Science.gov

Sample records for acid sialic acid

  1. Genetics Home Reference: sialic acid storage disease

    MedlinePlus

    ... Home Health Conditions sialic acid storage disease sialic acid storage disease Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Sialic acid storage disease is an inherited disorder that primarily ...

  2. SIALIC ACIDS AND AUTOIMMUNE DISEASE

    PubMed Central

    Mahajan, Vinay S.; Pillai, Shiv

    2016-01-01

    summary An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid containing ligands and recruit SH2-domain containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid binding proteins are also reviewed. PMID:26683151

  3. Sialic Acid Mimetics to Target the Sialic Acid-Siglec Axis.

    PubMed

    Büll, Christian; Heise, Torben; Adema, Gosse J; Boltje, Thomas J

    2016-06-01

    Sialic acid sugars are vital regulators of the immune system through binding to immunosuppressive sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on immune cells. Aberrant sialic acid-Siglec interactions are associated with an increasing number of pathologies including infection, autoimmunity, and cancer. Therefore, the sialic acid-Siglec axis is an emerging target to prevent or affect the course of several diseases. Chemical modifications of the natural sialic acid ligands have led to sialic acid mimetics (SAMs) with improved binding affinity and selectivity towards Siglecs. Recent progress in glycobiotechnology allows the presentation of these SAMs on nanoparticles, polymers, and living cells via bioorthogonal synthesis. These developments now enable the detailed study of the sialic acid-Siglec axis including its therapeutic potential as an immune modulator.

  4. Plasma sialic acid alterations in neoplastic diseases.

    PubMed

    Dwivedi, C; Dixit, M; Kumar, S S; Reddy, H; Semenya, K A; Hardy, R E

    1987-01-01

    The several types of neoplastic transformations are accompanied by alterations in the composition of cell glycoproteins, which are major structural components of cell surfaces. One such observed alteration is in the level of sialic acid on the cell surface. In the present investigation, plasma sialic acid levels were measured in normal volunteers and neoplastic patients using thiobarbituric acid spectrophotometric methods. The mean plasma sialic acid level from 124 normal volunteers was 3.0 mumol/ml. The mean for 20 non-malignant patients was 3.2 mumol/ml. Such observed mean values of sialic acid were 3.7 mumol/ml in 64 breast cancer patients, 5.1 mumol/ml in 22 lung cancer patients, 4.1 mumol/ml in 20 colon patients, and 5.0 mumol/ml in 26 patients having ovarian, cervix, pancreas, prostate, thyroid, uterine, squamous cell, esophageal and endometrial cancers. Serial determinations of plasma sialic acid in 15 patients correlated well with the progression and regression of disease. These results indicate that plasma sialic acid levels are elevated over control levels in the different types of cancer patients studied. Assay of plasma sialic acid is not sensitive enough to be used for screening, but could be used as a prognostic determinant in a variety of neoplastic conditions.

  5. Development of miracle medicines from sialic acids

    PubMed Central

    OGURA, Haruo

    2011-01-01

    Sialic acids are electronegatively charged C9-sugars and are considered to play important roles in higher animals and some microorganisms. Denoting their significance, understanding and exploiting the complexity of the sialic acids has been referred to as the “the third language of life”. In essence, “sialic acid derivatives possess a harmonious shape and good balance between two opposing hydrophilic and hydrophobic parts, meaning that they should display various kinds of potentially unique and possibly conflicting physiological activities (glycolipoids)”. Consequently, there are good omens that unprecedented ‘miracle’ medicines could be developed from sialic acid derivatives. In this review, the first problem, the preparation of sialic acids, is covered, the synthesis of sialic acid derivatives and confirmation of their structures obviously being of critical significance. In addition we needed to confirm their precise stereochemistry and a hydrolysis method has been developed for confirmation of the anomeric position. Several of the compounds have already demonstrated interesting bioactivity. PMID:21670567

  6. Metabolic glycoengineering: sialic acid and beyond.

    PubMed

    Du, Jian; Meledeo, M Adam; Wang, Zhiyun; Khanna, Hargun S; Paruchuri, Venkata D P; Yarema, Kevin J

    2009-12-01

    This report provides a perspective on metabolic glycoengineering methodology developed over the past two decades that allows natural sialic acids to be replaced with chemical variants in living cells and animals. Examples are given demonstrating how this technology provides the glycoscientist with chemical tools that are beginning to reproduce Mother Nature's control over complex biological systems - such as the human brain - through subtle modifications in sialic acid chemistry. Several metabolic substrates (e.g., ManNAc, Neu5Ac, and CMP-Neu5Ac analogs) can be used to feed flux into the sialic acid biosynthetic pathway resulting in numerous - and sometime quite unexpected - biological repercussions upon nonnatural sialoside display in cellular glycans. Once on the cell surface, ketone-, azide-, thiol-, or alkyne-modified glycans can be transformed with numerous ligands via bioorthogonal chemoselective ligation reactions, greatly increasing the versatility and potential application of this technology. Recently, sialic acid glycoengineering methodology has been extended to other pathways with analog incorporation now possible in surface-displayed GalNAc and fucose residues as well as nucleocytoplasmic O-GlcNAc-modified proteins. Finally, recent efforts to increase the "druggability" of sugar analogs used in metabolic glycoengineering, which have resulted in unanticipated "scaffold-dependent" activities, are summarized.

  7. Serum sialic acid and CEA concentrations in human breast cancer.

    PubMed

    Hogan-Ryan, A; Fennelly, J J; Jones, M; Cantwell, B; Duffy, M J

    1980-04-01

    The concentration of bound sialic acid in the sera of 56 normal subjects and 65 subjects with breast cancer was measured, in order to determine (1) whether serum sialic acid concentrations are raised in breast cancer and (2) whether the concentration of sialic acid in serum reflects tumour stage. The amount of sialic acid in serum was compared to serum carcinoembryonic antigen (CEA) values. Urinary hydroxyproline and serum alkaline phosphatase concentrations were used as indicators of bone and liver involvement. Erythrocyte sedimentation rate (ESR) was also measured. Significantly elevated serum sialic acid concentrations were found in breast cancer, and showed correlation with tumour stage. Serum sialic acid values did not correlate with CEA values. The results suggest that measurement of serum sialic acid concentrations may be of adjunctive value in assessing tumour stage.

  8. Advances in the biology and chemistry of sialic acids.

    PubMed

    Chen, Xi; Varki, Ajit

    2010-02-19

    Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis, as well as large-scale E. coli cell-based production, have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts not only will lead to a better understanding of the biological and pathological importance of sialic acids and their diversity but also could lead to the development of therapeutics.

  9. Identification of a novel sialic acid transporter in Haemophilus ducreyi.

    PubMed

    Post, Deborah M B; Mungur, Rachna; Gibson, Bradford W; Munson, Robert S

    2005-10-01

    Haemophilus ducreyi, the causative agent of chancroid, produces a lipooligosaccharide (LOS) which terminates in N-acetyllactosamine. This glycoform can be further extended by the addition of a single sialic acid residue to the terminal galactose moiety. H. ducreyi does not synthesize sialic acid, which must be acquired from the host during infection or from the culture medium when the bacteria are grown in vitro. However, H. ducreyi does not have genes that are highly homologous to the genes encoding known bacterial sialic acid transporters. In this study, we identified the sialic acid transporter by screening strains in a library of random transposon mutants for those mutants that were unable to add sialic acid to N-acetyllactosamine-containing LOS. Mutants that reacted with the monoclonal antibody 3F11, which recognizes the terminal lactosamine structure, and lacked reactivity with the lectin Maackia amurensis agglutinin, which recognizes alpha2,3-linked sialic acid, were further characterized to demonstrate that they produced a N-acetyllactosamine-containing LOS by silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analyses. The genes interrupted in these mutants were mapped to a four-gene cluster with similarity to genes encoding bacterial ABC transporters. Uptake assays using radiolabeled sialic acid confirmed that the mutants were unable to transport sialic acid. This study is the first report of bacteria using an ABC transporter for sialic acid uptake.

  10. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  11. Independence of sialic acid levels in normal and malignant growth.

    PubMed

    Khadapkar, S V; Sheth, N A; Bhide, S V

    1975-06-01

    Sialic acid content in breast or tumor tissue and serum of mouse strains that are either susceptible or resistant to breast cancer was measured at various age periods. Sialic acid content was also studied in normal lung tissue and in lung adenoma and hepatoma. Sialic acid levels during nonmalignant growth of a tissue were measured in breast tissue during pregnancy and lactation, and in regenerating liver, as well as in newborn and postnatal liver. The sialic acid content, when expressed per mg of protein, increased in mammary tumor, lung adenoma, and hepatoma. It also increased in nonmalignant growth of breast tissue during pregnancy and lactation and of regenerating liver and postnatal liver. Increase in sialic acid per mg DNA was observed only in lung tumors, regenerating liver, and postnatal liver. It appears that the changes in sialic acid level are independent of the normal or malignant growth of a tissue and that these changes might be the function of the parameter used to express the sialic acid values, i.e., either the DNA content or protein content of a given tissue.

  12. Advances in the Biology and Chemistry of Sialic Acids

    PubMed Central

    Chen, Xi; Varki, Ajit

    2010-01-01

    Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis as well as large-scale E. coli cell-based production have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts will not only lead to a better understanding of the biological and pathological importance of sialic acids and their diversity, but could also lead to the development of therapeutics. PMID:20020717

  13. Cellular Metabolism of Unnatural Sialic Acid Precursors

    PubMed Central

    Pham, Nam D.; Fermaintt, Charles S.; Rodriguez, Andrea C.; McCombs, Janet E.; Nischan, Nicole; Kohler, Jennifer J.

    2015-01-01

    Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE. PMID:25957566

  14. Sialic Acid Catabolism in Staphylococcus aureus

    PubMed Central

    Olson, Michael E.; King, Jessica M.; Yahr, Timothy L.

    2013-01-01

    Staphylococcus aureus is a ubiquitous bacterial pathogen that is the causative agent of numerous acute and chronic infections. S. aureus colonizes the anterior nares of a significant portion of the healthy adult population, but the mechanisms of colonization remain incompletely defined. Sialic acid (N-acetylneuraminic acid [Neu5Ac]) is a bioavailable carbon and nitrogen source that is abundant on mucosal surfaces and in secretions in the commensal environment. Our findings demonstrate that Neu5Ac can serve as an S. aureus carbon source, and we have identified a previously uncharacterized chromosomal locus (nan) that is required for Neu5Ac utilization. Molecular characterization of the nan locus indicates that it contains five genes, organized into four transcripts, and the genes were renamed nanE, nanR, nanK, nanA, and nanT. Initial studies with gene deletions indicate that nanT, predicted to encode the Neu5Ac transporter, and nanA and nanE, predicted to encode catabolic enzymes, are essential for growth on Neu5Ac. Furthermore, a nanE deletion mutant exhibits a growth inhibition phenotype in the presence of Neu5Ac. Transcriptional fusions and Northern blot analyses indicate that NanR represses the expression of both the nanAT and nanE transcripts, which can be relieved with Neu5Ac. Electrophoretic mobility studies demonstrate that NanR binds to the nanAT and nanE promoter regions, and the Neu5Ac catabolic intermediate N-acetylmannosamine-6-phosphate (ManNAc-6P) relieves NanR promoter binding. Taken together, these data indicate that the nan gene cluster is essential for Neu5Ac utilization and may perform an important function for S. aureus survival in the host. PMID:23396916

  15. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  16. Innovative use of a bacterial enzyme involved in sialic acid degradation to initiate sialic acid biosynthesis in glycoengineered insect cells

    PubMed Central

    Geisler, Christoph; Jarvis, Donald L.

    2012-01-01

    The baculovirus/insect cell system is widely used for recombinant protein production, but it is suboptimal for recombinant glycoprotein production because it does not provide sialylation, which is an essential feature of many glycoprotein biologics. This problem has been addressed by metabolic engineering, which has extended endogenous insect cell N-glycosylation pathways and enabled glycoprotein sialylation by baculovirus/insect cell systems. However, further improvement is needed because even the most extensively engineered baculovirus/insect cell systems require media supplementation with N-acetylmannosamine, an expensive sialic acid precursor, for efficient recombinant glycoprotein sialylation. Our solution to this problem focused on E. coli N-acetylglucosamine-6-phosphate 2′-epimerase (GNPE), which normally functions in bacterial sialic acid degradation. Considering that insect cells have the product, but not the substrate for this enzyme, we hypothesized that GNPE might drive the reverse reaction in these cells, thereby initiating sialic acid biosynthesis in the absence of media supplementation. We tested this hypothesis by isolating transgenic insect cells expressing E. coli GNPE together with a suite of mammalian genes needed for N-glycoprotein sialylation. Various assays showed that these cells efficiently produced sialic acid, CMP-sialic acid, and sialylated recombinant N-glycoproteins even in growth media without N-acetylmannosamine. Thus, this study demonstrated that a eukaryotic recombinant protein production platform can be glycoengineered with a bacterial gene, that a bacterial enzyme which normally functions in sialic acid degradation can be used to initiate sialic acid biosynthesis, and that insect cells expressing this enzyme can produce sialylated N-glycoproteins without N-acetylmannosamine supplementation, which will reduce production costs in glycoengineered baculovirus/insect cell systems. PMID:23022569

  17. Salivary Sialic Acid Levels in Smokeless Tobacco Users

    PubMed Central

    Farhad Mollashahi, Leila; Honarmand, Marieh; Nakhaee, Alireza; Mollashahi, Ghasem

    2016-01-01

    Background Smokeless tobacco chewing is one of the known risk factors for oral cancer. It is consumed widely by residents of southeastern Iran. Objectives In this study, salivary free and total sialic acid, and total protein were compared in paan consumers and non-consumers. Patients and Methods In this cross-sectional study, unstimulated saliva of 94 subjects (44 paan consumers and 50 non-consumers) who were referred to the oral medicine department of the dentistry school of Zahedan were collected. Salivary free and total sialic acid, and total protein concentration were measured by standard biochemical methods, and the obtained data were analyzed using SPSS 20 through the non-parametric Mann-Whitney test. Results The concentration of salivary free sialic acid (23.21 ± 18.98 mg/L) was significantly increased in paan consumers. The concentration of salivary Total sialic acid (TSA) (39.57 ± 26.58 mg/L) and total protein (0.77 ± 0.81 mg/mL) showed increases in paan consumers, however, the results were not statistically significant. Conclusions Salivary free and total sialic acid, and total protein were higher in the paan consumers compared to non-consumers. Due to the carcinogenic effect of smokeless tobacco, measurement of these parameters in saliva may be useful in early detection of oral cancer. PMID:27622172

  18. Expanding the diversity of unnatural cell surface sialic acids

    SciTech Connect

    Luchansky, Sarah J.; Goon, Scarlett; Bertozzi, Carolyn R.

    2003-10-30

    Novel chemical reactivity can be introduced onto cell surfaces through metabolic oligosaccharide engineering. This technique exploits the substrate promiscuity of cellular biosynthetic enzymes to deliver unnatural monosaccharides bearing bioorthogonal functional groups into cellular glycans. For example, derivatives of N-acetylmannosamine (ManNAc) are converted by the cellular biosynthetic machinery into the corresponding sialic acids and subsequently delivered to the cell surface in the form of sialoglycoconjugates. Analogs of N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) are also metabolized and incorporated into cell surface glycans, likely through the sialic acid and GalNAc salvage pathways, respectively. Furthermore, GlcNAc analogs can be incorporated into nucleocytoplasmic proteins in place of {beta}-O-GlcNAc residues. These pathways have been exploited to integrate unique electrophiles such as ketones and azides into the target glycoconjugate class. These functional groups can be further elaborated in a chemoselective fashion by condensation with hydrazides and by Staudinger ligation, respectively, thereby introducing detectable probes onto the cell. In conclusion, sialic acid derivatives are efficient vehicles for delivery of bulky functional groups to cell surfaces and masking of their hydroxyl groups improves their cellular uptake and utilization. Furthermore, the successful introduction of photoactivatable aryl azides into cell surface glycans opens up new avenues for studying sialic acid-binding proteins and elucidating the role of sialic acid in essential processes such as signaling and cell adhesion.

