2008-11-15

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds.

  13. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.

  14. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  15. Modern dolomite deposition in continental, saline lakes, western Victoria, Australia

    SciTech Connect

    De Deckker, P.; Last, W.M.

    1988-01-01

    Microcrystalline dolomite forms a major constituent of Holocene sediments of numerous continental, saline playa lakes in southeastern Australia. The lake waters are highly supersaturated with respect to dolomite as well as other Mg carbonates, but undersaturated or near saturation with respect to calcite and aragonite. The dolomite shows no replacement textures and most likely formed by direct precipitation. Conditions in these lakes that appear conducive to the precipitation of dolomite are (1) high salinity, (2) high Mg/Ca ratios, and (3) high alkalinity. The moderate sulfate levels of the brines do not seem to be inhibiting carbonate precipitation.

  16. Investigation of Lake Water Salinity by Using Four-Band Salinity Algorithm on WorldView-2 Satellite Image for a Saline Industrial Lake

    NASA Astrophysics Data System (ADS)

    Budakoǧlu, Murat; Karaman, Muhittin; Damla Uça Avcı, Z.; Kumral, Mustafa; Geredeli (Yılmaz), Serpil

    2014-05-01

    Salinity of a lake is an important characteristic since, these are potentially industrial lakes and the degree of salinity can significantly be used for determination of mineral resources and for the production management. In the literature, there are many studies of using satellite data for salinity related lake studies such as determination of salinity distribution and detection of potential freshwater sources in less salt concentrated regions. As the study area Lake Acigol, located in Denizli (Turkey) was selected. With it's saline environment, it's the major sodium sulphate production resource of Turkey. In this study, remote sensing data and data from a field study was used and correlated. Remote sensing is an efficient tool to monitor and analyze lake properties by using it complementary to field data. Worldview-2 satellite data was used in this study which consists of 8 bands. At the same time with the satellite data acquisition, a field study was conducted to collect the salinity values in 17 points of the laker with using YSI 556 Multiparametre for measurements. The values were measured as salinity amount in grams per kilogram solution and obtained as ppt unit. It was observed that the values vary from 34 ppt - 40.1 ppt and the average is 38.056 ppt. In Thalassic serie, the lake was in mixoeuhaline state in the time of issue. As a first step, ATCOR correction was performed on satellite image for atmospheric correction. There were some clouds on the lake field, hence it was decided to continue the study by using the 12 sampling points which were clear on the image. Then, for each sampling point, a spectral value was obtained by calculating the average at a 11*11 neighborhood. The relation between the spectral reflectance values and the salinity was investigated. The 4-band algorithm, which was used for determination of chlorophyll-a distribution in highly turbid coastal environment by Wei (2012) was applied. Salinity α (Λi-1 / Λj-1) * (Λk-1 / Λm-1) (i

  17. Recent desiccation of Western Great Basin Saline Lakes: Lessons from Lake Abert, Oregon, U.S.A.

    PubMed

    Moore, Johnnie N

    2016-06-01

    Although extremely important to migrating waterfowl and shorebirds, and highly threatened globally, most saline lakes are poorly monitored. Lake Abert in the western Great Basin, USA, is an example of this neglect. Designated a critical habitat under the Western Hemisphere Shorebird Reserve Network, the lake is at near record historic low levels and ultra-high salinities that have resulted in ecosystem collapse. Determination of the direct human effects and broader climate controls on Lake Abert illustrates the broader problem of saline lake desiccation and suggests future solutions for restoration of key habitat values. A 65-year time series of lake area was constructed from Landsat images and transformed to lake volume and salinity. "Natural" (without upstream withdrawals) conditions were calculated from climate and stream flow data, and compared to measured volume and salinity. Under natural conditions the lake would have higher volume and lower salinities because annual water withdrawals account for one-third of mean lake volume. Without withdrawals, the lake would have maintained annual mean salinities mostly within the optimal range of brine shrimp and alkali fly growth. Even during the last two years of major drought, the lake would have maintained salinities well below measured values. Change in climate alone would not produce the recent low lake volumes and high salinities that have destroyed the brine shrimp and alkali fly populations and depleted shorebird use at Lake Abert. Large scale withdrawal of water for direct human use has drastically increased the imbalance between natural runoff and evaporation during periods of drought in saline lakes worldwide but could be offset by establishing an "environmental water budget" to lay a foundation for the conservation of saline lake habitats under continued threats from development and climate change.

  18. Lake-margin ecosystems of saline lakes of the Borzya group (Zabaikalsky Krai, Russia) during the initial filling phase

    NASA Astrophysics Data System (ADS)

    Gorlacheva, Evgenia P.; Tsybekmitova, Gazhit Ts.; Afonin, Alexey V.; Tashlikova, Natalya A.; Afonina, Ekaterina Yu.; Kuklin, Alexey P.; Saltanova, Natalia V.

    2014-07-01

    This article presents the results of hydrochemical and hydrobiological studies of shallow saline lakes of the Borzya group (Zabaikalsky Krai, Russia) at the initial filling phase. The lake-margin ecosystems of the studied lakes are characterized by varying degrees of salinity from polyhaline to brine water. Cyclical variations of meteorological conditions and high salinity determined that the compositions of the aquatic organisms are specific, mostly between stenohaline and euryhaline species, the quantities are low, and the community structures are simple.

  19. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)?

    NASA Astrophysics Data System (ADS)

    El-Shabrawy, Gamal M.; Anufriieva, Elena V.; Germoush, Mousa O.; Goher, Mohamed E.; Shadrin, Nickolai V.

    2015-11-01

    Zooplankton and 14 abiotic variables were studied during August 2011 at 10 stations in Lake Qarun, Egypt. Stations with the lowest salinity and highest nutrient concentrations and turbidity were close to the discharge of waters from the El-Bats and El-Wadi drainage systems. A total of 15 holozooplankton species were identified. The salinity in Lake Qarun increased and fluctuated since 1901: 12 g/L in 1901; 8.5 g/L in 1905; 12.0 g/L in 1922; 30.0 g/L in 1985; 38.7 g/L in 1994; 35.3 g/L in 2006, and 33.4 g/L in 2011. The mean concentration of nutrients (nitrate, nitrite and orthophosphate) gradually increased from 35, 0.16 and 0.38 µg/L, respectively, in 1953-1955 to 113, 16.4, and 30.26 µg/L in 2011. From 1999-2003 some decrease of species diversity occurred. Average total zooplankton density was 30 000 ind./m3 in 1974-1977; 356 125 ind./m3 in 1989; 534 000 ind./m3 in 1994-1995; from 965 000 to 1 452 000 ind./m3 in 2006, and 595 000 ind./m3 in 2011. A range of long-term summer salinity variability during the last decades was very similar to a range of salinity spatial variability in summer 2011. There is no significant correlation between zooplankton abundance and salinity in spatial and long-term changes. We conclude that salinity fluctuations since at least 1955 did not directly drive the changes of composition and abundance of zooplankton in the lake. A marine community had formed in the lake, and it continues to change. One of the main drivers of this change is a regular introduction and a pressure of alien species on the existent community. Eutrophication also plays an important role. The introduction of Mnemiopsis leidyi, first reported in 2014, may lead to a start of a new stage of the biotic changes in Lake Qarun, when eutrophication and the population dynamics of this ctenophore will be main drivers of the ecosystem change.

  20. Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia.

    PubMed

    Yihdego, Yohannes; Webb, John

    2012-12-15

    In southwestern Victoria a large number of lakes are scattered across the volcanic plains; many have problems with increasing salinity. To identify the hydrologic components behind this problem, three lakes, Burrumbeet, Linlithgow and Buninjon, were selected for detailed water and salt budget modelling using monthly values of rainfall, evaporation, surface inflow and outflow, and groundwater inflow and outflow (using the new modified difference method developed in this study). On average, rainfall begins to exceed evaporation with the onset of winter rainfall in May, so lake levels rise and lake salinities decline. The modelled lakes have become more saline over the last decade, a time of drought with below average rainfall, and all eventually dried out, their salinities rising to very high levels as they shallowed. Lake Burrumbeet is generally much less saline than Lakes Linlithgow and Buninjon, because it has substantial groundwater outflow, probably due to leakage through one or more volcanic necks. This limits the amount of time the lake water is subject to evaporation, and also allows significant salt export. The other lakes do not leak. The modelling indicates that when the lakes dry out, salt is lost from the lake-beds, probably due to wind deflation of salt crusts and leakage into the underlying groundwater. The removal of salt during drying-out phases resets the salinity of the lakes, limiting their ability to become more saline with time. Drying-out phases may therefore be essential in preventing the increased salinisation of lakes and wetland environments across the volcanic plains.

  1. Roseovarius lacus sp. nov., isolated from Yuncheng Saline Lake, China.

    PubMed

    Pan, Jiafeng; Yu, Zhen; Tang, Jia; Yang, Guiqin; Zhuang, Li; Liu, Zhi; Zhou, Shungui

    2017-03-01

    Strain GSS12(T), a Gram-negative, aerobic, non-flagellated, ovoid- to rod-shaped (0.5-0.7 × 0.9-3.0 µm) bacterium, was isolated from Yuncheng Saline Lake, China. Growth occurred with 0.5-16.0 % (w/v) NaCl (optimum 4.5 %), at pH 5.0-10.0 (optimum pH 6.0-6.5) and at 10-50 °C (optimum 37 °C). The major fatty acids (>5.0 %) found in GSS12(T) were summed feature 8 (72.2 %), C16:0 (9.0 %) and C18:1 ω7c 11-methyl (6.4 %). The DNA G+C content was 62.7 mol%. Analysis of the 16S rRNA gene sequences showed that strain GSS12(T) forms a stable clade with species of the genus Roseovarius, being related to R. pacificus 81-2(T) and R. litoreus GSW-M15(T) with 97.9 and 96.7 % of sequence similarity, respectively. The DNA-DNA relatedness values between strain GSS12(T) and R. pacificus 81-2(T) and R. halotolerans HJ50(T) were low (36 and 29 %, respectively). The phenotypic, physiological, biochemical and genetic characteristics support the assignment of strain GSS12(T) to the genus Roseovarius and represent a novel species. The name Roseovarius lacus sp. nov. is proposed, with strain GSS12(T) (=KCTC 52185(T) =MCCC 1K02302(T)) as the type strain.

  2. Chemical and physical properties of some saline lakes in Alberta and Saskatchewan

    PubMed Central

    Bowman, Jeff S; Sachs, Julian P

    2008-01-01

    Background The Northern Great Plains of Canada are home to numerous permanent and ephemeral athalassohaline lakes. These lakes display a wide range of ion compositions, salinities, stratification patterns, and ecosystems. Many of these lakes are ecologically and economically significant to the Great Plains Region. A survey of the physical characteristics and chemistry of 19 lakes was carried out to assess their suitability for testing new tools for determining past salinity from the sediment record. Results Data on total dissolved solids (TDS), specific conductivity, temperature, dissolved oxygen (DO), and pH were measured in June, 2007. A comparison of these data with past measurements indicates that salinity is declining at Little Manitou and Big Quill Lakes in the province of Saskatchewan. However salinity is rising at other lakes in the region, including Redberry and Manito Lakes. Conclusion The wide range of salinities found across a small geographic area makes the Canadian saline lakes region ideal for testing salinity proxies. A nonlinear increase in salinity at Redberry Lake is likely influenced by its morphometry. This acceleration has ecological implications for the migratory bird species found within the Redberry Important Bird Area. PMID:18430240

  3. Jurassic Lake T'oo'dichi': a large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau

    USGS Publications Warehouse

    Turner, C.E.; Fishman, N.S.

    1991-01-01

    Recognition of alkaline, saline-lake deposits in the Morrison Formation significantly alters interpretations of depositional environments of this formation, and it also has important implications for paleoclimatic interpretation. Late Jurassic climate was apparently much more arid than had previously been thought. In fact, sedimentologic evidence suggests that the lake basin was typically dry for extended periods and enjoyed only brief wet intervals. This conclusion has important consequences for environmental interpretation of the habitat that was favorable for large herbivorous dinosaurs, which thrived in the Late Jurassic. -from Authors

  4. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  5. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.

    PubMed

    Jiang, Hongchen; Dong, Hailiang; Yu, Bingsong; Liu, Xinqi; Li, Yiliang; Ji, Shanshan; Zhang, Chuanlun L

    2007-10-01

    Previous investigations of the salinity effects on the microbial community composition have largely been limited to dynamic estuaries and coastal solar salterns. In this study, the effects of salinity and mineralogy on microbial community composition was studied by using a 900-cm sediment core collected from a stable, inland hypersaline lake, Lake Chaka, on the Tibetan Plateau, north-western China. This core, spanning a time of 17,000 years, was unique in that it possessed an entire range of salinity from freshwater clays and silty sands at the bottom to gypsum and glauberite in the middle, to halite at the top. Bacterial and archaeal communities were studied along the length of this core using an integrated approach combining mineralogy and geochemistry, molecular microbiology (16S rRNA gene analysis and quantitative polymerase chain reaction), cultivation and lipid biomarker analyses. Systematic changes in microbial community composition were correlated with the salinity gradient, but not with mineralogy. Bacterial community was dominated by the Firmicutes-related environmental sequences and known species (including sulfate-reducing bacteria) in the freshwater sediments at the bottom, but by halophilic and halotolerant Betaproteobacteria and Bacteroidetes in the hypersaline sediments at the top. Succession of proteobacterial groups along the salinity gradient, typically observed in free-living bacterial communities, was not observed in the sediment-associated community. Among Archaea, the Crenarchaeota were predominant in the bottom freshwater sediments, but the halophilic Halobacteriales of the Euryarchaeota was the most important group in the hypersaline sediments. Multiple isolates were obtained along the whole length of the core, and their salinity tolerance was consistent with the geochemical conditions. Iron-reducing bacteria were isolated in the freshwater sediments, which were capable of reducing structural Fe(III) in the Fe(III)-rich clay minerals

  6. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes

    PubMed Central

    2012-01-01

    Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395

  7. Isotopic evolution of saline lakes in the low-latitude and polar regions

    SciTech Connect

    Horita, Juske

    2009-01-01

    Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state terminal lake model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/ or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.

  8. Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions

    SciTech Connect

    Horita, Juske

    2009-01-01

    Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state 'terminal lake' model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.

  9. Microbial Diversity in Sediments of Saline Qinghia Lake, China:Linking Geochemical Controls to Microbial Ecoloby

    SciTech Connect

    Dong, Hailiang; Zhang, Gengxin; Jiang, Hongchen; Yu, Bingsong; Chapman, Leah R.; Lucas, Courtney R.; Fields, Matthew W.

    2007-03-30

    Saline lakes at high altitudes represent an important andextreme microbial ecosystem, yet little is known about microbialdiversity in such environments. The objective of this study was toexamine the change of microbial diversity from the bottom of the lake tosediments of 40 cm in depth in a core from Qinghai Lake. The lake issaline (12.5 g/L salinity) and alkaline (pH 9.4) and is located on theQinghai-Tibetan Plateau at an altitude of 3196 m above sea level. Porewater chemistry of the core revealed low concentrations of sulfate andiron (<1 mM), but high concentrations of acetate (40-70 mM) anddissolved organic carbon (1596-5443 mg/L). Total organic carbon and totalnitrogen contents in the sediments were approximately 2 and<0.5percent, respectively. Acridine orange direct count data indicated thatcell numbers decreased from 4 x 10(9) cells/g at the water-sedimentinterface to 6 x 10(7) cells/g wet sediment at the 40-cm depth. Thischange in biomass was positively correlated with acetate concentration inpore water. Phospholipid fatty acid (PLFA) community structure analysesdetermined decrease in the proportion of the Proteobacteria and increasein the Firmicutes with increased depth. Characterization of small subunit(SSU) rRNA genes amplified from the sediments indicated a shift in thebacterial community with depth. Whereas the alpha-, beta-, andgamma-Proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB)were dominant at the water-sediment interface, low G + C gram-positivebacteria (a subgroup of Firmicutes) became the predominant group in theanoxic sediments. Both PLFA and the sequence data showed similar trend.The Proteobacteria, CFB, and gram-positive bacteria are present in othersaline lakes, but the presence of Actinobacteria andAcidobacteria/Holophaga in significant proportions in the Qinghai Lakesediments appears to be unique. The archaeal diversity was much lower,and clone sequences could be grouped in the Euryarchaeota andCrenarchaeota domains. The

  10. Phytoplankton Productivity Across Prairie Saline Lakes of the Great Plains (USA): A Step Toward Deciphering Patterns Through Lake Classification Models

    DTIC Science & Technology

    2009-08-20

    chromatography ( Dionex ICS-90). In the field, whole water samples were collected for total P and total N and acidified with H2SO4. Samples for total dissolved...explanatory power to model phytoplankton re- sponse in these chemically complex systems. Unlike marine systems, the dominant ions in saline lakes...subsaline). Lakes were se- lected to maximize variation in conductivity, ion composi- tion, and nutrient concentrations. In the spring, these lakes were

  11. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  12. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    USGS Publications Warehouse

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  13. The influence of salinity on D/H fractionation in dinosterol and brassicasterol from globally distributed saline and hypersaline lakes

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel B.; Sachs, Julian P.

    2014-05-01

    Salinity, growth rate, growth stage, nutrient limitation and temperature have all been shown to influence the magnitude of D/H fractionation in algal lipids through laboratory and field studies. Of these factors, salinity has been studied most extensively in the field, but to date all such investigations have focused on transect studies within specific and isolated environments. Here we test the relationship between salinity and the magnitude of D/H fractionation in algal lipids through paired analyses of sedimentary and particulate lipid and water hydrogen isotope values at a wide range of continental and coastal lake sites spanning salinities from 0 to 117 ppt. Our results demonstrate broad consistency between D/H fractionations in dinosterol and brassicasterol with those obtained from previous work, with salinity changes of 1 ppt resulting in lipid δD changes of 0.7-1‰. Although our results also show variability in D/H fractionation between sites that is not related to salinity, the fact that any relationship emerges above the influences of other factors suggests that the salinity effect is dominant for some lipids in the majority of saline to hypersaline environments. This improved understanding of D/H fractionation in dinosterol and brassicasterol synthesis supports the use of these compounds as paleohydrologic indicators. When combined with D/H measurements from a second lipid or oxygen isotope measurements from carbonate, quantitative reconstructions of salinity and lake water isotope changes are possible. Extending the number of algal lipids within which a consistent relationship between D/H fractionation and salinity has been identified also supports the notion that the relationship is widespread among unicellular photoautotrophs.

  14. Estimating the saline springs component in the solute and water balance of Lake Kinneret, Israel

    NASA Astrophysics Data System (ADS)

    Rimmer, Alon; Gal, Gideon

    2003-12-01

    The relatively high salinity of Lake Kinneret, Israel (190-350 ppm Cl -) is a result of the activity of saline springs located at the bottom of the lake. Their subsurface location inhibits direct monitoring of their fluxes. The objective of this work is to characterize the monthly ground water flow and salinity of the unmonitored saline springs over a long-term period, and to find a functional relationship between deriving variables and these monthly discharges. Results of the long-term evaluation of the unmonitored saline springs activity, are intended to help distinguish between two competing models ('gravity driven flow' (GFM) and 'self potential' models), which were proposed as the mechanism of the Lake Kinneret saline springs. The monthly solute and water balance of 32 consecutive years (1968-2001) was calculated, in which the contribution of the saline springs was considered as the residual. Error analyses were conducted for both the water and the solute residuals, and constraints were used to calculate a better, physically based time series representing the unmonitored saline springs activity. The calculated time-series of water and solute discharge from the springs were used to find the functional relationship with the lake level. It was found that there was an increase of water and solute fluxes to the lake at periods of high lake level. We concluded that the results are in agreement with the proposed GFM: high fluxes of ground water to the lake, and high leaching of solute are the result of rainy seasons, which usually cause high lake levels as well.

  15. Amino acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Kminek, G.; Botta, O.; Glavin, D. P.; Bada, J. L.

    2002-01-01

    High-performance liquid chromatography (HPLC) based amino acid analysis of a Tagish Lake meteorite sample recovered 3 months after the meteorite fell to Earth have revealed that the amino acid composition of Tagish Lake is strikingly different from that of the CM and CI carbonaceous chondrites. We found that the Tagish Lake meteorite contains only trace levels of amino acids (total abundance = 880 ppb), which is much lower than the total abundance of amino acids in the CI Orgueil (4100 ppb) and the CM Murchison (16 900 ppb). Because most of the same amino acids found in the Tagish Lake meteorite are also present in the Tagish Lake ice melt water, we conclude that the amino acids detected in the meteorite are terrestrial contamination. We found that the exposure of a sample of Murchison to cold water lead to a substantial reduction over a period of several weeks in the amount of amino acids that are not strongly bound to the meteorite matrix. However, strongly bound amino acids that are extracted by direct HCl hydrolysis are not affected by the leaching process. Thus even if there had been leaching of amino acids from our Tagish Lake meteorite sample during its 3 month residence in Tagish Lake ice and melt water, a Murchison type abundance of endogenous amino acids in the meteorite would have still been readily detectable. The low amino acid content of Tagish Lake indicates that this meteorite originated fiom a different type of parent body than the CM and CI chondrites. The parent body was apparently devoid of the reagents such as aldehyldes/ketones, HCN and ammonia needed for the effective abiotic synthesis of amino acids. Based on reflectance spectral measurements, Tagish Lake has been associated with P- or D-type asteroids. If the Tagish Lake meteorite was indeed derived fiom these types of parent bodies, our understanding of these primitive asteroids needs to be reevaluated with respect to their potential inventory of biologically important organic compounds.

  16. Alkenone temperature and salinity: An evaluation of long chain C37 alkenone in Lake Qinghai, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Liu, Z.; Fu, M.; An, Z.

    2007-12-01

    In recently years, the alkenone unsaturation index (Uk'37=C37:.2/(C37:2+ C37:3)) has been used to reconstructed paleo-temperature for lacustrine sediments. However, few studies have addressed whether the relative abundance of the C37:4 alkenone to the total C37 production (C37:4 percent) can reflect surface salinity changes in lake systems. Here we present the distribution of C37 long chain alkenone of modern lake sediments in Qinghai Lake, Qing-Tibet Plateau, to evaluate significance of abundance change of long chain C37 alkenone as an indicator of lake paleo-enviromental evolution. A group of surface sediments from different locations in the lake have been analyzed in this study. The results of long chain C37 alkenone from 28 surface sediments analyses shown relative abundance of C37:4 alkenone to total C37 production (C37:4 percent) change from 14.5 to 48.6 percent and the abundance of C37:4 alkenone is increasing with decreasing salinity of lake water. For the salinity lake in land, we suggested the relative abundance of C37:4 alkenone in lake sediments may be a indicator of paleo-silinity; We have also found that Uk'37 values are weakly correlated with salinity and C37:4 percent changes, implying that potential minor contributions of temperature and salinity effects to C37:4 percent and Uk'37 respectively cannot be excluded in this study. However, since these contributions are weak, we suggest that the C37:4 percent proxy can be used to reconstruct paleo-salinity changes at a regional scale, especially in lake systems, while Uk'37 remains as a powerful tool for reconstructions of paleo-temperature changes in the lake systems.

  17. Acid lakes from natural and anthropogenic causes

    SciTech Connect

    Patrick, R.; Binetti, V.P.; Halterman, S.G.

    1981-01-30

    Lakes may be acid because of natural ecological conditions or because of anthropogenic activities. Apparently there has been a recent increase in acidity of many lakes in the northeastern United States. Factors that may be contributing to this increase include the use by utilities of precipitators, sulfur scrubbers, and tall stacks; the use of petroleum; and methods of combustion of fossil fuels.

  18. Physico-chemical conditions for plankton in Lake Timsah, a saline lake on the Suez Canal

    NASA Astrophysics Data System (ADS)

    El-Serehy, H. A. H.; Sleigh, M. A.

    1992-02-01

    Lake Timsah receives high salinity water from the Suez Canal, mainly from the south, and freshwater from a Nile canal and other sources, producing a salinity stratification with surface salinities of 20-40‰ and over 40‰ in deeper water. Water temperature at a depth of 50-70 cm fell to below 20 °C in winter and rose to above 30 °C in summer; oxygen concentration at the same depth ranged between 6-10 mg l -1 and the pH was 8·1-8·3, and at mid-day this water was supersaturated with oxygen through 6-8 months of the year. The main chemical nutrients reached their highest levels in winter (December-February) and their lowest levels in summer (May-August), silicate varying between 1-7 μ M, phosphate between 0·1 and 0·8 μ M and nitrate between 4-10 μ M; nitrite varied in a more complex manner, usually between 0·25 and 0·4 μ M. The atomic ratio of N/P was generally well above the Redfield ratio level, except for a few months in midwinter. These nutrient concentrations are high in comparison with those of unpolluted seas of the region, but are typical of the more eutrophic coastal waters in most parts of the world.

  19. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau

    PubMed Central

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li

    2016-01-01

    The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg2+, K+, Cl−, Na+, SO42−, and Ca2+) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO43− concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole

  20. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau.

    PubMed

    Zhong, Zhi-Ping; Liu, Ying; Miao, Li-Li; Wang, Fang; Chu, Li-Min; Wang, Jia-Li; Liu, Zhi-Pei

    2016-01-08

    The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg(2+), K(+), Cl(-), Na(+), SO4 (2-), and Ca(2+)) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO4 (3-) concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as

  1. Past, present and future of saline lakes: research for global sustainable development

    NASA Astrophysics Data System (ADS)

    Shadrin, Nickolai; Zheng, Mianping; Oren, Aharon

    2015-11-01

    The 12th International Conference on Salt Lake Research was held in Langfang City, China from July 14 to 18, 2014. Fifteen manuscripts of presentations have been retained for publication in this special issue. They are very diverse, covering the biology, physics, chemistry and geology of salt lakes, the history of hydrological research on the Dead Sea, the effects of socioeconomic and environmental policies by stakeholders on human populations, and the increasing salinization of freshwater lakes around the world.

  2. "Hairy blobs:" microbial suspects preserved in modern and ancient extremely acid lake evaporites.

    PubMed

    Benison, Kathleen C; Jagniecki, Elliot A; Edwards, Tina B; Mormile, Melanie R; Storrie-Lombardi, Michael C

    2008-08-01

    "Hairy blobs" are unusual clumps of organic bodies and sulfate crystals that have been found in evaporite minerals grown in acid saline lakes. Here, we document modern hairy blobs in halite and gypsum from 5 modern acid saline lakes in southern Western Australia, and Permian hairy blobs trapped in halite from the mid-Permian Opeche Shale in the subsurface of North Dakota. These are among the first microbial remains described from acid saline lake environments. They give clues about the role of microorganisms in the acidity, geochemistry, and mineralogy of these extreme environments. This study also may add to the inventory of life in extreme environments and help predict possible martian life-forms and the method of preservation.

  3. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes.

    PubMed

    Genuário, Diego Bonaldo; Andreote, Ana Paula Dini; Vaz, Marcelo Gomes Marçal Vieira; Fiore, Marli Fátima

    2017-04-01

    Studies investigating the diversity of cyanobacteria from tropical environments are scarce, especially those devoted to the isolation and molecular characterization of the isolated strains. Among the Brazilian biomes, Pantanal has mainly been examined through microscopic observation of environmental samples, resulting in lists of morphotypes without any genetic information. Recently, two studies were conducted evaluating the morphologic and genetic diversity of cultured non-heterocytous cyanobacteria in this biome, which resulted in the separation and description of two novel genera. In order to complement the diversity of cultured cyanobacteria from saline-alkaline lakes in Pantanal, the present study is dedicated to the examination of cultured nitrogen-fixing heterocytous cyanobacteria from this extreme and underexplored environment. A total of fourteen cyanobacterial strains were isolated. According to morphological examination they belong to the order Nostocales and to the subsections IV.I and IV.II, according to the International Code of Nomenclature for Algae, Fungi and Plants and the Bergey's Manual of Systematic Bacteriology, respectively. Phylogenetic evaluation of their 16S rRNA gene sequences resulted in the formation of five clusters. Among them, one is clearly related to the genus Anabaenopsis whilst the remaining clusters may represent new genetic lineages. These novel sequences aid in the delimitation of problematic groups, especially those containing sequences belonging to mixed genera. The application of both morphologic and phylogenetic studies has proven to be an important tool in resolving problematic groups in cyanobacteria systematics. This strategy is essential in order to detect novel cyanobacteria genera from other tropical environments.

  4. A hydrous Ca-bearing magnesium carbonate from playa lake sediments, Salines Lake, Spain

    USGS Publications Warehouse

    Queralt, I.; Julia, R.; Plana, F.; Bischoff, J.L.

    1997-01-01

    Sediments of playa Lake Salines, SE, Spain, contain a carbonate mineral characterized by X-ray diffraction peaks very similar to, but systematically shifted from those of pure magnesite. Analyses (SEM, IR and Raman spectroscopy, DTA, TGA, and ICP) indicate the mineral is a hydrous Ca-bearing magnesium carbonate with the chemical formula (Mg0.92,Ca0.08)CO3??3H2O. Thermal characteristics of the mineral are similar to those of other known hydrated magnesium carbonates. X-ray and electron diffraction data suggests a monoclinic system (P21/n space group) with unit-cell parameters of a = 6.063(6), b = 10.668(5), and c = 6.014(4) A?? and ?? = 107.28??.

  5. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    PubMed Central

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  6. High genetic diversity and novelty in eukaryotic plankton assemblages inhabiting saline lakes in the Qaidam basin.

    PubMed

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing <90% identity to any previously reported sequence in GenBank. At least 4 operational taxonomic units (OTUs) in mesosaline lakes, while up to eighteen OTUs in hypersaline lakes show very low CCM and CEM scores, indicating that these sequences are highly distantly related to any existing sequence. Most of the 18S rRNA gene sequence reads obtained in investigated mesosaline lakes is closely related to Holozoa group (48.13%), whereas Stramenopiles (26.65%) and Alveolates (10.84%) are the next most common groups. Hypersaline lakes in the Qaidam Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution.

  7. The water balance equations in saline playa lakes: comparison between experimental and recent data from Quero Playa Lake (central Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez-Moral, S.; Ordóñez, S.; Benavente, D.; García del Cura, M. A.

    2002-04-01

    The Quero Playa Lake is an ephemeral saline playa lake located in the La Mancha region of central Spain. In this study, a daily monitoring of the brine physical properties, water activity, brine depth and main climatic parameters was simultaneously carried out together with determining the precipitation sequence of minerals. Field data were compared with the results of simulating the water evaporation in an environmental chamber. In this simulation, a similar hydrochemical composition for the saline lake was used, and the main climatic parameters, temperature and humidity, were controlled. The water balance equation for saline lakes has usually been described using the Wood and Sanford equation [Econ. Geol., 85(1990) 1226-1235]. Our experimental results required us to revise the water balance equation for the brine depth variations (d h/d t), that may be expressed as follows: {dh }/{dt }=p 1+k {A B}/{A L}+S I-S O-ξ-H+D, where p (mm) is the precipitation; k is the drainage coefficient of the lake; AL is the lake surface; AB is the drainage basin surface; SI and SO are the contribution of influent and effluent seepage to the depth of brine in the lake. The term ξ is the evaporation/condensation, defined as ξ= kpW( aW-RH), where k is the mass transfer coefficient (Dalton's equation); pW is the water pressure in equilibrium with the air; aW is the water activity of the brine; RH is the relative humidity. The other terms: H and D, correct the brine depth loss or/and gain a consequence of hydrated saline mineral precipitation and early diagenetic hydration/dehydration reactions. As a consequence of the above, we suggest that the water balance equation for saline lakes can be an important consideration in the interpretation of their evolution. The precipitation of hydrated saline minerals and the early diagenetic dehydration/hydration reactions imply changes in the d h/d t curves. As a result, the interpretation of the sequence of primary saline minerals in older

  8. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes

    PubMed Central

    Yang, Jian; Ma, Li’an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-01-01

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions. PMID:27113678

  9. Acid Raindrops Keep Fallin' in My Lake.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2003

    2003-01-01

    Demonstrates acid rain falling into lakes using vinegar and explores the effects on different types of solids such as chalk, sand, and lime. Includes instructor information and student worksheets. (YDS)

  10. Modelling density-dependent flow and solute transport at the Lake Tutchewop saline disposal complex, Victoria

    NASA Astrophysics Data System (ADS)

    Simmons, Craig T.; Narayan, Kumar A.

    1998-05-01

    Intercepted saline groundwaters and drainage effluent from irrigation are commonly stored in both natural and artificial saline disposal basins throughout the Murray-Darling Basin of Australia. Their continued use as wastewater evaporation sites requires an understanding of existing groundwater dynamics. The useful of individual basins, their sustainability and possible environmental impacts remain largely unknown. In this work, the movement of salt to the underlying groundwater system from Lake Tutchewop, a saline disposal complex in north-central Victoria, was modelled in cross-section. Due to the salinity contrast between the hypersaline basin waters and the regional groundwater, it was necessary to simulate density-dependent flow behaviour. Under certain conditions, these density-stratified systems may become unstable leading to the onset of convective behaviour, which greatly increases the movement of salt from the basin to the groundwater system. Modelled concentration profiles in the aquifer system and calculated seepage rates from the basin show that Lake Tutchewop is stable under its present operating regime. The downward movement of salt is mainly controlled by diffusion and dispersion. The calibrated model was used to assess the impact of several management scenarios using time-dependent boundary conditions for lake salinity and water levels. The influence of heterogeneous basin linings on ensuing salt flux rates is examined, and results show that increased solute transport will occur under such conditions. A sensitivity analysis performed on governing variables showed that salt fluxes were most sensitive to lake salinity levels. A solute Rayleigh number defined in terms of basin salinity and hydrogeologic parameters is seen to be an effective tool for predicting the long term behaviour of such saline disposal basins. The models and concepts developed in this work may find application in the design and management of saline disposal complexes.

  11. Aquatic fulvic acids in microbially based ecosystems: results from two desert lakes in Antarctica

    USGS Publications Warehouse

    McKnight, Diane M.; Aiken, G.R.; Smith, R.L.

    1991-01-01

    These lakes receive very limited input of organic material from the surrounding barren desert, but they sustain algal and bacterial populations under permanent ice cover. One lake has an extensive anoxic zone and high salinities; the other is oxic and has low salinities. Despite these differences, fulvic acids from both lakes had similar elemental compositions, carbon distributions, and amino acid contents, indicating that the chemistry of microbially derived fulvic acvids is not strongly influenced by chemical conditions in the water column. Compared to fulvic acids from other natural waters, these fulvic acids have low C:N atomic ratios (19-25) and low contents of aromatic carbons (5-7% of total carbon atoms); they are most similar to marine fulvic acids. -from Authors

  12. NITZSCHIA OVALIS (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY(1).

    PubMed

    Garza-Sánchez, Fernando; Chapman, David J; Cooper, James B

    2009-04-01

    The growth of microalgae in hypersaline conditions requires that cells accumulate osmoprotectants. In many instances, these are polyols. We isolated the diatom Nitzschia ovalis H. J. Arn. from the saline and alkaline water body Mono Lake (CA, USA). This isolate can grow in salinities ranging from 5 to 120 parts per thousand (ppt) of salt but normally at 90 ppt salinity. In this report, we identified the major polyol osmoprotectant as 1,4/2,5 cyclohexanetetrol by electron ionization-mass spectrometry (EI-MS), (1) H, (13) C nuclear magnetic resonance spectroscopy (NMR), and infrared (IR) and showed an increase in cellular concentration in response to rising salinity. This increase in the cyclitol concentration was evaluated by gas chromatography of the derived tetraacetylated cyclohexanetetrol obtaining an average of 0.7 fmol · cell(-1) at 5 ppt and rising to 22.5 fmol · cell(-1) at 120 ppt. The 1,4/2,5 cyclohexanetetrol was also detected in the red alga Porphyridium purpureum. Analysis of the free amino acid content in N. ovalis cultures exposed to changes in salinity showed that proline and lysine also accumulate with increased salinity, but the cellular concentration of these amino acids is about 10-fold lower than the concentration of 1,4/2,5 cyclohexanetetrol. The comparison of amino acid concentration per cell with cyclitol suggests that this polyol is important in compensating the cellular osmotic pressure due to increased salinity, but other physiological functions could also be considered.

  13. Regional Monitoring of Acidic Lakes and Streams

    EPA Pesticide Factsheets

    This asset provides data on the acid-base status of lakes and streams. Key chemical indicators measured include: sulfate, nitrate, ammonium, chloride, Acid Neutralizing Capacity (ANC), pH, base cations, dissolved organic carbon (DOC), total aluminum. TIME and LTM are part of EPA's Environmental Monitoring and Assessment Program (EMAP). Long-term monitoring of the acid-base status (pH, ANC, SO4, NO3, NH4, DOC, base cations, Al) in lakes and streams. Monitoring is conducted in acid sensitive regions of the Eastern U.S.

  14. Fossil Chironomidae (Insecta: Diptera) as quantitative indicators of past salinity in African lakes

    NASA Astrophysics Data System (ADS)

    Eggermont, Hilde; Heiri, Oliver; Verschuren, Dirk

    2006-08-01

    We surveyed sub-fossil chironomid assemblages in surface sediments of 73 low- to mid-elevation lakes in tropical East Africa (Uganda, Kenya, Tanzania, Ethiopia) to develop inference models for quantitative paleosalinity reconstruction. Using a calibration data set of 67 lakes with surface-water conductivity between 34 and 68,800 μS/cm, trial models based on partial least squares (PLS), weighted-averaging (WA), weighted-averaging partial least squares (WA-PLS), maximum likelihood (ML), and the weighted modern analogue technique (WMAT) produced jack-knifed coefficients of determination ( r2) between 0.83 and 0.87, and root-mean-squared errors of prediction (RMSEP) between 0.27 and 0.31 log 10 conductivity units, values indicating that fossil assemblages of African Chironomidae can be valuable indicators of past salinity change. The new inference models improve on previous models, which were calibrated with presence-absence data from live collections, by the much greater information content of the calibration data set, and greater probability of finding good modern analogues for fossil assemblages. However, inferences still suffered to a greater (WA, WMAT) or lesser (WA-PLS, PLS and ML) extent from weak correlation between chironomid species distribution and salinity in a broad range of fresh waters, and apparent threshold response of African chironomid communities to salinity change near 3000 μS/cm. To improve model sensitivity in freshwater lakes we expanded the calibration data set with 11 dilute (6-61 μS/cm) high-elevation lakes on Mt. Kenya (Kenya) and the Ruwenzori Mts. (Uganda). This did not appreciably improve models' error statistics, in part because it introduced a secondary environmental gradient to the faunal data, probably temperature. To evaluate whether a chironomid-based salinity inference model calibrated in East African lakes could be meaningfully used for environmental reconstruction elsewhere on the continent, we expanded the calibration data

  15. A High-Resolution Global Lake Inventory with Classified Freshwater and Saline Types

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.; Song, C.; Urano, T.; Satori, P. J.; Ford, S. J.

    2015-12-01

    Lakes are the largest surface water stock readily accessible to human need. Monitoring and understanding the distribution, change, and vulnerability of contemporary lakes remain as one of the top priorities in hydrological studies. Our recent project supported by the U.S. Geological Survey produced a high-resolution inventory of global lake extents (greater than 0.4 hectare) using circa 2000 Landsat TM and ETM+ imagery, which further enhanced human's vision on the precise physical distribution of contemporary surface water stock worldwide. Continuous advancement in understanding regional-to-global surface water stress demands expanded knowledge on not only water discharge in streams and rivers but also stock in freshwater lakes. Yet to our best knowledge, we are currently lacking detailed, reliable inventory of lake water types on a global scale. Here we represent a progressing world lake database with differentiated freshwater and saline categories by integrating hydrological analysis, climate data, and spectral remote sensing. This effort is a natural extension of our global lake mapping project and a prerequisite of our overarching goal to assess global lake vulnerability. The completed lake data will also benefit a wide spectrum of scientific disciplines and water resources management agencies.

  16. Spatial-temporal variations and their dynamics of the saline lakes in the Qaidam Basin over the past 40 years

    NASA Astrophysics Data System (ADS)

    Zhou, S. L.; Zhang, W. C.; Wang, F.

    2016-11-01

    The saline lakes in the Qaidam basin, providing numerous saline mineral resources to the development of China's western region have changed greatly in recent decades. Understanding the spatial-temporal variations of the saline lakes for exploring the dynamics of those changes is not only essential for sustainable development of the region, but also is of significance for scientific studies. By using multi-temporal Landsat and HJ-1A/1B remote sensing data, this study focused on detecting the spatial-temporal variations of the saline lakes concerning with their extent changes with the influence of climate and human activities in the Qaidam basin from 1973 to 2014 based on the normalized difference water index (NDWI) and maximum likelihood supervised classification techniques. The results indicated that most of the saline lakes studied in this paper across the study region had experienced great changes over the past 40 years, and each saline lake differed considerably on extent. The runoff supplies from the surrounding rivers and the large-scale saline resource exploitation were considered as direct reasons for the saline lake extent changes, in which climatic changes characterized by the increase of temperature and slight decrease of precipitation over the region had significant impacts on the lake area variations directly or indirectly.

  17. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  18. Ecological, biogeochemical and salinity changes in coastal lakes and wetlands over the last 200 years

    NASA Astrophysics Data System (ADS)

    Roberts, Lucy; Holmes, Jonathan; Horne, David

    2016-04-01

    Shallow lakes provide extensive ecosystem services and are ecologically important aquatic resources supporting a diverse flora and fauna. In marginal-marine areas, where such lakes are subjected to the multiple pressures of coastal erosion, sea level rise, increasing sea surface temperature and increasing frequency and intensity of storm surges, environments are complex and unstable. They are characterised by physico-chemical variations due to climatic (precipitation/evaporation cycles) and dynamic factors (tides, currents, freshwater drainage and sea level changes). Combined with human activity in the catchment these processes can alter the salinity, habitat and ecology of coastal fresh- to brackish water ecosystems. In this study the chemical and biological stability of coastal lakes forming the Upper Thurne catchment in the NE of the Norfolk Broads, East Anglia, UK are seriously threatened by long-term changes in salinity resulting from storm surges, complex hydrogeology and anthropogenic activity in the catchment. Future management decisions depend on a sound understanding of the potential ecological impacts, but such understanding is limited by short-term observations and measurements. This research uses palaeolimnological approaches, which can be validated and calibrated with historical records, to reconstruct changes in the aquatic environment on a longer time scale than can be achieved by observations alone. Here, salinity is quantitatively reconstructed using the trace-element geochemistry (Sr/Ca and Mg/Ca) of low Mg-calcite shells of Ostracoda (microscopic bivalved crustaceans) and macrophyte and macroinvertebrate macrofossil remains are used as a proxy to assess ecological change in response to variations in salinity. δ13C values of Cladocera (which are potentially outcompeted by the mysid Neomysis integer with increasing salinity and eutrophication) can be used to reconstruct carbon cycling and energy pathways in lake food webs, which alongside

  19. Genetic Diversity of Eukaryotic Plankton Assemblages in Eastern Tibetan Lakes Differing by their Salinity and Altitude

    PubMed Central

    2011-01-01

    Eukaryotic plankton assemblages in 11 high-mountain lakes located at altitudes of 2,817 to 5,134 m and over a total area of ca. one million square kilometers on the Eastern Tibet Plateau, spanning a salinity gradient from 0.2 (freshwater) to 187.1 g l−1 (hypersaline), were investigated by cultivation independent methods. Two 18S rRNA gene-based fingerprint approaches, i.e., the terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis (DGGE) with subsequent band sequencing were applied. Samples of the same lake type (e.g., freshwater) generally shared more of the same bands or T-RFs than samples of different types (e.g., freshwater versus saline). However, a certain number of bands or T-RFs among the samples within each lake were distinct, indicating the potential presence of significant genetic diversity within each lake. PCA indicated that the most significant environmental gradient among the investigated lakes was salinity. The observed molecular profiles could be further explained (17–24%) by ion percentage of chloride, carbonate and bicarbonate, and sulfate, which were also covaried with change of altitude and latitude. Sequence analysis of selected major DGGE bands revealed many sequences (largely protist) that are not related to any known cultures but to uncultured eukaryotic picoplankton and unidentified eukaryotes. One fourth of the retrieved sequences showed ≤97% similarity to the closest sequences in the GenBank. Sequences related to well-known heterotrophic nanoflagellates were not retrieved from the DGGE gels. Several groups of eukaryotic plankton, which were found worldwide and detected in low land lakes, were also detected in habitats located above 4,400 m, suggesting a cosmopolitan distribution of these phylotypes. Collectively, our study suggests that there was a high beta-diversity of eukaryotic plankton assemblages in the investigated Tibetan lakes shaped by multiple geographic and environmental factors

  20. Isolation of UV-B resistant bacteria from two high altitude Andean lakes (4,400 m) with saline and non saline conditions.

    PubMed

    Flores, María R; Ordoñez, Omar F; Maldonado, Marcos J; Farías, María E

    2009-12-01

    Laguna (L.) Negra and L. Verde are high altitude Andean lakes located at the 4,400 m altitude in the Andean desert (Puna) in the Argentine northwest. Both lakes are exposed to extreme weather conditions but differ in salinity contents (salinity 6.7% for L. Negra and 0.27% for L. Verde). The aim of this work was to isolate ultraviolet B fraction (UV-B) resistant bacteria under UV-stress in order to determine, a possible connection, between resistance to UV-B and tolerance to salinity. DNA damage was determined by measuring CPDs accumulation. Connection among pigmentation production and UV resistance was also studied. Water samples were exposed to artificial UV-B radiation for 24 h. Water aliquots were plated along the exposition on different media, with different salinity and carbon source content (Lake medium (LM) done with the lake water plus agar and LB). CFU were counted and DNA damage accumulation was determined. Isolated bacteria were identified by 16S rDNA sequence. Their salinity tolerance, were measured at 1, 5 and 10% NaCl and their pigment production in both media was determined. In general it was found that UV resistance and pigment production were the optimum in Lake Medium done with lake water which maintained similar salinity. The most resistant bacteria in L. Negra were different strains of Exiguobacterium sp. and, in L. Verde, Staphylococcus sp. and Stenotrophomonas maltophilia. These bacteria showed the production and increase of UV-Vis absorbing compounds under UV stress and in LM. Bacterial communities from both lakes were well adapted to high UV-B exposure under the experimental conditions, and in many cases UV-B even stimulated growth. The idea that resistance to UV-B could be related to adaptation to high salinity is still an open question that has to be answered with future experiments.

  1. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  2. Nahcolite and halite deposition through time during the saline mineral phase of Eocene Lake Uinta, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Halite and the sodium bicarbonate mineral nahcolite were deposited during the saline phase of Eocene Lake Uinta in the Piceance Basin, western Colorado. Variations in the area of saline mineral deposition through time were interpreted from studies of core and outcrop. Saline minerals were extensively leached by groundwater, so the original extent of saline deposition was estimated from the distribution of empty vugs and collapse breccias. Vugs and breccias strongly influence groundwater movement, so determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed. Lake Uinta formed when two smaller fresh water lakes, one in the Uinta Basin of eastern Utah and the other in the Piceance Basin of western Colorado, expanded and coalesced across the Douglas Creek arch, an area of comparatively low subsidence rates. Salinity increased shortly after this expansion, but saline mineral deposition did not begin until later, after a period of prolonged infilling created broad lake-margin shelves and a comparatively small deep central lake area. These shelves probably played a critical role in brine evolution. A progression from disseminated nahcolite and nahcolite aggregates to bedded nahcolite and ultimately to bedded nahcolite and halite was deposited in this deep lake area during the early stages of saline deposition along with rich oil shale that commonly shows signs of slumping and lateral transport. The area of saline mineral and rich oil shale deposition subsequently expanded, in part due to infilling of the compact deep area, and in part because of an increase in water flow into Lake Uinta, possibly due to outflow from Lake Gosiute to the north. Finally, as Lake Uinta in the Piceance Basin was progressively filled from north to south by volcano-clastic sediment, the saline depocenter was pushed progressively southward, eventually covering much of the areas that had previously been marginal shelves

  3. Salinization: the ultimate threat to temperate lakes, with particular reference to Southeastern Wisconsin (USA)

    NASA Astrophysics Data System (ADS)

    Thornton, Jeffrey A.; Slawski, Thomas M.; Lin, Hebin

    2015-11-01

    Many lakes in Southeastern Wisconsin (the metropolitan-Milwaukee area) are gradually becoming increasingly "salty". While these waterbodies would not be considered presently to be saline lakes, there has been a rapid increase in the chloride concentrations in most of these lakes over the last 30 years, with the lakes increasing from a mean chloride concentration of about 19 mg/L to over 100 mg/L in some cases. While ecological impacts can be expected when chloride values exceed 250 mg/L, the rate of increase presents a basis for concern, especially since the underlying geology of the region is based on limestone/dolomite which is deficient in chlorides. Thus, the origin of the chlorides is anthropogenic: human and industrial wastewaters (treatment of which has effected improvements in trophic status but has not affected other water-borne contaminants) and winter de-icing practices based upon large quantities of sodium chloride are major contributors to the increasing concentrations of chloride in the region's waterways. Without taking remedial measures, the rate of salinization is expected to continue to increase, resulting, ultimately, in the alteration of the freshwater systems in the region.

  4. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah.

