Science.gov

Sample records for acid sequence designated

  1. Science sequence design

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Bollman, W. E.; Freeman, J. E.; Helton, M. R.; Reichert, R. J.; Travers, E. S.; Zawacki, S. J.

    1973-01-01

    The activities of the following members of the Navigation Team are recorded: the Science Sequence Design Group, responsible for preparing the final science sequence designs; the Advanced Sequence Planning Group, responsible for sequence planning; and the Science Recommendation Team (SRT) representatives, responsible for conducting the necessary sequence design interfaces with the teams during the mission. The interface task included science support in both advance planning and daily operations. Science sequences designed during the mission are also discussed.

  2. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  3. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  4. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  5. Study Design for Sequencing Studies.

    PubMed

    Honaas, Loren A; Altman, Naomi S; Krzywinski, Martin

    2016-01-01

    Once a biochemical method has been devised to sample RNA or DNA of interest, sequencing can be used to identify the sampled molecules with high fidelity and low bias. High-throughput sequencing has therefore become the primary data acquisition method for many genomics studies and is being used more and more to address molecular biology questions. By applying principles of statistical experimental design, sequencing experiments can be made more sensitive to the effects under study as well as more biologically sound, hence more replicable. PMID:27008009

  6. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  7. From Artificial Amino Acids to Sequence-Defined Targeted Oligoaminoamides.

    PubMed

    Morys, Stephan; Wagner, Ernst; Lächelt, Ulrich

    2016-01-01

    Artificial oligoamino acids with appropriate protecting groups can be used for the sequential assembly of oligoaminoamides on solid-phase. With the help of these oligoamino acids multifunctional nucleic acid (NA) carriers can be designed and produced in highly defined topologies. Here we describe the synthesis of the artificial oligoamino acid Fmoc-Stp(Boc3)-OH, the subsequent assembly into sequence-defined oligomers and the formulation of tumor-targeted plasmid DNA (pDNA) polyplexes. PMID:27436323

  8. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  9. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  10. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  11. Amino-Acid Sequence of Porcine Pepsin

    PubMed Central

    Tang, J.; Sepulveda, P.; Marciniszyn, J.; Chen, K. C. S.; Huang, W-Y.; Tao, N.; Liu, D.; Lanier, J. P.

    1973-01-01

    As the culmination of several years of experiments, we propose a complete amino-acid sequence for porcine pepsin, an enzyme containing 327 amino-acid residues in a single polypeptide chain. In the sequence determination, the enzyme was treated with cyanogen bromide. Five resulting fragments were purified. The amino-acid sequence of four of the fragments accounted for 290 residues. Because the structure of a 37-residue carboxyl-terminal fragment was already known, it was not studied. The alignment of these fragments was determined from the sequence of methionyl-peptides we had previously reported. We also discovered the locations of activesite aspartyl residues, as well as the pairing of the three disulfide bridges. A minor component of commercial crystalline pepsin was found to contain two extra amino-acid residues, Ala-Leu-, at the amino-terminus of the molecule. This minor component was apparently derived from a different site of cleavage during the activation of porcine pepsinogen. PMID:4587252

  12. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  13. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-07-21

    A method is disclosed for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe. 11 figs.

  14. Methods for analyzing nucleic acid sequences

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.

  15. Designing novel kinases using evolutionary sequence analysis

    NASA Astrophysics Data System (ADS)

    Mody, Areez; Weiner, Joan; Iyer, Lakshman; Ramanathan, Sharad

    2006-03-01

    Cellular pathways with new functions are thought to arise from the duplication and divergence of proteins in existing pathways. The MAP kinase pathways in eukaryotes provide one example of this. These pathways consist of the MAP kinase proteins which are responsible for evoking the correct response to external stimuli. In the yeast Saccharomyces cerevisiae these pathways detect pheromones, osmolar stresses and nutrient levels, leading the cell into dramatic changes of morphology. Despite being homologous to each other, the MAP kinase proteins show specificity of function. We investigate the nature of the amino acid sequences conferring this specificity. To this end, we i) search the sequences of similar proteins in other Eukaryote species, ii) make a study of simple theoretical models exploring the constraints felt by these protein segments and iii) experimentally construct, a large suite of hybrid proteins made of segments taken from the homologous proteins. These are then expressed in Yeast cells to see what function they are able to perform. Particularly we also ask whether it is possible to design a new kinase protein possessing new function and specificity.

  16. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  17. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  18. Design of immobile nucleic acid junctions.

    PubMed Central

    Seeman, N C; Kallenbach, N R

    1983-01-01

    Nucleic acids that interact to generate structures in which three or more double helices emanate from a single point are said to form a junction. Such structures arise naturally as intermediates in DNA replication and recombination. It has been proposed that stable junctions can be created by synthesizing sets of oligonucleotides of defined sequence that can associate by maximizing Watson-Crick complementarity (Seeman N. C., 1981, Biomolecular Stereodynamics. Adenine Press, New York. 1: 269-278; Seeman, N. C., 1982, J. Theor. Biol. 99:237-247.) To make it possible to design molecules that will form junctions of specific architecture, we present here an efficient algorithm for generating nucleic acid sequences that optimize two fundamental properties: fidelity and stability. Fidelity refers to the relative probability of forming the junction complex relative to all alternative paired structures. Calculations are described that permit approximate prediction of the melting curves for junction complexes. PMID:6197102

  19. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid sequence disclosures must include a copy of the sequence listing in accordance with the requirements in 37 CFR...

  20. Sequence design in lattice models by graph theoretical methods

    NASA Astrophysics Data System (ADS)

    Sanjeev, B. S.; Patra, S. M.; Vishveshwara, S.

    2001-01-01

    A general strategy has been developed based on graph theoretical methods, for finding amino acid sequences that take up a desired conformation as the native state. This problem of inverse design has been addressed by assigning topological indices for the monomer sites (vertices) of the polymer on a 3×3×3 cubic lattice. This is a simple design strategy, which takes into account only the topology of the target protein and identifies the best sequence for a given composition. The procedure allows the design of a good sequence for a target native state by assigning weights for the vertices on a lattice site in a given conformation. It is seen across a variety of conformations that the predicted sequences perform well both in sequence and in conformation space, in identifying the target conformation as native state for a fixed composition of amino acids. Although the method is tested in the framework of the HP model [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] it can be used in any context if proper potential functions are available, since the procedure derives unique weights for all the sites (vertices, nodes) of the polymer chain of a chosen conformation (graph).

  1. Predicting intrinsic disorder from amino acid sequence.

    PubMed

    Obradovic, Zoran; Peng, Kang; Vucetic, Slobodan; Radivojac, Predrag; Brown, Celeste J; Dunker, A Keith

    2003-01-01

    Blind predictions of intrinsic order and disorder were made on 42 proteins subsequently revealed to contain 9,044 ordered residues, 284 disordered residues in 26 segments of length 30 residues or less, and 281 disordered residues in 2 disordered segments of length greater than 30 residues. The accuracies of the six predictors used in this experiment ranged from 77% to 91% for the ordered regions and from 56% to 78% for the disordered segments. The average of the order and disorder predictions ranged from 73% to 77%. The prediction of disorder in the shorter segments was poor, from 25% to 66% correct, while the prediction of disorder in the longer segments was better, from 75% to 95% correct. Four of the predictors were composed of ensembles of neural networks. This enabled them to deal more efficiently with the large asymmetry in the training data through diversified sampling from the significantly larger ordered set and achieve better accuracy on ordered and long disordered regions. The exclusive use of long disordered regions for predictor training likely contributed to the disparity of the predictions on long versus short disordered regions, while averaging the output values over 61-residue windows to eliminate short predictions of order or disorder probably contributed to the even greater disparity for three of the predictors. This experiment supports the predictability of intrinsic disorder from amino acid sequence. PMID:14579347

  2. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P.; White, P. Scott

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  3. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  4. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  5. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  6. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  7. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect

    States, David J.

    2004-07-28

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  8. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect

    David J. States

    1998-08-01

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  9. High-throughput sequencing and vaccine design.

    PubMed

    Luciani, F

    2016-04-01

    Next-generation sequencing (NGS) technologies have reshaped genome research. The resulting increase in sequencing depth and resolution has led to an unprecedented level of genomic detail and thus an increasing awareness of the complexity of animal, human and pathogen genomes. This has resulted in new approaches to vaccine research. On the one hand, the increase in genome complexity challenges our ability to study and understand pathogen biology and pathogen-host interactions. On the other hand, the increase in genomic data also provides key information for developing and designing improved vaccines against pathogens that were previously extremely difficult to deal with, such as rapidly mutating RNA viruses or bacteria that have complex interactions with the host immune system. This review describes how the broad application of NGS technologies to genome research is affecting vaccine research. It focuses on implications for the field of viral genomics, and includes recent animal and human studies. PMID:27217168

  10. Detecting frame shifts by amino acid sequence comparison.

    PubMed

    Claverie, J M

    1993-12-20

    Various amino acid substitution scoring matrices are used in conjunction with local alignments programs to detect regions of similarity and infer potential common ancestry between proteins. The usual scoring schemes derive from the implicit hypothesis that related proteins evolve from a common ancestor by the accumulation of point mutations and that amino acids tend to be progressively substituted by others with similar properties. However, other frequent single mutation events, like nucleotide insertion or deletion and gene inversion, change the translation reading frame and cause previously encoded amino acid sequences to become unrecognizable at once. Here, I derive five new types of scoring matrix, each capable of detecting a specific frame shift (deletion, insertion and inversion in 3 frames) and use them with a regular local alignments program to detect amino acid sequences that may have derived from alternative reading frames of the same nucleotide sequence. Frame shifts are inferred from the sole comparison of the protein sequences. The five scoring matrices were used with the BLASTP program to compare all the protein sequences in the Swissprot database. Surprisingly, the searches revealed hundreds of highly significant frame shift matches, of which many are likely to represent sequencing errors. Others provide some evidence that frame shift mutations might be used in protein evolution as a way to create new amino acid sequences from pre-existing coding regions. PMID:7903399

  11. Segments of amino acid sequence similarity in beta-amylases.

    PubMed

    Friedberg, F; Rhodes, C

    1988-01-01

    In alpha-amylases from animals, plants and bacteria and in beta-amylases from plants and bacteria a number of segments exhibit amino acid sequence similarity specific to the alpha or to the beta type, respectively. In the case of the beta-amylases the similar sequence regions are extensive and they are disrupted only by short interspersed dissimilar regions. Close to the C terminus, however, no such sequence similarity exist. PMID:2464171

  12. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  13. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  14. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  15. Not All Sequence Tags Are Created Equal: Designing and Validating Sequence Identification Tags Robust to Indels

    PubMed Central

    Faircloth, Brant C.; Glenn, Travis C.

    2012-01-01

    Ligating adapters with unique synthetic oligonucleotide sequences (sequence tags) onto individual DNA samples before massively parallel sequencing is a popular and efficient way to obtain sequence data from many individual samples. Tag sequences should be numerous and sufficiently different to ensure sequencing, replication, and oligonucleotide synthesis errors do not cause tags to be unrecoverable or confused. However, many design approaches only protect against substitution errors during sequencing and extant tag sets contain too few tag sequences. We developed an open-source software package to validate sequence tags for conformance to two distance metrics and design sequence tags robust to indel and substitution errors. We use this software package to evaluate several commercial and non-commercial sequence tag sets, design several large sets (maxcount = 7,198) of edit metric sequence tags having different lengths and degrees of error correction, and integrate a subset of these edit metric tags to polymerase chain reaction (PCR) primers and sequencing adapters. We validate a subset of these edit metric tagged PCR primers and sequencing adapters by sequencing on several platforms and subsequent comparison to commercially available alternatives. We find that several commonly used sets of sequence tags or design methodologies used to produce sequence tags do not meet the minimum expectations of their underlying distance metric, and we find that PCR primers and sequencing adapters incorporating edit metric sequence tags designed by our software package perform as well as their commercial counterparts. We suggest that researchers evaluate sequence tags prior to use or evaluate tags that they have been using. The sequence tag sets we design improve on extant sets because they are large, valid across the set, and robust to the suite of substitution, insertion, and deletion errors affecting massively parallel sequencing workflows on all currently used platforms

  16. A method to find palindromes in nucleic acid sequences.

    PubMed

    Anjana, Ramnath; Shankar, Mani; Vaishnavi, Marthandan Kirti; Sekar, Kanagaraj

    2013-01-01

    Various types of sequences in the human genome are known to play important roles in different aspects of genomic functioning. Among these sequences, palindromic nucleic acid sequences are one such type that have been studied in detail and found to influence a wide variety of genomic characteristics. For a nucleotide sequence to be considered as a palindrome, its complementary strand must read the same in the opposite direction. For example, both the strands i.e the strand going from 5' to 3' and its complementary strand from 3' to 5' must be complementary. A typical nucleotide palindromic sequence would be TATA (5' to 3') and its complimentary sequence from 3' to 5' would be ATAT. Thus, a new method has been developed using dynamic programming to fetch the palindromic nucleic acid sequences. The new method uses less memory and thereby it increases the overall speed and efficiency. The proposed method has been tested using the bacterial (3891 KB bases) and human chromosomal sequences (Chr-18: 74366 kb and Chr-Y: 25554 kb) and the computation time for finding the palindromic sequences is in milli seconds. PMID:23515654

  17. Amino acid sequence repertoire of the bacterial proteome and the occurrence of untranslatable sequences.

    PubMed

    Navon, Sharon Penias; Kornberg, Guy; Chen, Jin; Schwartzman, Tali; Tsai, Albert; Puglisi, Elisabetta Viani; Puglisi, Joseph D; Adir, Noam

    2016-06-28

    Bioinformatic analysis of Escherichia coli proteomes revealed that all possible amino acid triplet sequences occur at their expected frequencies, with four exceptions. Two of the four underrepresented sequences (URSs) were shown to interfere with translation in vivo and in vitro. Enlarging the URS by a single amino acid resulted in increased translational inhibition. Single-molecule methods revealed stalling of translation at the entrance of the peptide exit tunnel of the ribosome, adjacent to ribosomal nucleotides A2062 and U2585. Interaction with these same ribosomal residues is involved in regulation of translation by longer, naturally occurring protein sequences. The E. coli exit tunnel has evidently evolved to minimize interaction with the exit tunnel and maximize the sequence diversity of the proteome, although allowing some interactions for regulatory purposes. Bioinformatic analysis of the human proteome revealed no underrepresented triplet sequences, possibly reflecting an absence of regulation by interaction with the exit tunnel. PMID:27307442

  18. Characterization of mouse cellular deoxyribonucleic acid homologous to Abelson murine leukemia virus-specific sequences.

    PubMed Central

    Dale, B; Ozanne, B

    1981-01-01

    The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120). Images PMID:9279386

  19. Amino Acid Sequence of Anionic Peroxidase from the Windmill Palm Tree Trachycarpus fortunei

    PubMed Central

    2015-01-01

    Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications. PMID:25383699

  20. On Quantum Algorithm for Multiple Alignment of Amino Acid Sequences

    NASA Astrophysics Data System (ADS)

    Iriyama, Satoshi; Ohya, Masanori

    2009-02-01

    The alignment of genome sequences or amino acid sequences is one of fundamental operations for the study of life. Usual computational complexity for the multiple alignment of N sequences with common length L by dynamic programming is O(LN). This alignment is considered as one of the NP problems, so that it is desirable to find a nice algorithm of the multiple alignment. Thus in this paper we propose the quantum algorithm for the multiple alignment based on the works12,1,2 in which the NP complete problem was shown to be the P problem by means of quantum algorithm and chaos information dynamics.

  1. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences

    PubMed Central

    Derr, Julien; Manapat, Michael L.; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A.; Chen, Irene A.

    2012-01-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life. PMID:22319215

  2. The amino-acid sequence of kangaroo pancreatic ribonuclease.

    PubMed

    Gaastra, W; Welling, G W; Beintema, J J

    1978-05-01

    Red kangaroo (Macropus rufus) ribonuclease was isolated from pancreatic tissue by affinity chromatography. The amino acid sequence was determined by automatic sequencing of overlapping large fragments and by analysis of shorter peptides obtained by digestion with a number of proteolytic enzymes. The polypeptide chain consists of 122 amino acid residues. Compared to other ribonucleases, the N-terminal residue and residue 114 are deleted. In other pancreatic ribonucleases position 114 is occupied by a cis proline residue in an external loop at the surface of the molecule. Other remarkable substitutions are the presence of a tyrosine residue at position 123 instead of a serine which forms a hydrogen bond with the pyrimidine ring of a nucleotide substrate, and a number of hydrophobichydrophilic interchanges in the sequence 51-55, which forms part of an alpha-helix in bovine ribonuclease and exhibits few substitutions in the placental mammals. Kangaroo ribonuclease contains no carbohydrate, although the enzyme possesses a recognition site for carbohydrate attachment in the sequence Asn-Val-Thr (62-64). The enzyme differs at about 35-40% of the positions from all other mammalian pancreatic ribonucleases sequenced to date, which is in agreement with the early divergence between the marsupials and the placental mammals. From fragmentary data a tentative sequence of red-necked wallaby (Macropus rufogriseus) pancreatic ribonuclease has been derived. Eight differences with the kangaroo sequence were found. PMID:658039

  3. Amino acid sequence of Salmonella typhimurium branched-chain amino acid aminotransferase.

    PubMed

    Feild, M J; Nguyen, D C; Armstrong, F B

    1989-06-13

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase (transaminase B, EC 2.6.1.42) of Salmonella typhimurium was determined. An Escherichia coli recombinant containing the ilvGEDAY gene cluster of Salmonella was used as the source of the hexameric enzyme. The peptide fragments used for sequencing were generated by treatment with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. The enzyme subunit contains 308 residues and has a molecular weight of 33,920. To determine the coenzyme-binding site, the pyridoxal 5-phosphate containing enzyme was treated with tritiated sodium borohydride prior to trypsin digestion. Peptide map comparisons with an apoenzyme tryptic digest and monitoring radioactivity incorporation allowed identification of the pyridoxylated peptide, which was then isolated and sequenced. The coenzyme-binding site is the lysyl residue at position 159. The amino acid sequence of Salmonella transaminase B is 97.4% identical with that of Escherichia coli, differing in only eight amino acid positions. Sequence comparisons of transaminase B to other known aminotransferase sequences revealed limited sequence similarity (24-33%) when conserved amino acid substitutions are allowed and alignments were forced to occur on the coenzyme-binding site. PMID:2669973

  4. Protein location prediction using atomic composition and global features of the amino acid sequence

    SciTech Connect

    Cherian, Betsy Sheena; Nair, Achuthsankar S.

    2010-01-22

    Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.

  5. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  6. Amino acid sequence of bovine heart coupling factor 6.

    PubMed Central

    Fang, J K; Jacobs, J W; Kanner, B I; Racker, E; Bradshaw, R A

    1984-01-01

    The amino acid sequence of bovine heart mitochondrial coupling factor 6 (F6) has been determined by automated Edman degradation of the whole protein and derived peptides. Preparations based on heat precipitation and ethanol extraction showed allotypic variation at three positions while material further purified by HPLC yielded only one sequence that also differed by a Phe-Thr replacement at residue 62. The mature protein contains 76 amino acids with a calculated molecular weight of 9006 and a pI of approximately equal to 5, in good agreement with experimentally measured values. The charged amino acids are mainly clustered at the termini and in one section in the middle; these three polar segments are separated by two segments relatively rich in nonpolar residues. Chou-Fasman analysis suggests three stretches of alpha-helix coinciding (or within) the high-charge-density sequences with a single beta-turn at the first polar-nonpolar junction. Comparison of the F6 sequence with those of other proteins did not reveal any homologous structures. PMID:6149548

  7. Design of Mariner 9 Science Sequences using Interactive Graphics Software

    NASA Technical Reports Server (NTRS)

    Freeman, J. E.; Sturms, F. M, Jr.; Webb, W. A.

    1973-01-01

    This paper discusses the analyst/computer system used to design the daily science sequences required to carry out the desired Mariner 9 science plan. The Mariner 9 computer environment, the development and capabilities of the science sequence design software, and the techniques followed in the daily mission operations are discussed. Included is a discussion of the overall mission operations organization and the individual components which played an essential role in the sequence design process. A summary of actual sequences processed, a discussion of problems encountered, and recommendations for future applications are given.

  8. Sequences Of Amino Acids For Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.

    1992-01-01

    Sequences of amino acids defined for use in making polypeptides one-third to one-sixth as large as parent human serum albumin molecule. Smaller, chemically stable peptides have diverse applications including service as artificial human serum and as active components of biosensors and chromatographic matrices. In applications involving production of artificial sera from new sequences, little or no concern about viral contaminants. Smaller genetically engineered polypeptides more easily expressed and produced in large quantities, making commercial isolation and production more feasible and profitable.

  9. Designing to See and Share Structure in Number Sequences

    ERIC Educational Resources Information Center

    Mor, Yishay; Noss, Richard; Hoyles, Celia; Kahn, Ken; Simpson, Gordon

    2006-01-01

    This paper reports on a design experiment in the domain of number sequences conducted in the course of the "WebLabs" project. We iteratively designed and tested a set of activities and tools in which 10-14 year old students used the "ToonTalk" programming environment to construct models of sequences and series, and then shared their models and…

  10. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  11. MINIATURE ACID CONDENSATION SYSTEM: DESIGN AND OPERATION

    EPA Science Inventory

    An extractive source sampling system was designed and constructed. The sampling system measures gaseous sulfuric acid and sulfur dioxide in combustion emissions. The miniature acid condensation system (MACS) includes a high-temperature quartz probe and quartz-filter holder. Since...

  12. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank. PMID:16780982

  13. Partial amino acid sequence of fructose-1,6-bisphosphatase from the blue-green algae Synechococcus leopoliensis.

    PubMed

    Marcus, F; Latshaw, S P; Steup, M; Gerbling, K P

    1989-08-01

    Purified fructose-1,6-bisphosphatase from the cyanobacterium Synechococcus leopoliensis was S-carboxymethylated and cleaved with trypsin. The resulting peptides were purified by reversed-phase high performance liquid chromatography and the amino acid sequence of six of the purified peptides was determined by gas-phase microsequencing. The results revealed sequence homology with other fructose-1,6-bisphosphatases. The obtained sequence data provides information required for the design of oligonucleotide hybridization probes to screen existing libraries of cyanobacterial DNA. The determination of the amino acid sequence of cyanobacterial proteins may yield important information with respect to the endosymbiotic theory of evolution. PMID:2550924

  14. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  15. Correlation between fibroin amino acid sequence and physical silk properties.

    PubMed

    Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek

    2003-09-12

    The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet. PMID:12816957

  16. Amino acid sequence of the nonsecretory ribonuclease of human urine.

    PubMed

    Beintema, J J; Hofsteenge, J; Iwama, M; Morita, T; Ohgi, K; Irie, M; Sugiyama, R H; Schieven, G L; Dekker, C A; Glitz, D G

    1988-06-14

    The amino acid sequence of a nonsecretory ribonuclease isolated from human urine was determined except for the identity of the residue at position 7. Sequence information indicates that the ribonucleases of human liver and spleen and an eosinophil-derived neurotoxin are identical or very closely related gene products. The sequence is identical at about 30% of the amino acid positions with those of all of the secreted mammalian ribonucleases for which information is available. Identical residues include active-site residues histidine-12, histidine-119, and lysine-41, other residues known to be important for substrate binding and catalytic activity, and all eight half-cystine residues common to these enzymes. Major differences include a deletion of six residues in the (so-called) S-peptide loop, insertions of two, and nine residues, respectively, in three other external loops of the molecule, and an addition of three residues at the amino terminus. The sequence shows the human nonsecretory ribonuclease to belong to the same ribonuclease superfamily as the mammalian secretory ribonucleases, turtle pancreatic ribonuclease, and human angiogenin. Sequence data suggest that a gene duplication occurred in an ancient vertebrate ancestor; one branch led to the nonsecretory ribonuclease, while the other branch led to a second duplication, with one line leading to the secretory ribonucleases (in mammals) and the second line leading to pancreatic ribonuclease in turtle and an angiogenic factor in mammals (human angiogenin). The nonsecretory ribonuclease has five short carbohydrate chains attached via asparagine residues at the surface of the molecule; these chains may have been shortened by exoglycosidase action.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3166997

  17. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-05-15

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  18. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  19. The amino acid sequence of rabbit muscle triose phosphate isomerase.

    PubMed Central

    Corran, P H; Waley, S G

    1975-01-01

    The amino acid sequence of rabbit muscle triose phosphate isomerase was deduced by characterizing peptides that overlap the tryptic peptides. Thiol groups were modified by oxidation, carboxymethylation or aminoen. About 50 peptides that provided information about overlaps were isolated; the peptides were mostly characterized by their compositions and N-terminal residues. The peptide chains contain 248 amino acid residues, and no evidence for dissimilarity of the two subunits that comprise the native enzyme was found. The sequence of the rabbit muscle enzyme may be compared with that of the coelacanth enzyme (Kolb et al., 1974): 84% of the residues are in identical positions. Similarly, comparison of the sequence with that inferred for the chicken enzyme (Furth et al., 1974) shows that 87% of the residues are in identical positions. Limited though these comparisons are, they suggest that triose phosphate isomerase has one of the lowest rates of evolutionary change. An extended version of the present paper has been deposited as Supplementary Publication SUP 50040 (42 pages) at the British Library (Lending Division) (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms given in Biochem. J. (1975) 145, 5. PMID:1171682

  20. The amino acid sequence of chymopapain from Carica papaya.

    PubMed Central

    Watson, D C; Yaguchi, M; Lynn, K R

    1990-01-01

    Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3. PMID:2106878

  1. The amino acid sequence of chymopapain from Carica papaya.

    PubMed

    Watson, D C; Yaguchi, M; Lynn, K R

    1990-02-15

    Chymopapain is a polypeptide of 218 amino acid residues. It has considerable structural similarity with papain and papaya proteinase omega, including conservation of the catalytic site and of the disulphide bonding. Chymopapain is like papaya proteinase omega in carrying four extra residues between papain positions 168 and 169, but differs from both papaya proteinases in the composition of its S2 subsite, as well as in having a second thiol group, Cys-117. Some evidence for the amino acid sequence of chymopapain has been deposited as Supplementary Publication SUP 50153 (12 pages) at the British Library Document Supply Centre, Boston Spa., Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms indicated in Biochem. J. (1990) 265, 5. The information comprises Supplement Tables 1-4, which contain, in order, amino acid compositions of peptides from tryptic, peptic, CNBr and mild acid cleavages, Supplement Fig. 1, showing re-fractionation of selected peaks from Fig. 2 of the main paper. Supplement Fig. 2, showing cation-exchange chromatography of the earliest-eluted peak of Fig. 3 of the main paper, Supplement Fig. 3, showing reverse-phase h.p.l.c. of the later-eluted peak from Fig. 3 of the main paper, and Supplement Fig. 4, showing the separation of peptides after mild acid hydrolysis of CNBr-cleavage fragment CB3. PMID:2106878

  2. Protein sequence design and its applications.

    PubMed

    Sandhya, Sankaran; Mudgal, Richa; Kumar, Gayatri; Sowdhamini, Ramanathan; Srinivasan, Narayanaswamy

    2016-04-01

    Design of proteins has far-reaching potentials in diverse areas that span repurposing of the protein scaffold for reactions and substrates that they were not naturally meant for, to catching a glimpse of the ephemeral proteins that nature might have sampled during evolution. These non-natural proteins, either in synthesized or virtual form have opened the scope for the design of entities that not only rival their natural counterparts but also offer a chance to visualize the protein space continuum that might help to relate proteins and understand their associations. Here, we review the recent advances in protein engineering and design, in multiple areas, with a view to drawing attention to their future potential. PMID:26773478

  3. Rationally Designing Aptamer Sequences with Reduced Affinity for Controlled Sensor Performance

    PubMed Central

    Schoukroun-Barnes, Lauren R.; White, Ryan J.

    2015-01-01

    The relative ease of predicting the secondary structure of nucleic acid sequences lends itself to the design of sequences to perform desired functions. Here, we combine the utility of nucleic acid aptamers with predictable control over the secondary structure to rationally design sequences with controlled affinity towards a target analyte when employed as the recognition element in an electrochemical sensor. Specifically, we present a method to modify an existing high-gain aptamer sequence to create sequences that, when employed in an electrochemical, aptamer-based sensor, exhibit reduced affinity towards a small molecule analyte tobramycin. Sensors fabricated with the high-gain parent sequence saturate at concentrations much below the therapeutic window for tobramycin (7–18 µM). Accordingly, the rationale behind modifying this high-gain sequence to reduce binding affinity was to tune sensor performance for optimal sensitivity in the therapeutic window. Using secondary structure predictions and analysis of the NMR structure of an aminoglycoside RNA aptamer bound to tobramycin, we are able to successfully modify the aptamer sequence to tune the dissociation constants of electrochemical aptamer-based sensors between 0.17 and 3 µM. The guidelines we present represent a general strategy to lessening binding affinity of sensors employing aptamer-modified electrodes. PMID:25835184

  4. Software scripts for quality checking of high-throughput nucleic acid sequencers.

    PubMed

    Lazo, G R; Tong, J; Miller, R; Hsia, C; Rausch, C; Kang, Y; Anderson, O D

    2001-06-01

    We have developed a graphical interface to allow the researcher to view and assess the quality of sequencing results using a series of program scripts developed to process data generated by automated sequencers. The scripts are written in Perl programming language and are executable under the cgibin directory of a Web server environment. The scripts direct nucleic acid sequencing trace file data output from automated sequencers to be analyzed by the phred molecular biology program and are displayed as graphical hypertext mark-up language (HTML) pages. The scripts are mainly designed to handle 96-well microtiter dish samples, but the scripts are also able to read data from 384-well microtiter dishes 96 samples at a time. The scripts may be customized for different laboratory environments and computer configurations. Web links to the sources and discussion page are provided. PMID:11414222

  5. Amino acid sequence prerequisites for the formation of cn ions.

    PubMed

    Downard, K M; Biemann, K

    1993-11-01

    Ammo acid sequence prerequisites are described for the formation of c, ions observed in high-energy collision-induced decomposition spectra of peptides. It is shown that the formation of cn ions is promoted by the nature of the amino acid C-terminal to the cleavage site. A propensity for cn cleavage preceding threonine, and to a lesser extent tryptophan, lysine, and serine, is demonstrated where fragmentation is directed N-terminally at these residues. In addition, the nature of the residue N-terminal to the cleavage site is shown to have little effect on cn ion formation. A mechanism for cn ion formation is proposed and its applicability to the results observed is discussed. PMID:24227531

  6. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis

    SciTech Connect

    Castro, A; Shera, E.B.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at Los Alamos National Laboratory. There has been considerable interest in the development of very sensitive clinical diagnostic techniques over the last few years. Many pathogenic agents are often present in extremely small concentrations in clinical samples, especially at the initial stages of infection, making their detection very difficult. This project sought to develop a new technique for the detection and accurate quantification of specific bacterial and viral nucleic acid sequences in clinical samples. The scheme involved the use of novel hybridization probes for the detection of nucleic acids combined with our recently developed technique of single-molecule electrophoresis. This project is directly relevant to the DOE`s Defense Programs strategic directions in the area of biological warfare counter-proliferation.

  7. Designing amino acids to determine the local conformations of peptides.

    PubMed Central

    Burgess, A W

    1994-01-01

    The local conformations of proteins and peptides are determined by the amino acid sequence. However, the 20 amino acids encoded by the genome allow the peptide backbone to fold into many conformations, so that even for a small peptide it becomes very difficult to predict the three-dimensional structure. By using empirical conformational energy calculations, a set of amino acids has been designed that would be expected to constrain the conformation of a peptide or a protein to one or two local minima. Most of these amino acids are based on asymmetric substitutions at the C alpha atom of each residue. The H alpha atom of alanine was replaced by various groups: -OCH3, -NCH3, -SCH3, -CONH2, -CONHCH3, -CON(CH3)2, -NH.CO.CH3, -phenyl, or -o-(OCH3)phenyl. Several of these new amino acids are predicted to fold into unique peptide conformations such as right-handed alpha-helical, left-handed alpha-helical, or extended. In an attempt to produce an amino acid that favored the C(eq)7 conformation (torsion angles: phi = -70 degrees and psi = +70 degrees), an extra amide group was added to the C beta atom of the asparagine side chain. Conformationally restricted amino acids of this type could prove useful for developing new peptide pharmaceuticals, catalysts, or polymers. Images PMID:8146170

  8. A Novel Constraint for Thermodynamically Designing DNA Sequences

    PubMed Central

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  9. A novel constraint for thermodynamically designing DNA sequences.

    PubMed

    Zhang, Qiang; Wang, Bin; Wei, Xiaopeng; Zhou, Changjun

    2013-01-01

    Biotechnological and biomolecular advances have introduced novel uses for DNA such as DNA computing, storage, and encryption. For these applications, DNA sequence design requires maximal desired (and minimal undesired) hybridizations, which are the product of a single new DNA strand from 2 single DNA strands. Here, we propose a novel constraint to design DNA sequences based on thermodynamic properties. Existing constraints for DNA design are based on the Hamming distance, a constraint that does not address the thermodynamic properties of the DNA sequence. Using a unique, improved genetic algorithm, we designed DNA sequence sets which satisfy different distance constraints and employ a free energy gap based on a minimum free energy (MFE) to gauge DNA sequences based on set thermodynamic properties. When compared to the best constraints of the Hamming distance, our method yielded better thermodynamic qualities. We then used our improved genetic algorithm to obtain lower-bound DNA sequence sets. Here, we discuss the effects of novel constraint parameters on the free energy gap. PMID:24015217

  10. GADIS: Algorithm for designing sequences to achieve target secondary structure profiles of intrinsically disordered proteins.

    PubMed

    Harmon, Tyler S; Crabtree, Michael D; Shammas, Sarah L; Posey, Ammon E; Clarke, Jane; Pappu, Rohit V

    2016-09-01

    Many intrinsically disordered proteins (IDPs) participate in coupled folding and binding reactions and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled folding and binding. These experiments can yield confounding results because the mutagenesis strategy changes the amino acid compositions of IDPs. Therefore, an important next step in mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha helicity profile; (ii) fixing the positions of residues corresponding to the binding interface; and (iii) maintaining the native amino acid composition. Here, we report the development of a G: enetic A: lgorithm for D: esign of I: ntrinsic secondary S: tructure (GADIS) for designing sequences that satisfy the specified constraints. We describe the algorithm and present results to demonstrate the applicability of GADIS by designing sequence variants of the intrinsically disordered PUMA system that undergoes coupled folding and binding to Mcl-1. Our sequence designs span a range of intrinsic helicity profiles. The predicted variations in sequence-encoded mean helicities are tested against experimental measurements. PMID:27503953

  11. Dynamical decoupling sequence construction as a filter-design problem

    NASA Astrophysics Data System (ADS)

    Biercuk, M. J.; Doherty, A. C.; Uys, H.

    2011-08-01

    Over the past decade we have seen an explosion of demonstrations of quantum coherence in atomic, optical and condensed matter systems. These developments have placed a new emphasis on the production of robust and optimal quantum control techniques in the presence of environmental noise. We discuss the use of dynamical decoupling as a form of open-loop quantum control capable of suppressing the effects of dephasing in quantum coherent systems. We introduce the concept of dynamical decoupling pulse-sequence construction as a filter-design problem, making connections with filter design from control theory and electrical engineering in the analysis of pulse-sequence performance for the preservation of the phase degree of freedom in a quantum superposition. A detailed mathematical description of how dephasing and its suppression can be reduced to a linear control problem is provided, and used as motivation and context for studies of the filtration properties of various dynamical decoupling sequences. Our work then takes this practical perspective in addressing both 'standard' sequences derived from nuclear magnetic resonance and novel optimized sequences developed in the context of quantum information. Additionally, we review new techniques for the numerical construction of optimized pulse sequences in this light. We show how the filter-design perspective permits concise comparisons of the relative capabilities of these sequences and reveals the physics underlying their functionality. The use of this new analytical framework allows us to derive new insights into the performance of these sequences and reveals important limiting issues, such as the effect of digital clocking on optimized sequence performance.

  12. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  13. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  14. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the sequence. (4) The enumeration of amino acids may start at the first amino acid of the first..., counting backwards starting with the amino acid next to number 1. Otherwise, the enumeration of amino acids... sequence every 5 amino acids. The enumeration method for amino acid sequences that is set forth......

  15. Predicting protein disorder by analyzing amino acid sequence

    PubMed Central

    Yang, Jack Y; Yang, Mary Qu

    2008-01-01

    Background Many protein regions and some entire proteins have no definite tertiary structure, presenting instead as dynamic, disorder ensembles under different physiochemical circumstances. These proteins and regions are known as Intrinsically Unstructured Proteins (IUP). IUP have been associated with a wide range of protein functions, along with roles in diseases characterized by protein misfolding and aggregation. Results Identifying IUP is important task in structural and functional genomics. We exact useful features from sequences and develop machine learning algorithms for the above task. We compare our IUP predictor with PONDRs (mainly neural-network-based predictors), disEMBL (also based on neural networks) and Globplot (based on disorder propensity). Conclusion We find that augmenting features derived from physiochemical properties of amino acids (such as hydrophobicity, complexity etc.) and using ensemble method proved beneficial. The IUP predictor is a viable alternative software tool for identifying IUP protein regions and proteins. PMID:18831799

  16. ANTICALIgN: visualizing, editing and analyzing combined nucleotide and amino acid sequence alignments for combinatorial protein engineering.

    PubMed

    Jarasch, Alexander; Kopp, Melanie; Eggenstein, Evelyn; Richter, Antonia; Gebauer, Michaela; Skerra, Arne

    2016-07-01

    ANTIC ALIGN: is an interactive software developed to simultaneously visualize, analyze and modify alignments of DNA and/or protein sequences that arise during combinatorial protein engineering, design and selection. ANTIC ALIGN: combines powerful functions known from currently available sequence analysis tools with unique features for protein engineering, in particular the possibility to display and manipulate nucleotide sequences and their translated amino acid sequences at the same time. ANTIC ALIGN: offers both template-based multiple sequence alignment (MSA), using the unmutated protein as reference, and conventional global alignment, to compare sequences that share an evolutionary relationship. The application of similarity-based clustering algorithms facilitates the identification of duplicates or of conserved sequence features among a set of selected clones. Imported nucleotide sequences from DNA sequence analysis are automatically translated into the corresponding amino acid sequences and displayed, offering numerous options for selecting reading frames, highlighting of sequence features and graphical layout of the MSA. The MSA complexity can be reduced by hiding the conserved nucleotide and/or amino acid residues, thus putting emphasis on the relevant mutated positions. ANTIC ALIGN: is also able to handle suppressed stop codons or even to incorporate non-natural amino acids into a coding sequence. We demonstrate crucial functions of ANTIC ALIGN: in an example of Anticalins selected from a lipocalin random library against the fibronectin extradomain B (ED-B), an established marker of tumor vasculature. Apart from engineered protein scaffolds, ANTIC ALIGN: provides a powerful tool in the area of antibody engineering and for directed enzyme evolution. PMID:27261456

  17. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase.

    PubMed Central

    Fukushima, J; Yamamoto, S; Morihara, K; Atsumi, Y; Takeuchi, H; Kawamoto, S; Okuda, K

    1989-01-01

    The DNA encoding the elastase of Pseudomonas aeruginosa IFO 3455 was cloned, and its complete nucleotide sequence was determined. When the cloned gene was ligated to pUC18, the Escherichia coli expression vector, bacteria carrying the gene exhibited high levels of both elastase activity and elastase antigens. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consisted of 301 amino acids with a relative molecular mass of 32,926 daltons. The amino acid composition predicted from the DNA sequence was quite similar to the chemically determined composition of purified elastase reported previously. We also observed nucleotide sequence encoding a signal peptide and "pro" sequence consisting of 197 amino acids upstream from the mature elastase protein gene. The amino acid sequence analysis revealed that both the N-terminal sequence of the purified elastase and the N-terminal side sequences of the C-terminal tryptic peptide as well as the internal lysyl peptide fragment were completely identical to the deduced amino acid sequences. The pattern of identity of amino acid sequences was quite evident in the regions that include structurally and functionally important residues of Bacillus subtilis thermolysin. PMID:2493453

  18. Complete amino acid sequence of a histidine-rich proteolytic fragment of human ceruloplasmin.

    PubMed

    Kingston, I B; Kingston, B L; Putnam, F W

    1979-04-01

    The complete amino acid sequence has been determined for a fragment of human ceruloplasmin [ferroxidase; iron(II):oxygen oxidoreductase, EC 1.16.3.1]. The fragment (designated Cp F5) contains 159 amino acid residues and has a molecular weight of 18,650; it lacks carbohydrate, is rich in histidine, and contains one free cysteine that may be part of a copper-binding site. This fragment is present in most commercial preparations of ceruloplasmin, probably owing to proteolytic degradation, but can also be obtained by limited cleavage of single-chain ceruloplasmin with plasmin. Cp F5 probably is an intact domain attached to the COOH-terminal end of single-chain ceruloplasmin via a labile interdomain peptide bond. A model of the secondary structure predicted by empirical methods suggests that almost one-third of the amino acid residues are distributed in alpha helices, about a third in beta-sheet structure, and the remainder in beta turns and unidentified structures. Computer analysis of the amino acid sequence has not demonstrated a statistically significant relationship between this ceruloplasmin fragment and any other protein, but there is some evidence for an internal duplication. PMID:287005

  19. antaRNA: ant colony-based RNA sequence design

    PubMed Central

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-01-01

    Motivation: RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found, inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology, reliable RNA sequence design becomes a crucial step to generate novel biochemical components. Results: In this article, the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution, specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. Availability and implementation: http://www.bioinf.uni-freiburg.de/Software/antaRNA Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26023105

  20. Human retroviruses and AIDS 1996. A compilation and analysis of nucleic acid and amino acid sequences

    SciTech Connect

    Myers, G.; Foley, B.; Korber, B.; Mellors, J.W.; Jeang, K.T.; Wain-Hobson, S.

    1997-04-01

    This compendium and the accompanying floppy diskettes are the result of an effort to compile and rapidly publish all relevant molecular data concerning the human immunodeficiency viruses (HIV) and related retroviruses. The scope of the compendium and database is best summarized by the five parts that it comprises: (1) Nuclear Acid Alignments and Sequences; (2) Amino Acid Alignments; (3) Analysis; (4) Related Sequences; and (5) Database Communications. Information within all the parts is updated throughout the year on the Web site, http://hiv-web.lanl.gov. While this publication could take the form of a review or sequence monograph, it is not so conceived. Instead, the literature from which the database is derived has simply been summarized and some elementary computational analyses have been performed upon the data. Interpretation and commentary have been avoided insofar as possible so that the reader can form his or her own judgments concerning the complex information. In addition to the general descriptions of the parts of the compendium, the user should read the individual introductions for each part.

  1. Design of minimally strained nucleic Acid nanotubes.

    PubMed

    Sherman, William B; Seeman, Nadrian C

    2006-06-15

    A practical theoretical framework is presented for designing and classifying minimally strained nucleic acid nanotubes. The structures are based on the double crossover motif where each double-helical domain is connected to each of its neighbors via two or more Holliday-junction-like reciprocal exchanges, such that each domain is parallel to the main tube axis. Modeling is based on a five-parameter characterization of the segmented double-helical structure. Once the constraint equations have been derived, the primary design problem for a minimally strained N-domain structure is reduced to solving three simultaneous equations in 2N+2 variables. Symmetry analysis and tube merging then allow for the design of a wide variety of tubes, which can be tailored to satisfy requirements such as specific inner and outer radii, or multiple lobed structures. The general form of the equations allows similar techniques to be applied to various nucleic acid helices: B-DNA, A-DNA, RNA, DNA-PNA, or others. Possible applications for such tubes include nanoscale scaffolding as well as custom-shaped enclosures for other nano-objects. PMID:16581842

  2. Fast computational methods for predicting protein structure from primary amino acid sequence

    DOEpatents

    Agarwal, Pratul Kumar

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  3. Natural vs. random protein sequences: Discovering combinatorics properties on amino acid words.

    PubMed

    Santoni, Daniele; Felici, Giovanni; Vergni, Davide

    2016-02-21

    Casual mutations and natural selection have driven the evolution of protein amino acid sequences that we observe at present in nature. The question about which is the dominant force of proteins evolution is still lacking of an unambiguous answer. Casual mutations tend to randomize protein sequences while, in order to have the correct functionality, one expects that selection mechanisms impose rigid constraints on amino acid sequences. Moreover, one also has to consider that the space of all possible amino acid sequences is so astonishingly large that it could be reasonable to have a well tuned amino acid sequence indistinguishable from a random one. In order to study the possibility to discriminate between random and natural amino acid sequences, we introduce different measures of association between pairs of amino acids in a sequence, and apply them to a dataset of 1047 natural protein sequences and 10,470 random sequences, carefully generated in order to preserve the relative length and amino acid distribution of the natural proteins. We analyze the multidimensional measures with machine learning techniques and show that, to a reasonable extent, natural protein sequences can be differentiated from random ones. PMID:26656109

  4. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza

    PubMed Central

    Zhang, Xiaoru; Dong, Juane; Liu, Hailong; Wang, Jiao; Qi, Yuexin; Liang, Zongsuo

    2016-01-01

    Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza. PMID:26808150

  5. Transcriptome Sequencing in Response to Salicylic Acid in Salvia miltiorrhiza.

    PubMed

    Zhang, Xiaoru; Dong, Juane; Liu, Hailong; Wang, Jiao; Qi, Yuexin; Liang, Zongsuo

    2016-01-01

    Salvia miltiorrhiza is a traditional Chinese herbal medicine, whose quality and yield are often affected by diseases and environmental stresses during its growing season. Salicylic acid (SA) plays a significant role in plants responding to biotic and abiotic stresses, but the involved regulatory factors and their signaling mechanisms are largely unknown. In order to identify the genes involved in SA signaling, the RNA sequencing (RNA-seq) strategy was employed to evaluate the transcriptional profiles in S. miltiorrhiza cell cultures. A total of 50,778 unigenes were assembled, in which 5,316 unigenes were differentially expressed among 0-, 2-, and 8-h SA induction. The up-regulated genes were mainly involved in stimulus response and multi-organism process. A core set of candidate novel genes coding SA signaling component proteins was identified. Many transcription factors (e.g., WRKY, bHLH and GRAS) and genes involved in hormone signal transduction were differentially expressed in response to SA induction. Detailed analysis revealed that genes associated with defense signaling, such as antioxidant system genes, cytochrome P450s and ATP-binding cassette transporters, were significantly overexpressed, which can be used as genetic tools to investigate disease resistance. Our transcriptome analysis will help understand SA signaling and its mechanism of defense systems in S. miltiorrhiza. PMID:26808150

  6. Novel method for PIK3CA mutation analysis: locked nucleic acid--PCR sequencing.

    PubMed

    Ang, Daphne; O'Gara, Rebecca; Schilling, Amy; Beadling, Carol; Warrick, Andrea; Troxell, Megan L; Corless, Christopher L

    2013-05-01

    Somatic mutations in PIK3CA are commonly seen in invasive breast cancer and several other carcinomas, occurring in three hotspots: codons 542 and 545 of exon 9 and in codon 1047 of exon 20. We designed a locked nucleic acid (LNA)-PCR sequencing assay to detect low levels of mutant PIK3CA DNA with attention to avoiding amplification of a pseudogene on chromosome 22 that has >95% homology to exon 9 of PIK3CA. We tested 60 FFPE breast DNA samples with known PIK3CA mutation status (48 cases had one or more PIK3CA mutations, and 12 were wild type) as identified by PCR-mass spectrometry. PIK3CA exons 9 and 20 were amplified in the presence or absence of LNA-oligonucleotides designed to bind to the wild-type sequences for codons 542, 545, and 1047, and partially suppress their amplification. LNA-PCR sequencing confirmed all 51 PIK3CA mutations; however, the mutation detection rate by standard Sanger sequencing was only 69% (35 of 51). Of the 12 PIK3CA wild-type cases, LNA-PCR sequencing detected three additional H1047R mutations in "normal" breast tissue and one E545K in usual ductal hyperplasia. Histopathological review of these three normal breast specimens showed columnar cell change in two (both with known H1047R mutations) and apocrine metaplasia in one. The novel LNA-PCR shows higher sensitivity than standard Sanger sequencing and did not amplify the known pseudogene. PMID:23541593

  7. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences.