  19. Metabolism of Sialic Acid by Bifidobacterium breve UCC2003

    PubMed Central

    Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco

    2014-01-01

    Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3′-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. PMID:24814790

  20. Steering Siglec-Sialic Acid Interactions on Living Cells using Bioorthogonal Chemistry.

    PubMed

    Büll, Christian; Heise, Torben; van Hilten, Niek; Pijnenborg, Johan F A; Bloemendal, Victor R L J; Gerrits, Lotte; Kers-Rebel, Esther D; Ritschel, Tina; den Brok, Martijn H; Adema, Gosse J; Boltje, Thomas J

    2017-03-13

    Sialic acid sugars that terminate cell-surface glycans form the ligands for the sialic acid binding immunoglobulin-like lectin (Siglec) family, which are immunomodulatory receptors expressed by immune cells. Interactions between sialic acid and Siglecs regulate the immune system, and aberrations contribute to pathologies like autoimmunity and cancer. Sialic acid/Siglec interactions between living cells are difficult to study owing to a lack of specific tools. Here, we report a glycoengineering approach to remodel the sialic acids of living cells and their binding to Siglecs. Using bioorthogonal chemistry, a library of cells with more than sixty different sialic acid modifications was generated that showed dramatically increased binding toward the different Siglec family members. Rational design reduced cross-reactivity and led to the discovery of three selective Siglec-5/14 ligands. Furthermore, glycoengineered cells carrying sialic acid ligands for Siglec-3 dampened the activation of Siglec-3(+) monocytic cells through the NF-κB and IRF pathways.

  1. Multiple changes in sialic acid biology during human evolution.

    PubMed

    Varki, Ajit

    2009-04-01

    Humans are genetically very similar to "great apes", (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in "great apes". Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations--and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.

  2. Role of sialic acid and alkaline DNase in breast cancer.

    PubMed

    Raval, G N; Parekh, L J; Patel, M M; Patel, P S; Rawal, R M; Balar, D B; Patel, D D

    1997-01-01

    Serum levels of sialic acid and alkaline DNase (ADA) were analysed in 495 blood samples collected from 170 breast cancer patients before and during/after anticancer treatment. Fifty-six healthy females were included in the study to define the cutoff values. The markers were analysed by highly sensitive spectrophotometric methods. Statistical evaluation of the data was done using Student's 't' test, paired 't' test and ROC curve analysis. The total sialic acid (TSA), lipid bound sialic acid (LSA) and ADA in sera of untreated breast cancer patients were significantly higher than in controls. ROC curve analysis revealed TSA and LSA to be useful markers for diagnosis of breast cancer. Serum levels of TSA and LSA were significantly decreased in complete responders as compared to their pretreatment values. The pretreatment ADA values showed much individual variation. However, responders showed higher levels of ADA than untreated patients. In nonresponders the values of the biomarkers were comparable with pretreatment levels. The study suggested that TSA and LSA can be helpful in the diagnosis of breast cancer. All three markers can be used for assessment of response to anticancer treatment in breast cancer patients.

  3. Advanced Technologies in Sialic Acid and Sialoglycoconjugate Analysis.

    PubMed

    Kitajima, Ken; Varki, Nissi; Sato, Chihiro

    2015-01-01

    Although the structural diversity of sialic acid (Sia) is rapidly expanding, understanding of its biological significance has lagged behind. Advanced technologies to detect and probe diverse structures of Sia are absolutely necessary not only to understand further biological significance but also to pursue medicinal and industrial applications. Here we describe analytical methods for detection of Sia that have recently been developed or improved, with a special focus on 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac), N-glycolylneuraminic acid (Neu5Gc), deaminoneuraminic acid (Kdn), O-sulfated Sia (SiaS), and di-, oligo-, and polysialic acid (diSia/oligoSia/polySia) in glycoproteins and glycolipids. Much more attention has been paid to these Sia and sialoglycoconjugates during the last decade, in terms of regulation of the immune system, neural development and function, tumorigenesis, and aging.

  4. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions

    PubMed Central

    2010-01-01

    Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation. PMID:21092209

  5. Substrate specificity of the sialic acid biosynthetic pathway

    SciTech Connect

    Jacobs, Christina L.; Goon, Scarlett; Yarema, Kevin J.; Hinderlich, Stephan; Hang, Howard C.; Chai, Diana H.; Bertozzi, Carolyn R.

    2001-07-18

    Unnatural analogs of sialic acid can be delivered to mammalian cell surfaces through the metabolic transformation of unnatural N-acetylmannosamine (ManNAc) derivatives. In previous studies, mannosamine analogs bearing simple N-acyl groups up to five carbon atoms in length were recognized as substrates by the biosynthetic machinery and transformed into cell-surface sialoglycoconjugates [Keppler, O. T., et al. (2001) Glycobiology 11, 11R-18R]. Such structural alterations to cell surface glycans can be used to probe carbohydrate-dependent phenomena. This report describes our investigation into the extent of tolerance of the pathway toward additional structural alterations of the N-acyl substituent of ManNAc. A panel of analogs with ketone-containing N-acyl groups that varied in the lengthor steric bulk was chemically synthesized and tested for metabolic conversion to cell-surface glycans. We found that extension of the N-acyl chain to six, seven, or eight carbon atoms dramatically reduced utilization by the biosynthetic machinery. Likewise, branching from the linear chain reduced metabolic conversion. Quantitation of metabolic intermediates suggested that cellular metabolism is limited by the phosphorylation of the N-acylmannosamines by ManNAc 6-kinase in the first step of the pathway. This was confirmed by enzymatic assay of the partially purified enzyme with unnatural substrates. Identification of ManNAc 6-kinase as a bottleneck for unnatural sialic acid biosynthesis provides a target for expanding the metabolic promiscuity of mammalian cells.

  6. A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia.

    PubMed

    Roy, Sumita; Douglas, C W Ian; Stafford, Graham P

    2010-05-01

    Tannerella forsythia is a key contributor to periodontitis, but little is known of its virulence mechanisms. In this study we have investigated the role of sialic acid in biofilm growth of this periodontal pathogen. Our data show that biofilm growth of T. forsythia is stimulated by sialic acid, glycolyl sialic acid, and sialyllactose, all three of which are common sugar moieties on a range of important host glycoproteins. We have also established that growth on sialyllactose is dependent on the sialidase of T. forsythia since the sialidase inhibitor oseltamivir suppresses growth on sialyllactose. The genome of T. forsythia contains a sialic acid utilization locus, which also encodes a putative inner membrane sialic acid permease (NanT), and we have shown this is functional when it is expressed in Escherichia coli. This genomic locus also contains a putatively novel TonB-dependent outer membrane sialic acid transport system (TF0033-TF0034). In complementation studies using an Escherichia coli strain devoid of its outer membrane sialic acid transporters, the cloning and expression of the TF0033-TF0034 genes enabled an E. coli nanR nanC ompR strain to utilize sialic acid as the sole carbon and energy source. We have thus identified a novel sialic acid uptake system that couples an inner membrane permease with a TonB-dependent outer membrane transporter, and we propose to rename these novel sialic acid uptake genes nanO and nanU, respectively. Taken together, these data indicate that sialic acid is a key growth factor for this little-characterized oral pathogen and may be key to its physiology in vivo.

  7. A Siglec-like sialic-acid-binding motif revealed in an adenovirus capsid protein

    PubMed Central

    Rademacher, Christoph; Bru, Thierry; McBride, Ryan; Robison, Elizabeth; Nycholat, Corwin M; Kremer, Eric J; Paulson, James C

    2012-01-01

    Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are a family of transmembrane receptors that are well documented to play roles in regulation of innate and adaptive immune responses. To see whether the features that define the molecular recognition of sialic acid were found in other sialic-acid-binding proteins, we analyzed 127 structures with bound sialic acids found in the Protein Data Bank database. Of these, the canine adenovirus 2-fiber knob protein showed close local structural relationship to Siglecs despite low sequence similarity. The fiber knob harbors a noncanonical sialic-acid recognition site, which was then explored for detailed specificity using a custom glycan microarray comprising 58 diverse sialosides. It was found that the adenoviral protein preferentially recognizes the epitope Neu5Acα2-3[6S]Galβ1-4GlcNAc, a structure previously identified as the preferred ligand for Siglec-8 in humans and Siglec-F in mice. Comparison of the Siglec and fiber knob sialic-acid-binding sites reveal conserved structural elements that are not clearly identifiable from the primary amino acid sequence, suggesting a Siglec-like sialic-acid-binding motif that comprises the consensus features of these proteins in complex with sialic acid. PMID:22522600

  8. Sialic acids as link to Japanese scientistsDedicated to Prof. Dr. Tamio Yamakawa.

    PubMed Central

    SCHAUER, Roland

    2016-01-01

    This manuscript is dedicated to Prof. Tamio Yamakawa and describes my cooperations on sialic acid-related topics with Japanese scientists during the last 40 years. We studied sialic acids and their O-acetylated derivatives in the sea urchin Pseudocentrotus depressus, in Halocynthia species, and in human and bovine milk. In seafood we mainly searched for N-glycolylneuraminic acid. With synthetic substrates it was shown that sialic acid O-acetylation at C-4 hinders the activity of sialidases, with the exception of viral enzymes. The biosynthesis of Neu5Gc was discussed and the distribution of this sialic acid in dogs followed in modern literature and reviewed regarding their migration. An excellent source of sialic acids is edible bird nest substance (Collocalia mucin) which was used for the synthesis of sialylation inhibitors. PMID:27063181

  9. Sialic Acid Uptake Is Necessary for Virulence of Pasteurella multocida in turkeys

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many pathogenic bacteria employ systems to incorporate sialic acid into their membranes as a means of protection against host defense mechanisms. Pasteurella multocida is an opportunistic pathogen which causes diseases of economic importance in a wide range of animal species and sialic acid uptake p...

  10. Clinical usefulness of alterations in sialic acid, sialyl transferase and sialoproteins in breast cancer.

    PubMed

    Raval, G N; Parekh, L J; Patel, D D; Jha, F P; Sainger, R N; Patel, P S

    2004-07-01

    Sialic acid, the end moieties of the carbohydrate chains are biologically important and essential for functions of glycoconjugates and are reported to be altered in cancer patients. Two hundred and twenty five breast cancer (BC) patients, 100 patients with benign breast disease (BBD) and 100 healthy females (controls) were enrolled for the study. Eight hundred and twenty four follow-up samples of 225 breast carcinoma patients were also evaluated. The association of sialic acid forms, sialyltransferase and α-2-6 sialoproteins levels with presence and extent as well as prognosis of breast carcinoma was studied. Serum sialic acid forms and sialyltransferase revealed significantly elevated levels among untreated breast cancer patients as compared to the controls, patients with BBD as well as cancer patients in remission. Non-responders showed comparable levels of the markers with those found in breast cancer patients at the time of diagnosis. Higher levels of sialic acid forms at diagnosis were associated with poor prognosis. A positive correlation between serum levels of different forms of sialic acids and extent of malignant disease was observed. The changes in serum proteins with terminal α-2-6 sialic acid correlated well with alterations in the levels of sialic acid forms and sialyltransferase. Malignant tissues showed elevated levels of sialic acid and sialyltransferase as compared to surrounding normal tissues.The results suggested potential utility of these markers in evaluation of clinical outcome.

  11. [The determination of sialic acid in cancer patients].

    PubMed

    Correale, M; Abbate, I; Gargano, G; Catino, A; Musci, M D; Dragone, C D; De Lena, M

    1992-01-01

    The availability of a new rapid and reproducible laboratory test led to an easy dosage of sialic acid (AS) serum levels in neoplastic patients. This substance, involved in tumoral transformation and metastatic spread, has been evaluated in 278 neoplastic patients: 183 patients were affected by lymphoma (96 NHL and 87 HD), 60 by breast cancer and 35 by lung cancer. All groups of patients considered showed mean values of AS higher than healthy controls and the positive percentages, compared with cut-off levels, were respectively: NHL 71%, HD 70%, breast cancer 38%, lung cancer 89%. Even if the low specificity of this marker limits its clinical validity, AS, that seems related to clinical course of disease, could be useful in the monitoring of many neoplasms.

  12. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology

    PubMed Central

    Lantos, Andrés B.; Carlevaro, Giannina; Araoz, Beatriz; Ruiz Diaz, Pablo; Camara, María de los Milagros; Buscaglia, Carlos A.; Bossi, Mariano; Yu, Hai; Chen, Xi; Bertozzi, Carolyn R.; Mucci, Juan; Campetella, Oscar

    2016-01-01

    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form. PMID

  13. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  14. O-acetylated sialic acids in gangliosides from pig spleen lymphocytes.

    PubMed

    Hueso, P; Cabezas, J A; Reglero, A

    1988-01-01

    The sialic acid content of gangliosides from pig spleen lymphocytes was studied by thin-layer chromatography. N-glycolylneuraminic acid and N-acetylneuraminic acid were detected for the first time in this material as the major sialic acids. In addition, two other sialic acids, tentatively designated O-acetylated sialic acids, according to their RF values on cellulose plates, were also found. We have detected several gangliosides showing a retarded migration pattern in two dimensional thin-layer chromatography with an intermediate ammonia treatment. One of these gangliosides could be an O-acetylated derivative of the disialoganglioside GD3, since after de-O-acetyation it co-migrates with GD3. Another ganglioside co-migrated with GM2 before the alkaline treatment; however, after the treatment it was also retarded and co-migrates with GD3.

  15. Sialic acids siglec interaction: A unique strategy to circumvent innate immune response by pathogens

    PubMed Central

    Khatua, Biswajit; Roy, Saptarshi; Mandal, Chitra

    2013-01-01

    Sialic acids (Sias) are nine-carbon keto sugars primarily present on the terminal residue of cell surface glycans. Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) are generally expressed on various immune cells. They selectively recognize different linkage-specific sialic acids and undertake a variety of cellular functions. Many pathogens either synthesize or acquire sialic acids from the host. Sialylated pathogens generally use siglecs to manipulate the host immune response. The present review mainly deals with the newly developed information regarding mechanism of acquisition of sialic acids by pathogens and their biological relevance especially in the establishment of successful infection by impairing host innate immunity. The pathogens which are unable to synthesize sialic acids might adsorb these from the host as a way to engage the inhibitory siglecs. They promote association with the immune cells through sialic acids-siglec dependent manner. Such an association plays an important role to subvert host's immunity. Detailed investigation of these pathways has been discussed in this review. Particular attention has been focused on Pseudomonas aeruginosa (PA) and Leishmania donovani. PMID:24434319

  16. Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles.

    PubMed

    Lee, Changwon; Wang, Peng; Gaston, Marsha A; Weiss, Alison A; Zhang, Peng

    2017-01-01

    Biosensor for the detection of virus was developed by utilizing plasmonic peak shift phenomenon of the gold nanoparticles and viral infection mechanism of hemagglutinin on virus and sialic acid on animal cells. The plasmonic peak of the colloidal gold nanoparticles changes with the aggregation of the particles due to the plasmonic interaction between nearby particles and the color of the colloidal nanoparticle solution changes from wine red to purple. Sialic acid reduced and stabilized colloidal gold nanoparticle aggregation is induced by the addition of viral particles in the solution due to the hemagglutinin-sialic acid interaction. In this work, sialic acid reduced and stabilized gold nanoparticles (d = 20.1 ± 1.8 nm) were synthesized by a simple one-pot, green method without chemically modifying sialic acid. The gold nanoparticles showed target-specific aggregation with viral particles via hemagglutinin-sialic acid binding. A linear correlation was observed between the change in optical density and dilution of chemically inactivated influenza B virus species. The detection limit of the virus dilution (hemagglutinination assay titer, 512) was shown to be 0.156 vol% and the upper limit of the linearity can be extended with the use of more sialic acid-gold nanoparticles.

  17. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes.

    PubMed

    Pawluczyk, Izabella Z A; Ghaderi Najafabadi, Maryam; Patel, Samita; Desai, Priyanka; Vashi, Dipti; Saleem, Moin A; Topham, Peter S

    2014-01-15

    Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity.

  18. Bioorthogonal metabolic glycoengineering of human larynx carcinoma (HEp-2) cells targeting sialic acid.

    PubMed

    Homann, Arne; Qamar, Riaz-Ul; Serim, Sevnur; Dersch, Petra; Seibel, Jürgen

    2010-03-08

    Sialic acids are located at the termini of mammalian cell-surface glycostructures, which participate in essential interaction processes including adhesion of pathogens prior to infection and immunogenicity. Here we present the synthesis and bioorthogonal metabolic incorporation of the sialic acid analogue N-(1-oxohex-5-ynyl)neuraminic acid (Neu5Hex) into the cell-surface glycocalyx of a human larynx carcinoma cell line (HEp-2) and its fluorescence labelling by click chemistry.

  19. Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine.

    PubMed

    Almagro-Moreno, Salvador; Boyd, E Fidelma

    2009-09-01

    Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.

  20. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum.

    PubMed

    Spadafora, Carmenza; Awandare, Gordon A; Kopydlowski, Karen M; Czege, Jozsef; Moch, J Kathleen; Finberg, Robert W; Tsokos, George C; Stoute, José A

    2010-06-17

    Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine.