    PubMed

    Boyd, Eric S; Yu, Ri-Qing; Barkay, Tamar; Hamilton, Trinity L; Baxter, Bonnie K; Naftz, David L; Marvin-DiPasquale, Mark

    2017-03-01

    Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

  5. Rufibacter immobilis sp. nov., isolated from a high-altitude saline lake.

    PubMed

    Polkade, Ashish V; Ramana, V Venkata; Joshi, Amaraja; Pardesi, Larrisa; Shouche, Yogesh S

    2015-05-01

    Two pinkish-red, Gram-stain-negative, non-motile aerobic bacterial strains (MCC P1(T) and MCC P2), capable of growing at low temperatures (15 °C), were isolated from water of a saline lake located in the western Himalayas of India. The strains were capable of growth in the presence of 0-2.0% NaCl and at pH 6.5-9.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed the closest similarity of 96.3% to the type strain of the only species of the genus Rufibacter , Rufibacter tibetensis CCTCC AB 208084(T). Strains MCC P1(T) and MCC P2 shared 99.0% 16S rRNA gene sequence similarity and 88.6% DNA-DNA relatedness. The major cellular fatty acids were iso-C15 : 0, C17 : 1ω6c, summed feature 3 (C16 : 1ω6c/C16 : 1ω7c) and summed feature 4 (anteiso-C17 : 1 B/iso-C17 : 1 I). Predominant polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The respiratory quinone was MK-7. The DNA G+C content of the strains was 52.6-52.8 mol%. Based on morphological, physiological, chemotaxonomical and molecular characteristics, strains MCC P1(T) and MCC P2 represent a novel species of the genus Rufibacter , for which the name Rufibacter immobilis sp. nov. is proposed. The type strain is MCC P1(T) ( =MCC 2268(T) =CCTCC AB 2013351(T)).

  6. Spatial characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1986-01-01

    A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forests. The number of lakes affected in northeastern United States and on the Canadian Shield is thought to be enormous. Seasonal changes in lake transparency are examined relative to annual acidic load. The relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations is being used to measure seasonal changes in the optical transparency in acid lakes.

  7. Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Scott, Jennifer J.; Renaut, Robin W.; Owen, R. Bernhart

    2012-11-01

    Studies of modern, Holocene, and Pleistocene sediments around saline to hypersaline, alkaline Lake Bogoria and Lake Magadi show that evidence of flamingo activity in marginal areas of these lakes is nearly ubiquitous. Flamingos produce discrete structures such as webbed footprints (~ 9 cm long, ~ 11 cm wide) and nest mounds (~ 30 cm wide, ~ 20 cm high), and they also extensively rework sediments in delta front, delta plain, and shoreline areas. Large (~ 0.5-2 cm in diameter), pinched, 'bubble pores' and ped-like mud clumps are formed by the trampling and churning of wet clay-rich sediments in these settings. Flamingo nest mounds, although superficially similar to some thrombolite mounds, are typically internally structureless, unless formed on pre-existing sediments that preserve internal structures. The flamingo mounds consist of a dense, packed oval-shaped core, a surrounding 'body' of packed sediment, and an external layer with a ped-like texture of clumped mud. The nests may contain open holes from roots or feather shafts incorporated into the nest, and (or) burrows produced once the nests are abandoned. In areas with high densities of flamingos, lake margin sediments may be preferentially compacted, particularly at breeding sites, and become resistant to subaerial erosion and the effects of transgressive ravinement on time scales ranging from seasons to tens of thousands of years. The relatively well-compacted nest mounds and associated sediments also contribute to the stability of delta distributary channels during regressive-transgressive cycles, and can lead to the minor channelization of unconfined flows where currents are diverted around nest mounds. Pleistocene exhumed surfaces of relatively well-indurated lake margin sediments at Lake Bogoria and Lake Magadi that are interpreted as combined regressive and transgressive surfaces (flooding surface/sequence boundary) preserve evidence of flamingo activities, and are overlain by younger, porous lacustrine

  8. Sulfate reduction and microbial abundance in saline, alkaline Lake Van (Eastern Anatolia, Turkey) - ICDP Expedition 5034

    NASA Astrophysics Data System (ADS)

    Kallmeyer, J.; Glombitza, C.; PaeloVAN Scientific Party

    2012-04-01

    Lake Van is the fourth lagest terminal lake in the world. It is located on the Eastern Anatolian High Plateau (Turkey) and surrounded by two semi-active vulcanos (Nemruth Dagi and Syphan Dagi). Evaporation processes, chemical weathering of vulcanic rocks and hydrothermal activity have created an environment of extreme alkalinity (155 m eql-1, pH 9.81) and salinity (21.4 ‰) (Kempe et al., 1991). Sediments of saline and highly alkaline soda lakes, such as Lake Van, represent one of the most extreme environments on Earth (Stam et al., 2010). These sediments host extremophilic microorganisms (alkaliphiles and halophiles) that have adapted their metabolism to these peculiar environmental conditions (Oren et al., 2002) In summer 2010 the ICDP Expedition 5034 (ICDP project PALEOVAN) retrieved long sediment cores at two sites at Lake Van, Northern Basin (5 km offshore, 245 meters below lake level, mbll) and Ahlat Ridge (12 km offshore, 357 mbll) [2]. At both sites, samples from optically undisturbed core catcher material were collected on site to investigate microbial abundance and activity. Close to both drill sites two short gravity cores (ca. 70 cm long) were retrieved to sample the sediment/water interface. We here report the first results from microbiological investigations (porewater chemistry, cell abundance and sulfate reduction rates, SRR) in samples from the two sites at Lake Van. Although the two sites are relatively close to each other, SRR differ significantly. The sedimentary microbial ecosystem in Lake Van is apparently more sensitive to environmental conditions like water depth and sedimentation rate than marine systems. The shallower Northern Basin site exhibits significantly higher SRR than Ahlat Ridge, which is located 7 km further offshore and ~100 m deeper. Microbial sedimentary abundance is similar at both sites, but cell abundance decreases linearly with depth, as compared to a logarithmic decrease with depth in marine sites. Due to the lack of

  9. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Curry, Brandon; Henne, Paul D.; Mesquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calò, Camilla; Tinner, Willy

    2016-10-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690-6100 mg/l from ca. 10,000-8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response to increased Greco

  10. Saline Lakes: Platforms for Place-Based Scientific Inquiry by K-12 Students

    NASA Astrophysics Data System (ADS)

    Godsey, H. S.; Chapman, D. S.; Hynek, S. A.; Jarrell, E.; Johnson, W. P.; Naftz, D. L.; Neuman, C. R.; Uno, K.

    2006-12-01

    WEST (Water, the Environment, Science and Teaching) is an NSF-funded GK-12 program at the University of Utah. WEST partners graduate students in the sciences with K-12 teachers to enhance inquiry and place- based science teaching in the Salt Lake City urban area. This region is unique in that habitats relating to the entire local hydrologic cycle are accessible within 30 minutes drive of the city. Great Salt Lake, a large closed-basin lake northwest of the city, generates lake-effect snows that fall on the mountains to the east and serves as the terminal point for rivers and streams that drain over 89,000 km2. The lake's salinity ranges from 14-25% and only a few halophilic species are able to survive in its waters. Despite the low diversity, brine shrimp, brine flies, algae and bacteria are abundant in Great Salt Lake and provide the basis of the food chain for millions of migratory shorebirds and waterfowl that feed in the open water, wetlands and saline flats. WEST has teamed up with researchers from the University of Utah, the USGS, the Utah State Dept. of Environmental Quality, local advocacy groups and a private consulting firm to develop a series of projects that involve K-12 students in an actual research project to study the effects of anthropogenic influences on the lake. The study will produce site-specific water-quality standards to protect the invertebrates, shorebirds, and waterfowl that utilize Great Salt Lake. Students will participate in a research cruise on the lake, collecting samples and data to contribute to an online database that will be shared among participating schools. Students will learn about navigation tools, collect and examine brine shrimp, and measure concentrations of optical brighteners and cyanobacteria as indicators of anthropogenic influences to Great Salt Lake. Parts of the southern arm of the lake are stratified into an upper and lower brine layer and the interface between the two layers can be identified by abrupt changes in

  11. The influence of biogeochemical processes on the pH dynamics in the seasonally hypoxic saline Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Hagens, Mathilde; Slomp, Caroline; Meysman, Filip; Borges, Alberto; Middelburg, Jack

    2013-04-01

    Coastal areas experience more pronounced short-term fluctuations in pH than the open ocean due to higher rates of biogeochemical processes such as primary production, respiration and nitrification. These processes and changes therein can mask or amplify the ocean acidification signal induced by increasing atmospheric pCO2. Coastal acidification can be enhanced when eutrophication-induced hypoxia develops. This is because the carbon dioxide produced during respiration leads to a decrease in the buffering capacity of the hypoxic bottom water. Saline Lake Grevelingen (SW Netherlands) has limited water exchange with the North Sea and experiences seasonal bottom water hypoxia, which differs in severity interannually. Hence this lake provides an ideal site to study how coastal acidification is affected by seasonal hypoxia. We examined the annual cycle of the carbonate system in Lake Grevelingen in 2012 and how biogeochemical processes in the water column impact it. Monthly measurements of all carbonate system parameters (DIC, pH, fCO2 and TA), suspended matter, oxygen and nutrients were accompanied by measurements of primary production and respiration using O2 light-dark incubations. Primary production was also estimated every season using 14C-incubations and monthly via 13C-labeling of phospholipid-derived fatty acids (PLFA). Finally, incubations to estimate nitrification and NH4 uptake using 15N-enriched ammonium were carried out seasonally. Preliminary results show that the hypoxic period was rather short in 2012. During stratification and hypoxia, pH varied by up to 0.75 units between the oxic surface water and the hypoxic bottom water. Consistency calculations of the carbonate system reveal that pH is best computed using DIC and TA and that there is no significant difference between TA measured on filtered (0.45 μm) and unfiltered samples. Primary production rates were highest in summer and range up to 800 mmol C/m2/d. Nitrification rates varied between 73

  12. Effects of Temperature, Salinity and Fish in Structuring the Macroinvertebrate Community in Shallow Lakes: Implications for Effects of Climate Change

    PubMed Central

    Brucet, Sandra; Boix, Dani; Nathansen, Louise W.; Quintana, Xavier D.; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik

    2012-01-01

    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes. PMID:22393354

  13. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change.

    PubMed

    Brucet, Sandra; Boix, Dani; Nathansen, Louise W; Quintana, Xavier D; Jensen, Elisabeth; Balayla, David; Meerhoff, Mariana; Jeppesen, Erik

    2012-01-01

    Climate warming may lead to changes in the trophic structure and diversity of shallow lakes as a combined effect of increased temperature and salinity and likely increased strength of trophic interactions. We investigated the potential effects of temperature, salinity and fish on the plant-associated macroinvertebrate community by introducing artificial plants in eight comparable shallow brackish lakes located in two climatic regions of contrasting temperature: cold-temperate and Mediterranean. In both regions, lakes covered a salinity gradient from freshwater to oligohaline waters. We undertook day and night-time sampling of macroinvertebrates associated with the artificial plants and fish and free-swimming macroinvertebrate predators within artificial plants and in pelagic areas. Our results showed marked differences in the trophic structure between cold and warm shallow lakes. Plant-associated macroinvertebrates and free-swimming macroinvertebrate predators were more abundant and the communities richer in species in the cold compared to the warm climate, most probably as a result of differences in fish predation pressure. Submerged plants in warm brackish lakes did not seem to counteract the effect of fish predation on macroinvertebrates to the same extent as in temperate freshwater lakes, since small fish were abundant and tended to aggregate within the macrophytes. The richness and abundance of most plant-associated macroinvertebrate taxa decreased with salinity. Despite the lower densities of plant-associated macroinvertebrates in the Mediterranean lakes, periphyton biomass was lower than in cold temperate systems, a fact that was mainly attributed to grazing and disturbance by fish. Our results suggest that, if the current process of warming entails higher chances of shallow lakes becoming warmer and more saline, climatic change may result in a decrease in macroinvertebrate species richness and abundance in shallow lakes.

  14. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  15. Morphological study of Cyclotella choctawhatcheeana Prasad (Stephanodiscaceae) from a saline Mexican lake

    PubMed Central

    Oliva, Maria Guadalupe; Lugo, Alfonso; Alcocer, Javier; Cantoral-Uriza, Enrique A

    2008-01-01

    can use nutrients along the water column during the mixing period in the lake. But when nutrients are scarce, C. choctawhatcheeana, can be located in very high densities, into a well defined depth layer of the lake, being an important contributor to the depth chlorophyll maximum (DCM). The species seems to be a small size but significant component of the phytoplankton in the saline Mexican lake Alchichica. PMID:19063747

  16. Microbial mats in playa lakes and other saline habitats: Early Mars analog?

    NASA Technical Reports Server (NTRS)

    Bauld, John

    1989-01-01

    Microbial mats are cohesive benthic microbial communities which inhabit various Terra (Earth-based) environments including the marine littoral and both permanent and ephemeral (playa) saline lakes. Certain geomorphological features of Mars, such as the Margaritifer Sinus, were interpreted as ancient, dried playa lakes, presumably formed before or during the transition to the present Mars climate. Studies of modern Terran examples suggest that microbial mats on early Mars would have had the capacity to survive and propagate under environmental constraints that would have included irregularly fluctuating regimes of water activity and high ultraviolet flux. Assuming that such microbial communities did indeed inhabit early Mars, their detection during the Mars Rover Sample Return (MRSR) mission depends upon the presence of features diagnostic of the prior existence of these communities or their component microbes or, as an aid to choosing suitable landing, local exploration or sampling sites, geomorphological, sedimentological or chemical features characteristic of their playa lake habitats. Examination of modern Terran playas (e.g., the Lake Eyre basin) shows that these features span several orders of magnitude in size. While stromatolites are commonly centimeter-meter scale features, bioherms or fields of individuals may extend to larger scales. Preservation of organic matter (mats and microbes) would be favored in topographic lows such as channels or ponds of high salinity, particularly those receiving silica-rich groundwaters. These areas are likely to be located near former zones of groundwater emergence and/or where flood channels entered the paleo-playa. Fossil playa systems which may aid in assessing the applicability of this particular Mars analog include the Cambrian Observatory Hill Beds of the Officer Basin and the Eocene Wilkins Peak Member of the Green River Formation.

  17. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey)

    PubMed Central

    Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens

    2013-01-01

    As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. PMID:23908647

  18. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Marshall, E. M.

    1989-01-01

    The lake acidification in Northern Ontario was investigated using LANDSAT TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of LANDSAT to assess water quality characteristics associated with lake acidification. Results demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon present. Seasonal changes in the optical transparency of lakes can potentially provide an indication of the stress due to acid deposition and loading.

  19. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget- derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  20. Early diagenetic processes of saline meromictic Lake Kai-ike, southwest Japan: III. Sulfur speciation and isotopes

    NASA Astrophysics Data System (ADS)

    Sakai, N.; Yamaguchi, K. E.; Oguri, K.

    2014-12-01

    Lake Kai-ike is a saline meromictic lake located along the coast of Kami-Koshiki Island. The lake is isolated from ocean by a gravel bar, through which seawater infiltrates by tidal pumping. The lake is permanently redox (density)-stratified with a mid-depth development of photic zone anoxia and a dense community of photosynthetic bacteria pinkish "bacterial plate". The early diagenesis of sulfur in sediments overlain by an anoxic water body was investigated using a sediment core (KAI4) from the lake. We determined abundance of various S-bearing species (i.e., Cr-reducible sulfide (= pyrite S: Spy), acid-volatile sulfide (AVS), sulfate sulfur (SSO4), elemental sulfur (S0), and organic sulfur) by an improved sequential extraction method. Here we focus on drastic and rapid changes on sulfur biogeochemistry found in the uppermost 5cm layer. With increasing depth, abundance of Spy increased but that of SSO4 and δ34S value of Spy (δ34Spy) decreased. These results suggest progressive formation of bacteriogenic pyrite. The δ34S values of SSO4 (δ34SSO4) ranged from 25.1 ‰ (at sediment surface) to 3.8 ‰ in the uppermost 5 cm layer. This δ34SSO4 decrease in the top 5 cm sediment suggests that SSO4 in the surface sediment inherits SO42- with elevated δ34S values (higher than typical seawater δ34S value of 21‰) in the water column, which is due to extensive bacterial sulfate reduction with preferential removal of low-δ34S sulfur as sulfide. In the lower part of the uppermost 5 cm layer, SO42- formed by oxidation of S0, AVS, and/or Spy with low-δ34S values by SO42--bearing seawater introduced by infiltration through the gravel bar. Increasing δ34Spy values with increasing depth suggest near complete consumption of SO42- by active bacterial sulfate reduction, and this process could be explained by Rayleigh distillation model. Early diagenesis of sulfur does occur in whole section of 25cm-long KAI4 core that accumulated for the last ~60 years (Yamaguchi et al

  1. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where

  2. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)

    NASA Astrophysics Data System (ADS)

    Schouten, S.; Rijpstra, W. I. C.; Kok, M.; Hopmans, E. C.; Summons, R. E.; Volkman, J. K.; Sinninghe Damsté, J. S.

    2001-05-01

    The chemical structures, distribution and stable carbon isotopic compositions of lipids in a sediment core taken in meromictic Ace Lake (Antarctica) were analyzed to trace past biogeochemical cycling. Biomarkers from methanogenic archaea, methanotrophic bacteria and photosynthetic green sulfur bacteria were unambiguously assigned using organic geochemical understanding and by reference to what is known about the lake's present-day ecosystem. For instance, saturated and unsaturated 2,6,10,15,19-pentamethylicosane, archaeol and sn2-hydroxyarchaeol were derived from methanogenic archaea. Carotenoid analysis revealed chlorobactene and isorenieratene derived from the green-colored and brown-colored strains of the green sulfur bacteria (Chlorobiaceae); isotopic analyses showed that they were 13C-enriched. Phytenes appear to be derived from photoautotrophs that use the Calvin-Benson cycle, while phytane has a different source, possibly within the archaea. The most 13C-depleted compounds (ca. -55‰) identified were 4-methyl-5α-cholest-8(14)-en-3β-ol, identified using an authentic standard, and co-occurring 4-methylsteradienes: these originate from the aerobic methanotrophic bacterium Methylosphaera hansonii. Lipids of photoautotrophic origin, steranes and alkenones, are relatively depleted (ca. -28 to -36‰) whilst archaeal biomarkers are relatively enriched in 13C (ca. -17 to -25‰). The structural and carbon isotope details of sedimentary lipids thus revealed aspects of in situ biogeochemical processes such as methane generation and oxidation and phototrophic sulfide oxidation.

  3. Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah.

    PubMed

    Lindsay, M R; Anderson, C; Fox, N; Scofield, G; Allen, J; Anderson, E; Bueter, L; Poudel, S; Sutherland, K; Munson-McGee, J H; Van Nostrand, J D; Zhou, J; Spear, J R; Baxter, B K; Lageson, D R; Boyd, E S

    2017-01-01

    A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%-31% salinity) and a less saline South Arm (SA; 11%-14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL.

  4. Virgibacillus ainsalahensis sp. nov., a Moderately Halophilic Bacterium Isolated from Sediment of a Saline Lake in South of Algeria.

    PubMed

    Amziane, Meriam; Darenfed-Bouanane, Amel; Abderrahmani, Ahmed; Selama, Okba; Jouadi, Lydia; Cayol, Jean-Luc; Nateche, Farida; Fardeau, Marie-Laure

    2017-02-01

    A Gram-positive, moderately halophilic, endospore-forming bacterium, designated MerV(T), was isolated from a sediment sample of a saline lake located in Ain Salah, south of Algeria. The cells were rod shaped and motile. Isolate MerV(T) grew at salinity interval of 0.5-25% NaCl (optimum, 5-10%), pH 6.0-12.0 (optimum, 8.0), and temperature between 10 and 40 °C (optimum, 30 °C).The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, a glycolipid, a phospholipid, and two lipids, and MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C15:0 and anteiso C17:0. The DNA G+C content was 45.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain MerV(T) was most closely related to Virgibacillus halodenitrificans (gene sequence similarity of 97.0%). On the basis of phenotypic, chemotaxonomic properties, and phylogenetic analyses, strain MerV(T) (=DSM = 28944(T)) should be placed in the genus Virgibacillus as a novel species, for which the name Virgibacillus ainsalahensis is proposed.

  5. Environmental and Groundwater Controls on Evaporation Rates of A Shallow Saline Lake in the Western Sandhills Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Peake, C.; Riveros-Iregui, D.; Lenters, J. D.; Zlotnik, V. A.; Ong, J.

    2013-12-01

    The western Sand Hills of Nebraska exhibit many shallow saline lakes that actively mediate groundwater-lake-atmospheric exchanges. The region is home to the largest stabilized dune field in the western hemisphere. Most of the lakes in the western Sand Hills region are saline and support a wide range of ecosystems. However, they are also highly sensitive to variability in evaporative and groundwater fluxes, which makes them a good laboratory to examine the effects of climate on the water balance of interdunal lakes. Despite being semiarid, little is known about the importance of groundwater-surface water interactions on evaporative rates, or the effects of changes in meteorological and energy forcings on the diel, and seasonal dynamics of evaporative fluxes. Our study is the first to estimate evaporation rates from one of the hundreds of shallow saline lakes that occur in the western Sand Hills region. We applied the energy balance Bowen ratio method at Alkali Lake, a typical saline western Sand Hills lake, over a three-year period (2007-2009) to quantify summer evaporation rates. Daily evaporation rates averaged 5.5 mm/day from July through September and were largely controlled by solar radiation on a seasonal and diel scales. Furthermore, the range of annual variability of evaporation rates was low. Although less pronounced, groundwater level effects on evaporation rates were also observed, especially from August through October when solar radiation was lower. The lake exhibits significant fluctuation in lake levels and combined with a shallow lake bed, large changes in lake surface area are observed. Our findings also show that with the onset of summer conditions, lake surface area can change very rapidly (e.g. 24% of its surface area or ~16.6 hectares were lost in less than ~2 months). In every year summer evaporation exceeded annual rainfall by an average of 28.2% suggesting that groundwater is a significant component of the lake water balance, it is important

  6. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  7. Loss of trophic complexity in saline prairie lakes as indicated by stable-isotope based community-metrics.

    PubMed

    Cooper, Ryan N; Wissel, Björn

    2012-03-16

    Variations in climate, watershed characteristics and lake-internal processes often result in a large variability of food-web complexity in lake ecosystems. Some of the largest ranges in these environmental parameters can be found in lakes across the northern Great Plains as they are characterized by extreme gradients in respect to lake morphometry and water chemistry, with individual parameters often varying over several orders of magnitude. To evaluate the effects of environmental conditions on trophic complexity in prairie lake food-webs, we analyzed carbon and nitrogen stable isotopes of fishes, zooplankton and littoral macroinvertebrates in 20 lakes across southern Saskatchewan. Our two-year study identified very diverse patterns of trophic complexity, with was predominantly associated with among-lake differences. Small but significant temporal effects were also detected, which were predominantly associated with changes in productivity. The most influential parameters related to changes in trophic complexity among lakes were salinity, complexity of fish assemblage, and indicators of productivity (e.g. nutrients, Chl a). Generally, trophic diversity, number of trophic levels, and trophic redundancy were highest in productive freshwater lakes with diverse fish communities. Surprisingly, mesosaline lakes that were characterized by very low or no predation pressure from fishes were not colonized by invertebrate predators as it is often the case in boreal systems; instead, trophic complexity was further reduced. Together, prairie lake food-webs appear to be highly sensitive to changes in salinity and the loss of piscivorous fishes, making freshwater and mesosaline lakes most vulnerable to the impacts of climate variability. This is particularly important as global circulation models predict future climate warming to have disproportionate negative impacts on hydrologic conditions in this area.

  8. Variation in Isotopic Biosignatures From Carbonate Rich, Microbial Mats in Saline, Alkaline Lakes on the Cariboo Plateau, B.C.

    NASA Astrophysics Data System (ADS)

    Brady, A.; Slater, G.; Druschel, G.; Lim, D.

    2009-05-01

    Cyanobacteria dominated, carbonate rich microbial mats found in saline, alkaline lakes on the Cariboo Plateau, B.C. represent potential analogues of the evaporative systems that might have occurred on early Earth or Mars. These evaporative lakes generally have pH values > 10, salinities of up to 33 psu and alkalinities of > 15, 000 mg CaCO3/L but differ in other geochemical parameters. The ability to understand natural variations in microbial activity and biosignatures in such modern analogues is central to our understanding of the capabilities and limits of life, the interpretation of the geologic record and potentially one day to the interpretation of astrobiological data. Phospholipid fatty acid (PLFA) profiling, voltammetry, and stable isotope analysis of organic and inorganic carbon pools highlighted the spatial and seasonal variability that exists in modern evaporative microbial mat dominated lakes. Variations in microbial PLFA distribution demonstrated that Cariboo Plateau microbial mat community composition varied seasonally and spatially. Voltammetry results showed that photosynthetic oxygen production occurred in the upper 5 mm of mats resulting in supersaturation of oxygen in surface waters. Depletion of oxygen generally occurred just below 5 mm and sulfide production began at 10 - 15 mm from the mat surface. Isotope analysis (13C) of Cariboo microbial mats showed inorganic (dissolved inorganic carbon) to organic (bulk cell) isotopic discriminations of 23-25 ‰, indicating non-CO2 limited photosynthesis. These results are in contrast to high organic content analogue mats previously reported that show evidence of CO2 limitation. Further, the Cariboo mats demonstrated significant intra- and inter-mat variations in carbonate δ13C values with respect to dissolved inorganic carbon (DIC) ranging from enrichment to 13C-depleted carbonate. In Deer Lake, isotopic enrichment of surface water DIC by 2-3 ‰ above atmospheric equilibrium indicated microbial

  9. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    USGS Publications Warehouse

    Bischoff, J.L.; Menking, K.M.; Fitts, J.P.; Fitzpatrick, J.A.

    1997-01-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3 and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the ??18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation. ?? 1997 University of Washington.

  10. The Tiberias Basin salt deposits and their effects on lake salinity

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Rosenthal, Eliahu; Möller, Peter; Yellin-Dror, Annat; Guttman, Josef; Siebert, Christian; Magri, Fabien

    2015-04-01

    Lake Tiberias is situated in one of the pull-apart basins comprising the Dead Sea transform. The Tiberias basin extends along the northern boundary of the Lower Jordan Rift Valley (LJRV) which is known for its massive salt deposits, mostly at its southern end, at the Dead Sea basin. Nevertheless, prior to the drilling of Zemah-1 wildcat, drilled close to the southern shores of Lake Tiberias, the Tiberias Basin was considered rather shallow and free of salt deposits (Starinsky, 1974). In 1983, Zemah-1 wildcat penetrated 2.8 km thick sequence of sedimentary and magmatic rocks of which 980m are salt deposits (Marcus et al., 1984). Recent studies, including the presented geophysical investigations, lay out the mechanisms of salt deposition in the Tiberias basin and estimate its abundance. Supported by seismic data, our interpreted cross-sections display relatively thick salt deposits distributed over the entire basin. Since early days of hydrological research in the area, saline springs are known to exist at Lake Tiberias' surroundings. Water temperatures in some of the springs indicate their origin to be at depths of 2-3 km (Simon and Mero, 1992). In the last decade, several studies suggested that the salinity of springs may be attributed, at least partially, to the Zemah-1 salt deposits. Chemical justification was attributed to post-halite minerals which were thought to be present among those deposits. This hypothesis was never verified. Moreover, Möller et al. (2011) presented a calculation contradicting this theory. In addition to the geophysical investigations, numerical models of thermally driven flow, examine the possible fluid dynamics developing near salt deposits below the lake and their interactions with springs along the lakeshore (Magri et al., 2015). It is shown that leached halite is too heavy to reach the surface. However, salt diffusing from shallow salt crest may locally reach the western side of the lakeshore. References Magri, F., N. Inbar

  11. Piscivorous birds on the saline lake Grevelingen, The Netherlands: Abundance, prey selection and annual food consumption

    NASA Astrophysics Data System (ADS)

    Doornbos, G.

    Since 1971, when the Grevelingen estuary was turned into a 108 km 2 saline lake, the number of foraging piscivorous birds has increased significantly. Up to 7000 to 10 000 Great Crested Grebes may be present on the lake, representing about half of the northwestern European breeding population. In the winter 1000 to 3000 Red-breasted Mergansers also forage here, while in summer and early autumn 500 to 800 Cormorants can be found on the lake. From December 1981 through March 1982 the food habits of the grebes and mergansers were studied by means of stomach analyses. Total annual consumption of the two fish-eating birds was estimated at 46.6 and 39.2 tons fresh weight, respectively. Gobiidae proved to be the main food source, accounting for 60% of the total intake (by weight). In addition, the grebes consumed 9.9 tons of Clupea harengus and the mergansers 11.0 tons of brown shrimps Crangon crangon. The birds tended to select the larger specimens of Gobiidae and C. crangon. The estimated amount of food consumed by these two bird species represents about 28 to 36% of the standing stocks of Gobiidae, C. harengus and Sprattus sprattus present at the arrival of the birds in September/October. Total annual consumption by all major piscivorous birds, including the populations of Cormorant and Grey Heron, was estimated at 115 tons (1.1 g FW·m -2·a -1). Over the last 10-year period the number of wintering grebes showed a positive correlation ( p < 0.01) with the density of Pomatoschistus microps during the preceding (summer) season ( i.e. the most abundant gobiid species in the lake).

  12. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  13. Holocene paleoclimate inferred from salinity histories of adjacent lakes in southwestern Sicily (Italy)

    USGS Publications Warehouse

    Curry, B Brandon; Henne, Paul; Mezquita-Joanes, Francesc; Marrone, Federico; Pieri, Valentina; La Mantia, Tommaso; Calo, Camilla; Tinner, Willy

    2016-01-01

    Marked uncertainties persist regarding the climatic evolution of the Mediterranean region during the Holocene. For instance, whether moisture availability gradually decreased, remained relatively constant, or increased during the last 7000 years remains a matter of debate. To assess Holocene limnology, hydrology and moisture dynamics, the coastal lakes Lago Preola and Gorgo Basso, located in southwestern Sicily, were investigated through several stratigraphic analyses of ostracodes, including multivariate analyses of assemblages, transfer functions of salinity, and biochemical analyses of valves (Sr/Ca, δ18O and δ13C). During the early Holocene, the Gorgo Basso and Lago Preola ostracode records are similar. After an initial period of moderate salinity (1690–6100 mg/l from ca. 10,000–8190 cal yr BP), syndepositional or diagenetic dissolution of ostracode valves suggests that salinity declined to <250 mg/L from ca. 8190 to 7000 cal yr BP at both sites. After ca. 6250 cal yr BP, the ostracode records are strikingly different. Lago Preola became much more saline, with paleosalinity values that ranged from 2270 to about 24,420 mg/L. We suggest that Lago Preola's change from a freshwater to mesosaline lake at about 6250 cal yr BP was related to sea level rise and resulting intrusion of seawater-influenced groundwater. In contrast, Gorgo Basso remained a freshwater lake. The salinity of Gorgo Basso declined somewhat after 6250 cal yr BP, in comparison to the early Holocene, ranging from about 550 to 1680 mg/L. Cypria ophtalmica, a species capable of rapid swimming and flourishing in waters with low dissolved oxygen levels, became dominant at approximately the time when Greek civilization took root in Sicily (2600 cal yr BP), and it completely dominates the record during Roman occupation (roughly 2100 to 1700 cal yr BP). These freshwater conditions at Gorgo Basso suggest high effective moisture when evergreen olive-oak forests collapsed in response

  14. Salinization forced anoxia in the Sea of Aral, the Dead Sea and the Urmia Lake: a temporal feature of the salt lakes development under the Global Change?

    NASA Astrophysics Data System (ADS)

    Yakushev, Evgeniy; Ghaffari, Peygham; Zavialov, Petr; Kurbaniyazov, Abilgazi

    2016-04-01

    The Sea of Aral is undergone a process of its volume decrease and salinization started about 30 years ago. In the remained now lake in the former deepest part of the Sea the salinity increased from about 8 PSU in 1990 to 120 PSU in the surface layer, and 240 PSU in the bottom layer in 2015. On top of an increase of salinity, there was formed a sulfidic zone in the bottom layer, that was separated from the upper layer by an extremely strong halocline (more than 50 PSU in 100 cm). The reason of this halocline might be an influx of the heavy high salinity water formed in summer in the shallower part of the Aral Sea to the bottom layer of the deeper part of the Sea through a strait between them. The similar processes could take place in the Urmia Lake, where salinity increased from 120 PSU in 2000 to about 350-400 PSU in 2015. This lake also consists from a shallow and deep parts connected by a channel in the dam, and where there was also reported anoxia. And finally, the Dead Sea demonstrates a further development happened after the shallower Southern part of the Sea was totally evaporated. After 1993 the vertical mixing started to occur down to the bottom layer, and the lake regime changed from meromictic to monomictic, that resulted in aeration of the bottom layer. In this work we compare interannual changes of the main salinity components in the 3 water bodies and analyze results of the vertical chemical structure of the Sea of Aral studied in 2015.

  15. Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Jiang, Hongchen; Dong, Hailiang; Hou, Weiguo; Li, Gaoyuan; Wu, Geng

    2015-12-01

    Integration of DNA derived from ancient phototrophs with their characteristic lipid biomarkers has been successfully employed to reconstruct paleoenvironmental conditions. However, it is poorly known that whether the DNA and lipids of microbial functional aerobes (such as ammonia-oxidizing archaea: AOA) can be used for reconstructing past environmental conditions. Here we identify and quantify the AOA amoA genes (encoding the alpha subunit of ammonia monooxygenases) preserved in a 5.8-m sediment core (spanning the last 18,500 years) from Qinghai Lake. Parallel analyses revealed that low amoA gene abundance corresponded to high total organic carbon (TOC) and salinity, while high amoA gene abundance corresponded to low TOC and salinity. In the Qinghai Lake region, TOC can serve as an indicator of paleo-productivity and paleo-precipitation, which is related to historic nutrient input and salinity. So our data suggest that temporal variation of AOA amoA gene abundance preserved in Qinghai Lake sediment may reflect the variations of nutrient level and salinity throughout the late Pleistocene and Holocene in the Qinghai Lake region.

  16. Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau

    PubMed Central

    Yang, Jian; Jiang, Hongchen; Dong, Hailiang; Hou, Weiguo; Li, Gaoyuan; Wu, Geng

    2015-01-01

    Integration of DNA derived from ancient phototrophs with their characteristic lipid biomarkers has been successfully employed to reconstruct paleoenvironmental conditions. However, it is poorly known that whether the DNA and lipids of microbial functional aerobes (such as ammonia-oxidizing archaea: AOA) can be used for reconstructing past environmental conditions. Here we identify and quantify the AOA amoA genes (encoding the alpha subunit of ammonia monooxygenases) preserved in a 5.8-m sediment core (spanning the last 18,500 years) from Qinghai Lake. Parallel analyses revealed that low amoA gene abundance corresponded to high total organic carbon (TOC) and salinity, while high amoA gene abundance corresponded to low TOC and salinity. In the Qinghai Lake region, TOC can serve as an indicator of paleo-productivity and paleo-precipitation, which is related to historic nutrient input and salinity. So our data suggest that temporal variation of AOA amoA gene abundance preserved in Qinghai Lake sediment may reflect the variations of nutrient level and salinity throughout the late Pleistocene and Holocene in the Qinghai Lake region. PMID:26666501

  17. Microbiology and chemistry of acid lakes in Florida

    SciTech Connect

    James, R.T.

    1989-01-01

    Effects of acid precipitation, low pH, and dissolved organic carbon (DOC), on lake chemistry and microbiology were investigated spatially - in 5 clear and 5 dark lakes, temporally - in 3 clear and 2 dark lakes over a 2 year period, and experimentally - in enclosures to investigate effects of various acid manipulations. Spatial studies found significant positive relationships among DOC, chlorophyll a, pH, and bacterial densities. Using all data, a subsidy stress curve was observed between DOC and bacteria, further indicating toxicity of DOC at high concentrations. Temporal studies found no consistent or significant relationships between pH and bacterial densities, bacterial biomass, chlorophyll a, and protozoans. Clear lake pH was negatively related to rainfall and acid deposition. Acid deposition was also negatively related to glucose assimilation by surface water bacteria, indicating a stress on bacteria. Experimental studies examined effects of pulsed and gradual acid additions on microbial communities of a clear and dark lake. Bacteria biomass and density did not decline in response to any acid addition. Decrease uptake of both glucose and thymidine was observed in the clear-lake pulsed treatment. Chlorophyll a and protozoans declined in the dark lake pulsed treatment but not in others, indicating that pulsed additions of acid were more detrimental to the microbial community than gradual additions to the same pH.

  18. Effects of Different Saline-Alkaline Conditions on the Characteristics of Phytoplankton Communities in the Lakes of Songnen Plain, China

    PubMed Central

    Zang, Shuying; Fan, Yawen; Ye, Huaxiang

    2016-01-01

    Many lakes located in the Songnen Plain of China exhibit a high saline-alkaline level. 25 lakes in the Songnen Plain were selected as research objects in this study. Water samples in these lakes were collected from June to August in 2008. Total Dissolved Solids (TDS) and Total Alkalinity (TA) were measured to assess the saline-alkaline level, and partial canonical correspondence analysis (CCA) was conducted as well. The results show that the majority of these lakes in the study area could be categorized into HCO3−-Na+-I type. According to the TDS assessment, of the total 25 lakes, there are 14 for freshwater, 7 for brackish water and 4 for saltwater; and the respective range of TA was from 0.98 to 40.52. The relationship between TA and TDS indicated significant linear relationship (R2 = 0.9292) in the HCO3−-Na+-I type lakes in the Songnen Plain. There was a general trend that cell density, genera richness and taxonomic diversity decreased with the increase of saline-alkaline gradient, whereas a contrary trend was observed for the proportion of dominant species. When the TDS values were above 3×103mg/L and the TA values were above 15mg/L, there was a significant reduction in cell density, genera richness and biodiversity, and their corresponding values were respectively below 10×106 (ind/L), 15 and approximately 2.5. Through the partial canonical correspondence analysis (CCA), 10.7% of the genera variation was explained by pure saline-alkaline variables. Cyclotella meneghiniana, Melosira ambigua and Melosira granulate were found to become the dominant species in most of these lakes, which indicated that there may be rather wide saline-alkaline niches for common dominant species. About one-quarters of the genera which have certain tolerance to salinity and alkalinity preferred to live in the regions with relatively higher saline-alkaline levels in this study. PMID:27749936

  19. Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes.

    PubMed

    Weithoff, Guntram; Moser, Michael; Kamjunke, Norbert; Gaedke, Ursula; Weisse, Thomas

    2010-05-01

    Acidic mining lakes (pH <3) are specific habitats exhibiting particular chemical and biological characteristics. The species richness is low and mixotrophy and omnivory are common features of the plankton food web in such lakes. The plankton community structure of mining lakes of different morphometry and mixing type but similar chemical characteristics (Lake 130, Germany and Lake Langau, Austria) was investigated. The focus was laid on the species composition, the trophic relationship between the phago-mixotrophic flagellate Ochromonas sp. and bacteria and the formation of a deep chlorophyll maximum along a vertical pH-gradient. The shallow wind-exposed Lake 130 exhibited a higher species richness than Lake Langau. This increase in species richness was made up mainly by mero-planktic species, suggesting a strong benthic/littoral - pelagic coupling. Based on the field data from both lakes, a nonlinear, negative relation between bacteria and Ochromonas biomass was found, suggesting that at an Ochromonas biomass below 50 μg C L(-1), the grazing pressure on bacteria is low and with increasing Ochromonas biomass bacteria decline. Furthermore, in Lake Langau, a prominent deep chlorophyll maximum was found with chlorophyll concentrations ca. 50 times higher than in the epilimnion which was build up by the euglenophyte Lepocinclis sp. We conclude that lake morphometry, and specific abiotic characteristics such as mixing behaviour influence the community structure in these mining lakes.

  20. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    PubMed

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  1. Density-stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling

    USGS Publications Warehouse

    Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy

    2014-01-01

    Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.

  2. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    USGS Publications Warehouse

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 ??C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 ??C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  3. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (<0 °C), if possible, and (3) use the reformulated model to investigate parallels in the mineral precipitation behavior of acidic Australian lakes and hypothetical Martian brines. FREZCHEM is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Aluminum chloride and sulfate mineral parameterizations were based on experimental data. Aluminum hydroxide and silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron

  4. Role of pressure, temperature, salinity, lithology, and structure in hydrocarbon accumulation in Constance Bayou, Deep Lake, and southeast Little Pecan Lake Fields, Cameron Parish, Louisiana

    SciTech Connect

    Harrison, F.W. III

    1980-01-01

    Pressure, temperature, salinity, lithology, and structural studies indicate that hydrocarbons in Deep Lake, Constance Bayou, and Little Pecan Lake Fields, were generated in the shale beds of the hard geopressured zone and migrated upward along major growth faults. The hydrocarbons were originally dissolved in hot fresh pore water and came out of solution in the overlying low temperature and pressure zones, accumulating in the sand beds of the first structural traps encountered. By examining regional cross sections and anomaly maps, fluid escape routes taken by the hot pore water containing dissolved hydrocarbons can be identified. Areas below which a vertical flush of hot fresh pore water from the hard geopressured zone has occurred have 3 identifying characteristics: low fluid pressures, high formation water salinity values, and presence of residual high pressure areas. These areas are considered to be highly prospective places to search for hydrocarbon accumulations.

  5. Microbial ecology of acid strip mine lakes in southern Indiana

    SciTech Connect

    Gyure, R.A.

    1986-01-01

    In this study, the author examined the limnology and microbial ecology of two acid strip mine lakes in the Greene-Sullivan State Forest near Dugger, Indiana. Reservoir 29 is a larger lake (225 ha) with water column pH of 2.7 and sediment pH of 3.8. Lake B, a smaller (20 ha) lake to the south of Reservoir 29, also has an acidic water column (pH 3.4) but more neutral sediments (pH 6.2). Both have very high sulfate concentrations: 20-30 mM in the water column and as high as 100 mM in the hypolimnion of Lake B. Low allochthonous carbon and nutrient input characterize these lakes as oligotrophic, although algal biomass is higher than would be expected for this trophic status. In both lakes, algal populations are not diverse, with a few species of single-celled Chlorophyta and euglenoids dominating. Algal biomass is concentrated in a thin 10 cm layer at the hypolimnion/metalimnion interface, although light intensity at this depth is low and severely limits productivity. Bacterial activity based on /sup 14/C-glucose incorporation is highest in the hypolimnion of both lakes, and sulfate-reduction is a dominant process in the sediments. Rates of sulfate-reduction compare with those in other freshwater environments, but are not as high as rates measured in high sulfate systems like saltmarsh and marine sediments.

  6. Morphological, Phylogenetic and Physiological Studies of Pico-Cyanobacteria Isolated from the Halocline of a Saline Meromictic Lake, Lake Suigetsu, Japan

    PubMed Central

    Ohki, Kaori; Yamada, Kazumasa; Kamiya, Mitsunobu; Yoshikawa, Shinya

    2012-01-01

    Small cyanobacteria (<2 μm, pico-cyanobacteria) are abundant in waters deeper than the oxic-anoxic zone in the halocline of a saline meromictic lake, Lake Suigetsu, Fukui, Japan. We have isolated 101 strains that were grouped into six groups by means of the phycobiliprotein composition and sequence homology of the intergenic spacer between the 16S and 23S rRNA genes. Significant growth was observed under weak green light (1.5 μmol m−2 s−1, approx. 460 to 600 nm), whereas the cells died under white light at even moderate intensities. The isolates grew in a wide range of salinities (0.2 to 3.2%). Tolerance to sulfide varied: four groups grew in medium containing sulfide, however, two groups did not. None of the isolates were capable of anoxygenic photosynthetic (PS-II independent photosynthetic) growth using sulfide as an electron donor. All groups were included within fresh and brackish water of Synechococcus/Cyanobium clade, but they were not monophyletic in the 16S rRNA gene-based phylogenetic tree. The physiological properties of pico-cyanobacteria showed that they had the ability to survive in unique physicochemical environments in the halocline of this saline meromictic lake. PMID:22791050

  7. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes.

    PubMed

    Kulp, T R; Han, S; Saltikov, C W; Lanoil, B D; Zargar, K; Oremland, R S

    2007-08-01

    Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter(-1)). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter(-1)), intermediate (100 to 200 g liter(-1)), and high (>300 g liter(-1)) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem.

  8. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes

    USGS Publications Warehouse

    Kulp, T.R.; Han, S.; Saltikov, C.W.; Lanoil, B.D.; Zargar, K.; Oremland, R.S.

    2007-01-01

    Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter-1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter-1), intermediate (100 to 200 g liter-1), and high (>300 g liter-1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  9. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  10. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After

  11. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.)

    PubMed Central

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  12. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.).

    PubMed

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  13. Physiological and metabolic effects of 5-aminolevulinic acid for mitigating salinity stress in creeping bentgrass.

    PubMed

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L-1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense.

  14. Physiological and Metabolic Effects of 5-Aminolevulinic Acid for Mitigating Salinity Stress in Creeping Bentgrass

    PubMed Central

    Yang, Zhimin; Chang, Zuoliang; Sun, Lihong; Yu, Jingjin; Huang, Bingru

    2014-01-01

    The objectives of this study were to determine whether foliar application of a chlorophyll precursor, 5-aminolevulinic acid (ALA), could mitigate salinity stress damages in perennial grass species by regulating photosynthetic activities, ion content, antioxidant metabolism, or metabolite accumulation. A salinity-sensitive perennial grass species, creeping bentgrass (Agrostis stolonifera), was irrigated daily with 200 mM NaCl for 28 d, which were foliar sprayed with water or ALA (0.5 mg L−1) weekly during the experiment in growth chamber. Foliar application of ALA was effective in mitigating physiological damage resulting from salinity stress, as manifested by increased turf quality, shoot growth rate, leaf relative water content, chlorophyll content, net photosynthetic rate, stomatal conductance and transpiration rate. Foliar application of ALA also alleviated membrane damages, as shown by lower membrane electrolyte leakage and lipid peroxidation, which was associated with increases in the activities of antioxidant enzymes. Leaf content of Na+ was reduced and the ratio of K+/Na+ was increased with ALA application under salinity stress. The positive effects of ALA for salinity tolerance were also associated with the accumulation of organic acids (α-ketoglutaric acid, succinic acid, and malic acid), amino acids (alanine, 5-oxoproline, aspartic acid, and γ -aminobutyric acid), and sugars (glucose, fructose, galactose, lyxose, allose, xylose, sucrose, and maltose). ALA-mitigation of physiological damages by salinity could be due to suppression of Na+ accumulation and enhanced physiological and metabolic activities related to photosynthesis, respiration, osmotic regulation, and antioxidant defense. PMID:25551443

  15. Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry.

    PubMed

    Kampe, Heike; Dziallas, Claudia; Grossart, Hans-Peter; Kamjunke, Norbert

    2010-10-01

    As extreme environmental conditions strongly affect bacterial community composition (BCC), we examined whether differences in pH-even at low pH-and in iron and sulfate concentrations lead to changes in BCC of acidic mining lakes. Thereby, we tested the following hypotheses: (1) diversity of the bacterial community in acidic lakes decreases with reducing pH, (2) BCC differs between epilimnion and hypolimnion, and (3) BCC in extremely acidic environments does not vary much over time. Therefore, we investigated the BCC of three acidic lakes with different pH values (2.3, 2.7, and 3.2) by denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of DGGE bands as well as catalyzed reporter deposition-FISH (CARD-FISH). BCC did not significantly vary among the studied lakes nor differ much between water layers. In contrast, BCC significantly changed over time, which is contradictory to our hypotheses. Bacterial communities were dominated by Alpha-, Beta-, and Gammaproteobacteria, whereas Actino- and Acidobacteria rarely occurred. Cell numbers of both free and attached bacteria were positively related to DOC concentration. Overall, low pH and extreme chemical conditions of the studied lakes led to similar assemblages of bacteria with pronounced temporal differences. This notion indicates that temporal changes in environmental conditions including food web structure also affect unique communities of bacteria thriving at low pH.

  16. Numerical study of circulation and temperature-salinity distributions in the Bras d'Or Lakes

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Sheng, Jinyu; Hatcher, Bruce G.; Petrie, Brian

    2007-10-01

    The Bras d’Or Lakes (BdOL) are a large, complex and virtually land-locked estuary in central Cape Breton Island of Nova Scotia and one of Canada’s charismatic ecosystems, sustaining ecological and cultural communities unique in many aspects. The BdOL comprise two major basins, many deep and shallow bays, several narrow channels and straits and a large, geologically complex watershed. Predictive knowledge of the water movement within the estuary is a key requirement for effective management and sustainable development of the BdOL ecosystem. A three-dimensional (3D) primitive-equation ocean circulation model is used to examine the estuary’s response to tides, winds and buoyancy forcing associated with freshwater runoff in a series of numerical experiments validated with empirical data. The model results generate intense, jet-like tidal flows of about 1 m s-1 in the channels between the basins and connecting them to the ocean and relatively weak tidal currents in other regions, which agrees well with previous observations and numerical results. Wind forcing and buoyancy forcing associated with river runoff play important roles in generating the significant sub-tidal circulations in the estuary, including narrow channels, deep basins and shallow bays. The circulation model is also used to reconstruct the 3D circulation and temperature-salinity distributions in the summer months of 1974, when current and hydrographic measurements were made at several locations. The sub-tidal circulation in the estuary produced by the model is characterised by wind and barometric set-up and set-down in different sections of the system, and a classic two-layer estuarine circulation in which brackish, near-surface waters flow seaward from the estuary into the Atlantic Ocean, and deep salty waters flow landward through the major channel. The model results reproduce reasonably well the overall features of observed circulation and temperature-salinity fields made in the BdOL in 1974 but

  17. Hydrogeologic Framework of Bedrock Units and Initial Salinity Distribution for a Simulation of Groundwater Flow for the Lake Michigan Basin

    USGS Publications Warehouse

    Lampe, David C.