    PubMed Central

    Bellini, W J; Englund, G; Richardson, C D; Rozenblatt, S; Lazzarini, R A

    1986-01-01

    The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer. Images PMID:3754588

  8. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  9. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    PubMed Central

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per ml, based on a most-probable-number determination. Analysis of small-subunit rRNA partial sequences indicated that DhA-33 was most closely related to Sphingomonas yanoikuyae (Sab = 0.875) and that DhA-35 was most closely related to Zoogloea ramigera (Sab = 0.849). Both isolates additionally grew on other abietanes, i.e., abietic and palustric acids, but not on the pimaranes, pimaric and isopimaric acids. For DhA-33 and DhA-35 with DhA as the sole organic substrate, doubling times were 2.7 and 2.2 h, respectively, and growth yields were 0.30 and 0.25 g of protein per g of DhA, respectively. Glucose as a cosubstrate stimulated growth of DhA-33 on DhA and stimulated DhA degradation by the culture. Pyruvate as a cosubstrate did not stimulate growth of DhA-35 on DhA and reduced the specific rate of DhA degradation of the culture. DhA induced DhA and abietic acid degradation activities in both strains, and these activities were heat labile. Cell suspensions of both strains consumed DhA at a rate of 6 mumol mg of protein-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7793937

  10. Sequence-defined bioactive macrocycles via an acid-catalysed cascade reaction

    NASA Astrophysics Data System (ADS)

    Porel, Mintu; Thornlow, Dana N.; Phan, Ngoc N.; Alabi, Christopher A.

    2016-06-01

    Synthetic macrocycles derived from sequence-defined oligomers are a unique structural class whose ring size, sequence and structure can be tuned via precise organization of the primary sequence. Similar to peptides and other peptidomimetics, these well-defined synthetic macromolecules become pharmacologically relevant when bioactive side chains are incorporated into their primary sequence. In this article, we report the synthesis of oligothioetheramide (oligoTEA) macrocycles via a one-pot acid-catalysed cascade reaction. The versatility of the cyclization chemistry and modularity of the assembly process was demonstrated via the synthesis of >20 diverse oligoTEA macrocycles. Structural characterization via NMR spectroscopy revealed the presence of conformational isomers, which enabled the determination of local chain dynamics within the macromolecular structure. Finally, we demonstrate the biological activity of oligoTEA macrocycles designed to mimic facially amphiphilic antimicrobial peptides. The preliminary results indicate that macrocyclic oligoTEAs with just two-to-three cationic charge centres can elicit potent antibacterial activity against Gram-positive and Gram-negative bacteria.

  11. Sequence determinants of improved CRISPR sgRNA design

    PubMed Central

    Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford A.; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun S.; Brown, Myles; Liu, X. Shirley

    2015-01-01

    The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. PMID:26063738

  12. Micropillar sequence designs for fundamental inertial flow transformations.

    PubMed

    Stoecklein, Daniel; Wu, Chueh-Yu; Owsley, Keegan; Xie, Yu; Di Carlo, Dino; Ganapathysubramanian, Baskar

    2014-11-01

    The ability to control the shape of a flow in a passive microfluidic device enables potential applications in chemical reaction control, particle separation, and complex material fabrication. Recent work has demonstrated the concept of sculpting fluid streams in a microchannel using a set of pillars or other structures that individually deform a flow in a predictable pre-computed manner. These individual pillars are then placed in a defined sequence within the channel to yield the composition of the individual flow deformations - and ultimately complex user-defined flow shapes. In this way, an elegant mathematical operation can yield the final flow shape for a sequence without an experiment or additional numerical simulation. Although these approaches allow for programming complex flow shapes without understanding the detailed fluid mechanics, the design of an arbitrary flow shape of interest remains difficult, requiring significant design iteration. The development of intuitive basic operations (i.e. higher-level functions that consist of combinations of obstacles) that act on the flow field to create a basis for more complex transformations would be useful in systematically achieving a desired flow shape. Here, we show eight transformations that could serve as a partial basis for more complex transformations. We initially used in-house, freely available custom software (uFlow), which allowed us to arrive at these transformations that include making a fluid stream concave and convex, tilting, stretching, splitting, adding a vertex, shifting, and encapsulating another flow stream. The pillar sequences corresponding to these transformations were subsequently fabricated and optically analyzed using confocal imaging - yielding close agreement with uFlow-predicted shapes. We performed topological analysis on each transformation, characterizing potential sequences leading to these outputs and trends associated with changing diameter and placement of the pillars. We

  13. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts. PMID:26162695

  14. Partial amino acid sequence of human factor D:homology with serine proteases.

    PubMed Central

    Volanakis, J E; Bhown, A; Bennett, J C; Mole, J E

    1980-01-01

    Human factor D purified to homogeneity by a modified procedure was subjected to NH2-terminal amino acid sequence analysis by using a modified automated Beckman sequencer. We identified 48 of the first 57 NH2-terminal amino acids in a single sequencer run, using microgram quantities of factor D. The deduced amino acid sequence represents approximately 25% of the primary structure of factor D. This extended NH2-terminal amino acid sequence of factor D was compared to that of other trypsin-related serine proteases. By visual inspection, strong homologies (33--50% identity) were observed with all the serine proteases included in the comparison. Interestingly, factor D showed a higher degree of homology to serine proteases of pancreatic origin than to those of serum origin. Images PMID:6987665

  15. Amino acid sequence of Japanese quail (Coturnix japonica) and northern bobwhite (Colinus virginianus) myoglobin.

    PubMed

    Goodson, John; Beckstead, Robert B; Payne, Jason; Singh, Rakesh K; Mohan, Anand

    2015-08-15

    Myoglobin has an important physiological role in vertebrates, and as the primary sarcoplasmic pigment in meat, influences quality perception and consumer acceptability. In this study, the amino acid sequences of Japanese quail and northern bobwhite myoglobin were deduced by cDNA cloning of the coding sequence from mRNA. Japanese quail myoglobin was isolated from quail cardiac muscles, purified using ammonium sulphate precipitation and gel-filtration, and subjected to multiple enzymatic digestions. Mass spectrometry corroborated the deduced protein amino acid sequence at the protein level. Sequence analysis revealed both species' myoglobin structures consist of 153 amino acids, differing at only three positions. When compared with chicken myoglobin, Japanese quail showed 98% sequence identity, and northern bobwhite 97% sequence identity. The myoglobin in both quail species contained eight histidine residues instead of the nine present in chicken and turkey. PMID:25794748

  16. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  17. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  18. The design and analysis of transposon insertion sequencing experiments.

    PubMed

    Chao, Michael C; Abel, Sören; Davis, Brigid M; Waldor, Matthew K

    2016-02-01

    Transposon insertion sequencing (TIS) is a powerful approach that can be extensively applied to the genome-wide definition of loci that are required for bacterial growth under diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. In this Opinion article, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to the computational analysis of TIS data. PMID:26775926

  19. Molecular design of specific metal-binding peptide sequences from protein fragments: theory and experiment.

    PubMed

    Kozísek, Milan; Svatos, Ales; Budesínský, Milos; Muck, Alexander; Bauer, Mikael C; Kotrba, Pavel; Ruml, Tomás; Havlas, Zdenek; Linse, Sara; Rulísek, Lubomír

    2008-01-01

    A novel strategy is presented for designing peptides with specific metal-ion chelation sites, based on linking computationally predicted ion-specific combinations of amino acid side chains coordinated at the vertices of the desired coordination polyhedron into a single polypeptide chain. With this aim, a series of computer programs have been written that 1) creates a structural combinatorial library containing Zi-(X)n-Zj sequences (n=0-14; Z: amino acid that binds the metal through the side chain; X: any amino acid) from the existing protein structures in the non-redundant Protein Data Bank; 2) merges these fragments into a single Z1-(X)n1 -Z2-(X)n2 -Z3-(X)n3 -...-Zj polypeptide chain; and 3) automatically performs two simple molecular mechanics calculations that make it possible to estimate the internal strain in the newly designed peptide. The application of this procedure for the most M2+-specific combinations of amino acid side chains (M: metal; see L. Rulísek, Z. Havlas J. Phys. Chem. B 2003, 107, 2376-2385) yielded several peptide sequences (with lengths of 6-20 amino acids) with the potential for specific binding with six metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+). The gas-phase association constants of the studied metal ions with these de novo designed peptides were experimentally determined by MALDI mass spectrometry by using 3,4,5-trihydroxyacetophenone as a matrix, whereas the thermodynamic parameters of the metal-ion coordination in the condensed phase were measured by isothermal titration calorimetry (ITC), chelatometry and NMR spectroscopy methods. The data indicate that some of the computationally predicted peptides are potential M2+-specific metal-ion chelators. PMID:18633954

  20. tax and rex Sequences of bovine leukaemia virus from globally diverse isolates: rex amino acid sequence more variable than tax.

    PubMed

    McGirr, K M; Buehring, G C

    2005-02-01

    Bovine leukaemia virus (BLV) is an important agricultural problem with high costs to the dairy industry. Here, we examine the variation of the tax and rex genes of BLV. The tax and rex genes share 420 bases and have overlapping reading frames. The tax gene encodes a protein that functions as a transactivator of the BLV promoter, is required for viral replication, acts on cellular promoters, and is responsible for oncogenesis. The rex facilitates the export of viral mRNAs from the nucleus and regulates transcription. We have sequenced five new isolates of the tax/rex gene. We examined the five new and three previously published tax/rex DNA and predicted amino acid sequences of BLV isolates from cattle in representative regions worldwide. The highest variation among nucleic acid sequences for tax and rex was 7% and 5%, respectively; among predicted amino acid sequences for Tax and Rex, 9% and 11%, respectively. Significantly more nucleotide changes resulted in predicted amino acid changes in the rex gene than in the tax gene (P < or = 0.0006). This variability is higher than previously reported for any region of the viral genome. This research may also have implications for the development of Tax-based vaccines. PMID:15702995

  1. The amino acid sequence of protein CM-3 from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J

    1985-01-01

    Protein CM-3 from Dendroaspis polylepis polylepis venom was purified by gel filtration and ion exchange chromatography. It comprises 65 amino acids including eight half-cystines. The complete amino acid sequence of protein CM-3 has been elucidated. The sequence (residues 1-50) resembles that of the N-terminal sequence of the subunits of a synergistic type protein and residues 51-65 that of the C-terminal sequence of an angusticeps type protein. Mixtures of protein CM-3 and angusticeps type proteins showed no apparent synergistic effect, in that their toxicity in combination was no greater than the sum of their individual toxicities. PMID:4029488

  2. Multiple Amino Acid Sequence Alignment Nitrogenase Component 1: Insights into Phylogenetics and Structure-Function Relationships

    PubMed Central

    Howard, James B.; Kechris, Katerina J.; Rees, Douglas C.; Glazer, Alexander N.

    2013-01-01

    Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as “core” for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf) yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification provides the bases

  3. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences

    PubMed Central

    Lapidoth, Gideon D.; Baran, Dror; Pszolla, Gabriele M.; Norn, Christoffer; Alon, Assaf; Tyka, Michael D.; Fleishman, Sarel J.

    2016-01-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function – essential to exert control over all polypeptide degrees of freedom – remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in six the backbone conformation at the core of the antibody binding surface is similar to the natural antibody targets, and in several cases sequence and sidechain conformations recapitulate those seen in the natural antibodies. In the case of an anti-lysozyme antibody, designed antibody CDRs at the periphery of the interface, such as L1 and H2, show a greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, which could enhance affinity and specificity. PMID:25670500

  4. Railway network design with multiple project stages and time sequencing

    NASA Astrophysics Data System (ADS)

    Kuby, Michael; Xu, Zhongyi; Xie, Xiaodong

    This paper presents a spatial decision support system for network design problems in which different kinds of projects can be built in stages over time. It was developed by the World Bank and China's Ministry of Railways to plan investment strategies for China's overburdened railway system. We first present a mixed-integer program for the single-period network design problem with project choices such as single or multiple tracks and/or electrification with economies of scale. Then, because such projects can be built all at once or in stages, we developed a heuristic backwards time sequencing procedure with a cost adjustment factor to solve the ``project staging'' problem. Other innovations include a preloading routine; coordinated modeling of arcs, paths, and corridors; and a custom-built GIS.

  5. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.

    PubMed

    Fromer, Menachem; Yanover, Chen

    2009-05-15

    The task of engineering a protein to assume a target three-dimensional structure is known as protein design. Computational search algorithms are devised to predict a minimal energy amino acid sequence for a particular structure. In practice, however, an ensemble of low-energy sequences is often sought. Primarily, this is performed because an individual predicted low-energy sequence may not necessarily fold to the target structure because of both inaccuracies in modeling protein energetics and the nonoptimal nature of search algorithms employed. Additionally, some low-energy sequences may be overly stable and thus lack the dynamic flexibility required for biological functionality. Furthermore, the investigation of low-energy sequence ensembles will provide crucial insights into the pseudo-physical energy force fields that have been derived to describe structural energetics for protein design. Significantly, numerous studies have predicted low-energy sequences, which were subsequently synthesized and demonstrated to fold to desired structures. However, the characterization of the sequence space defined by such energy functions as compatible with a target structure has not been performed in full detail. This issue is critical for protein design scientists to successfully continue using these force fields at an ever-increasing pace and scale. In this paper, we present a conceptually novel algorithm that rapidly predicts the set of lowest energy sequences for a given structure. Based on the theory of probabilistic graphical models, it performs efficient inspection and partitioning of the near-optimal sequence space, without making any assumptions of positional independence. We benchmark its performance on a diverse set of relevant protein design examples and show that it consistently yields sequences of lower energy than those derived from state-of-the-art techniques. Thus, we find that previously presented search techniques do not fully depict the low-energy space as

  6. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  7. The complete amino acid sequence of the A-chain of human plasma alpha 2HS-glycoprotein.

    PubMed

    Yoshioka, Y; Gejyo, F; Marti, T; Rickli, E E; Bürgi, W; Offner, G D; Troxler, R F; Schmid, K

    1986-02-01

    Normal human plasma alpha 2HS-glycoprotein has earlier been shown to be comprised of two polypeptide chains. Recently, the amino acid and carbohydrate sequences of the short chain were elucidated (Gejyo, F., Chang, J.-L., Bürgi, W., Schmid, K., Offner, G. D., Troxler, R.F., van Halbeck, H., Dorland, L., Gerwig, G. J., and Vliegenthart, J.F.G. (1983) J. Biol. Chem. 258, 4966-4971). In the present study, the amino acid sequence of the long chain of this protein, designated A-chain, was determined and found to consist of 282 amino acid residues. Twenty-four amino acid doublets were found; the most abundant of these are Pro-Pro and Ala-Ala which each occur five times. Of particular interest is the presence of three Gly-X-Pro and one Gly-Pro-X sequences that are characteristic of the repeating sequences of collagens. Chou-Fasman evaluation of the secondary structure suggested that the A-chain contains 29% alpha-helix, 24% beta-pleated sheet, and 26% reverse turns and, thus, approximately 80% of the polypeptide chain may display ordered structure. Four glycosylation sites were identified. The two N-glycosidic oligosaccharides were found in the center region (residues 138 and 158), whereas the two O-glycosidic heterosaccharides, both linked to threonine (residues 238 and 252), occur within the carboxyl-terminal region. The N-glycans are linked to Asn residues in beta-turns, while the O-glycans are located in short random segments. Comparison of the sequence of the amino- and carboxyl-terminal 30 residues with protein sequences in a data bank demonstrated that the A-chain is not significantly related to any known proteins. However, the proline-rich carboxyl-terminal region of the A-chain displays some sequence similarity to collagens and the collagen-like domains of complement subcomponent C1q. PMID:3944104

  8. Computer Simulation of the Determination of Amino Acid Sequences in Polypeptides

    ERIC Educational Resources Information Center

    Daubert, Stephen D.; Sontum, Stephen F.

    1977-01-01

    Describes a computer program that generates a random string of amino acids and guides the student in determining the correct sequence of a given protein by using experimental analytic data for that protein. (MLH)

  9. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.

    PubMed

    Sevy, Alexander M; Jacobs, Tim M; Crowe, James E; Meiler, Jens

    2015-07-01

    Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a 'single state' design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design "promiscuous", polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes. PMID:26147100

  10. Accuracy of sequence alignment and fold assessment using reduced amino acid alphabets.

    PubMed

    Melo, Francisco; Marti-Renom, Marc A

    2006-06-01

    Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs. PMID:16506243

  11. The amino acid sequence of monal pheasant lysozyme and its activity.

    PubMed

    Araki, T; Matsumoto, T; Torikata, T

    1998-10-01

    The amino acid sequence of monal pheasant lysozyme and its activity were analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had one amino acid substitution at position 102 (Arg to Gly) comparing with Indian peafowl lysozyme and four amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), and 121 (Gln to His) with chicken lysozyme. Analysis of the time-courses of reaction using N-acetylglucosamine pentamer as a substrate showed a difference of binding free energy change (-0.4 kcal/mol) at subsites A between monal pheasant and Indian peafowl lysozyme. This was assumed to be caused by the amino acid substitution at subsite A with loss of a positive charge at position 102 (Arg102 to Gly). PMID:9836434

  12. Studies on monotreme proteins. VII. Amino acid sequence of myoglobin from the platypus, Ornithoryhynchus anatinus.

    PubMed

    Fisher, W K; Thompson, E O

    1976-03-01

    Myoglobin isolated from skeletal muscle of the platypus contains 153 amino acid residues. The complete amino acid sequence has been determined following cleavage with cyanogen bromide and further digestion of the four fragments with trypsin, chymotrypsin, pepsin and thermolysin. Sequences of the purified peptides were determined by the dansyl-Edman procedure. The amino acid sequence showed 25 differences from human myoglobin and 24 from kangaroo myoglobin. Amino acid sequences in myoglobins are more conserved than sequences in the alpha- and beta-globin chains, and platypus myoglobin shows a similar number of variations in sequence to kangaroo myoglobin when compared with myoglobin of other species. The date of divergence of the platypus from other mammals was estimated at 102 +/- 31 million years, based on the number of amino acid differences between species and allowing for mutations during the evolutionary period. This estimate differs widely from the estimate given by similar treatment of the alpha- and beta-chain sequences and a constant rate of mutation of globin chains is not supported. PMID:962722

  13. cDNA-derived amino acid sequences of myoglobins from nine species of whales and dolphins.

    PubMed

    Iwanami, Kentaro; Mita, Hajime; Yamamoto, Yasuhiko; Fujise, Yoshihiro; Yamada, Tadasu; Suzuki, Tomohiko

    2006-10-01

    We determined the myoglobin (Mb) cDNA sequences of nine cetaceans, of which six are the first reports of Mb sequences: sei whale (Balaenoptera borealis), Bryde's whale (Balaenoptera edeni), pygmy sperm whale (Kogia breviceps), Stejneger's beaked whale (Mesoplodon stejnegeri), Longman's beaked whale (Indopacetus pacificus), and melon-headed whale (Peponocephala electra), and three confirm the previously determined chemical amino acid sequences: sperm whale (Physeter macrocephalus), common minke whale (Balaenoptera acutorostrata) and pantropical spotted dolphin (Stenella attenuata). We found two types of Mb in the skeletal muscle of pantropical spotted dolphin: Mb I with the same amino acid sequence as that deposited in the protein database, and Mb II, which differs at two amino acid residues compared with Mb I. Using an alignment of the amino acid or cDNA sequences of cetacean Mb, we constructed a phylogenetic tree by the NJ method. Clustering of cetacean Mb amino acid and cDNA sequences essentially follows the classical taxonomy of cetaceans, suggesting that Mb sequence data is valid for classification of cetaceans at least to the family level. PMID:16962803

  14. Sugar amino acids in designing new molecules.

    PubMed

    Chakraborty, Tushar Kanti; Srinivasu, Pothukanuri; Tapadar, Subhasish; Mohan, Bajjuri Krishna

    2005-03-01

    Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks and using them to create 'nature-like' and yet unnatural organic molecules. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. This article describes some of our works on various sugar amino acids and many other related building blocks, like furan amino acids, pyrrole amino acids etc. used in wide-ranging peptidomimetic studies. PMID:16133829

  15. Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA.

    PubMed Central

    Devault, A; Lazure, C; Nault, C; Le Moual, H; Seidah, N G; Chrétien, M; Kahn, P; Powell, J; Mallet, J; Beaumont, A

    1987-01-01

    Neutral endopeptidase (EC 3.4.24.11) is a major constituent of kidney brush border membranes. It is also present in the brain where it has been shown to be involved in the inactivation of opioid peptides, methionine- and leucine-enkephalins. For this reason this enzyme is often called 'enkephalinase'. In order to characterize the primary structure of the enzyme, oligonucleotide probes were designed from partial amino acid sequences and used to isolate clones from kidney cDNA libraries. Sequencing of the cDNA inserts revealed the complete primary structure of the enzyme. Neutral endopeptidase consists of 750 amino acids. It contains a short N-terminal cytoplasmic domain (27 amino acids), a single membrane-spanning segment (23 amino acids) and an extracellular domain that comprises most of the protein mass. The comparison of the primary structure of neutral endopeptidase with that of thermolysin, a bacterial Zn-metallopeptidase, indicates that most of the amino acid residues involved in Zn coordination and catalytic activity in thermolysin are found within highly honmologous sequences in neutral endopeptidase. Images Fig. 1. Fig. 3. PMID:2440677

  16. Designer, acidic biochar influences calcareous soil characteristics.

    PubMed

    Ippolito, J A; Ducey, T F; Cantrell, K B; Novak, J M; Lentz, R D

    2016-01-01

    In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils. PMID:26077798

  17. A “SMART” Design for Building Individualized Treatment Sequences

    PubMed Central

    Lei, H.; Nahum-Shani, I.; Lynch, K.; Oslin, D.; Murphy, S.A.

    2013-01-01

    Interventions often involve a sequence of decisions. For example, clinicians frequently adapt the intervention to an individual’s outcomes. Altering the intensity and type of intervention over time is crucial for many reasons, such as to obtain improvement if the individual is not responding or to reduce costs and burden when intensive treatment is no longer necessary. Adaptive interventions utilize individual variables (severity, preferences) to adapt the intervention and then dynamically utilize individual outcomes (response to treatment, adherence) to readapt the intervention. The Sequential Multiple Assignment Randomized Trial (SMART)provides high-quality data that can be used to construct adaptive interventions. We review the SMART and highlight its advantages in constructing and revising adaptive interventions as compared to alternative experimental designs. Selected examples of SMART studies are described and compared. A data analysis method is provided and illustrated using data from the Extending Treatment Effectiveness of Naltrexone SMART study. PMID:22224838

  18. Using self-consistent fields to bias Monte Carlo methods with applications to designing and sampling protein sequences

    NASA Astrophysics Data System (ADS)

    Zou, Jinming; Saven, Jeffery G.

    2003-02-01

    For complex multidimensional systems, Monte Carlo methods are useful for sampling probable regions of a configuration space and, in the context of annealing, for determining "low energy" or "high scoring" configurations. Such methods have been used in protein design as means to identify amino acid sequences that are energetically compatible with a particular backbone structure. As with many other applications of Monte Carlo methods, such searches can be inefficient if trial configurations (protein sequences) in the Markov chain are chosen randomly. Here a mean-field biased Monte Carlo method (MFBMC) is presented and applied to designing and sampling protein sequences. The MFBMC method uses predetermined sequence identity probabilities wi(α) to bias the sequence selection. The wi(α) are calculated using a self-consistent, mean-field theory that can estimate the number and composition of sequences having predetermined values of energetically related foldability criteria. The MFBMC method is applied to both a simple protein model, the 27-mer lattice model, and an all-atom protein model. Compared to conventional Monte Carlo (MC) and configurational bias Monte Carlo (BMC), the MFBMC method converges faster to low energy sequences and samples such sequences more efficiently. The MFBMC method also tolerates faster cooling rates than the MC and BMC methods. The MFBMC method can be applied not only to protein sequence search, but also to a wide variety of polymeric and condensed phase systems.

  19. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome.

    PubMed

    Pinto, Ameet J; Sharp, Jonathan O; Yoder, Michael J; Almstrand, Robert

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  20. Draft Genome Sequences of Two Novel Acidimicrobiaceae Members from an Acid Mine Drainage Biofilm Metagenome

    PubMed Central

    Pinto, Ameet J.; Sharp, Jonathan O.; Yoder, Michael J.

    2016-01-01

    Bacteria belonging to the family Acidimicrobiaceae are frequently encountered in heavy metal-contaminated acidic environments. However, their phylogenetic and metabolic diversity is poorly resolved. We present draft genome sequences of two novel and phylogenetically distinct Acidimicrobiaceae members assembled from an acid mine drainage biofilm metagenome. PMID:26769942

  1. Two distinct ferredoxins from Rhodobacter capsulatus: complete amino acid sequences and molecular evolution.

    PubMed

    Saeki, K; Suetsugu, Y; Yao, Y; Horio, T; Marrs, B L; Matsubara, H

    1990-09-01

    Two distinct ferredoxins were purified from Rhodobacter capsulatus SB1003. Their complete amino acid sequences were determined by a combination of protease digestion, BrCN cleavage and Edman degradation. Ferredoxins I and II were composed of 64 and 111 amino acids, respectively, with molecular weights of 6,728 and 12,549 excluding iron and sulfur atoms. Both contained two Cys clusters in their amino acid sequences. The first cluster of ferredoxin I and the second cluster of ferredoxin II had a sequence, CxxCxxCxxxCP, in common with the ferredoxins found in Clostridia. The second cluster of ferredoxin I had a sequence, CxxCxxxxxxxxCxxxCM, with extra amino acids between the second and third Cys, which has been reported for other photosynthetic bacterial ferredoxins and putative ferredoxins (nif-gene products) from nitrogen-fixing bacteria, and with a unique occurrence of Met. The first cluster of ferredoxin II had a CxxCxxxxCxxxCP sequence, with two additional amino acids between the second and third Cys, a characteristics feature of Azotobacter-[3Fe-4S] [4Fe-4S]-ferredoxin. Ferredoxin II was also similar to Azotobacter-type ferredoxins with an extended carboxyl (C-) terminal sequence compared to the common Clostridium-type. The evolutionary relationship of the two together with a putative one recently found to be encoded in nifENXQ region in this bacterium [Moreno-Vivian et al. (1989) J. Bacteriol. 171, 2591-2598] is discussed. PMID:2277040

  2. Protein chemotaxonomy. XIII. Amino acid sequence of ferredoxin from Panax ginseng.

    PubMed

    Mino, Yoshiki

    2006-08-01

    The complete amino acid sequence of [2Fe-2S] ferredoxin from Panax ginseng (Araliaceae) has been determined by automated Edman degradation of the entire S-carboxymethylcysteinyl protein and of the peptides obtained by enzymatic digestion. This ferredoxin has a unique amino acid sequence, which includes an insertion of Tyr at the 3rd position from the amino-terminus and a deletion of two amino acid residues at the carboxyl terminus. This ferredoxin had 18 differences in its amino acid sequence compared to that of Petroselinum sativum (Umbelliferae). In contrast, 23-33 differences were observed compared to other dicotyledonous plants. This suggests that Panax ginseng is related taxonomically to umbelliferous plants. PMID:16880642

  3. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin.

    PubMed

    Theerasilp, S; Hitotsuya, H; Nakajo, S; Nakaya, K; Nakamura, Y; Kurihara, Y

    1989-04-25

    The taste-modifying protein, miraculin, has the unusual property of modifying sour taste into sweet taste. The complete amino acid sequence of miraculin purified from miracle fruits by a newly developed method (Theerasilp, S., and Kurihara, Y. (1988) J. Biol. Chem. 263, 11536-11539) was determined by an automatic Edman degradation method. Miraculin was a single polypeptide with 191 amino acid residues. The calculated molecular weight based on the amino acid sequence and the carbohydrate content (13.9%) was 24,600. Asn-42 and Asn-186 were linked N-glycosidically to carbohydrate chains. High homology was found between the amino acid sequences of miraculin and soybean trypsin inhibitor. PMID:2708331

  4. Complete cDNA and derived amino acid sequence of human factor V

    SciTech Connect

    Jenny, R.J.; Pittman, D.D.; Toole, J.J.; Kriz, R.W.; Aldape, R.A.; Hewick, R.M.; Kaufman, R.J.; Mann, K.G.

    1987-07-01

    cDNA clones encoding human factor V have been isolated from an oligo(dT)-primed human fetal liver cDNA library prepared with vector Charon 21A. The cDNA sequence of factor V from three overlapping clones includes a 6672-base-pair (bp) coding region, a 90-bp 5' untranslated region, and a 163-bp 3' untranslated region within which is a poly(A)tail. The deduced amino acid sequence consists of 2224 amino acids inclusive of a 28-amino acid leader peptide. Direct comparison with human factor VIII reveals considerable homology between proteins in amino acid sequence and domain structure: a triplicated A domain and duplicated C domain show approx. 40% identity with the corresponding domains in factor VIII. As in factor VIII, the A domains of factor V share approx. 40% amino acid-sequence homology with the three highly conserved domains in ceruloplasmin. The B domain of factor V contains 35 tandem and approx. 9 additional semiconserved repeats of nine amino acids of the form Asp-Leu-Ser-Gln-Thr-Thr/Asn-Leu-Ser-Pro and 2 additional semiconserved repeats of 17 amino acids. Factor V contains 37 potential N-linked glycosylation sites, 25 of which are in the B domain, and a total of 19 cysteine residues.

  5. N-terminal sequence of amino acids and some properties of an acid-stable alpha-amylase from citric acid-koji (Aspergillus usamii var.).

    PubMed

    Suganuma, T; Tahara, N; Kitahara, K; Nagahama, T; Inuzuka, K

    1996-01-01

    An acid-stable alpha-amylase (AA) was purified from an acidic extract of citric acid-koji (A. usamii var.). The N-terminal sequence of the first 20 amino acids of the enzyme was identical with that of AA from A. niger, but the two enzymes differed in molecular weight. HPLC analysis for identifying the anomers of products indicated that the AA hydrolyzed maltopentaose (G5) at the third glycoside bond predominantly, which differed from Taka-amylase A and the neutral alpha-amylase (NA) from the citric acid-koji. PMID:8824843

  6. Fast gap-free enumeration of conformations and sequences for protein design.

    PubMed

    Roberts, Kyle E; Gainza, Pablo; Hallen, Mark A; Donald, Bruce R

    2015-10-01

    Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically relevant designs. PMID:26235965

  7. Fast Gap-Free Enumeration of Conformations and Sequences for Protein Design

    PubMed Central

    Hallen, Mark A.; Donald, Bruce R.

    2016-01-01

    Despite significant successes in structure-based computational protein design in recent years, protein design algorithms must be improved to increase the biological accuracy of new designs. Protein design algorithms search through an exponential number of protein conformations, protein ensembles, and amino acid sequences in an attempt to find globally optimal structures with a desired biological function. To improve the biological accuracy of protein designs, it is necessary to increase both the amount of protein flexibility allowed during the search and the overall size of the design, while guaranteeing that the lowest-energy structures and sequences are found. DEE/A*-based algorithms are the most prevalent provable algorithms in the field of protein design and can provably enumerate a gap-free list of low-energy protein conformations, which is necessary for ensemble-based algorithms that predict protein binding. We present two classes of algorithmic improvements to the A* algorithm that greatly increase the efficiency of A*. First, we analyze the effect of ordering the expansion of mutable residue positions within the A* tree and present a dynamic residue ordering that reduces the number of A* nodes that must be visited during the search. Second, we propose new methods to improve the conformational bounds used to estimate the energies of partial conformations during the A* search. The residue ordering techniques and improved bounds can be combined for additional increases in A* efficiency. Our enhancements enable all A*-based methods to more fully search protein conformation space, which will ultimately improve the accuracy of complex biomedically-relevant designs. PMID:26235965

  8. Method for Enzyme Design with Genetically Encoded Unnatural Amino Acids.

    PubMed

    Hu, C; Wang, J

    2016-01-01

    We describe the methodologies for the design of artificial enzymes with genetically encoded unnatural amino acids. Genetically encoded unnatural amino acids offer great promise for constructing artificial enzymes with novel activities. In our studies, the designs of artificial enzyme were divided into two steps. First, we considered the unnatural amino acids and the protein scaffold separately. The scaffold is designed by traditional protein design methods. The unnatural amino acids are inspired by natural structure and organic chemistry methods, and synthesized by either organic chemistry methods or enzymatic conversion. With the increasing number of published unnatural amino acids with various functions, we described an unnatural amino acids toolkit containing metal chelators, redox mediators, and click chemistry reagents. These efforts enable a researcher to search the toolkit for appropriate unnatural amino acids for the study, rather than design and synthesize the unnatural amino acids from the beginning. After the first step, the model enzyme was optimized by computational methods and directed evolution. Lastly, we describe a general method for evolving aminoacyl-tRNA synthetase and expressing unnatural amino acids incorporated into a protein. PMID:27586330

  9. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture.

    PubMed

    Liang, Shaobo; McDonald, Armando G; Coats, Erik R

    2015-11-01

    Lactic acid (LA) is a necessary industrial feedstock for producing the bioplastic, polylactic acid (PLA), which is currently produced by pure culture fermentation of food carbohydrates. This work presents an alternative to produce LA from potato peel waste (PPW) by anaerobic fermentation in a sequencing batch reactor (SBR) inoculated with undefined mixed culture from a municipal wastewater treatment plant. A statistical design of experiments approach was employed using set of 0.8L SBRs using gelatinized PPW at a solids content range from 30 to 50 g L(-1), solids retention time of 2-4 days for yield and productivity optimization. The maximum LA production yield of 0.25 g g(-1) PPW and highest productivity of 125 mg g(-1) d(-1) were achieved. A scale-up SBR trial using neat gelatinized PPW (at 80 g L(-1) solids content) at the 3 L scale was employed and the highest LA yield of 0.14 g g(-1) PPW and a productivity of 138 mg g(-1) d(-1) were achieved with a 1 d SRT. PMID:25708409

  10. Designer, acidic biochar influences calcareous soil characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 degrees celsius) and steam activation to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0, 1, 2, and 10 percent (by weight) to an eroded Portneuf soil (coarse-silty,...

  11. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  12. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  13. Computer aided design of a bipolar lead/acid battery

    NASA Astrophysics Data System (ADS)

    Kao, Wen-Hong

    Statistical design of experiments, coupled with the proprietary mathematical lead/acid model of Johnson Controls, Inc., were used to derive the design of a very high power bipolar lead/acid battery for the Jet Propulsion Laboratory. The effects of some battery component factors and discharge rate on the battery performance, predicted by the lead/acid model, were evaluated. The strategy to derive the optimum battery design, the roles of each battery component, limitations of the system, and the directions to improve the battery performance are discussed.

  14. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  15. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.

    PubMed

    Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling

    2015-11-21

    Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties. PMID:26455593

  16. Conversion of amino-acid sequence in proteins to classical music: search for auditory patterns

    PubMed Central

    2007-01-01

    We have converted genome-encoded protein sequences into musical notes to reveal auditory patterns without compromising musicality. We derived a reduced range of 13 base notes by pairing similar amino acids and distinguishing them using variations of three-note chords and codon distribution to dictate rhythm. The conversion will help make genomic coding sequences more approachable for the general public, young children, and vision-impaired scientists. PMID:17477882

  17. Ab initio detection of fuzzy amino acid tandem repeats in protein sequences

    PubMed Central

    2012-01-01

    Background Tandem repetitions within protein amino acid sequences often correspond to regular secondary structures and form multi-repeat 3D assemblies of varied size and function. Developing internal repetitions is one of the evolutionary mechanisms that proteins employ to adapt their structure and function under evolutionary pressure. While there is keen interest in understanding such phenomena, detection of repeating structures based only on sequence analysis is considered an arduous task, since structure and function is often preserved even under considerable sequence divergence (fuzzy tandem repeats). Results In this paper we present PTRStalker, a new algorithm for ab-initio detection of fuzzy tandem repeats in protein amino acid sequences. In the reported results we show that by feeding PTRStalker with amino acid sequences from the UniProtKB/Swiss-Prot database we detect novel tandemly repeated structures not captured by other state-of-the-art tools. Experiments with membrane proteins indicate that PTRStalker can detect global symmetries in the primary structure which are then reflected in the tertiary structure. Conclusions PTRStalker is able to detect fuzzy tandem repeating structures in protein sequences, with performance beyond the current state-of-the art. Such a tool may be a valuable support to investigating protein structural properties when tertiary X-ray data is not available. PMID:22536906

  18. Multimodal phylogeny for taxonomy: integrating information from nucleotide and amino acid sequences.

    PubMed

    Bicego, Manuele; Dellaglio, Franco; Felis, Giovanna E

    2007-10-01

    The crucial role played by the analysis of microbial diversity in biotechnology-based innovations has increased the interest in the microbial taxonomy research area. Phylogenetic sequence analyses have contributed significantly to the advances in this field, also in the view of the large amount of sequence data collected in recent years. Phylogenetic analyses could be realized on the basis of protein-encoding nucleotide sequences or encoded amino acid molecules: these two mechanisms present different peculiarities, still starting from two alternative representations of the same information. This complementarity could be exploited to achieve a multimodal phylogenetic scheme that is able to integrate gene and protein information in order to realize a single final tree. This aspect has been poorly addressed in the literature. In this paper, we propose to integrate the two phylogenetic analyses using basic schemes derived from the multimodality fusion theory (or multiclassifier systems theory), a well-founded and rigorous branch for which its powerfulness has already been demonstrated in other pattern recognition contexts. The proposed approach could be applied to distance matrix-based phylogenetic techniques (like neighbor joining), resulting in a smart and fast method. The proposed methodology has been tested in a real case involving sequences of some species of lactic acid bacteria. With this dataset, both nucleotide sequence- and amino acid sequence-based phylogenetic analyses present some drawbacks, which are overcome with the multimodal analysis. PMID:17933011

  19. Sequence-Specific Copolymer Compatibilizers designed via a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Meenakshisundaram, Venkatesh; Patra, Tarak; Hung, Jui-Hsiang; Simmons, David

    For several decades, block copolymers have been employed as surfactants to reduce interfacial energy for applications from emulsification to surface adhesion. While the simplest approach employs symmetric diblocks, studies have examined asymmetric diblocks, multiblock copolymers, gradient copolymers, and copolymer-grafted nanoparticles. However, there exists no established approach to determining the optimal copolymer compatibilizer sequence for a given application. Here we employ molecular dynamics simulations within a genetic algorithm to identify copolymer surfactant sequences yielding maximum reductions the interfacial energy of model immiscible polymers. The optimal copolymer sequence depends significantly on surfactant concentration. Most surprisingly, at high surface concentrations, where the surfactant achieves the greatest interfacial energy reduction, specific non-periodic sequences are found to significantly outperform any regularly blocky sequence. This emergence of polymer sequence-specificity within a non-sequenced environment adds to a recent body of work suggesting that specific sequence may have the potential to play a greater role in polymer properties than previously understood. We acknowledge the W. M. Keck Foundation for financial support of this research.

  20. The amino-acid sequence of leghemoglobin component a from Phaseolus vulgaris (kidney bean).

    PubMed

    Lehtovaara, P; Ellfolk, N

    1975-06-01

    1. Leghemoglobin component a from Phaseolus vulgaris (kidney bean) was digested with trypsin; 15 tryptic peptides and free lysine were purified and the amino acid sequences of the peptides determined. 2. The internal order of the tryptic peptides was determined by the bridge peptides obtained from the thermolytic digest and the dilute acid hydrolyzate of kidney bean leghemoglobin a; 12 thermolytic peptides and two acid hydrolysis peptides were purified and the sequences were partially or completely determined. 3. The complete amino acid sequence of kidney bean leghemoglobin a is compared to that of leghemoglobin a from soybean (Glycine max) and to some animal globins. As regards sequence, the kidney bean globin has 79% identity with the soybean globin and 21% identity with human hemoglobin gamma-chain. Seven of the 14 amino acid residues common to most globins are found in the kidney bean globin. Trp-15 and Tyr-145 are evolutionarily conserved in this globin, which confirms the concept of a common origin of animal and plant globins. PMID:809270

  1. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    PubMed

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold. PMID:17565494

  2. Observations and exploration of a sequence of design environments: Students designing a series of multimedia projects

    NASA Astrophysics Data System (ADS)

    Viner, Mark

    The goal of this research study was to observe and describe changes that occurred in student and teacher skills, conceptual beliefs and actions as students designed a series of multimedia projects for authentic audiences. Furthermore, the research was designed to explore the scaffolding of events and actions of sequence of five design environments. In each environment, an instructor and his students worked toward creating integrated, collaborative curriculum projects. HyperStudio authoring software was used as a construction tool and publishing medium for student artifacts. Results of this study indicate that both teacher and students need to have an active role in the design process. Working as 'student designers' is a collaborative process that is both time-consuming and complex. Overall, both the teacher and his students were receptive to the process of design and felt it provided valuable benefits when compared to the traditional learning process. While this study did not address the issues of content knowledge acquisition or performances on standardized tests, it does provide some practical recommendations for teachers working with students in a design environment.

  3. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels

    NASA Astrophysics Data System (ADS)

    Frederix, Pim W. J. M.; Scott, Gary G.; Abul-Haija, Yousef M.; Kalafatovic, Daniela; Pappas, Charalampos G.; Javid, Nadeem; Hunt, Neil T.; Ulijn, Rein V.; Tuttle, Tell

    2015-01-01

    Peptides that self-assemble into nanostructures are of tremendous interest for biological, medical, photonic and nanotechnological applications. The enormous sequence space that is available from 20 amino acids probably harbours many interesting candidates, but it is currently not possible to predict supramolecular behaviour from sequence alone. Here, we demonstrate computational tools to screen for the aqueous self-assembly propensity in all of the 8,000 possible tripeptides and evaluate these by comparison with known examples. We applied filters to select for candidates that simultaneously optimize the apparently contradicting requirements of aggregation propensity and hydrophilicity, which resulted in a set of design rules for self-assembling sequences. A number of peptides were subsequently synthesized and characterized, including the first reported tripeptides that are able to form a hydrogel at neutral pH. These tools, which enable the peptide sequence space to be searched for supramolecular properties, enable minimalistic peptide nanotechnology to deliver on its promise.

  4. Sequencing studies in human genetics: design and interpretation

    PubMed Central

    Goldstein, David B.; Allen, Andrew; Keebler, Jonathan; Margulies, Elliott H.; Petrou, Steven; Petrovski, Slavé; Sunyaev, Shamil

    2014-01-01

    Next-gene ration sequencing is becoming the primary discovery tool in human genetics. There have been many clear successes in identifying genes that are responsible for Mendelian diseases, and sequencing approaches are now poised to identify the mutations that cause undiagnosed childhood genetic diseases and those that predispose individuals to more common complex diseases. There are, however, growing concerns that the complexity and magnitude of complete sequence data could lead to an explosion of weakly justified claims of association between genetic variants and disease. Here, we provide an overview of the basic workflow in next-generation sequencing studies and emphasize, where possible, measures and considerations that facilitate accurate inferences from human sequencing studies. PMID:23752795

  5. Draft genome sequence of the docosahexaenoic acid producing thraustochytrid Aurantiochytrium sp. T66.

    PubMed

    Liu, Bin; Ertesvåg, Helga; Aasen, Inga Marie; Vadstein, Olav; Brautaset, Trygve; Heggeset, Tonje Marita Bjerkan

    2016-06-01

    Thraustochytrids are unicellular, marine protists, and there is a growing industrial interest in these organisms, particularly because some species, including strains belonging to the genus Aurantiochytrium, accumulate high levels of docosahexaenoic acid (DHA). Here, we report the draft genome sequence of Aurantiochytrium sp. T66 (ATCC PRA-276), with a size of 43 Mbp, and 11,683 predicted protein-coding sequences. The data has been deposited at DDBJ/EMBL/Genbank under the accession LNGJ00000000. The genome sequence will contribute new insight into DHA biosynthesis and regulation, providing a basis for metabolic engineering of thraustochytrids. PMID:27222814

  6. Degenerative primer design and gene sequencing validation for select turkey genes.

    PubMed

    Hutsko, Stephanie L; Lilburn, Michael S; Wick, Macdonald

    2016-06-01

    We successfully designed and validated degenerative primers for turkey genes MUC2, RPS13, TBP and TFF2 based on chicken sequences in order to use gene transcription analysis to evaluate (quantify) the mucin transcription to probiotic supplementation in turkeys. Primers were designed for the genes MUC2, TFF2, RPS13 and TBP using a degenerative primer design method based on the available Gallus gallus sequences. All primer sets, which produced a single PCR amplicon of the expected sizes, were cloned into the TOPO(®) vector and then transformed into TOP 10(®) competent cells. Plasmid DNA isolation was performed on the TOP10(®) cell culture and sent for sequencing. Sequences were analyzed using NCBI BLAST. All genes sequenced had over 90% homology with both the chicken and predicted turkey sequences. The sequences were used to design new 100% homologous primer sets for the genes of interest. PMID:27053625

  7. A classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B

    1991-01-01

    The amino acid sequences of 301 glycosyl hydrolases and related enzymes have been compared. A total of 291 sequences corresponding to 39 EC entries could be classified into 35 families. Only ten sequences (less than 5% of the sample) could not be assigned to any family. With the sequences available for this analysis, 18 families were found to be monospecific (containing only one EC number) and 17 were found to be polyspecific (containing at least two EC numbers). Implications on the folding characteristics and mechanism of action of these enzymes and on the evolution of carbohydrate metabolism are discussed. With the steady increase in sequence and structural data, it is suggested that the enzyme classification system should perhaps be revised. PMID:1747104

  8. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities.

    PubMed Central

    Henrissat, B; Bairoch, A

    1993-01-01

    301 glycosyl hydrolases and related enzymes corresponding to 39 EC entries of the I.U.B. classification system have been classified into 35 families on the basis of amino-acid-sequence similarities [Henrissat (1991) Biochem. J. 280, 309-316]. Approximately half of the families were found to be monospecific (containing only one EC number), whereas the other half were found to be polyspecific (containing at least two EC numbers). A > 60% increase in sequence data for glycosyl hydrolases (181 additional enzymes or enzyme domains sequences have since become available) allowed us to update the classification not only by the addition of more members to already identified families, but also by the finding of ten new families. On the basis of a comparison of 482 sequences corresponding to 52 EC entries, 45 families, out of which 22 are polyspecific, can now be defined. This classification has been implemented in the SWISS-PROT protein sequence data bank. PMID:8352747

  9. Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection.

    PubMed

    Orum, H; Nielsen, P E; Jørgensen, M; Larsson, C; Stanley, C; Koch, T

    1995-09-01

    Using an oligohistidine peptide nucleic acids (oligohistidine-PNA) chimera, we have developed a rapid hybrid selection method that allows efficient, sequence-specific purification of a target nucleic acid. The method exploits two fundamental features of PNA. First, that PNA binds with high affinity and specificity to its complementary nucleic acid. Second, that amino acids are easily attached to the PNA oligomer during synthesis. We show that a (His)6-PNA chimera exhibits strong binding to chelated Ni2+ ions without compromising its native PNA hybridization properties. We further show that these characteristics allow the (His)6-PNA/DNA complex to be purified by the well-established method of metal ion affinity chromatography using a Ni(2+)-NTA (nitrilotriactic acid) resin. Specificity and efficiency are the touchstones of any nucleic acid purification scheme. We show that the specificity of the (His)6-PNA selection approach is such that oligonucleotides differing by only a single nucleotide can be selectively purified. We also show that large RNAs (2224 nucleotides) can be captured with high efficiency by using multiple (His)6-PNA probes. PNA can hybridize to nucleic acids in low-salt concentrations that destabilize native nucleic acid structures. We demonstrate that this property of PNA can be utilized to purify an oligonucleotide in which the target sequence forms part of an intramolecular stem/loop structure. PMID:7495562

  10. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences. PMID:18397498

  11. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    PubMed Central

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  12. DESIGN MANUAL: NEUTRALIZATION OF ACID MINE DRAINAGE

    EPA Science Inventory

    This manual was prepared to assist designers and operators of mine drainage treatment plants in the selection of processes, equipment, and procedures. Included is a review of the most popular neutralizing agents and the methods used to handle, prepare, and feed these alkalies. Al...