  1. The distribution of tissue fibronectin and sialic acid in human breast cancer.

    PubMed

    Süer, S; Baloğlu, H; Güngör, Z; Sönmez, H; Kökoğlu, E

    1998-06-01

    Our findings indicate that sialic acid and fibronectin levels in breast tumors are higher than those in normal tissues. The mean tissue fibronectin and sialic acid concentrations for patients with breast cancer were 30.90 +/- 9.68 microg/mg protein and 21.60 +/- 9.35 microg/mg protein, respectively, and for normal controls were 12.47 +/- 5.69 microg/mg protein, respectively. Tissue fibronectin and sialic acid can be important markers for human breast cancer.

  2. Fluorogenic sialic acid glycosides for quantification of sialidase activity upon unnatural substrates.

    PubMed

    Zamora, Cristina Y; d'Alarcao, Marc; Kumar, Krishna

    2013-06-01

    Herein we report the synthesis of N-acetyl neuraminic acid derivatives as 4-methylumbelliferyl glycosides and their use in fluorometrically quantifying human and bacterial sialidase activity and substrate specificities. We found that sialidases in the human promyelocytic leukemic cell line HL60 were able to cleave sialic acid substrates with fluorinated C-5 modifications, in some cases to a greater degree than the natural N-acetyl functionality. Human sialidases isoforms were also able to cleave unnatural substrates with bulky and hydrophobic C-5 modifications. In contrast, we found that a bacterial sialidase isolated from Clostridium perfringens to be less tolerant of sialic acid derivatization at this position, with virtually no cleavage of these glycosides observed. From our results, we conclude that human sialidase activity is a significant factor in sialic acid metabolic glycoengineering efforts utilizing unnatural sialic acid derivatives. Our fluorogenic probes have enabled further understanding of the activities and substrate specificities of human sialidases in a cellular context.

  3. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    PubMed

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P < 0.01). Sialic acid-to-urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P < 0.02) and could be assessed simultaneously with established biomarkers of inflammation. The sialic acid-to-urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  4. Victor Ginsburg's influence on my research of the role of sialic acids in biological recognition.

    PubMed

    Schauer, Roland

    2004-06-15

    Sialic acids are monosaccharides with relatively strong acidity which belong to the most important molecules of higher animals and also occur in some microorganisms. They are bound to complex carbohydrates and occupy prominent positions, especially in cell membranes. Their structural diversity is high and, correspondingly, the mechanisms for their biosynthesis complex. Sialic acids are involved in a great number of cell functions. Due to their cell surface location these acidic molecules shield macromolecules and cells from enzymatic and immunological attacks and thus contribute to innate immunity. In contrast to this masking role, enabling, for example, blood cells and serum glycoproteins a longer life-time, sialic acids also represent recognition sites for various physiological receptors, such as the selectins and siglecs, as well as for toxins and microorganisms and thus allow their colonization. The recognition function of sialic acids can again be masked by O-acetylation, which modifies the interaction with receptors. Many viruses use sialic acids for the infection of cells. As sialic acids play also a decisive role in tumor biology, they prove to be rather versatile molecules that modulate biological and pathological cellular events in a sensitive way. Thus, they are most prominent representatives of mediators of molecular and cellular recognition.

  5. Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!

    PubMed

    Stafford, G; Roy, S; Honma, K; Sharma, A

    2012-02-01

    Periodontal pathogens, like any other human commensal or pathogenic bacterium, must possess both the ability to acquire the necessary growth factors and the means to adhere to surfaces or reside and survive in their environmental niche. Recent evidence has suggested that sialic acid containing host molecules may provide both of these requirements in vivo for several periodontal pathogens but most notably for the red complex organism Tannerella forsythia. Several other periodontal pathogens also possess sialic acid scavenging enzymes - sialidases, which can also expose adhesive epitopes, but might also act as adhesins in their own right. In addition, recent experimental work coupled with the release of several genome sequences has revealed that periodontal bacteria have a range of sialic acid uptake and utilization systems while others may also use sialic acid as a cloaking device on their surface to mimic host and avoid immune recognition. This review will focus on these systems in a range of periodontal bacteria with a focus on Ta. forsythia.

  6. Macrophage-mediated tumor cytotoxicity: role of macrophage surface sialic acid.

    PubMed

    Cameron, D J

    1983-02-01

    Cell surface sialic acid levels were compared for monocytes and macrophages obtained from normal volunteers and breast cancer patients. Equal quantities of sialic acid were found on the monocytes obtained from normal volunteers and breast cancer patients. Approximately 60% more cell surface sialic acid was found on the macrophages from breast cancer patients than was found on the macrophages from normal volunteers. In order to determine whether cell surface sialic acid had any effect on macrophage-mediated cytotoxicity, macrophages were pretreated with neuraminidase (NANAse) prior to co-cultivation with tumor cells. The normal macrophages, after neuraminidase treatment, no longer retained their ability to kill tumor cells. However, when macrophages from breast cancer patients were treated with NANAse, no difference was observed in the ability of untreated and NANAse treated macrophages to kill tumor cells.

  7. Plasma lipid-bound sialic acid and carcinoembryonic antigen in cancer patients.

    PubMed

    Dnistrian, A M; Schwartz, M K

    1981-10-01

    We evaluated lipid-bound sialic acid as a "marker" in cancer patients and assessed the individual and combined value of lipid-bound sialic acid and carcinoembryonic antigen determinations in these patients. Plasma was sampled from 62 normal subjects and 125 cancer patients. Lipid-bound sialic acid was determined by the resorcinol method after total lipid extraction and isolation of the sialolipid fraction from plasma. Neither marker was increased in many breast cancer patients. Carcinoembryonic antigen was increased more commonly and to a greater degree in colon cancer patients and seems to be the preferred marker. Both markers were increased in lung cancer patients and their combined evaluation improved the rate of detection. Lipid-bound sialic acid was increased in more patients with leukemias, lymphomas, Hodgkin's disease, and melanomas, suggesting that it may be a useful biochemical marker in these types of cancer.

  8. Serum sialic acid and glycoprotein levels in some Libyan cancer patients.

    PubMed

    Balo, N N; Ishaq, M

    1991-01-01

    Sialic acid is a common conjugate of some serum glycoproteins and glycolipids. Elevated levels of serum sialic acid and alterations in serum glycoproteins have been observed in certain types of cancer. In this study sialic acid concentration in the sera of patients with various types of cancer was determined. In addition to this, serum glycoproteins were also analysed by electrophoretic method. Our results indicate that serum sialic acid levels are generally raised in all types of cancer studied. This increase was more pronounced in case of lung, bronchogenic, intestinal and breast cancer. Some alterations in the serum glycoprotein profiles were also observed, particularly in bronchogenic and gall bladder cancer where an additional band in the low molecular weight region was present and in lung, breast and lymphoma where a band in the middle molecular weight region was found missing when compared with normals.

  9. Recent Advances in Sialic Acid-Focused Glycomics

    PubMed Central

    Nie, Huan; Li, Yu; Sun, Xue-Long

    2012-01-01

    Recent emergences of glycobiology, glycotechnology and glycomics have been clarifying enormous roles of carbohydrates in biological recognition systems. For example, cell surface carbohydrates existing as glycoconjugates (glycolipids, glycoproteins and proteoglycans) play crucial roles in cell-cell communication, cell proliferation and differentiation, tumor metastasis, inflammatory response or viral infection. In particular, sialic acids (SAs) existing as terminal residues in carbohydrate chains on cell surface are involved in signal recognition and adhesion to ligands, antibodies, enzymes and microbes. In addition, plasma free SAs and sialoglycans have shown great potential for disease biomarker discovery. Therefore, development of efficient analytical methods for structural and functional studies of SAs and sialylglycans are very important and highly demanded. The problems of SAs and sialylglycans analysis are vanishingly small sample amount, complicated and unstable structures, and complex mixtures. Nevertheless, in the past decade, mass spectrometry in combination with chemical derivatization and modern separation methodologies has become a powerful and versatile technique for structural analysis of SAs and sialylglycans. This review summarizes these recent advances in glycomic studies on SAs and sialylglycans. Specially, derivatization and capturing of SAs and sialylglycans combined with mass spectrometry analysis are highlighted. PMID:22513219

  10. Plasma lipid-bound sialic acid alterations in neoplastic diseases.

    PubMed

    Dwivedi, C; Dixit, M; Hardy, R E

    1990-01-15

    Plasma lipid-bound sialic acid (LSA) was assayed in normal volunteers, patients with non-malignant diseases, and a variety of cancer patients. Mean plasma LSA in 50 normal volunteers, 16 patients with non-malignant diseases, 54 breast cancer, 17 lung cancer, 15 colon cancer, 7 ovarian cancer, 5 prostate cancer, 4 leukemia, 4 gastrointestinal, 3 thyroid cancer, 3 pancreas cancer and 2 adrenal cancer patients were 17.7, 23.2, 58, 85, 56.7, 46.2, 56.7, 53.3, 31.1, 33.2 and 119.5 mg/dl, respectively. None of the normal volunteers had elevated plasma LSA values. Plasma LSA level was not significantly different in male and female volunteers. Two out of 114 different cancer patients had plasma LSA levels within normal range exhibiting 98.2% sensitivity of the assay. Plasma LSA, which is relatively simple to assay, may be used as a tumor marker in wide variety of neoplastic diseases.

  11. Evaluation of serum sialic acid, fucose levels and their ratio in oral squamous cell carcinoma

    PubMed Central

    Chinnannavar, Sangamesh Ningappa; Ashok, Lingappa; Vidya, Kodige Chandrashekhar; Setty, Sunil Mysore Kantharaja; Narasimha, Guru Eraiah; Garg, Ranjana

    2015-01-01

    Background: Detection of cancer at the early stage is of utmost importance to decrease the morbidity and mortality of the disease. Apart from the conventional biopsy, minimally invasive methods like serum evaluation are used for screening large populations. Thus, this study aimed to estimate serum levels of sialic acid and fucose and their ratio in oral cancer patients and in healthy control group to evaluate their role in diagnosis. Materials and Methods: Serum samples were collected from 52 healthy controls (group I) and 52 squamous cell carcinoma patients (group II). Estimation of serum levels of sialic acid and fucose and their ratio was performed. This was correlated histopathologically with the grades of carcinoma. Statistical analysis was done by using analysis of variance (ANOVA) test and unpaired “t” test. Results: Results showed that serum levels of sialic acid and fucose were significantly higher in oral cancer patients compared to normal healthy controls (P < 0.001). The sialic acid to fucose ratio was significantly lower in cancer patients than in normal controls (P < 0.01). However, comparison with histological grading, habits, gender, and age group did not show any significant result. Conclusion: The mean serum sialic acid and fucose levels showed an increasing trend from controls to malignant group and their corresponding ratio showed decreasing trend from controls to malignant group. The ratio of sialic acid to fucose can be a useful diagnostic aid for oral cancer patients. PMID:26759796

  12. Terminal sialic acid linkages determine different cell infectivities of human parainfluenza virus type 1 and type 3.

    PubMed

    Fukushima, Keijo; Takahashi, Tadanobu; Ito, Seigo; Takaguchi, Masahiro; Takano, Maiko; Kurebayashi, Yuuki; Oishi, Kenta; Minami, Akira; Kato, Tatsuya; Park, Enoch Y; Nishimura, Hidekazu; Takimoto, Toru; Suzuki, Takashi

    2014-09-01

    Human parainfluenza virus type 1 (hPIV1) and type 3 (hPIV3) initiate infection by sialic acid binding. Here, we investigated sialic acid linkage specificities for binding and infection of hPIV1 and hPIV3 by using sialic acid linkage-modified cells treated with sialidases or sialyltransferases. The hPIV1 is bound to only α2,3-linked sialic acid residues, whereas hPIV3 is bound to α2,6-linked sialic acid residues in addition to α2,3-linked sialic acid residues in human red blood cells. α2,3 linkage-specific sialidase treatment of LLC-MK2 cells and A549 cells decreased the infectivity of hPIV1 but not that of hPIV3. Treatment of A549 cells with α2,3 linkage-specific sialyltransferase increased infectivities of both hPIV1 and hPIV3, whereas α2,6 linkage-specific sialyltransferase treatment increased only hPIV3 infectivity. Clinical isolates also showed similar sialic acid linkage specificities. We concluded that hPIV1 utilizes only α2,3 sialic acid linkages and that hPIV3 makes use of α2,6 sialic acid linkages in addition to α2,3 sialic acid linkages as viral receptors.

  13. Estimation of salivary sialic acid in oral premalignancy and oral squamous cell carcinoma

    PubMed Central

    Chaudhari, Vishakha; Pradeep, G. L.; Prakash, Nilima; Mahajan, Aarti M.

    2016-01-01

    Aims: Oral cancer is the most life-threatening disease of oral tissues. In societies where the incidence of oral cancer is high, clinically recognizable premalignant lesions are particularly common. Diagnosing oral cancers at an early stage is critical in improving the survival rate and reducing the morbidity associated with the disease. Alterations in the sialic acid levels in cancer patients have stimulated interest in this sugar residue as a possible tumor marker. Settings and Design: The purpose of this study was to estimate the salivary sialic acid levels in patients with oral premalignancy and squamous cell carcinoma and to correlate it with their grades to develop a cost-effective and noninvasive diagnostic parameter. Materials and Methods: Unstimulated whole saliva was collected from the groups under study and subjected to biochemical analysis for determination of sialic acid levels. Statistical Analysis Used: The salivary sialic acid levels were correlated with the clinical stage and histological grade by one-way ANOVA (SPSS software version 15). Results: Salivary sialic acid was elevated in oral squamous cell carcinoma (OSCC) compared to oral premalignancy and control group. A statistically significant correlation was observed between the grades of squamous cell carcinoma, grades of dysplasia in premalignancy, and sialic acid level. Conclusion and Clinical Significance: Evaluation of salivary sialic acid levels in premalignant and malignant lesions can serve as a screening tool. The mortality and morbidity of OSCC can be reduced if the lesions are diagnosed in early precancerous states using such noninvasive diagnostic methods for screening and monitoring of the population. PMID:27994410

  14. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-11-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools.

  15. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation

    PubMed Central

    Badr, Haitham A.; AlSadek, Dina M.M.; Mathew, Mohit P.; Li, Chen-Zhong; Djansugurova, Leyla B.; Yarema, Kevin J.; Ahmed, Hafiz

    2015-01-01

    Cancer is characterized by abnormal energy metabolism shaped by nutrient deprivation that malignant cells experience during various stages of tumor development. This study investigated the response of nutrient-deprived cancer cells and their non-malignant counterparts to sialic acid supplementation and found that cells utilize negligible amounts of this sugar for energy. Instead cells use sialic acid to maintain cell surface glycosylation through complementary mechanisms. First, levels of key metabolites (e.g., UDP-GlcNAc and CMP-Neu5Ac) required for glycan biosynthesis are maintained or enhanced upon Neu5Ac supplementation. In concert, sialyltransferase expression increased at both the mRNA and protein levels, which facilitated increased sialylation in biochemical assays that measure sialyltransferase activity as well as at the whole cell level. In the course of these experiments, several important differences emerged that differentiated the cancer cells from their normal counterparts including resistant to sialic acid-mediated energy depletion, consistently more robust sialic acid-mediated glycan display, and distinctive cell surface vs. internal vesicle display of newly-produced sialoglycans. Finally, the impact of sialic acid supplementation on specific markers implicated in cancer progression was demonstrated by measuring levels of expression and sialylation of EGFR1 and MUC1 as well as the corresponding function of sialic acid-supplemented cells in migration assays. These findings both provide fundamental insight into the biological basis of sialic acid supplementation of nutrient-deprived cancer cells and open the door to the development of diagnostic and prognostic tools. PMID:26295436

  16. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  17. Preferential lectin binding of cancer cells upon sialic acid treatment under nutrient deprivation.

    PubMed

    Badr, Haitham A; Elsayed, Abdelaleim I; Ahmed, Hafiz; Dwek, Miriam V; Li, Chen-Zhong; Djansugurova, Leyla B

    2013-10-01

    The terminal monosaccharide of glycoconjugates on a eukaryotic cell surface is typically a sialic acid (Neu5Ac). Increased sialylation usually indicates progression and poor prognosis of most carcinomas. Here, we utilize two human mammary epithelial cell lines, HB4A (breast normal cells) and T47D (breast cancer cells), as a model system to demonstrate differential surface glycans when treated with sialic acid under nutrient deprivation. Under a starved condition, sialic acid treatment of both cells resulted in increased activities of α2→3/6 sialyltransferases as demonstrated by solid phase assay using lectin binding. However, a very strong Maackia amurensis agglutinin I (MAL-I) staining on the membrane of sialic acid-treated T47D cells was observed, indicating an increase of Neu5Acα2→3Gal on the cell surface. To our knowledge, this is a first report showing the utility of lectins, particularly MAL-I, as a means to discriminate between normal and cancer cells after sialic acid treatment under nutrient deprivation. This method is sensitive and allows selective detection of glycan sialylation on a cancer cell surface.