    2009-01-01

    The U.S. Geological Survey is assessing groundwater availability in the Lake Michigan Basin. As part of the assessment, a variable-density groundwater-flow model is being developed to simulate the effects of groundwater use on water availability throughout the basin. The hydrogeologic framework for the Lake Michigan Basin model was developed by grouping the bedrock geology of the study area into hydrogeologic units on the basis of the functioning of each unit as an aquifer or confining layer within the basin. Available data were evaluated based on the areal extent of coverage within the study area, and procedures were established to characterize areas with sparse data coverage. Top and bottom altitudes for each hydrogeologic unit were interpolated in a geographic information system for input to the model and compared with existing maps of subsurface formations. Fourteen bedrock hydrogeologic units, making up 17 bedrock model layers, were defined, and they range in age from the Jurassic Period red beds of central Michigan to the Cambrian Period Mount Simon Sandstone. Information on groundwater salinity in the Lake Michigan Basin was compiled to create an input dataset for the variable-density groundwater-flow simulation. Data presented in this report are referred to as 'salinity data' and are reported in terms of total dissolved solids. Salinity data were not available for each hydrogeologic unit. Available datasets were assigned to a hydrogeologic unit, entered into a spatial database, and data quality was visually evaluated. A geographic information system was used to interpolate salinity distributions for each hydrogeologic unit with available data. Hydrogeologic units with no available data either were set equal to neighboring units or were vertically interpolated by use of values from units above and below.

  18. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco.

    PubMed

    Betancur-Galvis, L A; Alvarez-Bernal, D; Ramos-Valdivia, A C; Dendooven, L

    2006-03-01

    Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.

  19. Bloedite sedimentation in a seasonally dry saline lake (Salada Mediana, Spain)

    NASA Astrophysics Data System (ADS)

    Mees, Florias; Castañeda, Carmen; Herrero, Juan; Van Ranst, Eric

    2011-06-01

    Salt crusts covering the surface of the Salada Mediana, a seasonally dry saline lake in northern Spain, consist predominantly of bloedite (Na 2Mg(SO 4) 2.4H 2O). Microscopic features of the crust were investigated to understand processes of bloedite sedimentation. This study was combined with satellite and airborne observations, revealing asymmetrical concentric and parallel-linear patterns, related to wind action. Gypsum (CaSO 4.H 2O) and glauberite (Na 2Ca(SO 4) 2) in the calcareous sediments below the crust, and abundant eugsterite (Na 4Ca(SO 4) 3.2H 2O) along the base of the crust, largely formed at a different stage than bloedite. The main part of the crust consists predominantly of coarse-crystalline xenotopic-hypidiotopic bloedite, but fan-like aggregates with downward widening, radial aggregates, surface layers with vertically aligned elongated crystals, and partially epitaxial coatings occur as well. The upper part of the crust is marked by a bloedite-thenardite (Na 2SO 4) association, recording a change in brine composition that is not in agreement with results of modelling of local brine evolution. A thin fine-grained thenardite-dominated surface formed in part by subaqueous settling of crystals, but there are also indications for development by transformation of bloedite. Surface features include fan-like bloedite aggregates with upward widening, formed by bottom growth. Overall, the Salada Mediana crusts record a complex history of bloedite and thenardite precipitation by various processes.

  20. Aquisalinus flavus gen. nov., sp. nov., a member of the family Parvularculaceae isolated from a saline lake.

    PubMed

    Zhong, Zhi-Ping; Liu, Ying; Wang, Fang; Zhou, Yu-Guang; Liu, Hong-Can; Liu, Zhi-Pei

    2016-04-01

    A Gram-stain-negative bacterium, strain D11M-2T, was isolated from a saline lake (Lake Dasugan) in Qaidam basin, Qinghai Province, China. Its taxonomic position was determined by using a polyphasic approach. Cells were non-spore-forming rods, 0.5-0.7 μm wide and 1.2-1.6 μm long, and motile by means of a single subpolar or lateral flagellum. Strain D11M-2T was strictly heterotrophic and aerobic, and catalase- and oxidase-positive. Growth was observed in the presence of 0-14.0% (w/v) NaCl (optimum, 2.0%), and at 10-35 °C (optimum, 30 °C) and pH 6.0-10.5 (optimum, pH 8.0). Strain D11M-2T contained Q-10 and Q-11 as the respiratory quinones and three unknown glycolipids as the major polar lipids. The major cellular fatty acids (>10.0%) were summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C16:0. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D11M-2T belonged to the family Parvularculaceae and formed a separate lineage that was independent of the two genera within the family Parvularculaceae. Strain D11M-2T exhibited 92.8-93.4% 16S rRNA gene sequence similarity to members of the genus Parvularcula (highest to Parvularcula bermudensis HTCC 2503T), and 90.2% to a member of the genus Amphiplicatus. The DNA G+C content was 59 mol% (Tm). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain D11M-2T is considered to represent a novel species of a new genus in the family Parvularculaceae, for which the name Aquisalinus flavus gen. nov., sp. nov. is proposed. The type strain of Aquisalinus flavus is D11M-2T (=CGMCC 1.12921T=KCTC 42673T).

  1. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    USGS Publications Warehouse

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  2. Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China.

    PubMed

    Márquez, M C; Carrasco, I J; Xue, Y; Ma, Y; Cowan, D A; Jones, B E; Grant, W D; Ventosa, A

    2007-05-01

    Two novel moderately halophilic, Gram-negative rods (strains CG12(T) and CG13) were isolated from Lake Chagannor in Inner Mongolia Autonomous Region, China. They were strictly aerobic and motile. They grew at pH 6.0-10.8 (optimally at pH 7.5-8.5), at 20-50 degrees C (optimally at 37 degrees C) and at salinities of 1-20 % (w/v) total salts (optimally at 7-10 %, w/v). Phylogenetic analysis of the two strains, based on a comparison of their 16S rRNA genes, led to their classification within the class Gammaproteobacteria, the closest recognized type strain being Alkalispirillum mobile DSM 12769(T), with which they were found to share 94.4-94.6 % sequence similarity. On the basis of DNA-DNA hybridization data (showing 100 and 99 % relatedness for each other), the two isolates were found to be members of the same species. The DNA G+C contents of strains CG12(T) and CG13 were found to be 63.6 and 64.0 mol%, respectively. The major cellular fatty acids of strain CG12(T), selected as the representative strain, were C(18 : 1)omega7c, C(16 : 0) and C(12 : 0), and its polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, a phosphoglycolipid and six unidentified phospholipids. On the basis of the polyphasic evidence from this study, strains CG12(T) and CG13 represent a novel genus and species, for which the name Aquisalimonas asiatica gen. nov., sp. nov. is proposed. The type strain of Aquisalimonas asiatica is CG12(T) (=CCM 7368(T)=CECT 7151(T)=CGMCC 1.6291(T)=DSM 18102(T)).

  3. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    USGS Publications Warehouse

    Tuttle, M.L.; Goldhaber, M.B.

    1993-01-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and ??34S values, and long-term evolutionary trends in ??34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (SAv), disulfide (SDi > 70% of total sulfur), sulfate (SSO4) and organosulfur (SOrg); isotopic composition of separated sulfur phases (??34SDi,Av up to +49???); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, ??34SDi,Av, and ??34SOrg have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H2S:SO4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to ??34S values much greater than that of inflow sulfate, which is estimated to have

  4. Sedimentary sulfur geochemistry of the Paleogene Green River Formation, western USA: Implications for interpreting depositional and diagenetic processes in saline alkaline lakes

    NASA Astrophysics Data System (ADS)

    Tuttle, Michele L.; Goldhaber, Martin B.

    1993-07-01

    The sulfur geochemistry of the lacustrine Paleogene Green River Formation (Colorado, Utah, and Wyoming, USA) is unlike that of most marine and other lacustrine rocks. Distinctive chemical, isotopic, and mineralogical characteristics of the formation are pyrrhotite and marcasite, high contents of iron mineral sulfides strikingly enriched in 34S, cyclical trends in sulfur abundance and δ 34S values, and long-term evolutionary trends in δ 34S values. Analyses that identified and quantified these characteristics include carbonate-free abundance of organic carbon (0.13-47 wt%), total iron (0.31-13 wt%), reactive iron (>70% of total iron), total sulfur (0.02-16 wt%), acid-volatile monosulfide (S Av), disulfide (S Di > 70% of total sulfur), sulfate (S SO4) and organosulfur (S Org); isotopic composition of separated sulfur phases (δ 34S Di,Av up to +49‰); and mineralogy, morphology and paragenesis of sulfide minerals. Mineralogy, morphology, δ 34S Di,Av, and δ 34S Org have a distinctive relation, reflecting variable and unique depositional and early diagenetic conditions in the Green River lakes. When the lakes were brackish, dissimilatory sulfate-reducing bacteria in the sediment produced H 2S, which initially reacted with labile iron to form pyrite framboids and more gradually with organic matter to form organosulfur compounds. During a long-lived stage of saline lake water, the amount of sulfate supplied by inflow decreased and alkalinity and pH of lake waters increased substantially. Extensive bacterial sulfate reduction in the water column kept lake waters undersaturated with sulfate minerals. A very high H 2S:SO 4 ratio developed in stagnant bottom water aided by the high pH that kinetically inhibited iron sulfidization. Progressive removal of H 2S by coeval formation of iron sulfides and organosulfur compounds caused the isotopic composition of the entire dissolved sulfur reservoir to evolve to δ 34S values much greater than that of inflow sulfate, which is

  5. Microbial Sulfur Cycling in an Acid Mine Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2004-12-01

    Geochemical dynamics of a tailings impacted lake in Northern Ontario were investigated over a three-year period, in which active pyrrhotite slurry disposal was initiated in year two. A strong seasonal trend of decreasing epilimnetic pH with significant diurnal acid production, pre-, during and post slurry deposition was observed with high rates observed compared to pre-slurry. Slurry deposition occurred at the surface of the lake and acted as a reaction stimulant for acid generation. Over the diurnal timescale investigated, the highest rates of acid production occurred not at the lake surface but within the metaliminetic region of the lake. This region was exemplified by strong decreasing oxygen gradients, and thus observed high rates of acid generation are more consistent with microbial pathways of sulfur oxidation than with abiotic, oxygen catalyzed pathways. Consistent with microbial catalysis, metalimnetic rates of acid generation were highest during June and July when microbial populations and metabolic rates were maximal. These results indicate that microbial oxidation of sulfur species play a major role in acid generation in this system. Further, observed rates of acid generation exceed those predicted by published abiotic rates of pyrrhotite oxidation, but are consistent with literature estimates of acid generation catalyzed by microbial activity. Acidithiobacilli accounted for up to 50% of the microbial community pre slurry, but were absent post slurry deposition. These results are the first to demonstrate quantitatively that microbial sulfur oxidation can play a predominant role in acid generation within mine tailings impacted systems. They further highlight the need to evaluate the more complex pathways by which microorganisms process sulfur as the conditions, controls and process rates differ from those observed for abiotic reactions.

  6. Australian Acid Playa Lake as a Mars Analog: Results from Sediment Lipid Analysis

    NASA Astrophysics Data System (ADS)

    Graham, H.; Baldridge, A. M.; Stern, J. C.

    2015-12-01

    The ephemeral saline acidic lakes on the Yilgarn Craton of Western Australia have been suggested as geochemical analogues to martian terrains. Both are characterized by interbedded phyllosilicates and hydrated sulfates. On Mars, these areas indicate shifting environmental conditions, from the neutral/alkaline and wet conditions that dominated during the Noachian era to the more familiar dry, acidic conditions that began in the Hesperian. The habitability of such a dynamic environment can be informed by investigation of the Yilgarn Lake system. Previous work has found phospholipid fatty acids (PLFA) evidence of microbial communities in sections of sediment cores taken from Lake Gilmore. These communities include both Gram-positive and -negative bacteria, Actinomycetes, and even methanotrophs. Given recurring detection of methane on the martian surface, evidence of a methane cycling community in an analogous environment is of particular interest. In this study we analyze the carbon isotope composition of bulk organic material as well as extracted lipids from the Lake Gilmore sediment cores at both a near-shore and mid-lake location. These analyses reveal very low accumulations of organic carbon, concentrated primarily in the gypsum-rich near-shore core. The near-shore sediments show a down-core decrease in abundance of organic carbon as well as depletion in the carbon isotope composition (δ13C) with depth. Bulk carbon did not exhibit the unique, highly depleted, diagnostic signature associated with methanotrophic biomass. Compound-specific isotope analysis (CSIA) of carbon in extracted methanotroph PFLAs can confirm the presence of a methane cycling metabolism at depth. Also, additional extractions have isolated lipids associated with lake-edge grasses. These analyses consider both the chain-length distribution and carbon CSIA of these lipids in order to understand the effect of terrestrial detritus on any preserved methanotroph carbon signal, given the very low

  7. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  8. Natural attenuation processes of nitrate in a saline lake-aquifer system: Pétrola Basin (Central Spain)

    NASA Astrophysics Data System (ADS)

    Valiente, Nicolas; Menchen, Alfonso; Jirsa, Franz; Hein, Thomas; Wanek, Wolfgang; Gomez-Alday, Juan Jose

    2016-04-01

    Saline wetlands associated with intense agricultural activities in semi-arid to arid climates are among the most vulnerable environments to NO3- pollution. The endorheic Pétrola Basin (High Segura River Basin, Central Spain) was declared vulnerable to NO3- pollution by the Regional Government of Castilla-La Mancha in 1998. The hypersaline lake was classified as a heavily modified waterbody, due to the inputs of pollutants from agricultural sources and urban waste waters, the latest are discharged directly into the lake without proper treatment. Previous studies showed that the aquifer system has two main flow components: regional groundwater flow from recharge areas into the lake, and a density-driven flow from the lake to the underlying aquifer. The NO3- inputs derived from agriculture originate from nitrification of synthetic ammonium fertilizers, and afterwards, NO3- is expected to be attenuated by denitrification (up to 60%) in the saltwater-freshwater interface around the lake. However, the spatial and temporal pattern of nitrate reduction in lake sediments is not known. In this study, an isotope pairing technique was used in order to clarify the main pathways for the NO3- attenuation linked to the sediment-water interface. For that purpose mesocosm experiments were performed: organic-rich lake sediment (up to 23% organic carbon content) was incubated for 96 hours with the addition of 15N nitrate tracer. During the experiments two factors were modified: light and oxic conditions. Analyzing inorganic N-species (n=20) over time (72 hours) showed that NO3- attenuation was coupled with an increment in the NH4+ concentration (from 0.8 mg/L up to 5.3 mg/L) and a decrease in redox values (from 135.1 mV up to -422 mV) in the water column. The main outcome of this study was to elucidate the importance of different microbial pathways denitrification, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (Anammox), in controlling the fate

  9. Discoloration of titanium alloy in acidic saline solutions with peroxide.

    PubMed

    Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The objective of this study was to compare corrosion behavior in several titanium alloys with immersion in acidulated saline solutions containing hydrogen peroxide. Seven types of titanium alloy were immersed in saline solutions with varying levels of pH and hydrogen peroxide content, and resulting differences in color and release of metallic elements determined in each alloy. Some alloys were characterized using Auger electron spectroscopy. Ti-55Ni alloy showed a high level of dissolution and difference in color. With immersion in solution containing hydrogen peroxide at pH 4, the other alloys showed a marked difference in color but a low level of dissolution. The formation of a thick oxide film was observed in commercially pure titanium showing discoloration. The results suggest that discoloration in titanium alloys immersed in hydrogen peroxide-containing acidulated solutions is caused by an increase in the thickness of this oxide film, whereas discoloration of Ti-55Ni is caused by corrosion.

  10. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis.

    PubMed

    Lee, Sangmin; Kim, Sang-Gyu; Park, Chung-Mo

    2010-10-01

    • Findings regarding the role of salicylic acid (SA) in seed germination are somewhat variable, depending on the plant genotypes and experimental conditions used, and thus the molecular mechanisms underlying SA regulation of germination are still unclear. Here, we report that physiological concentrations of SA promote germination under high salinity by modulating antioxidant activity in Arabidopsis. • Germination of SA induction deficient 2 (sid2) seeds was hypersensitive to high salinity. While the inhibitory effect of high salinity was exaggerated in the presence of higher concentrations of SA (> 100 μM), it was significantly reduced in the presence of lower concentrations of SA (< 50 μM). Under high salinity, the endogenous contents of H(2) O(2) were elevated in wild-type and sid2 seeds but reduced to original concentrations after treatment with 1 μM SA. • Germination of NahG transgenic plants was influenced to a lesser degree by high salinity (NahG is a bacterial gene encoding salicylate hydroxylase that converts salicylic acid to catechol). We found that catechol, an SA degradation product accumulated in the transgenic plants, acts as an antioxidant that compromises the inhibitory effects of high salinity. • Our observations indicate that, although SA is not essential for germination under normal growth conditions, it plays a promotive role in seed germination under high salinity by reducing oxidative damage.

  11. Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea.

    PubMed

    Rhodes, Matthew E; Fitz-Gibbon, Sorel T; Oren, Aharon; House, Christopher H

    2010-09-01

    The increase of the acidic nature of proteins as an adaptation to hypersalinity has been well documented within halophile isolates. Here we explore the effect of salinity on amino acid preference on an environmental scale. Via pyrosequencing, we have obtained two distinct metagenomic data sets from the Dead Sea, one from a 1992 archaeal bloom and one from the modern Dead Sea. Our data, along with metagenomes from environments representing a range of salinities, show a strong linear correlation (R(2) = 0.97) between the salinity of an environment and the ratio of acidic to basic amino acids encoded by its inhabitants. Using the amino acid composition of putative protein-encoding reads and the results of 16S rRNA amplicon sequencing, we differentiate recovered sequences representing microorganisms indigenous to the Dead Sea from lateral gene transfer events and foreign DNA. Our methods demonstrate lateral gene transfer events between a halophilic archaeon and relatives of the thermophilic bacterial genus Thermotoga and suggest the presence of indigenous Dead Sea representatives from 10 traditionally non-hyperhalophilic bacterial lineages. The work suggests the possibility that amino acid bias of hypersaline environments might be preservable in fossil DNA or fossil amino acids, serving as a proxy for the salinity of an ancient environment. Finally, both the amino acid profile of the 2007 Dead Sea metagenome and the V9 amplicon library support the conclusion that the dominant microorganism inhabiting the Dead Sea is most closely related to a thus far uncultured relative of an alkaliphilic haloarchaeon.

  12. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity.

  13. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico).

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Enríquez-Aragón, J Arturo; Estrada-Alvarado, Isabel; Hernández-Rodríguez, César; Dendooven, Luc; Marsch, Rodolfo

    2008-03-01

    The soil of the former lake Texcoco is an extreme environment localized in the valley of Mexico City, Mexico. It is highly saline and alkaline, where Na+, Cl(-), HCO3(-) and CO3(2-) are the predominant ions, with a pH ranging from 9.8 to 11.7 and electrolytic conductivities in saturation extracts from 22 to 150 dS m(-1). Metagenomic DNA from the archaeal community was extracted directly from soil and used as template to amplify 16S ribosomal gene by PCR. PCR products were used to construct gene libraries. The ribosomal library showed that the archaeal diversity included Natronococcus sp., Natronolimnobius sp., Natronobacterium sp., Natrinema sp., Natronomonas sp., Halovivax sp., "Halalkalicoccus jeotgali" and novel clades within the family of Halobacteriaceae. Four clones could not be classified. It was found that the archaeal diversity in an alkaline-saline soil of the former lake Texcoco, Mexico, was low, but showed yet uncharacterized and unclassified species.

  14. The Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Alleviates Salinity Stress in Cassava

    PubMed Central

    Patanun, Onsaya; Ueda, Minoru; Itouga, Misao; Kato, Yukari; Utsumi, Yoshinori; Matsui, Akihiro; Tanaka, Maho; Utsumi, Chikako; Sakakibara, Hitoshi; Yoshida, Minoru; Narangajavana, Jarunya; Seki, Motoaki

    2017-01-01

    Cassava (Manihot esculenta Crantz) demand has been rising because of its various applications. High salinity stress is a major environmental factor that interferes with normal plant growth and limits crop productivity. As well as genetic engineering to enhance stress tolerance, the use of small molecules is considered as an alternative methodology to modify plants with desired traits. The effectiveness of histone deacetylase (HDAC) inhibitors for increasing tolerance to salinity stress has recently been reported. Here we use the HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA), to enhance tolerance to high salinity in cassava. Immunoblotting analysis reveals that SAHA treatment induces strong hyper-acetylation of histones H3 and H4 in roots, suggesting that SAHA functions as the HDAC inhibitor in cassava. Consistent with increased tolerance to salt stress under SAHA treatment, reduced Na+ content and increased K+/Na+ ratio were detected in SAHA-treated plants. Transcriptome analysis to discover mechanisms underlying salinity stress tolerance mediated through SAHA treatment reveals that SAHA enhances the expression of 421 genes in roots under normal condition, and 745 genes at 2 h and 268 genes at 24 h under both SAHA and NaCl treatment. The mRNA expression of genes, involved in phytohormone [abscisic acid (ABA), jasmonic acid (JA), ethylene, and gibberellin] biosynthesis pathways, is up-regulated after high salinity treatment in SAHA-pretreated roots. Among them, an allene oxide cyclase (MeAOC4) involved in a crucial step of JA biosynthesis is strongly up-regulated by SAHA treatment under salinity stress conditions, implying that JA pathway might contribute to increasing salinity tolerance by SAHA treatment. Our results suggest that epigenetic manipulation might enhance tolerance to high salinity stress in cassava. PMID:28119717

  15. Density, growth and annual food consumption of gobiid fish in the saline Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Doornbos, G.; Twisk, F.

    Within the scope of a study of the carbon budget of the 108 km 2 saline Lake Grevelingen, investigations were made on density, mortality, growth and food consumption of the main gobiid fish during the period 1980 to 1982. In August 1980 the O-group of Pomatoschistus minutus was estimated at 424 million individuals (on average 3.9 fishes per m 2) with a biomass of 203 tons FW. In 1981 and 1982 peak numbers were less high. O-group P. microps accounted for 282 million individuals (2.6 fishes per m 2) and 133 tons FW in September 1981. By far the highest density was found in the 0 to 0.6 m zone, 15 common gobies per m 2 (7 g FW·m -2). With approximately 5.1 million individuals (13 tons FW) Gobius niger was most abundant in 1982. For adult G. niger a monthly mortality of 27% was estimated. Mortality rates in P. minutus and P. microps were found to be fairly constant over the year. The estimated rates of annual mortality of 99.9% (˜46% per month) and 99.996% (˜57% per month), respectively, appear to be much higher than recorded for estuarine populations. Approximately 60% of the decline in numbers of demersal gobiid fish could be accounted for by the predation of two species of flatfish and two species of piscivorous birds. Young of the year of over 20 mm total length of both species were first caught in June. At the end of the first growing season, the average length and weight of P. microps was 39 mm and 0.6 g FW. In their second year they attained an average size of 51 mm. In O-group P. minutus, the 1980 and 1981 year classes reached an average length of 45 mm and 57 mm, respectively. In their second year, however, the difference disappeared and the mean length in both classes approximated 62 mm. Juvenile G. niger were first caught in August at a length of approximately 3.5 cm. They attained an average size of 4 to 5 cm in the first year, 8 to 8.5 cm in the second and 11 to 12.5 cm in the third year. The maximum production of P. minutus and P. microps, although

  16. Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico).

    PubMed

    Alcántara-Hernández, Rocio J; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc

    2009-01-01

    The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (EC(SE)) 160 dS m(-1) and soil T1 with pH 8.5 and EC(SE) 0.8 dS m(-1)). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.

  17. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    PubMed

    Huang, Qiuyuan; Briggs, Brandon R; Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  18. Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China

    PubMed Central

    Dong, Hailiang; Jiang, Hongchen; Wu, Geng; Edwardson, Christian; De Vlaminck, Iwijn; Quake, Stephen

    2014-01-01

    Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity) on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m) saline (1.4%) lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E). Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change. PMID:25365331

  19. Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact.

    PubMed

    Antony, Chakkiath Paul; Kumaresan, Deepak; Ferrando, Lucia; Boden, Rich; Moussard, Hélène; Scavino, Ana Fernández; Shouche, Yogesh S; Murrell, J Colin

    2010-11-01

    Lonar Lake is a unique saline and alkaline ecosystem formed by meteor impact in the Deccan basalts in India around 52,000 years ago. To investigate the role of methylotrophy in the cycling of carbon in this unusual environment, stable-isotope probing (SIP) was carried out using the one-carbon compounds methane, methanol and methylamine. Denaturing gradient gel electrophoresis fingerprinting analyses performed with heavy (13)C-labelled DNA retrieved from sediment microcosms confirmed the enrichment and labelling of active methylotrophic communities. Clone libraries were constructed using PCR primers targeting 16S rRNA genes and functional genes. Methylomicrobium, Methylophaga and Bacillus spp. were identified as the predominant active methylotrophs in methane, methanol and methylamine SIP microcosms, respectively. Absence of mauA gene amplification in the methylamine SIP heavy fraction also indicated that methylamine metabolism in Lonar Lake sediments may not be mediated by the methylamine dehydrogenase enzyme pathway. Many gene sequences retrieved in this study were not affiliated with extant methanotrophs or methylotrophs. These sequences may represent hitherto uncharacterized novel methylotrophs or heterotrophic organisms that may have been cross-feeding on methylotrophic metabolites or biomass. This study represents an essential first step towards understanding the relevance of methylotrophy in the soda lake sediments of an unusual impact crater structure.

  20. Spatial and spectral characterization of acid rain stress in Canadian Shield lakes

    NASA Technical Reports Server (NTRS)

    Marshall, Elizabeth J.; Tanis, Frederick J.

    1989-01-01

    Results from this study demonstrate that a remote sensor can discriminate lake clarity based upon reflection. The basic hypothesis was that seasonal and multiyear changes in lake optical transparency are indicative of sensitivity to acidic deposition. In many acid-sensitive lakes optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing, nonscattering material which has the greatest impact at short visible wavelengths, including Thematic Mapper band 1. Acid-sensitive lakes have high concentrations of aluminum which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for observed increases in lake transparency in acid-sensitive lakes. Thus seasonal changes in the optical transparency of lakes should provide an indication of the stress due to acid deposition and loading.

  1. Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity.

    PubMed

    Lee, Sangmin; Park, Chung-Mo

    2010-12-01

    Potential roles of salicylic acid (SA) on seed germination have been explored in many plant species. However, it is still controversial how SA regulates seed germination, mainly because the results have been somewhat variable, depending on plant genotypes used and experimental conditions employed. We found that SA promotes seed germination under high salinity in Arabidopsis. Seed germination of the sid2 mutant, which has a defect in SA biosynthesis, is hypersensitive to high salinity, but the inhibitory effects are reduced in the presence of physiological concentrations of SA. Abiotic stresses, including high salinity, impose oxidative stress on plants. Endogenous contents of H(2)O(2) are higher in the sid2 mutant seeds. However, exogenous application of SA reduces endogenous level of reactive oxygen species (ROS), indicating that SA is involved in plant responses to ROS-mediated damage under abiotic stress conditions. Gibberellic acid (GA), a plant hormone closely associated with seed germination, also reverses the inhibitory effects of high salinity on seed germination and seedling establishment. Under high salinity, GA stimulates SA biosynthesis by inducing the SID2 gene. Notably, SA also induces genes encoding GA biosynthetic enzymes. These observations indicate that SA promotes seed germination under high salinity by modulating antioxidant activity through signaling crosstalks with GA.

  2. Injection of adjuvant but not acidic saline into craniofacial muscle evokes nociceptive behaviors and neuropeptide expression.

    PubMed

    Ambalavanar, R; Yallampalli, C; Yallampalli, U; Dessem, D

    2007-11-09

    Craniofacial muscle pain including muscular temporomandibular disorders accounts for a substantial portion of all pain perceived in the head and neck region. In spite of its high clinical prevalence, the mechanisms of chronic craniofacial muscle pain are not well understood. Injection of acidic saline into rodent hindlimb muscles produces pathologies which resemble muscular pathologies in chronic pain patients. Here we investigated whether analogous transformations occur following repeated injections of acidic saline into the rat masseter muscle. Injection of acidic saline (pH 4) into the masseter muscle transiently lowered i.m. pH to levels comparable to those reported for rodent hindlimb muscles. Nevertheless, repeated unilateral or bilateral injections of acidic saline (pH 4) into the masseter muscle failed to alter nociceptive behavioral responses as occurs in the hindlimb. Changing the pH of injected saline to pH 3.0 or 5.0 also did not evoke nocifensive behavior. Acid sensing ion channel 3 receptors, which are implicated in transformations following acidification of hindlimb muscles, were found on trigeminal ganglion muscle afferent neurons via combined neuronal tracing and immunocytochemistry. In contrast to the acidic saline, injection of complete Freund's adjuvant (CFA) into the masseter muscle induced mechanical allodynia for 3 weeks, thermal hyperalgesia for 1 week and an increase in the number of calcitonin gene-related peptide (CGRP)-immunoreactive muscle afferent neurons in the trigeminal ganglion. Although pH may alter CGRP release in primary afferent neurons, the number of CGRP-muscle afferent neurons did not change following i.m. injection of acidic saline. Further, there was no change in ganglionic iCGRP levels at 1, 4 or 12 days after i.m. injection of acidic saline. While these findings extend our earlier reports that CFA-induced muscle inflammation results in behavioral and neuropeptide changes they further suggest that i.m. acidification in

  3. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  4. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges

    PubMed Central

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na+], and [Cl−] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na+, K+-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  5. Ionic and Amino Acid Regulation in Hard Clam (Meretrix lusoria) in Response to Salinity Challenges.

    PubMed

    Lin, Chia-Hao; Yeh, Po-Ling; Lee, Tsung-Han

    2016-01-01

    Most marine mollusks are osmoconformers, in that, their body fluid osmolality changes in the direction of the change in environmental salinity. Marine mollusks exhibit a number of osmoregulatory mechanisms to cope with either hypo- or hyperosmotic stress. The effects of changes in salinity on the osmoregulatory mechanisms of the hard clam (Meretrix lusoria, an economically important species of marine bivalve for Taiwan) have not been determined. In this study, we examined the effect of exposure to hypo (10‰)- and hyper (35‰)-osmotic salinity on hard clams raised at their natural salinity (20‰). The osmolality, [Na(+)], and [Cl(-)] of the hard clam hemolymph were changed in the same direction as the surrounding salinity. Further, the contents of total free amino acids including taurine in the gills and mantles were significantly upregulated in hard clam with increasing salinity. The gill Na(+), K(+)-ATPase (NKA) activity, the important enzyme regulating cellular inorganic ions, was not affected by the changed salinity. Mantle NKA activity, however, was stimulated in the 35‰ SW treatment. The taurine transporter (TAUT) is related to the regulation of intracellular contents of taurine, the dominant osmolyte. Herein, a TAUT gene of hard clam was cloned and a TAUT antibody was derived for the immunoblotting. The TAUT mRNA expression of the mantle in hard clam was significantly stimulated in 35‰ SW, but protein expression was not modulated by the changed salinity. In gills of the hard clam with 10‰ SW, both TAUT mRNA and protein expressions were significantly stimulated, and it may reflect a feedback regulation from the decreased gills taurine content under long-term hypoosmotic acclimation. These findings suggest that TAUT expression is regulated differently in gills and mantles following exposure to alterations in environmental salinity. Taken together, this study used the physiological, biochemical and molecular approaches to simultaneously explore the

  6. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    PubMed

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils.

  7. Dynamics of Vibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid-phase cytometry.

    PubMed

    Schauer, Sonja; Jakwerth, Stefan; Bliem, Rupert; Baudart, Julia; Lebaron, Philippe; Huhulescu, Steliana; Kundi, Michael; Herzig, Alois; Farnleitner, Andreas H; Sommer, Regina; Kirschner, Alexander

    2015-11-01

    In order to elucidate the main predictors of Vibrio cholerae dynamics and to estimate the risk of Vibrio cholera-related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid-phase cytometry (CARD-FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. Vibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD-FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26 × 10(6) V. cholerae per L in Neusiedler See and 7.59 × 10(7) V. cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V. cholerae. In winter, V. cholerae was not culturable but could be quantified at all sites with CARD-FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V. cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed.

  8. Acid lake in N.Y. gets relief

    NASA Astrophysics Data System (ADS)

    A pond in the Adirondack Mountains of New York State has received a second soothing dose of baking soda. The 21 tons of sodium bicarbonate should moderate the pond's acidic conditions, lethal to fish and other forms of life.Wolf Pond, 25 miles (40 km) north of Saranac Lake, has developed an extremely low pH (4.5) because of acid rain and the runoff of acidic surface water, combined with very little outflow. The pond was first treated with sodium bicarbonate by t h e New York Department of Environmental Conservation in 1984; afterward the pH rose to about 6.2. Fish stocked by local residents have continued to live in the pond, despite the eventual rebound in its acidity.

  9. Australian Acid Brine Lake as a Mars Analog: An Analysis of Preserved Lipids in Shore and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Stern, J. C.; Baldridge, A. M.; Thomsen, B. J.

    2016-05-01

    This study investigates organic molecules preserved in sediment cores from an acid brine lake. We explore the distribution and stable isotopic composition of lipids in order to understand preservation potential in similar martian environments.

  10. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    SciTech Connect

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be related to either acidic conditions or lake trophic status. 29 references, 3 tables.

  11. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.

    PubMed

    Lovelli, Stella; Scopa, Antonio; Perniola, Michele; Di Tommaso, Teodoro; Sofo, Adriano

    2012-02-15

    Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.

  12. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta).

    PubMed

    Angell, Alex R; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2015-06-01

    Salinity can affect the quantity and quality of total amino acids (TAAs) in seaweeds indirectly by altering growth rates and thereby diluting or concentrating the amino acid content of the biomass, or directly by altering the synthesis of specific amino acids and osmolytes. This study attempted to partition the indirect and direct effects of salinity on the quantity and quality of TAAs in the green seaweed Ulva ohnoi by culturing it under a range of salinities without nutrient limitation. Both the quantity and quality of TAAs varied across the salinity treatments. Quantity was most strongly related to the growth rate of the seaweed and was highest in the slowest growing seaweed. In contrast, the quality of TAAs (individual amino acids as a proportion of total content) was most strongly related to salinity for all amino acids, although this varied substantially among individual amino acids. Increases in salinity were positively correlated with the proportion of proline (46% increase), tyrosine (36% increase), and histidine (26% increase), whereas there was a negative correlation with alanine (29% decrease). The proportion of methionine, with strong links to the synthesis of the osmolyte dimethylsulfoniopropionate, did not correlate linearly with salinity and instead was moderately higher at the optimal salinities for growth. These results show that salinity simultaneously affects the quantity and quality of TAAs in seaweed through both indirect and direct mechanisms, with growth rates playing the overarching role in determining the quantity of TAAs.

  13. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  14. Metals in crayfish from neutralized acidic and non-acidic lakes

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-09-01

    Large amounts of acid forming SO/sub 2/, as well as Cu, Ni and other metals are being continuously released into the environment by mining and smelting activities at Sudbury, Ontario, Canada. Consequently, a number of lakes in this region has become both acid and metal stressed. The addition of basic calcium compounds to acidic ponds and lakes has long been recognized as beneficial, as it contributes to increased fish production and water quality. In addition to increases in pH and alkalinity, such additions may reduce water-dissolved metal concentrations, change water transparency and bring about alterations in species diversity. Neutralization experiments have shown that an increase in water alkalinity and DOC may reduce the acute toxicity of Cu to fish. However, the influence of water quality on metal availability and accumulation has received scant attention. Earlier work showed that tissue metal concentrations in crayfish were related to the distance from the emission site. The purpose of the present study is to compare concentrations of six metals in freshwater crayfish from a neutralized acidic lake and a closely situated non-acidic lake. Various tissue concentrations in crayfish are also examined to determine specific tissue sites for these accumulations.

  15. Indications of human activity from amino acid and amino sugar analyses on Holocene sediments from lake Lonar, central India

    NASA Astrophysics Data System (ADS)

    Menzel, P.; Gaye, B.; Wiesner, M.; Prasad, S.; Basavaiah, N.; Stebich, M.; Anoop, A.; Riedel, N.; Brauer, A.

    2012-04-01

    The DFG funded HIMPAC (Himalaya: Modern and Past Climates) programme aims to reconstruct Holocene Indian Monsoon climate using a multi-proxy and multi-archive approach. First investigations made on sediments from a ca. 10 m long core covering the whole Holocene taken from the lake Lonar in central India's state Maharashtra, Buldhana District, serve to identify changes in sedimentation, lake chemistry, local vegetation and regional to supra-regional climate patterns. Lake Lonar occupies the floor of an impact crater that formed on the ~ 65 Ma old basalt flows of the Deccan Traps. It covers an area of ca. 1 km2 and is situated in India's core monsoon area. The modern lake has a maximum depth of about 5 m, is highly alkaline, and hyposaline, grouped in the Na-Cl-CO3 subtype of saline lakes. No out-flowing stream is present and only three small streams feed the lake, resulting in a lake level highly sensitive to precipitation and evaporation. The lake is eutrophic and stratified throughout most of the year with sub- to anoxic waters below 2 m depth. In this study the core sediments were analysed for their total amino acid (AA) and amino sugar (AS) content, the amino acid bound C and N percentage of organic C and total N in the sediment and the distribution of individual amino acids. The results roughly show three zones within the core separated by distinct changes in their AA content and distribution. (i) The bottom part of the core from ca. 12000 cal a BP to 11400 cal a BP with very low AA and AS percentage indicating high lithogenic contribution, most probably related to dry conditions. (ii) From 11400 cal a BP to 1200 cal a BP the sediments show moderate AA and AS percentages and low values for the ratios of proteinogenic AAs to their non-proteinogenic degradation products (e.g. ASP/β-ALA; GLU/γ-ABA). (iii) The top part of the core (< 1200 cal a BP) is characterised by an intense increase in total AA and AS, AA-C/Corg and AA-N/Ntotas well as in the ratio of

  16. Constraints on Lake Agassiz discharge through the late-glacial Champlain Sea (St. Lawrence Lowlands, Canada) using salinity proxies and an estuarine circulation model

    USGS Publications Warehouse

    Katz, B.; Najjar, R.G.; Cronin, T.; Rayburn, J.; Mann, M.E.

    2011-01-01

    During the last deglaciation, abrupt freshwater discharge events from proglacial lakes in North America, such as glacial Lake Agassiz, are believed to have drained into the North Atlantic Ocean, causing large shifts in climate by weakening the formation of North Atlantic Deep Water and decreasing ocean heat transport to high northern latitudes. These discharges were caused by changes in lake drainage outlets, but the duration, magnitude and routing of discharge events, factors which govern the climatic response to freshwater forcing, are poorly known. Abrupt discharges, called floods, are typically assumed to last months to a year, whereas more gradual discharges, called routing events, occur over centuries. Here we use estuarine modeling to evaluate freshwater discharge from Lake Agassiz and other North American proglacial lakes into the North Atlantic Ocean through the St. Lawrence estuary around 11.5 ka BP, the onset of the Preboreal oscillation (PBO). Faunal and isotopic proxy data from the Champlain Sea, a semi-isolated, marine-brackish water body that occupied the St. Lawrence and Champlain Valleys from 13 to 9 ka, indicate salinity fell about 7-8 (range of 4-11) around 11.5 ka. Model results suggest that minimum (1600 km3) and maximum (9500 km3) estimates of plausible flood volumes determined from Lake Agassiz paleoshorelines would produce the proxy-reconstructed salinity decrease if the floods lasted <1 day to 5 months and 1 month to 2 years, respectively. In addition, Champlain Sea salinity responds very quickly to the initiation (within days) and cessation (within weeks) of flooding events. These results support the hypothesis that a glacial lake flood, rather than a sustained routing event, discharged through the St. Lawrence Estuary during the PBO. ?? 2011 Elsevier Ltd.

  17. Acid precipitation effects on algal productivity and biomass in Adirondack Lakes. Final completion report

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain Lakes were studied at Woods Lake, Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Numbers of phytoplankton species observed were Woods 45, Sagamore 55, and Panther 85, conforming to observations at many other sites that species numbers decrease with increasing acidity. The smaller plankton are relatively more important in the more acid lakes, Woods > Sagamore > Panther. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). The amount of 14C-labelled dissolved photosynthate (14C-DOM), as a percent of total productivity, is ordered Woods > Sagamore > Panther.

  18. Recovery of Daphnia galeata mendotae in two historically acid and metal contaminated lakes after liming

    SciTech Connect

    Welsh, P.G.; Yan, N.; Hangang, L.; Dixon, D.G.

    1994-12-31

    Daphnia galeata mendotae (DGM) has recently re-appeared in Hannah and Middle Lake, two lakes historically stressed by acid and metals. These lakes were limed in the early 1970s. Since then, the lakes have remained non-acidic but metal levels have declined monotonically. DGM became a dominant zooplankton species in Hannah Lake approximately 5 years before Middle Lake. One hypothesis for this temporal displacement in recovery is available metal concentrations regulating recovery in the two lakes. The authors examined the chronic toxicity of Cu, Cd, and Ni mixtures to DGM in the laboratory with lake water manipulated to correspond to metal concentrations in successive 4--5 year increments (1976, 1981, 1985, 1989, and 1993). Cultures of DGM were established from both lakes. Survivorship and, especially, number of living offspring produced were sensitive indicators of past metal conditions. Conditions representative of 1976 lake water (immediately post-liming) were acutely lethal to both DGM populations. Hannah Lake DGM had higher survivorship and number of live offspring produced for all of the remaining simulated lake conditions. These results correspond well with field assessment of the timing of recovery of DGM in both lakes.

  19. Effect of environmental salinity manipulation on uptake rates and distribution patterns of waterborne amino acids in the Pacific hagfish.

    PubMed

    Glover, Chris N; Blewett, Tamzin A; Wood, Chris M

    2017-02-01

    Among vertebrates, hagfish are the only known iono- and osmoconformers, and the only species thus far documented to absorb amino acids directly across the skin. In the current study, short-term (6h) manipulations of exposure salinities (75-125% seawater) were conducted to determine whether changes in osmotic demands influenced the uptake and tissue distribution of waterborne amino acids (alanine, glycine and phenylalanine), in the Pacific hagfish, Eptatretus stoutii. No changes in erythrocyte or muscle amino acid accumulation rates were noted, but the patterns of plasma amino acid accumulation were suggestive of regulation. Contrary to expectations, glycine transport across the skin in vitro was enhanced in the lowest exposure salinity, but no other salinity-dependent changes were demonstrated. Overall, this study indicates that uptake and distribution of amino acids varies with salinity, but not in a manner that is consistent with a role for the studied amino acids in maintaining osmotic balance in hagfish.

  20. Dynamics, migration and growth of Nassarius reticulatus (Mollusca: Prosobranchia) colonizing saline Lake Grevelingen (SW Netherlands)

    NASA Astrophysics Data System (ADS)

    Lambeck, R. H. D.

    The marine snail Nassarius reticulatus colonized Lake Grevelingen after its creation in 1971. A population explosion took place in 1976. Dynamics, growth and biomass development were studied during 1976 and 1977. One generation a year was observed, with 1976 settlement around August 1. Densities at a 12 m deep station were mostly below 10 m -2, at two shallow (1 m) stations numbers increased to 40 to 60 m -2, as a result of immigration. Numbers at two 3 m stations, with peak values of 200 m -2, showed a cyclic pattern with a minimum in July 1977 due to migratory movements. Biomass increased over the period of investigation. A lowest maximum biomass was found at 12 m (0.16 g ADW m -2) and a highest of 5.0 g at a 3 m station. The lake average in April 1977 amounted to a value between 1.2 and 2.1 g ADW m -2. In this survey the dominant 1976 year class showed a gradual decline from ˜ 300 ind·m -2 between 2 and 3.5 m to ˜ 60 m -2 in water deeper than 10 m. Growth rates were also depth dependent. Within the range of 2 to 25 m juveniles born in 1976 showed a maximum mean size of 6.8 mm after one growing season at 5 to 6 m depth against only 3.6 mm in deep water. Highest mean values after 2 growing-seasons, viz. 16 mm, were reached at the 1 m deep stations, which figure might be inflated by size-dependent immigration. Growth was poor (8 mm) at the 12 m station. Growth rates are similar to Swedish observations, but were reached at 10 to 50 times higher densities in Lake Grevelingen.

  1. Holocene n-Fatty Acid Δd Records from Lake Hurleg, Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhao, C.; Liu, Z.; Wang, H.; Liu, W.; Yu, Z.

    2014-12-01

    The interpretation of δD records from the Tibetan Plateau region remains challenging due to multiple climatic factors influencing on the precipitation isotopic values. Here we study the mechanism of δD variation in this region, by reconstructing the past 10.5 ka n-fatty acid (FA) δD records from sediment core taken in Lake Hurleg on the northeastern Tibetan Plateau and comparing them to the previously presented temperature and moisture data from the same core. Comparison of both C16 and C26 n-FA δD with the average carbon length of n-FA suggests that n-FA δD variability was independent of the n-FA distribution. For δD in the C26 n-FA, it serves as an indicator of hydrogen isotopic signals in terrestrial water. During the Holocene, the heavier C26 n-FA δD values corresponded to millennial cold and wet conditions as inferred by the temperature and salinity records. Thus the terrestrial water δD value changes might be caused by factors other than temperature and moisture, such as the vegetation type and the glacial melt water input. As for the C16 n-FA, although it contains both terrestrial and aquatic source, it mainly mimics the lacustrine water isotopic signal. Therefore, the difference between C16 and C26 n-FA δD can be interpreted as the fractionation between terrestrial and aquatic water induced by evaporation on lake surface. Based on the δD records together with temperature and moisture records, we suggest in millennial timescale, not only stronger precipitation but also less evaporation occurred during the cold periods in the Lake Hurleg region.

  2. Changes in plasma osmolality, cortisol and amino acid levels of tongue sole ( Cynoglossus semilaevis) at different salinities

    NASA Astrophysics Data System (ADS)

    Wang, Guodong; Xu, Kefeng; Tian, Xiangli; Dong, Shuanglin; Fang, Ziheng

    2015-10-01

    A serial of salinity transferring treatments were performed to investigate the osmoregulation of tongue sole ( Cynoglossus semilaevis). Juvenile tongue sole were directly transferred from a salinity of 30 to 0, 10, 20, 30, 40 and 50. Blood sampling was performed for each treatment after 0, 1, 6 and 12 h, as well as after 1, 2, 4, 8, 16 and 32 d. The plasma osmolality, cortisol and free amino acids were assessed. Under the experimental conditions, no fish died after acute salinity transfer. The plasma cortisol level increased 1 h after the abrupt transfer from a salinity of 30 to that of 0, 40 and 50, and decreased from 6 h to 8 d after transfer. Similar trends were observed in the changes of plasma osmolality. The plasma free amino acids concentration showed a `U-shaped' relationship with salinity after being transferred to different salinities for 4 days. More obvious changes of plasma free amino acid concentration occurred under hyper-osmotic conditions than under hypo-osmotic conditions. The concentrations of valine, isoleucine, lysine, glutamic acid, glycine, proline and taurine increased with rising salinity. The plasma levels of threonine, leucine, arginine, serine, and alanine showed a `U-shaped' relationship with salinity. The results of this study suggested that free amino acids might have important effects on osmotic acclimation in tongue sole.

  3. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains.

    PubMed

    Nanus, L; Williams, M W; Campbell, D H; Tonnessen, K A; Blett, T; Clow, D W

    2009-06-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration <100 microeq/L, and therefore sensitive to acidic deposition, are located in basins with elevations >3000 m, with <30% of the catchment having northeast aspect and with >80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  4. Multimatrix measurement of persistent organic pollutants in Mar Chiquita, a continental saline shallow lake.

    PubMed

    Ballesteros, M L; Miglioranza, K S B; Gonzalez, M; Fillmann, G; Wunderlin, D A; Bistoni, M A

    2014-08-15

    RAMSAR sites are determined by specific characteristics of the environment in terms of ecological productivity as well services for human development, but they are also one of the most threatened ecosystems. Thus, the objective of this work was to evaluate the dynamic of Persistent Organic Pollutants (POPs) in different biotic and abiotic matrixes of the RAMSAR site (wetlands with international importance), Mar Chiquita Lake. Sampling was performed according to land use (agricultural, urban, and industrial) at two stations: Laguna del Plata and Campo Mare. POPs were analyzed in superficial water (Sw), suspended particulate material (SPM), bottom sediment (Bs) and fish tissues (Odontesthes bonariensis). Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were analyzed by GC-ECD. HCHs, Endosulfans, DDTs, PCBs and PBDEs were found in all matrixes at both stations. The high persistence and transport processes are responsible for the occurrence of HCHs, DDTs and PCBs in Bs, SPM and fish tissues, even many years after their prohibition. PBDEs showed lower levels according to the scarcity of punctual sources in the area. Endosulfan showed variable amounts in agreement with application periods since this pesticide was used until a few years ago in this area. Finally, PCB levels overpassed the acceptable daily intake for human consumption being a risk for human health Thus, the present report confirms the occurrence of POPs in Mar Chiquita lake, alerting on the contribution of agricultural and urban pollutants in a RAMSAR site. Current results also raise concerns on biomagnification processes through the food web.

  5. Redescription of larva, pupa and imago male of Chironomus (Chironomus) salinarius Kieffer from the saline rivers of the Lake Elton basin (Russia), its karyotype and ecology.

    PubMed

    Orel Zorina, Oksana V; Istomina, Albina G; Kiknadze, Iya I; Zinchenko, Tatiana D; Golovatyuk, Larisa V

    2014-07-29

    Cytology and ecology of Chironomus (Chironomus) salinarius Kieffer, 1915 (Diptera, Chironomidae) was examined from material collected in the saline rivers of the Lake Elton basin (Volgograd region, Russia). Larvae of salinarius-type were identified as C. salinarius on the basis of their karyotype. The species is redescribed on the basis of all metamorphic stages. The reared imago and karyotype were obtained from larvae of the same population. The karyotype of C. salinarius, detailed mapping of the 5 chromosome arms A, C, D, E, F and characteristics of chromosome polymorphism are provided. Information on distribution and ecology of C. salinarius from the saline rivers (total mineralization 6.8-31.6 g l-1) of the Lake Elton basin is also given. Chironomus salinarius is a common in the saline rivers and occurs in sediments with high silt content. On the basis of recent samplings C. salinarius appears to be very abundant in saline, mesotrophic as well as in eutrophic rivers. Chironomus salinarius accounted for 49-66% of total abundance of zoobenthos in water with salinity up to 13-31.6 g l-1.