  13. Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.

    PubMed

    Mirsky, Alexander; Kazandjian, Linda; Anisimova, Maria

    2015-03-01

    Antibodies are glycoproteins produced by the immune system as a dynamically adaptive line of defense against invading pathogens. Very elegant and specific mutational mechanisms allow B lymphocytes to produce a large and diversified repertoire of antibodies, which is modified and enhanced throughout all adulthood. One of these mechanisms is somatic hypermutation, which stochastically mutates nucleotides in the antibody genes, forming new sequences with different properties and, eventually, higher affinity and selectivity to the pathogenic target. As somatic hypermutation involves fast mutation of antibody sequences, this process can be described using a Markov substitution model of molecular evolution. Here, using large sets of antibody sequences from mice and humans, we infer an empirical amino acid substitution model AB, which is specific to antibody sequences. Compared with existing general amino acid models, we show that the AB model provides significantly better description for the somatic evolution of mice and human antibody sequences, as demonstrated on large next generation sequencing (NGS) antibody data. General amino acid models are reflective of conservation at the protein level due to functional constraints, with most frequent amino acids exchanges taking place between residues with the same or similar physicochemical properties. In contrast, within the variable part of antibody sequences we observed an elevated frequency of exchanges between amino acids with distinct physicochemical properties. This is indicative of a sui generis mutational mechanism, specific to antibody somatic hypermutation. We illustrate this property of antibody sequences by a comparative analysis of the network modularity implied by the AB model and general amino acid substitution models. We recommend using the new model for computational studies of antibody sequence maturation, including inference of alignments and phylogenetic trees describing antibody somatic hypermutation in

  14. Amino acid sequence of a vitamin K-dependent Ca2+-binding peptide from bovine prothrombin.

    PubMed

    Howard, J B; Fausch, M D

    1975-08-10

    The amino acid sequence of a 31-residue peptide from bovine prothrombin has been determined. This peptide has been shown to contain the vitamin K-dependent modification required for Ca2+ binding (Nelsestuen, G. L., and Suttie, J. W. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 3366-3370) and the modified amino acid, gamma-carboxyglutamic acid (Nelsestuen, G. L., Zytkovicz, T., and Howard, J. B. (1974) J. Biol. Chem. 249, 6347-6350). The peptide was shown to correspond to residues 12 to 42 of prothrombin. PMID:807581

  15. Amino acid sequences around the cysteine residues of rabbit muscle triose phosphate isomerase

    PubMed Central

    Miller, Janet C.; Waley, S. G.

    1971-01-01

    1. The nature of the subunits in rabbit muscle triose phosphate isomerase has been investigated. 2. Amino acid analyses show that there are five cysteine residues and two methionine residues/subunit. 3. The amino acid sequences around the cysteine residues have been determined; these account for about 75 residues. 4. Cleavage at the methionine residues with cyanogen bromide gave three fragments. 5. These results show that the subunits correspond to polypeptide chains, containing about 230 amino acid residues. The chains in triose phosphate isomerase seem to be shorter than those of other glycolytic enzymes. PMID:5165707

  16. Complete amino acid sequence of the Mu heavy chain of a human IgM immunoglobulin.

    PubMed

    Putnam, F W; Florent, G; Paul, C; Shinoda, T; Shimizu, A

    1973-10-19

    The amino acid sequence of the micro, chain of a human IgM immunoglobulin, including the location of all disulfide bridges and oligosaccharides, has been determined. The homology of the constant regions of immunoglobulin micro, gamma, alpha, and epsilon heavy chains reveals evolutionary relationships and suggests that two genes code for each heavy chain. PMID:4742735

  17. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923)

    PubMed Central

    Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-01-01

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain. PMID:26941139

  18. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    PubMed Central

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  19. Site-directed gene mutation at mixed sequence targets by psoralen-conjugated pseudo-complementary peptide nucleic acids.

    PubMed

    Kim, Ki-Hyun; Nielsen, Peter E; Glazer, Peter M

    2007-01-01

    Sequence-specific DNA-binding molecules such as triple helix-forming oligonucleotides (TFOs) provide a means for inducing site-specific mutagenesis and recombination at chromosomal sites in mammalian cells. However, the utility of TFOs is limited by the requirement for homopurine stretches in the target duplex DNA. Here, we report the use of pseudo-complementary peptide nucleic acids (pcPNAs) for intracellular gene targeting at mixed sequence sites. Due to steric hindrance, pcPNAs are unable to form pcPNA-pcPNA duplexes but can bind to complementary DNA sequences by Watson-Crick pairing via double duplex-invasion complex formation. We show that psoralen-conjugated pcPNAs can deliver site-specific photoadducts and mediate targeted gene modification within both episomal and chromosomal DNA in mammalian cells without detectable off-target effects. Most of the induced psoralen-pcPNA mutations were single-base substitutions and deletions at the predicted pcPNA-binding sites. The pcPNA-directed mutagenesis was found to be dependent on PNA concentration and UVA dose and required matched pairs of pcPNAs. Neither of the individual pcPNAs alone had any effect nor did complementary PNA pairs of the same sequence. These results identify pcPNAs as new tools for site-specific gene modification in mammalian cells without purine sequence restriction, thereby providing a general strategy for designing gene targeting molecules. PMID:17977869

  20. The amino acid sequence of cytochrome c-555 from the methane-oxidizing bacterium Methylococcus capsulatus.

    PubMed Central

    Ambler, R P; Dalton, H; Meyer, T E; Bartsch, R G; Kamen, M D

    1986-01-01

    The amino acid sequence of the cytochrome c-555 from the obligate methanotroph Methylococcus capsulatus strain Bath (N.C.I.B. 11132) was determined. It is a single polypeptide chain of 96 residues, binding a haem group through the cysteine residues at positions 19 and 22, and the only methionine residue is a position 59. The sequence does not closely resemble that of any other cytochrome c that has yet been characterized. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50131 (12 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies are available on prepayment. PMID:3006666

  1. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    PubMed Central

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61–65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique. PMID:26154567

  2. Allelic polymorphism in arabian camel ribonuclease and the amino acid sequence of bactrian camel ribonuclease.

    PubMed

    Welling, G W; Mulder, H; Beintema, J J

    1976-04-01

    Pancreatic ribonucleases from several species (whitetail deer, roe deer, guinea pig, and arabian camel) exhibit more than one amino acid at particular positions in their amino acid sequences. Since these enzymes were isolated from pooled pancreas, the origin of this heterogeneity is not clear. The pancreatic ribonucleases from 11 individual arabian camels (Camelus dromedarius) have been investigated with respect to the lysine-glutamine heterogeneity at position 103 (Welling et al., 1975). Six ribonucleases showed only one basic band and five showed two bands after polyacrylamide gel electrophoresis, suggesting a gene frequency of about 0.75 for the Lys gene and about 0.25 for the Gln gene. The amino acid sequence of bactrian camel (Camelus bactrianus) ribonuclease isolated from individual pancreatic tissue was determined and compared with that of arabian camel ribonuclease. The only difference was observed at position 103. In the ribonucleases from two unrelated bactrian camels, only glutamine was observed at that position. PMID:962846

  3. Use of a structural alphabet to find compatible folds for amino acid sequences

    PubMed Central

    Mahajan, Swapnil; de Brevern, Alexandre G; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; Offmann, Bernard

    2015-01-01

    The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence-search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino-acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence-search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z-score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales-up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web-server that is freely available at http://www.bo-protscience.fr/forsa. PMID:25297700

  4. Use of a structural alphabet to find compatible folds for amino acid sequences.

    PubMed

    Mahajan, Swapnil; de Brevern, Alexandre G; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; Offmann, Bernard

    2015-01-01

    The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence-search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino-acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as "Protein Blocks" (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence-search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z-score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales-up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web-server that is freely available at http://www.bo-protscience.fr/forsa. PMID:25297700

  5. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs.

    PubMed Central

    Chan, S J; San Segundo, B; McCormick, M B; Steiner, D F

    1986-01-01

    Cathepsin B is a lysosomal thiol proteinase that may have additional extralysosomal functions. To further our investigations on the structure, mode of biosynthesis, and intracellular sorting of this enzyme, we have determined the complete coding sequences for human and mouse preprocathepsin B by using cDNA clones isolated from human hepatoma and kidney phage libraries. The nucleotide sequences predict that the primary structure of preprocathepsin B contains 339 amino acids organized as follows: a 17-residue NH2-terminal prepeptide sequence followed by a 62-residue propeptide region, 254 residues in mature (single chain) cathepsin B, and a 6-residue extension at the COOH terminus. A comparison of procathepsin B sequences from three species (human, mouse, and rat) reveals that the homology between the propeptides is relatively conserved with a minimum of 68% sequence identity. In particular, two conserved sequences in the propeptide that may be functionally significant include a potential glycosylation site and the presence of a single cysteine at position 59. Comparative analysis of the three sequences also suggests that processing of procathepsin B is a multistep process, during which enzymatically active intermediate forms may be generated. The availability of the cDNA clones will facilitate the identification of possible active or inactive intermediate processive forms as well as studies on the transcriptional regulation of the cathepsin B gene. PMID:3463996

  6. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization.

    PubMed

    Anahtar, Melis N; Bowman, Brittany A; Kwon, Douglas S

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  7. Efficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization

    PubMed Central

    Anahtar, Melis N.; Bowman, Brittany A.; Kwon, Douglas S.

    2016-01-01

    There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computational workflows, sample processing for DNA extraction remains a continued source of variability across studies. Here we describe an efficient, robust, and cost effective method for extracting nucleic acid from swabs. We also delineate downstream methods for 16S rRNA gene sequencing, including generation of sequencing libraries, data quality control, and sequence analysis. The workflow can accommodate multiple samples types, including stool and swabs collected from a variety of anatomical locations and host species. Additionally, recovered DNA and RNA can be separated and used for other applications, including whole genome sequencing or RNA-seq. The method described allows for a common processing approach for multiple sample types and accommodates downstream analysis of genomic, metagenomic and transcriptional information. PMID:27168460

  8. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema

    Patel, Kamlesh D [Ken]; SNL,

    2013-01-25

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  9. The amino acid sequence of ribonuclease U2 from Ustilago sphaerogena.

    PubMed Central

    Sato, S; Uchida, T

    1975-01-01

    1. RNAase (ribonuclease) U2, a purine-specific RNAase, was reduced, aminoethylated and hydrolysed with trypsin, chymotrypsin and thermolysin. On the basis of the analyses of the resulting peptides, the complete amino acid sequence of RNAase U2 was determined, 2. When the sequence was compared with the amino acid sequence of RNAase T1 (EC 3.1.4.8), the following regions were found to be similar in the two enzymes; Tyr-Pro-His-Gln-Tyr (38-42) in RNAase U2 and Tyr-Pro-His-Lys-Tyr (38-42) in RNAase T1, Glu-Phe-Pro-Leu-Val (61-65) in RNAase U2 and Glu-Trp-Pro-Ile-Leu (58-62) in RNAase T1, Asp-Arg-Val-Ile-Tyr-Gln (83-88) in RNAase U2 and Asp-Arg-Val-Phe-Asn (76-81) in RNAase T1 and Val-Thr-His-Thr-Gly-Ala (98-103) in RNAase U2 and Ile-Thr-His-Thr-Gly-Ala (90-95) in RNAase T1. All of the amino acid residues, histidine-40, glutamate-58, arginine-77 and histidine-92, which were found to play a crucial role in the biological activity of RNAase T1, were included in the regions cited here. 3. Detailed evidence for the amino acid sequence of the sequence of the proteins has been deposited as Supplementary Publication SUP 50041 (33 PAGES) AT THE British Library (Lending Division)(formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1975), 145, 5. PMID:1156364

  10. Deduced amino acid sequence of human pulmonary surfactant proteolipid: SPL(pVal)

    SciTech Connect

    Whitsett, J.A.; Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.; Clark, J.; Pilot-Matias, T.; Meuth, J.; Fox, J.L.

    1987-05-01

    Hydrophobic, proteolipid-like protein of Mr 6500 was isolated from ether/ethanol extracts of human, canine and bovine pulmonary surfactant. Amino acid composition of the protein demonstrated a remarkable abundance of hydrophobic residues, particularly valine and leucine. The N-terminal amino acid sequence of the human protein was determined: N-Leu-Ile-Pro-Cys-Cys-Pro-Val-Asn-Leu-Lys-Arg-Leu-Leu-Ile-Val4... An oligonucleotide probe was used to screen an adult human lung cDNA library and resulted in detection of cDNA clones with predicted amino acid sequence with close identity to the N-terminal amino acid sequence of the human peptide. SPL(pVal) was found within the reading frame of a larger peptide. SPL(pVal) results from proteolytic processing of a larger preprotein. Northern blot analysis detected in a single 1.0 kilobase SPL(pVal) RNA which was less abundant in fetal than in adult lung. Mixtures of purified canine and bovine SPL(pVal) and synthetic phospholipids display properties of rapid adsorption and surface tension lowering activity characteristic of surfactant. Human SPL(pVal) is a pulmonary surfactant proteolipid which may therefore be useful in combination with phospholipids and/or other surfactant proteins for the treatment of surfactant deficiency such as hyaline membrane disease in newborn infants.

  11. Complete nucleic acid sequence of Penaeus stylirostris densovirus (PstDNV) from India.

    PubMed

    Rai, Praveen; Safeena, Muhammed P; Karunasagar, Iddya; Karunasagar, Indrani

    2011-06-01

    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) of shrimp, recently been classified as Penaeus stylirostris densovirus (PstDNV). The complete nucleic acid sequence of PstDNV from India was obtained by cloning and sequencing of different DNA fragment of the virus. The genome organisation of PstDNV revealed that there were three major coding domains: a left ORF (NS1) of 2001 bp, a mid ORF (NS2) of 1092 bp and a right ORF (VP) of 990 bp. The complete genome and amino acid sequences of three proteins viz., NS1, NS2 and VP were compared with the genomes of the virus reported from Hawaii, China and Mexico and with partial sequence available from isolates from different regions. The phylogenetic analysis of shrimp, insect and vertebrate parvovirus sequences showed that the Indian PstDNV isolate is phylogenetically more closely related to one of the three isolates from Taiwan (AY355307), and two isolates (AY362547 and AY102034) from Thailand. PMID:21402111

  12. Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells.

    PubMed Central

    Tani, K; Fujii, H; Nagata, S; Miwa, S

    1988-01-01

    Pyruvate kinase (PK) has four isozymes (L, R, M1, M2) that are encoded by two different genes. Among these isozymes, abnormalities of liver (L)-type PK is considered to be associated with hereditary nonspherocytic hemolytic anemia in humans. We isolated and determined the full-length sequence of human L-type PK cDNA. The cDNA contains 1629 base pairs encoding 543 amino acids, 68 base pairs of 5'-noncoding sequence, and 734 base pairs of 3'-noncoding sequence. The similarity between human and rat L-type PK was 86.9% at the nucleotide sequence level and 92.4% at the amino acid sequence level. The full-length L-type PK cDNA was placed under the promoter of simian virus 40 and introduced into monkey COS cells. Human L-type PK activity was detected in the extract of COS cells by the classical PK electrophoresis method. Images PMID:3126495

  13. Human liver type pyruvate kinase: Complete amino acid sequence and the expression in mammalian cells

    SciTech Connect

    Tani, Kenzaburo; Nagata, Shigekazu ); Fujii, Hisaichi ); Miwa, Shiro )

    1988-03-01

    Pyruvate kinase (PK) has four isozymes (L, R, M{sub 1}, M{sub 2}) that are encoded by two different genes. Among these isozymes, abnormalities of liver (L)-type PK is considered to be associated with hereditary nonspherocytic hemolytic anemia in humans. The authors isolated and determined the full-length sequence of human L-type PK cDNA. The cDNA contains 1,629 base pairs encoding 543 amino acids, 68 base pairs of 5{prime}-noncoding sequence, and 734 base pairs of 3{prime}-noncoding sequence. The similarity between human and rat L-type PK was 86.9% at the nucleotide sequence level and 92.4% at the amino acid sequence level. The full-length L-type PK cDNA was placed under the promoter of simian virus 40 and introduced into monkey COS cells. Human L-type PK activity was detected in the extract of COS cells by the classical PK electrophoresis method.

  14. Molecular cytogenetics by polymerase catalyzed amplification or in situ labelling of specific nucleic acid sequences

    SciTech Connect

    Bolund, L.; Brandt, C.; Hindkjaer, J.; Koch, J.; Koelvraa, S.; Pedersen, S. )

    1993-01-01

    The Polymerase Chain Reaction (PCR) can be performed on isolated cells or chromosomes and the product can be analyzed by DNA technology or by FISH to test metaphases. The authors have good experiences analyzing aberrant chromosomes by FACS sorting, PCR with degenerated primers and painting of test metaphases with the PCR product. They also utilize polymerases for PRimed IN Situ labelling (PRINS) of specific nucleic acid sequences. In PRINS oligonucleotides are hybridized to their target sequences and labeled nucleotides are incorporated at the site of hybridization with the oligonucleotide as primer. PRINS may eventually allow the study of individual genes, gene expression and even somatic mutations (in mRNA) in single cells.

  15. DNA Cloning of Plasmodium falciparum Circumsporozoite Gene: Amino Acid Sequence of Repetitive Epitope

    NASA Astrophysics Data System (ADS)

    Enea, Vincenzo; Ellis, Joan; Zavala, Fidel; Arnot, David E.; Asavanich, Achara; Masuda, Aoi; Quakyi, Isabella; Nussenzweig, Ruth S.

    1984-08-01

    A clone of complementary DNA encoding the circumsporozoite (CS) protein of the human malaria parasite Plasmodium falciparum has been isolated by screening an Escherichia coli complementary DNA library with a monoclonal antibody to the CS protein. The DNA sequence of the complementary DNA insert encodes a four-amino acid sequence: proline-asparagine-alanine-asparagine, tandemly repeated 23 times. The CS β -lactamase fusion protein specifically binds monoclonal antibodies to the CS protein and inhibits the binding of these antibodies to native Plasmodium falciparum CS protein. These findings provide a basis for the development of a vaccine against Plasmodium falciparum malaria.

  16. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments

    PubMed Central

    2011-01-01

    Prior to the advent of new, deep sequencing methods, small RNA (sRNA) discovery was dependent on Sanger sequencing, which was time-consuming and limited knowledge to only the most abundant sRNA. The innovation of large-scale, next-generation sequencing has exponentially increased knowledge of the biology, diversity and abundance of sRNA populations. In this review, we discuss issues involved in the design of sRNA sequencing experiments, including choosing a sequencing platform, inherent biases that affect sRNA measurements and replication. We outline the steps involved in preprocessing sRNA sequencing data and review both the principles behind and the current options for normalization. Finally, we discuss differential expression analysis in the absence and presence of biological replicates. While our focus is on sRNA sequencing experiments, many of the principles discussed are applicable to the sequencing of other RNA populations. PMID:21356093

  17. A Multiple-Sequence Variant of the Multiple-Baseline Design: A Strategy for Analysis of Sequence Effects and Treatment Comparison.

    ERIC Educational Resources Information Center

    Noell, George H.; Gresham, Frank M.

    2001-01-01

    Describes design logic and potential uses of a variant of the multiple-baseline design. The multiple-baseline multiple-sequence (MBL-MS) consists of multiple-baseline designs that are interlaced with one another and include all possible sequences of treatments. The MBL-MS design appears to be primarily useful for comparison of treatments taking…

  18. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F.W.

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient. 2 figs.

  19. Method for high-volume sequencing of nucleic acids: random and directed priming with libraries of oligonucleotides

    DOEpatents

    Studier, F. William

    1995-04-18

    Random and directed priming methods for determining nucleotide sequences by enzymatic sequencing techniques, using libraries of primers of lengths 8, 9 or 10 bases, are disclosed. These methods permit direct sequencing of nucleic acids as large as 45,000 base pairs or larger without the necessity for subcloning. Individual primers are used repeatedly to prime sequence reactions in many different nucleic acid molecules. Libraries containing as few as 10,000 octamers, 14,200 nonamers, or 44,000 decamers would have the capacity to determine the sequence of almost any cosmid DNA. Random priming with a fixed set of primers from a smaller library can also be used to initiate the sequencing of individual nucleic acid molecules, with the sequence being completed by directed priming with primers from the library. In contrast to random cloning techniques, a combined random and directed priming strategy is far more efficient.

  20. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen

    SciTech Connect

    Eaton, D.L.; Fless, G.M.; Kohr, W.J.; McLean, J.W.; Xu, Q.T.; Miller, C.G.; Lawn, R.M.; Scanu, A.M.

    1987-05-01

    Apolipoprotein(a) (apo(a)) is a glycoprotein with M/sub r/ approx. 280,000 that is disulfide linked to apolipoprotein B in lipoprotein(a) particles. Elevated plasma levels of lipoprotein(a) are correlated with atherosclerosis. Partial amino acid sequence of apo(a) shows that it has striking homology to plasminogen. Plasminogen is a plasma serine protease zymogen that consists of five homologous and tandemly repeated domains called kringles and a trypsin-like protease domain. The amino-terminal sequence obtained for apo(a) is homologous to the beginning of kringle 4 but not the amino terminus of plasminogen. Apo(a) was subjected to limited proteolysis by trypsin or V8 protease, and fragments generated were isolated and sequenced. Sequences obtained from several of these fragments are highly (77-100%) homologous to plasminogen residues 391-421, which reside within kringle 4. Analysis of these internal apo(a) sequences revealed that apo(a) may contain at least two kringle 4-like domains. A sequence obtained from another tryptic fragment also shows homology to the end of kringle 4 and the beginning of kringle 5. Sequence data obtained from the two tryptic fragments shows homology with the protease domain of plasminogen. One of these sequences is homologous to the sequences surrounding the activation site of plasminogen. Plasminogen is activated by the cleavage of a specific arginine residue by urokinase and tissue plasminogen activator; however, the corresponding site in apo(a) is a serine that would not be cleaved by tissue plasminogen activator or urokinase. Using a plasmin-specific assay, no proteolytic activity could be demonstrated for lipoprotein(a) particles. These results suggest that apo(a) contains kringle-like domains and an inactive protease domain.

  1. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403

    PubMed Central

    Bolotin, Alexander; Wincker, Patrick; Mauger, Stéphane; Jaillon, Olivier; Malarme, Karine; Weissenbach, Jean; Ehrlich, S. Dusko; Sorokin, Alexei

    2001-01-01

    Lactococcus lactis is a nonpathogenic AT-rich gram-positive bacterium closely related to the genus Streptococcus and is the most commonly used cheese starter. It is also the best-characterized lactic acid bacterium. We sequenced the genome of the laboratory strain IL1403, using a novel two-step strategy that comprises diagnostic sequencing of the entire genome and a shotgun polishing step. The genome contains 2,365,589 base pairs and encodes 2310 proteins, including 293 protein-coding genes belonging to six prophages and 43 insertion sequence (IS) elements. Nonrandom distribution of IS elements indicates that the chromosome of the sequenced strain may be a product of recent recombination between two closely related genomes. A complete set of late competence genes is present, indicating the ability of L. lactis to undergo DNA transformation. Genomic sequence revealed new possibilities for fermentation pathways and for aerobic respiration. It also indicated a horizontal transfer of genetic information from Lactococcus to gram-negative enteric bacteria of Salmonella-Escherichia group. [The sequence data described in this paper has been submitted to the GenBank data library under accession no. AE005176.] PMID:11337471

  2. On human disease-causing amino acid variants: statistical study of sequence and structural patterns

    PubMed Central

    Alexov, Emil

    2015-01-01

    Statistical analysis was carried out on large set of naturally occurring human amino acid variations and it was demonstrated that there is a preference for some amino acid substitutions to be associated with diseases. At an amino acid sequence level, it was shown that the disease-causing variants frequently involve drastic changes of amino acid physico-chemical properties of proteins such as charge, hydrophobicity and geometry. Structural analysis of variants involved in diseases and being frequently observed in human population showed similar trends: disease-causing variants tend to cause more changes of hydrogen bond network and salt bridges as compared with harmless amino acid mutations. Analysis of thermodynamics data reported in literature, both experimental and computational, indicated that disease-causing variants tend to destabilize proteins and their interactions, which prompted us to investigate the effects of amino acid mutations on large databases of experimentally measured energy changes in unrelated proteins. Although the experimental datasets were linked neither to diseases nor exclusory to human proteins, the observed trends were the same: amino acid mutations tend to destabilize proteins and their interactions. Having in mind that structural and thermodynamics properties are interrelated, it is pointed out that any large change of any of them is anticipated to cause a disease. PMID:25689729

  3. Self-sequencing of amino acids and origins of polyfunctional protocells.

    PubMed

    Fox, S W

    1984-01-01

    The primal role of the origins of proteins in molecular evolution is discussed. On the basis of this premise, the significance of the experimentally established self-sequencing of amino acids under simulated geological conditions is explained as due to the fact that the products are highly nonrandom and accordingly contain many kinds of information. When such thermal proteins are aggregated into laboratory protocells, an action that occurs readily, the resultant protocells also contain many kinds of information. Residue-by-residue order, enzymic activities, and lipid quality accordingly occur within each preparation of proteinoid (thermal protein). In this paper are reviewed briefly the phenomenon of self-sequencing of amino acids, its relationship to evolutionary processes, other significance of such self-ordering, and the experimental evidence for original polyfunctional protocells. PMID:6462684

  4. Self-Sequencing of Amino Acids and Origins of Polyfunctional Protocells

    NASA Astrophysics Data System (ADS)

    Fox, Sidney W.

    1984-12-01

    The primal role of the origins of proteins in molecular evolution is discussed. On the basis of this premise, the significance of the experimentally established self-sequencing of amino acids under simulated geological conditions is explained as due to the fact that the products are highly nonrandom and accordingly contain many kinds of information. When such thermal proteins are aggregated into laboratory protocells, an action that occurs readily, the resultant protocells also contain many kinds of information. Residue-by-residue order, enzymic activities, and lipid quality accordingly occur within each preparation of proteinoid (thermal protein). In this paper are reviewed briefly the phenomenon of self-sequencing of amino acids, its relationship to evolutionary processes, other significance of such self-ordering, and the experimental evidence for original polyfunctional protocells.

  5. Sequence of morphological transitions in two-dimensional pattern growth from aqueous ascorbic Acid solutions.

    PubMed

    Paranjpe, A S

    2002-08-12

    A sequence of morphological transitions in two-dimensional dehydration patterns of aqueous solutions of ascorbic acid is observed with humidity as a control parameter. Change in morphology occurs due to humidity induced variation in the concentration of the metastable supersaturated solution phase formed after initial solvent evaporation. As percent humidity is varied from 40 to 80, patterns change from compact circular --> radial --> density modulated radial (a new morphology) --> density modulated circular --> density modulated dendritic (a new morphology) --> dense branching. PMID:12190528

  6. Self-sequencing of amino acids and origins of polyfunctional protocells

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1984-01-01

    The role of proteins in the origin of living things is discussed. It has been experimentally established that amino acids can sequence themselves under simulated geological conditions with highly nonrandom products which accordingly contain diverse information. Multiple copies of each type of macromolecule are formed, resulting in greater power for any protoenzymic molecule than would accrue from a single copy of each type. Thermal proteins are readily incorporated into laboratory protocells. The experimental evidence for original polyfunctional protocells is discussed.

  7. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1980-12-01

    Protein A from Dendroaspis polylepis polylepis venom comprises 81 amino acids, including ten half-cystine residues. The complete primary structures of protein A and its variant A' were elucidated. The sequences of proteins A and A', which differ in a single position, show no homology with various neurotoxins and non-neurotoxic proteins and represent a new type of elapid venom protein. PMID:7461607

  8. Polymeric Nucleic Acid Carriers: Current Issues and Novel Design Approaches

    PubMed Central

    Kang, Han Chang; Huh, Kang Moo; Bae, You Han

    2012-01-01

    To deliver nucleic acids including plasmid DNA (pDNA) and short interfering RNA (siRNA), polymeric gene carriers equipped with various functionalities have been extensively investigated. The functionalities of these polymeric vectors have been designed to overcome various extracellular and intracellular hurdles that nucleic acids and their carriers encounter during their journey from injection site to intracellular target site. This review briefly introduces known extracellular and intracellular issues of nucleic acid delivery and their solution strategies. We examine significant yet overlooked factors affecting nucleic acid delivery (e.g., microenvironmental pH, polymer/siRNA complexation, and pharmaceutical formulation) and highlight our reported approaches to solve these problems. PMID:22771981

  9. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment. PMID:23485423

  10. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... base or modified or unusual amino acid may be presented in a given sequence as the corresponding unmodified base or amino acid if the modified base or modified or unusual amino acid is one of those...

  11. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... base or modified or unusual amino acid may be presented in a given sequence as the corresponding unmodified base or amino acid if the modified base or modified or unusual amino acid is one of those...

  12. Nanopore Analysis of Nucleic Acids: Single-Molecule Studies of Molecular Dynamics, Structure, and Base Sequence

    NASA Astrophysics Data System (ADS)

    Olasagasti, Felix; Deamer, David W.

    Nucleic acids are linear polynucleotides in which each base is covalently linked to a pentose sugar and a phosphate group carrying a negative charge. If a pore having roughly the crosssectional diameter of a single-stranded nucleic acid is embedded in a thin membrane and a voltage of 100 mV or more is applied, individual nucleic acids in solution can be captured by the electrical field in the pore and translocated through by single-molecule electrophoresis. The dimensions of the pore cannot accommodate anything larger than a single strand, so each base in the molecule passes through the pore in strict linear sequence. The nucleic acid strand occupies a large fraction of the pore's volume during translocation and therefore produces a transient blockade of the ionic current created by the applied voltage. If it could be demonstrated that each nucleotide in the polymer produced a characteristic modulation of the ionic current during its passage through the nanopore, the sequence of current modulations would reflect the sequence of bases in the polymer. According to this basic concept, nanopores are analogous to a Coulter counter that detects nanoscopic molecules rather than microscopic [1,2]. However, the advantage of nanopores is that individual macromolecules can be characterized because different chemical and physical properties affect their passage through the pore. Because macromolecules can be captured in the pore as well as translocated, the nanopore can be used to detect individual functional complexes that form between a nucleic acid and an enzyme. No other technique has this capability.

  13. The amino acid sequence of Lady Amherst's pheasant (Chrysolophus amherstiae) and golden pheasant (Chrysolophus pictus) egg-white lysozymes.

    PubMed

    Araki, T; Kuramoto, M; Torikata, T

    1990-09-01

    The amino acids of Lady Amherst's pheasant and golden pheasant egg-white lysozymes have been sequenced. The carboxymethylated lysozymes were digested with trypsin followed by sequencing of the tryptic peptides. Lady Amherst's pheasant lysozyme proved to consist of 129 amino acid residues, and a relative molecular mass of 14,423 Da was calculated. This lysozyme had 6 amino acids substitutions when compared with hen egg-white lysozyme: Phe3 to Tyr, His15 to Leu, Gln41 to His, Asn77 to His, Gln 121 to Asn, and a newly found substitution of Ile124 to Thr. The amino acid sequence of golden pheasant lysozyme was identical to that of Lady Amherst's phesant lysozyme. The phylogenetic tree constructured by the comparison of amino acid sequences of phasianoid birds lysozymes revealed a minimum genetic distance between these pheasants and the turkey-peafowl group. PMID:1368578

  14. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  15. Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis).

    PubMed

    Srihongthong, Saowaluck; Pakdeesuwan, Anawat; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-08-01

    Hemoglobin, α-chain, β-chain and fragmented hemoglobin of Crocodylus siamensis demonstrated both antibacterial and antioxidant activities. Antibacterial and antioxidant properties of the hemoglobin did not depend on the heme structure but could result from the compositions of amino acid residues and structures present in their primary structure. Furthermore, thirteen purified active peptides were obtained by RP-HPLC analyses, corresponding to fragments in the α-globin chain and the β-globin chain which are mostly located at the N-terminal and C-terminal parts. These active peptides operate on the bacterial cell membrane. The globin chains of Crocodylus siamensis showed similar amino acids to the sequences of Crocodylus niloticus. The novel amino acid substitutions of α-chain and β-chain are not associated with the heme binding site or the bicarbonate ion binding site, but could be important through their interactions with membranes of bacteria. PMID:22648692

  16. [Partial sequence homology of FtsZ in phylogenetics analysis of lactic acid bacteria].

    PubMed

    Zhang, Bin; Dong, Xiu-zhu

    2005-10-01

    FtsZ is a structurally conserved protein, which is universal among the prokaryotes. It plays a key role in prokaryote cell division. A partial fragment of the ftsZ gene about 800bp in length was amplified and sequenced and a partial FtsZ protein phylogenetic tree for the lactic acid bacteria was constructed. By comparing the FtsZ phylogenetic tree with the 16S rDNA tree, it was shown that the two trees were similar in topology. Both trees revealed that Pediococcus spp. were closely related with L. casei group of Lactobacillus spp. , but less related with other lactic acid cocci such as Enterococcus and Streptococcus. The results also showed that the discriminative power of FtsZ was higher than that of 16S rDNA for either inter-species or inter-genus and could be a very useful tool in species identification of lactic acid bacteria. PMID:16342751

  17. An Uplifting Experience: A Course Sequence Designed to Facilitate Proficiency Development

    ERIC Educational Resources Information Center

    Lindseth, Martina; Brown, Joshua R.

    2014-01-01

    This article discusses a three-course sequence which has been designed to aid students' attainment of Advanced Low proficiency according to ACTFL guidelines. A cycle of iterative tasks (with increasing learner autonomy) within and between the courses in the sequence are highlighted and their implementation discussed. Additionally,…

  18. Designing and Validating Two Teaching-Learning Sequences about Particle Models. Special Issue

    ERIC Educational Resources Information Center

    Meheut, Martine

    2004-01-01

    This paper presents a retrospective analysis of two teaching-learning sequences about particle models. We will describe the design process for each sequence and will discuss it with respect to general frameworks such as Ingenierie Didactique and Educational Reconstruction. We will also describe and compare the ways we collected data and…

  19. Designing and Evaluating Research-Based Instructional Sequences for Introducing Magnetic Fields

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose Manuel; Ceberio, Mikel; Zubimendi, Jose Luis

    2009-01-01

    This study examines the didactic suitability of introducing a teaching sequence when teaching the concept of magnetic fields within introductory physics courses at the university level. This instructional sequence was designed taking into account students' common conceptions, an analysis of the course content, and the history of the development of…

  20. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet.

    PubMed

    Okura, Hiromichi; Takahashi, Tsuyoshi; Mihara, Hisakazu

    2012-06-01

    Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences. PMID:22519540

  1. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.

    PubMed

    Hansen, William A; Mills, Jeremy H; Khare, Sagar D

    2016-01-01

    Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions.The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural

  2. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids.

    PubMed

    Tanaka, Junko; Doi, Nobuhide; Takashima, Hideaki; Yanagawa, Hiroshi

    2010-04-01

    Screening of functional proteins from a random-sequence library has been used to evolve novel proteins in the field of evolutionary protein engineering. However, random-sequence proteins consisting of the 20 natural amino acids tend to aggregate, and the occurrence rate of functional proteins in a random-sequence library is low. From the viewpoint of the origin of life, it has been proposed that primordial proteins consisted of a limited set of amino acids that could have been abundantly formed early during chemical evolution. We have previously found that members of a random-sequence protein library constructed with five primitive amino acids show high solubility (Doi et al., Protein Eng Des Sel 2005;18:279-284). Although such a library is expected to be appropriate for finding functional proteins, the functionality may be limited, because they have no positively charged amino acid. Here, we constructed three libraries of 120-amino acid, random-sequence proteins using alphabets of 5, 12, and 20 amino acids by preselection using mRNA display (to eliminate sequences containing stop codons and frameshifts) and characterized and compared the structural properties of random-sequence proteins arbitrarily chosen from these libraries. We found that random-sequence proteins constructed with the 12-member alphabet (including five primitive amino acids and positively charged amino acids) have higher solubility than those constructed with the 20-member alphabet, though other biophysical properties are very similar in the two libraries. Thus, a library of moderate complexity constructed from 12 amino acids may be a more appropriate resource for functional screening than one constructed from 20 amino acids. PMID:20162614

  3. EPSE Project 2: Designing and Evaluating Short Teaching Sequences, Informed by Research Evidence.

    ERIC Educational Resources Information Center

    Leach, John; Hind, Andy; Lewis, Jenny; Scott, Phil

    2002-01-01

    Reports on Project 2 from the Evidence-based Practice in Science Education (EPSE) Research Network. In this project, teachers and researchers worked collaboratively on the design of three short teaching sequences on electric circuits. (DDR)

  4. Surveying determinants of protein structure designability across different energy models and amino-acid alphabets: A consensus

    NASA Astrophysics Data System (ADS)

    Buchler, Nicolas E. G.; Goldstein, Richard A.

    2000-02-01

    A variety of analytical and computational models have been proposed to answer the question of why some protein structures are more "designable" (i.e., have more sequences folding into them) than others. One class of analytical and statistical-mechanical models has approached the designability problem from a thermodynamic viewpoint. These models highlighted specific structural features important for increased designability. Furthermore, designability was shown to be inherently related to thermodynamically relevant energetic measures of protein folding, such as the foldability F and energy gap Δ10. However, many of these models have been done within a very narrow focus: Namely, pair-contact interactions and two-letter amino-acid alphabets. Recently, two-letter amino-acid alphabets for pair-contact models have been shown to contain designability artifacts which disappear for larger-letter amino-acid alphabets. In addition, a solvation model was demonstrated to give identical designability results to previous two-letter amino-acid alphabet pair-contact models. In light of these discordant results, this report synthesizes a broad consensus regarding the relationship between specific structural features, foldability F, energy gap Δ10, and structure designability for different energy models (pair-contact vs solvation) across a wide range of amino-acid alphabets. We also propose a novel measure Zdk which is shown to be well correlated to designability. Finally, we conclusively demonstrate that two-letter amino-acid alphabets for pair-contact models appear to be solvation models in disguise.

  5. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis.

    PubMed

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P; Marians, Kenneth J; Erdjument-Bromage, Hediye

    2016-07-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods. PMID:27006647

  6. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis

    PubMed Central

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P.; Marians, Kenneth J.

    2016-01-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods. PMID:27006647

  7. Protein sequence analysis by incorporating modified chaos game and physicochemical properties into Chou's general pseudo amino acid composition.

    PubMed

    Xu, Chunrui; Sun, Dandan; Liu, Shenghui; Zhang, Yusen

    2016-10-01

    In this contribution we introduced a novel graphical method to compare protein sequences. By mapping a protein sequence into 3D space based on codons and physicochemical properties of 20 amino acids, we are able to get a unique P-vector from the 3D curve. This approach is consistent with wobble theory of amino acids. We compute the distance between sequences by their P-vectors to measure similarities/dissimilarities among protein sequences. Finally, we use our method to analyze four datasets and get better results compared with previous approaches. PMID:27375218

  8. Cloning, sequencing, characterisation and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis.

    PubMed

    Ala' Aldeen, D A; Westphal, A H; De Kok, A; Weston, V; Atta, M S; Baldwin, T J; Bartley, J; Borriello, S P

    1996-12-01

    A lambdaZap-II expression library of Neisseria meningitidis was screened with a rabbit polyclonal antiserum (R-70) raised against c. 70-kDa proteins purified from outer membrane vesicles by elution from preparative SDS-polyacrylamide gels. Selected clones were isolated, further purified, and their recombinant pBluescript SKII plasmids were excised. The cloned DNA insert was sequenced from positive clones and analysed. Four open reading frames (ORFs) were identified, three of which showed a high degree of homology with the pyruvate dehydrogenase (E1p), dihydrolipoyl acetyltransferase (E2p) and dihydrolipoyl dehydrogenase (E3) components of the pyruvate dehydrogenase complex (PDHC) of a number of prokaryotic and eukaryotic species. Sequence analysis indicated that the meningococcal E2p (Men-E2p) contains two N-terminal lipoyl domains, an E1/E3 binding domain and a catalytic domain. The domains are separated by hinge regions rich in alanine, proline and charged residues. Another lipoyl domain with high sequence similarity to the Men-E2p lipoyl domain was found at the N-terminal of the E3 component. A further ORF, coding for a 16.5-kDa protein, was found between the ORFs encoding the E2p and E3 components. The identity and functional characteristics of the expressed and purified heterologous Men-E2p were confirmed as dihydrolipoyl acetyltransferase by immunological and biochemical assays. N-terminal amino-acid analysis confirmed the sequence of the DNA-derived mature protein. Purified Men-E2p reacted with monospecific antisera raised against the whole E2p molecule and against the lipoyl domain of the Azotobacter vinelandii E2p. Conversely, rabbit antiserum raised against Men-E2p reacted with protein extracts of A. vinelandii, Escherichia coli and N. gonorrhoeae and with the lipoyl and catalytic domains of E2p obtained by limited proteolysis. In contrast, the original R-70 antiserum reacted almost exclusively with the lipoyl domain, indicating the strong immunogenicity

  9. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms.

    PubMed

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/. PMID:26424080

  10. JRC GMO-Amplicons: a collection of nucleic acid sequences related to genetically modified organisms

    PubMed Central

    Petrillo, Mauro; Angers-Loustau, Alexandre; Henriksson, Peter; Bonfini, Laura; Patak, Alex; Kreysa, Joachim

    2015-01-01

    The DNA target sequence is the key element in designing detection methods for genetically modified organisms (GMOs). Unfortunately this information is frequently lacking, especially for unauthorized GMOs. In addition, patent sequences are generally poorly annotated, buried in complex and extensive documentation and hard to link to the corresponding GM event. Here, we present the JRC GMO-Amplicons, a database of amplicons collected by screening public nucleotide sequence databanks by in silico determination of PCR amplification with reference methods for GMO analysis. The European Union Reference Laboratory for Genetically Modified Food and Feed (EU-RL GMFF) provides these methods in the GMOMETHODS database to support enforcement of EU legislation and GM food/feed control. The JRC GMO-Amplicons database is composed of more than 240 000 amplicons, which can be easily accessed and screened through a web interface. To our knowledge, this is the first attempt at pooling and collecting publicly available sequences related to GMOs in food and feed. The JRC GMO-Amplicons supports control laboratories in the design and assessment of GMO methods, providing inter-alia in silico prediction of primers specificity and GM targets coverage. The new tool can assist the laboratories in the analysis of complex issues, such as the detection and identification of unauthorized GMOs. Notably, the JRC GMO-Amplicons database allows the retrieval and characterization of GMO-related sequences included in patents documentation. Finally, it can help annotating poorly described GM sequences and identifying new relevant GMO-related sequences in public databases. The JRC GMO-Amplicons is freely accessible through a web-based portal that is hosted on the EU-RL GMFF website. Database URL: http://gmo-crl.jrc.ec.europa.eu/jrcgmoamplicons/ PMID:26424080

  11. Nucleotide sequence of the phosphoglycerate kinase gene from the extreme thermophile Thermus thermophilus. Comparison of the deduced amino acid sequence with that of the mesophilic yeast phosphoglycerate kinase.

    PubMed Central

    Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L

    1988-01-01

    Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437

  12. Extremely Acidophilic Protists from Acid Mine Drainage Host Rickettsiales-Lineage Endosymbionts That Have Intervening Sequences in Their 16S rRNA Genes

    PubMed Central

    Baker, Brett J.; Hugenholtz, Philip; Dawson, Scott C.; Banfield, Jillian F.

    2003-01-01

    During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat. PMID:12957940

  13. Sugar amino acids and their uses in designing bioactive molecules.

    PubMed

    Chakraborty, Tushar K; Ghosh, Subhash; Jayaprakash, Sarva

    2002-02-01

    In search of new molecular entities for discovering new drugs and materials, organic chemists are looking for innovative approaches that try to imitate nature in assembling quickly large number of distinct and diverse molecular structures from 'nature-like' and yet unnatural designer building blocks using combinatorial approach. The main objective in developing such libraries is to mimic the diversities displayed in structures and properties of natural products. The unnatural building blocks used in these assemblies are carefully designed to manifest the structural diversities of the monomeric units used by nature like amino acids, carbohydrates and nucleosides to build its arsenal. Compounds made of such unnatural building blocks are also expected to be more stable toward proteolytic cleavage in physiological systems than their natural counterparts. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give an unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review describes the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in creating large number of structurally diverse peptide-based molecules many of which display interesting three-dimensional structures as well as useful biological properties. PMID:11945118

  14. Nucleic and amino acid sequences relating to a novel transketolase, and methods for the expression thereof

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Lange, Bernd Markus; McCaskill, David G.

    2001-01-01

    cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.

  15. Protein design by optimization of a sequence-structure quality function.

    PubMed

    Brenner, S E; Berry, A

    1994-01-01

    An automated procedure for protein design by optimization of a sequence-structure quality has been developed. The method selects a statistically optimal sequence for a particular structure, on the assumption that such a protein will adopt the desired structure. We present two optimization algorithms: one provides an exact optimization while the other uses a combinatorial technique for comparatively rapid results. Both are suitable for massively parallel computers. A prototype system was used to design sequences which should adopt the four-helix bundle conformation of myohemerythrin. These appear satisfactory to secondary structure and profile analysis. Detailed inspection reveals that the sequences are generally plausible but, as expected, lack some specific structural features. The design parameters provide some insight into the general determinants of protein structure. PMID:7584417

  16. Protein design by optimization of a sequence-structure quality function

    SciTech Connect

    Brenner, S.E.; Berry, A.

    1994-12-31

    An automated procedure for protein design by optimization of a sequence-structure quality has been developed. The method selects a statistically optimal sequence for a particular structure, on the assumption that such a protein will adopt the desired structure. We present two optimization algorithms: one provides an exact optimization while the other uses a combinatorial technique for comparatively rapid results. Both are suitable for massively parallel computers. A prototype system was used to design sequences which should adopt the four-helix bundle conformation of myohemerythrin. These appear satisfactory to secondary structure and profile analysis. Detailed inspection reveals that the sequences are generally plausible but, as expected, lack some specific structural features. The design parameters provide some insight into the general determinants of protein structure.

  17. Structure of a Designed, Right-Handed Coiled-Coil Tetramer Containing All Biological Amino Acids

    SciTech Connect

    Sales, M.; Plecs, J.J.; Holton, J.M.; Alber, T.

    2009-06-04

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 {angstrom} resolution using a designed metal binding site to coordinate a single Yb{sup 2+} ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 {angstrom}. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  18. Design of bit error rate tester based on a high speed bit and sequence synchronization

    NASA Astrophysics Data System (ADS)

    Wang, Xuanmin; Zhao, Xiangmo; Zhang, Lichuan; Zhang, Yinglong

    2013-03-01

    In traditional BER (Bit Error Rate) tester, bit synchronization applied digital PLL and sequence synchronization utilized sequence's correlation.It resulted in a low speed on bit and sequence synchronization. this paper came up new method to realize bit and sequence synchronization .which were Bit-edge-tracking method and Immitting-sequence method.The BER tester based on FPGA was designed.The functions of inserting error-bit and removing the false sequence synchronization were added. The results of Debuging and simulating display that the time to realize bit synchronization is less than a bit width, the lagged time of the tracking bit pulse is 1/8 of the code cycle,and there is only a M sequence's cycle to realize sequence synchronization.This new BER tester has many advantages,such as a short time to realize bit and sequence synchronization,no false sequence synchronization,testing the ability of the receiving port's error -correcting and a simple hareware.