  18. A sialic acid assay in isolation and purification of bovine k-casein glycomacropeptide: a review.

    PubMed

    Nakano, Takuo; Ozimek, Lech

    2014-01-01

    Sialic acid is a carbohydrate moiety of k-casein glycomacropeptide (GMP), which is a 64 amino acid residue C-terminal sialylated phosphorylated glycopeptide released from k-casein by the action of chymosin during cheese making. GMP lacks aromatic amino acids including phenylalanine, tyrosine, and tryptophan. Because of its unique amino acid composition and various biological activities, GMP is thought to be a potential ingredient for dietetic foods (e.g., a food for PKU patients) and pharmaceuticals. Thus, increased attention has been given to the development of techniques to purify GMP. In this review, techniques of GMP purification described in patents and scientific research papers were introduced. A sialic acid assay is the important method to track GMP isolation and purification processes, for which the thiobarbituric acid reaction with 1-propanol as a chromophore extracting solvent is an inexpensive, practical and specific technique. Sephacryl S-200 gel filtration chromatography, cellulose acetate electrophoresis, and sodium dodecyl sulfate polyacrylamide gel electrophoresis are the major techniques to identify sialic acid specific to GMP. Sephacryl S-200 chromatography and cellulose acetate electrophoresis are also used to detect GMP sialic acid in whey pearmeate and whey added commercial margarine samples. Future research includes development of an economical industrial scale method to produce high purity GMP.

  19. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice

    PubMed Central

    Huang, Yen-Lin; Chassard, Christophe; Hausmann, Martin; von Itzstein, Mark; Hennet, Thierry

    2015-01-01

    Rapid shifts in microbial composition frequently occur during intestinal inflammation, but the mechanisms underlying such changes remain elusive. Here we demonstrate that an increased caecal sialidase activity is critical in conferring a growth advantage for some bacteria including Escherichia coli (E. coli) during intestinal inflammation in mice. This sialidase activity originates among others from Bacteroides vulgatus, whose intestinal levels expand after dextran sulphate sodium administration. Increased sialidase activity mediates the release of sialic acid from intestinal tissue, which promotes the outgrowth of E. coli during inflammation. The outburst of E. coli likely exacerbates the inflammatory response by stimulating the production of pro-inflammatory cytokines by intestinal dendritic cells. Oral administration of a sialidase inhibitor and low levels of intestinal α2,3-linked sialic acid decrease E. coli outgrowth and the severity of colitis in mice. Regulation of sialic acid catabolism opens new perspectives for the treatment of intestinal inflammation as manifested by E. coli dysbiosis. PMID:26303108

  20. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.

    PubMed

    Brody, A R; George, G; Hill, L H

    1983-10-01

    Chrysotile and crocidolite are commonly used forms of asbestos. Hemolysis has been widely used as a test of membrane injury, and it has been shown previously that chrysotile causes rapid breakdown of red blood cells (RBCs), whereas crocidolite is only weakly hemolytic. A reasonable hypothesis set forth to explain the cytotoxic effects of chrysotile maintains that positively charged chrysotile fibers bind to negatively charged sialic acid residues on RBC membranes causing clustering of membrane proteins and increased cell permeability to Na and K ions. Our studies presented here provide two lines of evidence in direct support of this hypothesis. (a) Morphologic--Ultrastructural techniques showed that both chrysotile and crocidolite asbestos bind to and distort more than 85% of RBCs treated for 15 minutes. The distorting effects of chrysotile, but not crocidolite, were almost totally ablated by pretreating the cells with neuraminidase. In addition, gold-conjugated wheat germ agglutinin was used to label the distribution of sialic acid groups on RBC membranes. Pretreatment of the RBCs with chrysotile, but not crocidolite, reduced the number of gold-conjugated wheat germ agglutinin-labeled sites to less than 30% of the control level. (b) Biochemical--The thiobarbituric acid assay was used to determine the percentage of sialic acid that remained with the cell pellet after neuraminidase and/or asbestos treatment. Asbestos treatment alone caused no release of sialic acid from the cells. Neuraminidase treatment for 3.5 hours removed more than 80% of the sialic acid from cell surfaces. Chrysotile, but not crocidolite, asbestos prevented neuraminidase-mediated removal of sialic acid from RBCs. In addition, x-ray energy spectrometry of freeze-dried cells showed that RBCs distorted by chrysotile, but not by crocidolite, exhibited significant alterations in intracellular Na:K ratios. The morphologic and biochemical data strongly support the hypothesis that chrysotile asbestos

  1. H7N9 influenza viruses interact preferentially with α2,3-linked sialic acids and bind weakly to α2,6-linked sialic acids.

    PubMed

    Ramos, Irene; Krammer, Florian; Hai, Rong; Aguilera, Domingo; Bernal-Rubio, Dabeiba; Steel, John; García-Sastre, Adolfo; Fernandez-Sesma, Ana

    2013-11-01

    The recent human outbreak of H7N9 avian influenza A virus has caused worldwide concerns. Receptor binding specificity is critical for viral pathogenicity, and still not thoroughly studied for this emerging virus. Here, we evaluated the receptor specificity of the haemagglutinin (HA) of two human H7N9 isolates (A/Shanghai/1/13 and A/Anhui/1/13) through a solid-phase binding assay and a flow cytometry-based assay. In addition, we compared it with those from several HAs from human and avian influenza viruses. We observed that the HAs from the novel H7 isolates strongly interacted with α2,3-linked sialic acids. Importantly, they also showed low levels of binding to α2,6-linked sialic acids, but significantly higher than other avian H7s.

  2. Development of Sialic Acid-coated Nanoparticles for Targeting Cancer and Efficient Evasion of the Immune System

    PubMed Central

    Kim, Young-Hwa; Min, Kyung Hyun; Wang, Zhantong; Kim, Jihoon; Jacobson, Orit; Huang, Peng; Zhu, Guizhi; Liu, Yijing; Yung, Bryant; Niu, Gang; Chen, Xiaoyuan

    2017-01-01

    Evading the reticuloendothelial system (RES) remains a critical challenge in the development of efficient delivery and diagnostic systems for cancer. Sialic acid (N-acetylneuraminic acid, Neu5Ac) is recognized as a “self” marker by major serum protein complement factor H and shows reduced interaction with the innate immune system via sialic acid-binding immunoglobulin-like lectin (Siglec), which is known as one of the significant regulators of phagocytic evasion. Accordingly, we prepared different surface-modified gold nanoparticles (AuNPs) and investigated the effects of sialic acid on cellular and immune responses of nanoparticles in vitro and in vivo. Sialic acid modification not only facilitates evasion of the RES by suppressing the immune response, but also enhances tumor accumulation via its active targeting ability. Therefore, sialic acid modification presents a promising strategy to advance nanotechnology towards the prospect of clinical translation. PMID:28382168

  3. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    PubMed Central

    Young, Wayne; Egert, Markus; Bassett, Shalome A.; Bibiloni, Rodrigo

    2015-01-01

    Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health. PMID:25816158

  4. Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure

    PubMed Central

    Lewis, Amanda L.; Desa, Nolan; Hansen, Elizabeth E.; Knirel, Yuriy A.; Gordon, Jeffrey I.; Gagneux, Pascal; Nizet, Victor; Varki, Ajit

    2009-01-01

    Sialic acids (Sias) are nonulosonic acid (NulO) sugars prominently displayed on vertebrate cells and occasionally mimicked by bacterial pathogens using homologous biosynthetic pathways. It has been suggested that Sias were an animal innovation and later emerged in pathogens by convergent evolution or horizontal gene transfer. To better illuminate the evolutionary processes underlying the phenomenon of Sia molecular mimicry, we performed phylogenomic analyses of biosynthetic pathways for Sias and related higher sugars derived from 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids. Examination of ≈1,000 sequenced microbial genomes indicated that such biosynthetic pathways are far more widely distributed than previously realized. Phylogenetic analysis, validated by targeted biochemistry, was used to predict NulO types (i.e., neuraminic, legionaminic, or pseudaminic acids) expressed by various organisms. This approach uncovered previously unreported occurrences of Sia pathways in pathogenic and symbiotic bacteria and identified at least one instance in which a human archaeal symbiont tentatively reported to express Sias in fact expressed the related pseudaminic acid structure. Evaluation of targeted phylogenies and protein domain organization revealed that the “unique” Sia biosynthetic pathway of animals was instead a much more ancient innovation. Pathway phylogenies suggest that bacterial pathogens may have acquired Sia expression via adaptation of pathways for legionaminic acid biosynthesis, one of at least 3 evolutionary paths for de novo Sia synthesis. Together, these data indicate that some of the long-standing paradigms in Sia biology should be reconsidered in a wider evolutionary context of the extended family of NulO sugars. PMID:19666579

  5. Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction.

    PubMed

    Wang, Jie; Cheng, Bo; Li, Jie; Zhang, Zhaoyue; Hong, Weiyao; Chen, Xing; Chen, Peng R

    2015-04-27

    We herein report a chemical decaging strategy for the in situ generation of neuramic acid (Neu), a unique type of sialic acid, on live cells by the use of a palladium-mediated bioorthogonal elimination reaction. Palladium nanoparticles (Pd NPs) were found to be a highly efficient and biocompatible depropargylation catalyst for the direct conversion of metabolically incorporated N-(propargyloxycarbonyl)neuramic acid (Neu5Proc) into Neu on cell-surface glycans. This conversion chemically mimics the enzymatic de-N-acetylation of N-acetylneuramic acid (Neu5Ac), a proposed mechanism for the natural occurrence of Neu on cell-surface glycans. The bioorthogonal elimination was also exploited for the manipulation of cell-surface charge by unmasking the free amine at C5 to neutralize the negatively charged carboxyl group at C1 of sialic acids.

  6. Lectin staining and Western blot data showing differential sialylation of nutrient-deprived cancer cells to sialic acid supplementation.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; Mathew, Mohit P; Li, Chen-Zhong; Djansugurova, Leyla B; Yarema, Kevin J; Ahmed, Hafiz

    2015-12-01

    This report provides data that are specifically related to the differential sialylation of nutrient deprived breast cancer cells to sialic acid supplementation in support of the research article entitled, "Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation" [1]. Particularly, breast cancer cells, when supplemented with sialic acid under nutrient deprivation, display sialylated glycans at the cell surface, but non-malignant mammary cells show sialylated glycans intracellularly. The impact of sialic acid supplementation under nutrient deprivation was demonstrated by measuring levels of expression and sialylation of two markers, EGFR1 and MUC1. This Data in Brief article complements the main manuscript by providing detailed instructions and representative results for cell-level imaging and Western blot analyses of changes in sialylation during nutrient deprivation and sialic acid supplementation. These methods can be readily generalized for the study of many types of glycosylation and various glycoprotein markers through the appropriate selection of fluorescently-labeled lectins.

  7. Sialic acid transporter NanT participates in Tannerella forsythia biofilm formation and survival on epithelial cells.

    PubMed

    Honma, Kiyonobu; Ruscitto, Angela; Frey, Andrew M; Stafford, Graham P; Sharma, Ashu

    2016-05-01

    Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.

  8. Serum sialic acid in malignant tumors, bacterial infections, and chronic liver diseases.

    PubMed

    Stefenelli, N; Klotz, H; Engel, A; Bauer, P

    1985-01-01

    The total serum sialic acid concentration was determined in 2,264 persons with various malignant tumors, bacterial infections, rheumatic diseases, and chronic liver diseases, and in a control group. The thiobarbiturate method according to Warren was used. The upper limit (95% percentile) in the control group was 2.23 mumol/ml. Higher values were found in the groups with neoplasms (mean: 3.04 mumol/ml), inflammatory diseases (e.g., pneumonia: 3.02 mumol/ml), and active rheumatoid arthritis (3.05 mumol/ml). In the group with malignant diseases, the sialic acid concentration at the time of diagnosis was highest for bronchial carcinoma (3.29 mumol/ml) and lowest for breast cancer (2.58 mumol/ml). In chronic liver diseases the mean sialic acid level was lower than in a heterogeneous group of noninflammatory and nonneoplastic diseases. The estimation of the serum sialic acid concentration could be useful in the detection of tumor burden and metastases, and in the evaluation of the later course and prognosis of malignant neoplasms if bacterial/inflammatory and active rheumatoid processes can be excluded.

  9. Substrate Specificity of Equine and Human Influenza A Virus Sialidase to Molecular Species of Sialic Acid.

    PubMed

    Takahashi, Tadanobu; Unuma, Saori; Kawagishi, Sawako; Kurebayashi, Yuuki; Takano, Maiko; Yoshino, Hiroki; Minami, Akira; Yamanaka, Takashi; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2016-01-01

    Most equine influenza A viruses (IAVs) show strong binding to glycoconjugates containing N-glycolylneuraminic acid (Neu5Gc) as well as N-acetylneuraminic acid (Neu5Ac). Therefore, the progeny of equine IAV is thought to be released from the infected cell surface through removal of sialic acids by the viral sialidase. In the present study, equine IAV sialidases showed significantly lower substrate affinity than that of human IAV sialidases to artificial and natural Neu5Gc-conjugated substrates. The substrate specificity of equine IAV sialidases is in disagreement with their binding specificity to molecular species of sialic acid. The results suggest that substrate specificity of equine IAV sialidase for Neu5Ac, rather than for Neu5Gc, is important for an advantage at the early infection stage and the process of progeny virus release from the surface of infected cells.

  10. Differentiation of Sialyl Linkage Isomers by One-Pot Sialic Acid Derivatization for Mass Spectrometry-Based Glycan Profiling.

    PubMed

    Nishikaze, Takashi; Tsumoto, Hiroki; Sekiya, Sadanori; Iwamoto, Shinichi; Miura, Yuri; Tanaka, Koichi

    2017-02-21

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for high-throughput glycan profiling analysis. In spite of the biological importance of sialic acids on nonreducing ends of glycans, it is still difficult to analyze glycans containing sialic acid residues due to their instability and the presence of linkage isomers. In this Article, we describe a one-pot glycan purification/derivatization method employing a newly developed linkage-specific sialic acid derivatization for MS-based glycan profiling with differentiation of sialyl linkage isomer. The derivatization, termed sialic acid linkage specific alkylamidation (SALSA), consists of sequential two-step alkylamidations. As a result of the reactions, α2,6- and α2,3-linked sialic acids are selectively amidated with different length of alkyl chains, allowing distinction of α2,3-/α2,6-linkage isomers from given mass spectra. Our studies using N-glycan standards with known sialyl linkages proved high suitability of SALSA for reliable relative quantification of α2,3-/α2,6-linked sialic acids compared with existing sialic acid derivatization approaches. SALSA fully stabilizes both α2,3- and α2,6-linked sialic acids by alkylamidation; thereby, it became possible to combine SALSA with existing glycan analysis/preparation methods as follows. The combination of SALSA and chemoselective glycan purification using hydrazide beads allows easy one-pot purification of glycans from complex biological samples, together with linkage-specific sialic acid stabilization. Moreover, SALSA-derivatized glycans can be labeled via reductive amination without causing byproducts such as amide decomposition. This solid-phase SALSA followed by glycan labeling has been successfully applied to human plasma N-glycome profiling.

  11. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite.

    PubMed

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K; Jiang, Rays H Y; Abshire, James R; Patel, Saurabh D; Goldberg, Jonathan M; Moreno, Yovany; Kono, Maya; Niles, Jacquin C; Duraisingh, Manoj T

    2016-04-04

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.

  12. Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards.

    PubMed

    Yao, Hong L; Conway, Louis P; Wang, Mao M; Huang, Kun; Liu, Li; Voglmeir, Josef

    2016-04-01

    Herein we describe a UPLC-FLD-based method for the quantification of the sialic acid content of red meat, using a synthetic neuraminic acid derivative as an internal standard. X-Gal-α-2,6-N-propionylneuraminic acid was synthesized via a chemoenzymatic pathway and its hydrolytic stability was characterized. Known quantities of this compound were incubated with samples of red meat under sialic acid-releasing conditions. The released sialic acids were derivatized, analyzed by UPLC-FLD, and the Neu5Ac/Neu5Gc content of the meat sample was determined by comparison with the internal standard. A number of red meats were analyzed by this method with the following results (Neu5Ac μg/g tissue, Neu5Gc μg/g tissue ± s.d.): pork (68 ± 3, 15.2 ± 0.7), beef (69 ± 8, 36 ± 5), lamb (46 ± 2, 33 ± 1), rabbit (59 ± 2, 0.4 ± 0.4), and hare (50 ± 4, 1 ± 1). We envisage that this methodology will find application in investigating the health effects of dietary Neu5Gc. Graphical abstract ᅟ.