  6. Salinization and Saline Environments

    NASA Astrophysics Data System (ADS)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  7. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    ERIC Educational Resources Information Center

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  8. Catchment and atmospheric effects on acidity of lakes in the northeastern United States

    SciTech Connect

    Davis, R.B.; Anderson, D.S.; Rhodes, T.E.

    1995-06-01

    Sedimentary evidence from 12 lakes in northeastern United States reveals that both catchment and atmospheric processes have caused changes in lake acidity. Diatom remains indicate pH 5.2 to 5.8 (one lake 6.8) for one to two centuries before impacts on the catchment by Euro-americans. These low-alkalinity lakes were very sensitive to altered fluxes of base cations and acids. Several lakes increased in pH by 0.2 to 0.6 unit in the 1800s and early 1900s when their catchments were logged. Re-acidification of some of the lakes was initially due to forest succession. Older sediment from one of the lakes also shows alkalization by natural disturbance, and acidification paralleling forest succession. However, much of the recent acidification, to uniquely low levels by the 1970s is due to high sulfur deposition.

  9. Acid-leachable Li and Mg from Lake Cuitzeo sediments in the central Mexico: Paleoclimate change during the past 45 Ka

    NASA Astrophysics Data System (ADS)

    Li, H.; Alcantara, I. I.; Bischoff, J. L.; Wen, D.; Garduño-Monroy, V. H.

    2009-12-01

    Located in Michoacán state of south-central Mexico (19°56’N, 101°5’W), Lake Cuitzeo is an alkaline lake with an area of ~400 km2, average depth of 27m and elevation of 1821m. A 27-m long core was retrieved from the lake, covering about 127-kyr depositional history. The chronology of the upper 9.2m of the core has been reconstructed by radiocarbon dates, showing a continuous deposition during the past 45 Ka. Using 0.5N HCl for leaching the de-ionized water washed lake sediments, we have measured the acid-leachable (AL) elements including Na, K, Li, Mg and Si by ICP-OES. Comparing to the total Si content in bulk sediments ranging from 10 to 40 wt.% with an average of 25.2 ± 4.3 wt.%, the AL Si ranges from 0.064 to 0.375 wt.% with an average of 0.253 ± 0.048 wt.%. The AL Mg content has strongly linear correlation with the total Mg content in the bulk sediments, but accounts for ~55% of the total Mg content. When the carbonate content in the sediment is greater than 10%, the weight loss by the acid-leaching is mainly from dissolution of carbonate. In addition, when the AL Mg is less than 1%, AL Li and AL Mg appear strongly linear correlation. Thus, the AL Li and Mg contents are mainly from authigenic minerals formed in the lake, such as carbonate and sepiolite. When Mg was used up in the lake due to precipitation of carbonate and sepiolite, Li will substitute in sepiolite under the hyper saline and alkaline lake conditions. Therefore, AL Li and Mg contents in the lake sediments can be used as indicators of lake hydrological change under different climatic conditions. High CaCO3%, Li and Mg contents in the periods of 2~12Ka, 19~24Ka, 28~31Ka, 33~34Ka, 35~38Ka and 43~45Ka, indicate higher salinity and alkalinity of the lake hence lower lake levels might be caused by dry and/or warm climates. During 12~20Ka, the lake was relatively fresh and deeper, reflecting cold but wet climatic conditions due to jet stream shifted south during LGM.

  10. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Tycholiz, C.; Ferguson, I. J.; Sherriff, B. L.; Cordeiro, M.; Sri Ranjan, R.; Pérez-Flores, M. A.

    2016-08-01

    Surface electrical and electromagnetic geophysical methods can map enhanced electrical conductivity caused by acid mine drainage in mine tailings piles. In this case study, we investigate quantitative relationships between geophysical responses and the electrical conductivity, acidity and salinity of tailing samples at the Central Manitoba Mine tailings in Manitoba, Canada. Previous electromagnetic surveys at the site identified zones of enhanced conductivity that were hypothesized to be caused by acid mine drainage. In the present study, high-resolution EM31 and DC-resistivity measurements were made on a profile through a zone of enhanced conductivity and laboratory measurements of salinity and pH were made on saturation paste extracts from an array of tailing samples collected from the upper 2 m of tailings along the profile. Observed spatial correlation of pH and pore-fluid salinity in the tailings samples confirms that the enhanced conductivity in the Central Manitoba Mine tailings is due to acid mine drainage. Contoured cross-sections of the data indicate that the acid mine drainage is concentrated near the base of the oxidized zone in the thicker parts of the tailings pile. The zone of increased acidity extends to the surface on sloping margins causing an increase in apparent conductivity in shallow penetrating geophysical responses. The quantitative relationship between measured pH and salinity shows that the conductivity increase associated with the acid mine drainage is due only in part to conduction by ions produced from dissociation of sulfuric acid. Comparison of the observations with fluid conductivity estimates based on statistical relationships of pH and ion concentrations in water samples from across the tailings pile shows that Ca2 + and Mg2 + ions also make significant contributions to the conductivity at all values of pH and Cu2 +, Al3 + and Fe3 + ions make additional contributions at low pH. Variability in the measured conductivity at constant

  11. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    PubMed Central

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J. R.; Sinninghe Damsté, Jaap S.; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox, and sulfide-dependent denitrifying bacteria in the sediments of the seasonally hypoxic saline Lake Grevelingen, known to harbor an active microbial community involved in sulfur oxidation pathways. Depth distributions of 16S rRNA gene, nirS gene of denitrifying and anammox bacteria, aprA gene of sulfur-oxidizing and sulfate-reducing bacteria, and ladderane lipids of anammox bacteria were studied in sediments impacted by seasonally hypoxic bottom waters. Samples were collected down to 5 cm depth (1 cm resolution) at three different locations before (March) and during summer hypoxia (August). The abundance of denitrifying bacteria did not vary despite of differences in oxygen and sulfide availability in the sediments, whereas anammox bacteria were more abundant in the summer hypoxia but in those sediments with lower sulfide concentrations. The potential activity of denitrifying and anammox bacteria as well as of sulfur-oxidizing, including sulfide-dependent denitrifiers and sulfate-reducing bacteria, was potentially inhibited by the competition for nitrate and nitrite with cable and/or Beggiatoa-like bacteria in March and by the accumulation of sulfide in the summer hypoxia. The simultaneous presence and activity of organoheterotrophic denitrifying bacteria, sulfide-dependent denitrifiers, and anammox bacteria suggests a tight network of bacteria coupling carbon-, nitrogen-, and sulfur cycling in Lake Grevelingen sediments. PMID:27812355

  12. Capillary Electrophoresis Analysis of Organic Amines and Amino Acids in Saline and Acidic Samples Using the Mars Organic Analyzer

    NASA Astrophysics Data System (ADS)

    Stockton, Amanda M.; Chiesl, Thomas N.; Lowenstein, Tim K.; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A.

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pKa values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  13. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer.

    PubMed

    Stockton, Amanda M; Chiesl, Thomas N; Lowenstein, Tim K; Amashukeli, Xenia; Grunthaner, Frank; Mathies, Richard A

    2009-11-01

    The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.

  14. Distribution of diatoms and development of diatom-based models for inferring salinity and nutrient concentrations in the southern Baltic coastal lakes

    NASA Astrophysics Data System (ADS)

    Rzodkiewicz, Monika; Szpikowska, Grażyna; Woszczyk, Michał; Suchińska, Anita; Staszak-Piekarska, Agata; Piekarski, Paweł; Burchardt, Lubomira; Messyasz, Beata

    2015-04-01

    The transfer function method has been developed as a useful tool for reconstruction of the past environmental changes. It is based on the assumption that the modern species, which ecological requirements are known, can be used to quantitative reconstructions of the past changes. The aim of the study was to gather test sets and to build diatom-based transfer function which can be used to reconstruct changes in the trophic state and salinity in the coastal lakes on the Polish Baltic coast. In the previous years there were several attempts made to reconstruct these parameters in lagoonal waters on the Baltic coasts in Germany, Denmark, Finland, Netherland, Sweden and Norway. But so far there is no diatom test set and transfer function built for the Polish coastal lakes. We sampled diatoms from 12 lakes located along the polish Baltic coast. At the same time we monitor the physical-chemical conditions in the lakes, which includes: lake water chemical composition (chlorides, phosphorous and sulphur), pH, salinity, conductivity, temperature, dissolved oxygen. We collected samples, few times per year (2012-2014) from the lakes as well as from the Baltic Sea and we analysed the whole phytoplankton composition. However the special focus in put on diatoms. In this poster we present new data from the Southern Baltic coastal lakes and quantify relationships between surface sediment diatom assemblages and present day environmental conditions. These relationships are then used to develop diatom-based transfer functions that will be applied to future studies of environmental change on the Polish Baltic coast. The results of the analysis show seasonal changes in the chemical and physical water properties. The diatom assemblage composition and species frequency also changed significantly. This study is a contribution to the projects: NN 306 064 640 financed by National Science Centre, Poland. The research was supported by Virtual Institute ICLEA (Integrated Climate and Landscape

  15. Evaluation of the recovery of Adirondack acid lakes by chemical manipulation

    SciTech Connect

    Depinto, J.V.; Edzwald, J.K.

    1982-06-01

    This study specifically addressed an evaluation of materials (calcium hydroxide and carbonate, agricultural limestone, fly ash, water treatment plant softening sludge, cement plant by-pass dust) for their neutralizing effectiveness and for establishing a neutral pH buffer system, and an evaluation of the effect of various lake recovery materials on algal growth. Laboratory continuous-flow microcosims were used as models to assess acid lake recovery. These models were filled with actual acid lake water over a layer of lake sediments, subjected to a given chemical treatment, and continuously fed water of selected quality (e.g., acid rain). A simulation of sediment-water-air kinetic interactions on a treated acid lake was obtained by careful monitoring of the microcosm chemical response. Agricultural limestone was determined to be the most appropriate material for acid lake recovery treatment based on its neutralizing properties, assessment of its potential impact on biota, its availability, and its relative cost: the results of this laboratory study suggest that full-scale recovery of an Adirondack acid lake is technically feasible. It is, however, recommended that an acid lake recovery field demonstration project be undertaken. 58 references, 36 figures, 29 tables.

  16. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity.

    PubMed

    Yücel Candan, Nilgün; Heybet Elif, Haklı

    2016-12-01

    Seed vigor is a complex physiological trait required to ensure the rapid and uniform emergence of plants in the field under different environmental conditions. Therefore, salicylic acid (SA, 0.5 mM) and calcium (Ca2+, 50 mM) priming were used as exogenous growth enhancers to stimulate wheat (Triticum durum Desf. cv. Yelken) seed vigor under high salinity. The main aim was to address whether priming of wheat with SA, Ca2+ and SA+Ca (SA, 0.5 mM + Ca2+, 50 mM; their combination) could bring about supplementary agronomic benefits particularly under stressful environments such as salinity. Exogenous application of SA or Ca2+ alone improved plant behavior in the presence of salinity stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic - flavonoids, chlorophyll - carotenoids contents and phenylalanine ammonia-lyase (PAL), ascorbic acide oxidase (AAO) activities and lipid peroxidation levels (LPO) were obtained in response to the combined SA+Ca treatment.

  17. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms.

    PubMed

    Heinzelmann, Sandra M; Chivall, David; M'Boule, Daniela; Sinke-Schoen, Danielle; Villanueva, Laura; Damsté, Jaap S Sinninghe; Schouten, Stefan; van der Meer, Marcel T J

    2015-05-01

    The core metabolism of microorganisms has a major influence on the hydrogen isotopic composition of their fatty acids. Heterotrophic microorganisms produce fatty acids with a deuterium to hydrogen (D/H) ratio either slightly depleted or enriched in D compared to the growth water, while photo- and chemoautotrophic microorganisms produce fatty acids which are heavily depleted in D. However, besides metabolism other biochemical and environmental factors (i.e. biosynthetic pathways, growth phase and temperature) have been shown to affect the D/H ratio of fatty acids, and it is necessary to evaluate the magnitude of these effects compared to that of metabolism. Here, we show that the effect of salinity on the D/H ratio of fatty acids depends on the core metabolism of the microorganism. While fatty acids of the photoautotroph Isochrysis galbana become more enriched in D with increasing salinity (enrichment of 30-40‰ over a range of 25 salinity units), no effect of salinity on the D/H ratio of fatty acids of the heterotrophic Pseudomonas str. LFY10 was observed ((ε)lipid/water of the C16:0 fatty acid of ~120‰ over a range of 10 salinity units). This can likely be explained by the relative contributions of different H and nicotinamide adenine dinucleotide phosphate sources during fatty acid biosynthesis.

  18. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.

    PubMed

    Kim, Seung-Kyu; Kannan, Kurunthachalam

    2007-12-15

    Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.

  19. Acid precipitation effects on algal productivity and biomass in Adirondack Mountain lakes

    SciTech Connect

    Hendrey, G.R.

    1982-12-01

    Relationships between phytoplankton communities and lake acidity in three Adirondack Mountain lakes were studied at Woods Lake (pH ca. 4.9), Sagamore Lake (pH ca. 5.5), and Panther Lake (pH ca. 7.0). Species numbers decrease with increasing acidity. Patterns of increasing biomass and productivity in Woods Lake may be atypical of similar oligotrophic lakes in that they develop rather slowly to maxima six weeks after ice-out, instead of occurring very close to ice-out. Contributions of netplankton, nannoplankton and ultraplankton to productivity per m/sup 2/ show that the smaller plankton are relatively more important in the more acid lakes. This pattern could be determined by nutrient availability (lake acidification is suspected of leading to decreased availability of phosphorus). This was consistent with a hypothesis that microbial heterotrophic activity is reduced with increasing acidity, but the smaller phytoplankton may be more leaky at low pH. 11 references, 2 tables.

  20. Potential mitigation approach to minimize salinity intrusion in the Lower Savannah River Estuary due to reduced controlled releases from Lake Thurmond

    USGS Publications Warehouse

    Conrads, Paul A.; Greenfield, James M.

    2010-01-01

    The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga. and forms the State boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 187 miles upstream from the coast, is responsible for most of the flow regulation that affects the Savannah River from Augusta to the coast. The Savannah Harbor experiences semi-diurnal tides of two high and two low tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. The Savannah National Wildlife Refuge is located in the Savannah River Estuary. The tidal freshwater marsh is an essential part of the 28,000-acre refuge and is home to a diverse variety of wildlife and plant communities. The Southeastern U.S. experienced severe drought conditions in 2008 and if the conditions had persisted in Georgia and South Carolina, Thurmond Lake could have reached an emergency operation level where outflow from the lake is equal to the inflow to the lake. To decrease the effect of the reduced releases on downstream resources, a stepped approach was proposed to reduce the flow in increments of 500 cubic feet per second (ft3/s) intervals. Reduced flows from 3,600 ft3/s to 3,100 ft3/s and 2,600 ft3/s were simulated with two previously developed models of the Lower Savannah River Estuary to evaluate the potential effects on salinity intrusion. The end of the previous drought (2002) was selected as the baseline condition for the simulations with the model. Salinity intrusion coincided with the 28-day cycle semidiurnal tidal cycles. The results show a difference between the model simulations of how the salinity will respond to the decreased flows. The Model-to-Marsh Decision Support System (M2MDSS) salinity response shows a large increase in the magnitude (> 6.0 practical salinity units, psu) and duration (3-4 days) of the salinity intrusion with extended periods (21 days) of tidal

  1. Parent Body Influences on Amino Acids in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Callahan, M. P.; Dworkin, J. P.; Elsila, J. E.; Herd, C. D. K.

    2010-01-01

    The Tagish Lake meteorite is a primitive C2 carbonaceous chondrite with a mineralogy, oxygen isotope, and bulk chemical. However, in contrast to many CI and CM carbonaceous chondrites, the Tagish Lake meteorite was reported to have only trace levels of indigenous amino acids, with evidence for terrestrial L-amino acid contamination from the Tagish Lake meltwater. The lack of indigenous amino acids in Tagish Lake suggested that they were either destroyed during parent body alteration processes and/or the Tagish Lake meteorite originated on a chemically distinct parent body from CI and CM meteorites where formation of amino acids was less favorable. We recently measured the amino acid composition of three different lithologies (11h, 5b, and 11i) of pristine Tagish Lake meteorite fragments that represent a range of progressive aqueous alteration in order 11h < 5b < 11i as inferred from the mineralogy, petrology, bulk isotopes, and insoluble organic matter structure. The distribution and enantiomeric abundances of the one- to six-carbon aliphatic amino acids found in hot-water extracts of the Tagish Lake fragments were determined by ultra performance liquid chromatography fluorescence detection and time of flight mass spectrometry coupled with OPA/NAC derivatization. Stable carbon isotope analyses of the most abundant amino acids in 11h were measured with gas chromatography coupled with quadrupole mass spectrometry and isotope ratio mass spectrometry.

  2. Portibacter lacus gen. nov., sp.nov., a new member of the family Saprospiraceae isolated from a saline lake.

    PubMed

    Yoon, Jaewoo; Matsuo, Yoshihide; Kasai, Hiroaki; Yokota, Akira

    2012-01-01

    A strictly aerobic, Gram-negative, orange-pigmented, rod-shaped, non-motile and chemoheterotrophic bacteria representing a new genus and species, designated YM8-076T, was isolated from lake water collected at a harbor on Lake Notoro, Hokkaido, Japan. Preliminary analysis based on the 16S rRNA gene sequence revealed that the novel isolate could be affiliated with the family Saprospiraceae of the phylum Bacteroidetes and that it showed highest sequence similarity (88.5%) to Haliscomenobacter hydrossis ATCC 27775T. The strain could be differentiated phenotypically from recognized members of the family Saprospiraceae. The G+C content of DNA was 53.7 mol%, MK-7 was the major menaquinone and iso-C15:0, iso-C15:1 and iso-C17:0 3-OH were the major cellular fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain YM8-076T represents a new genus and species of the family Saprospiraceae. We propose the name Portibacter lacus gen. nov., sp. nov. for this strain; its type strain is YM8-076T (=KCTC 23747T=NBRC 108769T).

  3. Spatial characterization of acid rain stress in Canadian Shield lakes. Progress report, 1 August 1985-1 February 1986

    SciTech Connect

    Tanis, F.J.

    1986-01-01

    The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern United States and on the Canadian Shield is though to be enormous. The principle objective is to examine how seasonal changes in lake water transparency are related to annual acidic load. Further, the relationship between variations in lake acidification and ecophysical units is being examined. Finally, the utility of Thematic Mapper (TM) based observations to measure seasonal changes in the optical transparency in acid lakes is being investigated.

  4. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  5. Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats.

    PubMed

    Zhang, Guoming; Gao, Song; Li, Xiaoyan; Zhang, Lulu; Tan, Hong; Xu, Lin; Chen, Yaoyu; Geng, Yongjian; Lin, Yanliang; Aertker, Benjamin; Sun, Yuanyuan

    2015-04-30

    This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning.

  6. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution.

  7. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  8. Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Jiang, Hongchen; Wu, Geng; Hou, Weiguo; Sun, Yongjuan; Lai, Zhongping; Dong, Hailiang

    2012-12-01

    Nitrite-dependent anaerobic methane-oxidizing (n-damo) bacteria and anaerobic ammonia oxidizing (anammox) bacteria are two groups of microorganisms involved in global carbon and nitrogen cycling. In order to test whether the n-damo and anammox bacteria co-occur in natural saline environments, the DNA and cDNA samples obtained from the surficial sediments of two saline lakes (with salinity of 32 and 84 g/L, respectively) on the Tibetan Plateau were PCR-amplified with the use of anammox- and n-damo-specific primer sets, followed by clone library construction and phylogenetic analysis. DNA and cDNA-based clones affiliated with n-damo and anammox bacteria were successfully retrieved from the two samples, indicating that these two groups of bacteria can co-occur in natural saline environments with salinity as high as 84 g/L. Our finding has great implications for our understanding of the global carbon and nitrogen cycle in nature.

  9. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy.

    PubMed

    Winters, Y D; Lowenstein, T K; Timofeeff, M N

    2013-11-01

    Carotenoids are common components of many photosynthetic organisms and are well known from the red waters of hypersaline ecosystems where they are produced by halophilic algae and prokaryotes. They are also of great interest as biomarkers in extraterrestrial samples. Few laser Raman spectroscopy studies have examined ancient field samples, where pigments and microscopic life are less defined. Here, we have identified carotenoids in ancient halite brine inclusions, 9 ka to 1.44 Ma in age, from borehole cores taken from Death Valley, Saline Valley, and Searles Lake, California, for the first time with laser Raman spectroscopy. Carotenoids occurred in fluid inclusions as colorless to red-brown amorphous and crystalline masses associated with spheroidal algal cells similar in appearance to the common halophilic alga Dunaliella. Spectra from carotenoid standards, including β-carotene, lycopene, and lutein, were compared to microscopically targeted carotenoids in fluid inclusions. Carotenoids produced characteristic bands in the Raman spectrum, 1000-1020 cm⁻¹ (v₃), 1150-1170 cm⁻¹ (v₂), and 1500-1550 cm⁻¹ (v₁), when exposed to visible laser excitation. Laser Raman analyses confirmed the presence of carotenoids with these characteristic peaks in ancient halite. A number of band sets were repeated at various depths (ages), which suggests the stability of this class of organic molecules. Carotenoids appear well preserved in ancient salt, which supports other observations, for example, preserved DNA and live cells, that fluid inclusions in buried halite deposits preserve intact halophilic microbial ecosystems. This work demonstrates the value of laser Raman spectroscopy and carotenoids in extraterrestrial exploration for remnants of microbial life.

  10. Effect of hypertonic saline treatment on the inflammatory response after hydrochloric acid-induced lung injury in pigs

    PubMed Central

    Holms, Carla Augusto; Otsuki, Denise Aya; Kahvegian, Marcia; Massoco, Cristina Oliveira; Fantoni, Denise Tabacchi; Gutierrez, Paulo Sampaio; Junior, Jose Otavio Costa Auler

    2015-01-01

    OBJECTIVES: Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid. METHODS: Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg); acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis. RESULTS: Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups. CONCLUSIONS: Hypertonic saline

  11. Effects of low-flow diversions from the South Wichita River on downstream salinity of the South Wichita River, Lake Kemp, and the Wichita River, North Texas, October 1982-September 1992

    USGS Publications Warehouse

    Baldys, Stanley; Bush, Peter W.; Kidwell, Charles C.

    1996-01-01

    In parts of the upper reaches of the Red River Basin in Texas, streamflow is characterized by levels of salinity that limit its usefulness for most purposes. Large dissolved solids and dissolved chloride concentrations are caused primarily by flow from natural salt springs in tributaries to the Red River. To reduce downstream salinity in the Wichita River, a dam in the South Wichita River downstream of an area of salt springs (designated salinity source area VIII) diverts low flows (which are the most saline) to a manmade brine lake for evaporation. Statistical tests on salinity data for the South Wichita River, Lake Kemp, and the Wichita River for the period October 1982–September 1992 were done to determine the effects on downstream salinity of low-flow diversions from the South Wichita River that began in May 1987. Salinity in the South Wichita River downstream of the low-flow diversion structure was (statistically) significantly less during the 65-month period of record after diversion than during the 55- month period of record before diversion. Wilcoxon rank-sum tests yielded strong evidence that discharge-weighted dissolved solids and dischargeweighted dissolved chloride concentrations, as well as discharge-weighted specific conductance, were significantly less after diversion. Whether salinity in Lake Kemp had a significant downward trend during the period of record August 1989–August 1992 could not be determined conclusively from observed salinity data. Mann-Kendall trend tests yielded weak evidence that volume-weighted dissolved solids and dissolved chloride concentrations in Lake Kemp tended to decrease with time. However, serial correlation in the time series of salinity data could have adversely affected the test results. The significant effects of low-flow diversions on salinity in the South Wichita River are not discernible in the Wichita River downstream from Lake Kemp. Although salinity was significantly less downstream from Lake Kemp after

  12. Hydrogeologic comparison of an acidic-lake basin with a neutral-lake basin in the West-Central Adirondack Mountains, New York

    USGS Publications Warehouse

    Peters, N.E.; Murdoch, Peter S.

    1985-01-01

    Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4.7 to 7; that at Woods Lake (acidic) ranges from about 4.3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that differences in lakewater pH can be attributed to differences in the ground-water contribution to the lakes. A larger percentage of the water discharged from the neutral lake is derived from ground water than that from the acidic lake. Ground water has a higher pH resulting from a sufficiently long residence time for neutralizing chemical reactions to occur with the till. The difference in ground-water contribution is attributed to a more extensive distribution of thick till (<3m) in the neutral-lake basin than in the acidic-lake basin; average thickness of till in the neutral-lake basin is 24m whereas that in the other is 2.3m. During the snowmelt period, as much as three months of accumulated precipitation may be released within two weeks causing the lateral flow capacity of the deeper mineral soil to be exceeded in the neutral-lake basin. This excess water moves over and through the shallow acidic soil horizons and causes the lakewater pH to decrease during snowmelt.Two small headwater lake basins that receive similar amounts of acidic atmospheric deposition have significantly different lake outflow pH values; pH at Panther Lake (neutral) ranges from about 4. 7 to 7; that at Woods Lake (acidic) ranges from about 4. 3 to 5. A hydrologic analysis, which included monthly water budgets, hydrograph analysis, examination of flow duration and runoff recession curves, calculation of ground-water storage, and an analysis of lateral flow capacity of the soil, indicates that

  13. A physico-chemical survey of inland lakes and saline ponds: Christmas Island (Kiritimati) and Washington (Teraina) Islands, Republic of Kiribati

    PubMed Central

    Saenger, Casey; Miller, Michael; Smittenberg, Rienk H; Sachs, Julian P

    2006-01-01

    The equatorial Pacific Ocean atoll islands of Kiritimati and Teraina encompass great physical, chemical and biological variability within extreme lacustrine environments. Surveys of lake chemistry and sediments revealed both intra- and inter-island variability. A survey of more than 100 lakes on Kiritimati found salinities from nearly fresh to 150 ppt with the highest values occurring within the isolated, inland portions of the island away from the influence of groundwater or extreme tides. Dissolved oxygen (DO) and pH values also showed considerable variability with a less regular spatial pattern, but were both generally inversely related to salinity. Series of lakes, progressively more isolated from marine communication, present a modern analog to the chemical and morphologic evolution of presently isolated basins. Sediments on both islands consist of interbedded red and green silt, possibly degraded bacterial mat, overlying white, mineralogenic silt precipitate. Variability may be indicative of shifts in climatological parameters such as the El Niño Southern Oscillation (ENSO) or the Pacific Intertropical Convergence Zone (ITCZ). PMID:16817958

  14. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    PubMed Central

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-01-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst. PMID:26938568

  15. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    PubMed

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  16. Taxonomic and functional metagenomic profiling of the microbial community in the anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, Central Spain).

    PubMed

    Ferrer, Manuel; Guazzaroni, María-Eugenia; Richter, Michael; García-Salamanca, Adela; Yarza, Pablo; Suárez-Suárez, Ana; Solano, Jennifer; Alcaide, María; van Dillewijn, Pieter; Molina-Henares, Maria Antonia; López-Cortés, Nieves; Al-Ramahi, Yamal; Guerrero, Carmen; Acosta, Alejandro; de Eugenio, Laura I; Martínez, Virginia; Marques, Silvia; Rojo, Fernando; Santero, Eduardo; Genilloud, Olga; Pérez-Pérez, Julian; Rosselló-Móra, Ramón; Ramos, Juan Luis

    2011-11-01

    The phylogenetic and functional structure of the microbial community residing in a Ca(2+)-rich anoxic sediment of a sub-saline shallow lake (Laguna de Carrizo, initially operated as a gypsum (CaSO(4) × 2 H(2)O) mine) was estimated by analyzing the diversity of 16S rRNA amplicons and a 3.1 Mb of consensus metagenome sequence. The lake has about half the salinity of seawater and possesses an unusual relative concentration of ions, with Ca(2+) and SO (4) (2-) being dominant. The 16S rRNA sequences revealed a diverse community with about 22% of the bacterial rRNAs being less than 94.5% similar to any rRNA currently deposited in GenBank. In addition to this, about 79% of the archaeal rRNA genes were mostly related to uncultured Euryarchaeota of the CCA47 group, which are often associated with marine and oxygen-depleted sites. Sequence analysis of assembled genes revealed that 23% of the open reading frames of the metagenome library had no hits in the database. Among annotated genes, functions related to (thio) sulfate and (thio) sulfonate-reduction and iron-oxidation, sulfur-oxidation, denitrification, synthrophism, and phototrophic sulfur metabolism were found as predominant. Phylogenetic and biochemical analyses indicate that the inherent physical-chemical characteristics of this habitat coupled with adaptation to anthropogenic activities have resulted in a highly efficient community for the assimilation of polysulfides, sulfoxides, and organosulfonates together with nitro-, nitrile-, and cyanide-substituted compounds. We discuss that the relevant microbial composition and metabolic capacities at Laguna de Carrizo, likely developed as an adaptation to thrive in the presence of moderate salinity conditions and potential toxic bio-molecules, in contrast with the properties of previously known anoxic sediments of shallow lakes.

  17. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    NASA Astrophysics Data System (ADS)

    Popova, L. Yu.; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water.

  18. Population dynamics of transgenic strain Escherichia coli Z905/pPHL7 in freshwater and saline lake water microcosms with differing microbial community structures

    NASA Technical Reports Server (NTRS)

    Popova, L. Yu; Kargatova, T. V.; Ganusova, E. E.; Lobova, T. I.; Boyandin, A. N.; Mogilnaya, O. A.; Pechurkin, N. S.

    2005-01-01

    Populations of Escherichia coli Z905/pPHL7, a transgenic microorganism, were heterogenic in the expression of plasmid genes when adapting to the conditions of water microcosms of various mineralization levels and structure of microbial community. This TM has formed two subpopulations (ampicillin-resistant and ampicillin-sensitive) in every microcosm. Irrespective of mineralization level of a microcosm, when E. coli Z905/pPHL7 alone was introduced, the ampicillin-resistant subpopulation prevailed, while introduction of the TM together with indigenous bacteria led to the dominance of the ampicillin-sensitive subpopulation. A high level of lux gene expression maintained longer in the freshwater microcosms than in sterile saline lake water microcosms. A horizontal gene transfer has been revealed between the jointly introduced TM and Micrococcus sp. 9/pSH1 in microcosms with the Lake Shira sterile water. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Development, evolution, and destruction of the saline mineral area of Eocene Lake Uinta, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    Leaching of saline minerals began sometime after the Green River Formation was lithified enough to allow collapse breccias to form. Leaching is ongoing today, indicated by the discharge of highly saline water from a series of springs in the northern part of the basin. Groundwater invasion and saline mineral dissolution is commonly incomplete in areas that lack fractures, leaving behind pockets of unleached saline minerals in otherwise leached intervals. Today, the base of the leached zone slopes toward the north and toward the area where the brines are being discharged.

  20. Chemical and biological characteristics of Emerald Lake and the streams in its watershed and the responses of the lake and streams to acidic deposition. Final report

    SciTech Connect

    Melack, J.M.; Cooper, S.D.; Jenkins, T.M.; Barmuta, L.; Hamilton, S.

    1989-03-14

    This report describes the results of field work conducted at Emerald Lake in Sequoia National Park during the period of 1983-88, with an emphasis on the effects of acid deposition on a high-elevation lake in the Sierra Nevada. Time-series data were collected for major ions, nutrients, trace metals, chlorophyll, zooplankton and zoobenthos. Mass balances were calculated for major solutes in the lake, including analysis of the inflows and major solutes in the lake, including analysis of the inflows and outflow from the lake. The ecology and population dynamics of the resident population of brook trout were studied in detail. Biological surveys indicated the presence of the Pacific tree frog in small ponds in the vicinity of Emerald Lake. Experimental acidification of large bags in the lake was used to develop dose-response relationships for the major zooplankton species, especially Daphnia. The conclusion of the research to date is that Emerald Lake is not currently showing serious chemical or biological effects of acidification. Acid-sensitive animals are found in the lake and associated streams. The surface waters of the Emerald Basin are extremely dilute and ANC-generating processes in the lake are small compared to that of the watershed. Acidic episodes have been recorded. If these episodes were to increase, the surface waters and the biological populations could be readily affected.

  1. Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling

    PubMed Central

    Agarwal, Parinita; Dabi, Mitali; Sapara, Komal K.; Joshi, Priyanka S.; Agarwal, Pradeep K.

    2016-01-01

    Plants, being sessile, have developed intricate signaling network to specifically respond to the diverse environmental stress. The plant-specific WRKY TFs form one of the largest TF family and are involved in diverse plant processes, involving growth, development and stress signaling through auto and cross regulation with different genes and TFs. Here, we report the functional characterization of a salicylic acid -inducible JcWRKY TF. The JcWRKY overexpression confers salinity tolerance in transgenic tobacco, as was evident by increased chlorophyll content and seed germination potential. The transgenic plants showed increased soluble sugar, membrane stability, reduced electrolyte leakage and generation of reactive oxygen species (H2O2 and O2•-) as compared to the wild type. Furthermore, the low SA treatment along with salinity improved the tolerance potential of the transgenics by maintaining ROS homeostasis and high K+/Na+ ratio. The transcript expression of SA biosynthetic gene ICS1 and antioxidative enzymes (CAT and SOD) showed upregulation during stress. Thus, the present study reflects that JcWRKY is working in co-ordination with SA signaling to orchestrate the different biochemical and molecular pathways to maneuvre salt stress tolerance of the transgenic plants. PMID:27799936

  2. Salicylic acid and calcium-induced protection of wheat against salinity.

    PubMed

    Al-Whaibi, Mohamed H; Siddiqui, Manzer H; Basalah, Mohammed O

    2012-07-01

    Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.

  3. Effect of salinity on seed germination, accumulation of proline and free amino acid in Pennisetum glaucum (L.) R. Br.

    PubMed

    Sneha, Sonam; Rishi, Anirudha; Dadhich, Amit; Chandra, Subhash

    2013-09-01

    Salinity is a major threat to agriculture, plants exhibits a variety of responses to salt stress that enable them to tolerate and survive in such conditions. Salinity affects physiological and biochemical processes in plants. A short term salt stress induced physiological and biochemical response were observed in P. glaucum. The experiment was conducted to understand the influence of salinity on seed germination, proline and free amino acid accumulation in P. glaucum. It was observed that as the salt concentration increased the germination percentage decreased as compared to control as well as the root/shoot length also decreased. This suggests that salinity greatly influences the germination as well as the plant growth. The levels ofbiochemical components proline and free amino acid were measured during the salt stressed condition. The 14 days old seedlings were subjected to 4 salt treatments (50, 100, 150 and 200 mM NaCI), free proline and free amino acids was calculated at 0, 12, 24, 48, 72 and 96th hour. Proline and free amino acid content in the salt stressed tissues increased with increase in salt concentration as well as with duration of salt stress. This result suggests that proline and free amino acid acids acts as compatible solutes in P. glaucum to protect the cellular macromolecules, maintain the osmotic balance and also scavenge the free radicals under salt stressed condition.

  4. Coccomyxa: a dominant planktic alga in two acid lakes of different origin.

    PubMed

    Barcytė, Dovilė; Nedbalová, Linda

    2017-03-01

    The aim of this study was to reveal the taxonomic position and phylogenetic relationships of the dominant planktic algae in two acid metal-rich lakes of different origin (Hromnice Lake and Plešné Lake, Czech Republic) and to investigate their morphology and ultrastructure under natural and laboratory conditions. Phylogenetic analyses (18S rRNA and ITS-2) revealed that the strain isolated from Hromnice Lake belongs to the species Coccomyxa elongata, while Coccomyxa from Plešné Lake was described as a new species C. silvae-gabretae. It is the first evidence that representatives of this genus are capable of becoming the dominant primary producers in the extreme environment of acid lakes with an increased supply of phosphorus. There were clear differences in cell morphology under different growth conditions, revealing the high phenotypic plasticity of the strains. The ability to change the morphology may help the cells of Coccomyxa to survive harsh conditions in the aforementioned acid lakes.

  5. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  6. Regulation of water, salinity, and cold stress responses by salicylic acid.

    PubMed

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.

  7. Patterns of nutrient dynamics in Adirondack lakes recovering from acid deposition.

    PubMed

    Gerson, Jacqueline R; Driscoll, Charles T; Roy, Karen M

    2016-09-01

    With decreases in acid deposition, nitrogen : phosphorus (N:P) ratios in lakes are anticipated to decline, decreasing P limitation of phytoplankton and potentially changing current food web dynamics. This effect could be particularly pronounced in the Adirondack Mountains of New York State, a historic hotspot for effects of acid deposition. In this study, we evaluate spatial patterns of nutrient dynamics in Adirondack lakes and use these to infer potential future temporal trends. We calculated Mann-Kendall tau correlations among total phosphorus (TP), chlorophyll a, dissolved organic carbon (DOC), acid neutralizing capacity (ANC), and nitrate (NO3(-) ) concentrations in 52 Adirondack Long Term Monitoring (ALTM) program lakes using samples collected monthly during 2008-2012. We evaluated the hypothesis that decreased atmospheric N and S deposition will decrease P limitation in freshwater ecosystems historically impacted by acidification. We also compared these patterns among lake watershed characteristics (i.e., seepage or lacking a surface outlet, chain drainage, headwater drainage, thin glacial till, medium glacial till). We found that correlations (P < 0.05) were highly dependent upon the different hydrologic flowpaths of seepage vs. drainage lakes. Differentiations among watershed till depth were also important in determining correlations due to water interaction with surficial geology. Additionally, we found low NO3(-) :TP (N:P mass) values in seepage lakes (2.0 in winter, 1.9 in summer) compared to chain drainage lakes (169.4 in winter, 49.5 in summer) and headwater drainage lakes (97.0 in winter, 10.9 in summer), implying a high likelihood of future shifts in limitation patterns for seepage lakes. With increasing DOC and decreasing NO3(-) concentrations coinciding with decreases in acid deposition, there is reason to expect changes in nutrient dynamics in Adirondack lakes. Seepage lakes may become N-limited, while drainage lakes may become less P

  8. Spatial and temporal variability in microbial activities of coastal acid saline soils of Goa, India

    NASA Astrophysics Data System (ADS)

    Mahajan, G. R.; Manjunath, B. L.; Latare, A. M.; D'Souza, R.; Vishwakarma, S.; Singh, N. P.

    2015-11-01

    The aim of the present investigation was to study the spatio-temporal variability of the microbial activities in coastal saline soils (locally called Khazan) of Goa, India (west coast region). The coastal soil salinity is a major constraint for reduced crop yields and abandonment of farming in these areas. Three replicated global positioning based soil samples (0-0.20 m depth) from each of four salinity groups i.e. non-saline (EC=0.08±0.06 dS m-1), weakly saline (EC=2.04±0.06 dS m-1), moderately saline (EC=3.50±0.57 dS m-1) and strongly saline (EC=5.49±0.49 dS m-1) during three seasons-monsoon, post-monsoon and pre-monsoon were collected. Soil microbial activity in terms of soil microbial carbon (MBC), MBC as a fraction of soil organic carbon (SOC) (MBC/SOC), basal soil respiration (BSR), metabolic quotient (qCO2) and soil enzyme activities-dehydrogenase, phosphatase and urease was tested. In all the seasons, the soil cationic composition depended significantly (p<0.01) on salinity levels and the exchangeable sodium (Na) was the second most dominant among the tested cations. The MBC, MBC/SOC and BSR reduced significantly with increasing salinity, whereas qCO2 increased with increased salinity levels. In general, MBC, MBC/SOC and BSR and soil enzyme activities were observed as: salinity levels-strongly saline < moderately saline < weakly saline < non-saline and season-post-monsoon > monsoon > during pre-monsoon season. The mean MBC and MBC/SOC of non-saline soils were 1.61 and 2.28 times higher than that of strongly saline soils, whereas qCO2 of strongly saline soils was 2.4 times higher than that of non-saline soils. This indirectly indicates the salinity stress on the soil microorganisms. Irrespective of season, the soil enzyme activities decreased significantly (p<0.05) with increasing salinity levels. Suitable countermeasures needs to be taken up to alleviate the depressive salinity effect on the microbial and activity for the sustainable crop production in

  9. Potential for acid precipitation damage to lakes of the Sierra Nevada, California

    SciTech Connect

    Harte, J.; Holdren, J.; Tonnesson, K.

    1983-04-01

    One of the areas of California potentially sensitive to acidic deposition is the Sierra Nevada, located along the eastern boundary. A report on sensitive areas in North America identifies the Sierra as a region characterized by poorly buffered soils and granite based lakes. The subalpine and alpine lakes in this region share many of the characteristics of lakes adversely affected by acid deposition in other parts of the US and the world. For this investigation selected subalpine lakes of the western slope of the Sierra were chosen for study, to establish baseline water quality which would allow for the identification of chemical and biological changes due to acidic deposition. It was then attempted to simulate the ecosystem stress of increased acidic deposition, particularly in the form of snowmelt, on these systems by performing microcosm experiments in the laboratory. These experiments were particularly concerned with recording changes in concentrations of micronutrients which might be leached from lake sediments with increasing acidification. This phenomenon is particularly important to study in the light of finds on the importance of aluminum leaching in the northeast which was led to toxic effects of biota in Adirondack lakes. 10 references, 3 figures, 1 table.

  10. Chlorophylls, proteins and fatty acids amounts of arthrospira platensis growing under saline conditions.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-07-15

    Spirulina platensis (Arthrospira platensis) is a Tunisian strain isolated for the first time, in Tunisia, in Oued Essed (Sidi Bou Ali, in Sousse region). Evolution of biomass, proteins, chlorophylls and fatty acids (FA) has been followed during Spirulina growth. Experiments were carried out by varying sodium chloride concentrations in the culture medium in a range from 1 g L(-1) (natural environment) to 60 g L(-1). Results analysis showed an increase in chlorophyll amounts at 15 g L(-1) NaCl in 10 days old cultures but a decrease at high NaCl concentrations. Optimal proteins amounts was observed at 15 g L(-1) NaCl in young cultures (5 and 10 days). FA composition was modified by NaCl and depended on culture age. Cultures exposed to high salinity concentrations showed not only a decrease in growth rate but also a loss in total fatty acids TFA quantities. Samples cultured over 15 days at 30 g L(-1) NaCl rendered optimal quantities of lipids and gamma-linolenic acid.

  11. Unusual nonterrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite

    NASA Astrophysics Data System (ADS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, Christopher D. K.

    2012-08-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (Lee ˜ 43-59%) of the α-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another α-hydrogen protein amino acid, was found to be nearly racemic (D ≈ L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of nonterrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  12. Unusual Nonterrestrial L-proteinogenic Amino Acid excesses in the Tagish Lake Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Hilts, Robert W.; Herd, D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography with fluorescence detection and time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approximately 43-59%) of the alpha-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha hydrogen protein amino acid, was found to be nearly racemic (D much approximately L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and 1)- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the L-excesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals. Amplification of a small initial L-enantiomer excess during aqueous alteration on the meteorite parent body could have led to the large L-enrichments observed for aspartic acid and other conglomerate amino acids in Tagish Lake. The detection of non terrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite provides support for the hypothesis that significant enantiomeric enrichments for some amino acids could form by abiotic processes prior to the emergence of life.

  13. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans.

  14. Adaptive reversals in acid tolerance in copepods from lakes recovering from historical stress.

    PubMed

    Derry, Alison M; Arnott, Shelley E

    2007-06-01

    Anthropogenic habitat disturbance can often lead to rapid evolution of environmental tolerances in taxa that are able to withstand the stressor. What we do not understand, however, is how species respond when the stressor no longer exists, especially across landscapes and over a considerable length of time. Once anthropogenic disturbance is removed and if there is an ecological trade-off associated with local adaptation to such an historical stressor, then evolutionary theory would predict evolutionary reversals. On the Boreal Shield, tens of thousands of lakes acidified as a result of SO2 emissions, but many of these lakes are undergoing chemical recovery as a consequence of reduced emissions. We investigated the adaptive consequences of disturbance and recovery to zooplankton living in these lakes by asking (1) if contemporary evolution of acid tolerance had arisen among Leptodiaptomus minutus copepod populations in multiple circum-neutral lakes with and without historical acidification, (2) if L. minutus populations were adaptively responding to reversals in selection in historically acidified lakes that had recovered to pH 6.0 for at least 6-8 years, and (3) if there was a fitness trade-off for L. minutus individuals with high acid tolerance at circum-neutral pH. L. minutus populations had higher acid tolerances in circum-neutral lakes with a history of acidification than in local and distant lakes that were never acidified. However, copepods in circum-neutral acid-recovering lakes were less acid-tolerant than were copepods in lakes with longer recovery time. This adaptive reversal in acid tolerance of L. minutus populations following lake recovery was supported by the results of a laboratory experiment that indicated a fitness trade-off in copepods with high acid tolerances at circum-neutral pH. These responses appear to have a genetic basis and suggest that L. minutus is highly adaptive to changes in environmental conditions. Therefore, restoration managers

  15. Enhancement of acid phosphatase secretion and Pi acquisition in Suaeda fruticosa on calcareous soil by high saline level.

    PubMed

    Labidi, Nehla; Snoussi, Sana; Ammari, Manel; Metoui, Wissal; Ben Yousfi, N; Hamrouni, Lamia; Abdelly, C

    2010-12-01

    The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (-30%) and to the low alkaline phosphatases (Pases) activities (-50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

  16. Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L

    PubMed Central

    Rodríguez, AA; Stella, AM; Storni, MM; Zulpa, G; Zaccaro, MC

    2006-01-01

    Salt stress is one of the most serious factors limiting the productivity of rice, the staple diet in many countries. Gibberellic acid has been reported to reduce NaCl-induced growth inhibition in some plants including rice. Most paddy soils have a natural population of Cyanobacteria, prokaryotic photosynthethic microorganisms, which synthesize and liberate plant growth regulators such as gibberellins that could exert a natural beneficial effect on salt stressed rice plants. The aim of this work was to evaluate the effect of the cyanobacterium Scytonema hofmanni extracellular products on the growth of rice seedlings inhibited by NaCl and to compare it with the effect of the gibberellic acid in the same stress condition. Growth (length and weight of the seedlings) and biochemical parameters (5-aminolevulinate dehydratase activity, total free porphyrin and pigments content) were evaluated. Salt exposure negatively affected all parameters measured, with the exception of chlorophyll. Chlrorophyll concentrations nearly doubled upon exposure to high salt. Gibberellic acid counteracted the effect of salt on the length and dry weight of the shoot, and on carotenoid and chlorophyll b contents. Extracellular products nullified the salt effect on shoot dry weight and carotenoid content; partially counteracted the effect on shoot length (from 54% to 38% decrease), root dry weight (from 59% to 41% decrease) and total free porphyrin (from 31 to 13% decrease); reduced by 35% the salt increase of chlorophyll a; had no effect on root length and chlorophyll b. Gibberellic acid and extracellular products increased 5-aminolevulinate dehydratase activity over the control without salt. When coincident with high salinity, exposure to either EP or GA3, resulted in a reversal of shoot-related responses to salt stress. We propose that Scytonema hofmanni extracellular products may counteract altered hormone homeostasis of rice seedlings under salt stress by producing gibberellin-like plant

  17. Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes

    USGS Publications Warehouse

    Mezek, Tadej; Sverko, Ed; Ruddy, Martina D.; Zaruk, Donna; Capretta, Alfredo; Hebert, Craig E.; Fisk, Aaron T.; McGoldrick, Daryl J.; Newton, Teresa J.; Sutton, Trent M.; Koops, Marten A.; Muir, Andrew M.; Johnson, Timothy B.; Ebener, Mark P.; Arts, Michael T.

    2011-01-01

    Freshwater organisms synthesize a wide variety of fatty acids (FAs); however, the ability to synthesize and/or subsequently modify a particular FA is not universal, making it possible to use certain FAs as biomarkers. Herein we document the occurrence of unusual FAs (polymethylene-interrupted fatty acids; PMI-FAs) in select freshwater organisms in the Laurentian Great Lakes. We did not detect PMI-FAs in: (a) natural seston from Lake Erie and Hamilton Harbor (Lake Ontario), (b) various species of laboratory-cultured algae including a green alga (Scenedesmus obliquus), two cyanobacteria (Aphanizomenon flos-aquae and Synechococystis sp.), two diatoms (Asterionella formosa, Diatoma elongatum) and a chrysophyte (Dinobryon cylindricum) or, (c) zooplankton (Daphnia spp., calanoid or cyclopoid copepods) from Lake Ontario, suggesting that PMI-FAs are not substantively incorporated into consumers at the phytoplankton–zooplankton interface. However, these unusual FAs comprised 4-6% of total fatty acids (on a dry tissue weight basis) of native fat mucket (Lampsilis siliquoidea) and plain pocketbook (L. cardium) mussels and in invasive zebra (Dreissena polymorpha) and quagga (D. bugensis) mussels. We were able to clearly partition Great Lakes' mussels into three separate groups (zebra, quagga, and native mussels) based solely on their PMI-FA profiles. We also provide evidence for the trophic transfer of PMI-FAs from mussels to various fishes in Lakes Ontario and Michigan, further underlining the potential usefulness of PMI-FAs for tracking the dietary contribution of mollusks in food web and contaminant-fate studies.

  18. Salinity, water hardness, and dissolved organic carbon modulate degradation of peracetic acid (PAA) compounds in aqueous solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection purposes. However, there is a lack of information about its environmental fate, particularly its persistence in aquatic systems with different chemistries. Therefore, the impact of water hardness, salinity, and d...

  19. Escherichia coli O157:H7 bacteriophage (phi)241 isolated from an industrial cucumber fermentation at high acidity and salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel phage, (phi)241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH less than or equal to 3.7) and salinity (greater than or equal to 5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min a...