  19. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3.

    PubMed

    Wang, Xiaoyu; Chen, Meili; Xiao, Jingfa; Hao, Lirui; Crowley, David E; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  20. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  1. Bile acid sulfotransferase I from rat liver sulfates bile acids and 3-hydroxy steroids: purification, N-terminal amino acid sequence, and kinetic properties.

    PubMed

    Barnes, S; Buchina, E S; King, R J; McBurnett, T; Taylor, K B

    1989-04-01

    A bile acid:3'phosphoadenosine-5'phosphosulfate:sulfotransferase (BAST I) from adult female rat liver cytosol has been purified 157-fold by a two-step isolation procedure. The N-terminal amino acid sequence of the 30,000 subunit has been determined for the first 35 residues. The Vmax of purified BAST I is 18.7 nmol/min per mg protein with N-(3-hydroxy-5 beta-cholanoyl)glycine (glycolithocholic acid) as substrate, comparable to that of the corresponding purified human BAST (Chen, L-J., and I. H. Segel, 1985. Arch. Biochem. Biophys. 241: 371-379). BAST I activity has a broad pH optimum from 5.5-7.5. Although maximum activity occurs with 5 mM MgCl2, Mg2+ is not essential for BAST I activity. The greatest sulfotransferase activity and the highest substrate affinity is observed with bile acids or steroids that have a steroid nucleus containing a 3 beta-hydroxy group and a 5-6 double bond or a trans A-B ring junction. These substrates have normal hyperbolic initial velocity curves with substrate inhibition occurring above 5 microM. Of the saturated 5 beta-bile acids, those with a single 3-hydroxy group are the most active. The addition of a second hydroxy group at the 6- or 7-position eliminates more than 99% of the activity. In contrast, 3 alpha,12 alpha-dihydroxy-5 beta-cholan-24-oic acid (deoxycholic acid) is an excellent substrate. The initial velocity curves for glycolithocholic and deoxycholic acid conjugates are sigmoidal rather than hyperbolic, suggestive of an allosteric effect. Maximum activity is observed at 80 microM for glycolithocholic acid. All substrates, bile acids and steroids, are inhibited by the 5 beta-bile acid, 3-keto-5 beta-cholanoic acid. The data suggest that BAST I is the same protein as hydrosteroid sulfotransferase 2 (Marcus, C. J., et al. 1980. Anal. Biochem. 107: 296-304). PMID:2754334

  2. Design and characterization of an acid-activated antimicrobial peptide.

    PubMed

    Li, Lina; He, Jian; Eckert, Randal; Yarbrough, Daniel; Lux, Renate; Anderson, Maxwell; Shi, Wenyuan

    2010-01-01

    Dental caries is a microbial biofilm infection in which the metabolic activities of plaque bacteria result in a dramatic pH decrease and shift the demineralization/remineralization equilibrium on the tooth surface towards demineralization. In addition to causing a net loss in tooth minerals, creation of an acidic environment favors growth of acid-enduring and acid-generating species, which causes further reduction in the plaque pH. In this study, we developed a prototype antimicrobial peptide capable of achieving high activity exclusively at low environmental pH to target bacterial species like Streptococcus mutans that produce acid and thrive under the low pH conditions detrimental for tooth integrity. The features of clavanin A, a naturally occurring peptide rich in histidine and phenylalanine residues with pH-dependent antimicrobial activity, served as a design basis for these prototype 'acid-activated peptides' (AAPs). Employing the major cariogenic species S. mutans as a model system, the two AAPs characterized in this study exhibited a striking pH-dependent antimicrobial activity, which correlated well with the calculated charge distribution. This type of peptide represents a potential new way to combat dental caries. PMID:19878192

  3. Unconventional amino acid sequence of the sun anemone (Stoichactis helianthus) polypeptide neurotoxin

    SciTech Connect

    Kem, W.; Dunn, B.; Parten, B.; Pennington, M.; Price, D.

    1986-05-01

    A 5000 dalton polypeptide neurotoxin (Sh-NI) purified by G50 Sephadex, P-cellulose, and SP-Sephadex chromatography was homogeneous by isoelectric focusing. Sh-NI was highly toxic to crayfish (LD/sub 50/ 0.6 ..mu..g/kg) but without effect upon mice at 15,000 ..mu..g/kg (i.p. injection). The reduced, /sup 3/H-carboxymethylated toxin and its fragments were subjected to automatic Edman degradation and the resulting PTH-amino acids were identified by HPLC, back hydrolysis, and scintillation counting. Peptides resulting from proteolytic (clostripain, staphylococcal protease) and chemical (tryptophan) cleavage were sequenced. The sequence is: AACKCDDEGPDIRTAPLTGTVDLGSCNAGWEKCASYYTIIADCCRKKK. This sequence differs considerably from the homologous Anemonia and Anthopleura toxins; many of the identical residues (6 half-cystines, G9, P10, R13, G19, G29, W30) are probably critical for folding rather than receptor recognition. However, the Sh-NI sequence closely resembles Radioanthus macrodactylus neurotoxin III and r. paumotensis II. The authors propose that Sh-NI and related Radioanthus toxins act upon a different site on the sodium channel.

  4. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  5. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  6. Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Zhang, Bo; Prezhdo, Oleg

    2010-03-01

    We report an ab initio study of the interaction of two nucleobases, cytosine and adenine, with a novel graphene nanopore device for detecting the base sequence of a single-stranded nucleic acid (ssDNA or RNA). The nucleobases were inserted into a pore in a graphene nanoribbon, and the electrical current and conductance spectra were calculated as functions of voltage applied across the nanoribbon. The conductance spectra and charge densities were analyzed in the presence of each nucleobase in the graphene nanopore. The results indicate that, due to significant differences in the conductance spectra, the proposed device has adequate sensitivity to discriminate between different nucleotides. Moreover, we show that the nucleotide conductance spectra is not affected by its orientation inside the graphene nanopore. The proposed technique may be extremely useful for real applications in developing ultrafast, low cost DNA sequencing methods.

  7. Morphological tranformation of calcite crystal growth by prismatic "acidic" polypeptide sequences.

    SciTech Connect

    Kim, I; Giocondi, J L; Orme, C A; Collino, J; Evans, J S

    2007-02-13

    Many of the interesting mechanical and materials properties of the mollusk shell are thought to stem from the prismatic calcite crystal assemblies within this composite structure. It is now evident that proteins play a major role in the formation of these assemblies. Recently, a superfamily of 7 conserved prismatic layer-specific mollusk shell proteins, Asprich, were sequenced, and the 42 AA C-terminal sequence region of this protein superfamily was found to introduce surface voids or porosities on calcite crystals in vitro. Using AFM imaging techniques, we further investigate the effect that this 42 AA domain (Fragment-2) and its constituent subdomains, DEAD-17 and Acidic-2, have on the morphology and growth kinetics of calcite dislocation hillocks. We find that Fragment-2 adsorbs on terrace surfaces and pins acute steps, accelerates then decelerates the growth of obtuse steps, forms clusters and voids on terrace surfaces, and transforms calcite hillock morphology from a rhombohedral form to a rounded one. These results mirror yet are distinct from some of the earlier findings obtained for nacreous polypeptides. The subdomains Acidic-2 and DEAD-17 were found to accelerate then decelerate obtuse steps and induce oval rather than rounded hillock morphologies. Unlike DEAD-17, Acidic-2 does form clusters on terrace surfaces and exhibits stronger obtuse velocity inhibition effects than either DEAD-17 or Fragment-2. Interestingly, a 1:1 mixture of both subdomains induces an irregular polygonal morphology to hillocks, and exhibits the highest degree of acute step pinning and obtuse step velocity inhibition. This suggests that there is some interplay between subdomains within an intra (Fragment-2) or intermolecular (1:1 mixture) context, and sequence interplay phenomena may be employed by biomineralization proteins to exert net effects on crystal growth and morphology.

  8. Amino-terminal amino acid sequence of the major structural polypeptides of avian retroviruses: sequence homology between reticuloendotheliosis virus p30 and p30s of mammalian retroviruses.

    PubMed Central

    Hunter, E; Bhown, A S; Bennett, J C

    1978-01-01

    The major structural polypeptides, p30 of reticuloendotheliosis virus (REV) (strain T) and p27 of avian sarcoma virus B77, have been compared with regard to amino acid composition. NH2-terminal amino acid sequence, and immunological crossreactions. The amino acid composition of the two polypeptides is distinct, and a comparison of the first 30 NH2-terminal amino acids of REV p30 with that for the first 25 of B77 p27 yields only three homologous residues. In competition radioimmunoassays the polypeptides show no crossreactivity. A comparison of the amino acid composition and NH2-terminal amino acid sequence of REV p30 with those reported for several mammalian retrovirus p30s shows remarkable similarities. Both REV and mammalian p30s contain a large number of polar residues in their amino acid composition and show approximately 40% homology in the first 30 NH2-terminal amino acids. No crossreactivity could be observed, however, in competition radioimmunoassays between Rauscher murine leukemia virus p30 and that of REV. The observations reported here suggest a close evolutionary relationship between REV and the mammalian retroviruses. Images PMID:208072

  9. Purification and amino acid sequence of aminopeptidase P from pig kidney.

    PubMed

    Vergas Romero, C; Neudorfer, I; Mann, K; Schäfer, W

    1995-04-01

    Aminopeptidase P from kidney cortex was purified in high yield (recovery greater than or equal to 20%) by a series of column chromatographic steps after solubilization of the membrane-bound glycoprotein with n-butanol. A coupled enzymic assay, using Gly-Pro-Pro-NH-Nap as substrate and dipeptidyl-peptidase IV as auxilliary enzyme, was used to monitor the purification. The purification procedure yielded two forms of aminopeptidase P differing in their carbohydrate composition (glycoforms). Both enzyme preparations were homogeneous as assessed by SDS/PAGE silver staining, and isoelectric focusing. Both forms possessed the same substrate specificity, catalysed the same reaction, and consisted of identical protein chains. The amino acid sequence determined by Edman degradation and mass spectrometry consisted of 623 amino acids. Six N-glycosylation sites, all contained in the N-terminal half of the protein, were characterized. PMID:7744038

  10. Improving Students' Conceptual Understanding of a Specific Content Learning: A Designed Teaching Sequence

    ERIC Educational Resources Information Center

    Ahmad, N. J.; Lah, Y. Che

    2012-01-01

    The efficacy of a teaching sequence designed for a specific content of learning of electrochemistry is described in this paper. The design of the teaching draws upon theoretical insights into perspectives on learning and empirical studies to improve the teaching of this topic. A case study involving two classes, the experimental and baseline…

  11. Draft Genome Sequence of Cupriavidus sp. Strain SK-3, a 4-Chlorobiphenyl- and 4-Clorobenzoic Acid-Degrading Bacterium

    PubMed Central

    Vilo, Claudia; Benedik, Michael J.; Ilori, Matthew

    2014-01-01

    We report the draft genome sequence of Cupriavidus sp. strain SK-3, which can use 4-chlorobiphenyl and 4-clorobenzoic acid as the sole carbon source for growth. The draft genome sequence allowed the study of the polychlorinated biphenyl degradation mechanism and the recharacterization of the strain SK-3 as a Cupriavidus species. PMID:24994805

  12. Draft Genome Sequence of Bacillus subtilis subsp. natto Strain CGMCC 2108, a High Producer of Poly-γ-Glutamic Acid

    PubMed Central

    Tan, Siyuan; Su, Anping; Zhang, Chen; Ren, Yuanyuan

    2016-01-01

    Here, we report the 4.1-Mb draft genome sequence of Bacillus subtilis subsp. natto strain CGMCC 2108, a high producer of poly-γ-glutamic acid (γ-PGA). This sequence will provide further help for the biosynthesis of γ-PGA and will greatly facilitate research efforts in metabolic engineering of B. subtilis subsp. natto strain CGMCC 2108. PMID:27231363

  13. New monoclonal antibodies to the Ebola virus glycoprotein: Identification and analysis of the amino acid sequence of the variable domains.

    PubMed

    Panina, A A; Aliev, T K; Shemchukova, O B; Dement'yeva, I G; Varlamov, N E; Pozdnyakova, L P; Bokov, M N; Dolgikh, D A; Sveshnikov, P G; Kirpichnikov, M P

    2016-03-01

    We determined the nucleotide and amino acid sequences of variable domains of three new monoclonal antibodies to the glycoprotein of Ebola virus capsid. The framework and hypervariable regions of immunoglobulin heavy and light chains were identified. The primary structures were confirmed using massspectrometry analysis. Immunoglobulin database search showed the uniqueness of the sequences obtained. PMID:27193713

  14. Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis subsp. lactis TOMSC161, Isolated from a Nonscalded Curd Pressed Cheese

    PubMed Central

    Velly, H.; Abraham, A.-L.; Loux, V.; Delacroix-Buchet, A.; Fonseca, F.; Bouix, M.

    2014-01-01

    Lactococcus lactis is a lactic acid bacterium used in the production of many fermented foods, such as dairy products. Here, we report the genome sequence of L. lactis subsp. lactis TOMSC161, isolated from nonscalded curd pressed cheese. This genome sequence provides information in relation to dairy environment adaptation. PMID:25377704

  15. Draft Genome Sequence of Bacillus subtilis subsp. natto Strain CGMCC 2108, a High Producer of Poly-γ-Glutamic Acid.

    PubMed

    Tan, Siyuan; Meng, Yonghong; Su, Anping; Zhang, Chen; Ren, Yuanyuan

    2016-01-01

    Here, we report the 4.1-Mb draft genome sequence of Bacillus subtilis subsp. natto strain CGMCC 2108, a high producer of poly-γ-glutamic acid (γ-PGA). This sequence will provide further help for the biosynthesis of γ-PGA and will greatly facilitate research efforts in metabolic engineering of B. subtilis subsp. natto strain CGMCC 2108. PMID:27231363

  16. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  17. Draft Genome Sequences of Gluconobacter cerinus CECT 9110 and Gluconobacter japonicus CECT 8443, Acetic Acid Bacteria Isolated from Grape Must

    PubMed Central

    Sainz, Florencia

    2016-01-01

    We report here the draft genome sequences of Gluconobacter cerinus strain CECT9110 and Gluconobacter japonicus CECT8443, acetic acid bacteria isolated from grape must. Gluconobacter species are well known for their ability to oxidize sugar alcohols into the corresponding acids. Our objective was to select strains to oxidize effectively d-glucose. PMID:27365351

  18. Designing universal primers for the isolation of DNA sequences encoding Proanthocyanidins biosynthetic enzymes in Crataegus aronia

    PubMed Central

    2012-01-01

    Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984

  19. Design, synthesis and biological evaluation of novel betulinic acid derivatives

    PubMed Central

    2012-01-01

    Background Tumor, is one of the major reason for human death, due to its widespread occurrence. Betulinic acid derivatives have attracted considerable attention as cancer chemopreventive agents and also as cancer therapeutics. Many of its derivatives inhibit the growth of human cancer cell lines by triggering apoptosis. With this background, we planned to synthesize a series of betulinic acid derivatives to assess their antiproliferation efficacy on human cancer cell lines. Results A series of novel betulinic acid derivatives were designed and synthesized as highlighted by the preliminary antitumor evaluation against MGC-803, PC3, A375, Bcap-37 and A431 human cancer cell lines in vitro. The pharmacological results showed that some of the compounds displayed moderate to high levels of antitumor activities with most of new exhibiting higher inhibitory activities compared to BA. The IC50 values of compound 3c on the five cancer cell lines were 2.3, 4.6, 3.3, 3.6, and 4.3 μM, respectively. Subsequent fluorescence staining and flow cytometry analysis (FCM) indicated that compound 3c could induce apoptosis in MGC-803 and PC3 cell lines, and the apoptosis ratios reached the peak (37.38% and 33.74%) after 36 h of treatment at 10 μM. Conclusions This study suggests that most of betulinic acid derivatives could inhibit the growth of human cancer cell lines. Furthermore, compound 3c could induce apoptosis of cancer cells. PMID:23174002

  20. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Wu, Zhi-cheng; Wang, Pu; Lin, Wei-zhong

    2013-01-01

    Protein folding is the process by which a protein processes from its denatured state to its specific biologically active conformation. Understanding the relationship between sequences and the folding rates of proteins remains an important challenge. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. In this study, the long-range and short-range contact in protein were used to derive extended version of the pseudo amino acid composition based on sliding window method. This method is capable of predicting the protein folding rates just from the amino acid sequence without the aid of any structural class information. We systematically studied the contributions of individual features to folding rate prediction. The optimal feature selection procedures are adopted by means of combining the forward feature selection and sequential backward selection method. Using the jackknife cross validation test, the method was demonstrated on the large dataset. The predictor was achieved on the basis of multitudinous physicochemical features and statistical features from protein using nonlinear support vector machine (SVM) regression model, the method obtained an excellent agreement between predicted and experimentally observed folding rates of proteins. The correlation coefficient is 0.9313 and the standard error is 2.2692. The prediction server is freely available at http://www.jci-bioinfo.cn/swfrate/input.jsp. PMID:22933332

  1. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides.

    PubMed

    Blanco-Míguez, Aitor; Gutiérrez-Jácome, Alberto; Pérez-Pérez, Martín; Pérez-Rodríguez, Gael; Catalán-García, Sandra; Fdez-Riverola, Florentino; Lourenço, Anália; Sánchez, Borja

    2016-06-01

    Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as "antiproliferative," "antitumoral," or "apoptosis" among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed. PMID:27010507

  2. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    PubMed

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts. PMID:18752624

  3. Peptides Composed of Alternating L- and D-Amino Acids Inhibit Amyloidogenesis in Three Distinct Amyloid Systems Independent of Sequence.

    PubMed

    Kellock, Jackson; Hopping, Gene; Caughey, Byron; Daggett, Valerie

    2016-06-01

    There is now substantial evidence that soluble oligomers are primary toxic agents in amyloid diseases. The development of an antibody recognizing the toxic soluble oligomeric forms of different and unrelated amyloid species suggests a common conformational intermediate during amyloidogenesis. We previously observed a common occurrence of a novel secondary structure element, which we call α-sheet, in molecular dynamics (MD) simulations of various amyloidogenic proteins, and we hypothesized that the toxic conformer is composed of α-sheet structure. As such, α-sheet may represent a conformational signature of the misfolded intermediates of amyloidogenesis and a potential unique binding target for peptide inhibitors. Recently, we reported the design and characterization of a novel hairpin peptide (α1 or AP90) that adopts stable α-sheet structure and inhibits the aggregation of the β-Amyloid Peptide Aβ42 and transthyretin. AP90 is a 23-residue hairpin peptide featuring alternating D- and L-amino acids with favorable conformational propensities for α-sheet formation, and a designed turn. For this study, we reverse engineered AP90 to identify which of its design features is most responsible for conferring α-sheet stability and inhibitory activity. We present experimental characterization (CD and FTIR) of seven peptides designed to accomplish this. In addition, we measured their ability to inhibit aggregation in three unrelated amyloid species: Aβ42, transthyretin, and human islet amylin polypeptide. We found that a hairpin peptide featuring alternating L- and D-amino acids, independent of sequence, is sufficient for conferring α-sheet structure and inhibition of aggregation. Additionally, we show a correlation between α-sheet structural stability and inhibitory activity. PMID:27012425

  4. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C. sticklandii genome and

  5. Study design requirements for RNA sequencing-based breast cancer diagnostics

    PubMed Central

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-01-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic. PMID:26830453

  6. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    PubMed

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-01-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic. PMID:26830453

  7. Complete amino acid sequence of the myoglobin from the Pacific spotted dolphin, Stenella attenuata graffmani.

    PubMed

    Jones, B N; Wang, C C; Dwulet, F E; Lehman, L D; Meuth, J L; Bogardt, R A; Gurd, F R

    1979-04-25

    The complete amino acid sequence of the major component myoglobin from the Pacific spotted dolphin, Stenella attenuata graffmani, was determined by the automated Edman degradation of several large peptides obtained by specific cleavage of the protein. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. By subjecting four of these peptides and the apomyoglobin to automated Edman degradation, over 80% of the primary structure of the protein was obtained. The remainder of the covalent structure was determined by the sequence analysis of peptides that resulted from further digestion of the central cyanogen bromide fragment. This fragment was cleaved at its glutamyl residues with staphylococcal protease and its lysyl residues with trypsin. The action of trypsin was restricted to the lysyl residues by chemical modification of the single arginyl residue of the fragment with 1,2-cyclohexanedione. The primary structure of this myoglobin proved to be identical with that from the Atlantic bottlenosed dolphin and Pacific common dolphin but differs from the myoglobins of the killer whale and pilot whale at two positions. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea. PMID:454657

  8. Isolation and amino acid sequences of squirrel monkey (Saimiri sciurea) insulin and glucagon.

    PubMed Central

    Yu, J H; Eng, J; Yalow, R S

    1990-01-01

    It was reported two decades ago that insulin was not detectable in the glucose-stimulated state in Saimiri sciurea, the New World squirrel monkey, by a radioimmunoassay system developed with guinea pig anti-pork insulin antibody and labeled pork insulin. With the same system, reasonable levels were observed in rhesus monkeys and chimpanzees. This suggested that New World monkeys, like the New World hystricomorph rodents such as the guinea pig and the coypu, might have insulins whose sequences differ markedly from those of Old World mammals. In this report we describe the purification and amino acid sequences of squirrel monkey insulin and glucagon. We demonstrate that the substitutions at B29, B27, A2, A4, and A17 of squirrel monkey insulin are identical with those previously found in another New World primate, the owl monkey (Aotus trivirgatus). The immunologic cross-reactivity of this insulin in our immunoassay system is only a few percent of that of human insulin. Squirrel monkey glucagon is identical with the usual glucagon found in Old World mammals, which predicts that the glucagons of other New World monkeys would not differ from the usual Old World mammalian glucagon. It appears that the peptides of the New World monkeys have diverged less from those of the Old World mammals than have those of the New World hystricomorph rodents. The striking improvements in peptide purification and sequencing have the potential for adding new information concerning the evolutionary divergence of species. PMID:2263627

  9. Isolation and amino acid sequences of squirrel monkey (Saimiri sciurea) insulin and glucagon

    SciTech Connect

    Yu, Jinghua ); Eng, J.; Yalow, R.S. City Univ. of New York, NY )

    1990-12-01

    It was reported two decades ago that insulin was not detectable in the glucose-stimulated state in Saimiri sciurea, the New World squirrel monkey, by a radioimmunoassay system developed with guinea pig anti-pork insulin antibody and labeled park insulin. With the same system, reasonable levels were observed in rhesus monkeys and chimpanzees. This suggested that New World monkeys, like the New World hystricomorph rodents such as the guinea pig and the coypu, might have insulins whose sequences differ markedly from those of Old World mammals. In this report the authors describe the purification and amino acid sequences of squirrel monkey insulin and glucagon. They demonstrate that the substitutions at B29, B27, A2, A4, and A17 of squirrel monkey insulin are identical with those previously found in another New World primate, the owl monkey (Aotus trivirgatus). The immunologic cross-reactivity of this insulin in their immunoassay system is only a few percent of that of human insulin. It appears that the peptides of the New World monkeys have diverged less from those of the Old World mammals than have those of the New World hystricomorph rodents. The striking improvements in peptide purification and sequencing have the potential for adding new information concerning the evolutionary divergence of species.

  10. Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models

    PubMed Central

    Maaskola, Jonas; Rajewsky, Nikolaus

    2014-01-01

    We present a discriminative learning method for pattern discovery of binding sites in nucleic acid sequences based on hidden Markov models. Sets of positive and negative example sequences are mined for sequence motifs whose occurrence frequency varies between the sets. The method offers several objective functions, but we concentrate on mutual information of condition and motif occurrence. We perform a systematic comparison of our method and numerous published motif-finding tools. Our method achieves the highest motif discovery performance, while being faster than most published methods. We present case studies of data from various technologies, including ChIP-Seq, RIP-Chip and PAR-CLIP, of embryonic stem cell transcription factors and of RNA-binding proteins, demonstrating practicality and utility of the method. For the alternative splicing factor RBM10, our analysis finds motifs known to be splicing-relevant. The motif discovery method is implemented in the free software package Discrover. It is applicable to genome- and transcriptome-scale data, makes use of available repeat experiments and aside from binary contrasts also more complex data configurations can be utilized. PMID:25389269

  11. Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium.

    PubMed

    Matsubara, K; Ohnishi, K; Kiritani, K

    1992-07-01

    A 7.6-kb fragment of Salmonella typhimurium LT2 containing the liv gene cluster, which specifies the high-affinity branched-chain amino acid transport system (LIV-I), has been isolated. The upstream region contains the livB and livC genes encoding the leucine-isoleucine-valine-threonine and leucine-specific binding proteins, respectively. In this study, the nucleotide sequence of the 4-kb downstream segment was determined and found to contain four reading frames, designated as livA, livE, livF, and livG, that encode putative membrane-associated proteins. The livA and livE genes encode hydrophobic proteins composed of 308 and 425 amino acid residues, respectively. The livF and livG genes encode hydrophilic proteins of 255 and 237 amino acids, respectively; both the proteins contain consensus amino acid sequences found in proteins with ATP-binding sites. These four genes linked together have a potential rho-independent transcriptional terminator adjacent to the 3'-end of livG. No promoter sequence was found in the immediate upstream region of the livAEFG cluster. The livA, livE, livF, and livG gene products were identified as proteins with apparent M(r)s of 25,500, 34,500, 28,000, and 26,000, respectively, by SDS-polyacryl-amide gel electrophoresis. The deduced amino acid sequences of these four proteins showed strong homology to those of the corresponding membrane-associated proteins required for the high-affinity branched-chain amino acid transport systems from both Escherichia coli and Pseudomonas aeruginosa. PMID:1429514

  12. Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures.

    PubMed Central

    Gerbl-Rieger, S; Peters, J; Kellermann, J; Lottspeich, F; Baumeister, W

    1991-01-01

    The DNA sequence of the gene which codes for the major outer membrane porin (Omp32) of Comamonas acidovorans has been determined. The structural gene encodes a precursor consisting of 351 amino acid residues with a signal peptide of 19 amino acid residues. Comparisons with amino acid sequences of outer membrane proteins and porins from several other members of the class Proteobacteria and of the Chlamydia trachomatis porin and the Neurospora crassa mitochondrial porin revealed a motif of eight regions of local homology. The results of this analysis are discussed with regard to common structural features of porins. PMID:1848840

  13. Sequence-specific nucleic acid mobility using a reversible block copolymer gel matrix and DNA amphiphiles (lipid-DNA) in capillary and microfluidic electrophoretic separations.

    PubMed

    Wagler, Patrick; Minero, Gabriel Antonio S; Tangen, Uwe; de Vries, Jan Willem; Prusty, Deepak; Kwak, Minseok; Herrmann, Andreas; McCaskill, John S

    2015-10-01

    Reversible noncovalent but sequence-dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite-modified oligonucleotides has enabled sequence-specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self-assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid-DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence-dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information-processing systems. PMID:26095642

  14. Amino acid sequence analysis and characterization of a ribonuclease from starfish Asterias amurensis.

    PubMed

    Motoyoshi, Naomi; Kobayashi, Hiroko; Itagaki, Tadashi; Inokuchi, Norio

    2016-09-01

    The aim of this study was to phylogenetically characterize the location of the RNase T2 enzyme in the starfish (Asterias amurensis). We isolated an RNase T2 ribonuclease (RNase Aa) from the ovaries of starfish and determined its amino acid sequence by protein chemistry and cloning cDNA encoding RNase Aa. The isolated protein had 231 amino acid residues, a predicted molecular mass of 25,906 Da, and an optimal pH of 5.0. RNase Aa preferentially released guanylic acid from the RNA. The catalytic sites of the RNase T2 family are conserved in RNase Aa; furthermore, the distribution of the cysteine residues in RNase Aa is similar to that in other animal and plant T2 RNases. RNase Aa is cleaved at two points: 21 residues from the N-terminus and 29 residues from the C-terminus; however, both fragments may remain attached to the protein via disulfide bridges, leading to the maintenance of its conformation, as suggested by circular dichroism spectrum analysis. The phylogenetic analysis revealed that starfish RNase Aa is evolutionarily an intermediate between protozoan and oyster RNases. PMID:26920046

  15. incaRNAfbinv: a web server for the fragment-based design of RNA sequences.

    PubMed

    Drory Retwitzer, Matan; Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme; Barash, Danny

    2016-07-01

    In recent years, new methods for computational RNA design have been developed and applied to various problems in synthetic biology and nanotechnology. Lately, there is considerable interest in incorporating essential biological information when solving the inverse RNA folding problem. Correspondingly, RNAfbinv aims at including biologically meaningful constraints and is the only program to-date that performs a fragment-based design of RNA sequences. In doing so it allows the design of sequences that do not necessarily exactly fold into the target, as long as the overall coarse-grained tree graph shape is preserved. Augmented by the weighted sampling algorithm of incaRNAtion, our web server called incaRNAfbinv implements the method devised in RNAfbinv and offers an interactive environment for the inverse folding of RNA using a fragment-based design approach. It takes as input: a target RNA secondary structure; optional sequence and motif constraints; optional target minimum free energy, neutrality and GC content. In addition to the design of synthetic regulatory sequences, it can be used as a pre-processing step for the detection of novel natural occurring RNAs. The two complementary methodologies RNAfbinv and incaRNAtion are merged together and fully implemented in our web server incaRNAfbinv, available at http://www.cs.bgu.ac.il/incaRNAfbinv. PMID:27185893

  16. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software

    PubMed Central

    Nakano, Shogo; Asano, Yasuhisa

    2015-01-01

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs. PMID:25645341

  17. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software.

    PubMed

    Nakano, Shogo; Asano, Yasuhisa

    2015-01-01

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs. PMID:25645341

  18. Protein evolution analysis of S-hydroxynitrile lyase by complete sequence design utilizing the INTMSAlign software

    NASA Astrophysics Data System (ADS)

    Nakano, Shogo; Asano, Yasuhisa

    2015-02-01

    Development of software and methods for design of complete sequences of functional proteins could contribute to studies of protein engineering and protein evolution. To this end, we developed the INTMSAlign software, and used it to design functional proteins and evaluate their usefulness. The software could assign both consensus and correlation residues of target proteins. We generated three protein sequences with S-selective hydroxynitrile lyase (S-HNL) activity, which we call designed S-HNLs; these proteins folded as efficiently as the native S-HNL. Sequence and biochemical analysis of the designed S-HNLs suggested that accumulation of neutral mutations occurs during the process of S-HNLs evolution from a low-activity form to a high-activity (native) form. Taken together, our results demonstrate that our software and the associated methods could be applied not only to design of complete sequences, but also to predictions of protein evolution, especially within families such as esterases and S-HNLs.

  19. Design assembly of an inexpensive, automated microbore amino acid analyzer: separation and quantitation of amino acids in physiological fluids.

    PubMed

    Beecher, G R

    1978-01-01

    An amino acid analyzer capable of separating and quantitating 0.5 to 20 n moles of each ninhydrin-positive compound in physiological fluids has been designed and assembled from commercially available components. The buffer sequence, column temperature change and sample application are controlled by an automatic programmer constructed from a series of timers. The liquid delivery protion of the instrument consists of a series of polystyrene and stainless steel chambers pressurized with argon and connected through valves and manifolds to conventional positive displacement pumps. The column is highly polished stainless steel tubing (0.21-cm ID) packed with 9-mu cation exchange resin. Micro colorimeters, equipped with appropriate interference filters and small-volume (2-8 mu 1) flow cells, are used as detectors. The sample loader is a dual 20-port automatic valve containing 25-mu1 sample loops. Small-bore teflon tubing (32 AWG), interconnected with tubing adapters and connectors, is used for buffer lines and reaction coil (100 degree C); ninhydrin lines are 1/16-inch stainless steel tubing. Separation of 42 ninhydrin positive compounds, including column equilibration, is accomplished in 5 hours. Procedures for the extraction of amino acids from physiological fluids and tissues as well as the preliminary clean-up of these extracts are also described. PMID:727032

  20. Direct formic acid microfluidic fuel cell design and performance evolution

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  1. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    PubMed Central

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  2. Full Genome Virus Detection in Fecal Samples Using Sensitive Nucleic Acid Preparation, Deep Sequencing, and a Novel Iterative Sequence Classification Algorithm

    PubMed Central

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J.; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis. PMID:24695106

  3. Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1983-01-01

    Prokaryotic and eukaryotic evolutionary trees are developed from protein and nucleic-acid sequences by the methods of numerical taxonomy. Trees are presented for bacterial ferredoxins, 5S ribosomal RNA, c-type cytochromes , cytochromes c2 and c', and 5.8S ribosomal RNA; the implications for early evolution are discussed; and a composite tree showing the branching of the anaerobes, aerobes, archaebacteria, and eukaryotes is shown. Single lines are found for all oxygen-evolving photosynthetic forms and for the salt-loving and high-temperature forms of archaebacteria. It is argued that the eukaryote mitochondria, chloroplasts, and cytoplasmic host material are descended from free-living prokaryotes that formed symbiotic associations, with more than one symbiotic event involved in the evolution of each organelle.

  4. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro

    PubMed Central

    Shimo, Takenori; Tachibana, Keisuke; Saito, Kiwamu; Yoshida, Tokuyuki; Tomita, Erisa; Waki, Reiko; Yamamoto, Tsuyoshi; Doi, Takefumi; Inoue, Takao; Kawakami, Junji; Obika, Satoshi

    2014-01-01

    Antisense-mediated modulation of pre-mRNA splicing is an attractive therapeutic strategy for genetic diseases. Currently, there are few examples of modulation of pre-mRNA splicing using locked nucleic acid (LNA) antisense oligonucleotides, and, in particular, no systematic study has addressed the optimal design of LNA-based splice-switching oligonucleotides (LNA SSOs). Here, we designed a series of LNA SSOs complementary to the human dystrophin exon 58 sequence and evaluated their ability to induce exon skipping in vitro using reverse transcription-polymerase chain reaction. We demonstrated that the number of LNAs in the SSO sequence and the melting temperature of the SSOs play important roles in inducing exon skipping and seem to be key factors for designing efficient LNA SSOs. LNA SSO length was an important determinant of activity: a 13-mer with six LNA modifications had the highest efficacy, and a 7-mer was the minimal length required to induce exon skipping. Evaluation of exon skipping activity using mismatched LNA/DNA mixmers revealed that 9-mer LNA SSO allowed a better mismatch discrimination. LNA SSOs also induced exon skipping of endogenous human dystrophin in primary human skeletal muscle cells. Taken together, our findings indicate that LNA SSOs are powerful tools for modulating pre-mRNA splicing. PMID:24935206

  5. Rationale-Based, De Novo Design of Dehydrophenylalanine-Containing Antibiotic Peptides and Systematic Modification in Sequence for Enhanced Potency▿

    PubMed Central

    Pathak, Sarika; Chauhan, Virander Singh

    2011-01-01

    Increased microbial drug resistance has generated a global requirement for new anti-infective agents. As part of an effort to develop new, low-molecular-mass peptide antibiotics, we used a rationale-based minimalist approach to design short, nonhemolytic, potent, and broad-spectrum antibiotic peptides with increased serum stability. These peptides were designed to attain an amphipathic structure in helical conformations. VS1 was used as the lead compound, and its properties were compared with three series of derivates obtained by (i) N-terminal amino acid addition, (ii) systematic Trp substitution, and (iii) peptide dendrimerization. The Trp substitution approach underlined the optimized sequence of VS2 in terms of potency, faster membrane permeation, and cost-effectiveness. VS2 (a variant of VS1 with two Trp substitutions) was found to exhibit good antimicrobial activity against both the Gram-negative Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. It was also found to have noncytolytic activity and the ability to permeate and depolarize the bacterial membrane. Lysis of the bacterial cell wall and inner membrane by the peptide was confirmed by transmission electron microscopy. A combination of small size, the presence of unnatural amino acids, high antimicrobial activity, insignificant hemolysis, and proteolytic resistance provides fundamental information for the de novo design of an antimicrobial peptide useful for the management of infectious disease. PMID:21321136

  6. The amino acid alphabet and the architecture of the protein sequence-structure map. I. Binary alphabets.

    PubMed

    Ferrada, Evandro

    2014-12-01

    The correspondence between protein sequences and structures, or sequence-structure map, relates to fundamental aspects of structural, evolutionary and synthetic biology. The specifics of the mapping, such as the fraction of accessible sequences and structures, or the sequences' ability to fold fast, are dictated by the type of interactions between the monomers that compose the sequences. The set of possible interactions between monomers is encapsulated by the potential energy function. In this study, I explore the impact of the relative forces of the potential on the architecture of the sequence-structure map. My observations rely on simple exact models of proteins and random samples of the space of potential energy functions of binary alphabets. I adopt a graph perspective and study the distribution of viable sequences and the structures they produce, as networks of sequences connected by point mutations. I observe that the relative proportion of attractive, neutral and repulsive forces defines types of potentials, that induce sequence-structure maps of vastly different architectures. I characterize the properties underlying these differences and relate them to the structure of the potential. Among these properties are the expected number and relative distribution of sequences associated to specific structures and the diversity of structures as a function of sequence divergence. I study the types of binary potentials observed in natural amino acids and show that there is a strong bias towards only some types of potentials, a bias that seems to characterize the folding code of natural proteins. I discuss implications of these observations for the architecture of the sequence-structure map of natural proteins, the construction of random libraries of peptides, and the early evolution of the natural amino acid alphabet. PMID:25473967

  7. The Amino Acid Alphabet and the Architecture of the Protein Sequence-Structure Map. I. Binary Alphabets

    PubMed Central

    Ferrada, Evandro

    2014-01-01

    The correspondence between protein sequences and structures, or sequence-structure map, relates to fundamental aspects of structural, evolutionary and synthetic biology. The specifics of the mapping, such as the fraction of accessible sequences and structures, or the sequences' ability to fold fast, are dictated by the type of interactions between the monomers that compose the sequences. The set of possible interactions between monomers is encapsulated by the potential energy function. In this study, I explore the impact of the relative forces of the potential on the architecture of the sequence-structure map. My observations rely on simple exact models of proteins and random samples of the space of potential energy functions of binary alphabets. I adopt a graph perspective and study the distribution of viable sequences and the structures they produce, as networks of sequences connected by point mutations. I observe that the relative proportion of attractive, neutral and repulsive forces defines types of potentials, that induce sequence-structure maps of vastly different architectures. I characterize the properties underlying these differences and relate them to the structure of the potential. Among these properties are the expected number and relative distribution of sequences associated to specific structures and the diversity of structures as a function of sequence divergence. I study the types of binary potentials observed in natural amino acids and show that there is a strong bias towards only some types of potentials, a bias that seems to characterize the folding code of natural proteins. I discuss implications of these observations for the architecture of the sequence-structure map of natural proteins, the construction of random libraries of peptides, and the early evolution of the natural amino acid alphabet. PMID:25473967

  8. Trypsin inhibitors from ridged gourd (Luffa acutangula Linn.) seeds: purification, properties, and amino acid sequences.

    PubMed

    Haldar, U C; Saha, S K; Beavis, R C; Sinha, N K

    1996-02-01

    Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is at pH 4.55 for LA-1 and at pH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 A. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0 x 10(9) M-1 sec-1 for LA-1 and 0.8 x 10(9) M-1 sec-1 for LA-2 and that of K2HPO4 quenching is 1.6 x 10(11) M-1 sec-1 for LA-1 and 1.2 x 10(11) M-1 sec-1 for LA-2. Analysis of the circular dichroic spectra yields 40% alpha-helix and 60% beta-turn for La-1 and 45% alpha-helix and 55% beta-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzyme-inhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors. PMID:8924202

  9. Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization

    PubMed Central

    Wang, Jingjing; Morabito, Kenneth; Tang, Jay X.; Tripathi, Anubhav

    2013-01-01

    The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein. PMID:24404041

  10. Characterization of N-glycosylation and amino acid sequence features of immunoglobulins from swine.

    PubMed

    Lopez, Paul G; Girard, Lauren; Buist, Marjorie; de Oliveira, Andrey Giovanni Gomes; Bodnar, Edward; Salama, Apolline; Soulillou, Jean-Paul; Perreault, Hélène

    2016-02-01

    The primary goal of this study was to develop a method to study the N-glycosylation of IgG from swine in order to detect epitopes containing N-glycolylneuraminic acid (Neu5Gc) and/or terminal galactose residues linked in α1-3 susceptible to cause xenograft-related problems. Samples of immunoglobulin were isolated from porcine serum using protein-A affinity chromatography. The eluate was then separated on electrophoretic gel, and bands corresponding to the N-glycosylated heavy chains were cut off the gel and subjected to tryptic digestion. Peptides and glycopeptides were separated by reversed phase liquid chromatography and fractions were collected for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) analysis. Overall no α1-3 galactose was detected, as demonstrated by complete susceptibility of terminal galactose residues to β-galactosidase digestion. Neu5Gc was detected on singly sialylated structures. Two major N-glycopeptides were found, EEQFNSTYR and EAQFNSTYR as determined by tandem MS (MS/MS), as previously reported by Butler et al. (Immunogenetics, 61, 2009, 209-230), who found 11 subclasses for porcine IgG. Out of the 11, ten include the sequence corresponding to EEQFNSTYR, and only one codes for EAQFNSTYR. In this study, glycosylation patterns associated with both chains were slightly different, in that EEQFNSTYR had a higher content of galactose. The last step of this study consisted of peptide-mapping the 11 reported porcine IgG sequences. Although there was considerable overlap, at least one unique tryptic peptide was found per IgG sequence. The workflow presented in this manuscript constitutes the first study to use MALDI-TOF-MS in the investigation of porcine IgG structural features. PMID:26586247

  11. Human Retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences: I--II; III--V

    SciTech Connect

    Myers, G.; Korber, B.; Wain-Hobson, S.; Smith, R.F.; Pavlakis, G.N.

    1993-12-31

    This compendium and the accompanying floppy diskettes are the result of an effort to compile and rapidly publish all relevant molecular data concerning the human immunodeficiency viruses (HIV) and related retroviruses. The scope of the compendium and database is best summarized by the five parts that it comprises: (I) HIV and SIV Nucleotide Sequences; (II) Amino Acid Sequences; (III) Analyses; (IV) Related Sequences; and (V) Database Communications. Information within all the parts is updated at least twice in each year, which accounts for the modes of binding and pagination in the compendium.

  12. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.

    PubMed

    Wen, Junlin; Chen, Junhua; Zhuang, Li; Zhou, Shungui

    2016-05-15

    The detection of nucleic acid sequences is of great importance in a variety of fields. An ultrasensitive DNA sensing platform is constructed using elaborately designed diblock hairpin probes (DHPs) that are composed of hairpin and poly-adenine blocks. The introduction of an initiator DNA target triggers the catalytic assembly of probes DHP1, DHP2 and DHP3 to fabricate numerous poly-adenine-tailed branched DNA junctions, which significantly amplify the signal of the target-DNA-recognizing event without any enzyme. Coupled to a gold nanoparticle-based colorimetric assay, the amplified recognition signal can be quantitatively detected or visually read with the naked eye. The combination of the high-efficiency target-catalyzed DHP assembly and sensitive gold-based colorimetric assay offers an ultrasensitive detection of DNA with a detection limit of 0.1 pM and a dynamic range from 0.01 to 5 pM. The proposed sensing platform can discriminate even single-base mutations. Moreover, the sensing platform can be expanded to detect pollutant-degrading-bacteria-specific DNA sequences. The proposed sensing system should offer an alternative approach for the detection of nucleic acids in the fields of microbiology, biogeochemistry, and environmental sciences. PMID:26765529

  13. Bacterial community compositions in sediment polluted by perfluoroalkyl acids (PFAAs) using Illumina high-throughput sequencing.

    PubMed

    Sun, Yajun; Wang, Tieyu; Peng, Xiawei; Wang, Pei; Lu, Yonglong

    2016-06-01

    The characterization of bacterial community compositions and the change in perfluoroalkyl acids (PFAAs) along a natural river distribution system were explored in the present study. Illumina high-throughput sequencing was used to explore bacterial community diversity and structure in sediment polluted by PFAAs from the Xiaoqing River, the area with concentrated fluorochemical facilities in China. The concentration of PFAAs was in the range of 8.44-465.60 ng/g dry weight (dw) in sediment. Perfluorooctanoic acid (PFOA) was the dominant PFAA in all samples, which accounted for 94.2 % of total PFAAs. High-level PFOA could lead to an obvious increase in relative abundance of Proteobacteria, ε-Proteobacteria, Thiobacillus, and Sulfurimonas and the decrease in relative abundance of other bacteria. Redundancy analysis revealed that PFOA played an important role in the formation of bacterial community, and PFOA at higher concentration could reduce the diversity of bacterial community. When the concentration of PFOA was below 100 ng/g dw in sediment, no significant effect on microbial community structure was observed. Thiobacillus and Sulfurimonas were positively correlated with the concentration of PFOA, suggesting that both genera were resistant to PFOA contamination. PMID:26780047

  14. Mass spectrometric detection of the amino acid sequence polymorphism of the hepatitis C virus antigen.

    PubMed

    Kaysheva, A L; Ivanov, Yu D; Frantsuzov, P A; Krohin, N V; Pavlova, T I; Uchaikin, V F; Konev, V А; Kovalev, O B; Ziborov, V S; Archakov, A I

    2016-03-01

    A method for detection and identification of the hepatitis C virus antigen (HCVcoreAg) in human serum with consideration for possible amino acid substitutions is proposed. The method is based on a combination of biospecific capturing and concentrating of the target protein on the surface of the chip for atomic force microscope (AFM chip) with subsequent protein identification by tandem mass spectrometric (MS/MS) analysis. Biospecific AFM-capturing of viral particles containing HCVcoreAg from serum samples was performed by use of AFM chips with monoclonal antibodies (anti-HCVcore) covalently immobilized on the surface. Biospecific complexes were registered and counted by AFM. Further MS/MS analysis allowed to reliably identify the HCVcoreAg in the complexes formed on the AFM chip surface. Analysis of MS/MS spectra, with the account taken of the possible polymorphisms in the amino acid sequence of the HCVcoreAg, enabled us to increase the number of identified peptides. PMID:26773170

  15. Peptide sequencing by using a combination of partial acid hydrolysis and fast-atom-bombardment mass spectrometry.

    PubMed Central

    De Angelis, F; Botta, M; Ceccarelli, S; Nicoletti, R

    1986-01-01

    To overcome the limit of the intensity of ions carrying sequence information in structural determinations of peptides by fast-atom-bombardment m.s., we have developed a method that consists in taking spectra of the peptide acid hydrolysates at different hydrolysis times. Peaks correspond to the oligomers arising from the peptide partial hydrolysis. The sequence can then be identified from the structurally overlapping fragments. PMID:2428356

  16. Construction of a rationally designed antibody platform for sequencing-assisted selection.

    PubMed

    Larman, H Benjamin; Xu, George Jing; Pavlova, Natalya N; Elledge, Stephen J

    2012-11-01

    Antibody discovery platforms have become an important source of both therapeutic biomolecules and research reagents. Massively parallel DNA sequencing can be used to assist antibody selection by comprehensively monitoring libraries during selection, thus greatly expanding the power of these systems. We have therefore constructed a rationally designed, fully defined single-chain variable fragment (scFv) library and analysis platform optimized for analysis with short-read deep sequencing. Sequence-defined oligonucleotide libraries encoding three complementarity-determining regions (L3 from the light chain, H2 and H3 from the heavy chain) were synthesized on a programmable microarray and combinatorially cloned into a single scFv framework for molecular display. Our unique complementarity-determining region sequence design optimizes for protein binding by utilizing a hidden Markov model that was trained on all antibody-antigen cocrystal structures in the Protein Data Bank. The resultant ~10(12)-member library was produced in ribosome-display format, and comprehensively analyzed over four rounds of antigen selections by multiplex paired-end Illumina sequencing. The hidden Markov model scFv library generated multiple binders against an emerging cancer antigen and is the basis for a next-generation antibody production platform. PMID:23064642

  17. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences

    PubMed Central

    Scholes, Clarissa; Wunderlich, Zeba; DePace, Angela H.