  13. Ancient human sialic acid variant restricts an emerging zoonotic malaria parasite

    PubMed Central

    Dankwa, Selasi; Lim, Caeul; Bei, Amy K.; Jiang, Rays H. Y.; Abshire, James R.; Patel, Saurabh D.; Goldberg, Jonathan M.; Moreno, Yovany; Kono, Maya; Niles, Jacquin C.; Duraisingh, Manoj T.

    2016-01-01

    Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways. PMID:27041489

  14. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration

    PubMed Central

    Gerardy-Schahn, Rita; Hildebrandt, Herbert

    2014-01-01

    Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity

  15. Sialic acid-dependent cell entry of human enterovirus D68

    PubMed Central

    Liu, Yue; Sheng, Ju; Baggen, Jim; Meng, Geng; Xiao, Chuan; Thibaut, Hendrik J.; van Kuppeveld, Frank J. M.; Rossmann, Michael G.

    2015-01-01

    Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon' on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Thus, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry. PMID:26563423

  16. Sialic acid-dependent cell entry of human enterovirus D68

    SciTech Connect

    Liu, Yue; Sheng, Ju; Baggen, Jim; Meng, Geng; Xiao, Chuan; Thibaut, Hendrik J.; van Kuppeveld, Frank J. M.; Rossmann, Michael G.

    2015-11-13

    Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes in the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.

  17. Sialic acid-dependent cell entry of human enterovirus D68

    DOE PAGES

    Liu, Yue; Sheng, Ju; Baggen, Jim; ...

    2015-11-13

    Human enterovirus D68 (EV-D68) is a causative agent of childhood respiratory diseases and has now emerged as a global public health threat. Nevertheless, knowledge of the tissue tropism and pathogenesis of EV-D68 has been hindered by a lack of studies on the receptor-mediated EV-D68 entry into host cells. Here we demonstrate that cell surface sialic acid is essential for EV-D68 to bind to and infect susceptible cells. Crystal structures of EV-D68 in complex with sialylated glycan receptor analogues show that they bind into the ‘canyon’ on the virus surface. The sialic acid receptor induces a cascade of conformational changes inmore » the virus to eject a fatty-acid-like molecule that regulates the stability of the virus. Furthermore, virus binding to a sialic acid receptor and to immunoglobulin-like receptors used by most other enteroviruses share a conserved mechanism for priming viral uncoating and facilitating cell entry.« less

  18. Total and lipid-bound serum sialic acid as markers for carcinoma of the uterine cervix.

    PubMed

    Vivas, I; Spagnuolo, L; Palacios, P

    1992-08-01

    Concentrations of total sialic acid (TSA) and lipid-bound sialic acid (LSA) were determined in serum samples from 88 patients with squamous cell carcinoma of the cervix, 26 normal subjects, and 44 patients with benign uterine or ovarian disease. TSA concentrations in patients with cervical cancer were found to correlate with advanced-stage disease. LSA concentrations were only increased in stage IV of the disease. Sensitivity of the test for stage IB was zero for TSA and 27% for LSA. The specificity of both markers was about 80% due to a low incidence of false-positive values in the pathologic control group. Measurements of TSA or LSA appear to be of no value for the early detection of cervical cancer or to complement the clinical staging of this tumor.

  19. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles.

    PubMed

    Gong, Tianxun; Cui, Ying; Goh, Douglas; Voon, Kong Kien; Shum, Perry Ping; Humbert, Georges; Auguste, Jean-Louis; Dinh, Xuan-Quyen; Yong, Ken-Tye; Olivo, Malini

    2015-02-15

    An ultrasensitive surface enhanced Raman spectroscopy (SERS) based sensing platform was developed to detect the mean sialic acid level on the surface of single cell with sensitivity as low as 2 fmol. This platform adopted the use of an interference-free Raman tag, 4-(dihydroxyborophenyl) acetylene (DBA), which selectively binds to sialic acid on the cell membrane. By loading the side channel of a photonic crystal fiber with a mixture of gold nanoparticles and DBA-tagged HeLa cell, and subsequently propagating laser light through the central solid core, strong SERS signal was obtained. This SERS technique achieved accurate detection and quantification of concentration of sialic acid on a single cell, surpassing previously reported methods that required more than 10(5) cells. Moreover, this platform can be developed into a clinical diagnostic tool to potentially analyze sialic acid-related diseases such as tumor malignancy and metastasis in real-time.

  20. Deacetylation of sialic acid by esterases potentiates pneumococcal neuraminidase activity for mucin utilization, colonization and virulence

    PubMed Central

    Kahya, Hasan F.; Andrew, Peter W.

    2017-01-01

    Pneumococcal neuraminidase is a key enzyme for sequential deglycosylation of host glycans, and plays an important role in host survival, colonization, and pathogenesis of infections caused by Streptococcus pneumoniae. One of the factors that can affect the activity of neuraminidase is the amount and position of acetylation present in its substrate sialic acid. We hypothesised that pneumococcal esterases potentiate neuraminidase activity by removing acetylation from sialic acid, and that will have a major effect on pneumococcal survival on mucin, colonization, and virulence. These hypotheses were tested using isogenic mutants and recombinant esterases in microbiological, biochemical and in vivo assays. We found that pneumococcal esterase activity is encoded by at least four genes, SPD_0534 (EstA) was found to be responsible for the main esterase activity, and the pneumococcal esterases are specific for short acyl chains. Assay of esterase activity by using natural substrates showed that both the Axe and EstA esterases could use acetylated xylan and Bovine Sub-maxillary Mucin (BSM), a highly acetylated substrate, but only EstA was active against tributyrin (triglyceride). Incubation of BSM with either Axe or EstA led to the acetate release in a time and concentration dependent manner, and pre-treatment of BSM with either enzyme increased sialic acid release on subsequent exposure to neuraminidase A. qRT-PCR results showed that the expression level of estA and axe increased when exposed to BSM and in respiratory tissues. Mutation of estA alone or in combination with nanA (codes for neuraminidase A), or the replacement of its putative serine active site to alanine, reduced the pneumococcal ability to utilise BSM as a sole carbon source, sialic acid release, colonization, and virulence in a mouse model of pneumococcal pneumonia. PMID:28257499

  1. Chronic Depression of Serum Sialic Acid Levels in Alloxan-Induced Diabetes

    DTIC Science & Technology

    1974-10-01

    Serum L- Fucose , Protein-Bound Hexose, and Total Protein Levels in Alloxan Diabetic and Control Rats at Various Time Intervals After Treatment 5...ABSTRACT This study was performed to determine whether alloxan treatment of rats alters levels of the terminal carbohydrate residues L- fucose and...occurs with no apparent alteration in the level of L- fucose . The depression in sialic acid level may be attributed in part to decreased activities of

  2. Sulfate- and sialic acid-containing glycolipids inhibit DNA polymerase alpha activity.

    PubMed

    Simbulan, C M; Taki, T; Tamiya-Koizumi, K; Suzuki, M; Savoysky, E; Shoji, M; Yoshida, S

    1994-03-16

    The effects of various glycolipids on the activity of immunoaffinity-purified calf thymus DNA polymerase alpha were studied in vitro. Preincubation with sialic acid-containing glycolipids, such as sialosylparagloboside (SPG), GM3, GM1, and GD1a, and sulfatide (cerebroside sulfate ester, CSE) dose-dependently inhibited the activity of DNA polymerase alpha, while other glycolipids, as well as free sphingosine and ceramide did not. About 50% inhibition was achieved by preincubating the enzyme with 2.5 microM of CSE, 50 microM of SPG or GM3, and 80 microM of GM1. Inhibition was noncompetitive with both the DNA template and the substrate dTTP, as well as with the other dNTPs. Since the inhibition was largely reversed by the addition of 0.05% Nonidet P40, these glycolipids may interact with the hydrophobic region of the enzyme protein. Apparently, the sulfate moiety in CSE and the sialic acid moiety in gangliosides were essential for the inhibition since neither neutral glycolipids (i.e., glucosylceramide, galactosylceramide, lactosylceramide) nor asialo-gangliosides (GA1 and GA2) showed any inhibitory effect. Furthermore, the ceramide backbone was also found to be necessary for maximal inhibition since the inhibition was largely abolished by substituting the lipid backbone with cholesterol. Increasing the number of sialic acid moieties per molecule further enhanced the inhibition, while elongating the sugar chain diminished it. It was clearly shown that the N-acetyl residue of the sialic acid moiety is particularly essential for inhibition by both SPG and GM3 because the loss of this residue or substitution with a glycolyl residue completely negated their inhibitory effect on DNA polymerase alpha activity.

  3. Dienophile-Modified Mannosamine Derivatives for Metabolic Labeling of Sialic Acids: A Comparative Study.

    PubMed

    Dold, Jeremias E G A; Pfotzer, Jessica; Späte, Anne-Katrin; Wittmann, Valentin

    2017-03-20

    Sialic acids play an important role in numerous cell adhesion processes and sialylation levels are known to be altered under certain pathogenic conditions such as cancer. Metabolic glycoengineering with mannosamine derivatives is a convenient way to introduce non-natural chemical reporter groups into sialylated glycoconjugates offering the opportunity to label sialic acids using bioorthogonal ligation chemistry. The labeling intensity not only depends on the rate of the ligation reaction but also on the extent to which the natural sialic acids are replaced by the modified ones, i.e. the incorporation efficiency. Here we present a comparative study of eight mannosamine derivatives featuring terminal alkenes as chemical reporter groups that can be labeled by an inverse-electron-demand Diels-Alder (DAinv) reaction. The derivatives differ in chain length as well as the type of linkage (comprising carbamates, amides, and a urea) that connects the terminal alkene to the sugar. As a general trend, increasing chain lengths result in higher DAinv reactivity and at the same time reduced incorporation efficiency. Carbamates are better accepted than amides with the same chain length; nevertheless do the latter result in more intense cell-surface staining visible in life-cell fluorescence microscopy. Finally, a urea derivative was shown to be accepted.

  4. Infection with Listeria monocytogenes impairs sialic acid addition to host cell glycoproteins

    PubMed Central

    1994-01-01

    Listeria monocytogenes is a facultative intracellular bacterium that causes severe disease in neonates and immunocompromised adults. Although entry, multiplication, and locomotion of Listeria in the cytosol of infected cells are well described, the impact of such infection on the host cell is unknown. In this report, we investigate the effect of L. monocytogenes infection on MHC class I synthesis, processing, and intracellular trafficking. We show that L. monocytogenes infection interferes with normal processing of N-linked oligosaccharides on the major histocompatibility complex (MHC) class I heavy chain molecule, H-2Kd, resulting in a reduced sialic acid content. The glycosylation defect is more pronounced as the infection progresses and results from interference with the addition of sialic acid rather than its removal by a neuraminidase. The effect is found in two different cell lines and is not limited to MHC class I molecules since CD45, a surface glycoprotein, and LGP120, a lysosomal glycoprotein, are similarly affected by L. monocytogenes infection. The glycosylation defect is specific for infection by L. monocytogenes since neither Trypanosoma cruzi nor Yersinia enterocolitica, two other intracellular pathogens, reproduces the effect. The resultant hyposialylation of H-2Kd does not impair its surface expression in infected cells. Diminished sialic acid content of surface glycoproteins may enhance host-defense by increasing susceptibility to lysis and promoting clearance of Listeria-infected cells. PMID:7964488

  5. Total and lipid-bound serum sialic acid in benign and malignant breast disease.

    PubMed

    Romppanen, J; Eskelinen, M; Tikanoja, S; Mononen, I

    1997-01-01

    Elevation in the total sialic acid (TSA), TSA/total protein (TSA/TP) and lipid-bound sialic acid (LASA) concentration in serum occurs in breast cancer and we have studied the applicability of the assays in classification of undefined breast tumors. Sialic acid was determined by HPLC and the statistical evaluation included the receiver operating characteristic (ROC) and Youden's index analyses. In cancer patients, the serum LASA and TSA concentration was significantly higher (p < 0.05) than in patients with benign breast disease and all the markers were significantly higher (p < 0.0001) than in normal controls. All the markers had a low accuracy (AUCs < 0.75) in differentiating between breast cancer and benign breast disease and at the specificity level of 0.95 the corresponding sensitivities were 0.32 (TSA), 0.14 (TSA/TP) and 0.23 (LASA). The results indicate that both breast cancer and benign breast disease cause elevation of TSA, TSA/TP and LASA values in serum and do not provide reliable classification of undefined breast tumors.

  6. Total sialic acid profile in regressing and remodelling organs during the metamorphosis of marsh frog (Pelophylax ridibundus Pallas 1771).

    PubMed

    Kaptan, Engin; Bas, Serap Sancar; Inceli, Meliha Sengezer

    2013-03-01

    This study aimed to investigate the functional relationship of sialic acid in regressing and remodelling organs such as the tail, small intestine and liver during the metamorphosis of Pelophylax ridibundus. For this purpose, four groups were composed according to developmental periods by considering Gosner's criteria (1964). Our findings showed that the sialic acid content of the larval tail has an opposite profile to cell death process. Although the sialic acid content of the small intestine and liver did not change evidently during metamorphosis, it increased after the completion of metamorphosis. Frog tail extensively exhibited cell death process and decreased proliferative activity and underwent complete degeneration during metamorphic climax. In spite of increased apoptotic index, a decreased sialic acid level in the tail tissues during climax can be the indication of a death cell removal process. However, the intestine and the liver included both cell death and proliferative process and remodelling in their adult forms. Thus, their sialic acid profiles during metamorphosis were different from the tail's profile. These data show that sialic acid may be an indicator of the presence of some cellular events during metamorphosis and that it can have different roles in the developmental process depending on the organ's fate throughout metamorphosis.

  7. Glycoprotein 340 and sialic acid in minor-gland and whole saliva of children, adolescents, and adults.

    PubMed

    Sonesson, Mikael; Ericson, Dan; Kinnby, Bertil; Wickström, Claes

    2011-12-01

    Glycoprotein 340 (gp-340) is a bacterial-binding glycoprotein found in major-gland and minor-gland saliva. Sialic acid, a common terminal structure of salivary glycoproteins, interacts with microorganisms and host ligands, as well as with free radicals. This study investigated the contents of gp-340 and sialic acid in minor-gland saliva and whole saliva of children (3 yr of age), adolescents (14 yr of age), and adults (20-25 yr of age). Labial-gland saliva and buccal-gland saliva were collected on filter paper, and unstimulated whole saliva was collected by draining into a tube. The relative amount of gp-340 and sialic acid was determined by ELISA and by enzyme-linked lectin assay (ELLA), respectively. In minor-gland saliva, no statistically significant differences in gp-340 and sialic acid were seen between the age-groups. Among adults, significantly lower amounts of gp-340 and sialic acid were seen in labial saliva compared with buccal saliva. In whole saliva, the amount of gp-340 was significantly lower among adults compared with children. No differences between genders were seen. Stable content of gp-340 and sialic acid in minor-gland saliva across the age-groups, and a higher content of gp-340 in the whole saliva of the youngest age-group (3-yr-olds) compared with the adult group, may reflect that those components are vital innate factors of immunity in children's saliva.

  8. Sialic acid content in human saliva and anti-influenza activity against human and avian influenza viruses.

    PubMed

    Limsuwat, Nattavatchara; Suptawiwat, Ornpreya; Boonarkart, Chompunuch; Puthavathana, Pilaipan; Wiriyarat, Witthawat; Auewarakul, Prasert

    2016-03-01

    It was shown previously that human saliva has higher antiviral activity against human influenza viruses than against H5N1 highly pathogenic avian influenza viruses, and that the major anti-influenza activity was associated with sialic-acid-containing molecules. To further characterize the differential susceptibility to saliva among influenza viruses, seasonal influenza A and B virus, pandemic H1N1 virus, and 15 subtypes of avian influenza virus were tested for their susceptibility to human and chicken saliva. Human saliva showed higher hemagglutination inhibition (HI) and neutralization (NT) titers against seasonal influenza A virus and the pandemic H1N1 viruses than against influenza B virus and most avian influenza viruses, except for H9N2 and H12N9 avian influenza viruses, which showed high HI and NT titers. To understand the nature of sialic-acid-containing anti-influenza factors in human saliva, α2,3- and α2,6-linked sialic acid was measured in human saliva samples using a lectin binding and dot blot assay. α2,6-linked sialic acid was found to be more abundant than α2,3-linked sialic acid, and a seasonal H1N1 influenza virus bound more efficiently to human saliva than an H5N1 virus in a dot blot analysis. These data indicated that human saliva contains the sialic acid type corresponding to the binding preference of seasonal influenza viruses.

  9. Lectin-histochemical reactivity of sialic acid in breast cancer and its relationship to prognosis using limulus polyphemus agglutinin.