  20. Effects of salinity and humic acid on the sorption of Hg on Fe and Mn hydroxides.

    PubMed

    Liang, Peng; Li, Yi-Chun; Zhang, Chan; Wu, Sheng-Chun; Cui, Hao-Jie; Yu, Shen; Wong, Ming H

    2013-01-15

    The objective of this study was to investigate the influence of humic acid (HA) and salinity on adsorption of Hg on the amorphous and crystalline of iron and manganese hydroxides. The results show that the adsorption of Hg(2+) on Fe and Mn hydroxides was inhibited in marine system due to the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution. Moreover, Cl(-) inhibited the Hg(2+) adsorption more severely on amorphous than crystalline hydroxides. The addition of HA inhibited Hg(2+) adsorption on Fe and Mn hydroxides in freshwater system might be attributed to the competition between Hg(2+) and HA on adsorption to Fe and Mn hydroxides. In contrast, the addition of HA promoted Hg(2+) adsorption on Fe and Mn hydroxides in the marine system, which might be due to the addition of humic acid resulted in the reaction between Cl(-) and HA, and therefore the reducing of Cl(-) promoted more Hg(2+) on Fe and Mn hydroxides. In addition, the influence of HA on Hg(2+) adsorption on Fe and Mn hydroxides are more visible for crystalline than amorphous hydroxides.

  1. 5-aminolevulinic acid alleviates the salinity-induced changes in Brassica napus as revealed by the ultrastructural study of chloroplast.

    PubMed

    Naeem, Muhammad S; Warusawitharana, Hasitha; Liu, Hongbo; Liu, Dan; Ahmad, Rashid; Waraich, Ejaz Ahmad; Xu, Ling; Zhou, Weijun

    2012-08-01

    5-Aminolevulinic acid (ALA) is an important plant growth regulator which is derived from 5-carbon aliphatic amino acid. The present study investigates the interaction of increasing NaCl-salinity and ALA on plant growth, leaf pigment composition, leaf and root Na(+)/K(+) ratio and chloroplast ultrastructure in mesophyll cells of oilseed rape (Brassica napus) leaves. The plants were treated hydroponically with three different salinity levels (0, 100, 200 mM) and foliar application of ALA (30 mg l(-1)) simultaneously. Ten days after treatment, higher NaCl-salinity significantly reduced the plant biomass and height. However, ALA application restored the plant biomass and plant height under saline conditions. A concentration-dependent increase in Na(+) uptake was observed in the aerial parts of B. napus plants. On the other hand, ALA reduced Na(+) uptake, leading to a significant decrease in Na(+)/K(+) ratio. Accumulation of Na(+) augmented the oxidative stress, which was evident by electron microscopic images, highlighting several changes in cell shape and size, chloroplast swelling, increased number of plastogloubli, reduced starch granules and dilations of the thylakoids. Foliar application of ALA improved the energy supply and investment in mechanisms (higher chlorophyll and carotenoid contents, enhanced photosynthetic efficiency), reduced the oxidative stress as evident by the regular shaped chloroplasts with more intact thylakoids. On the basis of these results we can suggest that ALA is a promising plant growth regulator which can improve plant survival under salinity.

  2. Variation in Lake Michigan alewife (Alosa pseudoharengus) thiaminase and fatty acids composition

    USGS Publications Warehouse

    Honeyfield, D.C.; Tillitt, D.E.; Fitzsimons, J.D.; Brown, S.B.

    2010-01-01

    Thiaminase activity of alewife (Alosa pseudoharengus) is variable across Lake Michigan, yet factors that contribute to the variability in alewife thiaminase activity are unknown. The fatty acid content of Lake Michigan alewife has not been previously reported. Analysis of 53 Lake Michigan alewives found a positive correlation between thiaminase activity and the following fatty acid: C22:ln9, sum of omega-6 fatty acids (Sw6), and sum of the polyunsaturated fatty acids. Thiaminase activity was negatively correlated with C15:0, C16:0, C17:0, C18:0, C20:0, C22:0, C24:0, C18:ln9t, C20:3n3, C22:2, and the sum of all saturated fatty acids (SAFA). Multi-variant regression analysis resulted in three variables (C18:ln9t, Sw6, SAFA) that explained 71% (R2=0.71, P<0.0001) of the variation in thiaminase activity. Because the fatty acid content of an organism is related is food source, diet may be an important factor modulating alewife thiaminase activity. These data suggest there is an association between fatty acids and thiaminase activity in Lake Michigan alewife.

  3. Testing the D/H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume

    NASA Astrophysics Data System (ADS)

    Häggi, C.; Chiessi, C. M.; Schefuß, E.

    2015-08-01

    The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of paleosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker δD composition (δDLipid), water δD composition (δDH2O) and salinity. Yet, there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the δD composition of alkenones (δDC37) and palmitic acid (δDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and δDH2O, while the relationship between δDH2O and δDLipid is more complex: δDPA correlates strongly with δDH2O (r2 = 0.81) and shows a salinity dependent isotopic fractionation factor. δDC37 only correlates with δDH2O in samples with alkenone concentrations > 10 ng L-1 (r2 = 0.51). These findings are mirrored by alkenone based temperature reconstructions, which are inaccurate for samples with alkenone concentrations < 10 ng L-1. Deviations in δDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of δDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to very low salinity conditions. To circumvent these limitations, we suggest the complementary use of δDC37 and δDPA.

  4. Testing the D / H ratio of alkenones and palmitic acid as salinity proxies in the Amazon Plume

    NASA Astrophysics Data System (ADS)

    Häggi, C.; Chiessi, C. M.; Schefuß, E.

    2015-12-01

    The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker δD composition (δDLipid), water δD composition (δDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the δD composition of alkenones (δDC37) and palmitic acid (δDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and δDH2O, while the relationship between δDH2O and δDLipid is more complex: δDPAM correlates strongly with δDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. δDC37 only correlates with δDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in δDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of δDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.

  5. A Modified Method for Saline Lake Calcite Isotope Analysis: Application to a Study of Climate Change over 200,000 Years in Death Valley, California.

    NASA Astrophysics Data System (ADS)

    Yang, W.; Lowenstein, T. K.; Krouse, R. H.; Spencer, R. J.; Ku, T.

    2004-12-01

    The standard method of oxygen and carbon isotope analyses for carbonate minerals was first reported by McCrea (1950). Carbonates are converted to CO2 by the reaction of carbonates with 100% phosphoric acid at temperatures between 25 and 95° C for C- and O-isotope analyses: 3CaCO3 + 2H3PO4 = 3CO2 + 3H2O + Ca3(PO4)2 The reaction time for this method can vary depending on different minerals and temperature. For example, at room temperature, the reaction time could be an hour or less for calcite and aragonite, three days for dolomite, two weeks for magnesite, and several months for siderite. This method is very reliable for almost every carbonate-dominated sample or even trace carbonates in silicate rocks. However, Death Valley saline core sediments showed that this standard method could be problematic for chloride-rich or soluble sulfate-rich carbonate samples because of the production of SO2 and/or HCl gas by partial reaction of the chloride or sulfate minerals with 100% H3PO4. The SO2 and HCl gases can affect the δ -values significantly in two ways: (1) The contaminating gases may react with the CO2 in the mass spectrometer source region, isotopically fractionating the CO2 and/or generating background peaks in the CO2 + spectrum; and (2) The SO2 and HCl may react with interior parts of the mass spectrometer reducing its stability and/or sensitivity. In this study, we choose 85% H3PO4 to react with the lacustrine calcite at room temperature by off-line "Y" tube preparation for 2 to 3 minutes. This modification to the traditional method has resulted in negligible SO2 and HCl production. The CO2 gas generated from each bulk lacustrine sediment sample was manually introduced into a VG 609 mass spectrometer for C and O isotope analyses. The analytical precision is better than ±0.2‰ for both δ 13C and δ 18O. This modification of the method of McCrea (1950) was applied to determining carbon and oxygen isotopic compositions of lacustrine calcite in bulk saline lake

  6. Chemical and biological status of lakes and streams in the upper midwest: assessment of acidic deposition effects

    USGS Publications Warehouse

    Wiener, J.G.; Eilers, J.M.

    1987-01-01

    Many lakes in three areas in the Upper Midwest - northeastern Minnesota, northern Wisconsin, and the Upper Peninsula of Michigan - have low acid neutralizing capacity (ANC) and may be susceptible to change by acidic deposition. Northcentral Wisconsin and the Upper Peninsula of Michigan together contain about 150-300 acidic lakes (ANC ≤ 0), whereas none have been found in Minnesota. These acidic lakes are precipitation-dominated, Clearwater seepage lakes having small surface area, shallow depth, and low concentrations of dissolved organic carbon. The spatial distribution of these acidic lakes parallels a west to east gradient of increasing sulfate and hydrogen ion deposition. Several of these acidic lakes exhibit chemical characteristics and biological changes consistent with those observed elsewhere in waters reported to be acidified by acidic deposition. However, an hypothesis of recent lake acidification is not supported by analyses of either historical chemical data or diatom remains in lake sediments, and natural sources of acidity and alternative ecological processes have not been conclusively eliminated as causative factors. Streams in this three-state region have high ANC and appear to be insensitive to acidic deposition. The species richness and composition of lacustrine fish communities in the region are partly related to pH and associated chemical factors. Sport fishes considered acid-sensitive and of primary concern with regard to acidification include walleye, smallmouth bass, and black crappie. The fishery in at least one lake, Morgan Lake in Wisconsin (pH 4.6), may have declined because of acidification. Given the general lack of quantitative fishery data for acidic Wisconsin and Michigan lakes, however, more general conclusions concerning impacts or the absence of impacts of acidification on the region's fishery resources are not possible.

  7. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012

    NASA Astrophysics Data System (ADS)

    Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.

    2016-12-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  8. Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012

    USGS Publications Warehouse

    Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.

    2016-01-01

    Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.

  9. Brown trout exposed to acid-treated and nontreated humic water from Lake Skjervatjern

    SciTech Connect

    Lien, L. )

    1994-01-01

    Lake Skjervatjern was divided into two separate basins. One basin and its catchment were treated with sulphuric acid and ammonium nitrate. The other part was kept as a control. Brown trout was exposed to acid-treated and nontreated water from the outlets of the basins. The results showed higher mortality in acid-treated water compared to nontreated water from Lake Skjervatjern. Chloride concentration in blood plasma was lower in fish exposed to acid-treated water, indicating a higher degree of stress. Some physical/chemical parameters showed different values for the acid-treated basin compared to water from the nontreated one, e.g., increasing concentrations of sulphur and nitrogen were seen in the acid-treated basin. However, no physical/chemical parameter or group of parameters has been identified from the two basins that can explain the difference in fish mortality and stress. 6 refs., 1 fig., 3 tabs.

  10. Integrated Lake-Watershed Acidification Study (ILWAS): contributions to the international conference on the ecological impact of acid precipitation

    SciTech Connect

    Not Available

    1981-05-01

    The Integrated Lake-Watershed Acidification Study (ILWAS) was initiated to study and detail lake acidification processes for three lake watershed basins in the Adirondack Park region of New York. The three basins (Woods, Sagamore, and Panther), receive similar amounts of acid deposition yet observable pH values for the lakes are very dissimilar indicating unequal acid neutralizing capacities among the watersheds. This volume contains a compilation of seven papers. Relevant topics include: a characterization of the geology, hydrology, limnology and vegetation of the three study sites, an analysis of acid precipitation quality and quantity, the effects of vegetative canopy, the effects of snowmelt, the effects of winter lake stratification, comparison of heavy metal transport, examination of acidic sources other than direct precipitation, assessment of lake acidification during spring thaw and integration of all acidification components with a mathematical model.

  11. Chemical composition of softwater Florida lakes and their sensitivity to acid precipitation

    SciTech Connect

    Hendry, C.D.; Brezonik, P.L.

    1984-02-01

    Based on alkalinity data for 596 lakes, 31 percent of Florida's 7300 lakes have < 100 ..mu..eq/L alkalinity and are sensitive to acid deposition. More than two-thirds of the lakes in 12 northern Florida counties fit this criterion. Increasing aluminum and decreasing nutrient and chlorophyll a concentrations were observed with decreasing pH in a survey of 20 softwater lakes. Maximum measured aluminum values (100-150 ..mu..g/L) are below levels associated with fish toxicity. Factor analysis showed that lake chemistry was related to three principal factors, representing three major processes: watershed weathering, acidification, and nutrient inputs. An acidification index defined as the difference between excess SO/sub 4//sup 2 -/ and excess (Ca/sup 2 +/ + Mg/sup 2 +/) accounted for 74 percent of the variance in lake pH. Comparison of historical (late 1950s) and present data for pH, alkalinity, and excess SO/sub 4//sup 2 -/ indicated loss of alkalinity (> 25 ..mu..eq/L) and increases in excess SO/sub 4//sup 2 -/ (16-34 ..mu..eq/L) in several softwater lakes.

  12. Amino acid preservation in saline halite core samples: Analogs for Martian dry evaporitic regions

    NASA Astrophysics Data System (ADS)

    Bada, J.; Aubrey, A.; Lowenstein, T.; Timofeeff, M.

    2008-12-01

    Recent data returned from several Mars spacecraft show substantial evidence for mineral precipitation from bodies of liquid water. Evaporitic minerals such as gypsum, kieserite and poly-hydrated magnesium sulfates have been detected remotely by orbiting spacecraft [1], jarosite has been detected in situ by the MER Opportunity [2], and chlorides are highly abundant upon the surface of Mars [3], often in correlation with siliclastic deposits [4]. Terrestrial environments can provide analogs for these systems identified on the Martian surface, and in-depth characterization of the terrestrial systems can provide valuable insights into processes that may have occurred on Mars during the late Noachian/early Hesperian. This is especially true in ancient playa or evaporative basin environments where deep core sampling offers a method of observing the geochemical diagenetic changes with time within a constrained environment. Deep coring can provide samples upwards of 200 ka within hundreds of meters of core [5]. The analysis of these sections can allow for the determination of preservation of various biosignatures from extinct microbial communities as well as their in situ diagenetic rates. Amino acids are powerful biomarkers that can be used to estimate biomass [6] and determine ages of extinct microbial communities [7]. Preliminary data for a core sample collected from Saline Valley, CA, shows the effect of time on amino acid biosignatures. The core has been dated by U-series: 35 feet, 20.9 ± 1.1 ka; 127 feet, 61.1 ±2.8 ka; 204 feet, 73.9 ±4.8 ka; and 310 feet, 150.3 ± 7.8 ka. The abundance of amino acids is observed to decrease drastically over the first 20 ka and then stabilize, although the overall composition changes. Acidic amino acids along with alanine and valine are the dominant amino acids. The enantiomeric (D/L) ratios generally increase with age because of in situ racemization, although the enantiomeric ratios for alanine and glutamic acid show a decrease

  13. Dynamics of V ibrio cholerae abundance in Austrian saline lakes, assessed with quantitative solid‐phase cytometry

    PubMed Central

    Schauer, Sonja; Jakwerth, Stefan; Bliem, Rupert; Baudart, Julia; Lebaron, Philippe; Huhulescu, Steliana; Kundi, Michael; Herzig, Alois; Farnleitner, Andreas H.; Sommer, Regina

    2015-01-01

    Summary In order to elucidate the main predictors of V ibrio cholerae dynamics and to estimate the risk of V ibrio cholera‐related diseases, a recently developed direct detection approach based on fluorescence in situ hybridization and solid‐phase cytometry (CARD‐FISH/SPC) was applied in comparison to cultivation for water samples from the lake Neusiedler See, Austria and three shallow alkaline lakes over a period of 20 months. V ibrio cholerae attached to crustacean zooplankton was quantified via FISH and epifluorescence microscopy. Concentrations obtained by CARD‐FISH/SPC were significantly higher than those obtained by culture in 2011, but were mostly of similar magnitude in 2012. Maximum cell numbers were 1.26 × 106 V . cholerae per L in Neusiedler See and 7.59 × 107 V . cholerae per L in the shallow alkaline lakes. Only on a few occasions during summer was the crustacean zooplankton the preferred habitat for V . cholerae. In winter, V . cholerae was not culturable but could be quantified at all sites with CARD‐FISH/SPC. Beside temperature, suspended solids, zooplankton and ammonium were the main predictors of V . cholerae abundance in Neusiedler See, while in the shallow alkaline lakes it was organic carbon, conductivity and phosphorus. Based on the obtained concentrations a first estimation of the health risk for visitors of the lake could be performed. PMID:25847810

  14. [Dynamics of Purple Sulfur Bacteria in a Meromictic Saline Lake Shunet (Khakassia, Siberia) in 2007-2013].

    PubMed

    Rogozin, D Yu; Zykova, V V; Tarnovskii, M O

    2016-01-01

    According to the results of seasonal monitoring, in 2007-2013 purple sulfur bacteria morphologically similar to Thiocapsa sp. Shira_1 (AJ633676 in EMBL/GenBank) predominated in the anoxygenic phototrophic community of the water column of the meromictic Lake Shira (Khakassia, Siberia). No pronounced seasonal periodicity in the total cell number in the water column was revealed during the period of observation. In some years cell number during the period when the lake was covered with ice was reliably higher than in summer. The absence ofseasonal periodicity was probably due to the low amplitude of seasonal variations in temperature and illumination in the redox zone, resulting from its relatively deep location (12-16 m). The year-to-year dynamics was characterized by a reliable decrease of the total cell number in 2009-2010 and maxima in 2007 and 2011-2012. Canonical correlation analysis revealed that water temperature in the redox zone was the best predictor of the PSB abundance in Lake Shira. Water temperature, in turn, depended on the depth of mixing of the water column. Intense mixing in 2009-2011 was probably responsible for decreased PSB abundance in the lake. On the other hand, the absence of deep winter mixing, resulting in stable conditions in the chemocline, favored the preservation of relatively high PSB biomass. Prediction of circulation depth, which.depends mainly on the weather conditions and dynamics of the water level, is required for prediction of PSB abundance in Lake Shira. These results may be useful for paleolimnological reconstructions of the history of the lake based on the remnants of purple sulfur bacteria in bottom sediments.

  15. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption.

    PubMed

    Taipale, S J; Vuorio, K; Strandberg, U; Kahilainen, K K; Järvinen, M; Hiltunen, M; Peltomaa, E; Kankaala, P

    2016-11-01

    Fish are an important source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) for birds, mammals and humans. In aquatic food webs, these highly unsaturated fatty acids (HUFA) are essential for many physiological processes and mainly synthetized by distinct phytoplankton taxa. Consumers at different trophic levels obtain essential fatty acids from their diet because they cannot produce these sufficiently de novo. Here, we evaluated how the increase in phosphorus concentration (eutrophication) or terrestrial organic matter inputs (brownification) change EPA and DHA content in the phytoplankton. Then, we evaluated whether these changes can be seen in the EPA and DHA content of piscivorous European perch (Perca fluviatilis), which is a widely distributed species and commonly consumed by humans. Data from 713 lakes showed statistically significant differences in the abundance of EPA- and DHA-synthesizing phytoplankton as well as in the concentrations and content of these essential fatty acids among oligo-mesotrophic, eutrophic and dystrophic lakes. The EPA and DHA content of phytoplankton biomass (mgHUFAg(-1)) was significantly lower in the eutrophic lakes than in the oligo-mesotrophic or dystrophic lakes. We found a strong significant correlation between the DHA content in the muscle of piscivorous perch and phytoplankton DHA content (r=0.85) as well with the contribution of DHA-synthesizing phytoplankton taxa (r=0.83). Among all DHA-synthesizing phytoplankton this correlation was the strongest with the dinoflagellates (r=0.74) and chrysophytes (r=0.70). Accordingly, the EPA+DHA content of perch muscle decreased with increasing total phosphorus (r(2)=0.80) and dissolved organic carbon concentration (r(2)=0.83) in the lakes. Our results suggest that although eutrophication generally increase biomass production across different trophic levels, the high proportion of low-quality primary producers reduce EPA and DHA content in the food web up to predatory fish

  16. Response of sediment calcium and magnesium species to the regional acid deposition in eutrophic Taihu Lake, China.

    PubMed

    Tao, Yu; Dan, Dai; Chengda, He; Qiujin, Xu; Fengchang, Wu

    2016-11-01

    Acid deposition causes carbonate dissolution in watersheds and leads to profound impacts on water chemistry of lakes. Here, we presented a detailed study on the seasonal, spatial, and vertical variations of calcium and magnesium species in the overlying water, interstitial water, and sediment profiles in eutrophic Taihu Lake under the circumstance of regional acid deposition. The result showed that both the acid deposition and biomineralization in Taihu Lake had effects on Ca and Mg species. In the lake water, calcium carbonate was saturated or over-saturated based on long-term statistical calculation of the saturation index (SI). On the sediment profiles, significant difference in Ca and Mg species existed between the surface sediment (0-10 cm) and deeper sediments (>10 cm). The interstitial water Ca(2+) and Mg(2+), ion-exchangeable Ca and Mg in the surface sediment were higher than those in the deeper sediment. In the spring, when the acid deposition is more intensive, the acid-extracted Ca and Mg in the surface sediment were lower than that in the deeper sediment in the northwest lake, due to carbonate dissolution caused by the regional acid deposition. Spatially, the higher concentration of acid-extracted Ca and Mg in the northwest surface sediment than that in the east lake was observed, indicating the pronounced carbonate biomineralization by algae bloom in the northwest lake. Statistical analysis showed that acid deposition exerted a stronger impact on the variation of acid-extracted Ca and Mg in the surface sediment than the biomineralization in Taihu Lake. For the total Ca and Mg concentration in the spring, however, no significant change between the surface and deeper sediment in the northwest lake was observed, indicating that the carbonate precipitation via biomineralization and the carbonate dissolution due to acidic deposition were in a dynamic balance. These features are of major importance for the understanding of combined effects of acid

  17. Regulation of water, salinity, and cold stress responses by salicylic acid

    PubMed Central

    Miura, Kenji; Tada, Yasuomi

    2014-01-01

    Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant–pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed. PMID:24478784

  18. Spatial characterization of acid rain stress in Canadian Shield Lakes

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1987-01-01

    An analysis was performed to interpret the spatial aspects of lake acidification. Three types of relationships were investigated based upon the August to May seasonal scene pairing. In the first type of analysis ANOVA was used to examine the mean Thematic Mapper band one count by ecophysical strata. The primary difference in the two ecophysical strata is the soil type and depth over the underlying bedrock. Examination of the August to May difference values for TM band one produced similar results. Group A and B strata were the same as above. The third type of analysis examined the relationship between values of the August to May difference from polygons which have similar ecophysical properties with the exception of sulfate deposition. For this case lakes were selected from units with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/sq m/yr.

  19. Effects of biosolids application on nitrogen dynamics and microbial structure in a saline-sodic soil of the former Lake Texcoco (Mexico).

    PubMed

    Rojas-Oropeza, M; Dendooven, L; Garza-Avendaño, L; Souza, V; Philippot, L; Cabirol, N

    2010-04-01

    The saline-sodic soil of the former Lake Texcoco, a large area exposed to desertification, is a unique environment, but little is known about its microbial ecology. The objective of this study was to examine bacterial community structure, activity, and function when biosolids were added to microcosms. The application rates were such that 0, 66, 132, or 265 mg total Nk g(-1) were added with the biosolids (total C and N content 158 and 11.5 g kg(-1) dry biosolids, respectively). Approximately 60% of the biosolids were mineralized within 90 days. Microbial respiration and to a lesser extent ammonification and nitrification, increased after biosolids application. The rRNA intergenic spacer analysis (RISA) patterns for the biosolids and unamended soil bacterial communities were different, indicating that the microorganisms in the biosolids were distinct from the native population. It appears that the survival of the allochthonous microorganisms was short, presumably due to the adverse soil conditions.

  20. Kinematics of the Eastern California shear zone: Evidence for slip transfer from Owens and Saline Valley fault zones to Fish Lake Valley fault zone

    USGS Publications Warehouse

    Reheis, M.C.; Dixon, T.H.

    1996-01-01

    Late Quaternary slip rates and satellite-based geodetic data for the western Great Basin constrain regional fault-slip distribution and evolution. The geologic slip rate on the Fish Lake Valley fault zone (the northwest extension of the Furnace Creek fault zone) increases northward from about 3 to 5 mm/yr, in agreement with modeled geodetic data. The increase coincides with the intersections of the Deep Springs fault, connected to the Owens Valley fault zone, and of other faults connected to the Saline Valley fault. The combined geologic and geodetic data suggest that (1) the northwest-striking faults of the Eastern California shear zone north of the Garlock fault are connected by north- to northeast-striking normal faults that transfer slip in a series of right steps, and (2) the amount and distribution of slip among the many faults of this broad, complex plate boundary have changed through time.

  1. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  2. Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Ke, Linghong; Song, Chunqiao

    2014-12-01

    Research on surface water temperature (SWT) variations in large lakes over the Qinghai-Tibet Plateau (QTP) has been limited by lack of in situ measurements. By taking advantage of the increased availability of remotely sensed observations, this study investigated SWT variation of Siling Co in central QTP by processing complete MODIS Land surface temperature (LST) images over the lake covering from 2001 to 2013. The temporal (diurnal, intra-annul and inter-annul) variations of Siling Co SWT as well as the spatial patterns were analyzed. The results show that on average from late December to mid-April the lake is in a mixing state of water and ice and drastic diurnal temperature differences occur, especially along the shallow shoreline areas. The extent of spatial variations in monthly SWT ranges from 1.25 °C to 3.5 °C, and particularly large at nighttime and in winter months. The spatial patterns of annual average SWT were likely impacted by the cooling effect of river inflow from the west and east side of the lake. The annual cycle of spatial pattern of SWT is characterized by seasonal reversions between the shallow littoral regions and deep parts due to different heat capacity. Compared to the deep regions, the littoral shallow shoreline areas warms up quickly in spring and summer, and cool down drastically in autumn and winter, showing large diurnal and seasonal variation amplitudes of SWT. Two cold belt zones in the western and eastern side of the lake and warm patches along the southwestern and northeastern shorelines are shaped by the combined effects of the lakebed topography and river runoff. Overall, the lake-averaged SWT increased at a rate of 0.26 °C/decade during 2001-2013. Faster increase of temperature was found at nighttime (0.34 °C/decade) and in winter and spring, consistent with the asymmetric warming pattern over land areas reported in prior studies. The rate of temperature increase over Siling Co is remarkably lower than that over Bangoin

  3. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    EPA Science Inventory

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  4. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China

    NASA Astrophysics Data System (ADS)

    Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai

    2007-12-01

    Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).

  5. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes.

    PubMed

    Herrera, Christian; Custodio, Emilio; Chong, Guillermo; Lambán, Luis Javier; Riquelme, Rodrigo; Wilke, Hans; Jódar, Jorge; Urrutia, Javier; Urqueta, Harry; Sarmiento, Alvaro; Gamboa, Carolina; Lictevout, Elisabeth

    2016-01-15

    Laguna Tuyajto is a small, shallow saline water lake in the Andean Altiplano of northern Chile. In the eastern side it is fed by springs that discharge groundwater of the nearby volcanic aquifers. The area is arid: rainfall does not exceed 200mm/year in the rainiest parts. The stable isotopic content of spring water shows that the recharge is originated mainly from winter rain, snow melt, and to a lesser extent from some short and intense sporadic rainfall events. Most of the spring water outflowing in the northern side of Laguna Tuyajto is recharged in the Tuyajto volcano. Most of the spring water in the eastern side and groundwater are recharged at higher elevations, in the rims of the nearby endorheic basins of Pampa Colorada and Pampa Las Tecas to the East. The presence of tritium in some deep wells in Pampa Colorada and Pampa Las Tecas indicates recent recharge. Gas emission in recent volcanoes increase the sulfate content of atmospheric deposition and this is reflected in local groundwater. The chemical composition and concentration of spring waters are the result of meteoric water evapo-concentration, water-rock interaction, and mainly the dissolution of old and buried evaporitic deposits. Groundwater flow is mostly shallow due to a low permeability ignimbrite layer of regional extent, which also hinders brine spreading below and around the lake. High deep temperatures near the recent Tuyajto volcano explain the high dissolved silica contents and the δ(18)O shift to heavier values found in some of the spring waters. Laguna Tuyajto is a terminal lake where salts cumulate, mostly halite, but some brine transfer to the Salar de Aguas Calientes-3 cannot be excluded. The hydrogeological behavior of Laguna Tuyajto constitutes a model to understand the functioning of many other similar basins in other areas in the Andean Altiplano.

  6. Origin of saline, neutral-pH, reduced epithermal waters by reaction of acidic magmatic gas condensates with wall rock

    SciTech Connect

    Reed, M.H. . Dept. of Geological Sciences)

    1993-04-01

    Fluid inclusions in quartz and sphalerite of epithermal veins containing galena, sphalerite and chalcopyrite with silver sulfides and electrum commonly have salinities of 2 to 10 weight percent NaCl equivalent. Examples include Bohemia, OR, Comstock, NV, and Creede, CO. Salinities in such base metal-rich systems are apparently greater than those in gold-adularia, base metal-poor systems such as Sleeper, NV, Republic, WA, and Hishikare, Kyushu. Saline epithermal fluids are commonly assumed to have been derived from saline magmatic brines, from local host formations, as has been suggested for Creede, or from evaporative concentration (boiling) of more dilute meteoric ground water. Another possibility, which may be the most common origin, is reaction of wall rocks with magmatic gas condensates rich in HCl and sulfuric acid. A mixture of one part Augustine Volcanic gas condensate in 10 parts cold ground water has a pH of 0.7 and the dominant cation is H[sup +] by a factor of 10[sup 4]. Calculated reaction of this condensate mixture with andesite at 300 C to a water/rock ratio (w/r) of 4.6 yields an NaCl-dominated fluid with a total salinity of 2.1 wt %. and pH 3.7. Further reaction, to w/r 0.14 yields a fluid salinity of 2.6 wt % and pH of 5.7; this fluid is in equilibrium with a propylitic alteration assemblage. Aqueous sulfide accumulates during the rock reaction as sulfate is reduced to sulfide when ferrous iron is oxidized to ferric iron. Sulfide concentration in the latter fluid is 32 ppm, far exceeding sulfate concentration. In the overall reaction, hydrogen ion is exchanged for base cations (including base metals) and sulfate is reduced to sulfide.

  7. Long term (1987-2012) trends in water chemistry of acid sensitive Swedish lakes

    NASA Astrophysics Data System (ADS)

    Futter, Martyn; Valinia, Salar; Fölster, Jens

    2014-05-01

    Acidification of surface waters is a serious concern in Sweden. During the 1970s and 1980s, many surface waters in Sweden were acidified by long-range pollution. Legislated emissions reductions have led to the recovery of many water bodies but today, there are concerns about the possibility of re-acidification. Sweden is committed to a goal of natural acidification only (i.e. no anthropogenic acidification). Here, we present long term (1987-2012) trends in strong acid anion, base cation, organic carbon and alkalinity measurements. Lakes are defined as acidified in Sweden if pH is more than 0.4 units less than a reference (1860) pH estimated using MAGIC, a widely used process-based model of acidification. Using this criteria, many acid sensitive Swedish lakes are still acidified. A changing climate and more intensive forest harvesting may further delay the recovery from acidification. Average measured alkalinity in the 38 lakes presented here was <= 0.02 mekv/l between 2000-2012. Strong acid anion concentrations declined, primarily as a result of declines in sulfate. Chloride is now the dominant anion in many of these lakes. Base cations concentrations have declined less rapidly, leading to an increase in charge balance ANC. This increase in charge balance ANC has not been matched by an increase in measured alkalinity. Total organic carbon concentrations have increased significantly in many of these lakes, to the point where modeled organic acidity is now approximately equal to inorganic acidity. While the results presented here conform to acidification theory, they illustrate the value of long-term monitoring for assessing the effects of pollutant reduction measures, identifying new threats to water quality and corroborating model results. Most importantly, the long-term monitoring results presented here can be an important tool for informing environmental policy.

  8. Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights into Stress Adaptation

    PubMed Central

    Xu, Jian; Ji, Peifeng; Wang, Baosen; Zhao, Lan; Wang, Jian; Zhao, Zixia; Zhang, Yan; Li, Jiongtang; Xu, Peng; Sun, Xiaowen

    2013-01-01

    Background Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the genetics of stress tolerance. The objective of the study is to sequence the transcriptome and obtain a well-assembled transcriptome of Amur ide. Results The transcriptome of Amur ide was sequenced using the Illumina platform and assembled into 53,632 cDNA contigs, with an average length of 647 bp and a N50 length of 1,094 bp. A total of 19,338 unique proteins were identified, and gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses classified all contigs into functional categories. Open Reading Frames (ORFs) were detected from 34,888 (65.1%) of contigs with an average length of 577 bp, while 9,638 full-length cDNAs were identified. Comparative analyses revealed that 31,790 (59.3%) contigs have a significant similarity to zebrafish proteins, and 27,096 (50.5%), 27,524 (51.3%) and 27,996 (52.2%) to teraodon, medaka and three-spined stickleback proteins, respectively. A total of 10,395 microsatellites and 34,299 SNPs were identified and classified. A dN/dS analysis on unigenes was performed, which identified that 61 of the genes were under strong positive selection. Most of the genes are associated with stress adaptation and immunity, suggesting that the extreme alkaline-saline environment resulted in fast evolution of certain genes. Conclusions The transcriptome of Amur ide had been deeply sequenced, assembled and characterized, providing a valuable resource for a better understanding of the Amur ide genome. The transcriptome data will facilitate future functional studies on the Amur ide genome, as well as provide insight into potential mechanisms for

  9. Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China.

    PubMed

    Hao, Chunbo; Wei, Pengfei; Pei, Lixin; Du, Zerui; Zhang, Yi; Lu, Yanchun; Dong, Hailiang

    2017-04-01

    Acid mine drainage (AMD),characterized by strong acidity and high metal concentrations, generates from the oxidative dissolution of metal sulfides, and acidophiles can accelerate the process significantly. Despite extensive research in microbial diversity and community composition, little is known about seasonal variations of microbial community structure (especially micro eukaryotes) in response to environmental conditions in AMD ecosystem. To this end, AMD samples were collected from Nanshan AMD lake, Anhui Province, China, over a full seasonal cycle from 2013 to 2014, and water chemistry and microbial composition were studied. pH of lake water was stable (∼3.0) across the sampling period, while the concentrations of ions varied dramatically. The highest metal concentrations in the lake were found for Mg and Al, not commonly found Fe. Unexpectedly, ultrahigh concentration of chlorophyll a was measured in the extremely acidic lake, reaching 226.43-280.95 μg/L in winter, even higher than those in most eutrophic freshwater lakes. Both prokaryotic and eukaryotic communities showed a strong seasonal variation. Among the prokaryotes, "Ferrovum", a chemolithotrophic iron-oxidizing bacterium was predominant in most sampling seasons, although it was a minor member prior to September, 2012. Fe(2+) was the initial geochemical factor that drove the variation of the prokaryotic community. The eukaryotic community was simple but varied more drastically than the prokaryotic community. Photoautotrophic algae (primary producers) formed a food web with protozoa or flagellate (top consumers) across all four seasons, and temperature appeared to be responsible for the observed seasonal variation. Ochromonas and Chlamydomonas (responsible for high algal bloom in winter) occurred in autumn/summer and winter/spring seasons, respectively, because of their distinct growth temperatures. The closest phylogenetic relationship between Chlamydomonas species in the lake and those in Arctic

  10. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.).

    PubMed

    Qureshi, M Irfan; Abdin, Malik Zainul; Ahmad, Javed; Iqbal, Muhammad

    2013-11-01

    Impact of long-term salinity and subsequent oxidative stress was studied on cellular antioxidants, proline accumulation and lipid profile of Artemisia annua L. (Sweet Annie or Qinghao) which yields artemisinin (Qinghaosu), effective against cerebral malaria-causing strains of Plasmodium falciparum. Under salinity (0.0-160 mM NaCl), in A. annua, proline accumulation, contents of ascorbate and glutathione and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) increased, but the contents of reduced forms of glutathione (GSH) and ascorbate declined. The fatty-acid profiling revealed a major salinity-induced shift towards long-chain and mono-saturated fatty acids. Myristic acid (14:0), palmitoleic acid (16:1), linoleic acid (18:2) and erucic acid (22:1) increased by 141%, 186%, 34% and 908%, respectively, in comparison with the control. Contents of oleic acid (18:1), linolenic acid (18:3), arachidonic acid (22:0) and lignoceric acid (24:0) decreased by 50%, 17%, 44% and 78%, respectively. Thus, in A. annua, salinity declines ascorbate and GSH contents. However, increased levels of proline and total glutathione (GSH+GSSG), and activities of antioxidant enzymes might provide a certain level of tolerance. Modification in fatty-acid composition might be a membrane adaptation to long-term salinity and oxidative stress.

  11. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris.

    PubMed

    Pandit, Priti Raj; Fulekar, Madhusudan H; Karuna, Mallampalli Sri Lakshmi

    2017-04-07

    Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL(-1), respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.

  12. Jarosite Precipitation from Acidic Saline Waters in Kachchh, Gujarat, India: an Appropriate Martian Analogue?

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Gupta, S.; Bhattacharya, S.; Banerjee, S.; Chauhan, P.; Parthasarathy, G.

    2014-12-01

    The origin of jarosite [KFe3(SO4)2(OH)6] on the Martian surface has been an intriguing problem since the Mars Exploration Rover 'Opportunity' first revealed its presence at the Meridiani Planum on Mars. To explain its origin, several terrestrial analogue sites have been studied in different geographical zones. Although several models have been suggested, there is a consensus that only the prevalence of acidic and oxidizing aqueous environmental conditions are conducive to form jarosite. In the Kachchh region of Gujarat, western India, jarosite has been recently discovered from gorges dissecting the Paleocene Matanumadh Formation sediments, that overlie basalts of the Deccan Volcanic Province. This formation comprises pebble conglomerates, carbonaceous shales and purple sandstones capped by a laterite on top. Jarosite, in association with gypsum and goethite, has been detected through FTIR and VNIR spectrometry in almost all litho-units of the succession, albeit in different modes and concentrations. The occurrence of jarosite within black shale in other parts of the world, has been attributed to the oxidation of pyrites within the shale layers. However, in shales of the Matanumadh Formation, jarosite is restricted to fractures that cut across the bedding, while the overlying purple sandstone unit only preserves jarosite in shale clasts within the sandstone. Since the sandstone overlies the black shale layer, downward percolation of sulfate-bearing water from the oxidation of pyrite within the shale layer cannot explain jarosite formation in this unit. In addition, no jarosite is observed below or within pyrite-rich lignite bearing sections in other parts of Kachchh. Alternative suggestions, that jarosite developed in the immediate aftermath of Deccan volcanism as surface waters were rendered acidic by interaction with the final phase of volcanic effusives, are also unlikely as on-going studies suggest that jarosite is not restricted to the Matanumadh Formation. The

  13. Extreme drought causes distinct water acidification and eutrophication in the Lower Lakes (Lakes Alexandrina and Albert), Australia

    NASA Astrophysics Data System (ADS)

    Li, Siyue; Bush, Richard T.; Mao, Rong; Xiong, Lihua; Ye, Chen

    2017-01-01

    Droughts are set to increase in frequency and magnitude with climate change and water extraction, and understanding their influence on ecosystems is urgent in the Holocene. Low rainfall across the Murray-Darling Basin (MDB) of Australia resulted in an unprecedented water level decline in the Lower Lakes (Lakes Alexandrina and Albert) at the downstream end of the river system. A comprehensive data covering pre-drought (2004-2006), drought (2007-2010) and post-drought (2010-2013) was firstly used to unravel drought effects on water quality in the contrasting main parts and margins of the two Lakes, particularly following water acidification resulting from acid sulfate soil oxidation. Salinity, nutrients and Chl-a significantly increased during the drought in the Lake main waterbody, while pH remained stable or showed minor shifts. In contrast to the Lake Alexandrina, total dissolved solid (TDS) and electrical conductivity (EC) during the post-drought more than doubled the pre-drought period in the Lake Albert as being a terminal lake system with narrow and shallow entrance. Rewetting of the exposed pyrite-containing sediment resulted in very low pH (below 3) in Lake margins, which positively contributed to salinity increases via SO42- release and limestone dissolution. Very acidic water (pH 2-3) was neutralised naturally by lake refill, but aerial limestone dosing was required for neutralisation of water acidity during the drought period. The Lower Lakes are characterized as hypereutrophic with much higher salinity, nutrient and algae concentrations than guideline levels for aquatic ecosystem. These results suggest that, in the Lower Lakes, drought could cause water quality deterioration through water acidification and increased nutrient and Chl-a concentrations, more effective water management in the lake catchment is thus crucial to prevent the similar water quality deterioration since the projected intensification of droughts. A comparative assessment on lake

  14. Proteomic and biochemical responses of canola (Brassica napus L.) exposed to salinity stress and exogenous lipoic acid.

    PubMed

    Yıldız, Mustafa; Akçalı, Nermin; Terzi, Hakan

    2015-05-01

    To evaluate the mitigating effects of exogenous lipoic acid (LA) on NaCl toxicity, proteomic, biochemical and physiological changes were investigated in the leaves of canola (Brassica napus L.) seedlings. Salinity stress decreased the growth parameters and contents of ascorbate (AsA) and glutathione (GSH), and increased the contents of malondialdehyde (MDA), proline, cysteine and the activities of antioxidant enzymes such as superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX). The foliar application of LA alleviated the toxic effects of salinity stress on canola seedlings and notably decreased MDA content and increased growth parameters, cysteine content, and activities of CAT and POD. In the proteomic analyses, total proteins from the leaves of control, LA, NaCl and NaCl+LA treated-seedlings were separated using two-dimensional gel electrophoresis (2-DE). A total of 28 proteins were differentially expressed. Of these, 21 proteins were successfully identified by MALDI-TOF/TOF MS. These proteins had functions related to photosynthesis, stress defense, energy metabolism, signal transduction, protein folding and stabilization indicating that LA might play important roles in salinity through the regulation of photosynthesis, stress defense and signal transduction related proteins. The proteomic findings have provided new insight to reveal the effect of LA on salinity stress for the first time.

  15. Saline Systems highlights for 2006

    PubMed Central

    DasSarma, Shiladitya

    2007-01-01

    Saline Systems is a journal devoted to both basic and applied studies of saline and hypersaline environments and their biodiversity. Here, I review the reports and commentaries published in the journal in 2006, including some exploring the geochemistry of saline estuaries, lakes, and ponds, others on the ecology and molecular biology of the indigenous halophilic organisms, and still others addressing the environmental challenges facing saline environments. Several studies are relevant to applications in biotechnology and aquaculture. PMID:17244355

  16. 2005 Crater Lake Formation, Lahar, Acidic Flood, and Gas Emission From Chiginagak Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Schaefer, J. R.; Scott, W. E.; McGimsey, R. G.; Jorgenson, J.

    2005-12-01

    A 400-m-wide crater lake developed in the formerly snow-and-ice-filled crater of Mount Chiginagak volcano sometime between August 2004 and June 2005, presumably due to increased heat flux from the hydrothermal system. We are also evaluating the possible role of magma intrusion and degassing. In early summer 2005, clay-rich debris and an estimated 5.6 million cubic meters of acidic water from the crater exited through tunnels in the base of a glacier that breaches the south crater rim. Over 27 kilometers downstream, the acidic waters of the flood reached approximately 1.5 meters above current water levels and inundated an important salmon spawning drainage, acidifying at least the surface water of Mother Goose Lake (approximately 1 cubic kilometer in volume) and preventing the annual salmon run. No measurements of pH were taken until late August 2005. At that time the pH of water sampled from the Mother Goose Lake inlet, lake surface, and outlet stream (King Salmon River) was 3.2. Defoliation and leaf damage of vegetation along affected streams, in areas to heights of over 70 meters in elevation above flood level, indicates that a cloud of detrimental gas or aerosol accompanied the flood waters. Analysis of stream water, lake water, and vegetation samples is underway to better determine the agent responsible for the plant damage. This intriguing pattern of gas-damaged vegetation concentrated along and above the flood channels is cause for further investigation into potential hazards associated with Chiginagak's active crater lake. Anecdotal evidence from local lodge owners and aerial photographs from 1953 suggest that similar releases occurred in the mid-1970s and early 1950s.

  17. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites.

    PubMed

    Liang, Yuting; Zhao, Huihui; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2014-07-15

    To compare the functional gene structure and diversity of microbial communities in saline-alkali and slightly acidic oil-contaminated sites, 40 soil samples were collected from two typical oil exploration sites in North and South China and analyzed with a comprehensive functional gene array (GeoChip 3.0). The overall microbial pattern was significantly different between the two sites, and a more divergent pattern was observed in slightly acidic soils. Response ratio was calculated to compare the microbial functional genes involved in organic contaminant degradation and carbon, nitrogen, phosphorus, and sulfur cycling. The results indicated a significantly low abundance of most genes involved in organic contaminant degradation and in the cycling of nitrogen and phosphorus in saline-alkali soils. By contrast, most carbon degradation genes and all carbon fixation genes had similar abundance at both sites. Based on the relationship between the environmental variables and microbial functional structure, pH was the major factor influencing the microbial distribution pattern in the two sites. This study demonstrated that microbial functional diversity and heterogeneity in oil-contaminated environments can vary significantly in relation to local environmental conditions. The limitation of nitrogen and phosphorus and the low degradation capacity of organic contaminant should be carefully considered, particularly in most oil-exploration sites with saline-alkali soils.

  18. Identification of α-amylase by random and specific mutagenesis of Texcoconibacillus texcoconensis 13CCT strain isolated from extreme alkaline-saline soil of the former Lake Texcoco (Mexico).

    PubMed

    Bello-López, Juan Manuel; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Hernández-Montañez, Zahuiti; Dendooven, Luc

    2014-05-01

    The alkaline α-amylase produced by Texcoconibacillus texcoconensis 13CC(T) strain was identified by random mutagenesis and confirmed by directed mutagenesis. A transposon mutagenesis approach was taken to identify the gene responsible for the degradation of starch in T. texcoconensis 13CC(T) strain. The deduced amino acids of the amy gene had a 99% similarity with those of Bacillus selenitireducens MLS10 and 97% with those of Paenibacillus curdlanolyticus YK9. The enzyme showed a maximum activity of 131.1 U/mL at 37 °C and pH 9.5 to 10.5. In situ activity of the enzyme determined by polyacrylamide gel electrophoresis showed only one band with amylolytic activity. This is the first report of a bacterium isolated from the extreme alkaline-saline soil of the former Lake Texcoco (Mexico) with amylolytic activity in alkaline conditions while its potential as a source of amylases for the industry is discussed.

  19. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding.

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Estrada-Alvarado, Isabel; Zavala-Díaz de la Serna, Francisco Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-07-01

    Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.

  20. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    SciTech Connect

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-09-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H/sub 2/S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H/sub 2/S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by (/sup 14/C)glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake.

  1. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  2. Disentangling the photochemical salinity tolerance in Aster tripolium L.: connecting biophysical traits with changes in fatty acid composition.

    PubMed

    Duarte, B; Cabrita, M T; Gameiro, C; Matos, A R; Godinho, R; Marques, J C; Caçador, I

    2017-03-01

    A profound analysis of A. tripolium photochemical traits under salinity exposure is lacking in the literature, with very few references focusing on its fatty acid profile role in photophysiology. To address this, the deep photochemical processes were evaluated by Pulse Amplitude Modulated (PAM) Fluorometry coupled with a discrimination of its leaf fatty acid profile. Plants exposed to 125-250 mm NaCl showed higher photochemical light harvesting efficiencies and lower energy dissipation rates. under higher NaCl exposure, there is evident damage of the oxygen evolving complexes (OECs). On the other hand, Reaction Centre (RC) closure net rate and density increased, improving the energy fluxes entering the PS II, in spite of the high amounts of energy dissipated and the loss of PS II antennae connectivity. Energy dissipation was mainly achieved through the auroxanthin pathway. Total fatty acid content displayed a similar trend, being also higher under 125-250 mm NaCl with high levels of omega-3 and omega-6 fatty acids. The increase in oleic acid and palmitic acid allows the maintenance of the good functioning of the PS II. Also relevant was the high concentration of chloroplastic C16:1t in the individuals subjected to 125-250 mm NaCl, related with a higher electron transport activity and with the organization of the Light Harvesting Complexes (LHC) and thus reducing the activation of energy dissipation mechanisms. All these new insights shed some light not only on the photophysiology of this potential cash-crop, but also highlight its important saline agriculture applications of this species as forage and potential source of essential fatty acids.

  3. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed Central

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  4. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed

    Castilla Casadiego, D A; Albis Arrieta, A R; Angulo Mercado, E R; Cervera Cahuana, S J; Baquero Noriega, K S; Suárez Escobar, A F; Morales Avendaño, E D

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained "Nutrifoliar," a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using "Nutrifoliar" as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  5. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir.

  6. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  7. Enzymatic saccharization of dilute acid pretreated saline crops for fermentable sugar production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  8. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima).

    PubMed

    Liu, Zhi-Feng; Gao, Xiao-Qiang; Yu, Jiu-Xiang; Qian, Xiao-Ming; Xue, Guo-Ping; Zhang, Qiao-Yun; Liu, Bao-Liang; Hong, Lei

    2016-12-24

    The effects of salinity on survival, growth, special activity of digestive enzymes, nonspecific immune response, and muscle fatty acid composition were evaluated in the American shad (Alosa sapidissima). Juveniles of 35 days after hatching were reared at 0 (control), 7, 14, 21, and 28 ppt for 60 days. At the end of the experiment, juvenile American shad presented higher survival and specific growth rate (SGR) in salinity group (7, 14, and 21 ppt) than control group (P < 0.05). The special activity of trypsin and chymotrypsin was highest in fish reared at 21 ppt, while the highest lipase special activity was obtained in control group (P < 0.05). The special activity of alkaline phosphatase (ALP), lysozyme (LZM), superoxide dismutase (SOD), and catalase (CAT) showed significant increases in salinity group (14 and 21 ppt) compared to control group (P < 0.05). Lower muscle ash contents were detected in salinity group (14, 21, and 28 ppt) than control group (P < 0.05), while the contents of crude lipid and crude protein were significantly higher than control group (P < 0.05). The level of monounsaturated fatty acids (MUFA) exhibited a decreasing trend, while an increased level of polyunsaturated fatty acids (PUFA) was detected with the increase of salinity. Among the PUFA, the content of n-3 fatty acids in muscle tissue was found to be increasing with the increasing salinity, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Results indicate that appropriate increase in salinity was reasonable and beneficial for juvenile American shad culture after a comprehensive consideration, especially salinity range from 14 to 21 ppt.