    2016-01-01

    DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/. PMID:26987123

  18. Canine preprorelaxin: nucleic acid sequence and localization within the canine placenta.

    PubMed

    Klonisch, T; Hombach-Klonisch, S; Froehlich, C; Kauffold, J; Steger, K; Steinetz, B G; Fischer, B

    1999-03-01

    Employing uteroplacental tissue at Day 35 of gestation, we determined the nucleic acid sequence of canine preprorelaxin using reverse transcription- and rapid amplification of cDNA ends-polymerase chain reaction. Canine preprorelaxin cDNA consisted of 534 base pairs encoding a protein of 177 amino acids with a signal peptide of 25 amino acids (aa), a B domain of 35 aa, a C domain of 93 aa, and an A domain of 24 aa. The putative receptor binding region in the N'-terminal part of the canine relaxin B domain GRDYVR contained two substitutions from the classical motif (E-->D and L-->Y). Canine preprorelaxin shared highest homology with porcine and equine preprorelaxin. Northern analysis revealed a 1-kilobase transcript present in total RNA of canine uteroplacental tissue but not of kidney tissue. Uteroplacental tissue from two bitches each at Days 30 and 35 of gestation were studied by in situ hybridization to localize relaxin mRNA. Immunohistochemistry for relaxin, cytokeratin, vimentin, and von Willebrand factor was performed on uteroplacental tissue at Day 30 of gestation. The basal cell layer at the core of the chorionic villi was devoid of relaxin mRNA and immunoreactive relaxin or vimentin but was immunopositive for cytokeratin and identified as cytotrophoblast cells. The cell layer surrounding the chorionic villi displayed specific hybridization signals for relaxin mRNA and immunoreactivity for relaxin and cytokeratin but not for vimentin, and was identified as syncytiotrophoblast. Those areas of the chorioallantoic tissue with most intense relaxin immunoreactivity were highly vascularized as demonstrated by immunoreactive von Willebrand factor expressed on vascular endothelium. The uterine glands and nonplacental uterine areas of the canine zonary girdle placenta were devoid of relaxin mRNA and relaxin. We conclude that the syncytiotrophoblast is the source of relaxin in the canine placenta. PMID:10026098

  19. Purification and partial amino acid sequence of the chloroplast cytochrome b-559.

    PubMed

    Widger, W R; Cramer, W A; Hermodson, M; Meyer, D; Gullifor, M

    1984-03-25

    The hydrophobic cytochrome b-559, purified from unstacked, ethanol-washed spinach thylakoid membranes, using extraction with 2% Triton X-100 in 4 M urea and three chromatographic steps in the presence of protease inhibitors, has a dominant band on sodium dodecyl sulfate-urea gels corresponding to Mr = 10,000. The yield of this preparation is 30-50% (5-10 mg) starting with 600 mg of chlorophyll. The heme content yields a calculated molecular weight of no more than 17,500/heme, and perhaps somewhat smaller after correction for impurities. The Mr = 10,000 band is stained by the tetramethylbenzidine-H2O2 heme reagent on lithium dodecyl sulfate gels run at 0 degrees C. The Mr = 10,000 protein, further separated by high performance liquid chromatography, contains a unique NH2 terminus that is not blocked, and the amino acid sequence for the first 27 residues is NH2-Ser-Gly-Ser-Thr-Gly-Glu-Arg-Ser-Phe-Ala-Asp-Ile-Ile-Thr-Ser-Ile-Arg-Tyr-Trp -Val-Ile-X-Ser-Ile-Thr-Ile-Pro. . . COOH. Approximately 55% of the amino acids are hydrophobic, based on amino acid analysis of the Mr = 10,000 peptide, which also indicated the presence of at least one histidine. Only one cytochrome b-559 component could be identified, whose yield indicated that it arises from a single b-559 protein in chloroplasts corresponding to the in situ high potential cytochrome of the chloroplast photosystem II. PMID:6706983

  20. Sequence-Specific Electrical Purification of Nucleic Acids with Nanoporous Gold Electrodes.

    PubMed

    Daggumati, Pallavi; Appelt, Sandra; Matharu, Zimple; Marco, Maria L; Seker, Erkin

    2016-06-22

    Nucleic-acid-based biosensors have enabled rapid and sensitive detection of pathogenic targets; however, these devices often require purified nucleic acids for analysis since the constituents of complex biological fluids adversely affect sensor performance. This purification step is typically performed outside the device, thereby increasing sample-to-answer time and introducing contaminants. We report a novel approach using a multifunctional matrix, nanoporous gold (np-Au), which enables both detection of specific target sequences in a complex biological sample and their subsequent purification. The np-Au electrodes modified with 26-mer DNA probes (via thiol-gold chemistry) enabled sensitive detection and capture of complementary DNA targets in the presence of complex media (fetal bovine serum) and other interfering DNA fragments in the range of 50-1500 base pairs. Upon capture, the noncomplementary DNA fragments and serum constituents of varying sizes were washed away. Finally, the surface-bound DNA-DNA hybrids were released by electrochemically cleaving the thiol-gold linkage, and the hybrids were iontophoretically eluted from the nanoporous matrix. The optical and electrophoretic characterization of the analytes before and after the detection-purification process revealed that low target DNA concentrations (80 pg/μL) can be successfully detected in complex biological fluids and subsequently released to yield pure hybrids free of polydisperse digested DNA fragments and serum biomolecules. Taken together, this multifunctional platform is expected to enable seamless integration of detection and purification of nucleic acid biomarkers of pathogens and diseases in miniaturized diagnostic devices. PMID:27244455

  1. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  2. Protein structure designability: The consequences of amino-acid alphabet and the underlying energy model

    NASA Astrophysics Data System (ADS)

    Buchler, Nicolas Emile G.

    2001-11-01

    It has been noted by scientists that certain native, protein structures occur more frequently than others in the Protein Data Bank. A variety of models have been developed to explain this phenomenon by considering protein structure "designability". A protein structure is more designable if a larger fraction of all possible sequences can fold into it. Such highly-designable structures are more likely to have been found and maintained through the process of evolution hence they are likely to be over-represented. Proteins are biopolymers and the key to designability lies with understanding the thermodynamic constraints of how a biologically relevant protein sequence folds into a native protein structure. We begin by discussing protein folding in the context of free energy landscapes and phase transitions. The role of protein evolution, critical transitions, such as "freezing" into the native state ( Tf), collapse into molten globules (Ttheta), and glassy phase transitions (Tg), folding-funnels, and free energy landscape measures is a well studied subject of protein folding both computationally and theoretically. In particular, the relationship between folding funnels and relevant phase transition temperatures (T f, Tg) can be related to free energy landscape measures, such as foldability F and energy gap Delta. Using the Random Energy Model, we analytically demonstrate the statistical relationship between F , Delta. Using simplified models of protein structure and interactions, we have explored the relationship between protein structure designability, foldability, interaction parameters, and amino-acid alphabet. We shed new light on which structures are expected to be highly designable, for which types of energy models (solvation or pair-contact), and why these structures are designable. Moreover, we can also understand why free energy landscape measures, such as foldability F and energy gap Delta, must be correlated to protein structure designability. We further

  3. Homology analyses of the protein sequences of fatty acid synthases from chicken liver, rat mammary gland, and yeast

    SciTech Connect

    Chang, Soo-Ik ); Hammes, G.G. )

    1989-11-01

    Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chicken and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.

  4. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  5. Computational Design of the Sequence and Structure of a Protein-Binding Peptide

    PubMed Central

    Sammond, Deanne W.; Bosch, Dustin E.; Butterfoss, Glenn L.; Purbeck, Carrie; Machius, Mischa; Siderovski, David P.; Kuhlman, Brian

    2011-01-01

    The de novo design of protein-binding peptides is challenging, because it requires identifying both a sequence and a backbone conformation favorable for binding. We used a computational strategy that iterates between structure and sequence optimization to redesign the C-terminal portion of the RGS14 GoLoco motif peptide so that it adopts a new conformation when bound to Gαi1. An X-ray crystal structure of the redesigned complex closely matches the computational model, with a backbone RMSD of 1.1 Å. PMID:21388199

  6. Abc Amino Acids: Design, Synthesis, and Properties of New Photoelastic Amino Acids

    SciTech Connect

    Standaert, Robert F; Park, Dr Seung Bum

    2006-01-01

    Photoisomerizable amino acids provide a direct avenue to the experimental manipulation of bioactive polypeptides, potentially allowing real-time, remote control of biological systems and enabling useful applications in nanobiotechnology. Herein, we report a new class of photoisomerizable amino acids intended to cause pronounced expansion and contraction in the polypeptide backbone, i.e., to be photoelastic. These compounds, termed Abc amino acids, employ a photoisomerizable azobiphenyl chromophore to control the relative disposition of aminomethyl and carboxyl substituents. Molecular modeling of nine Abc isomers led to the identification of one with particularly attractive properties, including the ability to induce contractions up to 13A in the backbone upon transa?cis photoisomerization. This isomer, designated mpAbc, has substituents at meta and para positions on the inner (azo-linked) and outer rings, respectively. An efficient synthesis of Fmoc-protected mpAbc was executed in which the biaryl components were formed via Suzuki couplings and the azo linkage was formed via amine/nitroso condensation; protected forms of three other Abc isomers were prepared similarly. A decapeptide incorporating mpAbc was synthesized by conventional solid-phase methods and displayed characteristic azobenzene photochemical behavior with optimal conversion to the cis isomer at 360 nm and a thermal cisa?trans half life of 100 min. at 80 AoC.

  7. A VLSI design for computing exponentiations in GF(2m) and its application to generate pseudorandom number sequences

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.; Pei, Dingyi

    1990-01-01

    A VLSI design for computing exponentiation in finite fields is developed. An algorithm to generate a relatively long pseudorandom number sequence is presented. It is shown that the period of this sequence is significantly increased compared to that of the sequence generated by the most commonly used maximal length shift register scheme.

  8. [Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence].

    PubMed

    Starodubova, E S; Kuzmenko, Y V; Latanova, A A; Preobrazhenskaya, O V; Karpov, V L

    2016-01-01

    An optimized design of the rabies virus glycoprotein (G protein) for use within DNA vaccines has been suggested. The design represents a territorially adapted antigen constructed taking into account glycoprotein amino acid sequences of the rabies viruses registered in the Russian Federation and the vaccine Vnukovo-32 strain. Based on the created consensus amino acid sequence, the nucleotide codon-optimized sequence of this modified glycoprotein was obtained and cloned into the pVAX1 plasmid (a vector of the last generation used in the creation of DNA vaccines). A twofold increase in this gene expression compared to the expression of the Vnukovo-32 strain viral glycoprotein gene in a similar vector was registered in the transfected cell culture. It has been demonstrated that the accumulation of modified G protein exceeds the number of the control protein synthesized using the plasmid with the Vnukovo-32 strain viral glycoprotein gene by 20 times. Thus, the obtained modified rabies virus glycoprotein can be considered to be a promising DNA vaccine antigen. PMID:27239860

  9. Complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase from rat mammary gland

    SciTech Connect

    Randhawa, Z.I.; Smith, S.

    1987-03-10

    The complete amino acid sequence of the medium-chain S-acyl fatty acid synthetase thio ester hydrolase (thioesterase II) from rat mammary gland is presented. Most of the sequence was derived by analysis of (/sup 14/C)-labelled peptide fragments produced by cleavage at methionyl, glutamyl, lysyl, arginyl, and tryptophanyl residues. A small section of the sequence was deduced from a previously analyzed cDNA clone. The protein consists of 260 residues and has a blocked amino-terminal methionine and calculated M/sub r/ of 29,212. The carboxy-terminal sequence, verified by Edman degradation of the carboxy-terminal cyanogen bromide fragment and carboxypeptidase Y digestion of the intact thioesterase II, terminates with a serine residue and lacks three additional residues predicted by the cDNA sequence. The native enzyme contains three cysteine residues but no disulfide bridges. The active site serine residue is located at position 101. The rat mammary gland thioesterase II exhibits approximately 40% homology with a thioesterase from mallard uropygial gland, the sequence of which was recently determined by cDNA analysis. Thus the two enzymes may share similar structural features and a common evolutionary origin. The location of the active site in these thioesterases differs from that of other serine active site esterases; indeed, the enzymes do not exhibit any significant homology with other serine esterases, suggesting that they may constitute a separate new family of serine active site enzymes.

  10. Mariner Mars 1971 television picture catalog. Volume 2: Sequence design and picture coverage

    NASA Technical Reports Server (NTRS)

    Koskela, P. E.; Helton, M. R.; Seeley, L. N.; Zawacki, S. J.

    1972-01-01

    A collection of data relating to the Mariner 9 TV picture is presented. The data are arranged to offer speedy identification of what took place during entire science cycles, on individual revolutions, and during individual science links or sequences. Summary tables present the nominal design for each of the major picture-taking cycles, along with the sequences actually taken on each revolution. These tables permit identification at a glance, all TV sequences and the corresponding individual pictures for the first 262 revolutions (primary mission). A list of TV pictures, categorized according to their latitude and longitude, is also provided. Orthographic and/or mercator plots for all pictures, along with pertinent numerical data for their center points are presented. Other tables and plots of interest are also included. This document is based upon data contained in the Supplementary Experiment Data Record (SEDR) files as of 21 August 1972.

  11. Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase.

    PubMed

    Taillon, B E; Little, R; Lawther, R P

    1988-03-31

    The nucleotide sequence of the gene, ilvA, for biosynthetic threonine deaminase (Tda) from Salmonella typhimurium was determined. The deduced amino acid sequence was compared with the deduced amino acid sequences of the biosynthetic Tda from Escherichia coli K-12 (ilvA) and Saccharomyces cerevisiae (ILV1) and the biodegradative Tda from E. coli K-12 (tdc). The comparison indicated the presence of two types of blocks of homologous amino acids. The first type of homology is in the N-terminal portion of all four isozymes of Tda and probably indicates amino acids involved in catalysis. The second type of homology is found in the C-terminal portion of the three biosynthetic isozymes and presumably is involved in either (i) the binding or interaction of the allosteric effector isoleucine with the enzyme, or (ii) subunit interactions. The sites of amino acid changes of two E. coli K-12 ilvA alleles with altered response to isoleucine are consistent with the conclusion that the C-terminal portion of biosynthetic Tda is involved in allosteric regulation. PMID:3290055

  12. The developmental transcriptome landscape of bovine skeletal muscle defined by Ribo-Zero ribonucleic acid sequencing.

    PubMed

    Sun, X; Li, M; Sun, Y; Cai, H; Li, R; Wei, X; Lan, X; Huang, Y; Lei, C; Chen, H

    2015-12-01

    Ribonucleic acid sequencing (RNA-Seq) libraries are normally prepared with oligo(dT) selection of poly(A)+ mRNA, but it depends on intact total RNA samples. Recent studies have described Ribo-Zero technology, a novel method that can capture both poly(A)+ and poly(A)- transcripts from intact or fragmented RNA samples. We report here the first application of Ribo-Zero RNA-Seq for the analysis of the bovine embryonic, neonatal, and adult skeletal muscle whole transcriptome at an unprecedented depth. Overall, 19,893 genes were found to be expressed, with a high correlation of expression levels between the calf and the adult. Hundreds of genes were found to be highly expressed in the embryo and decreased at least 10-fold after birth, indicating their potential roles in embryonic muscle development. In addition, we present for the first time the analysis of global transcript isoform discovery in bovine skeletal muscle and identified 36,694 transcript isoforms. Transcriptomic data were also analyzed to unravel sequence variations; 185,036 putative SNP and 12,428 putative short insertions-deletions (InDel) were detected. Specifically, many stop-gain, stop-loss, and frameshift mutations were identified that probably change the relative protein production and sequentially affect the gene function. Notably, the numbers of stage-specific transcripts, alternative splicing events, SNP, and InDel were greater in the embryo than in the calf and the adult, suggesting that gene expression is most active in the embryo. The resulting view of the transcriptome at a single-base resolution greatly enhances the comprehensive transcript catalog and uncovers the global trends in gene expression during bovine skeletal muscle development. PMID:26641174

  13. Method for the detection of specific nucleic acid sequences by polymerase nucleotide incorporation

    DOEpatents

    Castro, Alonso

    2004-06-01

    A method for rapid and efficient detection of a target DNA or RNA sequence is provided. A primer having a 3'-hydroxyl group at one end and having a sequence of nucleotides sufficiently homologous with an identifying sequence of nucleotides in the target DNA is selected. The primer is hybridized to the identifying sequence of nucleotides on the DNA or RNA sequence and a reporter molecule is synthesized on the target sequence by progressively binding complementary nucleotides to the primer, where the complementary nucleotides include nucleotides labeled with a fluorophore. Fluorescence emitted by fluorophores on single reporter molecules is detected to identify the target DNA or RNA sequence.

  14. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.

    PubMed

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version - which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  15. Task analysis in curriculum design: a hierarchically sequenced introductory mathematics curriculum1

    PubMed Central

    Resnick, Lauren B.; Wang, Margaret C.; Kaplan, Jerome

    1973-01-01

    A method of systematic task analysis is applied to the problem of designing a sequence of learning objectives that will provide an optimal match for the child's natural sequence of acquisition of mathematical skills and concepts. The authors begin by proposing an operational definition of the number concept in the form of a set of behaviors which, taken together, permit the inference that the child has an abstract concept of “number”. These are the “objectives” of the curriculum. Each behavior in the defining set is then subjected to an analysis that identifies hypothesized components of skilled performance and prerequisites for learning these components. On the basis of these analyses, specific sequences of learning objectives are proposed. The proposed sequences are hypothesized to be those that will best facilitate learning, by maximizing transfer from earlier to later objectives. Relevant literature on early learning and cognitive development is considered in conjunction with the analyses and the resulting sequences. The paper concludes with a discussion of the ways in which the curriculum can be implemented and studied in schools. Examples of data on individual children are presented, and the use of such data for improving the curriculum itself, as well as for examining the effects of other treatment variables, is considered. PMID:16795452

  16. Toward genomic prediction from whole-genome sequence data: impact of sequencing design on genotype imputation and accuracy of predictions

    PubMed Central

    Druet, T; Macleod, I M; Hayes, B J

    2014-01-01

    Genomic prediction from whole-genome sequence data is attractive, as the accuracy of genomic prediction is no longer bounded by extent of linkage disequilibrium between DNA markers and causal mutations affecting the trait, given the causal mutations are in the data set. A cost-effective strategy could be to sequence a small proportion of the population, and impute sequence data to the rest of the reference population. Here, we describe strategies for selecting individuals for sequencing, based on either pedigree relationships or haplotype diversity. Performance of these strategies (number of variants detected and accuracy of imputation) were evaluated in sequence data simulated through a real Belgian Blue cattle pedigree. A strategy (AHAP), which selected a subset of individuals for sequencing that maximized the number of unique haplotypes (from single-nucleotide polymorphism panel data) sequenced gave good performance across a range of variant minor allele frequencies. We then investigated the optimum number of individuals to sequence by fold coverage given a maximum total sequencing effort. At 600 total fold coverage (x 600), the optimum strategy was to sequence 75 individuals at eightfold coverage. Finally, we investigated the accuracy of genomic predictions that could be achieved. The advantage of using imputed sequence data compared with dense SNP array genotypes was highly dependent on the allele frequency spectrum of the causative mutations affecting the trait. When this followed a neutral distribution, the advantage of the imputed sequence data was small; however, when the causal mutations all had low minor allele frequencies, using the sequence data improved the accuracy of genomic prediction by up to 30%. PMID:23549338

  17. Predicting Secretory Proteins of Malaria Parasite by Incorporating Sequence Evolution Information into Pseudo Amino Acid Composition via Grey System Model

    PubMed Central

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2012-01-01

    The malaria disease has become a cause of poverty and a major hindrance to economic development. The culprit of the disease is the parasite, which secretes an array of proteins within the host erythrocyte to facilitate its own survival. Accordingly, the secretory proteins of malaria parasite have become a logical target for drug design against malaria. Unfortunately, with the increasing resistance to the drugs thus developed, the situation has become more complicated. To cope with the drug resistance problem, one strategy is to timely identify the secreted proteins by malaria parasite, which can serve as potential drug targets. However, it is both expensive and time-consuming to identify the secretory proteins of malaria parasite by experiments alone. To expedite the process for developing effective drugs against malaria, a computational predictor called “iSMP-Grey” was developed that can be used to identify the secretory proteins of malaria parasite based on the protein sequence information alone. During the prediction process a protein sample was formulated with a 60D (dimensional) feature vector formed by incorporating the sequence evolution information into the general form of PseAAC (pseudo amino acid composition) via a grey system model, which is particularly useful for solving complicated problems that are lack of sufficient information or need to process uncertain information. It was observed by the jackknife test that iSMP-Grey achieved an overall success rate of 94.8%, remarkably higher than those by the existing predictors in this area. As a user-friendly web-server, iSMP-Grey is freely accessible to the public at http://www.jci-bioinfo.cn/iSMP-Grey. Moreover, for the convenience of most experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematical equations involved in this paper. PMID:23189138

  18. Characterization and cDNA sequence of Bothriechis schlegeliil-amino acid oxidase with antibacterial activity.

    PubMed

    Vargas Muñoz, Leidy Johana; Estrada-Gomez, Sebastian; Núñez, Vitelbina; Sanz, Libia; Calvete, Juan J

    2014-08-01

    Snake venoms are complex mixtures of proteins including l-amino acid oxidase (lAAO). A lAAO (named BslAAO) with a mass of 56kDa and a theoretical Ip of 5.79, was purified from Bothriechis schlegelii venom through size-exclusion, ion exchange and affinity chromatography. The entire protein sequence of 498 amino acids, was determined from cDNA using reverse-transcribed mRNA isolated from venom gland. The enzyme showed dose-dependent inhibition of bacterial growth. BslAAO showed inhibitory effect against S. aureus with a MIC of 4μg/mL and a MBC of 8μg/mL. Against Acinetobacter baumannii, showed a MIC of 2μg/mL and MBC of 4μg/mL, No effect was observed in Escherichia coli. This antibacterial activity was inhibited by catalase, indicating that antimicrobial activity was due to H2O2 production. BslAAO did not show any cytotoxic activity toward mouse myoblast cell line C2C12 or peripheral blood mononuclear cells. The enzyme oxidated l-Leu, with a Km of 16.37μM and a Vmax of 0.39μM/min. Snake venoms lAAOs, are potential frames of different therapeutics molecules since these enzymes exhibit low MICs and MBCs and show to be harmless to human cells due to microorganisms being generally several fold more sensitive to reactive oxygen species than human tissues. PMID:24875315

  19. Genome Sequence of a Candidate World Health Organization Reference Strain of Zika Virus for Nucleic Acid Testing

    PubMed Central

    Trösemeier, Jan-Hendrik; Musso, Didier; Blümel, Johannes; Thézé, Julien; Pybus, Oliver G.

    2016-01-01

    We report here the sequence of a candidate reference strain of Zika virus (ZIKV) developed on behalf of the World Health Organization (WHO). The ZIKV reference strain is intended for use in nucleic acid amplification (NAT)-based assays for the detection and quantification of ZIKV RNA. PMID:27587826

  20. Genome Sequence of Schizochytrium sp. CCTCC M209059, an Effective Producer of Docosahexaenoic Acid-Rich Lipids

    PubMed Central

    Ji, Xiao-Jun; Mo, Kai-Qiang; Ren, Lu-Jing; Li, Gan-Lu; Huang, Jian-Zhong

    2015-01-01

    Schizochytrium is an effective species for producing omega-3 docosahexaenoic acid (DHA). Here, we report a genome sequence of Schizochytrium sp. CCTCC M209059, which has a genome size of 39.09 Mb. It will provide the genomic basis for further insights into the metabolic and regulatory mechanisms underlying the DHA formation. PMID:26251485

  1. Evolutionary Distance of Amino Acid Sequence Orthologs across Macaque Subspecies: Identifying Candidate Genes for SIV Resistance in Chinese Rhesus Macaques

    PubMed Central

    Ross, Cody T.; Roodgar, Morteza; Smith, David Glenn

    2015-01-01

    We use the Reciprocal Smallest Distance (RSD) algorithm to identify amino acid sequence orthologs in the Chinese and Indian rhesus macaque draft sequences and estimate the evolutionary distance between such orthologs. We then use GOanna to map gene function annotations and human gene identifiers to the rhesus macaque amino acid sequences. We conclude methodologically by cross-tabulating a list of amino acid orthologs with large divergence scores with a list of genes known to be involved in SIV or HIV pathogenesis. We find that many of the amino acid sequences with large evolutionary divergence scores, as calculated by the RSD algorithm, have been shown to be related to HIV pathogenesis in previous laboratory studies. Four of the strongest candidate genes for SIVmac resistance in Chinese rhesus macaques identified in this study are CDK9, CXCL12, TRIM21, and TRIM32. Additionally, ANKRD30A, CTSZ, GORASP2, GTF2H1, IL13RA1, MUC16, NMDAR1, Notch1, NT5M, PDCD5, RAD50, and TM9SF2 were identified as possible candidates, among others. We failed to find many laboratory experiments contrasting the effects of Indian and Chinese orthologs at these sites on SIVmac pathogenesis, but future comparative studies might hold fertile ground for research into the biological mechanisms underlying innate resistance to SIVmac in Chinese rhesus macaques. PMID:25884674

  2. Evolutionary distance of amino acid sequence orthologs across macaque subspecies: identifying candidate genes for SIV resistance in Chinese rhesus macaques.

    PubMed

    Ross, Cody T; Roodgar, Morteza; Smith, David Glenn

    2015-01-01

    We use the Reciprocal Smallest Distance (RSD) algorithm to identify amino acid sequence orthologs in the Chinese and Indian rhesus macaque draft sequences and estimate the evolutionary distance between such orthologs. We then use GOanna to map gene function annotations and human gene identifiers to the rhesus macaque amino acid sequences. We conclude methodologically by cross-tabulating a list of amino acid orthologs with large divergence scores with a list of genes known to be involved in SIV or HIV pathogenesis. We find that many of the amino acid sequences with large evolutionary divergence scores, as calculated by the RSD algorithm, have been shown to be related to HIV pathogenesis in previous laboratory studies. Four of the strongest candidate genes for SIVmac resistance in Chinese rhesus macaques identified in this study are CDK9, CXCL12, TRIM21, and TRIM32. Additionally, ANKRD30A, CTSZ, GORASP2, GTF2H1, IL13RA1, MUC16, NMDAR1, Notch1, NT5M, PDCD5, RAD50, and TM9SF2 were identified as possible candidates, among others. We failed to find many laboratory experiments contrasting the effects of Indian and Chinese orthologs at these sites on SIVmac pathogenesis, but future comparative studies might hold fertile ground for research into the biological mechanisms underlying innate resistance to SIVmac in Chinese rhesus macaques. PMID:25884674

  3. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    PubMed

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  4. Draft Genome Sequence of Cutaneotrichosporon curvatus DSM 101032 (Formerly Cryptococcus curvatus), an Oleaginous Yeast Producing Polyunsaturated Fatty Acids.

    PubMed

    Hofmeyer, Thomas; Hackenschmidt, Silke; Nadler, Florian; Thürmer, Andrea; Daniel, Rolf; Kabisch, Johannes

    2016-01-01

    Cutaneotrichosporon curvatus DSM 101032 is an oleaginous yeast that can be isolated from various habitats and is capable of producing substantial amounts of polyunsaturated fatty acids. Here, we present the first draft genome sequence of any C. curvatus species. PMID:27174275

  5. Complete genome sequence of Lactobacillus plantarum ZS2058, a probiotic strain with high conjugated linoleic acid production ability.

    PubMed

    Yang, Bo; Chen, Haiqin; Tian, Fengwei; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2015-11-20

    Lactobacillus plantarum ZS2058 was isolated from sauerkraut and identified to synthesize the beneficial metabolite conjugated linoleic acid. The genome contains a 319,7363-bp chromosome and three plasmids. The sequence will facilitate identification and characterization of the genetic determinants for its putative biological benefits. PMID:26439428

  6. Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate

    PubMed Central

    Sato, Yuya; Koike, Hideaki; Kondo, Susumu; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Morita, Tomotake; Kirimura, Kohtaro

    2016-01-01

    Burkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B. stabilis LA20W, which will be useful in investigations of the enzymes involved in LA metabolism and the mechanism of LA-induced trehalose production. PMID:27491978

  7. Draft Genome Sequence of Acetobacter tropicalis Type Strain NBRC16470, a Producer of Optically Pure d-Glyceric Acid.

    PubMed

    Koike, Hideaki; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Habe, Hiroshi

    2014-01-01

    Here we report the 3.7-Mb draft genome sequence of Acetobacter tropicalis NBRC16470(T), which can produce optically pure d-glyceric acid (d-GA; 99% enantiomeric excess) from raw glycerol feedstock derived from biodiesel fuel production processes. PMID:25523780

  8. Genome Sequence of a Candidate World Health Organization Reference Strain of Zika Virus for Nucleic Acid Testing.

    PubMed

    Trösemeier, Jan-Hendrik; Musso, Didier; Blümel, Johannes; Thézé, Julien; Pybus, Oliver G; Baylis, Sally A

    2016-01-01

    We report here the sequence of a candidate reference strain of Zika virus (ZIKV) developed on behalf of the World Health Organization (WHO). The ZIKV reference strain is intended for use in nucleic acid amplification (NAT)-based assays for the detection and quantification of ZIKV RNA. PMID:27587826

  9. Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate.

    PubMed

    Sato, Yuya; Koike, Hideaki; Kondo, Susumu; Hori, Tomoyuki; Kanno, Manabu; Kimura, Nobutada; Morita, Tomotake; Kirimura, Kohtaro; Habe, Hiroshi

    2016-01-01

    Burkholderia stabilis LA20W produces trehalose using levulinic acid (LA) as a substrate. Here, we report the 7.97-Mb draft genome sequence of B. stabilis LA20W, which will be useful in investigations of the enzymes involved in LA metabolism and the mechanism of LA-induced trehalose production. PMID:27491978

  10. Draft Genome Sequence of Cutaneotrichosporon curvatus DSM 101032 (Formerly Cryptococcus curvatus), an Oleaginous Yeast Producing Polyunsaturated Fatty Acids

    PubMed Central

    Hofmeyer, Thomas; Hackenschmidt, Silke; Nadler, Florian; Thürmer, Andrea; Daniel, Rolf

    2016-01-01

    Cutaneotrichosporon curvatus DSM 101032 is an oleaginous yeast that can be isolated from various habitats and is capable of producing substantial amounts of polyunsaturated fatty acids. Here, we present the first draft genome sequence of any C. curvatus species. PMID:27174275

  11. Ultra high-throughput nucleic acid sequencing as a tool for virus discovery in the turkey gut.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, the use of the next generation of nucleic acid sequencing technology (i.e., 454 pyrosequencing, as developed by Roche/454 Life Sciences) has allowed an in-depth look at the uncultivated microorganisms present in complex environmental samples, including samples with agricultural importance....

  12. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    PubMed Central

    Meneghel, Julie; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  13. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing

    PubMed Central

    Whitehead, Timothy A; Chevalier, Aaron; Song, Yifan; Dreyfus, Cyrille; Fleishman, Sarel J; De Mattos, Cecilia; Myers, Chris A; Kamisetty, Hetunandan; Blair, Patrick; Wilson, Ian A; Baker, David

    2013-01-01

    We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility. PMID:22634563

  14. Wide-field imaging design for a multiple-capillary DNA-sequencing system

    NASA Astrophysics Data System (ADS)

    Nay, Lyle M.; Sinclair, Robert; Swerdlow, Harold

    1997-05-01

    A laser-induced fluorescence detection system compatible with a capillary electrophoresis array was developed. The design incorporates fiber-optic excitation and a detection system including a diffraction grating and a CCD camera. The system employs no moving parts and is capable of producing data comparable to commercially available systems. It is based on a spectrally-resolved four-dye sequencing scheme. The conceptual design was proven, however, refinements must be made to optimize performance for high-throughput capillary-array DNA sequencing. Automated sample preparation and loading in combination with a refillable separation- matrix capillary-array system could prove to be an invaluable tool for completion of the Human Genome Project.

  15. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing

    SciTech Connect

    Whitehead, Timothy A.; Chevalier, Aaron; Song, Yifan; Dreyfus, Cyrille; Fleishman, Sarel J.; De Mattos, Cecilia; Myers, Chris A.; Kamisetty, Hetunandan; Blair, Patrick; Wilson, Ian A.; Baker, David

    2012-06-19

    We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followed by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.

  16. Seq4SNPs: new software for retrieval of multiple, accurately annotated DNA sequences, ready formatted for SNP assay design

    PubMed Central

    Field, Helen I; Scollen, Serena A; Luccarini, Craig; Baynes, Caroline; Morrison, Jonathan; Dunning, Alison M; Easton, Douglas F; Pharoah, Paul DP

    2009-01-01

    Background In moderate-throughput SNP genotyping there was a gap in the workflow, between choosing a set of SNPs and submitting their sequences to proprietary assay design software, which was not met by existing software. Retrieval and formatting of sequences flanking each SNP, prior to assay design, becomes rate-limiting for more than about ten SNPs, especially if annotated for repetitive regions and adjacent variations. We routinely process up to 50 SNPs at once. Implementation We created Seq4SNPs, a web-based, walk-away software that can process one to several hundred SNPs given rs numbers as input. It outputs a file of fully annotated sequences formatted for one of three proprietary design softwares: TaqMan's Primer-By-Design FileBuilder, Sequenom's iPLEX or SNPstream's Autoprimer, as well as unannotated fasta sequences. We found genotyping assays to be inhibited by repetitive sequences or the presence of additional variations flanking the SNP under test, and in multiplexes, repetitive sequence flanking one SNP adversely affects multiple assays. Assay design software programs avoid such regions if the input sequences are appropriately annotated, so we used Seq4SNPs to provide suitably annotated input sequences, and improved our genotyping success rate. Adjacent SNPs can also be avoided, by annotating sequences used as input for primer design. Conclusion The accuracy of annotation by Seq4SNPs is significantly better than manual annotation (P < 1e-5). Using Seq4SNPs to incorporate all annotation for additional SNPs and repetitive elements into sequences, for genotyping assay designer software, minimizes assay failure at the design stage, reducing the cost of genotyping. Seq4SNPs provides a rapid route for replacement of poor test SNP sequences. We routinely use this software for assay sequence preparation. Seq4SNPs is available as a service at and , currently for human SNPs, but easily extended to include any species in dbSNP. PMID:19523221

  17. Sequence-Specific Recognition of MicroRNAs and Other Short Nucleic Acids with Solid-State Nanopores.

    PubMed

    Zahid, Osama K; Wang, Fanny; Ruzicka, Jan A; Taylor, Ethan W; Hall, Adam R

    2016-03-01

    The detection and quantification of short nucleic acid sequences has many potential applications in studying biological processes, monitoring disease initiation and progression, and evaluating environmental systems, but is challenging by nature. We present here an assay based on the solid-state nanopore platform for the identification of specific sequences in solution. We demonstrate that hybridization of a target nucleic acid with a synthetic probe molecule enables discrimination between duplex and single-stranded molecules with high efficacy. Our approach requires limited preparation of samples and yields an unambiguous translocation event rate enhancement that can be used to determine the presence and abundance of a single sequence within a background of nontarget oligonucleotides. PMID:26824296

  18. Human parainfluenza type 3 virus hemagglutinin-neuraminidase glycoprotein: nucleotide sequence of mRNA and limited amino acid sequence of the purified protein.

    PubMed Central

    Elango, N; Coligan, J E; Jambou, R C; Venkatesan, S

    1986-01-01

    The nucleotide sequence of mRNA for the hemagglutinin-neuraminidase (HN) protein of human parainfluenza type 3 virus obtained from the corresponding cDNA clone had a single long open reading frame encoding a putative protein of 64,254 daltons consisting of 572 amino acids. The deduced protein sequence was confirmed by limited N-terminal amino acid microsequencing of CNBr cleavage fragments of native HN that was purified by immunoprecipitation. The HN protein is moderately hydrophobic and has four potential sites (Asn-X-Ser/Thr) of N-glycosylation in the C-terminal half of the molecule. It is devoid of both the N-terminal signal sequence and the C-terminal membrane anchorage domain characteristic of the hemagglutinin of influenza virus and the fusion (F0) protein of the paramyxoviruses. Instead, it has a single prominent hydrophobic region capable of membrane insertion beginning at 32 residues from the N terminus. This N-terminal membrane insertion is similar to that of influenza virus neuraminidase and the recently reported structures of HN proteins of Sendai virus and simian virus 5. Images PMID:3003381

  19. Sequence of cDNA for rat cystathionine gamma-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes.

    PubMed Central

    Erickson, P F; Maxwell, I H; Su, L J; Baumann, M; Glode, L M

    1990-01-01

    A cDNA clone for cystathionine gamma-lyase was isolated from a rat cDNA library in lambda gt11 by screening with a monospecific antiserum. The identity of this clone, containing 600 bp proximal to the 3'-end of the gene, was confirmed by positive hybridization selection. Northern-blot hybridization showed the expected higher abundance of the corresponding mRNA in liver than in brain. Two further cDNA clones from a plasmid pcD library were isolated by colony hybridization with the first clone and were found to contain inserts of 1600 and 1850 bp. One of these was confirmed as encoding cystathionine gamma-lyase by hybridization with two independent pools of oligodeoxynucleotides corresponding to partial amino acid sequence information for cystathionine gamma-lyase. The other clone (estimated to represent all but 8% of the 5'-end of the mRNA) was sequenced and its deduced amino acid sequence showed similarity to those of the Escherichia coli enzymes cystathionine beta-lyase and cystathionine gamma-synthase throughout its length, especially to that of the latter. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:2201285

  20. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution

    NASA Technical Reports Server (NTRS)

    Eriksson, M.; Christensen, L.; Schmidt, J.; Haaima, G.; Orgel, L.; Nielsen, P. E.

    1998-01-01

    The stability of the PNA (peptide nucleic acid) thymine monomer inverted question markN-[2-(thymin-1-ylacetyl)]-N-(2-aminoaminoethyl)glycine inverted question mark and those of various PNA oligomers (5-8-mers) have been measured at room temperature (20 degrees C) as a function of pH. The thymine monomer undergoes N-acyl transfer rearrangement with a half-life of 34 days at pH 11 as analyzed by 1H NMR; and two reactions, the N-acyl transfer and a sequential degradation, are found by HPLC analysis to occur at measurable rates for the oligomers at pH 9 or above. Dependent on the amino-terminal sequence, half-lives of 350 h to 163 days were found at pH 9. At pH 12 the half-lives ranged from 1.5 h to 21 days. The results are discussed in terms of PNA as a gene therapeutic drug as well as a possible prebiotic genetic material.

  1. Structural analysis of complementary DNA and amino acid sequences of human and rat androgen receptors

    SciTech Connect

    Chang, C.; Kokontis, J.; Liao, S. )

    1988-10-01

    Structural analysis of cDNAs for human and rat androgen receptors (ARs) indicates that the amino-terminal regions of ARs are rich in oligo- and poly(amino acid) motifs as in some homeotic genes. The human AR has a long stretch of repeated glycines, whereas rat AR has a long stretch of glutamines. There is a considerable sequence similarity among ARs and the receptors for glucocorticoids, progestins, and mineralocorticoids within the steroid-binding domains. The cysteine-rich DNA-binding domains are well conserved. Translation of mRNA transcribed from AR cDNAs yielded 94- and 76-kDa proteins and smaller forms that bind to DNA and have high affinity toward androgens. These rat or human ARs were recognized by human autoantibodies to natural Ars. Molecular hybridization studies, using AR cDNAs as probes, indicated that the ventral prostate and other male accessory organs are rich in AR mRNA and that the production of AR mRNA in the target organs may be autoregulated by androgens.

  2. Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom.

    PubMed

    Joubert, F J; Taljaard, N

    1980-05-01

    Toxins C13S1C3 and C13S2C3 from D. angusticeps venom were purified by gel filtration and ion exchange chromatography. Whereas C13S1C3 contains 57 amino acids, C13S2C3 contains 59 but each include six half-cystine residues. The complete primary structure of the low toxicity proteins have been elucidated. The sequences and the invariant residues of toxins C13S1C3 and C13S2C3 from D. angusticeps venom resemble, respectively, those of the proteinase inhibitor homologues K and I from D. polylepis polylepis venom and they are also homologous to the active proteinase inhibitors from various sources. In C13S1C3 and K the active site lysyl residue of active bovine pancreatic proteinase inhibitor is conserved but the site residue alanine, is replaced by lysine. In C13S2C3 and I the active site residue is replaced by tyrosine. PMID:7429422

  3. Cloning, nucleotide sequences, and identification of products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system.

    PubMed Central

    Hoshino, T; Kose, K

    1990-01-01

    A DNA fragment of Pseudomonas aeruginosa PAO containing genes specifying the high-affinity branched-chain amino acid transport system (LIV-I) was isolated. The fragment contained the braC gene, encoding the binding protein for branched-chain amino acids, and the 4-kilobase DNA segment adjacent to 3' of braC. The nucleotide sequence of the 4-kilobase DNA fragment was determined and found to contain four open reading frames, designated braD, braE, braF, and braG. The braD and braE genes specify very hydrophobic proteins of 307 and 417 amino acid residues, respectively. The braD gene product showed extensive homology (67% identical) to the livH gene product, a component required for the Escherichia coli high-affinity branched-chain amino acid transport systems. The braF and braG genes encode proteins of 255 and 233 amino acids, respectively, both containing amino acid sequences typical of proteins with ATP-binding sites. By using a T7 RNA polymerase/promoter system together with plasmids having various deletions in the braDEFG region, the braD, braE, braF, and braG gene products were identified as proteins with apparent Mrs of 25,500, 34,000, 30,000, and 27,000, respectively. These proteins were found among cell membrane proteins on a sodium dodecyl sulfate-polyacrylamide gel stained with Coomassie blue. Images PMID:2120183

  4. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase.

    PubMed

    Abedinia, M; Layfield, R; Jones, S M; Nixon, P F; Mattick, J S

    1992-03-31

    Transketolase is a key enzyme in the pentose-phosphate pathway which has been implicated in the latent human genetic disease, Wernicke-Korsakoff syndrome. Here we report the cloning and partial characterisation of the coding sequences encoding human transketolase from a human brain cDNA library. The library was screened with oligonucleotide probes based on the amino acid sequence of proteolytic fragments of the purified protein. Northern blots showed that the transketolase mRNA is approximately 2.2 kb, close to the minimum expected, of which approximately 60% was represented in the largest cDNA clone. Sequence analysis of the transketolase coding sequences reveals a number of homologies with related enzymes from other species. PMID:1567394

  5. 5S ribosomal ribonucleic acid sequences in Bacteroides and Fusobacterium: evolutionary relationships within these genera and among eubacteria in general

    NASA Technical Reports Server (NTRS)

    Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.

    1989-01-01

    The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.

  6. Assignment of fatty acid-beta-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analyses

    NASA Technical Reports Server (NTRS)

    Zhao, H.; Yang, D.; Woese, C. R.; Bryant, M. P.

    1993-01-01

    After enrichment from Chinese rural anaerobic digestor sludge, anaerobic, sporing and nonsporing, saturated fatty acid-beta-oxidizing syntrophic bacteria were isolated as cocultures with H2- and formate-utilizing Methanospirillum hungatei or Desulfovibrio sp. strain G-11. The syntrophs degraded C4 to C8 saturated fatty acids, including isobutyrate and 2-methylbutyrate. They were adapted to grow on crotonate and were isolated as pure cultures. The crotonate-grown pure cultures alone did not grow on butyrate in either the presence or the absence of some common electron acceptors. However, when they were reconstituted with M. hungatei, growth on butyrate again occurred. In contrast, crotonate-grown Clostridium kluyveri and Clostridium sticklandii, as well as Clostridium sporogenes, failed to grow on butyrate when these organisms were cocultured with M. hungatei. The crotonate-grown pure subcultures of the syntrophs described above were subjected to 16S rRNA sequence analysis. Several previously documented fatty acid-beta-oxidizing syntrophs grown in pure cultures with crotonate were also subjected to comparative sequence analyses. The sequence analyses revealed that the new sporing and nonsporing isolates and other syntrophs that we sequenced, which had either gram-negative or gram-positive cell wall ultrastructure, all belonged to the phylogenetically gram-positive phylum. They were not closely related to any of the previously known subdivisions in the gram-positive phylum with which they were compared, but were closely related to each other, forming a new subdivision in the phylum. We recommend that this group be designated Syntrophomonadaceae fam. nov.; a description is given.

  7. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence

    PubMed Central

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5′ end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5′ end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5′ end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique’s simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis. PMID:27468284

  8. Endonuclease Restriction-Mediated Real-Time Polymerase Chain Reaction: A Novel Technique for Rapid, Sensitive and Quantitative Detection of Nucleic-Acid Sequence.

    PubMed

    Wang, Yi; Wang, Yan; Zhang, Lu; Li, Machao; Luo, Lijuan; Liu, Dongxin; Li, Hua; Cao, Xiaolong; Hu, Shoukui; Jin, Dong; Xu, Jianguo; Ye, Changyun

    2016-01-01

    The article reported a novel methodology for real-time PCR analysis of nucleic acids, termed endonuclease restriction-mediated real-time polymerase chain reaction (ET-PCR). Just like PCR, ET-PCR only required one pair of primers. A short sequence, which was recognized by restriction enzyme BstUI, was attached to the 5' end of the forward (F) or reverse (R) PCR primer, and the new F or R primer was named EF or ER. EF/ER was labeled at the 5' end with a reporter dye and in the middle with a quenching dye. BstUI cleaves the newly synthesized double-stranded terminal sequences (5' end recognition sequences and their complementary sequences) during the extension phase, which separates the reporter molecule from the quenching dye, leading to a gain of fluorescence signal. This process is repeated in each amplification cycle and unaffected the exponential synthesis of the PCR amplification. ET-PCR allowed real-time analysis of single or multiple targets in a single vessel, and provided the reproducible quantitation of nucleic acids. The analytical sensitivity and specificity of ET-PCR were successfully evaluated, detecting down to 250 fg of genomic DNA per tube of target pathogen DNA examined, and the positive results were generated in a relatively short period. Moreover, the practical application of ET-PCR for simultaneous detection of multiple target pathogens was also demonstrated in artificially contaminated blood samples. In conclusion, due to the technique's simplicity of design, reproducible data and low contamination risk, ET-PCR assay is an appealing alternative to conventional approaches currently used for real-time nucleic acid analysis. PMID:27468284

  9. Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive.

    PubMed

    Nakazato, Takeru; Ohta, Tazro; Bono, Hidemasa

    2013-01-01

    High-throughput sequencing technology, also called next-generation sequencing (NGS), has the potential to revolutionize the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public primary data archive, the Sequence Read Archive (SRA). As of January 2013, data from more than 14,000 projects have been submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs) from SRA and full-text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA entries by disease keywords, according to the Medical Subject Headings (MeSH) extracted from articles assigned to each SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We previously developed feature profiles of diseases in a system called "Gendoo". We generated hyperlinks between diseases extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this study are available at our web service, called "DBCLS SRA" (http://sra.dbcls.jp/). This service will improve accessibility to high-quality data from SRA. PMID:24167589

  10. Sample Prep, Workflow Automation and Nucleic Acid Fractionation for Next Generation Sequencing

    SciTech Connect

    Roskey, Mark

    2010-06-03

    Mark Roskey of Caliper LifeSciences discusses how the company's technologies fit into the next generation sequencing workflow on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  11. Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence.