    PubMed

    Ding, K; Yamaguchi, A; Goi, T; Maehara, M; Nakagawara, G

    1997-04-01

    Studies of circulating sialic acid have revealed its relationship with a variety of malignant tumors. It is not vet clear whether sialic acid could be used as a prognostic marker of breast cancer, and few studies have examined sialic acid expression in the cell membrane and cytoplasm of breast cancer cells by means of the lectin-histochemical technique. In the present study, we used biotinylated limulus polyphemus agglutinin (LPA), a special binding lectin of sialic acid, to stain sialic acid in breast cancer cells. Of the 104 cases of breast cancer examined, 59 (56.7%) positive cases were observed. There was a significant correlation between the LPA staining and the clinicopathologic features of all patients, including pathological stage and lymph node metastasis. Among the 100 patients who underwent curative operation, the mean disease-free survival rate of the 45 patients who were LPA-negative was significantly higher than that of the 55 LPA-positive patients (p<0.05). These results suggest that the positive expression of sialic acid in breast cancer could be used as a marker of malignancy potential, as well as a poor survival factor, and the biotinylated LPA assay may provide a convenient and useful method to predict the prognosis of breast cancer.

  10. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  11. Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease

    PubMed Central

    Barton, Erik S.; Youree, Bryan E.; Ebert, Daniel H.; Forrest, J. Craig; Connolly, Jodi L.; Valyi-Nagy, Tibor; Washington, Kay; Wetzel, J. Denise; Dermody, Terence S.

    2003-01-01

    Infection of neonatal mice with some reovirus strains produces a disease similar to infantile biliary atresia, but previous attempts to correlate reovirus infection with this disease have yielded conflicting results. We used isogenic reovirus strains T3SA– and T3SA+, which differ solely in the capacity to bind sialic acid as a coreceptor, to define the role of sialic acid in reovirus encephalitis and biliary tract infection in mice. Growth in the intestine was equivalent for both strains following peroral inoculation. However, T3SA+ spread more rapidly from the intestine to distant sites and replicated to higher titers in spleen, liver, and brain. Strikingly, mice infected with T3SA+ but not T3SA– developed steatorrhea and bilirubinemia. Liver tissue from mice infected with T3SA+ demonstrated intense inflammation focused at intrahepatic bile ducts, pathology analogous to that found in biliary atresia in humans, and high levels of T3SA+ antigen in bile duct epithelial cells. T3SA+ bound 100-fold more efficiently than T3SA– to human cholangiocarcinoma cells. These observations suggest that the carbohydrate-binding specificity of a virus can dramatically alter disease in the host and highlight the need for epidemiologic studies focusing on infection by sialic acid–binding reovirus strains as a possible contributor to the pathogenesis of neonatal biliary atresia. PMID:12813018

  12. Characterisation of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties

    PubMed Central

    Mertsalov, Ilya B.; Novikov, Boris N.; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M.

    2016-01-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CMP-Sia synthetases that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterised its activity in vitro. Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn2+, Fe2+, Co2+ and Mn2+, while the activity with Mg2+ was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in coordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission. PMID:27114558

  13. Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties.

    PubMed

    Mertsalov, Ilya B; Novikov, Boris N; Scott, Hilary; Dangott, Lawrence; Panin, Vladislav M

    2016-07-01

    CMP-sialic acid synthetase (CSAS) is a key enzyme of the sialylation pathway. CSAS produces the activated sugar donor, CMP-sialic acid, which serves as a substrate for sialyltransferases to modify glycan termini with sialic acid. Unlike other animal CSASs that normally localize in the nucleus, Drosophila melanogaster CSAS (DmCSAS) localizes in the cell secretory compartment, predominantly in the Golgi, which suggests that this enzyme has properties distinct from those of its vertebrate counterparts. To test this hypothesis, we purified recombinant DmCSAS and characterized its activity in vitro Our experiments revealed several unique features of this enzyme. DmCSAS displays specificity for N-acetylneuraminic acid as a substrate, shows preference for lower pH and can function with a broad range of metal cofactors. When tested at a pH corresponding to the Golgi compartment, the enzyme showed significant activity with several metal cations, including Zn(2+), Fe(2+), Co(2+) and Mn(2+), whereas the activity with Mg(2+) was found to be low. Protein sequence analysis and site-specific mutagenesis identified an aspartic acid residue that is necessary for enzymatic activity and predicted to be involved in co-ordinating a metal cofactor. DmCSAS enzymatic activity was found to be essential in vivo for rescuing the phenotype of DmCSAS mutants. Finally, our experiments revealed a steep dependence of the enzymatic activity on temperature. Taken together, our results indicate that DmCSAS underwent evolutionary adaptation to pH and ionic environment different from that of counterpart synthetases in vertebrates. Our data also suggest that environmental temperatures can regulate Drosophila sialylation, thus modulating neural transmission.

  14. Physiochemical studies on achatininH, a novel sialic acid-binding lectin.

    PubMed Central

    Mandal, C; Basu, S; Mandal, C

    1989-01-01

    We have purified a sialic acid-binding lectin, achatininH, in a single step by affinity chromatography, having high affinity for 9-O-acetylneuraminic acid. The physicochemical characterization of the interaction of achatininH with bivalent metal ions and sialic acid derivatives by the use of spectrofluorimetry, spectropolarimetry and precipitin reaction is reported. From fluorescence quenching studies the binding of Ca2+ (Ka = 251 +/- 9 M-1) and of Mn2+ (Ka = 86 +/- 5 M-1) was found to be weak, but their presence is absolutely necessary for sugar binding as well as biological activity. The nature and position of the substituent group play a very important role in the binding affinity. AchatininH shows a high affinity for 9-O-acetylneuraminic acid (Ka = 1.20 x 10(3) +/- 0.07 x 10(3) M-1) compared with that for the 4-O-acetyl derivative. In oligomers the binding strength increases in the order monosaccharide less than disaccharide less than trisaccharide. The binding affinity of achatininH for the disaccharide was found to reach a peak around pH 8. From c.d. spectral studies achatininH was found to have a high beta-sheet content (46%) and a low alpha-helix content (24%). From precipitin analysis at least one sugar-binding site on each of the 16 monomer subunits of the protein is indicated. PMID:2920028

  15. Determination of the type and quantity of sialic acid in the egg jelly coat of the sea urchin Paracentrotus lividus using capillary LC-ESI-MS/MS.

    PubMed

    Yeşilyurt, Batuhan; Şahar, Umut; Deveci, Remziye

    2015-02-01

    Sialic acid is a terminal sugar of carbohydrate chains that participates in numerous biological events. Recent studies have explored the mechanism of carbohydrate-mediated fertilisation to understand the biochemistry of fertilisation, although the type and quantity of sialic acid and the role of sialic acid during fertilisation remain unknown. Echinoderm fertilisation in particular has been studied extensively, yet our understanding of the mechanisms of carbohydrate-mediated fertilisation and the role of sialic acid remains incomplete. In this study, we characterised the sialic acid types in the egg jelly coat of the sea urchin, Paracentrotus lividus, using the sensitive analytical system capillary liquid chromatography electro-spray ionisation tandem mass spectrometry (capLC-ESI-MS/MS). First, we isolated the egg jelly coat and released its sialic acid using acid treatment. These sialic acids were derivatised with 1,2-diamino-4,5-methylenediaoxy-benzene dihydrochloride (DMB) and injected into the capLC-ESI-MS/MS system. When compared with standards, we identified twelve different types of sialic acid according to their retention times and collision-induced dissociation fragments. The mass spectral data revealed that Neu5Gc, Neu5Ac, Neu5GcS, and Neu5Gc9Ac were the predominant types of sialic acid in the sea urchin jelly coat, with Neu5Gc being the most abundant. Other types of sialic acid detected included Neu5AcS, Neu5Gc7,9Ac2, Neu5,9Ac2, Neu5Gc8Ac, Neu5Gc7Ac, Neu5,7Ac2, Neu5Gc8,9Ac2, and Neu5,8Ac2. The types and quantities of sialic acid that we detected in the egg jelly coat will aid in the discovery of new sialic acid-specific receptors on the sperm membrane.

  16. DmSAS is required for sialic acid biosynthesis in cultured Drosophila third instar larvae CNS neurons.

    PubMed

    Granell, Annelise E von Bergen; Palter, Karen B; Akan, Ihan; Aich, Udayanath; Yarema, Kevin J; Betenbaugh, Michael J; Thornhill, William B; Recio-Pinto, Esperanza

    2011-11-18

    Sialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS). We compared neurons derived from wild type Dm larvae with those containing a DmSAS mutation (148 bp deletion). The ability of these cells to produce Sia5NAz (sialic acid form) from Ac(4)ManNAz (azide-derivatized N-acetylmannosamine) and incorporate it into their glycoconjugates was measured by tagging the azide group of Sia5NAz with fluorescent agents via Click-iT chemistry. We found that most of the wild type Dm CNS neurons incorporated Sia5NAz into their glycoconjugates. Sialic acid incorporation was higher at the soma than at the neurite and could also be detected at perinuclear regions and the plasma membrane. In contrast, neurons from the DmSAS mutant did not incorporate Sia5NAz unless DmSAS was reintroduced (rescue mutant). Most of the neurons expressed α2,6-sialyltransferase. These results confirm that the mutation was a null mutation and that no redundant sialic acid biosynthetic activity exists in Dm cells, i.e., there is only one DmSAS. They also provide the strongest proof to date that DmSAS is a key enzyme in the biosynthesis of sialic acids in Dm CNS neurons, and the observed subcellular distribution of the newly synthesized sialic acids offers insights into their biological function.

  17. Involvement of Sialic Acid on Endothelial Cells in Organ-Specific Lymphocyte Recirculation

    NASA Astrophysics Data System (ADS)

    Rosen, Steven D.; Singer, Mark S.; Yednock, Ted A.; Stoolman, Lloyd M.

    1985-05-01

    Mouse lymphocytes incubated on cryostat-cut sections of lymphoid organs (lymph nodes and Peyer's patches) specifically adhere to the endothelium of high endothelial venules (HEV), the specialized blood vessels to which recirculating lymphocytes attach as they migrate from the blood into the parenchyma of the lymphoid organs. Treatment of sections with sialidase eliminated the binding of lymphocytes to peripheral lymph node HEV, had no effect on binding to Peyer's patch HEV, and had an intermediate effect on mesenteric lymph node HEV. These results suggest that sialic acid on endothelial cells may be an organ-specific recognition determinant for lymphocyte attachment.

  18. Detection, isolation, and characterization of oligo/poly(sialic acid) and oligo/poly(deaminoneuraminic acid) units in glycoconjugates.

    PubMed

    Kitazume, S; Kitajima, K; Inoue, S; Inoue, Y

    1992-04-01

    We have evaluated methods for separation, preparation, and characterization of alpha-2----8-linked oligomers of sialic acids (Neu5Ac and Neu5Gc) and deaminated neuraminic acid (KDN; 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) recently found as a naturally occurring novel type of sialic acid analogue. (A) We examined preparative anion-exchange chromatography for fractionation and preparation of oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN). (B) We also examined the TLC method for separation and differentiation of the partial acid hydrolysates of colominic acid, as well as polysialoglycoproteins (PSGP) and poly(KDN)-glycoproteins (KDN-gp) isolated from rainbow trout eggs, and for discrimination of lower oligomers of Neu5Ac, Neu5Gc, and KDN. (C) We developed the high-performance adsorption-partition chromatographic method for (a) separation of monomers and oligomers of three nonulosonates according to the difference in substituents at C-5 and the presence or absence of 9-O-acetyl groups in oligo(KDN) and (b) separation of three homologous series of lower oligomers according to the degree of polymerization. (D) We examined and compared high-performance anion-exchange chromatographic separation of 3H-labeled oligo(Neu5Ac), oligo(Neu5Gc), and oligo(KDN) alditols by using Mono-Q HR 5/5 resin. (E) We examined a method of selective and quantitative microprecipitation for separation and purification of oligomers and polymers of Neu5Ac by treating them with cetylpyridinium chloride. We also used PSGP and KDN-gp to test both the sensitivity and the selectivity of this method.

  19. Determination of sialic acids in immune system cells (coelomocytes) of sea urchin, Paracentrotus lividus, using capillary LC-ESI-MS/MS.

    PubMed

    İzzetoğlu, Savaş; Şahar, Umut; Şener, Ecem; Deveci, Remziye

    2014-01-01

    Coelomocytes are considered to be immune effectors of sea urchins. Coelomocytes are the freely circulating cells in the body fluid contained in echinoderm coelom and mediate the cellular defence responses to immune challenges by phagocytosis, encapsulation, cytotoxicity and the production of antimicrobial agents. Coelomocytes have the ability to recognize self from non-self. Considering that sialic acids play important roles in immunity, we determined the presence of sialic acid types in coelomocytes of Paracentrotus lividus. Homogenized coelomocytes were kept in 2 M aqueous acetic acid at 80 °C for 3 h to liberate sialic acids. Sialic acids were determined by derivatization with 1,2-diamino-4,5-methylenediaoxy-benzene dihydrochloride (DMB) followed by capillary liquid-chromatography-electrospray ionization/tandem mass spectrometry (CapLC-ESI-MS/MS). Standard sialic acids; Neu5Ac, Neu5Gc, KDN and bovine submaxillary mucin showing a variety of sialic acids were used to confirm sialic acids types. We found ten different types of sialic acids (Neu5Gc, Neu5Ac, Neu5Gc9Ac, Neu5Gc8Ac, Neu5,9Ac2, Neu5,7Ac2, Neu5,8Ac2, Neu5,7,9Ac3, Neu5Gc7,9Ac2, Neu5Gc7Ac) isolated in limited amounts from total coelomocyte population. Neu5Gc type of sialic acids in coelomocytes was the most abundant type sialic acid when compared with other types. This is the first report on the presence of sialic acid types in coelomocytes of P. lividus using CapLC-ESI-MS/MS-Ion Trap system (Capillary Liquid Chromatography-Electrospray Ionization/Tandem Mass Spectrometry).

  20. A method for concentrating organic dyes: colorimetric measurements of nitric oxides and sialic acids.

    PubMed

    Lalezari, Parviz; Lekhraj, Rukmani; Casper, Diana

    2011-09-01

    A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye-detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations.

  1. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    PubMed Central

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials. PMID:28084463

  2. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    NASA Astrophysics Data System (ADS)

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.

  3. Lipid-associated sialic acid levels in human breast cyst fluids.

    PubMed

    Mannello, F; Bocchiotti, G; Troccoli, R; Gazzanelli, G

    1992-01-01

    Benign mammary gross cystic disease is the most common breast lesion. Women with apocrine changes of epithelium lining the cysts are at higher risk for developing breast cancer than the normal female population. Sialic acid has drawn considerable interest because of carbohydrate aberrations in malignant cells. The current investigation determined the concentrations of lipid-associated sialic acid (LASA) in 62 breast cyst fluids and sera. Data analyses show a significant increase in the mean values of LASA in metabolically active apocrine cysts when compared to the cysts with Na+/K+ > 3 (flattened cysts) (p < 0.001). The greater LASA levels in cyst fluids with lower intracystic Na+/K+ ratios could represent an altered expression of biosynthetic activity of the surrounding apocrine cell surface sialoglycolipid metabolism, providing a possible explanation of why women with apocrine cysts may be at greater cancer risk and being useful in further studies on functional stage changes in the cysts and their relationship to breast cancer.

  4. Evaluation of serum sialic acid, heat stable alkaline phosphatase and fucose as markers of breast carcinoma.

    PubMed

    Patel, P S; Baxi, B R; Adhvaryu, S G; Balar, D B

    1990-01-01

    Serum levels of total sialic acid (TSA), lipid bound sialic acid (LSA), heat stable alkaline phosphatase (HSAP) and fucose were measured in 39 patients with breast carcinoma, 14 patients with benign breast diseases and 35 healthy female individuals. Elevated levels of the four biomarkers in breast carcinoma were significant when compared with controls (p less than 0.001). Fucose levels were most sensitive (71.8%), while TSA levels were most specific (64.3%) for breast carcinoma. Sensitivity and specificity were 100% when combinations of LSA with fucose and TSA with HSAP were studied respectively. LSA was significantly elevated in infiltrating duct carcinoma patients compared with lobular carcinoma (p less than 0.001). TSA, HSAP and fucose also had lower mean values in lobular carcinoma as compared to infiltrating duct carcinoma. Increase in the levels of LSA and HSAP after surgical removal of the tumor in breast carcinoma occurred prior to the clinical evidence of the recurrence. The results indicate that the combination of the markers studied might be useful in breast cancer diagnosis and treatment monitoring.