  9. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    PubMed

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  10. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature.

  11. Effects of Light and Salinity Stresses in Production of Mycosporine-Like Amino Acids by Gymnodinium catenatum (Dinophyceae).

    PubMed

    Vale, Paulo

    2015-01-01

    Mycosporine-like amino acids (MAAs) were analyzed in a Portuguese Gymnodinium catenatum strain when transferred to high salinity and high light conditions. Total MAA concentrations increased progressively between 30 and 36 psu, attaining at 36 psu 2.9-fold the 30 psu treatment. When abruptly transferred to solar light in an outdoor shadowed location, MAA concentration increased steadily along the day for most compounds. After 8 h, mycosporine-glycine, palythene and M-319 attained or surpassed 25-fold their initial concentration, while M-370 only attained 4-fold concentration. When transferred from halogen to fluorescent light, polar MAAs such as shinorine and porphyra-334, increased until day two and then declined, while M-370 increase slowly, becoming the dominant compound from the profile after 1 week. These experiments put into evidence the relation of palythene with M-319, which was further identified as its acid degradation product, palythine. Acid degradation of M-370 originated M-324, while M-311 seems to be the precursor of M-370. Under high salinity and high light conditions chain formation was altered toward shorter chains or solitary cells. This alteration can represent a morphological stress sign, which in the natural environment could affect average population speed during daily vertical migrations.

  12. Trends in summer chemistry linked to productivity in lakes recovering from acid deposition in the Adirondack region of New York

    USGS Publications Warehouse

    Momen, B.; Lawrence, G.B.; Nierzwicki-Bauer, S. A.; Sutherland, J.W.; Eichler, L.W.; Harrison, J.P.; Boylen, C.W.

    2006-01-01

    The US Environmental Protection Agency established the Adirondack Effects Assessment Program (AEAP) to evaluate and monitor the status of biological communities in lakes in the Adirondack region of New York that have been adversely affected by acid deposition. This program includes chemical analysis of 30 lakes, sampled two to three times each summer. Results of trends analysis for lake chemistry and chlorophyll a (chlor a) are presented for 1994 to 2003, and a general comparison is made with recent results of the Adirondack Long-Term Monitoring (ALTM) Program, which included chemical analysis of all but two of these lakes (plus an additional 24 lakes) monthly, year-round for 1992-2004. Increases in pH were found in 25 of the 30 AEAP lakes (P < 0.05) and increases in acid-neutralizing capacity (ANC) were found in 12 of the 30 lakes (P < 0.05). Concentrations of both SO 42- and Mg 2+ decreased in 11 lakes (P < 0.05), whereas concentrations of NO 3- decreased in 20 lakes (P < 0.05). Concentrations of NH 4+ decreased in 10 lakes at a significance level of P < 0.05 and in three other lakes based on P < 0.1. Concentrations of inorganic and organic monomeric aluminum generally were below the reporting limit of 1.5 ??mol L-1, but decreases were detected in four and five lakes, respectively (P < 0.1). Concentrations of chlor a increased in seven lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. A significant inverse correlation was also found between chlor a and NO 3- concentrations in nine lakes at a significance level of P < 0.05 and two lakes at a significance level of P < 0.1. Results of AEAP analysis of lake chemistry were similar to those of the ALTM Program, although decreases in SO 42- concentrations were more evident in the year-round ALTM record. Overall, the results suggest (a) a degree of chemical recovery from acidification during the summer, (b) an increase in phytoplankton productivity, and (c) a decreasing trend in

  13. Long-term recovery of lakes in the Adirondack region of New York to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Waller, Kristin; Driscoll, Charles; Lynch, Jason; Newcomb, Dani; Roy, Karen

    2012-01-01

    After years of adverse impacts to the acid-sensitive ecosystems of the eastern United States, the Acid Rain Program and Nitrogen Budget Program were developed to control sulfur dioxide (SO 2) and nitrogen oxide (NO x) emissions through market-based cap and trade systems. We used data from the National Atmospheric Deposition Program's National Trends Network (NTN) and the U.S. EPA Temporally Integrated Monitoring of Ecosystems (TIME) program to evaluate the response of lake-watersheds in the Adirondack region of New York to changes in emissions of sulfur dioxide and nitrogen oxides resulting from the Acid Rain Program and the Nitrogen Budget Program. TIME is a long-term monitoring program designed to sample statistically selected subpopulations of lakes and streams across the eastern U.S. to quantify regional trends in surface water chemistry due to changes in atmospheric deposition. Decreases in wet sulfate deposition for the TIME lake-watersheds from 1991 to 2007 (-1.04 meq m -2-yr) generally corresponded with decreases in estimated lake sulfate flux (-1.46 ± 0.72 meq m -2-yr), suggesting declines in lake sulfate were largely driven by decreases in atmospheric deposition. Decreases in lake sulfate and to a lesser extent nitrate have generally coincided with increases in acid neutralizing capacity (ANC) resulting in shifts in lakes among ANC sensitivity classes. The percentage of acidic Adirondack lakes (ANC <0 μeq L -1) decreased from 15.5% (284 lakes) to 8.3% (152 lakes) since the implementation of the Acid Rain Program and the Nitrogen Budget Program. Two measures of ANC were considered in our analysis: ANC determined directly by Gran plot analysis (ANC G) and ANC calculated by major ion chemistry (ANC calc = CB - CA). While these two metrics should theoretically show similar responses, ANC calc (+2.03 μeq L -1-yr) increased at more than twice the rate as ANC G (+0.76 μeq L -1-yr). This discrepancy has important implications for assessments of lake recovery

  14. Enhanced dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of the Athel tamarisk (Tamarix aphylla L. Karst.) grown in saline-alkaline soils of the former lake Texcoco.

    PubMed

    Betancur-Galvis, Liliana A; Carrillo, Hernando; Luna-Guido, Marco; Marsch, Rodolfo; Dendooven, Luc

    2012-09-01

    Remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated alkaline saline soil with phreatophyte or "water loving plants" was investigated by spiking soil from the former lake Texcoco with 100 mg phenanthrene (Phen) kg(-1) soil, 120 mg anthracene (Ant)kg(-1) soil and 45 mg benzo(a)pyrene (BaP) kg(-1) soil and vegetating it with Athel tamarisk (Tamarix aphylla L Karst.). The growth of the Athel tamarisk was not affected by the PAHs. In soil cultivated with Athel tamarisk, the leaching of PAHs to the 32-34 cm layer decreased 2-fold compared to the uncultivated soil. The BaP concentration decreased to 39% of the initial concentration at a distance smaller than 3 cm from the roots and to 45% at a distance larger than 3cm, but 59% remained in unvegetated soil after 240 days. Dissipation of Ant and Phen decreased with depth, but not BaP. The biodegradation of PAHs was affected by their chemical properties and increased in the presence of T. aphylla, but decreased with depth.

  15. Ciliates and their picophytoplankton-feeding activity in a high-altitude warm-monomictic saline lake.

    PubMed

    Pestová, Dana; Macek, Miroslav; Elena Martínez Pérez, María

    2008-02-01

    The impact of feeding on autotrophic picoplankton (APP) on the ciliate composition of the assemblage was surveyed monthly along a depth gradient in the maar crater, athalassohaline, warm monomictic Lake Alchichica (Puebla, Mexico) from June 2003 to December 2005. Numbers of APP were evaluated from their autofluorescence. DAPI staining and the Fluorescently Labeled Bacteria technique were employed to count ciliates and estimate their feeding rates. A total of 38 taxa of ciliates have been identified using Quantitative Protargol Staining. Peritrichs followed by minute spirotrichs (particularly Halteria grandinella) often numerically dominated the ciliate assemblage and emerged as the most efficient APP feeders. A maximum of 54 ciliate cells ml(-1) was observed in the surface layer at the end of the mixing period, during the development of diatoms (Cyclotella alchichicana), the cyanobacterial bloom (Nodularia sp.) and its decay. Vorticellids (Pelagovorticella natans, Vorticella sp.) had the highest APP uptake (median 130 APP cil(-1) h(-1)). Mixotrophic Euplotes cf. daidaleos were important APP grazers near the oxycline. Scuticociliates (Cyclidium glaucoma, Uronema nigricans and an anaerobic cf. Isocyclidium globossum), were numerically dominant within the hypolimnetic assemblages and did not ingest APP. Generally, APP were not an important food source for the majority of the ciliate assemblage, being positively selected by a few species during the APP decay in aerobic and microaerobic conditions.

  16. Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America.

    PubMed

    De Silva, Amila O; Spencer, Christine; Scott, Brian F; Backus, Sean; Muir, Derek C G

    2011-10-01

    Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (Lakes and in surface waters (0.16-5.7 ng L(-1)). PFOS was the major aliphatic PFA in fish from the Great Lakes. Concentrations of most of the PFAs were not statistically different from previously reported 2004 trout data in Lake Ontario. Shorter chain perfluorocarboxylates were prevalent in surface waters of the Great Lakes, dominated by PFOA (0.65-5.5 ng/L). An impurity in the commercial PFECHS formulation, perfluoromethylcyclohexane sulfonate (PFMeCHS), was also detected in the dissolved phase but not above detection limits in fish tissue. Bioaccumulation factors (BAFs) were estimated by taking the ratio of fish to water concentrations. The mean log BAF values corresponded to 2.8 for PFECHS, 2.1 for PFOA, and 4.5 for PFOS. It is not certain whether the fish-water BAF for PFECHS is an overestimate due to the influence of precursor biotransformation. Further studies are recommended to understand the extent of PFECHS contamination.

  17. Perfluoroalkyl acids in the egg yolk of birds from Lake Shihwa, Korea.

    PubMed

    Yoo, Hoon; Kannan, Kurunthachalam; Kim, Seong Kyu; Lee, Kyu Tae; Newsted, John L; Giesy, John P

    2008-08-01

    Concentrations of perfluoroalkyl acids (PFAs) were measured in egg yolks of three species of birds, the little egret (Egretta garzetta), little ringed plover (Charadrius dubius), and parrot bill (Paradoxornis webbiana), collected in and around Lake Shihwa, Korea, which receives wastewaters from an adjacent industrial complex. Mean concentrations of perfluorooctanesulfonate (PFOS) ranged from 185 to 314 ng/g ww and were similar to those reported for bird eggs from other urban areas. Long-chain perfluorocarboxylic acids (PFCAs) were also found in egg yolks often at great concentrations. Mean concentrations of perfluoroundecanoic acid (PFUnA) ranged from 95 to 201 ng/g ww. Perfluorooctanoic acid was detected in 32 of 44 egg samples, but concentrations were 100-fold less than those of PFOS. Relative concentrations of PFAs in all three species were similar with the predominance of PFOS (45-50%). There was a statistically significant correlation between PFUnA and perfluorodecanoic acid in egg yolks (p < 0.05), suggesting a common source of PFCAs. Using measured egg concentrations and diet concentrations, the ecological risk of the PFOS and PFA mixture to birds in Lake Shihwa was evaluated using two different approaches. Estimated hazard quotients were similar between the two approaches. The concentration of PFOS associated with 90th centile in bird eggs was 100-fold less than the lowest observable adverse effect level determined for birds, and those concentrations were 4-fold less than the suggested toxicity reference values. On the basis of limited toxicological data, current concentrations of PFOS are less than what would be expected to have an adverse effect on birds in the Lake Shihwa region.

  18. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity.

    PubMed

    Lu, Zhongjing; Breidt, Fred

    2015-01-01

    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment.

  19. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity

    PubMed Central

    Lu, Zhongjing; Breidt, Fred

    2015-01-01

    A novel phage, Φ241, specific for Escherichia coli O157:H7 was isolated from an industrial cucumber fermentation where both acidity (pH ≤ 3.7) and salinity (≥5% NaCl) were high. The phage belongs to the Myoviridae family. Its latent period was 15 min and average burst size was 53 phage particles per infected cell. The phage was able to lyse 48 E. coli O157:H7 strains, but none of the 18 non-O157 strains (including E. coli O104:H7) or the 2 O antigen-negative mutants of O157:H7 strain, 43895Δper (also lacking H7 antigen) and F12 (still expressing H7 antigen). However, the phage was able to lyse a per-complemented strain (43895ΔperComp) which expresses O157 antigen. These results indicated that phage Φ241 is specific for O157 antigen, and E. coli strains lacking O157 antigen were resistant to the phage infection, regardless of the presence or absence of H7 antigen. SDS-PAGE profile revealed at least 13 structural proteins of the phage. The phage DNA was resistant to many commonly used restriction endonucleases, suggesting the presence of modified nucleotides in the phage genome. At the multiplicity of infection of 10, 3, or 0.3, the phage caused a rapid cell lysis within 1 or 2 h, resulting in 3.5- or 4.5-log-unit reduction in cell concentration. The high lytic activity, specificity and tolerance to low pH and high salinity make phage Φ241 a potentially ideal biocontrol agent of E. coli O157:H7 in various foods. To our knowledge, this is the first report on E. coli O157:H7 phage isolated from high acidity and salinity environment. PMID:25741324

  20. Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2013-07-01

    In this work we have investigated the contribution of pretreatment with 0.1 and 0.5mM salicylic acid (SA) to the protection against salt stress in root nodules of Medicago sativa in symbiosis with Sinorhizobium meliloti. SA alleviated the inhibition induced by salinity in the plant growth and photosynthetic capacity of M. sativa-S. meliloti symbiosis. In addition, SA prevented the inhibition of the nitrogen fixation capacity under salt stress since nodule biomass was not affected by salinity in SA pretreated plants. Antioxidant enzymes peroxidase (POX), superoxide dismutase (SOD), ascorbate peroxidase (APX), dehidroascorbate reductase (DHAR) and glutathione reductase (GR), key in the main pathway that scavenges H2O2 in plants, were induced by SA pretreatments which suggest that SA may participate in the redox balance in root nodules under salt stress. Catalase activity (CAT) was inhibited around 40% by SA which could be behind the increase of H2O2 detected in nodules of plants pretreated with SA. The accumulation of polyamines (PAs) synthesized in response to salinity was prevented by SA which together with the induction of 1-aminocyclopropane-l-carboxylic acid (ACC) content suggest the prevalence of the ethylene signaling pathway induced by SA in detriment of the synthesis of PAs. In conclusion, SA alleviated the negative effect of salt stress in the M. sativa-S. meliloti symbiosis through the increased level of nodule biomass and the induction of the nodular antioxidant metabolism under salt stress. The H2O2 accumulation and the PAs inhibition induced by SA in nodules of M. sativa suggest that SA activates a hypersensitive response dependent on ethylene.

  1. Using Fiber Optic Distributed Temperature Sensing (DTS) to Assess Groundwater-Lake Exchange in an Acid Mine Lake in Eastern Germany

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Fleckenstein, J.; Neumann, C.; Tyler, S. W.

    2008-12-01

    Groundwater flows through contaminated mine sites are a major concern in many parts of the world. In this study, a variety of instrumentation was used to locate and quantify groundwater inflows into an acid lake on an abandoned mine site in Brandenburg, Germany. While previously-installed piezometers and seepage meters had identified several points of groundwater influx into the lake, such techniques are spatially limited to the point of installation. To address this limitation, a fiber-optic distributed temperature sensor (DTS) was deployed across the lake bottom and in vertical profilers to confirm and expand the previously generated data sets. Fiber-optic DTS, a relatively new technology, provides the opportunity to measure temperature on very high spatial and temporal scales using Raman spectra scattering of pulsed light within a glass fiber. A 1000 meter cable was deployed spatially along the sediment-water interface to identify spatially scattered areas of groundwater inflow, while two high-resolution probes (which return temperature readings every 2.4 vertical cm) were installed vertically near existing seepage meters. Preliminary analysis of the vertical deployments showed substantial groundwater upwelling, confirming the results of previous seepage meter measurements which showed significant vertical flux into the lake. Ongoing analysis of the lateral deployment is expected to identify areas in which there are anomalies in the diurnal temperature cycle at the lake bottom; such anomalies may indicate groundwater influx into the lake. These areas will be used to locate future seepage meter and piezometer installations.

  2. Common Loon (Gavia immer) eggshell thickness and egg volume vary with acidity of nest lake in northern Wisconsin

    USGS Publications Warehouse

    Pollentier, C.D.; Kenow, K.P.; Meyer, M.W.

    2007-01-01

    Environmental acidification has been associated with factors that may negatively affect reproduction in many waterbirds. Declines in lake pH can lead to reductions in food availability and quality, or result in the altered availability of toxic metals, such as mercury. A recent laboratory study conducted by the U.S. Geological Survey and the Wisconsin Department of Natural Resources indicated that Common Loon (Gavia immer) chicks hatched from eggs collected on acidic lakes in northern Wisconsin may be less responsive to stimuli and exhibit reduced growth compared to chicks from neutral-pH lakes. Here we report on the relation between Common Loon egg characteristics (eggshell thickness and egg volume) and lake pH, as well as eggshell methylmercury content. Eggs (N = 84) and lake pH measurements were obtained from a four county region of northern Wisconsin. Egg-shells were 3-4% thinner on lakes with pH ??? 6.3 than on neutral-pH lakes and this relation was linear across the pH range investigated (P 0.05, n.s.) or lake pH. Results suggest that low lake pH may be associated with thinner eggshells and reduced egg volume in Common Loons. We speculate on the mechanisms that may lead to this phenomeno.

  3. Effect of salinity on the fatty acid and triacylglycerol composition of five haptophyte algae from the genera Coccolithophora, Isochrysis and Prymnesium determined by LC-MS/APCI.

    PubMed

    Nedbalová, Linda; Střížek, Antonín; Sigler, Karel; Řezanka, Tomáš

    2016-10-01

    Non-aqueous reversed-phase high-performance liquid chromatography (NARP-HPLC) with atmospheric pressure chemical ionization (APCI) was used for separation of triacylglycerols from five strains of haptophyte algae (genera Coccolithophora, Isochrysis, and Prymnesium). This study describes the separation and identification of C18 polyunsaturated triacylglycerols containing stearidonic and octadecapentaenoic fatty acids, including their regioisomers. Salinity affects the proportion of saturated and unsaturated fatty acids. The biosynthesis of C18 polyunsaturated triacylglycerols was found to be very stereospecific and to depend on the salinity of cultivation media, asymmetric regioisomers predominating at low salinity (sn-OpOpSt and/or PoStSt) and symmetric ones at high salinity (sn-OpStOp and or StPoSt).

  4. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium: protein content and amino-acid profile

    PubMed Central

    Volkmann, Harriet; Imianovsky, Ulisses; Oliveira, Jorge L.B.; Sant’Anna, Ernani S.

    2008-01-01

    Arthrospira (Spirulina) platensis was cultivated in laboratory under controlled conditions (30°C, photoperiod of 12 hours light/dark provided by fluorescent lamps at a light intensity of 140 μmol photons.m-2.s-1 and constant bubbling air) in three different culture media: (1) Paoletti medium (control), (2) Paoletti supplemented with 1 g.L-1 NaCl (salinated water) and (3) Paoletti medium prepared with desalinator wastewater. The effects of these treatments on growth, protein content and amino acid profile were measured. Maximum cell concentrations observed in Paoletti medium, Paoletti supplemented with salinated water or with desalinator wastewater were 2.587, 3.545 and 4.954 g.L-1, respectively. Biomass in medium 3 presented the highest protein content (56.17%), while biomass in medium 2 presented 48.59% protein. All essential amino acids, except lysine and tryptophan, were found in concentrations higher than those requiried by FAO. PMID:24031187

  5. Fatty Acid composition of the muscle lipids of five fish species in işıklı and karacaören dam lake, Turkey.

    PubMed

    Citil, Ozcan Baris; Kalyoncu, Leyla; Kahraman, Oguzhan

    2014-01-01

    Total fatty acid composition of muscle lipids in some fish species (Cyprinus carpio (Işıklı Dam Lake), Tinca tinca (Işıklı Dam Lake), Scardinius erythrophthalmus (Işıklı Dam Lake), Cyprinus carpio (Karacaören Dam Lake), and Carassius carassius (Karacaören Dam Lake)) was determined by gas chromatography. Polyunsaturated fatty acids (PUFAs) of Cyprinus carpio (Işıklı Dam Lake) were found higher than PUFA of other species. Palmitic acid was the highest saturated fatty acid (SFA) in Tinca tinca (24.64%). Oleic acid was the highest monounsaturated fatty acid (MUFAs) in Cyprinus carpio (Işıklı Dam Lake) (19.25%). The most abundant polyunsaturated fatty acid in Scardinius erythrophthalmus was docosahexaenoic acid (DHA) (17.94%). Total ω3 fatty acid composition was higher than the total ω6 fatty acids of Cyprinus carpio in both dam lakes. ω3/ω6 rates in Cyprinus carpio (Işıklı Dam Lake), Tinca tinca, Scardinius erythrophthalmus, Cyprinus carpio (Karacaören), and Carassius carassius were 2.12, 1.19, 2.15, 2.87, and 2.82, respectively.

  6. Using Australian Acidic Playa Lakes as Analogs for Phyllosilicate and Sulfate Depositional Environments on Mars

    NASA Astrophysics Data System (ADS)

    Baldridge, A. M.; Michalski, J.; Kargel, J.; Hook, S.; Marion, G.; Crowley, J.; Bridges, N.; Brown, A.; Ribeiro da Luz, B.; de Souza Filho, C. R.; Thomson, B.

    2008-12-01

    Recent work on the origin of martian sulfates and their relationship to phyllosilicate deposits suggest that these deposits formed in different eras of Mars' history, under distinct environmental conditions. In southwestern Meridiani Planum phyllosilicates exist in close proximity to sulfate deposits. One possible explanation for this relationship is that it is an unconformable stratigraphic sequence, representing a significant change in aqueous geochemical conditions over time. Specifically, it may be interpreted to record a change in environment from neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to the Hesperian. On Earth, two different geochemical systems need not be evoked to explain such chemical variation. Acidic playa lakes in Western Australia have large pH differences separated by only a few tens of meters and demonstrate how highly variable chemistries can coexist over short distances in natural environments. Playa lakes on Earth tend to be dominated by lateral flow of water and salts leading to lateral chemical variation. Heterogeneity of playa mineralogy in Australia is due to the varied source rocks of brines and the mixing of dilute oxidizing brines and freshwater with the saturated evaporitic brines. This is evidenced by the ferricretes in the near-shore environment and more soluble phases in basin interiors. Playa lakes on Mars would be much larger than their terrestrial counterparts, leading to the prevalence of large-scale surface and crustal advection of water and salt rather than short-distance lateral flow, except at lake boundaries. Little or no influx of freshwater would preclude the formation of playa rim (e.g., crater rim) ferricretes and silcretes. Instead, we expect to see mainly vertical facies changes, and any diachronous lateral facies changes are expected to occur on very large spatial scales. Comparison of high spatial resolution, hyperspectral airborne data for Australian playa

  7. Spatial characterization of acid rain stress in Canadian Shield Lakes. Progress report, 1 August 1986-1 February 1987

    SciTech Connect

    Tanis, F.J.

    1987-01-01

    The acidification of lake waters from airborne pollution is of continental proportions both in North America and Europe. A major concern of the acid rain problem is the cumulative ecosystem damage to lakes and forest. The number of lakes affected in northeastern U.S. and on the Canadian Shield is though to be enormous. How seasonal changes in lake transparency are related to annual acidic load was examined. The relationship between variations in lake acidification and ecophysical units was also examined. The utility of Thematic Mapper based observations to measure seasonal changes in the optical transparency in acid lakes was investigated. The potential for this optical response is related to a number of local ecophysical factors with bedrock geology being, perhaps, the most important. Other factors include sulfate deposition, vegetative cover, and terrain drainage/relief. The area of southern Ontario contains a wide variety of geologies from the most acid rain sensitive granite quartzite types to the least sensitive limestone dolomite sediments. Annual sulfate deposition ranges from 1.0 to 4.0 grams/sq m.

  8. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  9. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization.

    PubMed

    Koizumi, Yoshikazu; Kojima, Hisaya; Fukui, Manabu

    2004-08-01

    Vertical distributions of dominant bacterial populations in saline meromictic Lake Kaiike were investigated throughout the water column and sediment by quantitative oligonucleotide probe membrane hybridization. Three oligonucleotide probes specific for the small-subunit (SSU) rRNA of three groups of Chlorobiaceae were newly designed. In addition, three general domain (Bacteria, Archaea, and Eukarya)-specific probes, two delta-Proteobacteria-specific probes, a Chlorobiaceae-specific probe, and a Chloroflexi-specific probe were used after optimization of their washing conditions. The abundance of the sum of SSU rRNAs hybridizing with probes specific for three groups of Chlorobiaceae relative to total SSU rRNA peaked in the chemocline, accounting for up to 68%. The abundance of the delta-proteobacterial SSU rRNA relative to total SSU rRNA rapidly increased just below the chemocline up to 29% in anoxic water and peaked at the 2- to 3-cm sediment depth at ca. 34%. The abundance of SSU rRNAs hybridizing with the probe specific for the phylum Chloroflexi relative to total SSU rRNA was highest (31 to 54%) in the top of the sediment but then steeply declined with depth and became stable at 11 to 19%, indicating the robust coexistence of sulfate-reducing bacteria and Chloroflexi in the top of the sediment. Any SSU rRNA of Chloroflexi in the water column was under the detection limit. The summation of the signals of group-specific probes used in this study accounted for up to 89% of total SSU rRNA, suggesting that the DGGE-oligonucleotide probe hybridization approach, in contrast to conventional culture-dependent approaches, was very effective in covering dominant populations.

  10. Inorganic carbon limitation and mixotrophic growth in Chlamydomonas from an acidic mining lake.

    PubMed

    Tittel, Jörg; Bissinger, Vera; Gaedke, Ursula; Kamjunke, Norbert

    2005-06-01

    Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150mg l(-1) Fe2+ +Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H-1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 micromol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses.

  11. Involvement of abscisic acid in the response of Medicago sativa plants in symbiosis with Sinorhizobium meliloti to salinity.

    PubMed

    Palma, F; López-Gómez, M; Tejera, N A; Lluch, C

    2014-06-01

    Legumes are classified as salt-sensitive crops with their productivity particularly affected by salinity. Abcisic acid (ABA) plays an important role in the response to environmental stresses as signal molecule which led us to study its role in the response of nitrogen fixation and antioxidant metabolism in root nodules of Medicago sativa under salt stress conditions. Adult plants inoculated with Sinorhizobium meliloti were treated with 1 μM and 10 μM ABA two days before 200 mM salt addition. Exogenous ABA together with the salt treatment provoked a strong induction of the ABA content in the nodular tissue which alleviated the inhibition induced by salinity in the plant growth and nitrogen fixation. Antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) were induced by ABA pre-treatments under salt stress conditions which together with the reduction of the lipid peroxidation, suggest a role for ABA as signal molecule in the activation of the nodular antioxidant metabolism. Interaction between ABA and polyamines (PAs), described as anti-stress molecules, was studied being detected an induction of the common polyamines spermidine (Spd) and spermine (Spm) levels by ABA under salt stress conditions. In conclusion, ABA pre-treatment improved the nitrogen fixation capacity under salt stress conditions by the induction of the nodular antioxidant defenses which may be mediated by the common PAs Spd and Spm that seems to be involved in the anti-stress response induced by ABA.

  12. Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China.

    PubMed

    Li, Weiwei; Zhang, Fenfen; Ye, Qi; Wu, Dan; Wang, Liying; Yu, Yihua; Deng, Bing; Du, Jinzhou

    2017-04-01

    Fulvic acid (FA) plays a significant role in biogenic-elemental cycling in aquatic ecosystems which is highly dependent on their organic composition. In this study, the aquatic FA contents and binding properties during bloom and non-bloom periods in Taihu Lake were investigated by two-dimensional correlation spectroscopy Fourier transform infrared spectroscopy (2D-COS-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. Compared with non-bloom FA, bloom FA was of lower nitrogen content and higher C/N ratio. It contained more carboxylic and aliphatic groups while less amide groups. 2D-COS-FTIR spectra evidenced the carboxyl groups in bloom FA had the fastest response to Cu(II) binding. Also, polysaccharide in bloom FA was more susceptive to Cu(II) concentrations than that in non-bloom FA. While comparing with bloom FA, the N-rich organic compounds in non-bloom FA exhibited faster binding sequence with Cu(II). A comprehensive scheme about the interaction process of FA-Cu(II) showed that both nitrogenous and oxygenic groups in FAs were active in binding to Cu(II). The alteration in binding behaviors of organic groups in FAs to Cu(II) may have been driven by algal products and microbial community variety in Taihu Lake. Our results here have the potential to contribute significantly to future studies of dissolved organic matter dynamic biogeochemistry processes and trace metal cycling processes in eutrophic lakes.

  13. Dissolution of resin acids, retene and wood sterols from contaminated lake sediments.

    PubMed

    Meriläinen, Päivi; Lahdelma, Ilpo; Oikari, Laura; Hyötyläinen, Tarja; Oikari, Aimo

    2006-10-01

    The dissolution potency of hydrophobic resin acids (RAs), retene and wood sterols from sediments was studied. These wood extractives and their metabolites are sorbed from pulp and paper mill effluents to downstream sediments. With harmful components like these, sediments can pose a hazard to the aquatic environment. Therefore, sediment elutriates with water were produced under variable conditions (agitation rate and efficiency, time), and concentrations of the dissoluted compounds were analyzed. Both naturally contaminated field sediments and artificially spiked sediments were studied. By vigorous agitation RAs can be released fast from the sediment matrix and equilibrium reached within 3 days. Compared to RAs, desorption of retene from lake sediment was slower and did not completely reach equilibrium in 23 days. Sterols spiked to pristine sediment with a 33-day contact time desorbed faster than those associated authentically with industrial sediment of from a contaminated lake. Simulating the water turbulence adjacent to a sediment surface by low and high rate of agitation in the laboratory, an increase in the mixing rate after 43-day elutriation suddenly released a high amount of wood sterols. The results indicate wide variation between hazardous chemicals in their tendency to dissolution from sediment solids. Erosion and hydrology adjacent to the sediment surface, as well as risks from dredging activities of sediments, may expose lake biota to bioactive chemicals.

  14. The effect of fluid composition, salinity, and acidity on subcritical crack growth in calcite crystals

    NASA Astrophysics Data System (ADS)

    Bergsaker, Anne Schad; Røyne, Anja; Ougier-Simonin, Audrey; Aubry, Jérôme; Renard, François

    2016-03-01

    Chemically activated processes of subcritical cracking in calcite control the time-dependent strength of this mineral, which is a major constituent of the Earth's brittle upper crust. Here experimental data on subcritical crack growth are acquired with a double torsion apparatus to characterize the influence of fluid pH (range 5-7.5) and ionic strength and species (Na2SO4, NaCl, MgSO4, and MgCl2) on the propagation of microcracks in calcite single crystals. The effect of different ions on crack healing has also been investigated by decreasing the load on the crack for durations up to 30 min and allowing it to relax and close. All solutions were saturated with CaCO3. The crack velocities reached during the experiments are in the range 10-9-10-2 m/s and cover the range of subcritical to close to dynamic rupture propagation velocities. Results show that for calcite saturated solutions, the energy necessary to fracture calcite is independent of pH. As a consequence, the effects of fluid salinity, measured through its ionic strength, or the variation of water activity have stronger effects on subcritical crack propagation in calcite than pH. Consequently, when considering the geological sequestration of CO2 into carbonate reservoirs, the decrease of pH within the range of 5-7.5 due to CO2 dissolution into water should not significantly alter the rate of fracturing of calcite. Increase in salinity caused by drying may lead to further reduction in cracking and consequently a decrease in brittle creep. The healing of cracks is found to vary with the specific ions present.

  15. Influence of copper recovery on the water quality of the acidic Berkeley Pit lake, Montana, U.S.A.

    PubMed

    Tucci, Nicholas J; Gammons, Christopher H

    2015-04-07

    The Berkeley Pit lake in Butte, Montana, formed by flooding of an open-pit copper mine, is one of the world's largest accumulations of acidic, metal-rich water. Between 2003 and 2012, approximately 2 × 10(11) L of pit water, representing 1.3 lake volumes, were pumped from the bottom of the lake to a copper recovery plant, where dissolved Cu(2+) was precipitated on scrap iron, releasing Fe(2+) back to solution and thence back to the pit. Artificial mixing caused by this continuous pumping changed the lake from a meromictic to holomictic state, induced oxidation of dissolved Fe(2+), and caused subsequent precipitation of more than 2 × 10(8) kg of secondary ferric compounds, mainly schwertmannite and jarosite, which settled to the bottom of the lake. A large mass of As, P, and sulfate was also lost from solution. These unforeseen changes in chemistry resulted in a roughly 25-30% reduction in the lake's calculated and measured total acidity, which represents a significant potential savings in the cost of lime treatment, which is not expected to commence until 2023. Future monitoring is needed to verify that schwertmannite and jarosite in the pit sediment do not convert to goethite, a process which would release stored acidity back to the water column.

  16. Fatty acid composition of freshwater wild fish in subalpine lakes: a comparative study.

    PubMed

    Vasconi, Mauro; Caprino, Fabio; Bellagamba, Federica; Busetto, Maria Letizia; Bernardi, Cristian; Puzzi, Cesare; Moretti, Vittorio Maria

    2015-03-01

    In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g(-1) wet weight (range 0.6-9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n-3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n-9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n-3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n-3 fatty acids and the highest contents of n-6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n-9, 18:3n-3, 22:6n-3 and 20:4n-6. The quantitative amounts n-3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n-3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900-1,000 mg 100 g(-1) fresh fillet.

  17. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-10

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L(-1)), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  18. Use of sequential sampling of amphipod abundance to classify the biotic integrity of acid-sensitive lakes

    NASA Astrophysics Data System (ADS)

    France, Robert

    1992-03-01

    A sequential sampling program using previously published zoobenthos data is described for ubiquitous, cost-effective biomonitoring of the effects of lake acidification. Spring densities of the littoral amphipod Hyalella azteca are quantitatively sorted into five abundance catagories. An essential step in the a priori definition of decision criteria is the stratification of proportional densities per unit macrophyte biomass in relation to aqueous total phosphorus concentrations. Density rankings were related to lake acidity and to detailed lake-specific information on patterns of Hyalella life history and acid tolerance. Incorporation of Hyalella abundance as a potential metric for the assessment of the biological integrity of acid-sensitive waters is recommended. The temporal integration of transient changes in spring meltwater chemistry is an important rationale for the development of such biomonitoring procedures.

  19. Freshwater oncolites created by industrial pollution, Onondaga Lake, New York

    NASA Astrophysics Data System (ADS)

    Dean, Walter E.; Eggleston, Jane R.

    1984-08-01

    Onondaga Lake is a moderately saline, eutrophic lake characterized by waters rich in calcium, sodium, chloride and bicarbonate. Large quantities of CaCO 3 that are precipitated in the lake result from excess calcium supplied as calcium chloride wastes produced by soda-ash manufacturing to lake waters that are at or near saturation with respect to CaCO 3 from solution of carbonate rocks in the drainage basin. Beaches along the leeward (northeastern) shore of the lake are composed almost entirely of oncolites ranging from a few millimeters to several centimeters in maximum dimension. Offshore, in 1-2 m of water, the oncolites are biscuit-shaped concretions as much as 15 cm in diameter. The oncolites consist mainly of low-magnesium calcite, but dissolution of the carbonate with dilute acid results in a mass of blue-green algal filaments of the same approximate size and shape as the original oncolite. Most oncolites have an obvious nucleus; the most common nucleus is the hollow stem and cortication tubules of charophytes. Charophytes do not occur in Onondaga Lake today although they are common in other limestone-bedrock lakes in central New York State. Charophytes probably were eliminated by the marked increases in salinity of the lake that resulted from the introduction of soda-ash manufacturing on the lake shores around 1880 which means that growth of the oncolites began at least 100 years ago.

  20. Gas flushing through hyper-acidic crater lakes: the next steps within a reframed monitoring time window

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri

    2016-04-01

    Tracking variations in the chemical composition, water temperature and pH of brines from peak-activity crater lakes is the most obvious way to forecast phreatic activity. Volcano monitoring intrinsically implies a time window of observation that should be synchronised with the kinetics of magmatic processes, such as degassing and magma intrusion. To decipher "how much time ago" a variation in degassing regime actually occurred before eventually being detected in a crater lake is key, and depends on the lake water residence time. The above reasoning assumes that gas is preserved as anions in the lake water (SO4, Cl, F anions), in other words, that scrubbing of acid gases is complete and irreversible. Less is true. Recent work has confirmed, by direct MultiGas measurement from evaporative plumes, that even the strongest acid in liquid medium (i.e. SO2) degasses from hyper-acidic crater lakes. The less strong acid HCl has long been recognised as being more volatile than hydrophyle in extremely acidic solutions (pH near 0), through a long-term steady increase in SO4/Cl ratios in the vigorously evaporating crater lake of Poás volcano. We now know that acidic gases flush through hyper-acidic crater lake brines, but we don't know to which extend (completely or partially?), and with which speed. The chemical composition hence only reflects a transient phase of the gas flushing through the lake. In terms of volcanic surveillance this brings the advantage that the monitoring time window is definitely shorter than defined by the water chemistry, but yet, we do not know how much shorter. Empirical experiments by Capaccioni et al. (in press) have tried to tackle this kinetic problem for HCl degassing from a "lab-lake" on the short-term (2 days). With this state of the art in mind, two new monitoring strategies can be proposed to seek for precursory signals of phreatic eruptions from crater lakes: (1) Tracking variations in gas compositions, fluxes and ratios between species in

  1. Assessment of factors limiting algal growth in acidic pit lakes--a case study from Western Australia, Australia.

    PubMed

    Kumar, R Naresh; McCullough, Clint D; Lund, Mark A; Larranaga, Santiago A

    2016-03-01

    Open-cut mining operations can form pit lakes on mine closure. These new water bodies typically have low nutrient concentrations and may have acidic and metal-contaminated waters from acid mine drainage (AMD) causing low algal biomass and algal biodiversity. A preliminary study was carried out on an acidic coal pit lake, Lake Kepwari, in Western Australia to determine which factors limited algal biomass. Water quality was monitored to obtain baseline data. pH ranged between 3.7 and 4.1, and solute concentrations were slightly elevated to levels of brackish water. Concentrations of N were highly relative to natural lakes, although concentrations of FRP (<0.01 mg/L) and C (total C 0.7-3.7 and DOC 0.7-3.5 mg/L) were very low, and as a result, algal growth was also extremely low. Microcosm experiment was conducted to test the hypothesis that nutrient enrichment will be able to stimulate algal growth regardless of water quality. Microcosms of Lake Kepwari water were amended with N, P and C nutrients with and without sediment. Nutrient amendments under microcosm conditions could not show any significant phytoplankton growth but was able to promote benthic algal growth. P amendments without sediment showed a statistically higher mean algal biomass concentration than controls or microcosms amended with phosphorus but with sediment did. Results indicated that algal biomass in acidic pit lake (Lake Kepwari) may be limited primarily by low nutrient concentrations (especially phosphorus) and not by low pH or elevated metal concentrations. Furthermore, sediment processes may also reduce the nutrient availability.

  2. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.

    PubMed

    Wendt-Potthoff, Katrin; Koschorreck, M

    2002-01-01

    Acidic volcanic waters are naturally occurring extreme habitats that are subject of worldwide geochemical research but have been little investigated with respect to their biology. To fill this gap, the microbial ecology of a volcanic acidic river (pH approximately equal to 0-1.6), Rio Agrio, and the recipient lake Caviahue in Patagonia, Argentina, was studied. Water and sediment samples were investigated for Fe(II), Fe(III), methane, bacterial abundances, biomass, and activities (oxygen consumption, iron oxidation and reduction). The extremely acidic river showed a strong gradient of microbial life with increasing values downstream and few signs of life near the source. Only sulfide-oxidizing and fermentative bacteria could be cultured from the upper part of Rio Agrio. However, in the lower part of the system, microbial biomass and oxygen penetration and consumption in the sediment were comparable to non-extreme aquatic habitats. To characterize similarities and differences of chemically similar natural and man-made acidic waters, our findings were compared to those from acidic mining lakes in Germany. In the lower part of the river and the lake, numbers of iron and sulfur bacteria and total biomass in sediments were comparable to those known from acidic mining lakes. Bacterial abundance in water samples was also very similar for both types of acidic water (around 10(5) mL(-1)). In contrast, Fe(II) oxidation and Fe(III) reduction potentials appeared to be lower despite higher biogenic oxygen consumption and higher photosynthetic activity at the sediment-water interface. Surprisingly, methanogenesis was detected in the presence of high sulfate concentrations in the profundal sediment of Lake Caviahue. In addition to supplementing microbiological knowledge on acidic volcanic waters, our study provides a new view of these extreme sites in the general context of aquatic habitats.

  3. Estimated quantitative amino acid requirements for Florida pompano reared in low-salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most marine carnivores, Florida pompano require relatively high crude protein diets to obtain optimal growth. Precision formulations to match the dietary indispensable amino acid (IAA) pattern to a species’ requirements can be used to lower the overall dietary protein. However IAA requirem...

  4. High Elevation Lakes of the Western US: Are we Studying Systems Recovering from Excess Atmospheric Deposition of Acids and Nutrients?

    NASA Astrophysics Data System (ADS)

    Sickman, J. O.

    2011-12-01

    Instrumental records and monitoring of high elevation lakes began in most areas of the western US in the early 1980s. Much effort has been devoted to detecting changes in these aquatic ecosystems resulting from increased atmospheric deposition of acids and nutrients. However, there is growing evidence that thresholds for atmospheric pollutants were crossed much earlier in the 20th Century and that some of the subsequent hydrochemical and ecological changes observed in these lakes may be the result of recovery from earlier atmospheric forcing. We examine responses of high elevation lakes to atmospheric deposition on annual to century timescales using data from a 29-year study of Emerald Lake (Sequoia National Park) and paleolimnological analyses of other high elevation lakes incorporating diatom species analyses and geochemical proxies for fossil-fuel burning. At Emerald Lake, we have observed multiple transitions between nitrogen and phosphorus limitation of phytoplankton, the earliest of which occurred in the beginning of the 1980s and may be the result of reduction in N deposition due to the Clean Air Act. Critical loads analyses incorporating diatom species in lake sediments suggest that thresholds for N deposition were crossed in the period of 1950-1980 in the Rocky Mountains and likely much earlier, 1900-1920, in the Sierra Nevada. Diatom species composition is strongly controlled by acid neutralizing capacity (ANC) in the Sierra Nevada and we have observed a pronounced decline and recovery of ANC over the period of 1920-1980 in some Sierra Nevada lakes that coincides with the abundance of spheroidal carbonaceous particles (i.e., a diagnostic tracer of fossil fuel combustion) preserved in lake sediments; these patterns appear to be driven by increased emissions of oxidized N and S in the mid-20th Century and reductions in acid precursor levels caused by the Clean Air Act in the 1970s. Thus, when interpreting observational records from western high elevation

  5. Influence of bioturbation on the biogeochemistry of the sediment in the littoral zone of an acidic mine pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2010-10-01

    In the last decades, the mining exploitation of large areas in Lusatia (South-eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the oxygen consumption by sediment, and stimulated the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  6. Influence of bioturbation on the biogeochemistry of littoral sediments of an acidic post-mining pit lake

    NASA Astrophysics Data System (ADS)

    Lagauzère, S.; Moreira, S.; Koschorreck, M.

    2011-02-01

    In the last decades, the mining exploitation of large areas in Lusatia (Eastern Germany) but also in other mining areas worldwide has led to the formation of hundreds of pit lakes. Pyrite oxidation in the surrounding dumps makes many such lakes extremely acidic (pH < 3). The biogeochemical functioning of these lakes is mainly governed by cycling of iron. This represents a relevant ecological problem and intensive research has been conducted to understand the involved biogeochemical processes and develop bioremediation strategies. Despite some studies reporting the presence of living organisms (mostly bacteria, algae, and macro-invertebrates) under such acidic conditions, and their trophic interactions, their potential impact on the ecosystem functioning was poorly investigated. The present study aimed to assess the influence of chironomid larvae on oxygen dynamics and iron cycle in the sediment of acidic pit lakes. In the Mining Lake 111, used as a study case since 1996, Chironomus crassimanus (Insecta, Diptera) is the dominant benthic macro-invertebrate species and occurs at relatively high abundances in shallow water. A 16-day laboratory experiment using microcosms combined with high resolution measurements (DET gel probes and O2 microsensors) was carried out. The burrowing activity of C. crassimanus larvae induced a 3-fold increase of the diffusive oxygen uptake by sediment, indicating a stimulation of the mineralization of organic matter in the upper layers of the sediment. The iron cycle was also impacted (e.g. lower rates of reduction and oxidation, increase of iron-oxidizing bacteria abundance, stimulation of mineral formation) but with no significant effect on the iron flux at the sediment-water interface, and thus on the water acidity budget. This work provides the first assessment of bioturbation in an acidic mining lake and shows that its influence on biogeochemistry cannot be neglected.

  7. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Ozonation of azo dyes (Orange II and Acid Red 27) in saline media.

    PubMed

    Silva, Alessandra C; Pic, Jean Stephane; Sant'Anna, Geraldo L; Dezotti, Marcia

    2009-09-30

    Ozonation of two azo dyes was investigated in a monitored bench scale bubble column reactor (8.5-L), varying liquid media salt content (0, 1, 40 and 100 g L(-1), NaCl). In experiments with Orange II pH was varied (5, 7.5 and 9) but ozonation of Acid Red 27 was performed at pH 7.5. Ozone self-decomposition rate-constant increased with salt concentration. Color removal was very effective and fast achieved under all experimental conditions. For the two azo dyes tested, more than 98% of color intensity was removed in 30-min ozonation assays. However, only partial mineralization of azo dyes (45%-Orange II; 20%-Acid Red 27) was attained in such experiments. The degree of mineralization (TOC removal) was negatively affected by salt concentration. Biodegradation assays conducted by respirometry revealed the inhibitory effect of dye degradation products formed during ozonation.

  9. Enrichment of Non-Terrestrial L-Proteinogenic Amino Acids by Aqueous Alteration on the Tagish Lake Meteorite Parent Body

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael P.; Dworkin, Jason P.; Herd, Christopher D. K.

    2012-01-01

    The distribution and isotopic and enantiomeric compositions of amino acids found in three distinct fragments of the Tagish Lake C2-type carbonaceous chondrite were investigated via liquid chromatography fluorescence detection time-of-flight mass spectrometry and gas chromatography isotope ratio mass spectrometry. Large L-enantiomeric excesses (L(sub ee) approx. 43 to 59%) of the a-hydrogen aspartic and glutamic amino acids were measured in Tagish Lake, whereas alanine, another alpha-hydrogen protein amino acid, was found to be nearly racemic (D approx. L) using both techniques. Carbon isotope measurements of D- and L-aspartic acid and D- and L-alanine in Tagish Lake fall well outside of the terrestrial range and indicate that the measured aspartic acid enantioenrichment is indigenous to the meteorite. Alternate explanations for the Lexcesses of aspartic acid such as interference from other compounds present in the sample, analytical biases, or terrestrial amino acid contamination were investigated and rejected. These results can be explained by differences in the solid-solution phase behavior of aspartic acid, which can form conglomerate enantiopure solids during crystallization, and alanine, which can only form racemic crystals.

  10. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts.

    PubMed

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  11. New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

    PubMed Central

    Aloisi, Iris; Parrotta, Luigi; Ruiz, Karina B.; Landi, Claudia; Bini, Luca; Cai, Giampiero; Biondi, Stefania; Del Duca, Stefano

    2016-01-01

    Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the

  12. Critical loads of acidity for 90,000 lakes in northern Saskatchewan: A novel approach for mapping regional sensitivity to acidic deposition

    NASA Astrophysics Data System (ADS)

    Cathcart, H.; Aherne, J.; Jeffries, D. S.; Scott, K. A.

    2016-12-01

    Atmospheric emissions of sulphur dioxide (SO2) from large point sources are the primary concern for acidic deposition in western Canada, particularly in the Athabasca Oil Sands Region (AOSR) where prevailing winds may potentially carry SO2 over acid-sensitive lakes in northern Saskatchewan. A novel catchment-scale regression kriging approach was used to assess regional sensitivity and critical loads of acidity for the total lake population of northern Saskatchewan (89,947 lakes). Lake catchments were delineated using Thiessen polygons, and surface water chemistry was predicted for sensitivity indicators (calcium, pH, alkalinity, and acid neutralizing capacity). Critical loads were calculated with the steady state water chemistry model using regression-kriged base cations, sulphate, and dissolved organic carbon concentrations modelled from surface water observations (n > 800) and digital landscape-scale characteristics, e.g., climate, soil, vegetation, landcover, and geology maps. A large region (>13,726 km2) of two or more indicators of acid sensitivity (pH < 6 and acid neutralizing capacity, alkalinity, calcium < 50 μeq L-1) and low critical loads < 5 meq m-2 yr-1 were predicted on the Athabasca Basin. Exceedance of critical loads under 2006 modelled total sulphate deposition was predicted for 12% of the lakes (covering an area of 3742 km2), primarily located on the Athabasca Basin, within 100 km of the AOSR. There have been conflicting scientific reports of impacts from atmospheric emissions from the AOSR; the results of this study suggest that catchments in the Athabasca Basin within 100 km of the AOSR have received acidic deposition in excess of their critical loads and many of them may be at risk of ecosystem damage owing to their sensitivity.