    PubMed

    Fellah, J S; Wiles, M V; Charlemagne, J; Schwager, J

    1992-10-01

    cDNA clones coding for the constant region of the Mexican axolotl (Ambystoma mexicanum) mu heavy immunoglobulin chain were selected from total spleen RNA, using a cDNA polymerase chain reaction technique. The specific 5'-end primer was an oligonucleotide homologous to the JH segment of Xenopus laevis mu chain. One of the clones, JHA/3, corresponded to the complete constant region of the axolotl mu chain, consisting of a 1362-nucleotide sequence coding for a polypeptide of 454 amino acids followed in 3' direction by a 179-nucleotide untranslated region and a polyA+ tail. The axolotl C mu is divided into four typical domains (C mu 1-C mu 4) and can be aligned with the Xenopus C mu with an overall identity of 56% at the nucleotide level. Percent identities were particularly high between C mu 1 (59%) and C mu 4 (71%). The C-terminal 20-amino acid segment which constitutes the secretory part of the mu chain is strongly homologous to the equivalent sequences of chondrichthyans and of other tetrapods, including a conserved N-linked oligosaccharide, the penultimate cysteine and the C-terminal lysine. The four C mu domains of 13 vertebrate species ranging from chondrichthyans to mammals were aligned and compared at the amino acid level. The significant number of mu-specific residues which are conserved into each of the four C mu domains argues for a continuous line of evolution of the vertebrate mu chain. This notion was confirmed by the ability to reconstitute a consistent vertebrate evolution tree based on the phylogenic parsimony analysis of the C mu 4 sequences. PMID:1382992

  12. Beyond the bucket: testing the effect of experimental design on rate and sequence of decay

    NASA Astrophysics Data System (ADS)

    Gabbott, Sarah; Murdock, Duncan; Purnell, Mark

    2016-04-01

    Experimental decay has revealed the potential for profound biases in our interpretations of exceptionally preserved fossils, with non-random sequences of character loss distorting the position of fossil taxa in phylogenetic trees. By characterising these sequences we can rewind this distortion and make better-informed interpretations of the affinity of enigmatic fossil taxa. Equally, rate of character loss is crucial for estimating the preservation potential of phylogentically informative characters, and revealing the mechanisms of preservation themselves. However, experimental decay has been criticised for poorly modeling 'real' conditions, and dismissed as unsophisticated 'bucket science'. Here we test the effect of a differing experimental parameters on the rate and sequence of decay. By doing so, we can test the assumption that the results of decay experiments are applicable to informing interpretations of exceptionally preserved fossils from diverse preservational settings. The results of our experiments demonstrate the validity of using the sequence of character loss as a phylogenetic tool, and sheds light on the extent to which environment must be considered before making decay-informed interpretations, or reconstructing taphonomic pathways. With careful consideration of experimental design, driven by testable hypotheses, decay experiments are robust and informative - experimental taphonomy needn't kick the bucket just yet.

  13. Low levels of haptoglobin and putative amino acid sequence in Taiwanese Lanyu miniature pigs.

    PubMed

    Yueh, Sunny C H; Wang, Yao Horng; Lin, Kuan Yu; Tseng, Chi Feng; Chu, Hsien Pin; Chen, Kuen Jaw; Wang, Shih Sheng; Lai, I Hsiang; Mao, Simon J T

    2008-04-01

    Porcine haptoglobin (Hp) is an acute phase protein. Its plasma level increases significantly during inflammation and infection. One of the main functions of Hp is to bind free hemoglobin (Hb) and inhibit its oxidative activity. In the present report, we studied the Hp phenotype of Taiwanese Lanyu miniature pigs (TLY minipigs; n=43) and found their Hp structure to be a homodimer (beta-alpha-alpha-beta) similar to human Hp 1-1. Interestingly, Western blot and high performance liquid chromatographic (HPLC) analysis showed that 25% of the TLY minipigs possessed low or no plasma Hp level (<0.05 mg/ml). The Hp cDNA of these TLY minipigs was then cloned, and the translated amino acid sequence was analyzed. No sequences were found to be deficient; they showed a 99.7% identity with domestic pigs (NP_999165). The mean overall Hp level of the TLY minipigs (0.21 +/- 0.25 mg/ml; n=43) determined by enzyme-linked immunosorbent assay (ELISA) was markedly lower than that of domestic pigs (0.78 +/- 0.45 mg/ml; p<0.001), while 25% of the TLY minipigs had an Hp level that was extremely low (<0.05 mg/ml). In addition, the initial recovery rate (first 40 min) in the circulation of infused fluorescein isothiocyanate (FITC)-Hb was significantly higher in the TLY minipigs with extremely low Hp levels than those with high levels. This data suggests that the low concentration of Hp-Hb complex is responsible for the higher recovery rate of Hb in the circulation. TLY minipigs have been used as an experimental model for cardiovascular diseases; whether they can be used as a model for inflammatory diseases, with Hp as a marker, remains a topic of interest. However, since the Hp level varies significantly among individual TLY minipigs, it is necessary to prescreen the Hp levels of the animals to minimize variation in the experimental baseline. The present study may provide a reference value for future use of the TLY minipig as an animal model for inflammation-associated diseases. PMID:18460833

  14. Sequence Comparison and Phylogeny of Nucleotide Sequence of Coat Protein and Nucleic Acid Binding Protein of a Distinct Isolate of Shallot virus X from India.

    PubMed

    Majumder, S; Baranwal, V K

    2011-06-01

    Shallot virus X (ShVX), a type species in the genus Allexivirus of the family Alfaflexiviridae has been associated with shallot plants in India and other shallot growing countries like Russia, Germany, Netherland, and New Zealand. Coat protein (CP) and nucleic acid binding protein (NB) region of the virus was obtained by reverse transcriptase polymerase chain reaction from scales leaves of shallot bulbs. The partial cDNA contained two open reading frames encoding proteins of molecular weights of 28.66 and 14.18 kDa belonging to Flexi_CP super-family and viral NB super-family, respectively. The percent identity and phylogenetic analysis of amino acid sequences of CP and NB region of the virus associated with shallot indicated that it was a distinct isolate of ShVX. PMID:23637504

  15. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells.

    PubMed Central

    Mann, K; Deutzmann, R; Aumailley, M; Timpl, R; Raimondi, L; Yamada, Y; Pan, T C; Conway, D; Chu, M L

    1989-01-01

    The whole amino acid sequence of nidogen was deduced from cDNA clones isolated from expression libraries and confirmed to approximately 50% by Edman degradation of peptides. The protein consists of some 1217 amino acid residues and a 28-residue signal peptide. The data support a previously proposed dumb-bell model of nidogen by demonstrating a large N-terminal globular domain (641 residues), five EGF-like repeats constituting the rod-like domain (248 residues) and a smaller C-terminal globule (328 residues). Two more EGF-like repeats interrupt the N-terminal and terminate the C-terminal sequences. Weak sequence homologies (25%) were detected between some regions of nidogen, the LDL receptor, thyroglobulin and the EGF precursor. Nidogen contains two consensus sequences for tyrosine sulfation and for asparagine beta-hydroxylation, two N-linked carbohydrate acceptor sites and, within one of the EGF-like repeats an Arg-Gly-Asp sequence. The latter was shown to be functional in cell attachment to nidogen. Binding sites for laminin and collagen IV are present on the C-terminal globule but not yet precisely localized. Images PMID:2496973

  16. Jack bean α-mannosidase: amino acid sequencing and N-glycosylation analysis of a valuable glycomics tool.

    PubMed

    Gnanesh Kumar, B S; Pohlentz, Gottfried; Schulte, Mona; Mormann, Michael; Siva Kumar, Nadimpalli

    2014-03-01

    Jack bean (Canavalia ensiformis) seeds contain several biologically important proteins among which α-mannosidase (EC 3.2.1.24) has been purified, its biochemical properties studied and widely used in glycan analysis. In the present study, we have used the purified enzyme and derived its amino acid sequence covering both the known subunits (molecular mass of ∼66,000 and ∼44,000 Da) hitherto not known in its entirety. Peptide de novo sequencing and structural elucidation of N-glycopeptides obtained either directly from proteolytic digestion or after zwitterionic hydrophilic interaction liquid chromatography solid phase extraction-based separation were performed by use of nanoelectrospray ionization quadrupole time-of-flight mass spectrometry and low-energy collision-induced dissociation experiments. De novo sequencing provided new insights into the disulfide linkage organization, intersection of subunits and complete N-glycan structures along with site specificities. The primary sequence suggests that the enzyme belongs to glycosyl hydrolase family 38 and the N-glycan sequence analysis revealed high-mannose oligosaccharides, which were found to be heterogeneous with varying number of hexoses viz, Man8-9GlcNAc2 and Glc1Man9GlcNAc2 in an evolutionarily conserved N-glycosylation site. This site with two proximal cysteines is present in all the acidic α-mannosidases reported so far in eukaryotes. Further, a truncated paucimannose type was identified to be lacking terminal two mannose, Man1(Xyl)GlcNAc2 (Fuc). PMID:24295789

  17. Complete Genome Sequence of Enterococcus mundtii QU 25, an Efficient l-(+)-Lactic Acid-Producing Bacterium

    PubMed Central

    Shiwa, Yuh; Yanase, Hiroaki; Hirose, Yuu; Satomi, Shohei; Araya-Kojima, Tomoko; Watanabe, Satoru; Zendo, Takeshi; Chibazakura, Taku; Shimizu-Kadota, Mariko; Yoshikawa, Hirofumi; Sonomoto, Kenji

    2014-01-01

    Enterococcus mundtii QU 25, a non-dairy bacterial strain of ovine faecal origin, can ferment both cellobiose and xylose to produce l-lactic acid. The use of this strain is highly desirable for economical l-lactate production from renewable biomass substrates. Genome sequence determination is necessary for the genetic improvement of this strain. We report the complete genome sequence of strain QU 25, primarily determined using Pacific Biosciences sequencing technology. The E. mundtii QU 25 genome comprises a 3 022 186-bp single circular chromosome (GC content, 38.6%) and five circular plasmids: pQY182, pQY082, pQY039, pQY024, and pQY003. In all, 2900 protein-coding sequences, 63 tRNA genes, and 6 rRNA operons were predicted in the QU 25 chromosome. Plasmid pQY024 harbours genes for mundticin production. We found that strain QU 25 produces a bacteriocin, suggesting that mundticin-encoded genes on plasmid pQY024 were functional. For lactic acid fermentation, two gene clusters were identified—one involved in the initial metabolism of xylose and uptake of pentose and the second containing genes for the pentose phosphate pathway and uptake of related sugars. This is the first complete genome sequence of an E. mundtii strain. The data provide insights into lactate production in this bacterium and its evolution among enterococci. PMID:24568933

  18. Gastropod arginine kinases from Cellana grata and Aplysia kurodai. Isolation and cDNA-derived amino acid sequences.

    PubMed

    Suzuki, T; Inoue, N; Higashi, T; Mizobuchi, R; Sugimura, N; Yokouchi, K; Furukohri, T

    2000-12-01

    Arginine kinase (AK) was isolated from the radular muscle of the gastropod molluscs Cellana grata (subclass Prosobranchia) and Aplysia kurodai (subclass Opisthobranchia), respectively, by ammonium sulfate fractionation, Sephadex G-75 gel filtration and DEAE-ion exchange chromatography. The denatured relative molecular mass values were estimated to be 40 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated enzyme from Aplysia gave a Km value of 0.6 mM for arginine and a Vmax value of 13 micromole Pi min(-1) mg protein(-1) for the forward reaction. These values are comparable to other molluscan AKs. The cDNAs encoding Cellana and Aplysia AKs were amplified by polymerase chain reaction, and the nucleotide sequences of 1,608 and 1,239 bp, respectively, were determined. The open reading frame for Cellana AK is 1044 nucleotides in length and encodes a protein with 347 amino acid residues, and that for A. kurodai is 1077 nucleotides and 354 residues. The cDNA-derived amino acid sequences were validated by chemical sequencing of internal lysyl endopeptidase peptides. The amino acid sequences of Cellana and Aplysia AKs showed the highest percent identity (66-73%) with those of the abalone Nordotis and turbanshell Battilus belonging to the same class Gastropoda. These AK sequences still have a strong homology (63-71%) with that of the chiton Liolophura (class Polyplacophora), which is believed to be one of the most primitive molluscs. On the other hand, these AK sequences are less homologous (55-57%) with that of the clam Pseudocardium (class Bivalvia), suggesting that the biological position of the class Polyplacophora should be reconsidered. PMID:11281267

  19. Unifying bacteria from decaying wood with various ubiquitous Gibbsiella species as G. acetica sp. nov. based on nucleotide sequence similarities and their acetic acid secretion.

    PubMed

    Geider, Klaus; Gernold, Marina; Jock, Susanne; Wensing, Annette; Völksch, Beate; Gross, Jürgen; Spiteller, Dieter

    2015-12-01

    Bacteria were isolated from necrotic apple and pear tree tissue and from dead wood in Germany and Austria as well as from pear tree exudate in China. They were selected for growth at 37 °C, screened for levan production and then characterized as Gram-negative, facultatively anaerobic rods. Nucleotide sequences from 16S rRNA genes, the housekeeping genes dnaJ, gyrB, recA and rpoB alignments, BLAST searches and phenotypic data confirmed by MALDI-TOF analysis showed that these bacteria belong to the genus Gibbsiella and resembled strains isolated from diseased oaks in Britain and Spain. Gibbsiella-specific PCR primers were designed from the proline isomerase and the levansucrase genes. Acid secretion was investigated by screening for halo formation on calcium carbonate agar and the compound identified by NMR as acetic acid. Its production by Gibbsiella spp. strains was also determined in culture supernatants by GC/MS analysis after derivatization with pentafluorobenzyl bromide. Some strains were differentiated by the PFGE patterns of SpeI digests and by sequence analyses of the lsc and the ppiD genes, and the Chinese Gibbsiella strain was most divergent. The newly investigated bacteria as well as Gibbsiella querinecans, Gibbsiella dentisursi and Gibbsiella papilionis, isolated in Britain, Spain, Korea and Japan, are taxonomically related Enterobacteriaceae, tolerate and secrete acetic acid. We therefore propose to unify them in the species Gibbsiella acetica sp. nov. PMID:26071988

  20. Studies on the high-sulphur proteins of reduced Merino wool. Amino acid sequence of protein SCMKB-IIIB4

    PubMed Central

    Swart, L. S.; Haylett, T.

    1971-01-01

    The complete amino acid sequence of protein SCMKB-IIIB4 is presented. It is closely related to the sequence of protein SCMKB-IIIB3 (Haylett, Swart & Parris, 1971) differing in only four positions. The peptic and thermolysin peptides of protein SCMKB-IIIB4 were analysed by the dansyl–Edman method (Gray, 1967) and by tritium-labelling of C-terminal residues (Matsuo, Fujimoto & Tatsuno, 1966). This protein is the third member of a group of high-sulphur wool proteins with molecular weight of about 11400. It consists of 98 residues and has acetylalanine and carboxymethylcysteine as N- and C-terminal residues respectively. PMID:4942536

  1. A computer program for the estimation of protein and nucleic acid sequence diversity in random point mutagenesis libraries

    PubMed Central

    Volles, Michael J.; Lansbury, Peter T.

    2005-01-01

    A computer program for the generation and analysis of in silico random point mutagenesis libraries is described. The program operates by mutagenizing an input nucleic acid sequence according to mutation parameters specified by the user for each sequence position and type of point mutation. The program can mimic almost any type of random mutagenesis library, including those produced via error-prone PCR (ep-PCR), mutator Escherichia coli strains, chemical mutagenesis, and doped or random oligonucleotide synthesis. The program analyzes the generated nucleic acid sequences and/or the associated protein library to produce several estimates of library diversity (number of unique sequences, point mutations, and single point mutants) and the rate of saturation of these diversities during experimental screening or selection of clones. This information allows one to select the optimal screen size for a given mutagenesis library, necessary to efficiently obtain a certain coverage of the sequence-space. The program also reports the abundance of each specific protein mutation at each sequence position, which is useful as a measure of the level and type of mutation bias in the library. Alternatively, one can use the program to evaluate the relative merits of preexisting libraries, or to examine various hypothetical mutation schemes to determine the optimal method for creating a library that serves the screen/selection of interest. Simulated libraries of at least 109 sequences are accessible by the numerical algorithm with currently available personal computers; an analytical algorithm is also available which can rapidly calculate a subset of the numerical statistics in libraries of arbitrarily large size. A multi-type double-strand stochastic model of ep-PCR is developed in an appendix to demonstrate the applicability of the algorithm to amplifying mutagenesis procedures. Estimators of DNA polymerase mutation-type-specific error rates are derived using the model. Analyses of an

  2. DNA Sequence and Expression Variation of Hop (Humulus lupulus) Valerophenone Synthase (VPS), a Key Gene in Bitter Acid Biosynthesis

    PubMed Central

    Castro, Consuelo B.; Whittock, Lucy D.; Whittock, Simon P.; Leggett, Grey; Koutoulis, Anthony

    2008-01-01

    Background The hop plant (Humulus lupulus) is a source of many secondary metabolites, with bitter acids essential in the beer brewing industry and others having potential applications for human health. This study investigated variation in DNA sequence and gene expression of valerophenone synthase (VPS), a key gene in the bitter acid biosynthesis pathway of hop. Methods Sequence variation was studied in 12 varieties, and expression was analysed in four of the 12 varieties in a series across the development of the hop cone. Results Nine single nucleotide polymorphisms (SNPs) were detected in VPS, seven of which were synonymous. The two non-synonymous polymorphisms did not appear to be related to typical bitter acid profiles of the varieties studied. However, real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis of VPS expression during hop cone development showed a clear link with the bitter acid content. The highest levels of VPS expression were observed in two triploid varieties, ‘Symphony’ and ‘Ember’, which typically have high bitter acid levels. Conclusions In all hop varieties studied, VPS expression was lowest in the leaves and an increase in expression was consistently observed during the early stages of cone development. PMID:18519445

  3. Sequence-based design of bioactive small molecules that target precursor microRNAs

    PubMed Central

    Velagapudi, Sai Pradeep; Gallo, Steven M.; Disney, Matthew D.

    2014-01-01

    Oligonucleotides are designed to target RNA using base pairing rules, however, they are hampered by poor cellular delivery and non-specific stimulation of the immune system. Small molecules are preferred as lead drugs or probes, but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA precursors and identified bioactive small molecules that inhibit biogenesis by binding to nuclease processing sites (41% hit rate). Amongst 29 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Importantly, microRNA profiling shows that 1 only significantly effects microRNA-96 biogenesis and is more selective than an oligonucleotide. PMID:24509821

  4. Sequence-based design of bioactive small molecules that target precursor microRNAs.

    PubMed

    Velagapudi, Sai Pradeep; Gallo, Steven M; Disney, Matthew D

    2014-04-01

    Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide. PMID:24509821

  5. Iterative design of a helically folded aromatic oligoamide sequence for the selective encapsulation of fructose

    NASA Astrophysics Data System (ADS)

    Chandramouli, Nagula; Ferrand, Yann; Lautrette, Guillaume; Kauffmann, Brice; Mackereth, Cameron David; Laguerre, Michel; Dubreuil, Didier; Huc, Ivan

    2015-04-01

    The ab initio design of synthetic molecular receptors for a specific biomolecular guest remains an elusive objective, particularly for targets such as monosaccharides, which have very close structural analogues. Here we report a powerful approach to produce receptors with very high selectivity for specific monosaccharides and, as a demonstration, we develop a foldamer that selectively encapsulates fructose. The approach uses an iterative design process that exploits the modular structure of folded synthetic oligomer sequences in conjunction with molecular modelling and structural characterization to inform subsequent refinements. Starting from a first-principles design taking size, shape and hydrogen-bonding ability into account and using the high predictability of aromatic oligoamide foldamer conformations and their propensity to crystallize, a sequence that binds to β-D-fructopyranose in organic solvents with atomic-scale complementarity was obtained in just a few iterative modifications. This scheme, which mimics the adaptable construction of biopolymers from a limited number of monomer units, provides a general protocol for the development of selective receptors.

  6. The amino acid sequence of protein SCMK-B2A from the high-sulphur fraction of wool keratin

    PubMed Central

    Elleman, T. C.

    1972-01-01

    1. The amino acid sequence of protein SCMK-B2A, a reduced and S-carboxymethylated protein from the high-sulphur fraction of wool, has been determined. 2. This protein of 171 amino acid residues displays both a high degree of internal homology and extensive external homology with other members of the SCMK-B2 group of proteins. 3. Evidence is presented which suggests that the SCMK-B2 group of proteins are produced by separate non-allelic genes. ImagesPLATE 1 PMID:4679226

  7. Sequence-specific DNA binding by long hairpin pyrrole-imidazole polyamides containing an 8-amino-3,6-dioxaoctanoic acid unit.

    PubMed

    Sawatani, Yoshito; Kashiwazaki, Gengo; Chandran, Anandhakumar; Asamitsu, Sefan; Guo, Chuanxin; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-08-15

    With the aim of improving aqueous solubility, we designed and synthesized five N-methylpyrrole (Py)-N-methylimidazole (Im) polyamides capable of recognizing 9-bp sequences. Their DNA-binding affinities and sequence specificities were evaluated by SPR and Bind-n-Seq analyses. The design of polyamide 1 was based on a conventional model, with three consecutive Py or Im rings separated by a β-alanine to match the curvature and twist of long DNA helices. Polyamides 2 and 3 contained an 8-amino-3,6-dioxaoctanoic acid (AO) unit, which has previously only been used as a linker within linear Py-Im polyamides or between Py-Im hairpin motifs for tandem hairpin. It is demonstrated herein that AO also functions as a linker element that can extend to 2-bp in hairpin motifs. Notably, although the AO-containing unit can fail to bind the expected sequence, polyamide 4, which has two AO units facing each other in a hairpin form, successfully showed the expected motif and a KD value of 16nM was recorded. Polyamide 5, containing a β-alanine-β-alanine unit instead of the AO of polyamide 2, was synthesized for comparison. The aqueous solubilities and nuclear localization of three of the polyamides were also examined. The results suggest the possibility of applying the AO unit in the core of Py-Im polyamide compounds. PMID:27301681

  8. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.

    PubMed

    Roy, Subhadeep; Tanious, Farial A; Wilson, W David; Ly, Danith H; Armitage, Bruce A

    2007-09-18

    Guanine-rich DNA and RNA sequences are known to fold into secondary structures known as G-quadruplexes. Recent biochemical evidence along with the discovery of an increasing number of sequences in functionally important regions of the genome capable of forming G-quadruplexes strongly indicates important biological roles for these structures. Thus, molecular probes that can selectively target quadruplex-forming sequences (QFSs) are envisioned as tools to delineate biological functions of quadruplexes as well as potential therapeutic agents. Guanine-rich peptide nucleic acids have been previously shown to hybridize to homologous DNA or RNA sequences forming PNA-DNA (or RNA) quadruplexes. For this paper we studied the hybridization of an eight-mer G-rich PNA to a quadruplex-forming sequence derived from the promoter region of the MYC proto-oncogene. UV melting analysis, fluorescence assays, and surface plasmon resonance experiments reveal that this PNA binds to the MYC QFS in a 2:1 stoichiometry and with an average binding constant Ka = (2.0 +/- 0.2) x 10(8) M(-1) or Kd = 5.0 nM. In addition, experiments carried out with short DNA targets revealed a dependence of the affinity on the sequence of bases in the loop region of the DNA. A structural model for the hybrid quadruplex is proposed, and implications for gene targeting by G-rich PNAs are discussed. PMID:17718513

  9. A knowledge engineering approach to recognizing and extracting sequences of nucleic acids from scientific literature.

    PubMed

    García-Remesal, Miguel; Maojo, Victor; Crespo, José

    2010-01-01

    In this paper we present a knowledge engineering approach to automatically recognize and extract genetic sequences from scientific articles. To carry out this task, we use a preliminary recognizer based on a finite state machine to extract all candidate DNA/RNA sequences. The latter are then fed into a knowledge-based system that automatically discards false positives and refines noisy and incorrectly merged sequences. We created the knowledge base by manually analyzing different manuscripts containing genetic sequences. Our approach was evaluated using a test set of 211 full-text articles in PDF format containing 3134 genetic sequences. For such set, we achieved 87.76% precision and 97.70% recall respectively. This method can facilitate different research tasks. These include text mining, information extraction, and information retrieval research dealing with large collections of documents containing genetic sequences. PMID:21096556

  10. Selective transcriptional regulation by Myc: Experimental design and computational analysis of high-throughput sequencing data

    PubMed Central

    Pelizzola, Mattia; Morelli, Marco J.; Sabò, Arianna; Kress, Theresia R.; de Pretis, Stefano; Amati, Bruno

    2015-01-01

    The gene expression programs regulated by the Myc transcription factor were evaluated by integrated genome-wide profiling of Myc binding sites, chromatin marks and RNA expression in several biological models. Our results indicate that Myc directly drives selective transcriptional regulation, which in certain physiological conditions may indirectly lead to RNA amplification. Here, we illustrate in detail the experimental design concerning the high-throughput sequencing data associated with our study (Sabò et al., Nature. (2014) 511:488–492) and the R scripts used for their computational analysis. PMID:26217715

  11. Sequencing design for BFS engagement. [Backup Flight System for space shuttle computers

    NASA Technical Reports Server (NTRS)

    Jurica, K. E.

    1981-01-01

    The Space Shuttle's avionics system is controlled by five onboard computers, four of which are loaded with the Primary Avionics Software System (PASS), and one of which is loaded with the Backup Flight System (BFS). The Shuttle is nominally controlled by the PASS computers. However, in the event of a PASS generic software failure, the BFS is engaged and assumes control of the Shuttle. The BFS Sequencing System problems presented by the engage requirement and the solutions chosen by the developers are discussed. These solutions constitute a technique which can be applied to the design of any real-time backup system.

  12. Ferredoxin:NADP oxidoreductase of Cyanophora paradoxa: purification, partial characterization, and N-terminal amino acid sequence.

    PubMed

    Gebhart, U B; Maier, T L; Stevanović, S; Bayer, M G; Schenk, H E

    1992-06-01

    The ferredoxin:NADP+ oxidoreductase of the protist Cyanophora paradoxa, as a descendant of a former symbiotic consortium, an important model organism in view of the Endosymbiosis Theory, is the first enzyme purified from a formerly original endocytobiont (cyanelle) that is found to be encoded in the nucleus of the host. This cyanoplast enzyme was isolated by FPLC (19% yield) and characterized with respect to the uv-vis spectrum, pH optimum (pH 9), molecular mass of 34 kDa, and an N-terminal amino acid sequence (24 residues). The enzyme shows, as known from other organisms, molecular heterogeneity. The N-terminus of a further ferredoxin:NADP+ oxidoreductase polypeptide represents a shorter sequence missing the first four amino acids of the mature enzyme. PMID:1392619

  13. Purification, characterization, and amino acid sequencing of a. delta. /sup 5/-3-oxosteroid isomerase from Pseudomonas putida biotype B

    SciTech Connect

    Linden, K.G.

    1986-01-01

    Studies were performed on the ..delta../sup 5/-3-oxosteroid isomerase from Pseudomonas putida biotype B. The studies have involved three broad areas: improvement in the purification of the enzyme, further characterization of the purified enzyme, and completion of the amino acid sequence of the enzyme. For the purification of the enzyme, techniques for removing the isomerase from whole cells were studied, the effects of ionic strength on the binding of the isomerase to steroidal affinity resins was explored, and a new affinity resin was developed. Absorption spectra and the proton NMR spectra of the isomerase were obtained. Amino acid sequencing of the oxosteroid isomerase indicates that the enzyme is a dimeric protein consisting of two identical subunits each consisting of a polypeptide chain of 131 residues and a M/sub r/ = 14,536.

  14. Identification of novel rice low phytic acid mutations via TILLING by sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6) accounts for 75-85% of the total phosphorus in seeds. Low phytic acid (lpa) mutants exhibit decreases in seed InsP6 with corresponding increases in inorganic P which, unlike phytic acid P, is readily utilized by humans and monogastric ...

  15. Robust design of an optical router based on a tapered side-coupled integrated spaced sequence of optical resonators.

    PubMed

    Bettotti, P; Mancinelli, M; Guider, R; Masi, M; Vanacharla, M Rao; Pavesi, L

    2011-04-15

    A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency. PMID:21499394

  16. Designing a Bioengine for Detection and Analysis of Base String on an Affected Sequence in High-Concentration Regions

    PubMed Central

    Mandal, Bijoy Kumar; Kim, Tai-hoon

    2013-01-01

    We design an Algorithm for bioengine. As a program are enable optimal alignments searching between two sequences, the host sequence (normal plant) as well as query sequence (virus). Searching for homologues has become a routine operation of biological sequences in 4 × 4 combination with different subsequence (word size). This program takes the advantage of the high degree of homology between such sequences to construct an alignment of the matching regions. There is a main aim which is to detect the overlapping reading frames. This program also enables to find out the highly infected colones selection highest matching region with minimum gap or mismatch zones and unique virus colones matches. This is a small, portable, interactive, front-end program intended to be used to find out the regions of matching between host sequence and query subsequences. All the operations are carried out in fraction of seconds, depending on the required task and on the sequence length. PMID:24000321

  17. Snake venoms. The amino-acid sequence of trypsin inhibitor E of Dendroaspis polylepis polylepis (Black Mamba) venom.

    PubMed

    Joubert, F J; Strydom, D J

    1978-06-01

    Trypsin inhibitor E from black mamba venom comprises 59 amino acid residues in a single polypeptide chain, cross-linked by three intrachain disulphide bridges. The complete primary structure of inhibitor E was elucidated. The sequence is homologous with trypsin inhibitors from different sources. Unique among this homologous series of proteinase inhibitors, inhibitor E has an affinity for transition metal ions, exemplified here by Cu2 and Co2+. PMID:668688

  18. Draft Genome Sequence of Escherichia coli Strain VKPM B-10182, Producing the Enzyme for Synthesis of Cephalosporin Acids

    PubMed Central

    Mardanov, Andrey V.; Eldarov, Mikhail A.; Sklyarenko, Anna V.; Dumina, Maria V.; Beletsky, Alexey V.; Yarotsky, Sergey V.

    2014-01-01

    Escherichia coli strain VKPM B-10182, obtained by chemical mutagenesis from E. coli strain ATCC 9637, produces cephalosporin acid synthetase employed in the synthesis of β-lactam antibiotics, such as cefazolin. The draft genome sequence of strain VKPM B-10182 revealed 32 indels and 1,780 point mutations that might account for the improvement in antibiotic synthesis that we observed. PMID:25414512

  19. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing

    PubMed Central

    Hodges, Emily; Rooks, Michelle; Xuan, Zhenyu; Bhattacharjee, Arindam; Gordon, D Benjamin; Brizuela, Leonardo; McCombie, W Richard; Hannon, Gregory J

    2010-01-01

    Complementary techniques that deepen information content and minimize reagent costs are required to realize the full potential of massively parallel sequencing. Here, we describe a resequencing approach that directs focus to genomic regions of high interest by combining hybridization-based purification of multi-megabase regions with sequencing on the Illumina Genome Analyzer (GA). The capture matrix is created by a microarray on which probes can be programmed as desired to target any non-repeat portion of the genome, while the method requires only a basic familiarity with microarray hybridization. We present a detailed protocol suitable for 1–2 µg of input genomic DNA and highlight key design tips in which high specificity (>65% of reads stem from enriched exons) and high sensitivity (98% targeted base pair coverage) can be achieved. We have successfully applied this to the enrichment of coding regions, in both human and mouse, ranging from 0.5 to 4 Mb in length. From genomic DNA library production to base-called sequences, this procedure takes approximately 9–10 d inclusive of array captures and one Illumina flow cell run. PMID:19478811

  20. Design of CID-Cleavable Protein Cross-linkers: Identical Mass Modifications for Simpler Sequence Analysis

    PubMed Central

    Kandur, Wynne V.; Kao, Athit; Vellucci, Danielle; Huang, Lan; Rychnovsky, Scott D.

    2015-01-01

    The cross-linking Mass Spectrometry (XL-MS) technique has enormous potential for studying the interactions between proteins, and it can provide detailed structural information about the interaction interfaces in large protein complexes. Such information has been difficult to obtain by conventional structural methods. One of the primary impediments to the wider use of the XL-MS technique is the extreme challenge in sequencing cross-linked peptides because of their complex fragmentation patterns in MS. A recent innovation is the development of MS-cleavable cross-linkers, which allows direct sequencing of component peptides for facile identification. Sulfoxides are an intriguing class of thermally-cleavable compounds that have been shown to fragment selectively during low-energy collisional induced dissociation (CID) analysis. Current CID-cleavable cross-linkers create fragmentation patterns in MS2 of multiple peaks for each cross-linked peptide. Reducing the complexity of the fragmentation pattern in MS2 facilitates subsequent MS3 sequencing of the cross-linked peptides. The first authentic identical mass linker (IML) has now been designed, prepared, and evaluated. Multistage tandem mass spectrometry (MSn) analysis has demonstrated that the IML cross-linked peptides indeed yield one peak per peptide constituent in MS2 as predicted, thus allowing effective and sensitive MS3 analysis for unambiguous identification. Selective fragmentation for IML cross-linked peptides from the 19S proteasome complex was observed, providing a proof-of-concept demonstration for XL-MS studies on protein complexes. PMID:26269432

  1. BARCRAWL and BARTAB: software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing

    PubMed Central

    Frank, Daniel N

    2009-01-01

    Background Advances in automated DNA sequencing technology have greatly increased the scale of genomic and metagenomic studies. An increasingly popular means of increasing project throughput is by multiplexing samples during the sequencing phase. This can be achieved by covalently linking short, unique "barcode" DNA segments to genomic DNA samples, for instance through incorporation of barcode sequences in PCR primers. Although several strategies have been described to insure that barcode sequences are unique and robust to sequencing errors, these have not been integrated into the overall primer design process, thus potentially introducing bias into PCR amplification and/or sequencing steps. Results Barcrawl is a software program that facilitates the design of barcoded primers, for multiplexed high-throughput sequencing. The program bartab can be used to deconvolute DNA sequence datasets produced by the use of multiple barcoded primers. This paper describes the functions implemented by barcrawl and bartab and presents a proof-of-concept case study of both programs in which barcoded rRNA primers were designed and validated by high-throughput sequencing. Conclusion Barcrawl and bartab can benefit researchers who are engaged in metagenomic projects that employ multiplexed specimen processing. The source code is released under the GNU general public license and can be accessed at . PMID:19874596

  2. First draft genome sequencing of indole acetic acid producing and plant growth promoting fungus Preussia sp. BSL10.

    PubMed

    Khan, Abdul Latif; Asaf, Sajjad; Khan, Abdur Rahim; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2016-05-10

    Preussia sp. BSL10, family Sporormiaceae, was actively producing phytohormone (indole-3-acetic acid) and extra-cellular enzymes (phosphatases and glucosidases). The fungus was also promoting the growth of arid-land tree-Boswellia sacra. Looking at such prospects of this fungus, we sequenced its draft genome for the first time. The Illumina based sequence analysis reveals an approximate genome size of 31.4Mbp for Preussia sp. BSL10. Based on ab initio gene prediction, total 32,312 coding sequences were annotated consisting of 11,967 coding genes, pseudogenes, and 221 tRNA genes. Furthermore, 321 carbohydrate-active enzymes were predicted and classified into many functional families. PMID:26995610

  3. A simple ligation-based method to increase the information density in sequencing reactions used to deconvolute nucleic acid selections

    PubMed Central

    Childs-Disney, Jessica L.; Disney, Matthew D.

    2008-01-01

    Herein, a method is described to increase the information density of sequencing experiments used to deconvolute nucleic acid selections. The method is facile and should be applicable to any selection experiment. A critical feature of this method is the use of biotinylated primers to amplify and encode a BamHI restriction site on both ends of a PCR product. After amplification, the PCR reaction is captured onto streptavidin resin, washed, and digested directly on the resin. Resin-based digestion affords clean product that is devoid of partially digested products and unincorporated PCR primers. The product's complementary ends are annealed and ligated together with T4 DNA ligase. Analysis of ligation products shows formation of concatemers of different length and little detectable monomer. Sequencing results produced data that routinely contained three to four copies of the library. This method allows for more efficient formulation of structure-activity relationships since multiple active sequences are identified from a single clone. PMID:18065718

  4. A novel T-cell-defined HLA-DR polymorphism not predicted from the linear amino acid sequence.

    PubMed

    Termijtelen, A; van den Elsen, P; Koning, F; de Koster, S; Schroeijers, W; Vanderkerckhove, B

    1989-09-01

    Recent investigations have shown that alloreactive T cells are capable of responding to structures defined by specific linear amino acid sequences on class II molecules. In the present study we show that also a polymorphism can be recognized that is not defined by such linear amino acid sequences. Two human T-cell clones, sensitized to DRw13 haplotypes, are described. The description of clone c50 serves to exemplify the first model. This DRB1-specific clone responds to stimulator cells that carry DR molecules, different in their DRB1 first and second hypervariable regions (HV1 and HV2) but identical in their HV3 regions (i.e., DRw13,Dw18; DRw13,Dw19; DR4,Dw10; and DRw11,LDVII). The second clone, c1443, behaves nonconventionally. It responds to DRw13,Dw18; DRw13,Dw19; and DR4,Dw4 stimulator cells, although no specific amino acid sequence is shared between these specificities. The latter pattern of reactivity suggests the existence of a novel polymorphism recognized by alloreactive T cells. This particular polymorphism may also be biologically significant. PMID:2476425

  5. cDNA-derived amino-acid sequence of a land turtle (Geochelone carbonaria) beta-chain hemoglobin.

    PubMed

    Bordin, S; Meza, A N; Saad, S T; Ogo, S H; Costa, F F

    1997-06-01

    The cDNA sequence encoding the turtle Geochelone carbonaria beta-chain was determinated. The isolation of hemoglobin mRNA was based on degenerate primers' PCR in combination with 5'- and 3'-RACE protocol. The full length cDNA is 615 bp with the ATG start codon at position 53 and TGA stop codon at position 495; The AATAAA polyadenylation signal is found at position 599. The deduced polypeptyde contains 146 amino-acid residues. The predicted amino acid sequence shares 83% identity with the beta-globin of a related specie, the aquatic turtle C. p. belli. Otherwise, identity is higher when compared with chicken beta-Hb (80%) than with other reptilian orders (Squamata, 69%, and Crocodilia, 61%). Compared with human HbA, there is 67% identity, and at least three amino acid substitutions could be of some functional significance (Glu43 beta-->Ser, His116 beta-->Thr and His143 beta-->Leu). To our knowledge this represents the first cDNA sequence of a reptile globin gene described. PMID:9238523

  6. Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA.

    PubMed

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1988-09-01

    We report the isolation of cDNA clones for a Plasmodium falciparum gene that encodes the complete amino acid sequence of a previously identified exported blood stage antigen. The Mr of this antigen protein had been determined by sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis, by different workers, to be 113,000, 126,000, and 140,000. We show, by cDNA nucleotide sequence analysis, that this antigen gene encodes a 989 amino acid protein (111 kDa) that contains a potential signal peptide, but not a membrane anchor domain. In the FCR3 strain the serine content of the protein was 11%, of which 57% of the serine residues were localized within a 201 amino acid sequence that included 35 consecutive serine residues. The protein also contained three possible N-linked glycosylation sites and numerous possible O-linked glycosylation sites. The mRNA was abundant during late trophozoite-schizont parasite stages. We propose to identity this antigen, which had been called p126, by the acronym SERA, serine-repeat antigen, based on its complete structure. The usefulness of the cloned cDNA as a source of a possible malaria vaccine is considered in view of the previously demonstrated ability of the antigen to induce parasite-inhibitory antibodies and a protective immune response in Saimiri monkeys. PMID:2847041

  7. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  8. Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family.

    PubMed

    Ito, Y; Yoshikawa, A; Hotani, T; Fukuda, S; Sugimura, K; Imoto, T

    1999-01-01

    Lysozymes were purified from three invertebrates: a marine bivalve, a marine conch, and an earthworm. The purified lysozymes all showed a similar molecular weight of 13 kDa on SDS/PAGE. Their N-terminal sequences up to the 33rd residue determined here were apparently homologous among them; in addition, they had a homology with a partial sequence of a starfish lysozyme which had been reported before. The complete sequence of the bivalve lysozyme was determined by peptide mapping and subsequent sequence analysis. This was composed of 123 amino acids including as many as 14 cysteine residues and did not show a clear homology with the known types of lysozymes. However, the homology search of this protein on the protein or nucleic acid database revealed two homologous proteins. One of them was a gene product, CELF22 A3.6 of C. elegans, which was a functionally unknown protein. The other was an isopeptidase of a medicinal leech, named destabilase. Thus, a new type of lysozyme found in at least four species across the three classes of the invertebrates demonstrates a novel class of protein/lysozyme family in invertebrates. The bivalve lysozyme, first characterized here, showed extremely high protein stability and hen lysozyme-like enzymatic features. PMID:9914527

  9. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance

    PubMed Central

    Baranzoni, Gian Marco; Reichenberger, Erin R.; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  10. Complete Genome Sequences of Escherichia coli O157:H7 Strains SRCC 1675 and 28RC, Which Vary in Acid Resistance.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Reichenberger, Erin R; Kim, Gwang-Hee; Breidt, Frederick; Kay, Kathryn; Oh, Deog-Hwan

    2016-01-01

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented here. PMID:27469964

  11. Complete genome sequences of Escherichia coli O157:H7 strains SRCC 1675 and 28RC that vary in acid resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The level of acid resistance among Escherichia coli O157:H7 strains varies, and strains with higher resistance to acid may have a lower infectious dose. The complete genome sequences belonging to two strains of Escherichia coli O157:H7 with different levels of acid resistance are presented....

  12. Comparative studies on tree pollen allergens. X. Further purification and N-terminal amino acid sequence analyses of the major allergen of birch pollen (Betula verrucosa).

    PubMed

    Vik, H; Elsayed, S

    1986-01-01

    The previously isolated major allergen of birch pollen (fraction BV45), Int. Archs Allergy appl. Immun. 68: 70-78 (1982), was further purified by recycling chromatography. The purified preparation was run on a high-performance liquid chromatography (HPLC) TSK-G-2000 gel filtration chromatography column and, finally, on paper high-volt electrophoresis. The protein recovered met the homogeneity criteria required for performing the N-terminal sequence analysis. The allergenic and antigenic reactivities of the HPLC-purified protein, designated BV45B, was examined. A single homogeneous precipitation line in crossed immunoelectrophoresis (CIE) was shown. Specific IgE-inhibition tests and immuno-autoradiographic prints indicated that this allergen could bind reaginic IgE specificially and with good affinity. The homogeneity of BV45B was examined by isoelectric focusing (IEF). Several minor bands of pI differences of less than 0.1 units were visible, demonstrating the existence of some molecular variants of this protein. The N-terminal sequence analysis of the molecule was performed, and the following four amino acids were tentatively shown by sequential cleavage: NH2-Ala-Gly-Ile-Val-. The demonstration of one dominant N-terminal 1-dimethyl-amino-5-naphthalene sulphonyl (DNS)-amino acid by polyamide thin-layer chromatography at each sequence step confirmed that the N-terminal residue of the protein was not blocked; the heterogeneity shown by the IEF system was merely due to the presence of several homologous polymorphic proteins with identical N-terminal amino acid, the adequacy of the purification repertoire used. PMID:3957444

  13. Isolation, characterization, and amino acid sequences of auracyanins, blue copper proteins from the green photosynthetic bacterium Chloroflexus aurantiacus

    NASA Technical Reports Server (NTRS)

    McManus, J. D.; Brune, D. C.; Han, J.; Sanders-Loehr, J.; Meyer, T. E.; Cusanovich, M. A.; Tollin, G.; Blankenship, R. E.

    1992-01-01

    Three small blue copper proteins designated auracyanin A, auracyanin B-1, and auracyanin B-2 have been isolated from the thermophilic green gliding photosynthetic bacterium Chloroflexus aurantiacus. All three auracyanins are peripheral membrane proteins. Auracyanin A was described previously (Trost, J. T., McManus, J. D., Freeman, J. C., Ramakrishna, B. L., and Blankenship, R. E. (1988) Biochemistry 27, 7858-7863) and is not glycosylated. The two B forms are glycoproteins and have almost identical properties to each other, but are distinct from the A form. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis apparent monomer molecular masses are 14 (A), 18 (B-2), and 22 (B-1) kDa. The amino acid sequences of the B forms are presented. All three proteins have similar absorbance, circular dichroism, and resonance Raman spectra, but the electron spin resonance signals are quite different. Laser flash photolysis kinetic analysis of the reactions of the three forms of auracyanin with lumiflavin and flavin mononucleotide semiquinones indicates that the site of electron transfer is negatively charged and has an accessibility similar to that found in other blue copper proteins. Copper analysis indicates that all three proteins contain 1 mol of copper per mol of protein. All three auracyanins exhibit a midpoint redox potential of +240 mV. Light-induced absorbance changes and electron spin resonance signals suggest that auracyanin A may play a role in photosynthetic electron transfer. Kinetic data indicate that all three proteins can donate electrons to cytochrome c-554, the electron donor to the photosynthetic reaction center.

  14. Rational design, synthesis, and DNA binding properties of novel sequence-selective peptidyl congeners of ametantrone.

    PubMed

    Gianoncelli, Alessandra; Basili, Serena; Scalabrin, Matteo; Sosic, Alice; Moro, Stefano; Zagotto, Giuseppe; Palumbo, Manlio; Gresh, Nohad; Gatto, Barbara

    2010-07-01

    Natural and synthetic compounds characterized by an anthraquinone nucleus represent an important class of anti-neoplastic agents, the mechanism of action of which is related to intercalation into DNA. Ametantrone (AM) is a synthetic 9,10-anthracenedione bearing two (hydroxyethylamino)ethylamino residues at positions 1 and 4; along with other anthraquinones and anthracyclines, it shares a polycyclic intercalating moiety and charged side chains that stabilize DNA binding. All these drugs elicit adverse side effects, which represent a challenge for antitumor chemotherapy. In the present work the structure of AM was augmented with appropriate groups that target well-defined base pairs in the major groove. These should endow AM with DNA sequence selectivity. We describe the rationale for the synthesis and the evaluation of activity of a new series of compounds in which the planar anthraquinone is conjugated at positions 1 and 4 through the side chains of AM or other bioisosteric linkers to appropriate dipeptides. The designed novel AM derivatives were shown to selectively stabilize two oligonucleotide duplexes that both have a palindromic GC-rich hexanucleotide core, but their stabilizing effects on a random DNA sequence was negligible. In the case of the most effective compound, the 1,4-bis-[Gly-(L-Lys)] derivative of AM, the experimental results confirm the predictions of earlier theoretical computations. In contrast, AM had equal stabilizing effects on all three sequences and showed no preferential binding. This novel peptide derivative can be classified as a strong binder regarding the sequences that it selectively targets, possibly opening the exploitation of less cytotoxic conjugates of AM to the targeted treatment of oncological and viral diseases. PMID:20458714

  15. Fad7 gene identification and fatty acids phenotypic variation in an olive collection by EcoTILLING and sequencing approaches.