  5. Axillary versus peripheral blood levels of sialic acid, ferritin, and CEA in patients with breast cancer.

    PubMed

    Monti, M; Catania, S; Locatelli, E; Gandini, R; Reggiani, A; Cunietti, E

    1990-12-01

    Serum levels of total sialic acid, carcinoembryonic antigen (CEA), ferritin, lactate dehydrogenase, and creatine phosphokinase were measured both in tumor drainage blood (axillary vein) and in peripheral blood obtained from 121 breast cancer patients during surgery. No significant differences between mean values in peripheral and tumor draining blood, between cancer patients and healthy controls, or between patients with or without axillary lymph node metastases were found for any of the markers. Both ferritin and CEA levels were higher in axillary and peripheral blood from patients with central breast cancer versus other sites but the difference was significant only for CEA (p less than 0.05). CEA levels were significantly higher (p less than 0.01) in patients with greater than 2 cm diameter carcinomas versus T1 stage patients in axillary but not in peripheral blood. When the cephalic vein was clamped before the axillary sample was taken, ferritin showed a significant increase (p less than 0.05). We conclude that measurement of sialic acid, CEA, and ferritin in axillary venous blood in breast cancer patients is not of clinical benefit, although further data are needed to clarify whether other advantages can be derived.

  6. Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins.

    PubMed

    Alley, William R; Novotny, Milos V

    2010-06-04

    A number of alterations to the normal glycomic profile have been previously described for a number of diseases and disorders, thus underscoring the medical importance of studying the glycans associated with proteins present in biological samples. An important alteration in cancer progression is an increased level of alpha2,6-sialylation, which aids in increasing the metastatic potential of tumor cells. Here we report a glycomic method that selectively amidates alpha2,6-linked sialic acids, while those that are alpha2,3-linked undergo spontaneous lactonization. Following subsequent permethylation, MALDI-TOF MS analysis revealed that many sialylated glycans present on glycoproteins found in blood serum featured increased levels of alpha2,6-sialylation in breast cancer samples. On the basis of the altered ratios of alpha2,3-linked to alpha2,6-linked sialic acids, many of these glycans became diagnostically relevant when they did not act as such indicators when based on traditional glycomic profiling alone.

  7. Leishmania donovani Utilize Sialic Acids for Binding and Phagocytosis in the Macrophages through Selective Utilization of Siglecs and Impair the Innate Immune Arm

    PubMed Central

    Roy, Saptarshi; Mandal, Chitra

    2016-01-01

    Background Leishmania donovani, belonging to a unicellular protozoan parasite, display the differential level of linkage-specific sialic acids on their surface. Sialic acids binding immunoglobulin-like lectins (siglecs) are a class of membrane-bound receptors present in the haematopoetic cell lineages interact with the linkage-specific sialic acids. Here we aimed to explore the utilization of sialic acids by Leishmania donovani for siglec-mediated binding, phagocytosis, modulation of innate immune response and signaling pathways for establishment of successful infection in the host. Methodology/Principle Findings We have found enhanced binding of high sialic acids containing virulent strains (AG83+Sias) with siglec-1 and siglec-5 present on macrophages compared to sialidase treated AG83+Sias (AG83-Sias) and low sialic acids-containing avirulent strain (UR6) by flow cytometry. This specific receptor-ligand interaction between sialic acids and siglecs were further confirmed by confocal microscopy. Sialic acids-siglec-1-mediated interaction of AG83+Sias with macrophages induced enhanced phagocytosis. Additionally, sialic acids-siglec-5 interaction demonstrated reduced ROS, NO generation and Th2 dominant cytokine response upon infection with AG83+Sias in contrast to AG83-Sias and UR6. Sialic acids-siglecs binding also facilitated multiplication of intracellular amastigotes. Moreover, AG83+Sias induced sialic acids-siglec-5-mediated upregulation of host phosphatase SHP-1. Such sialic acids-siglec interaction was responsible for further downregulation of MAPKs (p38, ERK and JNK) and PI3K/Akt pathways followed by the reduced translocation of p65 subunit of NF-κβ to the nucleus from cytosol in the downstream signaling pathways. This sequence of events was reversed in AG83-Sias and UR6-infected macrophages. Besides, siglec-knockdown macrophages also showed the reversal of AG83+Sias infection-induced effector functions and downstream signaling events. Conclusions

  8. Higher reactivity of apolipoprotein B-100 and alpha-tocopherol compared to sialic acid moiety of low-density lipoprotein (LDL) in radical reaction.

    PubMed

    Matsukawa, Nao; Nariyama, Yoko; Hashimoto, Ryoko; Kojo, Shosuke

    2003-09-01

    Radical reaction of low-density lipoprotein (LDL) is a key step in atherogenesis and causes both a decrease in the sialic acid moiety and modification of apolipoprotein B-100 (apoB). Although apoB modification (cross-link and fragmentation) increases in atherosclerosis, the change in apoB-bound sialic acid in atherosclerosis is controversial. To elucidate the physiological implications of desialylation of LDL by radical reaction, the reactivity of sialic acid of LDL was compared with that of apoB, which underwent facile fragmentation in radical reactions. ApoB was determined by immunoblot analysis with anti-apoB antiserum, and the sialic acid moiety was measured by blot analysis with a biotin-bound lectin [biotin-SSA from Japanese elderberry (Sambucus sieboldiana)] specific to sialic acid. When human LDL was oxidized with Cu(2+) at 37 degrees C, apoB and apoB-attached sialic acid decreased simultaneously. Comparison of the staining bands with anti-apoB and with biotin-SSA shows that sialic acid moieties still remain on fragmented apoB proteins, indicating that the decrease in sialic acid is much slower than that of apoB fragmentation. In addition, human plasma was oxidized with 400 microM of Cu(2+) at 37 degrees C. Similar analysis indicates that the decrease in sialic acid attached to apoB also results from the fragmentation of apoB. This study indicates that the fragmentation of apoB proceeds at a much faster rate than the decrease in sialic acid content when a free radical reaction is induced in isolated LDL as well as in plasma LDL exposed to Cu(2+)-induced oxidative stress. On the basis of these results, the modification of apoB is much more sensitive than the decrease in sialic acid as an indicator of oxidative stress.

  9. Differential expression of the α2,3-sialic acid residues in breast cancer is associated with metastatic potential.

    PubMed

    Cui, Hongxia; Lin, Yu; Yue, Liling; Zhao, Xuemei; Liu, Jicheng

    2011-05-01

    Aberrant sialylation is closely associated with the malignant phenotype of cancer cells and metastatic potential. However, the precise nature of the molecules in breast cancers has not been unveiled. In this study, we investigated the expression levels of α2,3-sialic acid residues of 50 primary tumor cases, 50 pair-matched lymph node metastasis tumor samples and in the MDA-MB-231, T-47D and MCF-7 breast cancer cell lines with different metastatic potential. The expression of α2,3-sialic acid residues was analyzed by histochemistry, cytochemistry and flow cytometry with Maackia amurensis lectin (MAL). The invasion and migration abilities of cells were examined using cell adhesion and transwell in vitro assays. Pair-matched lymph node metastasis tumor samples exhibited higher levels of expression of α2,3-sialic acid residues compared to that of primary tumors (P=0.0432). Furthermore, of 38 tumors cases in T1/T2 stages, 31 (81.58%) had weak staining for MAL, which specifically binds to α2,3-sialic acid residues, whereas of 12 tumor cases in T3/T4 stages, only 1 (8.33%) had weak reactions for MAL. The highly metastatic breast cancer cell line MDA-MB-231 exhibited the strongest binding to MAL and the highest expression levels of α2,3-sialic acid residues among the selected cell lines, depending on mRNA expression levels of α2,3-sialyltransferase gene. The adhesion, invasion and migration activities confirmed that MDA-MB-231 exhibited the greater cell adhesion to, migration toward and invasion to Matrigel. Taken together, the high expression of α2,3-sialic acid residues in breast cancer was associated with metastatic potential. This property may be important for developing new therapeutic approaches for breast cancer.

  10. Involvement of a Non-Human Sialic Acid in Human Cancer

    PubMed Central

    Samraj, Annie N.; Läubli, Heinz; Varki, Nissi; Varki, Ajit

    2014-01-01

    Sialic acids are common monosaccharides that are widely expressed as outer terminal units on all vertebrate cell surfaces, and play fundamental roles in cell–cell and cell–microenvironment interactions. The predominant sialic acids on most mammalian cells are N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Neu5Gc is notable for its deficiency in humans due to a species-specific and species-universal inactivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from dietary sources (particularly red meat), and detected at even higher levels in some human cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain commensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in human tissues (“xeno-autoantigens”). Such anti-Neu5Gc “xeno-autoantibodies” are found in all humans, although ranging widely in levels among individuals, and displaying diverse and variable specificities for the underlying glycan. Experimental evidence in a human-like Neu5Gc-deficient Cmah−/−mouse model shows that inflammation due to “xenosialitis” caused by this antigen–antibody interaction can promote tumor progression, suggesting a likely mechanism for the well-known epidemiological link between red meat consumption and carcinoma risk. In this review, we discuss the history of this field, mechanisms of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer initiation and progression, and current and future approaches toward immunotherapy that could take advantage of this unusual human-specific phenomenon. PMID:24600589

  11. Involvement of a non-human sialic Acid in human cancer.

    PubMed

    Samraj, Annie N; Läubli, Heinz; Varki, Nissi; Varki, Ajit

    2014-01-01

    Sialic acids are common monosaccharides that are widely expressed as outer terminal units on all vertebrate cell surfaces, and play fundamental roles in cell-cell and cell-microenvironment interactions. The predominant sialic acids on most mammalian cells are N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac). Neu5Gc is notable for its deficiency in humans due to a species-specific and species-universal inactivating deletion in the CMAH gene encoding the hydroxylase that converts CMP-Neu5Ac to CMP-Neu5Gc. However, Neu5Gc is metabolically incorporated into human tissues from dietary sources (particularly red meat), and detected at even higher levels in some human cancers. Early life exposure to Neu5Gc-containing foods in the presence of certain commensal bacteria that incorporate dietary Neu5Gc into lipooligosaccharides can lead to generation of antibodies that are also cross-reactive against Neu5Gc-containing glycans in human tissues ("xeno-autoantigens"). Such anti-Neu5Gc "xeno-autoantibodies" are found in all humans, although ranging widely in levels among individuals, and displaying diverse and variable specificities for the underlying glycan. Experimental evidence in a human-like Neu5Gc-deficient Cmah(-) (/) (-) mouse model shows that inflammation due to "xenosialitis" caused by this antigen-antibody interaction can promote tumor progression, suggesting a likely mechanism for the well-known epidemiological link between red meat consumption and carcinoma risk. In this review, we discuss the history of this field, mechanisms of Neu5Gc incorporation into tissues, the origin and specificities of human anti-Neu5Gc antibodies, their use as possible cancer biomarkers, implications of xenosialitis in cancer initiation and progression, and current and future approaches toward immunotherapy that could take advantage of this unusual human-specific phenomenon.

  12. Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids.

    PubMed Central

    Ravindranath, R M; Graves, M C

    1990-01-01

    Treatment of cells with lectins specific for N-acetylglucosamine (GlcNAc) blocked infection by mouse cytomegalovirus (MCMV), and GlcNAc pretreatment of the lectin blocked this effect. MCMV failed to infect N-acetylglucosaminidase (GlcNAcase)-treated mouse embryo fibroblasts (MEF). GlcNAc and GlcNAc-containing synthetic oligosaccharides directly inhibited viral infectivity. Ulex lectin inhibition of infection was shown to be due to inhibition of surface adsorption of 35S-labeled virus. Also, GlcNAcase eluted 35S-labeled virus adsorbed to MEF at 4 degrees C and inhibited plaque formation if added after adsorption at this temperature. These findings indicate that GlcNAc binding is involved in attachment rather than in some later step in infection. High-performance thin-layer chromatography overlay of [35S]MCMV indicated that it binds to a GlcNAc-containing asialoglycolipid. Analogous experiments indicated that MCMV made virulent by in vivo salivary gland passage binds to sialic acids in addition to GlcNAc. Treatment of MEF with sialic acid-binding lectins blocked infectivity. Incubation of virus with sialic acids also prevented infection. N-acetylneuraminic acid was 10(3)-fold more potent than N-glycolylneuraminic acid. Sialidase-treated target cells were not efficiently infected by the virus. Thus, MCMV binds to GlcNAc on the cell surface, and the shift to virulence (by in vivo salivary gland passage) correlates with viral recognition of sialic acids. Images PMID:2170680

  13. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid

    SciTech Connect

    Löfling, Jonas; Michael Lyi, Sangbom; Parrish, Colin R.; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells. - Highlights: ► Feline and canine parvoviruses recognize Neu5Gc but not Neu5Ac, which differ by one oxygen atom. ► The underlying linkage of these sialic acids does not affect recognition. ► Induced Neu5Gc expression on target cells that normally express Neu5Ac did not enhance infection. ► Thus, the conserved binding preference plays an important yet unknown role in in vivo infections. ► Population and breed variations in Neu5Gc expression occur, likely by regulating the gene CMAH.

  14. Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition.

    PubMed

    Wang, Bing

    2012-05-01

    The early stages of neurodevelopment in infants are crucial for establishing neural structures and synaptic connections that influence brain biochemistry well into adulthood. This postnatal period of rapid neural growth is of critical importance for cell migration, neurite outgrowth, synaptic plasticity, and axon fasciculation. These processes thus place an unusually high demand on the intracellular pool of nutrients and biochemical precursors. Sialic acid (Sia), a family of 9-carbon sugar acids, occurs in large amounts in human milk oligosaccharides and is an essential component of brain gangliosides and sialylated glycoproteins, particularly as precursors for the synthesis of the polysialic acid (polySia) glycan that post-translationally modify the cell membrane-associated neural cell adhesion molecules (NCAM). Human milk is noteworthy in containing exceptionally high levels of Sia-glycoconjugates. The predominate form of Sia in human milk is N-acetylneuraminic acid (Neu5Ac). Infant formula, however, contains low levels of Sia consisting of both Neu5Ac and N-glycolyneuraminic acid (Neu5Gc). Current studies implicate Neu5Gc in several human inflammatory diseases. Polysialylated NCAM and neural gangliosides both play critical roles in mediating cell-to-cell interactions important for neuronal outgrowth, synaptic connectivity, and memory formation. A diet rich in Sia also increases the level of Sia in the brains of postnatal piglets, the expression level of 2 learning-related genes, and enhances learning and memory.

  15. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.

    PubMed Central

    Stoughton, D M; Zapata, G; Picone, R; Vann, W F

    1999-01-01

    Escherichia coli K1 CMP-sialic acid synthetase catalyses the synthesis of CMP-sialic acid from CTP and sialic acid. The active site of the 418 amino acid E. coli enzyme was localized to its N-terminal half. The bacterial CMP-sialic acid synthetase enzymes have a conserved motif, IAIIPARXXSKGLXXKN, at their N-termini. Several basic residues have been identified at or near the active site of the E. coli enzyme by chemical modification and site-directed mutagenesis. Only one of the lysines in the N-terminal motif, Lys-21, appears to be essential for activity. Mutation of Lys-21 in the N-terminal motif results in an inactive enzyme. Furthermore, Arg-12 of the N-terminal motif appears to be an active-site residue, based on the following evidence. Substituting Arg-12 with glycine or alanine resulted in inactive enzymes, indicating that this residue is required for enzymic activity. The Arg-12-->Lys mutant was partially active, demonstrating that a positive charge is required at this site. Steady-state kinetic analysis reveals changes in k(cat), K(m) and K(s) for CTP, which implicates Arg-12 in catalysis and substrate binding. PMID:10510306

  16. Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus.

    PubMed

    Minami, Akira; Meguro, Yuko; Ishibashi, Sayaka; Ishii, Ami; Shiratori, Mako; Sai, Saki; Horii, Yuuki; Shimizu, Hirotaka; Fukumoto, Hokuto; Shimba, Sumika; Taguchi, Risa; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2017-04-07

    Sialidase cleaves sialic acids on the extracellular cell surface as well as inside the cell and is necessary for normal long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses and for hippocampus-dependent spatial memory. Here, we investigated in detail the role of sialidase in memory processing. Sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac) or 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB was increased by high-K(+)-induced membrane depolarization. Sialidase activity was also increased by chemical LTP induction with forskolin and activation of BDNF signaling, non-NMDA receptors, or NMDA receptors. The increase in sialidase activity with neural excitation appears to be caused not by secreted sialidase or by an increase in sialidase expression but by a change in the subcellular localization of sialidase. Astrocytes as well as neurons are also involved in the neural activity-dependent increase in sialidase activity. Sialidase activity visualized with a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe for sialidase activity, at the CA3 stratum lucidum of rat acute hippocampal slices was immediately increased in response to LTP-inducible high-frequency stimulation on a time scale of seconds. To obtain direct evidence for sialic acid removal on the extracellular cell surface during neural excitation, the extracellular free sialic acid level in the hippocampus was monitored using in vivo microdialysis. The free sialic acid level was increased by high-K(+)-induced membrane depolarization. Desialylation also occurred during hippocampus-dependent memory formation in a contextual fear-conditioning paradigm. Our results show that neural activity-dependent desialylation by sialidase may be involved in hippocampal memory processing.