  13. Survival mechanisms in Antarctic lakes.

    PubMed Central

    Laybourn-Parry, Johanna

    2002-01-01

    In Antarctic lakes, organisms are confronted by continuous low temperatures as well as a poor light climate and nutrient limitation. Such extreme environments support truncated food webs with no fish, few metazoans and a dominance of microbial plankton. The key to success lies in entering the short Antarctic summer with actively growing populations. In many cases, the most successful organisms continue to function throughout the year. The few crustacean zooplankton remain active in the winter months, surviving on endogenous energy reserves and, in some cases, continuing development. Among the Protozoa, mixotrophy is an important nutritional strategy. In the extreme lakes of the McMurdo Dry Valleys, planktonic cryptophytes are forced to sustain a mixotrophic strategy and cannot survive by photosynthesis alone. The dependence on ingesting bacteria varies seasonally and with depth in the water column. In the Vestfold Hills, Pyramimonas, which dominates the plankton of some of the saline lakes, also resorts to mixotrophy, but does become entirely photosynthetic at mid-summer. Mixotrophic ciliates are also common and the entirely photosynthetic ciliate Mesodinium rubrum has a widespread distribution in the saline lakes of the Vestfold Hills, where it attains high concentrations. Bacteria continue to grow all year, showing cycles that appear to be related to the availability of dissolved organic carbon. In saline lakes, bacteria experience sub-zero temperatures for long periods of the year and have developed biochemical adaptations that include anti-freeze proteins, changes in the concentrations of polyunsaturated fatty acids in their membranes and suites of low-temperature enzymes. PMID:12171649

  14. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    NASA Astrophysics Data System (ADS)

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Jorgenson, Janet; McGimsey, Robert G.; Wang, Bronwen

    2008-07-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8 × 106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfur content. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetation-damaging acidic aerosols accompanying drainage of an acidic

  15. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    USGS Publications Warehouse

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  16. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2016-10-11

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  17. Phytoplankton limitation by phosphorus and zooplankton grazing in an acidic Adirondack lake

    SciTech Connect

    Singer, R.; Evans, G.L.; Pratt, N.C.

    1984-08-01

    Lakes which are believed to have been acidified by atmospheric deposition of anthropogenic substances are known for their unusually high water clarity and low nutrient concentrations. Some evidence indicates that alterations in predator/prey relationships, an indirect effect of acidification, bring about the increase in water clarity. Enclosures were used to study the effects of phosphorus addition and zooplankton removal on the phytoplankton of an acidic lake in the Adirondack Mountains of New York. Fertilized enclosures had significantly lower alkalinities and contained significantly more dissolved oxygen after the incubation period than did unfertilized enclosures. The P concentration remained at or near the limit of detection in the unfertilized enclosures. The phytoplankton population bloomed after the addition of 80 micro g/liter of phosphate as KH/sub 2/PO/sub 4/. The response was measured by cell counts of the dominant phytoplankton. Chlamydomonas, and by changes in chlorophyll a concentration. About half the number of algal cells were present after the two week incubation when zooplankton were not removed, indicating that zooplankton herbivory can influence, but not totally control, the algal production. 46 references.

  18. Acid Saline Weathering of A Massive Sulfide and Gossan Formation: Implications for Development and Preservation of Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Williams, A. J.; Sumner, D. Y.; Zierenberg, R. A.

    2010-12-01

    The surface of modern Mars is rich in S and Fe minerals. Variations in water activity and the weathering reactions of these minerals have been integral to developing Martian surface conditions during the last 2 Ga. Terrestrial gossans, especially those formed from acid-saline solutions at low water-rock ratio, provide an important analog for understanding how S and Fe minerals may have weathered on Mars. Acidophiles and chemolithotrophs have been identified in these environments on Earth, so they also comprise a model system for putative biosignature formation and preservation that is relevant to conditions on early Mars. The Iron Mountain massive sulfide deposit is capped by a gossan, parts of which were exposed at the surface prior to mining, and parts of which have been exposed for several decades. The deposit is located in seasonally dry northern CA with high late spring to early fall evaporation rates. Samples of pyrite, iron-oxide-rich, and sulfate-rich gossan were collected during the dry season in late spring 2010. Mineral species identified with SEM-EDS, XRD, and optical microscopy include: pyrite, goethite, lepitocrocite, hematite, schwartmanite, gypsum, quartz, and acanthite. As yet unidentified soluble sulfate minerals formed by evaporative concentration are also present. Distilled water added to a pyrite-sulfate sample yielded a pH of ~2.5 once the evaporites dissolved. The spatial variability of minerals and the extent of alteration provide the opportunity to study weathering gradients and solution/reprecipitation in this system. Putative microbial communities containing filaments have been observed in small patches on sample surfaces and in fractures with FEG-SEM and optical microscopy. Although present, textural features interpreted to have formed microbially are sparse. The relative paucity of microbial morphologies in this analog acid-saline system combined with their heterogeneous spatial distribution presents a challenge for remote detection by

  19. Hydrogeochemical features of Lake Ngozi (SW Tanzania)

    NASA Astrophysics Data System (ADS)

    Delalande-Le Mouëllic, Manuëlla; Gherardi, Fabrizio; Williamson, David; Kajula, Stephen; Kraml, Michael; Noret, Aurélie; Abdallah, Issah; Mwandapile, Ezekiel; Massault, Marc; Majule, Amos; Bergonzini, Laurent

    2015-03-01

    Located on the triple rift junction hosting the Karonga-Usungu depression in Tanzania, Lake Ngozi is the second largest crater lake of the East African Rift. The lake has a number of peculiar features: it has a near constant water level, no permanent surface inlets and outlets, it is vertically well-mixed, with homogeneous distribution of temperature and chemical composition, and it is characterised by near neutral to slightly acid Na-Cl waters of comparatively high salinity and high P-CO2. Based on the different chemical signature of surface and ground waters (low-Cl type) from lake waters, mass balance methods have been applied to investigate lake dynamics. Water enters the lake mainly by precipitation and groundwater inflow, and leaves by groundwater outflow and evaporation. A large groundwater outflow of 2.4 m yr-1 has been estimated. The high salinity, Na-Cl signature of Lake Ngozi waters, together with 3He/4He ratios measured on dissolved gases (between 7 and 8.3 Ra) and high-PCO2 values estimated all along the water vertical column indicate the inflow of deep-seated fluids, likely magmatic in origin, into the lake. The existence of a hydrothermal system possibly at 250 °C in the root of the volcanic edifice is also hypothesised on the basis of solute geothermometry. Despite the current lack of vertical stratification, the lake is suspected to act as condenser for CO2 and other gases of deep magmatic origin, and should be then further monitored for the risk of limnic eruptions as well as for environmental and climatic concerns.

  20. Influence of in ovo mercury exposure, lake acidity, and other factors on common loon egg and chick quality in Wisconsin

    USGS Publications Warehouse

    Kenow, Kevin P.; Meyer, Michael W.; Rossmann, Ronald; Gray, Brian R.; Arts, Michael T.

    2015-01-01

    A field study was conducted in Wisconsin (USA) to characterize in ovo mercury (Hg) exposure in common loons (Gavia immer). Total Hg mass fractions ranged from 0.17 mg/g to 1.23mg/g wet weight in eggs collected from nests on lakes representing a wide range of pH (5.0–8.1) and were modeled as a function of maternal loon Hg exposure and egg laying order. Blood total Hg mass fractions in a sample of loon chicks ranged from 0.84ug/g to 3.86 ug/g wet weight at hatch. Factors other than mercury exposure that may have persistent consequences on development of chicks from eggs collected on low-pH lakes (i.e., egg selenium, calcium, and fatty acid mass fractions) do not seem to be contributing to reported differences in loon chick quality as a function of lake pH. However, it was observed that adult male loons holding territories on neutral-pH lakes were larger on average than those occupying territories on low-pH lakes. Differences in adult body size of common loons holding territories on neutral-versus low-pH lakes may have genetic implications for differences in lake-source-related quality (i.e., size) in chicks. The tendency for high in ovo Hg exposure and smaller adult male size to co-occur in low-pH lakes complicates the interpretation of the relative contributions of each to resulting chick quality.

  1. Decomposition of Alternative Chirality Amino Acids by Alkaliphilic Anaerobe from Owens Lake, California

    NASA Technical Reports Server (NTRS)

    Townsend, Alisa; Pikuta, Elena V.; Guisler, Melissa; Hoover, Richard B.

    2009-01-01

    The study of alkaliphilic microbial communities from anaerobic sediments of Owens and Mono Lakes in California led to the isolation of a bacterial strain capable of metabolizing amino acids with alternative chirality. According to the phylogenetic analysis, the anaerobic strain BK1 belongs to the genus Tindallia; however, despite the characteristics of other described species of this genus, the strain BK1 was able to grow on D-arginine and Dlysine. Cell morphology of this strain showed straight, motile, non-spore-forming rods with sizes 0.45 x 1.2-3 microns. Physiological characteristics of the strain showed that it is catalase negative, obligately anaerobic, mesophilic, and obligately alkaliphilic. This isolate is unable to grow at pH 7 and requires CO3 (2-) ions for growth. The strain has chemo-heterotrophic metabolism and is able to ferment various proteolysis products and some sugars. It plays the role of a primary anaerobe within the trophic chain of an anaerobic microbial community by the degradation of complex protein molecules to smaller and less energetic molecules. The new isolate requires NaCl for growth, and can grow within the range of 0.5-13 %, with the optimum at 1 % NaCl (w/v). The temperature range for the growth of the new isolate is 12-40 C with optimum at 35 C. The pH range for the growth of strain BK1 occurs between 7.8 and 11.0 with optimum at 9.5. This paper presents detailed physiological characteristics of the novel isolate from Owens Lake, a unique relic ecosystem of Astrobiological significance, and makes an accent on the ability of this strain to utilize L-amino acids.

  2. Hydrological Evolution and Chemical Structure of the Hyper-acidic Spring-lake System on White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Britten, K.; Mazot, A.

    2015-12-01

    White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on the Main Crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. However, between 1976-1978 the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydrostatic regime of the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with total flow from the crater declining by a factor > 100 by 1979. Eruptive activity came to a close soon after moderate Strombolian activity in mid-2000, by which time ephemeral lakes had already started to form in the eruption crater complex. Since 2003 there have been two complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values ranging between +1.5 and -1. Springs reappeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and an underlying acidic brine fluid. Evidence suggests that this acidic brine presently contains a significant component of altered seawater. Volcanic unrest in 2012, which included

  3. Indicators: Salinity

    EPA Pesticide Factsheets

    Salinity is the dissolved salt content of a body of water. Excess salinity, due to evaporation, water withdrawal, wastewater discharge, and other sources, is a chemical sterssor that can be toxic for aquatic environments.

  4. Lake Granbury and Lake Whitney Assessment Initiative Final Scientific/Technical Report Summary

    SciTech Connect

    Harris, B. L.; Roelke, Daniel; Brooks, Bryan; Grover, James

    2010-10-11

    A team of Texas AgriLife Research, Baylor University and University of Texas at Arlington researchers studied the biology and ecology of Prymnesium parvum (golden algae) in Texas lakes using a three-fold approach that involved system-wide monitoring, experimentation at the microcosm and mesocosm scales, and mathematical modeling. The following are conclusions, to date, regarding this organism's ecology and potential strategies for mitigation of blooms by this organism. In-lake monitoring revealed that golden algae are present throughout the year, even in lakes where blooms do not occur. Compilation of our field monitoring data with data collected by Texas Parks and Wildlife and Brazos River Authority (a period spanning a decade) revealed that inflow and salinity variables affect bloom formations. Thresholds for algae populations vary per lake, likely due to adaptations to local conditions, and also to variations in lake-basin morphometry, especially the presence of coves that may serve as hydraulic storage zones for P. parvum populations. More specifically, our in-lake monitoring showed that the highly toxic bloom that occurred in Lake Granbury in the winter of 2006/2007 was eliminated by increased river inflow events. The bloom was flushed from the system. The lower salinities that resulted contributed to golden algae not blooming in the following years. However, flushing is not an absolute requirement for bloom termination. Laboratory experiments have shown that growth of golden algae can occur at salinities ~1-2 psu but only when temperatures are also low. This helps to explain why blooms are possible during winter months in Texas lakes. Our in-lake experiments in Lake Whitney and Lake Waco, as well as our laboratory experiments, revealed that cyanobacteria, or some other bacteria capable of producing algicides, were able to prevent golden algae from blooming. Identification of this organism is a high priority as it may be a key to managing golden algae blooms

  5. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress.

  6. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.

    PubMed

    Gunes, Aydin; Inal, Ali; Alpaslan, Mehmet; Eraslan, Figen; Bagci, Esra Guneri; Cicek, Nuray

    2007-06-01

    It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of varying salicylic acid (SA) supply (0, 0.1, 0.5 and 1.0mM) on growth, mineral uptake, membrane permeability, lipid peroxidation, H(2)O(2) concentration, UV-absorbing substances, chlorophyll and carotenoid concentrations of NaCl (40 mM) stressed maize (Zea mays L.) was investigated. Exogenously applied SA increased plant growth significantly both in saline and non-saline conditions. As a consequence of salinity stress, lipid peroxidation, measured in terms of malondialdehyde (MDA) content and membrane permeability was decreased by SA. UV-absorbing substances (UVAS) and H(2)O(2) concentration were increased by increasing levels of SA. SA also strongly inhibited Na(+) and Cl(-) accumulation, but stimulated N, Mg, Fe, Mn and Cu concentrations of salt stressed maize plants. These results suggest that SA could be used as a potential growth regulator to improve plant salinity stress resistance.

  7. Distribution and Carbon-Isotope Composition of Lipid Biomarkers in Lake Sediments on the Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Tuo, J.; Li, Q.; Li, Y.; Jiang, H.; Dong, H.; Zhang, C. L.

    2005-12-01

    The goal of this study was to determine the carbon source and microbial community structure in different lake environments on the Tibetan Plateau using carbon isotopes and lipid biomarkers. Microbial mats and sediments were collected from Erhai-, Qinghai-, Gahai-, and Chaka-lakes, which have different pHs (7.4-9.5) and salinities (0.1-21%). Phospholipid fatty acids (PLFA) have different distribution patterns in algal mats, sandy mud, and salt deposits, which may reflect changes in microbial community structure in different environments. For example, terminally branched fatty acids reflect heterotrophic bacteria and varied from less than 1% in a brown algal mat in Lake Gahai to 23% in a salt deposit in Lake Chaka. The cyclopropyl fatty acids may reflect stress conditions under different salinities. These compounds varied from 0% in algal mats living on the bank of the lake, which received freshwater run off, to 12% in grey mud in the saline lake water. On the other hand, long-chain n-alkanes in these samples reflect contributions of a mixture of epicuticular waxes of higher plants and submerged or floating aquatic macrophytes. Carbon isotopes of lipid biomarkers indicate different sources of organic carbon in different lake sediments. For example, carbon isotopes of total organic carbon and lipid biomarkers averaged -23.9 ± 1.5‰ (n = 2) and -26.0 ± 3.1‰ (n = 18), respectively, in Lake Erhai, and averaged -30.0 ± 1.5‰ (n = 4) and -33.5 ± 3.3‰ (n = 92), respectively, in Lake Gahai. These results suggest that a relatively heavy carbon source is going into Lake Erhai compared to carbon sources going into Lake Gahai. This study indicates that the distribution patterns of the lipid biomarkers and theirs carbon-isotope compositions can be used to evaluate the community structure and the source of carbon that supports microbial growth in lake sediments on the Tibetan Plateau.

  8. Binding characteristics of Cu(2+) to natural humic acid fractions sequentially extracted from the lake sediments.

    PubMed

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao

    2016-11-01

    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu(2+) to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu(2+) to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu(2+) to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu(2+) sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu(2+) were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  9. Influence of Acid Mine Drainage (AMD) on recent phyto- and zooplankton in "the Anthropogenic Lake District" in south-west Poland

    NASA Astrophysics Data System (ADS)

    Sienkiewicz, Elwira; Gasiorowski, Michal

    2015-04-01

    In south-west Poland (central Europe) many the post-mining lakes formed so-called "the Anthropogenic Lake District". Areas, where water comes in contact with lignite beds characterized by high concentration of sulfide minerals are called Acid Mine Drainage (AMD). Pyrite oxidation and other sulfide compounds caused release sulfuric acids and heavy metal ions. These processes caused decline of water pH, sometimes to extremely low pH < 2.8. Presently, pit lakes located in south-west Poland have water pH ranged between 2.7 and 8.9. Differences of water reaction in the mine lakes depend on many factors, such as bedrock buffer capacity, geological structure of carboniferous area, exploitation technique of lignite, methods of filling and water supply of reservoirs and their age. During the evolution of lakes' ecosystems, sulfate-iron-calcium type of waters occurring in acid lakes will transform in alkaline hydrogen-carbonate-calcium type of waters. Due to the different time of the completion of lignite exploitation, lakes' age varied between forty and over one hundred years. Studies showed that younger lakes are more acidic in compare to older. To estimate impact of AMD we analyzed recent diversity of diatoms and Cladocera remains and water chemistry from extremely acidic, relatively young lakes and from alkaline, older water bodies. As we expected, flora and fauna from acidic lakes have shown very low diversity and species richness. Among diatoms, Eunotia exigua (Bréb. ex Kütz.) Rabenhorst and/or E. paludosa Grunow were dominated taxa, while fauna Cladocera did not occurred in lakes with water pH < 3. On this area, exploitation of lignite continued up to 1973. Older lakes were formed in the region where the mine started work in 1880 and lignite mining stopped in 1926. Measurements of pH value in situ point to neutral or alkaline water, but because of the possibility of hysteresis phenomenon, the studies of phyto- and zooplankton have shown if there has already been a

  10. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    PubMed

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  11. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  12. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  13. Indirect effects of UV radiation: Fe{sup 2+} enrichment stimulates picocyanobacterial growth in Clearwater acidic Shield lakes

    SciTech Connect

    Auclair, J.C.

    1995-12-31

    Ozone depletion and associated increases in UVB radiation could increase the photoreduction of iron in Shield lakes of the Boreal forest zone. Since photoreduced iron (I) is more soluble than iron (III), and the re-oxidation rate slower in acidic (pH = 5--6) lakes, phytoplankton growth and/or species composition may be altered where iron is growth limiting. The differential enrichment of UV{sub A+B} transparent herbivore-free (< 65 mu) lakewater enclosures ({approximately}500L) with phosphorus, phosphorus and Fe (II) and phosphorus, ammonium and Fe (II) revealed that the Spring phytoplankton abundance of an oligotrophic Clearwater acidic Canadian Shield lake was limited by herbivore grazing, rather than by a limiting nutrient. However, in the herbivore-free enriched enclosures the addition of Fe{sup 2+} greatly stimulated picocyanobacterial growth and grazing activity by mixotrophic species comprising the microbial food web of this lake. In spite of a 10-fold increase in the mixotrophic chrysophytes, the authors did not discern any strong competitive interactions among the mixotrophic organisms, strongly suggesting that the latter obtain most if not all of their iron quota from their picoplanktonic prey.

  14. A microbial arsenic cycle in sediments of an acidic mine impoundment: Herman Pit, Clear Lake, California

    USGS Publications Warehouse

    Blum, Jodi S.; McCann, Shelley; Bennett, S.; Miller, Laurence G.; Stolz, J. R.; Stoneburner, B.; Saltikov, C.; Oremland, Ronald S.

    2015-01-01

    The involvement of prokaryotes in the redox reactions of arsenic occurring between its +5 [arsenate; As(V)] and +3 [arsenite; As(III)] oxidation states has been well established. Most research to date has focused upon circum-neutral pH environments (e.g., freshwater or estuarine sediments) or arsenic-rich “extreme” environments like hot springs and soda lakes. In contrast, relatively little work has been conducted in acidic environments. With this in mind we conducted experiments with sediments taken from the Herman Pit, an acid mine drainage impoundment of a former mercury (cinnabar) mine. Due to the large adsorptive capacity of the abundant Fe(III)-rich minerals, we were unable to initially detect in solution either As(V) or As(III) added to the aqueous phase of live sediment slurries or autoclaved controls, although the former consumed added electron donors (i.e., lactate, acetate, hydrogen), while the latter did not. This prompted us to conduct further experiments with diluted slurries using the live materials from the first incubation as inoculum. In these experiments we observed reduction of As(V) to As(III) under anoxic conditions and reduction rates were enhanced by addition of electron donors. We also observed oxidation of As(III) to As(V) in oxic slurries as well as in anoxic slurries amended with nitrate. We noted an acid-tolerant trend for sediment slurries in the cases of As(III) oxidation (aerobic and anaerobic) as well as for anaerobic As(V) reduction. These observations indicate the presence of a viable microbial arsenic redox cycle in the sediments of this extreme environment, a result reinforced by the successful amplification of arsenic functional genes (aioA, and arrA) from these materials.

  15. Alkenone and Isotopic Records of Holocene Climatic and Environmental Change From Laminated West Greenland Lakes

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Huang, Y.

    2004-12-01

    Long chain alkenones (LCAs) are a key class of biomarkers for paleotemperature reconstructions. These compounds are ubiquitous in ocean sediments, but rare in lake sediments. Here we report the first discovery of LCAs in a downcore profile and surface sediments of five Greenland lakes. The concentrations of LCAs in surface sediments of these lakes are one to two orders of magnitude higher than those reported previously in other lake surface sediments around the world. Alkenones are present in five Greenland lakes with elevated salinity, but absent from five freshwater lakes. The alkenones have exceptionally low \\delta13C values ranging from -40 to -43\\permil, and are depleted by 10 to 15\\permil relative to short-chain fatty acids and sterols within the same samples. These \\delta13C values are the lowest ever reported for alkenones in a natural setting and have important implications for tracing the alkenone producers in lakes. Using the published calibration for lake sediments, the alkenone unsaturation indices in the surface sediments of the Greenland lakes record late spring/early summer temperature when algal blooms occur, suggesting the applicability of lacustrine alkenones as a paleotemperature proxy. LCA unsaturation indices and \\deltaD from sediment cores taken from these Greenland lakes will help elucidate the environmental controls on these sedimentary parameters, and will aid the reconstruction of Holocene climate variability in West Greenland. Ongoing work on the saline lakes includes determining high resolution alkenone unsaturation ratios/abundances and bulk/compound-specific isotopic values from sediment cores, algal culturing, and establishing microbial community structure in the saline lakes using DNA/RNA fingerprinting. Up-to-date results will be presented in the meeting.

  16. Nitrate and amino acid availability affects glycine betaine and mycosporine-2-glycine in response to changes of salinity in a halotolerant cyanobacterium Aphanothece halophytica.

    PubMed

    Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Fukaya, Minoru; Rai, Vandna; Takabe, Teruhiro

    2015-12-01

    A halotolerant cyanobacterium Aphanothece halophytica thrives in extreme salinity with accumulation of a potent osmoprotectant glycine betaine. Recently, this cyanobacterium was shown to accumulate sunscreen molecule mycosporine-2-glycine significantly at high salinity. In this study, we investigated effects of nitrate and amino acid provision on the accumulation of glycine betaine and mycosporine-2-glycine. With elevated nitrate concentrations at high salinity, intracellular levels of both metabolites were enhanced. Six-fold high nitrate concentration increased the relative amounts of glycine betaine and mycosporine-2-glycine to be 1.5 and 2.0 folds compared with control condition : Increased levels were time- and dose-dependent manner. Exogenous supply of glycine/serine at high salinity resulted in the similar trends as observed in excess nitrate experiment. Intracellular level of glycine betaine increased ∼1.6 folds with glycine/serine supplementation. These supplementations also caused the increased level of mycosporine-2-glycine, namely 1.4 and 2 folds by glycine and serine, respectively. The transcription of glycine betaine and mycosporine-2-glycine biosynthetic genes was strongly induced under high-nitrate-salt condition. These results suggest the dependence of glycine betaine and mycosporine-2-glycine productions on substrate availability, and the effect of nitrate was possibly associated with stimulation of osmoprotectant increment in this extremophile.

  17. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy.

    PubMed

    Squadrone, S; Ciccotelli, V; Prearo, M; Favaro, L; Scanzio, T; Foglini, C; Abete, M C

    2015-07-01

    Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure.

  18. Correlation analysis of tree growth, climate, and acid deposition in the Lake States. Forest Service research paper

    SciTech Connect

    Holdaway, M.R.

    1990-01-01

    The report describes research designed to detect subtle regional tree growth trends related to sulfate (SO{sub 4}) deposition in the Lake States. Correlation methods were used to analyze climatic and SO{sub 4} deposition. Effects of SO{sub 4} deposition are greater on climatically stressed trees, especially pine species on dry sites, than on unstressed trees. Jack pine growth shows the strongest correlation to both climate and acid deposition.

  19. Comparative study of cadmium and lead accumulations in Cambarus bartoni (Fab. ) (Decapoda, Crustacea) from an acidic and a neutral lake

    SciTech Connect

    Keenan, S.; Alikhan, M.A. )

    1991-07-01

    The purpose of the study reported in this paper was to compare concentrations of lead and cadmium in the sediment and water, as well as in the crayfish, Cambarus Bartoni (Fab.) (Decapoda - Crustacea) trapped from an acidic and a neutral lake in the Sudbury district of Northeastern Ontario. Hepatopancreatic, alimentary canal, tail muscles and exoskeletal concentrations in the crayfish are also examined to determine specific tissue sites for these accumulations.

  20. Brooktrout Lake case study: biotic recovery from acid deposition 20 years after the 1990 Clean Air Act Amendments.

    PubMed

    Sutherland, James W; Acker, Frank W; Bloomfield, Jay A; Boylen, Charles W; Charles, Donald F; Daniels, Robert A; Eichler, Lawrence W; Farrell, Jeremy L; Feranec, Robert S; Hare, Matthew P; Kanfoush, Sharon L; Preall, Richard J; Quinn, Scott O; Rowell, H Chandler; Schoch, William F; Shaw, William H; Siegfried, Clifford A; Sullivan, Timothy J; Winkler, David A; Nierzwicki-Bauer, Sandra A

    2015-03-03

    The Adirondack Mountain region is an extensive geographic area (26,305 km(2)) in upstate New York where acid deposition has negatively affected water resources for decades and caused the extirpation of local fish populations. The water quality decline and loss of an established brook trout (Salvelinus fontinalis [Mitchill]) population in Brooktrout Lake were reconstructed from historical information dating back to the late 1880s. Water quality and biotic recovery were documented in Brooktrout Lake in response to reductions of S deposition during the 1980s, 1990s, and 2000s and provided a unique scientific opportunity to re-introduce fish in 2005 and examine their critical role in the recovery of food webs affected by acid deposition. Using C and N isotope analysis of fish collagen and state hatchery feed as well as Bayesian assignment tests of microsatellite genotypes, we document in situ brook trout reproduction, which is the initial phase in the restoration of a preacidification food web structure in Brooktrout Lake. Combined with sulfur dioxide emissions reductions promulgated by the 1990 Clean Air Act Amendments, our results suggest that other acid-affected Adirondack waters could benefit from careful fish re-introduction protocols to initiate the ecosystem reconstruction of important components of food web dimensionality and functionality.

  1. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  2. Practically Saline

    PubMed Central

    Schroeder, Jonathan; O’Neal, Catherine; Jagneaux, Tonya

    2015-01-01

    Introduction. In December 2014, the Food and Drug Administration issued a recall of all Wallcur simulation products due to reports of their use in clinical practice. We present a case of septic shock and multiorgan failure after the accidental intravenous infusion of a nonsterile Wallcur simulation product. Case. The patient presented with symptoms of rigors and dyspnea occurring immediately after infusion of Wallcur Practi-0.9% saline. Initial laboratory evidence was consistent with severe septic shock and multiorgan dysfunction. His initial lactic acid level was 9 mmol/L (reference range = 0.5-2.2), and he had evidence of acute kidney injury and markers of disseminated intravascular coagulation. All 4 blood culture bottles isolated multidrug-resistant Empedobacter brevis. The patient recovered from his illness and was discharged with ciprofloxacin therapy per susceptibilities. Discussion. This patient represents the first described case of severe septic shock associated with the infusion of a Wallcur simulation product. Intravenous inoculation of a nonsterile fluid is rare and exposes the patient to unusual environmental organisms, toxins, or unsafe fluid characteristics such as tonicity. During course of treatment, we identified the possible culprit to be a multidrug-resistant isolate of Empedobacter brevis. We also discuss the systemic failures that led to this outbreak. PMID:26668812

  3. Microbial Diversity and Its Relationship to Physicochemical Characteristics of the Water in Two Extreme Acidic Pit Lakes from the Iberian Pyrite Belt (SW Spain)

    PubMed Central

    López-Pamo, Enrique; Gomariz, María; Amils, Ricardo; Aguilera, Ángeles

    2013-01-01

    The Iberian Pyrite Belt (IPB) hosts one of the world’s largest accumulations of acidic mine wastes and pit lakes. The mineralogical and textural characteristics of the IPB ores have favored the oxidation and dissolution of metallic sulfides, mainly pyrite, and the subsequent formation of acidic mining drainages. This work reports the physical properties, hydrogeochemical characteristics, and microbial diversity of two pit lakes located in the IPB. Both pit lakes are acidic and showed high concentrations of sulfate and dissolved metals. Concentrations of sulfate and heavy metals were higher in the Nuestra Señora del Carmen lake (NSC) by one order of magnitude than in the Concepción (CN) lake. The hydrochemical characteristics of NSC were typical of acid mine waters and can be compared with other acidic environments. When compared to other IPB acidic pit lakes, the superficial water of CN is more diluted than that of any of the others due, probably, to the strong influence of runoff water. Both pit lakes showed chemical and thermal stratification with well defined chemoclines. One particular characteristic of NSC is that it has developed a chemocline very close to the surface (2 m depth). Microbial community composition of the water column was analyzed by 16S and 18S rRNA gene cloning and sequencing. The microorganisms detected in NSC were characteristic of acid mine drainage (AMD), including iron oxidizing bacteria (Leptospirillum, Acidithiobacillus ferrooxidans) and facultative iron reducing bacteria and archaea (Acidithiobacillus ferrooxidans, Acidiphilium, Actinobacteria, Acidimicrobiales, Ferroplasma) detected in the bottom layer. Diversity in CN was higher than in NSC. Microorganisms known from AMD systems (Acidiphilium, Acidobacteria and Ferrovum) and microorganisms never reported from AMD systems were identified. Taking into consideration the hydrochemical characteristics of these pit lakes and the spatial distribution of the identified microorganisms, a

  4. Stratification at the Earth's largest hyperacidic lake and its consequences

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Campion, Robin; Rouwet, Dmitri; Lecocq, Thomas; Capaccioni, Bruno; Syahbana, Devy; Suparjan; Purwanto, Bambang Heri; Bernard, Alain

    2017-02-01

    Volcanic lakes provide windows into the interior of volcanoes as they integrate the heat flux discharged by a magma body and condense volcanic gases. Volcanic lake temperatures and geochemical compositions therefore typically serve as warnings for resumed unrest or prior to eruptions. If acidic and hot, these lakes are usually considered to be too convective to allow any stratification within their waters. Kawah Ijen volcano, featuring the largest hyperacidic lake on Earth (volume of 27 million m3), is less homogeneous than previously thought. Hourly temperature measurements reveal the development of a stagnant layer of cold waters (<30 °C), overlying warmer and denser water (generally above 30 °C and density ∼1.083 kg/m3). Examination of 20 yrs of historical records and temporary measurements show a systematic thermal stratification during rainy seasons. The yearly rupture of stratification at the end of the rainy season causes a sudden release of dissolved gases below the cold water layer which appears to generate a lake overturn, i.e. limnic eruption, and a resonance of the lake, i.e. a seiche, highlighting a new hazard for these extreme reservoirs. A minor non-volcanic event, such as a heavy rainfall or an earthquake, may act as a trigger. The density driven overturn requires specific salinity-temperature conditions for the colder and less saline top water layer to sink into the hot saline water. Spectacular degassing occurs when the dissolved gases, progressively stored during the rainy season due to a weakened diffusion of carbon dioxide in the top layer, are suddenly released. These findings challenge the homogenization assumption at acidic lakes and stress the need to develop appropriate monitoring setups.

  5. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  6. Immune factors and fatty acid composition in human milk from river/lake, coastal and inland regions of China.

    PubMed

    Urwin, Heidi J; Zhang, Jian; Gao, Yixiong; Wang, Chunrong; Li, Lixiang; Song, Pengkun; Man, Qingqing; Meng, Liping; Frøyland, Livar; Miles, Elizabeth A; Calder, Philip C; Yaqoob, Parveen

    2013-06-01

    Breast milk fatty acid composition may be affected by the maternal diet during gestation and lactation. The influence of dietary and breastmilk fatty acids on breast milk immune factors is poorly defined. We determined the fatty acid composition and immune factor concentrations of breast milk from women residing in river/lake, coastal and inland regions of China, which differ in their consumption of lean fish and oily fish. Breast milk samples were collected on days 3–5 (colostrum), 14 and 28 post-partum (PP) and analysed for soluble CD14 (sCD14), transforming growth factor (TGF)-b1, TGF-b2, secretory IgA (sIgA) and fatty acids. The fatty acid composition of breast milk differed between the regions and with time PP. The concentrations of all four immune factors in breast milk decreased over time, with sCD14, sIgA and TGF-b1 being highest in the colostrum in the river and lake region. Breast milk DHA and arachidonic acid (AA) were positively associated, and g-linolenic acid and EPA negatively associated, with the concentrations of each of the four immune factors. In conclusion, breast milk fatty acids and immune factors differ between the regions in China characterised by different patterns of fish consumption and change during the course of lactation. A higher breast milk DHA and AA concentration is associated with higher concentrations of immune factors in breast milk, suggesting a role for these fatty acids in promoting gastrointestinal and immune maturation of the infant.

  7. Sources and haloacetic acid/trihalomethane formation potentials of aquatic humic substances in the Wakarusa River and Clinton Lake near Lawrence, Kansas

    USGS Publications Warehouse

    Pomes, M.L.; Larive, C.K.; Thurman, E.M.; Green, W.R.; Orem, W.H.; Rostad, C.E.; Coplen, T.B.; Cutak, B.J.; Dixon, A.M.

    2000-01-01

    Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U.S. Environmental Protection Agency (EPA) Maximum Contaminant Levels (MCL) in drinking water. AHS from the Wakarusa River and Clinton Lake originated from riparian forest vegetation, reflected respective effects of soil organic matter and aquatic algal/bacterial sources, and bore evidence of biological degradation and photodegradation. AHS from the Wakarusa River showed the effect of terrestrial sources, whereas Clinton Lake humicacid also reflected aquatic algal/bacterial sources. Greater amounts of carbon attributable to tannin-derived chemical structures may correspond with higher HAA5 and THM4 yields for Clinton Lake fulvic acid. Prior to appreciable leaf-fall from deciduous trees, the combined (humic and fulvic acid) THM4 formation potentials for the Wakarusa River approached the proposed EPA THM4 Stage I MCL of 80 ??g/L, and the combined THM4 formation potential for Clinton Lake slightly exceeded the proposed THM4 Stage II MCL of 40 ??g/L. Finally, AHS from Clinton Lake could account for most (>70%) of the THM4 concentrations in finished water from the Clinton Lake Water Treatment Plant based on September 23, 1996, THM4 results.Gram quantities of aquatic humic substances (AHS) were extracted from the Wakarusa River-Clinton Lake Reservoir system, near Lawrence, KS, to support nuclear magnetic resonance (NMR) experimental studies, report concentrations of dissolved organic carbon (DOC) and AHS, define sources of the AHS, and determine if the AHS yield sufficient quantities of haloacetic acids (HAA5) and trihalomethanes (THM4) that exceed U

  8. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  9. A combined CaO/electrochemical treatment of the acid mine drainage from the "Robule" Lake.

    PubMed

    Orescanin, Visnja; Kollar, Robert

    2012-01-01

    The purpose of this work was development and application of the purification system suitable for the treatment of the acid mine drainage (AMD) accumulated in the "Robule" Lake, which represents the part of the Bor copper mining and smelting complex, Serbia. The study was undertaken in order to minimize adverse effect on the environment caused by the discharge of untreated AMD, which was characterized with low pH value (2.63) and high concentration of heavy metals (up to 610 mg/L) and sulfates (up to 12,000 mg/L). The treatment of the effluent included pretreatment/pH adjustment with CaO followed by electrocoagulation using iron and aluminum electrode sets. Following the final treatment, the decrease in the concentration of heavy metals ranged from 40 up to 61000 times depending on the metal and its initial concentration. The parameters, color and turbidity were removed completely in the pretreatment step, while the removal efficiencies for other considered parameters were as follows: EC = 55.48%, SO(4) (2-) = 70.83%, Hg = 98.36%, Pb = 97.50%, V = 98.43%, Cr = 99.86%, Mn = 97.96%, Fe = 100.00%, Co = 99.96%, Ni = 99.78%, Cu = 99.99% and Zn = 99.94%. Because the concentrations of heavy metals in the electrochemically treated AMD (ranging from 0.001 to 0.336 mg/L) are very low, the negative impact of this effluent on the aquatic life and humans is not expected. The sludge generated during the treatment of AMD is suitable for reuse for at least two purposes (pretreatment of AMD and covering of the flotation waste heap). From the presented results, it could be concluded that electrochemical treatment is a suitable approach for the treatment of AMD.

  10. Exogenous γ-Aminobutyric Acid Improves the Structure and Function of Photosystem II in Muskmelon Seedlings Exposed to Salinity-Alkalinity Stress

    PubMed Central

    Xu, Weinan; Zhen, Ai; Zhang, Liang; Hu, Xiaohui

    2016-01-01

    Gamma-aminobutyric acid (GABA) is important in plant responses to environmental stresses. We wished to clarify the role of GABA in maintenance of photosynthesis in muskmelon seedlings (Cucumis melo L., cv. Yipintianxia) during saline-alkaline stress. To this end, we assessed the effect of GABA on the structure and function of the photosynthetic apparatus in muskmelon seedlings grown under saline-alkaline stress. These stresses in combination reduced net photosynthetic rate, gas-exchange, and inhibited photosystem II (PSII) electron transport as measured by the JIP-test. They also reduced the activity of chloroplast ATPases and disrupted the internal lamellar system of the thylakoids. Exogenous GABA alleviated the stress-induced reduction of net photosynthesis, the activity of chloroplast ATPases, and overcame some of the damaging effects of stress on the chloroplast structure. Based on interpretation of the JIP-test, we conclude that exogenous GABA alleviated stress-related damage on the acceptor side of PSII. It also restored energy distribution, the reaction center status, and enhanced the ability of PSII to repair reaction centers in stressed seedlings. GABA may play a crucial role in protecting the chloroplast structure and function of PSII against the deleterious effects of salinity-alkalinity stress. PMID:27764179

  11. Organic matter in sediment layers of an acidic mining lake as assessed by lipid analysis. Part II: Neutral lipids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2017-02-01

    Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments.

  12. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Li, Ke; Buchinger, Tyler J; Bussy, Ugo; Fissette, Skye D; Johnson, Nicholas S; Li, Weiming

    2015-09-15

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC-MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile-water (containing 7.5mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25mL/min for 12min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00-5,000ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  13. Quantification of 15 bile acids in lake charr feces by ultra-high performance liquid chromatography–tandem mass spectrometry

    USGS Publications Warehouse

    Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D; Johnson, Nicholas; Li, Weiming

    2015-01-01

    Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.

  14. Benthic plant communities in acidic Lake Colden, New York: Sphagnum and the algal mat

    SciTech Connect

    Hendrey, G R; Vertucci, J A

    1980-03-01

    Lake Colden, in the central Adirondack Mountains of New York State is botanically similar to acidified lakes in Sweden. Acidification of some Swedish lakes has been associated with an expansion of Sphagnum, primarily in shallow, sheltered littoral areas but also to depths of 18m. During a brief botanical survey on 24-25 July 1979, we observed a dense meadow of Sphagnum pylaesii around much of the shoreline of Lake Colden. Plant community composition was determined by a visual estimate of cover along a single typical transect and through underwater photography on 28-29 August 1979. Water samples were collected and returned to our laboratory for analyses several days later. Sample pH was determined by potentiometry and alkalinity by multiple end point titrations. Biomass samples were also taken of the Sphagnum mat community and dry weight was determined. Chemical content of plant tissue was analyzed.

  15. [Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity].

    PubMed

    Stetsenko, L A; Vedenicheva, N P; Likhnevsky, R V; Kuznetsov, V V

    2015-01-01

    The effect of abscisic acid (ABA) and fluridone on the content of endogenous phytohormones and free polyamines and the intensity of oxidative stress was studied in plants of Mesembryanthemum crystallinum L. under salinity. It was shown that the pretreatment of plant roots with 1 μM ABA, followed by the action of 300 mM NaCl, caused a protective effect and improved the physiological state of the plants, which was manifested in increased biomass and content of available cytokinins and reduced values of the indicators of oxidative stress. It was noted that the inhibitor fluridone reduced the effect of ABA and acted as a pro-oxidant.

  16. Salinity Energy.

    ERIC Educational Resources Information Center

    Schmitt, Walter R.

    1987-01-01

    Discussed are the costs of deriving energy from the earth's natural reserves of salt. Argues that, as fossil fuel supplies become more depleted in the future, the environmental advantages of salinity power may prove to warrant its exploitation. (TW)

  17. Labile aluminium chemistry downstream a limestone treated lake and an acid tributary: effects of warm winters and extreme rainstorms.

    PubMed

    Andersen, Dag O

    2006-08-01

    The outlet from the limestone treated Lake Terjevann consisted mainly of well-mixed lake water (mean pH 6.1) during the ice-free seasons including the unusually warm winters of 1992 and 1993. However, during the ice-covered period acidic water (mean pH 4.8, mean inorganic aluminium (Al(i)) about 160 microg/l) from the catchment draining under the lake ice dominated. A downstream tributary was generally acid and rich in aluminium (mean pH 4.6, Al(i) about 230 microg/l). After an extreme rainstorm loaded with sea-salts cation exchange in the soil resulted in more than a doubling of the Al(i) concentration (reaching about 500 microg/l). It took 3-4 months until the Al(i) concentration returned to pre-event levels. During the ice-covered period, the acidic outlet and tributary waters resulted in acidic conditions below the confluence (pH<4.8, Al(i) about 150 microg/l) while during the ice-free periods the more neutral outlet water resulted in higher pH and lower Al(i) concentrations (pH>5.2, Al(i) about 95 microg/l). However, during the latter climatic conditions the water was most probably more harmful to fish due to hydrolysing and polymerizing aluminium. After the sea-salt event, the increased Al(i) concentration in the tributary made the zone below the confluence potentially more toxic (pH approximately 5, Al(i) approximately 250 microg/l). Expected global warming resulting in winter mean temperatures above 0 degrees C may eliminate the seasonal acidification of the outlet from limestone-treated lakes creating permanent toxic mixing zones in the confluence below acidic aluminium-rich tributaries. Besides, more frequent rainstorms as a consequence of global warming may increase the frequency of sea-salt events and the Al(i) concentrations in the mixing zones.

  18. Dynamic changes in the accumulation of metabolites in brackish water clam Corbicula japonica associated with alternation of salinity.

    PubMed

    Koyama, Hiroki; Okamoto, Seiji; Watanabe, Naoki; Hoshino, Naoshige; Jimbo, Mitsuru; Yasumoto, Ko; Watabe, Shugo

    2015-03-01

    The brackish water clam Corbicula japonica inhabits rivers and brackish waters throughout Japan where the major fishing grounds in the Ibaraki Prefecture, Japan, are located at the Hinuma Lake and Hinuma River. Water salinity in the Lake Hinuma is low and stable due to the long distance from the Pacific Ocean, whereas that in the downstream of the river varies daily due to a strong effect of tidal waters. In the present study, we dissected the gill and foot muscle of brackish water clam collected from these areas, and subjected them to metabolome analysis by capillary electrophoresis-time-of-flight mass spectrometry. More than 200 metabolites including free amino acids, peptides and organic acids were identified, and their amounts from the foot muscle tend to be higher than those from the gill. The principal component analysis revealed that the amount of each metabolite was different among sampling areas and between the gill and foot muscle, whereas no apparent differences were observed between male and female specimens. When the metabolites in the female clam at high salinity were compared with those at low salinity, concentrations of β-alanine, choline, γ-aminobutyric acid, ornithine and glycine betaine were found to be changed in association with salinity. We also compared various metabolites in relation to metabolic pathways, suggesting that many enzymes were involved in their changes depending on salinity.

  19. Lake acidification

    SciTech Connect

    Dobson, J.E.; Peplies, R.W.; Rush, R.M.

    1987-06-01

    This paper examined a National Research Council (NRC) report called Acid Deposition: Long-Term Trends. The report has been the final word on acid deposition as the cause of acidification of lakes. The authors considered it important that the tentative nature of this report be kept in perspective so that the work of the NRC would promote rather than inhibit scientific inquiry on the lake acidification issue. In this spirit, this report proposed that degradation of storm damaged trees could increase the acidity of the forest humus and as a result the ground water which would fed local streams and lakes. They proposed that extensive forest blowdown could be a factor in acidification of surface waters.

  20. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region.

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Braekevelt, Eric; Arts, Michael T

    2014-12-01

    Fish is often promoted as a healthy part of the human diet due its high content of long chain n-3 polyunsaturated fatty acids (LC-PUFA). Previous studies have shown that cooked fish can have different fatty acid profiles than raw fillets, depending on the cooking method and fish species. In this study, the fatty acid content of broiled, baked or fried skinless, boneless fillets of four fish species from the tributaries of the Great Lakes, or connecting rivers, was compared to fatty acid profiles in raw sections from the same fillet. Cooking treatments had little effect on n-3 fatty acid content; however, fried treatments generally had higher n-6 and MUFA content, which is likely a result of the cooking oil used (canola). Broiling or baking is generally the most healthy option presented in this study, as these methods result in lower levels of less-favourable fatty acids; however, the choice of cooking oil may also influence the overall fatty acid content in cooked fish.

  1. Determining D/L Ratios of Amino Acids Found in Ice Above Lake Vostok Using ESI/CIT Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Tsapin, A.; Kanik, I.; Beegle, L. W.; Wu, L.; Cooks, R. G.

    2003-01-01

    Astrobiology is an area where longevity of (micro) organisms is of great interest. Cryospheres are common phenomena in the solar system, particularly on satellites, comets and asteroids, as well as at least some of the planets. Recent data from the Mars Global Surveyor mission suggest the possibility of permafrost or perhaps even liquid water under the Martian surface [2]. These environments may be the areas in which the probability of finding life is the highest. This issue is of concern due to the probable evolution of planetary environments such as that of Mars from more hospitable to less hospitable conditions over the history of the solar system. In addition, evaluation of the possible transfer of living organisms between planets via impact ejecta [3] is dependent on knowledge of the maximum time periods over which microorganisms can remain dormant and subsequently revive and reproduce.Amino acid racemization dating, or aminostratigraphy, has been used for many years to date biological systems, and has been examined as a possible biosignature detection technique for Mars. We have suggested using amino acid racemization as one of the most indicative biosignatures [4]. Only life systems produce preferential synthesis of L-amino acids versus D-amino acids. Almost all amino acids in terrestrial organisms can be found only in the L-enantiomeric form.We studied the level of amino acid racemization, specifically of aspartic acid, in permafrost samples from eastern Siberia. Also we analyzed samples of ice from borehole drilled to lake Vostok, Antarctica.

  2. Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm

    SciTech Connect

    Matthias Koschorreck; Elke Bozau; Rene Froemmichen; Walter Geller; Peter Herzsprung; Katrin Wendt-Potthoff

    2007-03-01

    A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m{sup 3} volume in the Acidic Pit Mine Lake 111 in the Koyne-Plessa lignite mining district of Lusatia, Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m{sup -2} d{sup -1}. The neutralization rates between 27 and 0 meq m{sup -2} d{sup -1} were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H{sub 2}S was oxidized by ferric iron minerals. H{sub 2}S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment. 46 refs., 6 figs., 1 tab.

  3. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius

    PubMed Central

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-01-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3–6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6–24 h and 3–6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance. PMID:24309561

  4. Isolation and characterization of isochorismate synthase and cinnamate 4-hydroxylase during salinity stress, wounding, and salicylic acid treatment in Carthamus tinctorius.

    PubMed

    Sadeghi, Mahnaz; Dehghan, Sara; Fischer, Rainer; Wenzel, Uwe; Vilcinskas, Andreas; Kavousi, Hamid Reza; Rahnamaeian, Mohammad

    2013-11-01

    Salicylic acid (SA) is a prominent signaling molecule during biotic and abiotic stresses in plants biosynthesized via cinnamate and isochorismate pathways. Cinnamate 4-hydroxylase (C4H) and isochorismate synthase (ICS) are the main enzymes in phenylpropanoid and isochorismate pathways, respectively. To investigate the actual roles of these genes in resistance mechanism to environmental stresses, here, the coding sequences of these enzymes in safflower (Carthamus tinctorius), as an oilseed industrial medicinal plant, were partially isolated and their expression profiles during salinity stress, wounding, and salicylic acid treatment were monitored. As a result, safflower ICS (CtICS) and C4H (CtC4H) were induced in early time points after wounding (3-6 h). Upon salinity stress, CtICS and CtC4H were highly expressed for the periods of 6-24 h and 3-6 h after treatment, respectively. It seems evident that ICS expression level is SA concentration dependent as if safflower treatment with 1 mM SA could induce ICS much stronger than that with 0.1 mM, while C4H is less likely to be so. Based on phylogenetic analysis, safflower ICS has maximum similarity to its ortholog in Vitis vinifera up to 69%, while C4H shows the highest similarity to its ortholog in Echinacea angustifolia up to 96%. Overall, the isolated genes of CtICS and CtC4H in safflower could be considered in plant breeding programs for salinity tolerance as well as for pathogen resistance.

  5. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius.