    PubMed

    Sabetta, Wilma; Blanco, Antonio; Zelasco, Samanta; Lombardo, Luca; Perri, Enzo; Mangini, Giacomo; Montemurro, Cinzia

    2013-08-01

    The ω-3 fatty acid desaturases (FADs) are enzymes responsible for catalyzing the conversion of linoleic acid to α-linolenic acid localized in the plastid or in the endoplasmic reticulum. In this research we report the genotypic and phenotypic variation of Italian Olea europaea L. germoplasm for the fatty acid composition. The phenotypic oil characterization was followed by the molecular analysis of the plastidial-type ω-3 FAD gene (fad7) (EC 1.14.19), whose full-length sequence has been here identified in cultivar Leccino. The gene consisted of 2635 bp with 8 exons and 5'- and 3'-UTRs of 336 and 282 bp respectively, and showed a high level of heterozygousity (1/110 bp). The natural allelic variation was investigated both by a LiCOR EcoTILLING assay and the PCR product direct sequencing. Only three haplotypes were identified among the 96 analysed cultivars, highlighting the strong degree of conservation of this gene. PMID:23685785

  16. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder

    PubMed Central

    Estévez-Torres, André; Crozatier, Cécile; Diguet, Antoine; Hara, Tomoaki; Saito, Hirohide; Yoshikawa, Kenichi; Baigl, Damien

    2009-01-01

    To understand non-trivial biological functions, it is crucial to develop minimal synthetic models that capture their basic features. Here, we demonstrate a sequence-independent, reversible control of transcription and gene expression using a photosensitive nucleic acid binder (pNAB). By introducing a pNAB whose affinity for nucleic acids is tuned by light, in vitro RNA production, EGFP translation, and GFP expression (a set of reactions including both transcription and translation) were successfully inhibited in the dark and recovered after a short illumination at 365 nm. Our results indicate that the accessibility of the protein machinery to one or several nucleic acid binding sites can be efficiently regulated by changing the conformational/condensation state of the nucleic acid (DNA conformation or mRNA aggregation), thus regulating gene activity in an efficient, reversible, and sequence-independent manner. The possibility offered by our approach to use light to trigger various gene expression systems in a system-independent way opens interesting perspectives to study gene expression dynamics as well as to develop photocontrolled biotechnological procedures. PMID:19617550

  17. Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage

    PubMed Central

    Ebhardt, H Alexander; Nan, Jie; Chaulk, Steven G; Fahlman, Richard P; Aebersold, Ruedi

    2014-01-01

    RATIONALE Tandem mass (MS/MS) spectra generated by collision-induced dissociation (CID) typically lack redundant peptide sequence information in the form of e.g. b- and y-ion series due to frequent use of sequence-specific endopeptidases cleaving C- or N-terminal to Arg or Lys residues. METHODS Here we introduce arginyl-tRNA protein transferase (ATE, EC 2.3.2.8) for proteomics. ATE recognizes acidic amino acids or oxidized Cys at the N-terminus of a substrate peptide and conjugates an arginine from an aminoacylated tRNAArg onto the N-terminus of the substrate peptide. This enzymatic reaction is carried out under physiological conditions and, in combination with Lys-C/Asp-N double digest, results in arginylated peptides with basic amino acids on both termini. RESULTS We demonstrate that in vitro arginylation of peptides using yeast arginyl tRNA protein transferase 1 (yATE1) is a robust enzymatic reaction, specific to only modifying N-terminal acidic amino acids. Precursors originating from arginylated peptides generally have an increased protonation state compared with their non-arginylated forms. Furthermore, the product ion spectra of arginylated peptides show near complete 2× fragment ladders within the same MS/MS spectrum using commonly available electrospray ionization peptide fragmentation modes. Unexpectedly, arginylated peptides generate complete y- and c-ion series using electron transfer dissociation (ETD) despite having an internal proline residue. CONCLUSIONS We introduce a rapid enzymatic method to generate peptides flanked on either terminus by basic amino acids, resulting in a rich, redundant MS/MS fragment pattern. © 2014 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:25380496

  18. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms. PMID:2695392

  19. Biological sulfuric acid transformation: Reactor design and process optimization.

    PubMed

    Stucki, G; Hanselmann, K W; Hürzeler, R A

    1993-02-01

    As an alternative to the current disposal technologies for waste sulfuric acid, a new combination of recycling processes was developed. The strong acid (H(2)SO(4)) is biologically converted with the weak acid (CH(3)COOH) into two volatile weak acids (H(2)S, H(2)CO(3)) by sulfate-reducing bacteria. The transformation is possible without prior neutralization of the sulfuric acid. The microbially mediated transformation can be followed by physiochemical processes for the further conversion of the H(2)S.The reduction of sulfate to H(2)S is carried out under carbon-limited conditions at pH 7.5 to 8.5. A fixed-bed biofilm column reactor is used in conjunction with a separate gas-stripping column which was installed in the recycle stream. Sulfate, total sulfide, and the carbon substrate (in most cases acetate) were determined quantitatively. H(2)S and CO(2) are continually removed by stripping with N(2). Optimal removal is achieved under pH conditions which are adjusted to values below the pK(a)-values of the acids. The H(2)S concentration in the stripped gas was 2% to 8% (v/v) if H(2)SO(4) and CH(3)COOH are fed to the recycle stream just before the stripping column.Microbiol conversion rates of 65 g of sulfate reduced per liter of bioreactor volume per day are achieved and bacterial conversion efficiencies for sulfate of more than 95% can be maintained if the concentration of undissociated H(2)S is kept below 40 to 50 mg/L. Porous glass spheres, lava beads, and polyurethane pellets are useful matrices for the attachment of the bacterial biomass. Theoretical aspects and the dependence of the overall conversion performance on selected process parameters are illustrated in the Appendix to this article. PMID:18609554

  20. Complete amino acid sequence of human plasma Zn-. cap alpha. /sub 2/-glycoprotein and its homology to histocompatibility antigens

    SciTech Connect

    Araki, T.; Gejyo, F.; Takagaki, K.; Haupt, H.; Schwick, H.G.; Buergi, W.; Marti, T.; Schaller, J.; Rickli, E.; Brossmer, R.

    1988-02-01

    In the present study the complete amino acid sequence of human plasma Zn-..cap alpha../sub 2/-glycoprotein was determined. This protein whose biological function is unknown consists of a single polypeptide chain of 276 amino acid residues including 8 tryptophan residues and has a pyroglutamyl residue at the amino terminus. The location of the two disulfide bonds in the polypeptide chain was also established. The three glycans, whose structure was elucidated with the aid of 500 MHz /sup 1/H NMR spectroscopy, were sialylated N-biantennas. The molecular weight calculated from the polypeptide and carbohydrate structure is 38,478, which is close to the reported value of approx. = 41,000 based on physicochemical measurements. The predicted secondary structure appeared to comprised of 23% ..cap alpha..-helix, 27% ..beta..-sheet, and 22% ..beta..-turns. The three N-glycans were found to be located in ..beta..-turn regions. An unexpected finding was made by computer analysis of the sequence data; this revealed that Zn-..cap alpha../sub 2/-glycoprotein is closely related to antigens of the major histocompatibility complex in amino acid sequence and in domain structure. There was an unusually high degree of sequence homology with the ..cap alpha.. chains of class I histocompatibility antigens. Moreover, this plasma protein was shown to be a member of the immunoglobulin gene superfamily. Zn-..cap alpha../sub 2/-glycoprotein appears to be truncated secretory major histocompatibility complex-related molecule, and it may have a role in the expression of the immune response.

  1. ENTPRISE: An Algorithm for Predicting Human Disease-Associated Amino Acid Substitutions from Sequence Entropy and Predicted Protein Structures

    PubMed Central

    Zhou, Hongyi; Gao, Mu; Skolnick, Jeffrey

    2016-01-01

    The advance of next-generation sequencing technologies has made exome sequencing rapid and relatively inexpensive. A major application of exome sequencing is the identification of genetic variations likely to cause Mendelian diseases. This requires processing large amounts of sequence information and therefore computational approaches that can accurately and efficiently identify the subset of disease-associated variations are needed. The accuracy and high false positive rates of existing computational tools leave much room for improvement. Here, we develop a boosted tree regression machine-learning approach to predict human disease-associated amino acid variations by utilizing a comprehensive combination of protein sequence and structure features. On comparing our method, ENTPRISE, to the state-of-the-art methods SIFT, PolyPhen-2, MUTATIONASSESSOR, MUTATIONTASTER, FATHMM, ENTPRISE exhibits significant improvement. In particular, on a testing dataset consisting of only proteins with balanced disease-associated and neutral variations defined as having the ratio of neutral/disease-associated variations between 0.3 and 3, the Mathews Correlation Coefficient by ENTPRISE is 0.493 as compared to 0.432 by PPH2-HumVar, 0.406 by SIFT, 0.403 by MUTATIONASSESSOR, 0.402 by PPH2-HumDiv, 0.305 by MUTATIONTASTER, and 0.181 by FATHMM. ENTPRISE is then applied to nucleic acid binding proteins in the human proteome. Disease-associated predictions are shown to be highly correlated with the number of protein-protein interactions. Both these predictions and the ENTPRISE server are freely available for academic users as a web service at http://cssb.biology.gatech.edu/entprise/. PMID:26982818

  2. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  3. Fatty acid profile and Unigene-derived simple sequence repeat markers in tung tree (Vernicia fordii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tung tree (Vernicia fordii) provides the sole source of tung oil widely used in industry. Lack of fatty acid composition and molecular markers hinders biochemical, genetic and breeding research. The objectives of this study were to determine fatty acid profiles and develop unigene-derived simple se...

  4. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of WIPO... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid...

  5. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of WIPO... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false Nucleotide and/or amino acid... Biotechnology Invention Disclosures Application Disclosures Containing Nucleotide And/or Amino Acid...

  6. "De-novo" amino acid sequence elucidation of protein G'e by combined "Top-Down" and "Bottom-Up" mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F. M.; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L.; Glocker, Michael O.

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein Ǵ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α- N-gluconoylation and α- N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α- N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant ( K d ) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  7. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins. PMID:25560987

  8. Design of CID-cleavable protein cross-linkers: identical mass modifications for simpler sequence analysis.

    PubMed

    Kandur, Wynne V; Kao, Athit; Vellucci, Danielle; Huang, Lan; Rychnovsky, Scott D

    2015-10-14

    The cross-linking Mass Spectrometry (XL-MS) technique has enormous potential for studying the interactions between proteins, and it can provide detailed structural information about the interaction interfaces in large protein complexes. Such information has been difficult to obtain by conventional structural methods. One of the primary impediments to the wider use of the XL-MS technique is the extreme challenge in sequencing cross-linked peptides because of their complex fragmentation patterns in MS. A recent innovation is the development of MS-cleavable cross-linkers, which allows direct sequencing of component peptides for facile identification. Sulfoxides are an intriguing class of thermally-cleavable compounds that have been shown to fragment selectively during low-energy collisional induced dissociation (CID) analysis. Current CID-cleavable cross-linkers create fragmentation patterns in MS(2) of multiple peaks for each cross-linked peptide. Reducing the complexity of the fragmentation pattern in MS(2) facilitates subsequent MS(3) sequencing of the cross-linked peptides. The first authentic identical mass linker (IML) has now been designed, prepared, and evaluated. Multistage tandem mass spectrometry (MS(n)) analysis has demonstrated that the IML cross-linked peptides indeed yield one peak per peptide constituent in MS(2) as predicted, thus allowing effective and sensitive MS(3) analysis for unambiguous identification. Selective fragmentation for IML cross-linked peptides from the 19S proteasome complex was observed, providing a proof-of-concept demonstration for XL-MS studies on protein complexes. PMID:26269432

  9. Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation.

    PubMed

    Daughdrill, Gary W; Narayanaswami, Pranesh; Gilmore, Sara H; Belczyk, Agniezka; Brown, Celeste J

    2007-09-01

    Proteins or regions of proteins that do not form compact globular structures are classified as intrinsically unstructured proteins (IUPs). IUPs are common in nature and have essential molecular functions, but even a limited understanding of the evolution of their dynamic behavior is lacking. The primary objective of this work was to test the evolutionary conservation of dynamic behavior for a particular class of IUPs that form intrinsically unstructured linker domains (IULD) that tether flanking folded domains. This objective was accomplished by measuring the backbone flexibility of several IULD homologues using nuclear magnetic resonance (NMR) spectroscopy. The backbone flexibility of five IULDs, representing three kingdoms, was measured and analyzed. Two IULDs from animals, one IULD from fungi, and two IULDs from plants showed similar levels of backbone flexibility that were consistent with the absence of a compact globular structure. In contrast, the amino acid sequences of the IULDs from these three taxa showed no significant similarity. To investigate how the dynamic behavior of the IULDs could be conserved in the absence of detectable sequence conservation, evolutionary rate studies were performed on a set of nine mammalian IULDs. The results of this analysis showed that many sites in the IULD are evolving neutrally, suggesting that dynamic behavior can be maintained in the absence of natural selection. This work represents the first experimental test of the evolutionary conservation of dynamic behavior and demonstrates that amino acid sequence conservation is not required for the conservation of dynamic behavior and presumably molecular function. PMID:17721672

  10. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores.

    PubMed Central

    Connors, M J; Mason, J M; Setlow, P

    1986-01-01

    Three Bacillus subtilis genes (termed sspA, sspB, and sspD) which code for small, acid-soluble spore proteins (SASPs) have been cloned, and their complete nucleotide sequence has been determined. The amino acid sequences of the SASPs coded for by these genes are similar to each other and to those of the SASP-1 of B. subtilis (coded for by the sspC gene) and the SASP-A/C family of B. megaterium. The sspA and sspB genes are expressed only in sporulation, in parallel with each other and with the sspC gene. Two regions upstream of the postulated transcription start sites for the sspA and B genes have significant homology with the analogous regions of the sspC gene and the SASP-A/C gene family. Purification of two of the three major B, subtilis SASPs (alpha and beta) and determination of their amino-terminal sequences indicated that the sspA gene codes for SASP-alpha and that the sspB gene codes for SASP-beta. This was confirmed by the introduction of deletion mutations into the cloned sspA and sspB genes and transfer of these deletions into the B. subtilis chromosome with concomitant loss of the wild-type gene. Images PMID:3009398

  11. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli.

    PubMed Central

    DiRusso, C C

    1988-01-01

    The Escherichia coli fadR gene is a multifunctional regulator of fatty acid and acetate metabolism. In the present work the nucleotide sequence of the 1.3 kb DNA fragment which encodes FadR has been determined. The coding sequence of the fadR gene is 714 nucleotides long and is preceded by a typical E. coli ribosome binding site and is followed by a sequence predicted to be sufficient for factor-independent chain termination. Primer extension experiments demonstrated that the transcription of the fadR gene initiates with an adenine nucleotide 33 nucleotides upstream from the predicted start of translation. The derived fadR peptide has a calculated molecular weight of 26,972. This is in reasonable agreement with the apparent molecular weight of 29,000 previously estimated on the basis of maxi-cell analysis of plasmid encoded proteins. There is a segment of twenty amino acids within the predicted peptide which resembles the DNA recognition and binding site of many transcriptional regulatory proteins. Images PMID:2843809

  12. The amino acid sequence of protein SCMK-B2C from the high-sulphur fraction of wool keratin

    PubMed Central

    Elleman, T. C.

    1972-01-01

    1. The amino acid sequence of a protein from the reduced and carboxymethylated high-sulphur fraction of wool has been determined. 2. The sequence of this S-carboxymethylkerateine (SCMK-B2C) of 151 amino acid residues displays much internal homology and an unusual residue distribution. Thus a ten-residue sequence occurs four times near the N-terminus and five times near the C-terminus with few changes. These regions contain much of the molecule's half-cystine, whereas between them there is a region of 19 residues that are mainly small and devoid of cystine and proline. 3. Certain models of the wool fibre based on its mechanical and physical properties propose a matrix of small compact globular units linked together to form beaded chains. The unusual distribution of the component residues of protein SCMK-B2C suggests structures in the wool-fibre matrix compatible with certain features of the proposed models. PMID:4678578

  13. The nucleotide sequence of HLA-B{sup *}2704 reveals a new amino acid substitution in exon 4 which is also present in HLA-B{sup *}2706

    SciTech Connect

    Rudwaleit, M.; Bowness, P.; Wordsworth, P.

    1996-12-31

    The HLA-B27 subtype HLA-B{sup *}2704 is virtually absent in Caucasians but common in Orientals, where it is associated with ankylosing spondylitis. The amino acid sequence of HLA-B{sup *}2704 has been established by peptide mapping and was shown to differ by two amino acids from HLA-B{sup *}2705, HLA-B{sup *}2704 is characterized by a serine for aspartic acid substitution at position 77 and glutamic acid for valine at position 152. To date, however, no nucleotide sequence confirming these changes at the DNA level has been published. 13 refs., 2 figs.

  14. Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability.

    PubMed

    Goldenzweig, Adi; Goldsmith, Moshe; Hill, Shannon E; Gertman, Or; Laurino, Paola; Ashani, Yacov; Dym, Orly; Unger, Tamar; Albeck, Shira; Prilusky, Jaime; Lieberman, Raquel L; Aharoni, Amir; Silman, Israel; Sussman, Joel L; Tawfik, Dan S; Fleishman, Sarel J

    2016-07-21

    Upon heterologous overexpression, many proteins misfold or aggregate, thus resulting in low functional yields. Human acetylcholinesterase (hAChE), an enzyme mediating synaptic transmission, is a typical case of a human protein that necessitates mammalian systems to obtain functional expression. We developed a computational strategy and designed an AChE variant bearing 51 mutations that improved core packing, surface polarity, and backbone rigidity. This variant expressed at ∼2,000-fold higher levels in E. coli compared to wild-type hAChE and exhibited 20°C higher thermostability with no change in enzymatic properties or in the active-site configuration as determined by crystallography. To demonstrate broad utility, we similarly designed four other human and bacterial proteins. Testing at most three designs per protein, we obtained enhanced stability and/or higher yields of soluble and active protein in E. coli. Our algorithm requires only a 3D structure and several dozen sequences of naturally occurring homologs, and is available at http://pross.weizmann.ac.il. PMID:27425410

  15. Designing Sequence Selectivity into a Ring-Opening Metathesis Polymerization Catalyst.

    PubMed

    Chen, Peter

    2016-05-17

    The development of a chemoselective catalyst for the sequence-selective copolymerization of two cycloolefins by ring-opening metathesis polymerization is described, starting with the mechanistic work that established the structure of the key metallacyclobutane intermediate. Experimental and computational investigations converged to a conclusion that the lowest energy metallacyclobutane intermediate in the ruthenium carbene-catalyzed metathesis reaction had the four-membered ring trans to the phosphine or NHC ligand. The trans-metallacyclobutane structure, for the case of a degenerate metathesis reaction catalyzed by a Grubbs first-generation complex, necessitated a rotation of the 3-fold symmetric tricyclohexylphosphine ligand, with respect to the 2-fold symmetric metallacyclobutane substructure. The degeneracy could be lifted by constraining the rotation. Lifting the degeneracy created the possibility of chemoselectivity. This mechanistic work led to a concept for the "tick-tock" catalyst for a chemoselective, alternating copolymerization of cyclooctene and norbornene from a mixture of the two monomers. The design concept could be post facto elaborated in terms of stereochemistry and topological theory, both viewpoints providing deeper insight into the design of selectivity into the catalytic reaction. The iterative interaction of theory and experiment provided the basis for the rational design and optimization of a new selectivity into an existing catalytic system with decidedly modest structural modifications of the original carbene complex. PMID:27105333

  16. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives With Amino Acid Moieties.

    PubMed

    Stavrakov, Georgi; Valcheva, Violeta; Voynikov, Yulian; Philipova, Irena; Atanasova, Mariyana; Konstantinov, Spiro; Peikov, Plamen; Doytchinova, Irini

    2016-03-01

    The theophylline-7-acetic acid (7-TAA) scaffold is a promising novel lead compound for antimycobacterial activity. Here, we derive a model for antitubercular activity prediction based on 14 7-TAA derivatives with amino acid moieties and their methyl esters. The model is applied to a combinatorial library, consisting of 40 amino acid and methyl ester derivatives of 7-TAA. The best three predicted compounds are synthesized and tested against Mycobacterium tuberculosis H37Rv. All of them are stable, non-toxic against human cells and show antimycobacterial activity in the nanomolar range being 60 times more active than ethambutol. PMID:26502828

  17. Design and assembly sequence analysis of option 3 for CETF reference space station

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard; Andersen, Gregory C.; Hall, John B., Jr.; Allen, Cheryl L.; Scott, A. D., Jr.; So, Kenneth T.

    1987-01-01

    A design and assembly sequence was conducted on one option of the Dual Keel Space Station examined by a NASA Critical Evaluation Task Force to establish viability of several variations of that option. A goal of the study was to produce and analyze technical data to support Task Force decisions to either examine particular Option 3 variations in more depth or eliminate them from further consideration. An analysis of the phasing assembly showed that use of an Expendable Launch Vehicle in conjunction with the Space Transportation System (STS) can accelerate the buildup of the Station and ease the STS launch rate constraints. The study also showed that use of an Orbital Maneuvering Vehicle on the first flight can significantly benefit Station assembly and, by performing Station subsystem functions, can alleviate the need for operational control and reboost systems during the early flights. In addition to launch and assembly sequencing, the study assessed stability and control, and analyzed node-packaging options and the effects of keel removal on the structural dynamics of the Station. Results of these analyses are presented and discussed.

  18. A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43

    PubMed Central

    Furukawa, Yoshiaki; Suzuki, Yoh; Fukuoka, Mami; Nagasawa, Kenichi; Nakagome, Kenta; Shimizu, Hideaki; Mukaiyama, Atsushi; Akiyama, Shuji

    2016-01-01

    TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein containing two consecutive RNA recognition motifs (RRM1 and RRM2) in tandem. Functional abnormality of TDP-43 has been proposed to cause neurodegeneration, but it remains obscure how the physiological functions of this protein are regulated. Here, we show distinct roles of RRM1 and RRM2 in the sequence-specific substrate recognition of TDP-43. RRM1 was found to bind a wide spectrum of ssDNA sequences, while no binding was observed between RRM2 and ssDNA. When two RRMs are fused in tandem as in native TDP-43, the fused construct almost exclusively binds ssDNA with a TG-repeat sequence. In contrast, such sequence-specificity was not observed in a simple mixture of RRM1 and RRM2. We thus propose that the spatial arrangement of multiple RRMs in DNA/RNA binding proteins provides steric effects on the substrate-binding site and thereby controls the specificity of its substrate nucleotide sequences. PMID:26838063

  19. Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design.

    PubMed

    Voigt, C A; Gordon, D B; Mayo, S L

    2000-06-01

    Finding the minimum energy amino acid side-chain conformation is a fundamental problem in both homology modeling and protein design. To address this issue, numerous computational algorithms have been proposed. However, there have been few quantitative comparisons between methods and there is very little general understanding of the types of problems that are appropriate for each algorithm. Here, we study four common search techniques: Monte Carlo (MC) and Monte Carlo plus quench (MCQ); genetic algorithms (GA); self-consistent mean field (SCMF); and dead-end elimination (DEE). Both SCMF and DEE are deterministic, and if DEE converges, it is guaranteed that its solution is the global minimum energy conformation (GMEC). This provides a means to compare the accuracy of SCMF and the stochastic methods. For the side-chain placement calculations, we find that DEE rapidly converges to the GMEC in all the test cases. The other algorithms converge on significantly incorrect solutions; the average fraction of incorrect rotamers for SCMF is 0.12, GA 0.09, and MCQ 0.05. For the protein design calculations, design positions are progressively added to the side-chain placement calculation until the time required for DEE diverges sharply. As the complexity of the problem increases, the accuracy of each method is determined so that the results can be extrapolated into the region where DEE is no longer tractable. We find that both SCMF and MCQ perform reasonably well on core calculations (fraction amino acids incorrect is SCMF 0.07, MCQ 0.04), but fail considerably on the boundary (SCMF 0.28, MCQ 0.32) and surface calculations (SCMF 0.37, MCQ 0.44). PMID:10835284

  20. Application of combined mass spectrometry and partial amino acid sequence to the identification of gel-separated proteins.

    PubMed

    Patterson, S D; Thomas, D; Bradshaw, R A

    1996-05-01

    The combined use of peptide mass information with amino acid sequence information derived by chemical sequencing or mass spectrometry (MS)-based approaches provides a powerful means of protein identification. We have used a two-part strategy to identify proteins from nerve growth factor (NGF)-stimulated rat adrenal pheochromocytoma cell line PC-12 cell lysates that associate with the adaptor protein Shc (Shc homologous and collagen protein). Initial experiments with metabolically radiolabeled cell extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a number of proteins that coimmunoprecipitated with anti-Shc antibody compared with control (unstimulated) cell extracts. The experiment was scaled up and cell lysate from NGF-stimulated PC-12 cells was applied to a glutathione-S-transferase (GST)-Shc affinity column, eluted, separated by SDS-PAGE and blotted to Immobilon-CD. The blotted proteins were proteolytically digested in situ, and the masses obtained from the extracted peptides were used in a peptide-mass search program in an attempt to identify the protein. Even if a strong candidate was found using this search, an additional step was performed to confirm the identification. The mixtures were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and subjected to chemical sequencing to obtain (partial) sequence information, or post-source decay (PSD-) matrix-assisted laser-desorption ionization (MALDI)-MS to obtain sequence-specific fragment ions. This data was used in a peptide-sequence tag search to confirm the identity of the proteins. This combined approach allowed identification of four proteins of M(r) 43,000 to 200,000. In one case the identified protein clearly did not correspond to the radiolabeled band, but to a protein contaminant from the column. The advantages and pitfalls of the approach are discussed. PMID:8783013

  1. Peptide mapping and amino acid sequencing of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24.

    PubMed

    Kim, S I; Ha, K S

    1997-10-31

    The partial amino acid sequences of two catechol 1,2-dioxygenases (CD I1 and CD I2) from Acinetobacter lwoffii K24 have been determined by analysis of peptides after cleavages with endopeptidase Lys-C, endopeptidase Glu-C, trypsin, and chemicals (cyanogen bromide and BNPS-skatole). They include 248 amino acid sequences (4 fragments) of CD I1 and 211 amino acid sequences (5 fragments) of CD I2. Two enzymes have more than 50% sequence homology with type I catechol 1,2-dioxygenases and less than 30% sequence homology with type II catechol 1,2-dioxygenases. Two enzymes have similar hydropathy profiles in the N-terminal region, suggesting that they have similar secondary structures. PMID:9387151

  2. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant

    SciTech Connect

    Huang, Hongzhou; Shi, Jishu; Laskin, Julia; Liu, Ziyan; McVey, David S.; Sun, Xiuzhi S.

    2011-10-07

    Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD), designed by rationally combining two native sequences from an elastic segment of spider silk and a trans-membrane segment of human muscle L-type calcium channel. The turning segment GSII of h9e promoted hydrogel formation in both Ca2+ solution and acidic pH conditions at water content greater than 99.5%. Although h9e Ca2+ hydrogel and h9e acidic hydrogel have the same sequence, they have distinct physical properties. The shear-thinning, rapid-strengthrecovering h9e Ca2+ hydrogel was used as an H1N1 influenza vaccine adjuvant. The h9e adjuvant was biologically safe and improved immune response by 70% compared with an oil-based commercial adjuvant.

  3. The Role of HIV-1 gp41 Glycoprotein in Infectious Tropism Inferred from Physico-Chemical Properties of its Amino Acid Sequence

    NASA Astrophysics Data System (ADS)

    Figueroa, E.; Villarreal, C.; Huerta, L.; Cocho, G.

    2006-09-01

    We performed a statistical analysis of the amino acid sequence of the gp41 ectodomain of the Human Immunodeficiency Virus type 1. We found strong correlations between physicochemical properties of highly variable residues and the viral infectious tropism.

  4. Characterization of fatty acid-producing wastewater microbial communities using next generation sequencing technologies

    EPA Science Inventory

    While wastewater represents a viable source of bacterial biodiesel production, very little is known on the composition of these microbial communities. We studied the taxonomic diversity and succession of microbial communities in bioreactors accumulating fatty acids using 454-pyro...

  5. Complete Genome Sequence of Amino Acid-Utilizing Eubacterium acidaminophilum al-2 (DSM 3953)

    PubMed Central

    Poehlein, Anja; Andreesen, Jan R.

    2014-01-01

    Eubacterium acidaminophilum is a strictly anaerobic, Gram-positive, rod-shaped bacterium which belongs to cluster XI of the Clostridia. It ferments amino acids by a Stickland reaction. The genome harbors a chromosome (2.25 Mb) and a megaplasmid (0.8 Mb). It contains several gene clusters coding for selenocysteine-containing, glycine-derived, and amino acid-degrading reductases. PMID:24926057

  6. Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach.

    PubMed

    Zhang, Shao-Wu; Chen, Wei; Yang, Feng; Pan, Quan

    2008-10-01

    In the protein universe, many proteins are composed of two or more polypeptide chains, generally referred to as subunits, which associate through noncovalent interactions and, occasionally, disulfide bonds to form protein quaternary structures. It has long been known that the functions of proteins are closely related to their quaternary structures; some examples include enzymes, hemoglobin, DNA polymerase, and ion channels. However, it is extremely labor-expensive and even impossible to quickly determine the structures of hundreds of thousands of protein sequences solely from experiments. Since the number of protein sequences entering databanks is increasing rapidly, it is highly desirable to develop computational methods for classifying the quaternary structures of proteins from their primary sequences. Since the concept of Chou's pseudo amino acid composition (PseAAC) was introduced, a variety of approaches, such as residue conservation scores, von Neumann entropy, multiscale energy, autocorrelation function, moment descriptors, and cellular automata, have been utilized to formulate the PseAAC for predicting different attributes of proteins. Here, in a different approach, a sequence-segmented PseAAC is introduced to represent protein samples. Meanwhile, multiclass SVM classifier modules were adopted to classify protein quaternary structures. As a demonstration, the dataset constructed by Chou and Cai [(2003) Proteins 53:282-289] was adopted as a benchmark dataset. The overall jackknife success rates thus obtained were 88.2-89.1%, indicating that the new approach is quite promising for predicting protein quaternary structure. PMID:18427713

  7. Ribonuclease "XlaI," an activity from Xenopus laevis oocytes that excises intervening sequences from yeast transfer ribonucleic acid precursors.

    PubMed Central

    Otsuka, A; de Paolis, A; Tocchini-Valentini, G P

    1981-01-01

    A ribonuclease (RNase) activity, RNase "XlaI," responsible for the excision of intervening sequences from two yeast transfer ribonucleic acid (tRNA) precursors, pre-tRNA(Tyr) and pre-tRNA(3Leu), has been purified 54-fold from nuclear extracts of Xenopus laevis oocytes. The RNase preparation is essentially free of contaminating RNase. A quantitative assay for RNase XlaI was developed, and the reaction products were characterized. RNase XlaI cleavage sites in the yeast tRNA precursors were identical to those made by yeast extracts (including 3'-phosphate and 5'-hydroxyl termini). Cleavage of pre-tRNA(3Leu) by RNase XlaI and subsequent ligation of the half-tRNA molecules do not require removal of the 5' leader or 3' trailer sequences. Images PMID:6765601

  8. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2014-02-25

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  9. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2015-04-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  10. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2013-07-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  11. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2012-02-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  12. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-04-01

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  13. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  14. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-11-11

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  15. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  16. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  17. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454.

    PubMed

    Yildirim, Z; Winters, D K; Johnson, M G

    1999-01-01

    Bifidocin B produced by Bifidobacterium bifidum NCFB 1454 was purified to homogeneity by a rapid and simple three step purification procedure which included freeze drying, Micro-Cel adsorption/desorption and cation exchange chromatography. The purification resulted in 18% recovery and an approximately 1900-fold increase in the specific activity and purity of bifidocin B. Treatment with bifidocin B caused sensitive cells to lose high amounts of intracellular K+ ions and u.v.-absorbing materials, and to become more permeable to ONPG. Bifidocin B adsorbed to the Gram-positive bacteria but not the Gram-negative bacteria tested. Its adsorption was pH-dependent but not time-dependent. For sensitive cells, the adsorption and lethal action of bifidocin B was very rapid. In 5 min, 95% of bifidocin B adsorbed onto sensitive cells. Several salts inhibited the binding of bifidocin B, which could be overcome by increasing the amount of bifidocin B added. Pre-treatment of sensitive cells and cell walls with detergents, organic solvents or enzymes did not cause a reduction in subsequent cellular binding of bifidocin B, but cell wall preparations treated with methanol:chloroform and hot 20% (w/v) TCA lost the ability to adsorb bifidocin B. Also, the addition of purified heterologous lipoteichoic acid to sensitive cells completely blocked the adsorption of bifidocin B. The amino acid sequence indicated that the bacteriocin contained 36 residues. N-terminal amino acid sequence analysis yielded a sequence of KYYGNGVTCGLHDCRVDRGKATCGIINNGGMWGDIG. Curing experiments with 20 micrograms ml-1 acriflavine yielded cell derivatives that no longer produced bifidocin B but retained immunity to bifidocin B. Production of bifidocin B, but not immunity to bifidocin B, was associated with a plasmid of about 8 kb in this strain. PMID:10030011

  18. Amino acid sequences of two novel long-chain neurotoxins from the venom of the sea snake Laticauda colubrina.

    PubMed

    Kim, H S; Tamiya, N

    1982-11-01

    From the venom of a population of the sea snake Laticauda colubrina from the Solomon Islands, a neurotoxic component, Laticauda colubrina a (toxin Lc a), was isolated in 16.6% (A280) yield. Similarly, from the venom of a population of L. colubrina from the Philippines, a neurotoxic component, Laticauda colubrina b (toxin Lc b), was obtained in 10.0% (A280) yield. The LD50 values of these toxins were 0.12 microgram/g body wt. on intramuscular injection in mice. Toxins Lc a and Lc b were each composed of molecules containing 69 amino acid residues with eight half-cystine residues. The complete amino acid sequences of these two toxins were elucidated. Toxins Lc a and Lc b are different from each other at five positions of their sequences, namely at positions 31 (Phe/Ser), 32 (Leu/Ile), 33 (Lys/Arg), 50 (Pro/Arg) and 53 (Asp/His) (residues in parentheses give the residues in toxins Lc a and Lc b respectively). Toxins Lc a and Lc b have a novel structure in that they have only four disulphide bridges, although the whole amino acid sequences are homologous to those of other known long-chain neurotoxins. It is remarkable that toxins Lc a and Lc b are not coexistent at the detection error of 6% of the other toxin. Populations of Laticauda colubrina from the Solomon Islands and from the Philippines have either toxin Lc a or toxin Lc b and not both of them. PMID:7159381

  19. A Comparison of Different Teaching Designs of "Acids and Bases" Subject

    ERIC Educational Resources Information Center

    Ültay, Neslihan; Çalik, Muammer

    2016-01-01

    Inability to link the acid-base concepts with daily life phenomena (as contexts) highlights the need for further research on the context-based acid-base chemistry. In this vein, the aim of this study is to investigate the effects of different teaching designs (REACT strategy, 5Es learning model and traditional (existing) instruction) relevant with…

  20. The sequence of rat leukosialin (W3/13 antigen) reveals a molecule with O-linked glycosylation of one third of its extracellular amino acids.

    PubMed Central

    Killeen, N; Barclay, A N; Willis, A C; Williams, A F

    1987-01-01

    Leukosialin is one of the major glycoproteins of thymocytes and T lymphocytes and is notable for a very high content of O-linked carbohydrate structures. The full protein sequence for rat leukosialin as translated from cDNA clones is now reported. The molecule contains 371 amino acids with 224 residues outside the cell, one transmembrane sequence and 124 cytoplasmic residues. Data from the peptide sequence and carbohydrate composition suggest that one in three of the extracellular amino acids may be O-glycosylated with no N-linked glycosylation sites. The cDNA sequence contained a CpG rich region in the 3' coding sequence and a large 3' non-coding region which included tandem repeats of the sequence GGAT. Images Fig. 4. PMID:2965006

  1. Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Martins, Rodrigo; Baptista, Pedro; Raniero, Leandro; Doria, Gonçalo; Silva, Leonardo; Franco, Ricardo; Fortunato, Elvira

    2007-01-01

    Amorphous/nanocrystalline silicon pi 'ii'n devices fabricated on micromachined glass substrates are integrated with oligonucleotide-derivatized gold nanoparticles for a colorimetric detection method. The method enables the specific detection and quantification of unamplified nucleic acid sequences (DNA and RNA) without the need to functionalize the glass surface, allowing for resolution of single nucleotide differences between DNA and RNA sequences—single nucleotide polymorphism and mutation detection. The detector's substrate is glass and the sample is directly applied on the back side of the biosensor, ensuring a direct optical coupling of the assays with a concomitant maximum photon capture and the possibility to reuse the sensor.

  2. Design and synthesis of boronic acid inhibitors of endothelial lipase.

    PubMed

    O'Connell, Daniel P; LeBlanc, Daniel F; Cromley, Debra; Billheimer, Jeffrey; Rader, Daniel J; Bachovchin, William W

    2012-02-01

    Endothelial lipase (EL) and lipoprotein lipase (LPL) are homologous lipases that act on plasma lipoproteins. EL is predominantly a phospholipase and appears to be a key regulator of plasma HDL-C. LPL is mainly a triglyceride lipase regulating (V)LDL levels. The existing biological data indicate that inhibitors selective for EL over LPL should have anti-atherogenic activity, mainly through increasing plasma HDL-C levels. We report here the synthesis of alkyl, aryl, or acyl-substituted phenylboronic acids that inhibit EL. Many of the inhibitors evaluated proved to be nearly equally potent against both EL and LPL, but several exhibited moderate to good selectivity for EL. PMID:22225633

  3. An Interpretation of the Ancestral Codon from Miller’s Amino Acids and Nucleotide Correlations in Modern Coding Sequences

    PubMed Central

    Carels, Nicolas; de Leon, Miguel Ponce

    2015-01-01

    Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins. PMID:25922573

  4. Rapid Nucleic Acid Sequencing Methods--Alternative Approaches to Facilitating Learning.

    ERIC Educational Resources Information Center

    Bryce, Charles F. A.

    1982-01-01

    Because advanced students had difficulty in interpreting cleavage patterns obtained by gel electrophoresis related to rapid sequencing techniques for DNA and RNA, several formats were developed to aid in understanding this topic. Formats included print, print plus scrambled print, interactive computer-based instruction, and high-resolution…

  5. Draft Genome Sequence of Ustilago trichophora RK089, a Promising Malic Acid Producer

    PubMed Central

    Zambanini, Thiemo; Buescher, Joerg M.; Meurer, Guido; Blank, Lars M.

    2016-01-01

    The basidiomycetous smut fungus Ustilago trichophora RK089 produces malate from glycerol. De novo genome sequencing revealed a 20.7-Mbp genome (301 gap-closed contigs, 246 scaffolds). A comparison to the genome of Ustilago maydis 521 revealed all essential genes for malate production from glycerol contributing to metabolic engineering for improving malate production. PMID:27469969

  6. Draft Genome Sequence of Ustilago trichophora RK089, a Promising Malic Acid Producer.

    PubMed

    Zambanini, Thiemo; Buescher, Joerg M; Meurer, Guido; Wierckx, Nick; Blank, Lars M

    2016-01-01

    The basidiomycetous smut fungus Ustilago trichophora RK089 produces malate from glycerol. De novo genome sequencing revealed a 20.7-Mbp genome (301 gap-closed contigs, 246 scaffolds). A comparison to the genome of Ustilago maydis 521 revealed all essential genes for malate production from glycerol contributing to metabolic engineering for improving malate production. PMID:27469969

  7. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  8. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  9. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  10. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  11. 37 CFR 1.824 - Form and format for nucleotide and/or amino acid sequence submissions in computer readable form.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nucleotide and/or amino acid sequence submissions in computer readable form. 1.824 Section 1.824 Patents... submissions in computer readable form. (a) The computer readable form required by § 1.821(e) shall meet the following requirements: (1) The computer readable form shall contain a single “Sequence Listing” as either...

  12. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles.

    PubMed

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-03-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  13. Terminal sequence studies of high-molecular-weight ribonucleic acid. The 3′-termini of rabbit globin messenger ribonucleic acid

    PubMed Central

    Hunt, John A.

    1973-01-01

    Haemoglobin mRNA isolated from EDTA-treated polyribosomes has an apparent molecular weight of 120000–180000 estimated by condensation with 3H-labelled isoniazid after periodate oxidation. Analysis of the ribonuclease digests of isoniazid-labelled RNA by paper electrophoresis and column chromatography enables the amount of contaminating 18S, 7S, 5S and 4S RNA to be estimated, and a corrected molecular weight of globin mRNA as the acid is 161000 or 500 nucleotides in length. This molecule contains two groups of 3′-terminal sequences in equal yield; G-Y-A6 and G-Y-A7 in the ratio 3:2, and G-N9–16-Y-A2 and G-N9–16-Y-N3 in the ratio 3:2. The significance of these sequences is discussed in relation to the poly(A) content of globin mRNA, the specificity of the sequences, and possible function in processing and biosynthesis of mRNA. PMID:4737318

  14. Hemagglutinin Sequence Conservation Guided Stem Immunogen Design from Influenza A H3 Subtype

    PubMed Central

    Mallajosyula, V. Vamsee Aditya; Citron, Michael; Ferrara, Francesca; Temperton, Nigel J.; Liang, Xiaoping; Flynn, Jessica A.; Varadarajan, Raghavan

    2015-01-01

    Seasonal epidemics caused by influenza A (H1 and H3 subtypes) and B viruses are a major global health threat. The traditional, trivalent influenza vaccines have limited efficacy because of rapid antigenic evolution of the circulating viruses. This antigenic variability mediates viral escape from the host immune responses, necessitating annual vaccine updates. Influenza vaccines elicit a protective antibody response, primarily targeting the viral surface glycoprotein hemagglutinin (HA). However, the predominant humoral response is against the hypervariable head domain of HA, thereby restricting the breadth of protection. In contrast, the conserved, subdominant stem domain of HA is a potential “universal” vaccine candidate. We designed an HA stem-fragment immunogen from the 1968 pandemic H3N2 strain (A/Hong Kong/1/68) guided by a comprehensive H3 HA sequence conservation analysis. The biophysical properties of the designed immunogen were further improved by C-terminal fusion of a trimerization motif, “isoleucine-zipper”, or “foldon”. These immunogens elicited cross-reactive, antiviral antibodies and conferred partial protection against a lethal, homologous HK68 virus challenge in vivo. Furthermore, bacterial expression of these immunogens is economical and facilitates rapid scale-up. PMID:26167164

  15. Identification of the amino acid sequence that targets peroxiredoxin 6 to lysosome-like structures of lung epithelial cells.

    PubMed

    Sorokina, Elena M; Feinstein, Sheldon I; Milovanova, Tatyana N; Fisher, Aron B

    2009-11-01

    Peroxiredoxin 6 (Prdx6), an enzyme with glutathione peroxidase and PLA2 (aiPLA2) activities, is highly expressed in respiratory epithelium, where it participates in phospholipid turnover and antioxidant defense. Prdx6 has been localized by immunocytochemistry and subcellular fractionation to acidic organelles (lung lamellar bodies and lysosomes) and cytosol. On the basis of their pH optima, we have postulated that protein subcellular localization determines the balance between the two activities of Prdx6. Using green fluorescent protein-labeled protein expression in alveolar epithelial cell lines, we showed Prdx6 localization to organellar structures resembling lamellar bodies in mouse lung epithelial (MLE-12) cells and lysosomes in A549 cells. Localization within lamellar bodies/lysosomes was in the luminal compartment. Targeting to lysosome-like organelles was abolished by the deletion of amino acids 31-40 from the Prdx6 NH2-terminal region; deletion of the COOH-terminal region had no effect. A green fluorescent protein-labeled peptide containing only amino acids 31-40 showed lysosomal targeting that was abolished by mutation of S32 or G34 within the peptide. Studies with mutated protein indicated that lipid binding was not necessary for Prdx6 targeting. This peptide sequence has no homology to known organellar targeting motifs. These studies indicate that the localization of Prdx6 in acidic organelles and consequent PLA2 activity depend on a novel 10-aa peptide located at positions 31-40 of the protein. PMID:19700648

  16. From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in Arabidopsis[W][OA

    PubMed Central

    de Kraker, Jan-Willem; Gershenzon, Jonathan

    2011-01-01

    Methylthioalkylmalate synthase (MAM) catalyzes the committed step in the side chain elongation of Met, yielding important precursors for glucosinolate biosynthesis in Arabidopsis thaliana and other Brassicaceae species. MAM is believed to have evolved from isopropylmalate synthase (IPMS), an enzyme involved in Leu biosynthesis, based on phylogenetic analyses and an overlap of catalytic abilities. Here, we investigated the changes in protein structure that have occurred during the recruitment of IPMS from amino acid to glucosinolate metabolism. The major sequence difference between IPMS and MAM is the absence of 120 amino acids at the C-terminal end of MAM that constitute a regulatory domain for Leu-mediated feedback inhibition. Truncation of this domain in Arabidopsis IPMS2 results in loss of Leu feedback inhibition and quaternary structure, two features common to MAM enzymes, plus an 8.4-fold increase in the kcat/Km for a MAM substrate. Additional exchange of two amino acids in the active site resulted in a MAM-like enzyme that had little residual IPMS activity. Hence, combination of the loss of the regulatory domain and a few additional amino acid exchanges can explain the evolution of MAM from IPMS during its recruitment from primary to secondary metabolism. PMID:21205930

  17. Templated synthesis of peptide nucleic acids via sequence-selective base-filling reactions.

    PubMed

    Heemstra, Jennifer M; Liu, David R

    2009-08-19

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  18. Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    PubMed Central

    2009-01-01

    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling. PMID:19722647

  19. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  20. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  1. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    PubMed Central

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.

    2008-01-01

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765

  2. Analysis and optimal design for association studies using next-generation sequencing with case-control pools.

    PubMed

    Liang, Wei E; Thomas, Duncan C; Conti, David V

    2012-12-01

    With its potential to discover a much greater amount of genetic variation, next-generation sequencing is fast becoming an emergent tool for genetic association studies. However, the cost of sequencing all individuals in a large-scale population study is still high in comparison to most alternative genotyping options. While the ability to identify individual-level data is lost (without bar-coding), sequencing pooled samples can substantially lower costs without compromising the power to detect significant associations. We propose a hierarchical Bayesian model that estimates the association of each variant using pools of cases and controls, accounting for the variation in read depth across pools and sequencing error. To investigate the performance of our method across a range of number of pools, number of individuals within each pool, and average coverage, we undertook extensive simulations varying effect sizes, minor allele frequencies, and sequencing error rates. In general, the number of pools and pool size have dramatic effects on power while the total depth of coverage per pool has only a moderate impact. This information can guide the selection of a study design that maximizes power subject to cost, sample size, or other laboratory constraints. We provide an R package (hiPOD: hierarchical Pooled Optimal Design) to find the optimal design, allowing the user to specify a cost function, cost, and sample size limitations, and distributions of effect size, minor allele frequency, and sequencing error rate. PMID:22972696

  3. NDesign: software for study design for the detection of rare variants from next-generation sequencing data.

    PubMed

    Sugaya, Yuki; Akazawa, Yasuaki; Saito, Akira; Kamitsuji, Shigeo

    2012-10-01

    We developed a software program, NDesign, for the design of a study intended for detecting rare variants from next-generation sequencing (NGS) data. In this study design, the optimal depth of coverage and the average depth of coverage are first evaluated, and then the ability of the designed experiment to obtain a desired power is determined. NDesign has been developed to calculate both these depths, as well as to evaluate the power of the designed experiment. It has a simple implementation in the JavaScript language, and is expected to enable researchers to design optimal NGS studies. PMID:22786579

  4. Complete Genome Sequence of Moraxella osloensis Strain KMC41, a Producer of 4-Methyl-3-Hexenoic Acid, a Major Malodor Compound in Laundry.

    PubMed

    Goto, Takatsugu; Hirakawa, Hideki; Morita, Yuji; Tomida, Junko; Sato, Jun; Matsumura, Yuta; Mitani, Asako; Niwano, Yu; Takeuchi, Kohei; Kubota, Hiromi; Kawamura, Yoshiaki

    2016-01-01

    We report the complete genome sequence of Moraxella osloensis strain KMC41, isolated from laundry with malodor. The KMC41 genome comprises a 2,445,556-bp chromosome and three plasmids. A fatty acid desaturase and at least four β-oxidation-related genes putatively associated with 4-methyl-3-hexenoic acid generation were detected in the KMC41 chromosome. PMID:27445387

  5. Complete Genome Sequence of Moraxella osloensis Strain KMC41, a Producer of 4-Methyl-3-Hexenoic Acid, a Major Malodor Compound in Laundry

    PubMed Central

    Hirakawa, Hideki; Morita, Yuji; Tomida, Junko; Sato, Jun; Matsumura, Yuta; Mitani, Asako; Niwano, Yu; Takeuchi, Kohei; Kubota, Hiromi; Kawamura, Yoshiaki

    2016-01-01

    We report the complete genome sequence of Moraxella osloensis strain KMC41, isolated from laundry with malodor. The KMC41 genome comprises a 2,445,556-bp chromosome and three plasmids. A fatty acid desaturase and at least four β-oxidation-related genes putatively associated with 4-methyl-3-hexenoic acid generation were detected in the KMC41 chromosome. PMID:27445387

  6. cDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity.

    PubMed

    Kovalchuk, Svetlana N; Chikalovets, Irina V; Chernikov, Oleg V; Molchanova, Valentina I; Li, Wei; Rasskazov, Valery A; Lukyanov, Pavel A

    2013-10-01

    An amino acid sequence of GalNAc/Gal-specific lectin from the mussel Crenomytilus grayanus (CGL) was determined by cDNA sequencing. CGL consists of 150 amino acid residues, contains three tandem repeats with high sequence similarities to each other (up to 73%) and does not belong to any known lectins family. According to circular dichroism results CGL is a β/α-protein with the predominance of β-structure. CGL was predicted to adopt a ß-trefoil fold. The lectin exhibits antibacterial activity and might be involved in the recognition and clearance of bacterial pathogens in the shellfish. PMID:23886951

  7. Snake venom toxins. The amino acid sequence of toxin Vi2, a homologue of pancreatic trypsin inhibitor, from Dendroaspis polylepis polylepis (black mamba) venom.

    PubMed

    Strydom, D J

    1977-04-25

    The amino acid sequence of venom component Vi2, a protein of low toxicity from Dendroaspis polylepis polylepis venom was determined by automatic sequence analysis in combination with sequence studies on tryptic peptides. This protein, the most retarded fraction of this venom on a cation-exchange resin, is a homologue of bovine pancreatic trypsin inhibitor consisting of a single chain of 57 amino acid residues containing six half-cystine residues. The active site lysyl residue of bovine trypsin inhibitor is conserved in Vi2 although large differences are found in the rest of the molecule. PMID:857902

  8. The complete amino acid sequence of the major Kunitz trypsin inhibitor from the seeds of Prosopsis juliflora.

    PubMed

    Negreiros, A N; Carvalho, M M; Xavier Filho, J; Blanco-Labra, A; Shewry, P R; Richardson, M

    1991-01-01

    The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin. PMID:1367792

  9. Isolation and complete amino acid sequence of two fibrinolytic proteinases from the toxic Saturnid caterpillar Lonomia achelous.

    PubMed

    Amarant, T; Burkhart, W; LeVine, H; Arocha-Pinango, C L; Parikh, I

    1991-08-30

    The major toxic and fibrinolytic activity of the saliva and hemolymph of the larval form of Lonomia achelous was purified to homogeneity by a combination of metal chelate and affinity chromatography. Two apparent isozymes, Achelase I (213 amino acids, pIcalc = 10.55) and Achelase II (214 amino acids, pIcalc = 8.51), were sequenced by automated Edman degradation, and their C-termini confirmed by Fourier-transform mass spectrometry. The calculated molecular weights (22,473 and 22,727) correspond well to Mr estimates of 24,000 by SDS-PAGE. No carbohydrate was detected during sequencing. The enzymes degraded all three chains of fibrin, alpha greater than beta much greater than gamma, yielding a fragmentation pattern indistinguishable from that produced by trypsin. Chromogenic peptides S-2222 (Factor Xa and trypsin), S-2251 (plasmin), S-2302 (kallikrein) and S-2444 (urokinase) were substrates while S-2288 (broad range of serine proteinases including thrombin) was not hydrolyzed. Among a range of inhibitors Hg+2, aminophenylmercuriacetate, leupeptin, antipain and E-64 but not N-ethylmaleimide or iodoacetate abolished the activity of the purified isozymes against S-2444. Phenylmethylsulfonyl fluoride, soybean trypsin inhibitor and aprotinin were less effective. The presence of the classic catalytic triad (histidine-41, aspartate-86 and serine-189) suggests that Achelases I and II may be serine proteinases, but with a potentially free cysteine-185 which could react with thiol proteinase-directed reagents. PMID:1911844

  10. Genome sequence of the acid-tolerant Burkholderia sp. strain WSM2232 from Karijini National Park, Australia

    PubMed Central

    Walker, Robert; Watkin, Elizabeth; Tian, Rui; Bräu, Lambert; O’Hara, Graham; Goodwin, Lynne; Han, James; Reddy, Tatiparthi; Huntemann, Marcel; Pati, Amrita; Woyke, Tanja; Mavromatis, Konstantinos; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2013-01-01

    Burkholderia sp. strain WSM2232 is an aerobic, motile, Gram-negative, non-spore-forming acid-tolerant rod that was trapped in 2001 from acidic soil collected from Karijini National Park (Australia) using Gastrolobium capitatum as a host. WSM2232 was effective in nitrogen fixation with G. capitatum but subsequently lost symbiotic competence during long-term storage. Here we describe the features of Burkholderia sp. strain WSM2232, together with genome sequence information and its annotation. The 7,208,311 bp standard-draft genome is arranged into 72 scaffolds of 72 contigs containing 6,322 protein-coding genes and 61 RNA-only encoding genes. The loss of symbiotic capability can now be attributed to the loss of nodulation and nitrogen fixation genes from the genome. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. PMID:25197442

  11. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  12. Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis.

    PubMed

    Aramori, I; Fukagawa, M; Tsumura, M; Iwami, M; Ono, H; Kojo, H; Kohsaka, M; Ueda, Y; Imanaka, H

    1991-12-01

    A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis. PMID:1744041

  13. Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides.

    PubMed Central

    Asseline, U; Delarue, M; Lancelot, G; Toulmé, F; Thuong, N T; Montenay-Garestier, T; Hélène, C

    1984-01-01

    Oligodeoxyribonucleotides covalently linked to an intercalating agent via a polymethylene linker were synthesized. Oligothymidylates attached to an acridine dye (Acr) through the 3'-phosphate group [(Tp)n(CH2) mAcr ] specifically interact with the complementary sequence. The interaction is strongly stabilized by the intercalating agent. By using absorption and fluorescence spectroscopies, it is shown that complex formation between (Tp)n(CH2) mAcr and poly(rA) involves the formation of n A X T base pairs, where n is the number of thymines in the oligonucleotide. The acridine ring intercalates between A X T base pairs. Fluorescence excitation spectra reveal the existence of two environments for the acridine ring, whose relative contributions depend on the linker length (m). The binding of (Tp)4(CH2) mAcr to poly(rA) is analyzed in terms of site binding and cooperative interactions between oligonucleotides along the polynucleotide lattice. Thermodynamic parameters show that the covalent attachment of the acridine ring strongly stabilizes the binding of the oligonucleotide to its complementary sequence. The stabilization depends on the linker length; the compound with m = 5 gives a more stable complex than that with m = 3. These results open the way to the synthesis of a family of molecules exhibiting both high-affinity and high-specificity for a nucleic acid base sequence. PMID:6587350

  14. Amino acid sequence and posttranslational modifications of human factor VII sub a from plasma and transfected baby hamster kidney cells

    SciTech Connect

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U. )

    1988-10-04

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII{sub a}, participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca{sup 2+} and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII{sub a} molecule, namely, 10 {gamma}-carboxylated, N-terminally located glutamic acid residues, 1 {beta}-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII{sub a} as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII{sub a}. By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII{sub a} was found to be identical with human factor VII{sub a}. Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII{sub a}. In the recombinant factor VII{sub a}, asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII{sub a} and human plasma factor VII{sub a}. These results show that factor VII{sub a} as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII{sub a} and that this cell line thus might represent an alternative source for human factor VII{sub a}.

  15. Expressed Sequence Tags Analysis and Design of Simple Sequence Repeats Markers from a Full-Length cDNA Library in Perilla frutescens (L.)

    PubMed Central

    Seong, Eun Soo; Yoo, Ji Hye; Choi, Jae Hoo; Kim, Chang Heum; Jeon, Mi Ran; Kang, Byeong Ju; Lee, Jae Geun; Choi, Seon Kang; Ghimire, Bimal Kumar; Yu, Chang Yeon

    2015-01-01

    Perilla frutescens is valuable as a medicinal plant as well as a natural medicine and functional food. However, comparative genomics analyses of P. frutescens are limited due to a lack of gene annotations and characterization. A full-length cDNA library from P. frutescens leaves was constructed to identify functional gene clusters and probable EST-SSR markers via analysis of 1,056 expressed sequence tags. Unigene assembly was performed using basic local alignment search tool (BLAST) homology searches and annotated Gene Ontology (GO). A total of 18 simple sequence repeats (SSRs) were designed as primer pairs. This study is the first to report comparative genomics and EST-SSR markers from P. frutescens will help gene discovery and provide an important source for functional genomics and molecular genetic research in this interesting medicinal plant. PMID:26664999

  16. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer.

    PubMed

    Yao, Guoqiang; Gao, Pengfei; Zhang, Wenyi

    2016-06-20

    Bacillus coagulans HM-08 is a commercialized probiotic strain in China. Its genome contains a 3.62Mb circular chromosome with an average GC content of 46.3%. In silico analysis revealed the presence of one xyl operon as well as several other genes that are correlated to xylose utilization. The genetic information provided here may help to expand its future biotechnology potential in lactic acid production. PMID:27130497

  17. Complete Genome Sequence of the Amino Acid-Fermenting Clostridium propionicum X2 (DSM 1682)

    PubMed Central

    Poehlein, Anja; Schlien, Katja; Chowdhury, Nilanjan Pal; Gottschalk, Gerhard; Buckel, Wolfgang

    2016-01-01

    Clostridium propionicum is a strict anaerobic, Gram positive, rod-shaped bacterium that belongs to the clostridial cluster XIVb. The genome consists of one replicon (3.1 Mb) and harbors 2,936 predicted protein-encoding genes. The genome encodes all enzymes required for fermentation of the amino acids α-alanine, β-alanine, serine, threonine, and methionine. PMID:27081148

  18. Purification, characterization, and complete amino acid sequence of a trypsin inhibitor from amaranth (Amaranthus hypochondriacus) seeds.

    PubMed Central

    Valdes-Rodriguez, S; Segura-Nieto, M; Chagolla-Lopez, A; Verver y Vargas-Cortina, A; Martinez-Gallardo, N; Blanco-Labra, A

    1993-01-01

    A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima. PMID:8290633

  19. Sequence-controlled RNA self-processing: computational design, biochemical analysis, and visualization by AFM

    PubMed Central

    Petkovic, Sonja; Badelt, Stefan; Flamm, Christoph; Delcea, Mihaela

    2015-01-01

    Reversible chemistry allowing for assembly and disassembly of molecular entities is important for biological self-organization. Thus, ribozymes that support both cleavage and formation of phosphodiester bonds may have contributed to the emergence of functional diversity and increasing complexity of regulatory RNAs in early life. We have previously engineered a variant of the hairpin ribozyme that shows how ribozymes may have circularized or extended their own length by forming concatemers. Using the Vienna RNA package, we now optimized this hairpin ribozyme variant and selected four different RNA sequences that were expected to circularize more efficiently or form longer concatemers upon transcription. (Two-dimensional) PAGE analysis confirms that (i) all four selected ribozymes are catalytically active and (ii) high yields of cyclic species are obtained. AFM imaging in combination with RNA structure prediction enabled us to calculate the distributions of monomers and self-concatenated dimers and trimers. Our results show that computationally optimized molecules do form reasonable amounts of trimers, which has not been observed for the original system so far, and we demonstrate that the combination of theoretical prediction, biochemical and physical analysis is a promising approach toward accurate prediction of ribozyme behavior and design of ribozymes with predefined functions. PMID:25999318

  20. Inferences from protein and nucleic acid sequences - Early molecular evolution, divergence of kingdoms and rates of change

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Mclaughlin, P. J.

    1974-01-01

    Description of new sensitive, objective methods for establishing the probable common ancestry of very distantly related sequences and the quantitative evolutionary change which has taken place. These methods are applied to four families of proteins and nucleic acids and evolutionary trees will be derived where possible. Of the three families containing duplications of genetic material, two are nucleic acids: transfer RNA and 5S ribosomal RNA. Both of these structures are functional in the synthesis of coded proteins, and prototypes must have been present in the cell at the inception of the fundamental coding process that all living things share. There are many types of tRNA which recognize the various nucleotide triplets and the 20 amino acids. These types are thought to have arisen as a result of many gene duplications. Relationships among these types are discussed. The 5S ribosomal RNA, presently functional in both eukaryotes and prokaryotes, is very likely descended from an early form incorporating almost a complete duplication of genetic material. The amount of evolution in the various lines can again be compared. The other two families containing duplications are proteins; ferredoxin and cytochrome c.

  1. Species specific amino acid sequence-protein local structure relationships: An analysis in the light of a structural alphabet.

    PubMed

    de Brevern, Alexandre G; Joseph, Agnel Praveen

    2011-05-01

    Protein structure analysis and prediction methods are based on non-redundant data extracted from the available protein structures, regardless of the species from which the protein originates. Hence, these datasets represent the global knowledge on protein folds, which constitutes a generic distribution of amino acid sequence-protein structure (AAS-PS) relationships. In this study, we try to elucidate whether the AAS-PS relationship could possess specificities depending on the specie. For this purpose, we have chosen three different species: Saccharomyces cerevisiae, Plasmodium falciparum and Arabidopsis thaliana. We analyzed the AAS-PS behaviors of the proteins from these three species and compared it to the "expected" distribution of a classical non-redundant databank. With the classical secondary structure description, only slight differences in amino acid preferences could be observed. With a more precise description of local protein structures (Protein Blocks), significant changes could be highlighted. S. cerevisiae's AAS-PS relationship is close to the general distribution, while striking differences are observed in the case of A. thaliana. P. falciparum is the most distant one. This study presents some interesting view-points on AAS-PS relationship. Certain species exhibit unique preferences for amino acids to be associated with protein local structural elements. Thus, AAS-PS relationships are species dependent. These results can give useful insights for improving prediction methodologies which take the species specific information into account. PMID:21333657

  2. Design of stereoelectronically promoted super lewis acids and unprecedented chemistry of their complexes.

    PubMed

    Foroutan-Nejad, Cina; Vicha, Jan; Marek, Radek

    2014-09-01

    A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches. PMID:25055748

  3. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  4. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences.

    PubMed

    James, M N; Delbaere, L T; Brayer, G D

    1978-06-01

    The three-dimensional structures of the bacterial serine proteases SGPA, SGPB, and alpha-lytic protease have been compared with those of the pancreatic enzymes alpha-chymotrypsin and elastase. This comparison shows that approximately 60% (55-64%) of the alpha-carbon atom positions of the bacterial serine proteases are topologically equivalent to the alpha-carbon atom positions of the pancreatic enzymes. The corresponding value for a comparison of the bacterial enzymes among themselves is approximately 84%. The results of these topological comparisons have been used to deduce an experimentally sound sequence alignment for these several enzymes. This alignment shows that there is extensive tertiary structural homology among the bacteria and pancreatic enzymes without significant primary sequence identity (less than 21%). The acquisition of a zymogen function by the pancreatic enzymes is accompanied by two major changes to the bacterial enzymes' architecture: an insertion of 9 residues to increase the length of the N-terminal loop, and one of 12 residues to a loop near the activation salt bridge. In addition, in these two enzyme families, the methionine loop (residues 164-182) adopts very different comformations which are associated with their altered substrate specificities. PMID:96920

  5. DNA sequence of the control region of phage D108: the N-terminal amino acid sequences of repressor and transposase are similar both in phage D108 and in its relative, phage Mu.

    PubMed Central

    Mizuuchi, M; Weisberg, R A; Mizuuchi, K

    1986-01-01

    We have determined the DNA sequence of the control region of phage D108 up to position 1419 at the left end of the phage genome. Open reading frames for the repressor gene, ner gene, and the 5' part of the A gene (which codes for transposase) are found in the sequence. The genetic organization of this region of phage D108 is quite similar to that of phage Mu in spite of considerable divergence, both in the nucleotide sequence and in the amino acid sequences of the regulatory proteins of the two phages. The N-terminal amino acid sequences of the transposases of the two phages also share only limited homology. On the other hand, a significant amino acid sequence homology was found within each phage between the N-terminal parts of the repressor and transposase. We propose that the N-terminal domains of the repressor and transposase of each phage interact functionally in the process of making the decision between the lytic and the lysogenic mode of growth. PMID:3012481

  6. Hepatitis B virus genotype A: design of reference sequences for sub-genotypes.

    PubMed

    Cai, Qun; Zhu, Huilan; Zhang, Yafei; Li, Xu; Zhang, Zhenhua

    2016-06-01

    Genotype A of hepatitis B virus (HBV/A) is widespread and is currently divided into six sub-genotypes. Suitable reference sequences for different sub-genotypes can facilitate research on HBV/A. However, the current reference sequences for this virus are insufficient. In the present work, we retrieved 442 full-length HBV/A genomic sequences from the GenBank database and classified them into sub-genotypes by phylogenetic analysis. By the maximum likelihood method using the MEGA6.0 software, we established the reference sequences for different HBV/A sub-genotypes. Our analyses demonstrated that these reference sequences clustered phylogenetically with known strains, indicating that the reference sequences we established indeed belonged to the right sub-genotypes. HBV/A subtype sequences were selected by geographic origins and grouped as sub-genotypes including A1-South Africa, A2-Europe, A3-Cameroon, and A5-Haiti. Reference sequences of sub-genotypes A1, A2, A3, and A5 were constructed and deposited into GenBank (KP234050-KP234053). By applying phylogenetic analyses, we further determined the time to most recent common ancestor of HBV/A lineages. In conclusion, these newly established reference sequences can provide suitable reference standards for studies on the molecular biology and virology of HBV genotype A. PMID:27002608

  7. Analysis of a nucleotide-binding site of 5-lipoxygenase by affinity labelling: binding characteristics and amino acid sequences.

    PubMed Central

    Zhang, Y Y; Hammarberg, T; Radmark, O; Samuelsson, B; Ng, C F; Funk, C D; Loscalzo, J

    2000-01-01

    5-Lipoxygenase (5LO) catalyses the first two steps in the biosynthesis of leukotrienes, which are inflammatory mediators derived from arachidonic acid. 5LO activity is stimulated by ATP; however, a consensus ATP-binding site or nucleotide-binding site has not been found in its protein sequence. In the present study, affinity and photoaffinity labelling of 5LO with 5'-p-fluorosulphonylbenzoyladenosine (FSBA) and 2-azido-ATP showed that 5LO bound to the ATP analogues quantitatively and specifically and that the incorporation of either analogue inhibited ATP stimulation of 5LO activity. The stoichiometry of the labelling was 1.4 mol of FSBA/mol of 5LO (of which ATP competed with 1 mol/mol) or 0.94 mol of 2-azido-ATP/mol of 5LO (of which ATP competed with 0.77 mol/mol). Labelling with FSBA prevented further labelling with 2-azido-ATP, indicating that the same binding site was occupied by both analogues. Other nucleotides (ADP, AMP, GTP, CTP and UTP) also competed with 2-azido-ATP labelling, suggesting that the site was a general nucleotide-binding site rather than a strict ATP-binding site. Ca(2+), which also stimulates 5LO activity, had no effect on the labelling of the nucleotide-binding site. Digestion with trypsin and peptide sequencing showed that two fragments of 5LO were labelled by 2-azido-ATP. These fragments correspond to residues 73-83 (KYWLNDDWYLK, in single-letter amino acid code) and 193-209 (FMHMFQSSWNDFADFEK) in the 5LO sequence. Trp-75 and Trp-201 in these peptides were modified by the labelling, suggesting that they were immediately adjacent to the C-2 position of the adenine ring of ATP. Given the stoichiometry of the labelling, the two peptide sequences of 5LO were probably near each other in the enzyme's tertiary structure, composing or surrounding the ATP-binding site of 5LO. PMID:11042125

  8. Isolation and amino acid sequences of opossum vasoactive intestinal polypeptide and cholecystokinin octapeptide.

    PubMed Central

    Eng, J; Yu, J; Rattan, S; Yalow, R S

    1992-01-01

    Evolutionary history suggests that the marsupials entered South America from North America about 75 million years ago and subsequently dispersed into Australia before the separation between South America and Antarctica-Australia. A question of interest is whether marsupial peptides resemble the corresponding peptides of Old or New World mammals. Previous studies had shown that "little" gastrin of the North American marsupial, the opossum, is identical in length to that of the New World mammals, the guinea pig and chinchilla. In this report, we demonstrate that opossum cholecystokinin octapeptide, like that of the Australian marsupials, the Eastern quoll and the Tamar wallaby, is identical to the cholecystokinin octapeptide of Old World mammals and differs from that of the guinea pig and chinchilla. However, opossum vasoactive intestinal polypeptide differs from the usual Old World mammalian vasoactive intestinal polypeptide in five sites: [sequence; see text]. PMID:1542675

  9. Evolution of early life inferred from protein and ribonucleic acid sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Schwartz, R. M.

    1978-01-01

    The chemical structures of ferredoxin, 5S ribosomal RNA, and c-type cytochrome sequences have been employed to construct a phylogenetic tree which connects all major photosynthesizing organisms: the three types of bacteria, blue-green algae, and chloroplasts. Anaerobic and aerobic bacteria, eukaryotic cytoplasmic components and mitochondria are also included in the phylogenetic tree. Anaerobic nonphotosynthesizing bacteria similar to Clostridium were the earliest organisms, arising more than 3.2 billion years ago. Bacterial photosynthesis evolved nearly 3.0 billion years ago, while oxygen-evolving photosynthesis, originating in the blue-green algal line, came into being about 2.0 billion years ago. The phylogenetic tree supports the symbiotic theory of the origin of eukaryotes.

  10. Design for Sequencing Spelling-to-Sound Correspondences in Mod 2 Reading Program, Volume 1 and 11.

    ERIC Educational Resources Information Center

    Berdiansky, Betty; And Others

    The purpose of the study contained in this report is to provide research and design data for the Southwest Regional Laboratory (SWRL) Mod 2 Reading Program, a four-year program (K-3) for teaching reading skills to primary-grade children. The report is divided into two volumes. Volume one describes sequencing and methodology, and the specific rule…

  11. De Novo Designed Proteins from a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth

    PubMed Central

    Fisher, Michael A.; McKinley, Kara L.; Bradley, Luke H.; Viola, Sara R.; Hecht, Michael H.

    2011-01-01

    A central challenge of synthetic biology is to enable the growth of living systems using parts that are not derived from nature, but designed and synthesized in the laboratory. As an initial step toward achieving this goal, we probed the ability of a collection of >106 de novo designed proteins to provide biological functions necessary to sustain cell growth. Our collection of proteins was drawn from a combinatorial library of 102-residue sequences, designed by binary patterning of polar and nonpolar residues to fold into stable 4-helix bundles. We probed the capacity of proteins from this library to function in vivo by testing their abilities to rescue 27 different knockout strains of Escherichia coli, each deleted for a conditionally essential gene. Four different strains – ΔserB, ΔgltA, ΔilvA, and Δfes – were rescued by specific sequences from our library. Further experiments demonstrated that a strain simultaneously deleted for all four genes was rescued by co-expression of four novel sequences. Thus, cells deleted for ∼0.1% of the E. coli genome (and ∼1% of the genes required for growth under nutrient-poor conditions) can be sustained by sequences designed de novo. PMID:21245923

  12. Preparing Teachers to Design Sequences of Instruction in Earth Systems Science: A Comparison of Three Professional Development Programs

    ERIC Educational Resources Information Center

    Penuel, William R.; Gallagher, Lawrence P.; Moorthy, Savitha

    2011-01-01

    This research study examined whether and how professional development can help teachers design sequences of instruction that lead to improved science learning. The efficacy of three professional development programs and a control condition was compared in a cluster randomized trial involving 53 middle school science teachers from a single school…

  13. Learning Hypotheses and an Associated Tool to Design and to Analyse Teaching-Learning Sequences. Special Issue

    ERIC Educational Resources Information Center

    Buty, Christian; Tiberghien, Andree; Le Marechal, Jean-Francois

    2004-01-01

    This contribution presents a tool elaborated from a theoretical framework linking epistemological, learning and didactical hypotheses. This framework lead to design teaching sequences from a socio-constructivist perspective, and is based on the role of models in physics or chemistry, and on the role of students' initial knowledge in learning…

  14. Self-microemulsifying drug delivery system for improved oral bioavailability of oleanolic acid: design and evaluation

    PubMed Central

    Yang, Rui; Huang, Xin; Dou, Jinfeng; Zhai, Guangxi; Su, Lequn

    2013-01-01

    Oleanolic acid is a poorly water-soluble drug with low oral bioavailability. A self-microemulsifying drug delivery system (SMEDDS) has been developed to enhance the solubility and oral bioavailability of oleanolic acid. The formulation design was optimized by solubility assay, compatibility tests, and pseudoternary phase diagrams. The morphology, droplet size distribution, zeta potential, viscosity, electrical conductivity, and refractive index of a SMEDDS loaded with oleanolic acid were studied in detail. Compared with oleanolic acid solution, the in vitro release of oleanolic acid from SMEDDS showed that the drug could be released in a sustained manner. A highly selective and sensitive high-performance liquid chromatographymass spectrometry method was developed for determination of oleanolic acid in rat plasma. This method was used for a pharmacokinetic study of an oleanolic acid-loaded SMEDDS compared with the conventional tablet in rats. Promisingly, a 5.07-fold increase in oral bioavailability of oleanolic acid was achieved for the SMEDDS compared with the marketed product in tablet form. Our studies illustrate the potential use of a SMEDDS for delivery of oleanolic acid via the oral route. PMID:23966781

  15. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome.

    PubMed

    Kumar, Ashutosh; Singh, Himanshu N; Pareek, Vikas; Raza, Khursheed; Dantham, Subrahamanyam; Kumar, Pavan; Mochan, Sankat; Faiq, Muneeb A

    2016-01-01

    Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)-microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker "retinoic acid" in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5'-AGGTCA-3') in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and embryological

  16. Rational design of reversible and irreversible cysteine sulfenic acid-targeted linear C-nucleophiles.

    PubMed

    Gupta, Vinayak; Carroll, Kate S

    2016-02-16

    Concerns about off-target effects has motivated the development of reversible covalent inhibition strategies for targeting cysteine. However, such strategies have not been reported for the unique cysteine oxoform, sulfenic acid. Herein, we have designed and identified linear C-nucleophiles that react selectively with cysteine sulfenic acid. The resulting thioether adducts exhibit reversibility ranging from minutes to days under reducing conditions, showing the feasibility of tuning C-nucleophile reactivity across a wide range of time scales. PMID:26878905

  17. Analyses of mitochondrial amino acid sequence datasets support the proposal that specimens of Hypodontus macropi from three species of macropodid hosts represent distinct species

    PubMed Central

    2013-01-01

    Background Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species. PMID:24261823

  18. Effect of Backbone Design on Hybridization Thermodynamics of Oligo-nucleic Acids: A Coarse-Grained Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Jayaraman, Arthi

    DNA hybridization is the basis of various bio-nano technologies, such as DNA origami and assembly of DNA-functionalized nanoparticles. A hybridized double stranded (ds) DNA is formed when complementary nucleobases on hybridizing strands exhibit specific and directional hydrogen bonds through canonical Watson-Crick base-pairing interactions. In recent years, the need for cheaper alternatives and significant synthetic advances have driven design of DNA mimics with new backbone chemistries. However, a fundamental understanding of how these backbone modifications in the oligo-nucleic acids impact the hybridization and melting behavior of the duplex is still lacking. In this talk, we present our recent findings on impact of varying backbone chemistry on hybridization of oligo-nucleic acid duplexes. We use coarse-grained molecular dynamics simulations to isolate the effect of strand flexibility, electrostatic interactions and nucleobase spacing on the melting curves for duplexes with various strand sequences and concentrations. Since conjugation of oligo-nucleic acids with polymers serve as building blocks for thermo-responsive polymer networks and gels, we also present the effect of such conjugation on hybridization thermodynamics and polymer conformation.

  19. Using Triple Helix Forming Peptide Nucleic Acids for Sequence-selective Recognition of Double-stranded RNA

    PubMed Central

    Hnedzko, Dziyana; Cheruiyot, Samwel K.; Rozners, Eriks

    2014-01-01

    Non-coding RNAs play important roles in regulation of gene expression. Specific recognition and inhibition of these biologically important RNAs that form complex double-helical structures will be highly useful for fundamental studies in biology and practical applications in medicine. This protocol describes a strategy developed in our laboratory for sequence-selective recognition of double-stranded RNA (dsRNA) using triple helix forming peptide nucleic acids (PNAs) that bind in the major grove of RNA helix. The strategy developed uses chemically modified nucleobases, such as 2-aminopyridine (M) that enables strong triple helical binding at physiologically relevant conditions, and 2-pyrimidinone (P) and 3-oxo-2,3-dihydropyridazine (E) that enable recognition of isolated pyrimidines in the purine rich strand of the RNA duplex. Detailed protocols for preparation of modified PNA monomers, solid-phase synthesis and HPLC purification of PNA oligomers, and measuring dsRNA binding affinity using isothermal titration calorimetry are included. PMID:25199637

  20. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  1. Prediction of Residue Status to Be Protected or Not Protected From Hy-drogen Exchange Using Amino Acid Sequence Only.

    PubMed

    Nikita V, Dovidchenko; Oxana V, Galzitskaya

    2008-01-01

    We have outlined here some structural aspects of local flexibility. Important functional properties are related to flexible segments. We try to predict regions that have been shown to exhibit the highest probability of being folded in the equilibrium intermediate or native state and will be protected from hydrogen exchange using amino acid sequence only. Our approach FoldUnfold for the prediction of unstructured regions has been applied to seven different proteins. For 80% of the residues considered in this paper we can predict correctly their status: will they be protected or not from hydrogen exchange. An additional goal of our study is to assess whether properties inferred using the bioinformatics approach are easily applicable to predict behavior of proteins in solution. PMID:18949078

  2. Prediction of Residue Status to Be Protected or Not Protected From Hy-drogen Exchange Using Amino Acid Sequence Only

    PubMed Central

    Dovidchenko, Nikita V; Galzitskaya, Oxana V

    2008-01-01

    We have outlined here some structural aspects of local flexibility. Important functional properties are related to flexible segments. We try to predict regions that have been shown to exhibit the highest probability of being folded in the equilibrium intermediate or native state and will be protected from hydrogen exchange using amino acid sequence only. Our approach FoldUnfold for the prediction of unstructured regions has been applied to seven different proteins. For 80% of the residues considered in this paper we can predict correctly their status: will they be protected or not from hydrogen exchange. An additional goal of our study is to assess whether properties inferred using the bioinformatics approach are easily applicable to predict behavior of proteins in solution. PMID:18949078

  3. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. II. Amino acid sequence of the tryptic peptides.

    PubMed

    Kingston, I B; Kingston, B L; Putnam, F W

    1980-04-10

    Amino acid sequence studies of tryptic peptides isolated from a histidine-rich fragment (Cp F5) of human ceruloplasmin are described. Nineteen tryptic peptides were isolated from unmodified Cp F5 and five tryptic peptides were isolated from citraconylated Cp F5. These peptides, together with the cyanogen bromide fragments reported previously, allowed the assembly of the complete sequence of Cp F5. The fragment has 159 residues and a molecular weight of 18,650; it lacks carbohydrate, is rich in histidine, and contains 1 free cysteine that may be part of a copper-binding site. Human ceruloplasmin is a single polypeptide chain with a molecular weight of about 130,000 that is readily cleaved to large fragments by proteolytic enzymes; the relationships of Cp F5 to intact ceruloplasmin and to structural subunits earlier proposed is described. Cp F5 probably is an intact globular domain that is attached to the COOH-terminal end of ceruloplasmin by a labile interdomain peptide bond. PMID:6987230

  4. Immunoreactivity of polyclonal antibodies generated against the carboxy terminus of the predicted amino acid sequence of the Huntington disease gene

    SciTech Connect

    Alkatib, G.; Graham, R.; Pelmear-Telenius, A.

    1994-09-01

    A cDNA fragment spanning the 3{prime}-end of the Huntington disease gene (from 8052 to 9252) was cloned into a prokaryotic expression vector containing the E. Coli lac promoter and a portion of the coding sequence for {beta}-galactosidase. The truncated {beta}-galactosidase gene was cleaved with BamHl and fused in frame to the BamHl fragment of the Huntington disease gene 3{prime}-end. Expression analysis of proteins made in E. Coli revealed that 20-30% of the total cellular proteins was represented by the {beta}-galactosidase-huntingtin fusion protein. The identity of the Huntington disease protein amino acid sequences was confirmed by protein sequence analysis. Affinity chromatography was used to purify large quantities of the fusion protein from bacterial cell lysates. Affinity-purified proteins were used to immunize New Zealand white rabbits for antibody production. The generated polyclonal antibodies were used to immunoprecipitate the Huntington disease gene product expressed in a neuroblastoma cell line. In this cell line the antibodies precipitated two protein bands of apparent gel migrations of 200 and 150 kd which together, correspond to the calculated molecular weight of the Huntington disease gene product (350 kd). Immunoblotting experiments revealed the presence of a large precursor protein in the range of 350-750 kd which is in agreement with the predicted molecular weight of the protein without post-translational modifications. These results indicate that the huntingtin protein is cleaved into two subunits in this neuroblastoma cell line and implicate that cleavage of a large precursor protein may contribute to its biological activity. Experiments are ongoing to determine the precursor-product relationship and to examine the synthesis of the huntingtin protein in freshly isolated rat brains, and to determine cellular and subcellular distribution of the gene product.

  5. Ambient temperature detection of PCR amplicons with a novel sequence-specific nucleic acid lateral flow biosensor.

    PubMed

    Ang, Geik Yong; Yu, Choo Yee; Yean, Chan Yean

    2012-01-01

    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis. PMID:22705404

  6. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. I. Amino acid sequence of the cyanogen bromide peptides.

    PubMed

    Kingston, I B; Kingston, B L; Putnam, F W

    1980-04-10

    A histidine-rich fragment, Cp F5, with a molecular weight of 18,650 was isolated from human ceruloplasmin. It consists of 159 amino acids and contains a possible copper-binding site. The sequence of the first 18 NH2-terminal residues of Cp F5 was determined by automated Edman degradation. Cp F5 was cleaved by cyanogen bromide to produce nine fragments of from 2 to 63 residues. The amino acid sequence of all of the cyanogen bromide fragments was investigated using automated and manual Edman degradation, the fragments being digested with trypsin, chymotrypsin, thermolysin, staphylococcal protease, and pepsin as appropriate. The results, in conjunction with the data on the tryptic peptides reported in the accompanying paper (Kingston, I.B., Kingston, B.L., and Putnam, F.L. (1980) J. Biol. Chem. 255, 2886-2896), establish the complete amino acid sequence of Cp F5. PMID:6987229

  7. Protective immunogenicity of two synthetic peptides selected from the amino acid sequence of Bordetella pertussis toxin subunit S1.

    PubMed Central

    Askelöf, P; Rodmalm, K; Wrangsell, G; Larsson, U; Svenson, S B; Cowell, J L; Undén, A; Bartfai, T

    1990-01-01

    Two peptides, corresponding to amino acids 1-17 and 169-186 of the amino acid sequence of pertussis toxin (PT) subunit S1, were synthesized and coupled to the diphtheria toxin cross-reactive mutant protein CRM 197 and evaluated for immunogenicity and protective capacity against PT challenge in vivo. The peptide-CRM conjugates induced high antibody titers against native toxin in mice (BALB/c, C57/Black, and outbred NMRI) as measured by ELISA. Upon PT challenge (0.5 microgram of toxin) of the NMRI mice, the CRM conjugates of peptides 1-17 and 169-186 fully protected the mice from PT-induced leukocytosis. Immunization with the corresponding bovine serum albumin conjugates of these two peptides also fully protected mice. Rabbit antiserum to the peptide 1-17-CRM conjugate was highly efficient in inhibiting the ADP-ribosylating activity of PT but did not neutralize the clustering effect of PT on Chinese hamster ovary cells. In contrast, the rabbit antiserum raised against the peptide 169-186-CRM conjugate neutralized the clustering effect of PT on Chinese hamster ovary cells but did not inhibit the enzymatic activity of PT. Peptide 169-186-CRM conjugates mimic the immunoglobulin binding properties of PT and also cause clustering of Chinese hamster ovary cells. The CRM conjugates of these two peptides constitute a synthetic pertussis vaccine candidate with the ability to provide a chemically well-defined, safe, and efficient pertussis vaccine. Images PMID:2304902

  8. Determination of hydroxy acids in cosmetics by chemometric experimental design and cyclodextrin-modified capillary electrophoresis.

    PubMed

    Liu, Pei-Yu; Lin, Yi-Hui; Feng, Chia Hsien; Chen, Yen-Ling

    2012-10-01

    A CD-modified CE method was established for quantitative determination of seven hydroxy acids in cosmetic products. This method involved chemometric experimental design aspects, including fractional factorial design and central composite design. Chemometric experimental design was used to enhance the method's separation capability and to explore the interactions between parameters. Compared to the traditional investigation that uses multiple parameters, the method that used chemometric experimental design was less time-consuming and lower in cost. In this study, the influences of three experimental variables (phosphate concentration, surfactant concentration, and methanol percentage) on the experimental response were investigated by applying a chromatographic resolution statistic function. The optimized conditions were as follows: a running buffer of 150 mM phosphate solution (pH 7) containing 0.5 mM CTAB, 3 mM γ-CD, and 25% methanol; 20 s sample injection at 0.5 psi; a separation voltage of -15 kV; temperature was set at 25°C; and UV detection at 200 nm. The seven hydroxy acids were well separated in less than 10 min. The LOD (S/N = 3) was 625 nM for both salicylic acid and mandelic acid. The correlation coefficient of the regression curve was greater than 0.998. The RSD and relative error values were all less than 9.21%. After optimization and validation, this simple and rapid analysis method was considered to be established and was successfully applied to several commercial cosmetic products. PMID:22996609

  9. Nucleic acid amplification in vitro: detection of sequences with low copy numbers and application to diagnosis of human immunodeficiency virus type 1 infection.

    PubMed Central

    Guatelli, J C; Gingeras, T R; Richman, D D

    1989-01-01

    The enzymatic amplification of specific nucleic acid sequences in vitro has revolutionized the use of nucleic acid hybridization assays for viral detection. With this method, the copy number of a pathogen-specific sequence is increased several orders of magnitude before detection is attempted. The sensitivity and specificity of detection are thus markedly improved. Mullis and Faloona devised the first method of sequence amplification in vitro, the polymerase chain reaction (K.B. Mullis and F.A. Faloona, Methods Enzymol. 155:355-350, 1987). By this method, synthetic oligonucleotide primers direct repeated, target-specific, deoxyribonucleic acid-synthetic reactions, resulting in an exponential increase in the amount of the specific target sequence. The application of sequence amplification to viral detection was initially performed with human immunodeficiency virus type 1 and human T-cell lymphoma virus type I. In principle, however, this approach can be applied to the detection of any deoxyribonucleic or ribonucleic acid virus; the only requirement is that sufficient nucleotide sequence data exist to allow the synthesis of target-specific oligonucleotide primers. The use of target amplification in vitro will permit a variety of studies of viral pathogenesis which have not been feasible because of the low copy number of the viral nucleic acids in infected material. This approach is particularly applicable to the study of human retroviral infections, which are chronic and persistent and are characterized by low titers of virus in tissues. In addition, target amplification in vitro will facilitate the development of new methods of sequence detection, which will be useful for rapid viral diagnosis in the clinical laboratory. PMID:2650862

  10. Recognition of mixed-sequence DNA duplexes: Design guidelines for Invaders based on 2′-O-(pyren-1-yl)methyl-RNA monomers

    PubMed Central

    Karmakar, Saswata; Guenther, Dale C.; Hrdlicka*, Patrick J.

    2013-01-01

    Development of agents that recognize mixed-sequence double-stranded DNA (dsDNA) is desirable due to their potential as tools for detection, regulation and modification of genes. Despite progress with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and other approaches, recognition of mixed-sequence dsDNA targets remains challenging. Our laboratory studies Invaders as an alternative approach toward this end. These double-stranded oligonucleotide probes are activated for recognition of mixed-sequence dsDNA through modification with +1 interstrand zippers of intercalator-functionalized nucleotides such as 2′-O-(pyren-1-yl)methyl-RNA monomers and have been recently shown to recognize linear dsDNA, DNA hairpins and chromosomal DNA. In the present work, we systematically study the role that the nucleobase moieties of the 2′-O-(pyren-1-yl)methyl-RNA monomers have on recognition efficiency of Invader duplexes. Results from thermal denaturation, binding energy, and recognition experiments using Invader duplexes with +1 interstrand zippers of the four canonical 2′-O-(pyren-1-yl)methyl-RNA A/C/G/U monomers, show that incorporation of these motifs is a general strategy for activation of probes for recognition of dsDNA. Probe duplexes with interstrand zippers comprised of C and/or U monomers result in the most efficient recognition of dsDNA. The insight gained from this study will drive the design of effective Invaders for applications in molecular biology, nucleic acid diagnostics and biotechnology. PMID:24195730

  11. Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts.

    PubMed

    Yaraksa, Nualyai; Anunthawan, Thitiporn; Theansungnoen, Tinnakorn; Daduang, Sakda; Araki, Tomohiro; Dhiravisit, Apisak; Thammasirirak, Sompong

    2014-03-01

    Leucrocin I is an antibacterial peptide isolated from crocodile (Crocodylus siamensis) white blood cell extracts. Based on Leucrocin I sequence, cationic peptide, NY15, was designed, synthesized and evaluated for antibacterial activity against Bacillus sphaericus TISTR 678, Bacillus megaterium (clinical isolate), Vibrio cholerae (clinical isolate), Salmonella typhi (clinical isolate), Salmonella typhi ATCC 5784 and Escherichia coli 0157:H7. The efficacy of the peptide made from all L-amino acids was also compared with all D-amino acids. The peptide made from all D-amino acids was more active than the corresponding L-enantiomer. In our detailed study, the interaction between peptides and the cell membrane of Vibrio cholerae as part of their killing mechanism was studied by fluorescence and electron microscopy. The results show that the membrane was the target of action of the peptides. Finally, the cytotoxicity assays revealed that both L-NY15 and D-NY15 peptides are non-toxic to mammalian cells at bacteriolytic concentrations. PMID:24192554

  12. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements.

    PubMed Central

    Lenich, A G; Glasgow, A C

    1994-01-01

    Deletion analysis of the subcloned DNA inversion region of Moraxella lacunata indicates that Piv is the only M. lacunata-encoded factor required for site-specific inversion of the tfpQ/tfpI pilin segment. The predicted amino acid sequence of Piv shows significant homology solely with the transposases/integrases of a family of insertion sequence elements, suggesting that Piv is a novel site-specific recombinase. Images PMID:8021196

  13. Design and Evaluation of a Research-Based Teaching Sequence: The Superposition of Electric Field.

    ERIC Educational Resources Information Center

    Viennot, L.; Rainson, S.

    1999-01-01

    Illustrates an approach to research-based teaching strategies and their evaluation. Addresses a teaching sequence on the superposition of electric fields implemented at the college level in an institutional framework subject to severe constraints. Contains 28 references. (DDR)

  14. Designing and Evaluating Science Teaching Sequences: An Approach Drawing upon the Concept of Learning Demand and a Social Constructivist Perspective on Learning.

    ERIC Educational Resources Information Center

    Leach, John; Scott, Phil

    2002-01-01

    Reviews evidence on the effectiveness of "sequence of teaching activities" on student learning and the design and evaluation of science teaching sequences. Discusses the social constructivist perspective on learning and offers a generalized approach to planning a science teaching sequence. Provides an example of how to plan an instructional…

  15. The outer capsid protein VP4 of equine rotavirus strain H-2 represents a unique VP4 type by amino acid sequence analysis.

    PubMed

    Hardy, M E; Gorziglia, M; Woode, G N

    1993-03-01

    The nucleotide and deduced amino acid sequence of G serotype 3 equine rotavirus strain H-2 was determined. A predicted 776-amino-acid H-2 VP4 shows less than or equal to 85.3% identity to other rotavirus VP4 types sequenced to date and thus represents a new P serotype. A PCR-generated probe derived from a cDNA clone of H-2 gene 4 hybridized to gene 4 of several tissue-culture-adapted equine rotavirus isolates, demonstrating that the gene 4 allele present in the H-2 strain is present in the equine rotavirus population. PMID:8382410

  16. Single Amino Acid Substitutions in the Chemotactic Sequence of Urokinase Receptor Modulate Cell Migration and Invasion

    PubMed Central

    Franco, Paola; Pavone, Vincenzo; Mugione, Pietro; Di Carluccio, Gioconda; Masucci, Maria Teresa; Arra, Claudio; Pirozzi, Giuseppe; Stoppelli, Maria Patrizia; Carriero, Maria Vincenza

    2012-01-01

    The receptor for urokinase-type plasminogen activator (uPAR) plays an important role in controlling cell migration. uPAR binds urokinase and vitronectin extracellular ligands, and signals in complex with transmembrane receptors such as Formyl-peptide Receptors (FPR)s and integrins. Previous work from this laboratory has shown that synthetic peptides, corresponding to the uPAR88–92 chemotactic sequence, when carrying the S90P or S90E substitutions, up- or down-regulate cell migration, respectively. To gain mechanistic insights into these opposite cell responses, the functional consequences of S90P and S90E mutations in full-length uPAR were evaluated. First, (HEK)-293 embryonic kidney cells expressing uPARS90P exhibit enhanced FPR activation, increased random and directional cell migration, long-lasting Akt phosphorylation, and increased adhesion to vitronectin, as well as uPAR/vitronectin receptor association. In contrast, the S90E substitution prevents agonist-triggered FPR activation and internalization, decreases binding and adhesion to vitronectin, and inhibits uPAR/vitronectin receptor association. Also, 293/uPARS90P cells appear quite elongated and their cytoskeleton well organized, whereas 293/uPARS90E cells assume a large flattened morphology, with random orientation of actin filaments. Interestingly, when HT1080 cells co-express wild type uPAR with uPAR S90E, the latter behaves as a dominant-negative, impairing uPAR-mediated signaling and reducing cell wound repair as well as lung metastasis in nude mice. In contrast, signaling, wound repair and in vivo lung metastasis of HT1080 cells bearing wild type uPAR are enhanced when they co-express uPARS90P. In conclusion, our findings indicate that Ser90 is a critical residue for uPAR signaling and that the S90P and S90E exert opposite effects on uPAR activities. These findings may be accommodated in a molecular model, in which uPARS90E and uPARS90P are forced into inactive and active forms, respectively

  17. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    PubMed Central

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R.; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S.; Williams, Steven A.

    2016-01-01

    Background The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world’s most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Methodology/Principal Findings Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. Conclusions/Significance The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other

  18. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea.

    PubMed

    Fu, Yingnan; Wang, Rui; Zhang, Zilian; Jiao, Nianzhi

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  19. Complete Genome Sequence of the d-Amino Acid Catabolism Bacterium Phaeobacter sp. Strain JL2886, Isolated from Deep Seawater of the South China Sea

    PubMed Central

    Fu, Yingnan; Wang, Rui

    2016-01-01

    Phaeobacter sp. strain JL2886, isolated from deep seawater of the South China Sea, can catabolize d-amino acids. Here, we report the complete genome sequence of Phaeobacter sp. JL2886. It comprises ~4.06 Mbp, with a G+C content of 61.52%. A total of 3,913 protein-coding genes and 10 genes related to d-amino acid catabolism were obtained. PMID:27587825

  20. Formal Learning Sequences and Progression in the Studio: A Framework for Digital Design Education

    ERIC Educational Resources Information Center

    Wärnestål, Pontus

    2016-01-01

    This paper examines how to leverage the design studio learning environment throughout long-term Digital Design education in order to support students to progress from tactical, well-defined, device-centric routine design, to confidently design sustainable solutions for strategic, complex, problems for a wide range of devices and platforms in the…