    PubMed

    Dehghan, Sara; Sadeghi, Mahnaz; Pöppel, Anne; Fischer, Rainer; Lakes-Harlan, Reinhard; Kavousi, Hamid Reza; Vilcinskas, Andreas; Rahnamaeian, Mohammad

    2014-06-25

    Safflower (Carthamus tinctorius L.) serves as a reference dicot for investigation of defence mechanisms in Asteraceae due to abundant secondary metabolites and high resistance/tolerance to environmental stresses. In plants, phenylpropanoid and flavonoid pathways are considered as two central defence signalling cascades in stress conditions. Here, we describe the isolation of two major genes in these pathways, CtPAL (phenylalanine ammonia-lyase) and CtCHS (chalcone synthase) in safflower along with monitoring their expression profiles in different stress circumstances. The aa (amino acid) sequence of isolated region of CtPAL possesses the maximum identity up to 96% to its orthologue in Cynara scolymus, while that of CtCHS retains the highest identity to its orthologue in Callistephus chinensis up to 96%. Experiments for gene expression profiling of CtPAL and CtCHS were performed after the treatment of seedlings with 0.1 and 1 mM SA (salicylic acid), wounding and salinity stress. The results of semi-quantitative RT-PCR revealed that both CtPAL and CtCHS genes are further responsive to higher concentration of SA with dissimilar patterns. Regarding wounding stress, CtPAL gets slightly induced upon injury at 3 hat (hours after treatment) (hat), whereas CtCHS gets greatly induced at 3 hat and levels off gradually afterward. Upon salinity stress, CtPAL displays a similar expression pattern by getting slightly induced at 3 hat, but CtCHS exhibits a biphasic expression profile with two prominent peaks at 3 and 24 hat. These results substantiate the involvement of phenylpropanoid and particularly flavonoid pathways in safflower during wounding and especially salinity stress.

  6. Diet of yellow-billed loons (Gavia adamsii) in Arctic lakes during the nesting season inferred from fatty acid analysis

    USGS Publications Warehouse

    Haynes, T B; Schmutz, Joel A.; Bromaghin, Jeffrey; Iverson, S J; Padula, V. M.; Rosenberger, A E

    2015-01-01

    Understanding the dietary habits of yellow-billed loons (Gavia adamsii) can give important insights into their ecology, however, studying the diet of loons is difficult when direct observation or specimen collection is impractical. We investigate the diet of yellow-billed loons nesting on the Arctic Coastal Plain of Alaska using quantitative fatty acid signature analysis. Tissue analysis from 26 yellow-billed loons and eleven prey groups (nine fish species and two invertebrate groups) from Arctic lakes suggests that yellow-billed loons are eating high proportions of Alaska blackfish (Dallia pectoralis), broad whitefish (Coregonus nasus) and three-spined stickleback (Gasterosteus aculeatus) during late spring and early summer. The prominence of blackfish in diets highlights the widespread availability of blackfish during the early stages of loon nesting, soon after spring thaw. The high proportions of broad whitefish and three-spined stickleback may reflect a residual signal from the coastal staging period prior to establishing nesting territories on lakes, when loons are more likely to encounter these species. Our analyses were sensitive to the choice of calibration coefficient based on data from three different species, indicating the need for development of loon-specific coefficients for future study and confirmation of our results. Regardless, fish that are coastally distributed and that successfully overwinter in lakes are likely key food items for yellow-billed loons early in the nesting season.

  7. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.

    PubMed

    Warren, Dana R; Kraft, Clifford E; Josephson, Daniel C; Driscoll, Charles T

    2016-12-15

    From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events - which are expected to occur with increasing frequency in the coming century - can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades.

  8. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  9. Toxicity of acid mine pit lake water remediated with limestone and phosphorus.

    PubMed

    Neil, Luke L; McCullough, Clint D; Lund, Mark A; Evans, Louis H; Tsvetnenko, Yuri

    2009-11-01

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH approximately 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and (c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  10. Toxicity of acid mine pit lake water remediated with limestone and phosphorus

    SciTech Connect

    Neil, L.L.; McCullough, C.D.; Lund, M.A.; Evans, L.H.; Tsvetnenko, Y.

    2009-11-15

    Pit lakes are increasingly common worldwide and have potential to provide many benefits. However, lake water toxicity may require remediation before beneficial end uses can be realised. Three treatments to remediate AMD (pH similar to 4.8) pit lake water containing elevated concentrations of Al and Zn from Collie, Western Australia were tested in mesocosms. Treatments were: (a) limestone neutralisation (L), (b) phosphorus amendment (P), and c) combined limestone neutralisation and phosphorus amendment (L+P). Laboratory bioassays with Ceriodaphnia cf. dubia, Chlorella protothecoides and Tetrahymena thermophila assessed remediation. Limestone neutralisation increased pH and reduced heavy metal concentrations by 98% (Al) to 14% (Mg), removing toxicity to the three test species within 2 months. Phosphorus amendment removed toxicity after 6 months of treatment. However, phosphorus amendment to prior limestone neutralisation failed to reduce toxicity more than limestone neutralisation alone. Low concentrations of both phosphorus and nitrogen appear to limit phytoplankton population growth in all treatments.

  11. Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya.

    PubMed

    Chirikona, Florah; Filipovic, Marko; Ooko, Seline; Orata, Francis

    2015-05-01

    A major ecological challenge facing Lake Victoria basin is the influx of chemical contaminants from domestic, hospital, and industrial effluents. Determined levels of perfluoroalkyl acids (PFAAs) in wastewater and sludge from selected wastewater treatment plants (WWTPs) in Kenya are presented and their daily discharge loads calculated for the first time within the Lake Victoria basin. Samples were extracted and separated using solid-phase extraction and ultra-performance liquid chromatography (UPLC)-MS/MS or LC-MS/MS methodology. All sewage sludge and wastewater samples obtained from the WWTPs contained detectable levels of PFAAs in picogram per gram dry weight (d.w.) and in nanogram per liter, respectively. There was variability in distribution of PFAAs in domestic, hospital, and industrial waste with domestic WWPTs observed to contain higher levels. Almost all PFAA homologues of chain length C-6 and above were detected in samples analyzed, with long-chain PFAAs (C-8 and above chain length) being dominant. The discharge from hospital contributes significantly to the amounts of PFAAs released to the municipal water systems and the lake catchment. Using the average output of wastewater from the five WWTPs, a mass load of 1013 mg day(-1) PFAAs per day discharged has been calculated, with the highest discharge obtained at Kisumu City (656 mg day(-1)). The concentration range of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in wastewater was 1.3-28 and 0.9-9.8 ng L(-1) and in sludge samples were 117-673 and 98-683 pg g(-1), respectively.

  12. Gaylussite formation at mono lake, california

    USGS Publications Warehouse

    Bischoff, J.L.; Herbst, D.B.; Rosenbauer, R.J.

    1991-01-01

    The salinity of Mono Lake has steadily increased since 1941 from 50%. to about 90%. due to diversion of tributary streams. This increase has resulted in the newly discovered precipitation of gaylussite (Na2Ca(CO3)2 ?? 5H2O). Chemical modeling of the lake water using Pitzer equations suggests that gaylussite has been forming year round since about 1970 when the salinity first exceeded 80%., and that it was earlier forming intermittently at lower salinities in the winter shortly after diversion began, breaking down incongruently to aragonite during summers. Lake water appears to remain at a constant 9-fold supersaturation with aragonite at all salinities, perhaps buffered by monohydrocalcite which appears to be just at saturation for all salinities. Other saline lakes also appear to be buffered by monohydrocalcite. ?? 1991.

  13. Gaylussite formation at Mono Lake, California

    SciTech Connect

    Bischoff, J.L.; Rosenbauer, R.J. ); Herbst, D.B. )

    1991-06-01

    The salinity of Mono Lake has steadily increased since 1941 from 50{per thousand} to about 90{per thousand} due to diversion of tributary streams. This increase has resulted in the newly discovered precipitation of gaylussite (Na{sub 2}Ca(CO{sub 3}){sub 2} {center dot} 5H{sub 2}O). Chemical modeling of the lake water using Pitzer equations suggests that gaylussite has been forming year round since about 1970 when the salinity first exceeded 80{per thousand}, and that it was earlier forming intermittently at lower salinities in the winter shortly after diversion began, breaking down incongruently to aragonite during summers. Lake water appears to remain at a constant 9-fold supersaturation with aragonite at all salinities, perhaps buffered by monohydrocalcite which appears to be just at saturation for all salinities. Other saline lakes also appear to be buffered by monohydrocalcite.

  14. Insights from the Metagenome of an Acid Salt Lake: The Role of Biology in an Extreme Depositional Environment

    PubMed Central

    Johnson, Sarah Stewart; Chevrette, Marc Gerard; Ehlmann, Bethany L.; Benison, Kathleen Counter

    2015-01-01

    The extremely acidic brine lakes of the Yilgarn Craton of Western Australia are home to some of the most biologically challenging waters on Earth. In this study, we employed metagenomic shotgun sequencing to generate a microbial profile of the depositional environment associated with the sulfur-rich sediments of one such lake. Of the 1.5 M high-quality reads generated, 0.25 M were mapped to protein features, which in turn provide new insights into the metabolic function of this community. In particular, 45 diverse genes associated with sulfur metabolism were identified, the majority of which were linked to either the conversion of sulfate to adenylylsulfate and the subsequent production of sulfide from sulfite or the oxidation of sulfide, elemental sulfur, and thiosulfate via the sulfur oxidation (Sox) system. This is the first metagenomic study of an acidic, hypersaline depositional environment, and we present evidence for a surprisingly high level of microbial diversity. Our findings also illuminate the possibility that we may be meaningfully underestimating the effects of biology on the chemistry of these sulfur-rich sediments, thereby influencing our understanding of past geobiological conditions that may have been present on Earth as well as early Mars. PMID:25923206

  15. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    EPA Science Inventory

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  16. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity.

    PubMed

    Gémes, Katalin; Poór, Péter; Horváth, Edit; Kolbert, Zsuzsanna; Szopkó, Dóra; Szepesi, Agnes; Tari, Irma

    2011-06-01

    Hydrogen peroxide (H₂O₂) and nitric oxide (NO) generated by salicylic acid (SA) are considered to be functional links of cross-tolerance to various stressors. SA-stimulated pre-adaptation state was beneficial in the acclimation to subsequent salt stress in tomato (Solanum lycopersicum cv. Rio Fuego). At the whole-plant level, SA-induced massive H₂O₂ accumulation only at high concentrations (10⁻³-10⁻² M), which later caused the death of plants. The excess accumulation of H₂O₂ as compared with plants exposed to 100 mM NaCl was not associated with salt stress response after SA pre-treatments. In the root tips, 10⁻³-10⁻² M SA triggered the production of reactive oxygen species (ROS) and NO with a concomitant decline in the cell viability. Sublethal concentrations of SA, however, decreased the effect of salt stress on ROS and NO production in the root apex. The attenuation of oxidative stress because of high salinity occurred not only in pre-adapted plants but also at cell level. When protoplasts prepared from control leaves were exposed to SA in the presence of 100 mM NaCl, the production of NO and ROS was much lower and the viability of the cells was higher than in salt-treated samples. This suggests that, the cross-talk of signalling pathways induced by SA and high salinity may occur at the level of ROS and NO production. Abscisic acid (ABA), polyamines and 1-aminocyclopropane-1-carboxylic acid, the compounds accumulating in pre-treated plants, enhanced the diphenylene iodonium-sensitive ROS and NO levels, but, in contrast to others, ABA and putrescine preserved the viability of protoplasts.

  17. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2015-01-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere. This phenomenon occurs for several purposes, for instance, the detoxification of pollutants. Nevertheless, knowledge about the exudation of such substances from marsh plants roots is still scarce. This work aimed at studying: 1) the ability of marsh plants, freshly collected in estuarine marshes, to liberate ALMWOAs into the surrounding medium and 2) the influence of the physiological cycle of these plants on the exudation of those substances. In vitro experiments were carried out, in different seasons, with Phragmites australis and Halimione portulacoides (two marsh plants widely distributed in Europe). Root exudates were collected in freshwater to which plant specimens, in different physiological stages, were exposed. Both marsh plants were capable of liberating oxalic and citric acids into the surrounding medium. Formic acid was also released by P. australis roots and acetic acid by H. portulacoides. There was a seasonal effect on the liberation of ALMWOAs by both plant roots. Marked changes were registered in the nature and levels of the ALMWOAs liberated and such changes depended upon the season in which the specimens were collected. In growing season, a significantly higher liberation of oxalic and citric acids (and acetic acid but only in H. portulacoides case) was observed. For P. australis, formic acid was only found in the decaying stage (autumn and winter). The nature of the medium (in particular, salinity) was a feature conditioning the exudation of ALMWOAs. Both plants were shown to contribute for the presence of ALMWOAs in marsh rhizosediments (some ALMWOAs were found in pore waters extracted). The nature and extent of this contribution will be however dependent upon plants' physiological stage, in addition to plant species. Therefore, these features should be taken into consideration in the event of

  18. The use of amino acid analyses in (palaeo-) limnological investigations: A comparative study of four Indian lakes in different climate regimes

    NASA Astrophysics Data System (ADS)

    Menzel, Philip; Anupama, Krishnamurthy; Basavaiah, Nathani; Das, Brijraj Krishna; Gaye, Birgit; Herrmann, Nicole; Prasad, Sushma

    2015-07-01

    In the present study, we report the results of comprehensive amino acid (AA) analyses of four Indian lakes from different climate regimes. We focus on the investigation of sediment cores retrieved from the lakes but data of modern sediment as well as vascular plant, soil, and suspended particulate matter samples from individual lakes are also presented. Commonly used degradation and organic matter source indices are tested for their applicability to the lake sediments, and we discuss potential reasons for possible limitations. A principal component analysis including the monomeric AA composition of organic matter of all analysed samples indicates that differences in organic matter sources and the environmental properties of the individual lakes are responsible for the major variability in monomeric AA distribution of the different samples. However, the PCA also gives a factor that most probably separates the samples according to their state of organic matter degradation. Using the factor loadings of the individual AA monomers, we calculate a lake sediment degradation index (LI) that might be applicable to other palaeo-lake investigations.

  19. Utilisation of Rep-PCR to track microbes in aerosols collected adjacent to their source, a saline lake in Victoria, Australia.

    PubMed

    Munday, Chris I; O'Loingsigh, Tadhg; Tapper, Nigel J; De Deckker, Patrick; Allison, Gwen E

    2013-04-15

    Dust storms are a major source of aerosolized bacteria, especially in the drought conditions experienced in Australia in the decade to 2009. The major aims of this project were to identify the culturable bacteria in environmental samples and to genetically fingerprint all isolates using repetitive element PCR (Rep-PCR) to investigate the possibility of tracking isolates from their source into the atmosphere. Four field trips were conducted to a dry lake in western Victoria, Australia to sample aerosols and sediments. Aerosols were collected at heights up to 150 m using vacuum pumps with filters attached to a tethered helium balloon, while corresponding sediments were collected in sterile polypropylene tubes. Isolates were cultivated on Tryptic Soy Agar, R2 Agar and Marine Agar, and grown in dark conditions at ambient temperature. By sequencing the 16S rRNA gene of 270 isolates, fifteen different bacterial families were identified, with both the aerosols and sediments dominated by the Bacillaceae family. Four sets of Rep-PCR primers were tested, with the ERIC and (GTG)5 primers proving to be the most suitable for fingerprinting the cultured taxa. Rep-PCR revealed very high strain diversity in the samples collected, however some strains were still able to be tracked from sediments up to 150 m in height. This shows the potential of Rep-PCR, however very large reference databases would be required for the technique to be more useful.

  20. Long-term temporal trends and spatial patterns in the acid-base chemistry of lakes in the Adirondack region of New York in response to decreases in acidic deposition

    NASA Astrophysics Data System (ADS)

    Driscoll, Charles T.; Driscoll, Kimberley M.; Fakhraei, Habibollah; Civerolo, Kevin

    2016-12-01

    We examined the response of lake water chemistry in the Adirondack Mountains of New York State, USA to decreases in acid deposition. Striking declines in the concentrations and fluxes of sulfate and hydrogen ion in wet deposition have been observed since the late 1970s, while significant decreases in nitrate have been evident since the early 2000s. Decreases in estimated dry sulfur and nitrate deposition have also occurred in the Adirondacks, but with no change in dry to wet deposition ratios. These patterns follow long-term decreases in anthropogenic emissions of sulfur dioxide and nitrogen oxides in the U.S. over the same interval. All of the 48 lakes monitored through the Adirondack Long-Term Monitoring program since 1992 have exhibited significant declines in sulfate concentrations, consistent with reductions in atmospheric deposition of sulfur. Nitrate concentrations have also significantly diminished at variable rates in many (33 of 48) lakes. Decreases in concentrations of sulfate plus nitrate (48 of 48) in lakes have driven widespread increases in acid neutralizing capacity (ANC; 42 of 48) and lab pH (33 of 48), and decreases in the toxic fraction, inorganic monomeric Al (45 of 48). Coincident with decreases in acid deposition, concentrations of dissolved organic carbon (DOC) have also increased in some (29 of 48) lakes. While recovery from elevated acid deposition is evident across Adirondack lakes, highly sensitive and impacted mounded seepages lakes and thin till drainage lakes are recovering most rapidly. Future research might focus on how much additional recovery could be achieved given the current deposition relative to future deposition anticipated under the Clean Power Plan, ecosystem effects of increased mobilization of dissolved organic matter, and the influence of changing climate on recovery from acidification.

  1. Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.

    PubMed

    Shaughnessy, Ciaran A; Baker, Dan W; Brauner, Colin J; Morgan, John D; Bystriansky, Jason S

    2015-07-10

    Migratory fishes encounter a variety of environmental conditions, including changes in salinity, temperature, and dissolved gases, and it is important to understand how these fishes are able to acclimate to multiple environmental stressors. The gill is the primary site of both acid-base balance and ion regulation in fishes. Many ion transport mechanisms involved with acid-base compensation are also required for the regulation of plasma Na(+) and Cl(+), the predominant extracellular ions, potentially resulting in a strong interaction between iono- and acid-base regulation. The present study examined the physiological interaction of elevated dissolved CO2 (an acid-base disturbance) on osmoregulation during seawater acclimation (an ionoregulatory disturbance) in juvenile white sturgeon (Acipenser transmontanus). Blood pH (pHe), plasma [HCO3(-)], [Na(+)], [Cl(-)], and osmolality, white muscle water content, and gill Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance were examined over a 10-day seawater (SW) acclimation period under normocarbia (NCSW) or during prior and continued exposure to hypercarbia (HCSW), and compared to a normocarbic freshwater (NCFW) control. Hypercarbia induced a severe extracellular acidosis (from pH 7.65 to pH 7.2) in HCSW sturgeon, and these fish had a 2-fold greater rise in plasma osmolarity over NCSW by day 2 of SW exposure. Interestingly, pHe recovery in HCSW was associated more prominently with an elevation in plasma Na(+) prior to osmotic recovery and more prominently with a reduction in plasma Cl(-) following osmotic recovery, indicating a biphasic response as the requirements of osmoregulation transitioned from ion-uptake to ion-excretion throughout SW acclimation. These results imply a prioritization of osmoregulatory recovery over acid-base recovery in this period of combined exposure to acid-base and ionoregulatory disturbances.

  2. Interaction of osmoregulatory and acid-base compensation in white sturgeon (Acipenser transmontanus) during exposure to aquatic hypercarbia and elevated salinity.

    PubMed

    Shaughnessy, Ciaran A; Baker, Dan W; Brauner, Colin J; Morgan, John D; Bystriansky, Jason S

    2015-09-01

    Migratory fishes encounter a variety of environmental conditions, including changes in salinity, temperature and dissolved gases, and it is important to understand how these fishes are able to acclimate to multiple environmental stressors. The gill is the primary site of both acid-base balance and ion regulation in fishes. Many ion transport mechanisms involved with acid-base compensation are also required for the regulation of plasma Na(+) and Cl(+), the predominant extracellular ions, potentially resulting in a strong interaction between ionoregulation and acid-base regulation. The present study examined the physiological interaction of elevated dissolved CO2 (an acid-base disturbance) on osmoregulation during seawater acclimation (an ionoregulatory disturbance) in juvenile white sturgeon (Acipenser transmontanus). Blood pH (pHe), plasma [HCO3 (-)], [Na(+)], [Cl(-)] and osmolality, white muscle water content, and gill Na(+)/K(+)-ATPase (NKA) and Na(+)/K(+)/2Cl(-) co-transporter (NKCC) abundance were examined over a 10 day seawater (SW) acclimation period under normocarbia (NCSW) or during prior and continued exposure to hypercarbia (HCSW), and compared with a normocarbic freshwater (NCFW) control. Hypercarbia induced a severe extracellular acidosis (from pH 7.65 to pH 7.2) in HCSW sturgeon, and these fish had a 2-fold greater rise in plasma osmolarity over NCSW by day 2 of SW exposure. Interestingly, pHe recovery in HCSW was associated more prominently with an elevation in plasma Na(+) prior to osmotic recovery and more prominently with a reduction in plasma Cl(-) following osmotic recovery, indicating a biphasic response as the requirements of osmoregulation transitioned from ion-uptake to ion-excretion throughout SW acclimation. These results imply a prioritization of osmoregulatory recovery over acid-base recovery in this period of combined exposure to acid-base and ionoregulatory disturbances.

  3. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  4. Comparison between mechanisms of CO2 degassing from El Chichon volcanic lake, México, and Specchio di Venere lake, Pantelleria, Italia.

    NASA Astrophysics Data System (ADS)

    Jácome Paz, M. P.; Taran, Y.; Inguaggiato, S.; Collard, N.; Vita, F.; Pecoraino, G.

    2014-12-01

    We present results of the CO2 diffuse emission from the surface of two volcanic lakes: El Chichón (EC) in Mexico and Specchio di Venere (SV) on Pantelleria Island, Italy. Both lakes are drainless, have similar sizes (~2x105 m2) and similar input-output dynamics. However, they are drastically different in water chemistry. The SV lake is alkaline (pH >9) and of a high near constant salinity, whereas EC lake is acidic (pH 2.3) and of a low variable salinity. In the vicinity of both lakes there are thermal grounds with steam vents and hot springs and a high CO2 soil flux. The SV lake has high alkalinity (~70 meq/L), whereas the EC lake is characterized by high concentration of dissolved CO2. CO2 flux measurements from the surface of both lakes were made with the "floating" accumulation chamber. During the flux measuring, gas samples were taken for carbon isotopic analysis. Soil flux measurements were also made in the crater of El Chichon volcano and on the area adjacent to the SV lake. The preliminary results of CO2 fluxes indicate EC lake has a high CO2 flux with a mean value of 3500 g m-2 d-1, with the highest values alignment across NW-SE and NE-SW faults and a high degassing by bubbling gases, especially near the strongest NE fumarolic field. While SV has a mean value of the CO2 flux ~ 10 g m-2 d-1 and limited bubbling on the lake surface. High CO2 flux was measured from the soil near the lake at the Mofeta place. A net mean diffusion flux (without bubbles) from EC lake is about 350 times higher than that from SV lake (3500 g m-2 d-1 vs 10 g m-2 d-1). SV has the total CO2 flux by diffusion of ~3 ton d-1 from an area of 0.3 km2 and the total flux of 0.44 ton d-1 by bubbling areas at SW and S zones. The EC lake has the total CO2 flux of 840 ton d-1 from an area of 0.24 km2. The total CO2 output from SV is nevertheless about two times higher taking into account the seepage from the lake (~ 8 kg s-1) of highly carbonated water.

  5. Impacts of changing food webs in Lake Ontario: Implications of dietary fatty acids on growth of alewives

    USGS Publications Warehouse

    Snyder, R.J.; Demarche, C.J.; Honeyfield, D.C.

    2011-01-01

    Declines in the abundance and condition of Great Lakes Alewives have been reported periodically during the last two decades, and the reasons for these declines remain unclear. To better understand how food web changes may influence Alewife growth and Wisconsin growth model predictions, we fed Alewives isocaloric diets high in omega-6 fatty acids (corn oil) or high in omega-3 fatty acids (fish oil). Alewives were fed the experimental diets at either 1% ("low ration") or 3% ("high ration") of their wet body weight per day. After six weeks, Alewives maintained on the high ration diets were significantly larger than those fed the low ration diets. Moreover, Alewives given the high ration fish oil diet were significantly larger than those maintained on the high ration corn oil diet after six weeks of growth. Body lipid, energy density and total body energy of Alewives on the high ration diets were significantly higher than those fed the low ration diets, and total body energy was significantly higher in Alewives given the high ration fish oil diet compared to those on the high ration corn oil diet. The current Wisconsin bioenergetics model underestimated growth and overestimated food consumption by Alewives in our study. Alewife thiaminase activity was similar among treatment groups. Overall, our results suggest that future food web changes in Lake Ontario, particularly if they involve decreases in the abundance of lipid rich prey items such as Mysis, may reduce Alewife growth rates and total body energy due to reductions in the availability of dietary omega-3 fatty acids. ?? 2011 AEHMS.

  6. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China.

    PubMed

    Ni, Zhaokui; Wang, Shengrui; Zhang, Mianmian

    2016-05-01

    Total hydrolysable amino acids (THAAs) constitute the most important fraction of labile nitrogen. Anthropogenic activities directly influence various biogeochemical cycles and then accelerate lake ecosystem deterioration. This is the first study that has established the relationship between sediment THAAs and anthropogenic activities using dated sediment cores, and evaluated the possibility of THAAs release at the sediment interface based on changes in environmental conditions in Erhai Lake. The results showed that historical distribution and fractions of THAAs could be divided into three stages: a stable period before the 1970s, a clear increasing period from the 1970s to 1990s, and a gradually steady period that started after the 1990s. The chemical fraction, aromatic and sulfur amino acids (AAs) accounted for only ≤3% of THAAs. Basic AAs accounted for 5-17% of THAAs, and remained at a relatively stable level. However, acidic and neutral AAs, which accounted for 19-44% and 35-69% of THAAs, respectively, were the predominant factors causing THAAs to increase due to rapid agricultural intensification and intensification of contemporary sedimentation of phytoplankton or macrophytes since the 1970s. These trends were closely related to both anthropogenic activities and natural processes, which implied that sediment THAAs could act as an effective indicator that reflects anthropogenic activities and aquatic environmental characteristics. The current contributions of sediment THAAs on TN and TOC were <5% and 1.5%, respectively. However, the dramatic increase in THAAs in the sediment cores indicated that there was a huge potential source of labile nitrogen for the overlying water under certain environmental conditions. Correlation analysis suggested that the release of THAAs was negatively correlated with pH, whereas positively correlated with bacterial number and degree of OM mineralization, which particularly depend on the stability of HFOM. Therefore, the risk of

  7. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  8. Hazardous crater lakes studied

    NASA Astrophysics Data System (ADS)

    Kusakabe, Minoru

    Crater lakes usually sit on top of volcanic conduits and act as condensers of magmatic vapor. Studies of crater lakes can therefore provide information on both deep magmatic activity and variations in the degassing state of a shallow magmatic body. The Lake Nyos gas disaster of August 1986 and a similar event in August 1984 at Lake Monoun, both in Cameroon, resulted from the accumulation of magmatic CO2 in the bottom layers of the lakes. Geochemical monitoring of crater lakes is a promising tool for forecasting not only limnic but also volcanic eruptions. Acid-mineralized waters formed by condensation of hot magmatic volatiles in crater lakes are thought to bear some resemblance to hydrothermal fluids acting in the genesis of acid-sulfate alteration and Au-Cu-Ag mineralization of volcanic-hosted precious metal deposits.

  9. Amino Acids and Stable Carbon Isotope Distributions in Taihu Lake, China, Over the Last 15,000 Years, and Their Paleoecological Implications

    NASA Astrophysics Data System (ADS)

    Jinquan, Wang; Jinling, Liu

    2000-03-01

    Amino acid, organic nitrogen, and stable carbon isotope (13C/12C) profiles through a core from East Taihu Lake are interpreted in terms of paleoecology and paleoclimate over the last ca. 15,000 yr. Lower amino acid contents and higher δ13C values at the base of the core represent a cool and arid climate, and coincide with low organic productivity. A marked increase in total amino acids and organic nitrogen, with a decrease in δ13C values from 193 to 90 cm (ca. 6500-6000 yr B.P.), indicates a warmer and moist climate, and greater organic productivity. Amino acids then decrease in abundance, while δ13C values increase progressively, beginning at 73 cm (ca. 6000 yr B.P.), reflecting cooling and lower organic productivity. The average δ13C values from a core from West Taihu Lake are evidently higher than values from East Taihu Lake. The latter may reflect a stream environment, whereas the high δ13C values from West Taihu Lake likely reflect autotrophic carbon sources and a lacustrine environment since 11,000 yr B.P.

  10. New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern U.S.

    EPA Science Inventory

    The last several decades have seen decreases in SO42- deposition across the northeastern United States. As a result, SO42- concentrations in lakes and streams have also decreased and many surface water bodies have become less acidic. During the same time period, there has been ...

  11. Preliminary measurements of summer nitric acid and ammonia concentrations in the Lake Tahoe Basin air-shed: implications for dry deposition of atmospheric nitrogen.

    PubMed

    Tarnay, L; Gertler, A W; Blank, R R; Taylor, G E

    2001-01-01

    Over the past 50 years, Lake Tahoe, an alpine lake located in the Sierra Nevada mountains on the border between California and Nevada, has seen a decline in water clarity. With significant urbanization within its borders and major urban areas 130 km upwind of the prevailing synoptic airflow, it is believed the Lake Tahoe Basin is receiving substantial nitrogen (N) input via atmospheric deposition during summer and fall. We present preliminary inferential flux estimates to both lake surface and forest canopy based on empirical measurements of ambient nitric acid (HNO3), ammonia (NH3), and ammonium nitrate (NH4NO3) concentrations, in an effort to identify the major contributors to and ranges of atmospheric dry N deposition to the Lake Tahoe Basin. Total flux from dry deposition ranges from 1.2 to 8.6 kg N ha-1 for the summer and fall dry season and is significantly higher than wet deposition, which ranges from 1.7 to 2.9 kg N ha-1 year-1. These preliminary results suggest that dry deposition of HNO3 is the major source of atmospheric N deposition for the Lake Tahoe Basin, and that overall N deposition is similar in magnitude to deposition reported for sites exposed to moderate N pollution in the southern California mountains.

  12. Amino acid availability from select feed ingredients in the euryhaline Florida pompano Trachinotus carolinus adapted to seawater and low salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most marine carnivores, Florida pompano require relatively high crude protein diets to obtain optimal growth. Precision formulations to match the dietary indispensable amino acid pattern to a species' requirements can be used to increase protein efficiency and lower overall dietary protein...

  13. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    SciTech Connect

    Rhea, J.R.; Young, T.C. )

    1987-01-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a nultiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values and the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  14. Application of a continuous distribution model for proton binding by humic acids extracted from acidic lake sediments

    NASA Astrophysics Data System (ADS)

    Rhea, James R.; Young, Thomas C.

    1987-10-01

    The proton binding characteristics of humic acids extracted from the sediments of Cranberry Pond, an acidic water body located in the Adirondack Mountain region of New York State, were explored by the application of a multiligand distribution model. The model characterizes a class of proton binding sites by mean log K values and the standard deviations of log K values about the mean. Mean log K values and their relative abundances were determined directly from experimental titration data. The model accurately predicts the binding of protons by the humic acids for pH values in the range 3.5 to 10.0.

  15. Acidophilic halophilic microorganisms in fluid inclusions in halite from Lake Magic, Western Australia.

    PubMed

    Conner, Amber J; Benison, Kathleen C

    2013-09-01

    Lake Magic is one of the most extreme of hundreds of ephemeral acid-saline lakes in southern Western Australia. It has pH as low as 1.7, salinity as high as 32% total dissolved solids, temperatures ranging from 0°C to 50°C, and an unusually complex aqueous composition. Optical petrography, UV-vis petrography, and laser Raman spectrometry were used to detect microorganisms and organic compounds within primary fluid inclusions in modern bedded halite from Lake Magic. Rare prokaryotes appear as 1-3 μm, bright cocci that fluoresce green with UV-vis illumination. Dimpled, 5-7 μm yellow spherules that fluoresce blue with UV-vis illumination are interpreted as Dunaliella algae. Yellow-orange beta-carotene crystals, globules, and coatings are characterized by orange-red fluorescence and three distinct Raman peaks. Because acid saline lakes are good Mars analogues, the documentation of prokaryotes, eukaryotes, and organic compounds preserved in the halite here has implications for the search for life on Mars. Missions to Mars should incorporate such in situ optical and chemical examination of martian evaporites for possible microorganisms and/or organic compounds in fluid inclusions.

  16. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water.

    PubMed

    McKenzie, M A; Linden, R W A; Nicholson, J W

    2003-10-01

    Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects.

  17. Hydrogen-Rich Saline Attenuates Lipopolysaccharide-Induced Heart Dysfunction by Restoring Fatty Acid Oxidation in Rats by Mitigating C-Jun N-Terminal Kinase Activation.

    PubMed

    Tao, Bingdong; Liu, Lidan; Wang, Ni; Tong, Dongyi; Wang, Wei; Zhang, Jin

    2015-12-01

    Sepsis is common in intensive care units (ICU) and is associated with high mortality. Cardiac dysfunction complicating sepsis is one of the most important causes of this mortality. This dysfunction is due to myocardial inflammation and reduced production of energy by the heart. A number of studies have shown that hydrogen-rich saline (HRS) has a beneficial effect on sepsis. Therefore, we tested whether HRS prevents cardiac dysfunction by increasing cardiac energy. Four groups of rats received intraperitoneal injections of one of the following solutions: normal saline (NS), HRS, lipopolysaccharide (LPS), and LPS plus HRS. Cardiac function was measured by echocardiography 8 h after the injections. Gene and protein expression related to fatty acid oxidation (FAO) were measured by quantitative polymerase chain reaction (PCR) and Western blot analysis. The injection of LPS compromised heart function through decreased fractional shortening (FS) and increased left ventricular diameter (LVD). The addition of HRS increased FS, palmitate triphosphate, and the ratio of phosphocreatinine (PCr) to adenosine triphosphate (ATP) as well as decreasing LVD. The LPS challenge reduced the expression of genes related to FAO, including perioxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), perioxisome proliferator-activated receptor alpha (PPARα), Estrogen-related receptor alpha (ERRα), and their downstream targets, in mRNA and protein level, which were attenuated by HRS. However, HRS had little effect on glucose metabolism. Furthermore, HRS inhibited c-Jun N-terminal kinase (JNK) activation in the rat heart. Inhibition of JNK by HRS showed beneficial effects on LPS-challenged rats, at least in part, by restoring cardiac FAO.

  18. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite.

    PubMed

    Wang, Yun; Li, Zheng; Li, Jian; Duan, Ya-Fei; Niu, Jin; Wang, Jun; Huang, Zhong; Lin, Hei-Zhao

    2015-04-01

    An eight-week feeding trial followed by an acute combined stress test of low-salinity and nitrite were performed to evaluate effects of chlorogenic acid (CGA) on growth performance and antioxidant capacity of white shrimp Litopenaeus vannamei. Shrimp were randomly allocated in 12 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet or diets containing different levels of CGA (100, 200 and 400 mg kg(-1) feed) as treatment groups. Growth performance including weight gain (WG), biomass gain (BG), feed conversion ratio (FCR), and feed intake were determined after feeding for 56 days. Antioxidant capacity were evaluated by determining the activity of total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) as well as the gene expression of GSH-Px and CAT in the hepatopancreas of shrimp at the end of feeding trial and again at the end of the combined stress test. The results indicated that supplemention of CGA had no significant effects on the growth performance and the activities of TAS, SOD, GSH-Px and CAT in hepatopancreas of shrimp cultured under normal conditions for 56 days. However, compared with the control group, CGA (200, 400 mg kg(-1) feed) significantly improved the resistance of L. vannamei against the combined stress of low-salinity and nitrite, as indicated by the significant (P < 0.05) higher survival, higher activities of TAS, GSH-Px and CAT, as well as higher transcript levels of GPx and CAT gene in shrimp treated with CGA in the combined tress test. Our findings suggested that CGA possessed dual-modulatory effects on antioxidant capacity of L. vannamei and could be a potential feed additive that can enhance shrimp resistance against environmental stresses. The recommended application dosage is 200 mg kg(-1) and further studies are needed to clarify the action model of CGA efficiency.

  19. Microbiology of Lonar Lake and other soda lakes.

    PubMed

    Antony, Chakkiath Paul; Kumaresan, Deepak; Hunger, Sindy; Drake, Harold L; Murrell, J Colin; Shouche, Yogesh S

    2013-03-01

    Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalkaliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases. Soda lake microorganisms harbor several biotechnologically relevant enzymes and biomolecules (for example, cellulases, amylases, ectoine) and there is the need to augment bioprospecting efforts in soda lake environments with new integrated approaches. Importantly, some saline and alkaline lake ecosystems around the world need to be protected from anthropogenic pressures that threaten their long-term existence.

  20. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  1. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  2. Variation in fatty acid composition in muscle and heart tissues among species and populations of tropical fish in Lakes Victoria and Kyoga.

    PubMed

    Kwetegyeka, Justus; Mpango, George; Grahl-Nielsen, Otto

    2008-11-01

    The composition of the fatty acids in muscle and heart tissue of seven fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), marbled lungfish (Protopterus aethiopicus), African catfish (Clarias gariepinus), Lake Victoria squeaker (Synodontis victoriae), Bagrus docmas, and Tilapia zilli, from two locations in Lake Kyoga and one location in Lake Victoria was chemometrically determined. The muscle tissue was very lean, with an average of 3.4 mg total fatty acids per g tissue. The lipid level in the heart tissue was approximately five times higher than in the muscle tissue, with an average of 15.5 mg total fatty acids per g tissue. The n-3/n-6 level in the muscles was 1.7 +/- 0.7 and in the heart tissue 1.0 +/- 0.4. The muscle tissue contained an average of 46 mg cholesterol per 100 g, and the heart tissue contained about five times as much. Plasmalogens were detected in 7-8% of the amounts of total fatty acids in both muscle and heart tissue. The seven species had large differences (P < 0.05) in the fatty acid composition for both muscle and heart tissue. Within the species there were differences between fish from the populations in the three locations, although the population differences were smaller than the species differences. These differences appear to be controlled more closely by genetics/transcriptomics than by the diet.

  3. Temperature Trends in Montane Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Sadro, S.; Jellison, R.

    2014-12-01

    Long-term temperature trends in lakes integrate hydrological and meteorological factors. We examine temperature trends in a small montane lake with prolonged ice-cover and large seasonal snowfall and in a large saline lake. Emerald Lake, located in the Sierra Nevada (California), is representative of high-elevation lakes throughout the region. No significant trend in outflow temperature was apparent from 1991to 2012. Snowfall in the watershed accounted for 93% of the variability in average summer lake temperatures. Mono Lake (California) lies in a closed, montane basin and is hypersaline and monomictic or meromictic. Temperature profiles have been collected from 1982 to 2010. In the upper water column, the July-August-September water temperatures increased 0.8-1.0°C over the 29 years. This rate of warming is less than published estimates based on satellite-derived skin temperatures and will discussed in the context of general limnological interpretation of temperature trends.

  4. Mineralogical and Chemical Characterization of Acidic Pumices Outcrop North of Lake Van

    NASA Astrophysics Data System (ADS)

    Yucel, Aysegul; Efe, Tugba; Onal, Mehmet; Depci, Tolga; Aydin, Harun

    2016-10-01

    In the present study, mineralogical, physical and chemical characteristics of the pumice located in North of Lake Van locations were investigated to find an applicability of them for cement and textile industry. Characterization studies of the pumice samples were carried out by thin section, SEM, XRF, XRD and FTIR analysis. In addition, the bulk density, Hard Grove Index (HGI), pozzolanic activity and reactive silica of the pumice samples were determined. The overall results showed that the pumice samples, which might be an eruption product of Mount Suphan, had an amorphous structure and rhyolite composition in high calc- alkaline series. The chemical compositions and physical properties indicated that the pumice samples could be used in cement and textile industry.

  5. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  6. Investigation of low-molecular weight organic acids and their spatiotemporal variation characteristics in Hongfeng Lake, China.

    PubMed

    Xiao, Min; Wu, Fengchang; Wang, Liying; Li, Xinqing; Huang, Rongsheng

    2013-02-01

    The identities and concentrations of low-molecular-weight organic acids (LMWOAs) were determined by ion chromatography throughout a 20-m water column in Hongfeng Lake, China. The spatiotemporal variations of LMWOAs and their contributions to dissolved organic matter (DOM) in a research period of 24 hr were also investigated. The results demonstrated that five LMWOAs (lactic, acetic, pyruvic, sorbic, oxalic acid) were detected, and their total concentration and proportion in DOC were 6.55 micromol/L and 7.47%. Their average levels were 2.50, 0.65, 2.35, 0.96 and 0.09 micromol/L, respectively. LMWOAs were higher during daytime (10:00-18:00 on Jun 13, 2008) than nighttime (21:00-6:00 the next morning), in particular 4.99 micromol/L high in the epilimnion (< or = 1 m water depth), reflecting the fact that direct import from terrigenous sources and photochemical production from humic materials were dominant during LMWOAs' origin and accumulation. The same factors caused LMWOAs to be 0.63 micromol/L in the epilimnion higher than in the hypolimnion. The rapid decrease of total organic acid (TOA) up until 18:00 mainly resulted from bio-uptake and mineralization in the hypolimnion (>1 m water depth). Pyruvic acid increased with time in the epilimnion and decreased in the hypolimnion, largely related to the two contrary processes of continuous degradation and synthesis of macromolecular organic matter during life materials' cycle mediated by organisms. Simultaneously, plankton behavior and thermal stratification played a pivotal role in LMWOAs' behavior in the water column, causing decreasing and increasing profiles. The distribution of LMWOAs represents an interesting resource for biogeochemical research of DOM in aquatic ecosystems.

  7. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  8. Air pollutin and acid rain, Report 4. Effects of air pollution and acid rain on fish, wildlife, and their habitats - lakes

    SciTech Connect

    Potter, W.; Adler, D.

    1982-06-01

    This report summarizes the results of scientific research related to air pollution effects on fish and wildlife associated with lakes and wetlands. The effects of photochemical oxidants, particulates, and acidifying air pollutants on water quality and lake and wetland biota are summarized. The characteristics that indicate lake sensitivity to air pollutants, in particular acidifying pollutants, are presented. Socioeconomic aspects of air pollution impacts on lake ecosystems are discussed and areas of research are suggested to increase the understanding of the effects of air pollutants on lake and wetland ecosystems. 172 references, 1 figure, 6 tables.

  9. Connections between hyper-acid crater lakes and flank springs: new evidence from Rincón de la Vieja volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Martínez, M.; Fernández, E.; Sáenz, W.; van Bergen, M. J.; Ayres, G.; Pacheco, J. F.; Brenes, J.; Avard, G.; Malavassi, E.

    2012-04-01

    Rincón de la Vieja, a complex andesitic stratovolcano in NW Costa Rica, shows various hydrothermal surface manifestations that comprise: (1) A hyper-acid crater lake and subaerial fumaroles receiving direct input of fluids of magmatic origin, (2) Acid thermal discharges along the northeastern slopes of the volcano that feed the headwaters of the Cucaracho river, and (3) Small lakes and a geothermal field with bubbling-boiling mud pools, acid-sulfate springs, steaming ground and fumarolic emissions in a region on the western flank. Here the streams are of relatively low flow rate and their chemical signatures correspond to that of deep fluids from an extensive geothermal reservoir mixed with shallow meteoric water. Physico-chemical properties of the sulfate-chloride hyper-acid lake (T=28-58 °C; pH between 1.2 and <0, high TDS of 24,000-160,000 mg/kg) are consistent with a meteoric water body supplied by a significant input of chemical components derived from hydrolysis of magmatic volatiles and from intense rock leaching. The Cucaracho catchment receives input from warm acid brines with no free-gas phase but carrying a high load of hydrolyzed magmatic volatiles and rock-forming elements. One of these brines (Spring 4) is characterized by a sulfate-chloride chemical signature, medium temperatures of 27-38 °C, pH between 2 and 4 and TDS values between 780 and 1300 mg/L. Based on water and heat-balance considerations, chemical and stable-isotope signatures and groundwater transport modeling, it has been proposed that these acid springs represent brine water from the lake-hydrothermal system that is diluted by shallow groundwater permeating tephra layers (Kempter and Rowe, 2000). Since Rincóńs latest phreatomagmatic activity in 1983, episodes of phreatic eruptions from the crater lake have been registered in 1983-87, 1991, 1995, 1998 and 2011. Some of these eruptions (VEI 1) have expelled large quantities of lake water, triggering small to medium- sized fast

  10. Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana.

    PubMed

    Huang, Ming-Der; Wu, Wen-Luan

    2007-03-01

    Phytohormone abscisic acid (ABA) regulates many aspects of plant development and growth. To explore the molecular mechanism of ABA, we identified the novel ABA-regulated genes in Arabidopsis thaliana by searching for genes possessing two or more ABREs (ABA-responsive elements). One of these genes, two or more ABREs-containing gene 2 (TMAC2) is highly induced by ABA and NaC1. Database searches revealed that TMAC2 encodes a protein with no domains of known function. Expression of TMAC2-GFP fusion protein in Arabidopsis mesophyll protoplasts indicated that TMAC2 is targeted to the nucleus. Although the gene has a basal level of expression in various Arabidopsis organs/tissues except for adult leaves, a high expression level was detected in roots. Constitutive overexpression of TMAC2 in plants resulted in the insensitivity to ABA and NaCl, suggesting that TMAC2 plays a negative role in ABA and salt stress responses. Furthermore, TMAC2-overexpressing plants exhibited the short roots, late flowering and starch-excess phenotypes. RT-PCR analysis showed that decreased expression of two floral- and one starch degradation-related genes, SOC1/AGL20 and SEP3/AGL9, and SEX1, respectively, may lead to altered phenotypes of TMAC2-overexpressing plants. Taken together, our data reveal that TMAC2 acts in the nucleus and is an important negative regulator of ABA and salt stress responses, and could play a critical role in controlling root elongation, floral initiation and starch degradation.

  11. Differences in activation of aryl hydrocarbon receptors of white sturgeon relative to lake sturgeon are predicted by identities of key amino acids in the ligand binding domain.

    PubMed

    Doering, Jon A; Farmahin, Reza; Wiseman, Steve; Beitel, Shawn C; Kennedy, Sean W; Giesy, John P; Hecker, Markus

    2015-04-07

    Dioxin-like compounds (DLCs) are pollutants of global environmental concern. DLCs elicit their adverse outcomes through activation of the aryl hydrocarbon receptor (AhR). However, there is limited understanding of the mechanisms that result in differences in sensitivity to DLCs among different species of fishes. Understanding these mechanisms is critical for protection of the diversity of fishes exposed to DLCs, including endangered species. This study investigated specific mechanisms that drive responses of two endangered fishes, white sturgeon (Acipenser transmontanus) and lake sturgeon (Acipenser fulvescens) to DLCs. It determined whether differences in sensitivity to activation of AhRs (AhR1 and AhR2) can be predicted based on identities of key amino acids in the ligand binding domain (LBD). White sturgeon were 3- to 30-fold more sensitive than lake sturgeon to exposure to 5 different DLCs based on activation of AhR2. There were no differences in sensitivity between white sturgeon and lake sturgeon based on activation of AhR1. Adverse outcomes as a result of exposure to DLCs have been shown to be mediated through activation of AhR2, but not AhR1, in all fishes studied to date. This indicates that white sturgeon are likely to have greater sensitivity in vivo relative to lake sturgeon. Homology modeling and in silico mutagenesis suggests that differences in sensitivity to activation of AhR2 result from differences in key amino acids at position 388 in the LBD of AhR2 of white sturgeon (Ala-388) and lake sturgeon (Thr-388). This indicates that identities of key amino acids in the LBD of AhR2 could be predictive of both in vitro activation by DLCs and in vivo sensitivity to DLCs in these, and potentially other, fishes.

  12. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid

    PubMed Central

    Egamberdieva, Dilfuza; Jabborova, Dilfuza; Hashem, Abeer

    2015-01-01

    Abiotic stresses cause changes in the balance of phytohormones in plants and result in inhibited root growth and an increase in the susceptibility of plants to root rot disease. The aim of this work was to ascertain whether microbial indole-3-acetic acid (IAA) plays a role in the regulation of root growth and microbially mediated control of root rot of cotton caused by Fusarium solani. Seed germination and seedling growth were improved by both NaCl and Mg2SO4 (100 mM) solutions when treated with root-associated bacterial strains Pseudomonas putida R4 and Pseudomonas chlororaphis R5, which are able to produce IAA. These bacterial strains were also able to reduce the infection rate of cotton root rot (from 70 to 39%) caused by F. solani under gnotobiotic conditions. The application of a low concentration of IAA (0.01 and 0.001 μg/ml) stimulated plant growth and reduced disease incidence caused by F. solani (from 70 to 41–56%, respectively). Shoot and root growth and dry matter increased significantly and disease incidence was reduced by bacterial inoculants in natural saline soil. These results suggest that bacterial IAA plays a major role in salt stress tolerance and may be involved in induced resistance against root rot disease of cotton. PMID:26587006

  13. Photocatalytic degradation of humic acid in saline waters. Part 1. Artificial seawater: influence of TiO2, temperature, pH, and air-flow.

    PubMed

    Al-Rasheed, Radwan; Cardin, David J

    2003-06-01

    We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO(2) (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 gl(-1); while the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure oxygen, an optimal flow rate was observed at 300 ml min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 (+/-0.6) kJ mol(-1).

  14. Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid.

    PubMed

    Egamberdieva, Dilfuza; Jabborova, Dilfuza; Hashem, Abeer

    2015-11-01

    Abiotic stresses cause changes in the balance of phytohormones in plants and result in inhibited root growth and an increase in the susceptibility of plants to root rot disease. The aim of this work was to ascertain whether microbial indole-3-acetic acid (IAA) plays a role in the regulation of root growth and microbially mediated control of root rot of cotton caused by Fusarium solani. Seed germination and seedling growth were improved by both NaCl and Mg2SO4 (100 mM) solutions when treated with root-associated bacterial strains Ps