  17. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization.

    PubMed

    Magnusson, P; Farley, J R

    2002-12-01

    High-performance liquid chromatography (HPLC) separates three human bone alkaline phosphatase (BALP) isoforms in serum; two major BALP isoforms, B1 and B2, and a minor fraction, B/I, which is composed on average of 70% bone and 30% intestinal ALP. The current studies were intended to identify an in vitro source of the BALP isoforms for physical, biochemical, and immunological characterizations. The three BALP isoforms were identified in extracts of human osteosarcoma (SaOS-2) cells, by HPLC, after separation by anion-exchange chromatography. All three BALP isoforms were similar with respect to freeze-thaw stability, solubility, heat inactivation, and inhibition by L-phenylalanine, L-homoarginine, and levamisole. The isoforms were also kinetically similar (i.e., maximal velocity and KM at pH 8.8 and pH 10.0). The isoforms differed, however, with respect to sensitivity to precipitation with wheat germ agglutinin (WGA), P < 0.001, but not Concanavalin A. At 3.0 mg/ml, WGA precipitated approximately 25% of B/I but more than 80% of B1 and B2. Molecular weights were estimated by native gradient gel electrophoresis: B/I, 126 kDa; B1, 136 kDa; and B2, 141 kDa. Desialylation with neuraminidase reduced the apparent sizes of B1 and B2 to 127 kDa (i.e., approximately to that of B/I). The total carbohydrate content was calculated to be 18 kDa, 28 kDa, and 33 kDa (i.e., 14%, 21%, and 23%) for the BALP isofonns, B/I, B1, and B2, respectively. The number of sialic acid residues was estimated to be 29 and 45, for each B1 and B2 homodimer, respectively. Apparent discrepancies between these estimates of molecular weight and estimates based on gel filtration chromatography were attributed to nonspecific interactions between carbohydrate residues and the gel filtration beads. All three BALP isoforms showed similar dose-dependent linearity in the commercial Alkphase-B and Tandem-MP Ostase immunoassays, r = 0.944 and r = 0.985, respectively (P < 0.001). In summary, our data indicate that

  18. Photoaffinity labeling of a bacterial sialidase with an aryl azide derivative of sialic acid

    SciTech Connect

    van der Horst, G.T.; Mancini, G.M.; Brossmer, R.; Rose, U.; Verheijen, F.W. )

    1990-07-05

    A photoreactive radioiodinatable derivative of 2-deoxy-2,3-didehydro-5-N-acetylneuraminic acid (NeuAc2en), 5-N-acetyl-9-(4-azidosalicoylamido)-2-deoxy-2,3-didehydroneuram inic acid (ASA-NeuAc2-en) has been synthesized and used to label the active site of Clostridium perfringens sialidase. Like NeuAc2en, its aryl azide derivative is a strong competitive inhibitor of sialidase (Ki approximately 15 microM). The absorbance spectrum of ASA-NeuAc2en shows a characteristic aryl azide peak, which disappears upon photolysis with UV light. When its radioiodinated counterpart 5-N-acetyl-9-(4-iodoazidosalicoylamido)-2-deoxy-2,3-didehydrone uraminic acid (({sup 125}I)IASA-NeuAc2en) was photolyzed in the presence of C. perfringens sialidase a 72-kDa protein was labeled. Labeling occurred specifically in the active site since it was inhibited in the presence of NeuAc2en. Chemical cleavage of the photoaffinity-labeled 72-kDa protein demonstrates that specifically labeled peptides involved in the formation of the active site can easily be determined. ASA-NeuAc2en is a valuable new tool for the identification and structural/functional analysis of sialidases and other proteins, recognizing this sialic acid derivative.

  19. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications

    PubMed Central

    Post, Deborah M. B.; Ketterer, Margaret R.; Coffin, Jeremy E.; Reinders, Lorri M.; Munson, Robert S.; Bair, Thomas; Murphy, Timothy F.; Foster, Eric D.; Gibson, Bradford W.

    2016-01-01

    Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease. PMID:26729761

  20. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate

    PubMed Central

    Baumann, Anna-Maria T.; Bakkers, Mark J. G.; Buettner, Falk F. R.; Hartmann, Maike; Grove, Melanie; Langereis, Martijn A.; de Groot, Raoul J.; Mühlenhoff, Martina

    2015-01-01

    Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. PMID:26169044

  1. Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications.

    PubMed

    Post, Deborah M B; Ketterer, Margaret R; Coffin, Jeremy E; Reinders, Lorri M; Munson, Robert S; Bair, Thomas; Murphy, Timothy F; Foster, Eric D; Gibson, Bradford W; Apicella, Michael A

    2016-01-04

    Haemophilus haemolyticus and nontypeable Haemophilus influenzae (NTHi) are closely related upper airway commensal bacteria that are difficult to distinguish phenotypically. NTHi causes upper and lower airway tract infections in individuals with compromised airways, while H. haemolyticus rarely causes such infections. The lipooligosaccharide (LOS) is an outer membrane component of both species and plays a role in NTHi pathogenesis. In this study, comparative analyses of the LOS structures and corresponding biosynthesis genes were performed. Mass spectrometric and immunochemical analyses showed that NTHi LOS contained terminal sialic acid more frequently and to a higher extent than H. haemolyticus LOS did. Genomic analyses of 10 strains demonstrated that H. haemolyticus lacked the sialyltransferase genes lic3A and lic3B (9/10) and siaA (10/10), but all strains contained the sialic acid uptake genes siaP and siaT (10/10). However, isothermal titration calorimetry analyses of SiaP from two H. haemolyticus strains showed a 3.4- to 7.3-fold lower affinity for sialic acid compared to that of NTHi SiaP. Additionally, mass spectrometric and immunochemical analyses showed that the LOS from H. haemolyticus contained phosphorylcholine (ChoP) less frequently than the LOS from NTHi strains. These differences observed in the levels of sialic acid and ChoP incorporation in the LOS structures from H. haemolyticus and NTHi may explain some of the differences in their propensities to cause disease.

  2. Serum lipid-bound sialic acid as a marker in breast cancer.

    PubMed

    Dnistrian, A M; Schwartz, M K; Katopodis, N; Fracchia, A A; Stock, C C

    1982-11-01

    The reliability of lipid-bound sialic acid (LSA) as a marker in breast cancer was evaluated in 78 normal subjects, 106 patients with benign breast disease, 64 patients with primary operable breast cancer, and 61 patients with recurrent metastatic breast cancer. LSA levels were determined before and after mastectomy and during chemotherapy in selected patients to determine the value of LSA in monitoring therapy and predicting response. LSA levels greater than 20 mg/dl were not seen in normal subjects but were present in patients with benign breast disease (13%), primary breast cancer (47%) and recurrent metastatic breast cancer (62%). LSA levels decreased after initiation of chemotherapy and remained low in patients clinically disease-free. Recurrences were associated with elevated LSA in patients failing chemotherapy or endocrine ablative surgery. LSA measurements appeared to be of limited value in the detection of breast cancer but serial measurements may be useful in assessing disease progression and identifying patients resistant to therapy.

  3. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis.

  4. Sialic Acid on the Glycosylphosphatidylinositol Anchor Regulates PrP-mediated Cell Signaling and Prion Formation*

    PubMed Central

    Bate, Clive; Nolan, William; Williams, Alun

    2016-01-01

    The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases. PMID:26553874

  5. Salivary total sialic acid levels increase in breast cancer patients: a preliminary study.

    PubMed

    Oztürk, Leyla Koç; Emekli-Alturfan, Ebru; Kaşikci, Emel; Demir, Gokhan; Yarat, Aysen

    2011-09-01

    Breast cancer is the most common cancer in women living in the Western world, even though it occurs worldwide. Cancer and cancer therapy induce multiple oral complications including dental and periodontal disease. Saliva is a complex and dynamic biologic fluid, which reflects both oral and systemic changes. While saliva is easily accessible body fluid, there has been little effort to study its value in cancer diagnosis. Sialic acids (SA), the end moieties of the carbohydrate chains, are biologically important and essential for functions of glycoconjugates that are reported to be altered in both blood and saliva of various cancer patients. Increased sialylation has been shown to be a characteristic feature in cancer tissue and blood in breast cancer patients. However, there is no data about salivary SA in breast cancer. The aim of this study was to evaluate salivary total sialic acid (TSA) levels in breast cancer patients who were under chemotheraphy. The study included 15 breast cancer patients in different stages and 10 healthy individuals as age-matched controls. Unstimulated whole saliva was collected. Salivary total protein and SA levels were determined. Flow rate was calculated from salivary volume by the time of secretion. Salivary SA was significantly higher and total protein was lower in breast cancer patients compared to controls. It is concluded that sialylation may be increased in saliva of patients with breast cancer as the same way for cancer tissue and for blood . Increased salivary SA may therefore be useful as a non-invasive predictive marker for breast cancer patients and for the prevention and management of oral complications of cancer and cancer therapy to improve oral function and quality-of-life. The effects of different types of chemotherapies and different stages of the disease on salivary SA levels and salivary sialo-glycomic are worthy of being further investigated in breast cancer patients.

  6. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    PubMed

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Development of magnetic resonance imaging based detection methods for beta amyloids via sialic acid-functionalized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, Hovig

    The development of a non-invasive method for the detection of Alzheimer's disease is of high current interest, which can be critical in early diagnosis and in guiding preventive treatment of the disease. The aggregates of beta amyloids are a pathological hallmark of Alzheimer's disease. Carbohydrates such as sialic acid terminated gangliosides have been shown to play significant roles in initiation of amyloid aggregation. Herein, we report a biomimetic approach using sialic acid coated iron oxide superparamagnetic nanoparticles for in vitro detection in addition to the assessment of the in vivo mouse-BBB (Blood brain barrier) crossing of the BSA (bovine serum albumin)-modified ones. The sialic acid functionalized dextran nanoparticles were shown to bind with beta amyloids through several techniques including ELISA (enzyme linked immunosorbent assay), MRI (magnetic resonance imaging), TEM (transmission electron microscopy), gel electrophoresis and tyrosine fluorescence assay. The superparamagnetic nature of the nanoparticles allowed easy detection of the beta amyloids in mouse brains in both in vitro and ex vivo model by magnetic resonance imaging. Furthermore, the sialic acid nanoparticles greatly reduced beta amyloid induced cytotoxicity to SH-SY5Y neuroblastoma cells, highlighting the potential of the glyconanoparticles for detection and imaging of beta amyloids. Sialic acid functionalized BSA (bovine serum albumin) nanoparticles also showed significant binding to beta amyloids, through ELISA and ex vivo mouse brain MRI experiments. Alternatively, the BBB crossing was demonstrated by several techniques such as confocal microscopy, endocytosis, exocytosis assays and were affirmed by nanoparticles transcytosis assays through bEnd.3 endothelial cells. Finally, the BBB crossing was confirmed by analyzing the MRI signal of nanoparticle-injected CD-1 mice.

  8. TGF-beta and TNF-a affect cell surface proteoglycan and sialic acid expression on vascular endothelial cells.

    PubMed

    Doiron, Amber L; Kirkpatrick, Allison P; Rinker, Kristina D

    2004-01-01

    Atherosclerosis is the formation of plaques in the arterial wall brought about by numerous events including the accumulation of oxidized low density lipoprotein (LDL), stimulation of inflammatory responses, the release of cytokines, and the attachment of monocytes to the arterial wall. Proteoglycans are implicated in many aspects of atherosclerosis including the metabolism of lipoproteins, regulation of cytokine activity, cell adhesion, and modification of the extracellular matrix. Due to their complex role in molecular recognition and cellular adhesion, the glycosaminoglycan (GAG) chains attached to the proteoglycan core and sialic acids on the terminal ends of the glycan chains are of interest. This study investigated the effects of exposure to transforming growth factor-beta 1 (TGF-beta 1) and tumor necrosis factor-a (TNF-a) on the expression of cell surface GAGs and sialic acids on human umbilical vein endothelial cells (HUVECs). Initial results show that TGF-beta 1 affected GAG expression compared to a control condition. Results also show that the combination of TGF-beta 1 and TNF-a affected GAG expression differently than does TGF-beta 1 alone. Additionally, TNF-a decreased the number of sialic acid residues per cell and TGF-beta 1 slightly upregulated sialic acid expression as compared to the control. The combination of the two cytokines showed a larger upward trend in this value. These data indicate that TNF-a and TGF-beta 1 play a role in the expression of GAG chains and sialic acids on the cell surface. Further study may clarify the implications of these findings for atherosclerosis.

  9. A Novel Approach to Decrease Sialic Acid Expression in Cells by a C-3-modified N-Acetylmannosamine*

    PubMed Central

    Wratil, Paul R.; Rigol, Stephan; Solecka, Barbara; Kohla, Guido; Kannicht, Christoph; Reutter, Werner; Giannis, Athanassios; Nguyen, Long D.

    2014-01-01

    Due to its position at the outermost of glycans, sialic acid is involved in a myriad of physiological and pathophysiological cell functions such as host-pathogen interactions, immune regulation, and tumor evasion. Inhibitors of cell surface sialylation could be a useful tool in cancer, immune, antibiotic, or antiviral therapy. In this work, four different C-3 modified N-acetylmannosamine analogs were tested as potential inhibitors of cell surface sialylation. Peracetylated 2-acetylamino-2-deoxy-3-O-methyl-d-mannose decreases cell surface sialylation in Jurkat cells in a dose-dependent manner up to 80%, quantified by flow cytometry and enzyme-linked lectin assays. High-performance liquid chromatography experiments revealed that not only the concentration of membrane bound but also of cytosolic sialic acid is reduced in treated cells. We have strong evidence that the observed reduction of sialic acid expression in cells is caused by the inhibition of the bifunctional enzyme UDP-GlcNAc-2-epimerase/ManNAc kinase. 2-Acetylamino-2-deoxy-3-O-methyl-d-mannose inhibits the human ManNAc kinase domain of the UDP-GlcNAc-2-epimerase/ManNAc kinase. Binding kinetics of the inhibitor and human N-acetylmannosamine kinase were evaluated using surface plasmon resonance. Specificity studies with human N-acetylglucosamine kinase and hexokinase IV indicated a high specificity of 2-acetylamino-2-deoxy-3-O-methyl-d-mannose for MNK. This substance represents a novel class of inhibitors of sialic acid expression in cells, targeting the key enzyme of sialic acid de novo biosynthesis. PMID:25278018

  10. Canine and feline parvoviruses preferentially recognize the non-human cell surface sialic acid N-glycolylneuraminic acid.

    PubMed

    Löfling, Jonas; Lyi, Sangbom Michael; Parrish, Colin R; Varki, Ajit

    2013-05-25

    Feline panleukopenia virus (FPV) is a pathogen whose canine-adapted form (canine parvovirus (CPV)) emerged in 1978. These viruses infect by binding host transferrin receptor type-1 (TfR), but also hemagglutinate erythrocytes. We show that hemagglutination involves selective recognition of the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) but not N-acetylneuraminic acid (Neu5Ac), which differs by only one oxygen atom from Neu5Gc. Overexpression of α2-6 sialyltransferase did not change binding, indicating that both α2-3 and α2-6 linkages are recognized. However, Neu5Gc expression on target cells did not enhance CPV or FPV infection in vitro. Thus, the conserved Neu5Gc-binding preference of these viruses likely plays a role in the natural history of the virus in vivo. Further studies must clarify relationships between virus infection and host Neu5Gc expression. As a first step, we show that transcripts of CMAH (which generates Neu5Gc from Neu5Ac) are at very low levels in Western dog breed cells.

  11. Effects of dietary sialic acid in n-3 fatty acid-deficient dams during pregnancy and lactation on the learning abilities of their pups after weaning.

    PubMed

    Hiratsuka, Seiichi; Honma, Hiroyuki; Saitoh, Yoichi; Yasuda, Yuki; Yokogoshi, Hidehiko

    2013-01-01

    The effects of dietary sialic acid in dams on the learning abilities of their pups after weaning were investigated using rats deficient in n-3 fatty acids. Nine-week-old female Wistar rats were fed an n-3 fatty acid-deficient diet for 3 wk and were mated at 12 wk of age. During pregnancy and lactation, the female rats were fed the n-3 fatty acid-deficient diet, and were given water or water containing 1% N-acetylneuraminic acid (NANA) ad libitum. After weaning, the learning abilities of the pups were evaluated using a novel object recognition test. The recognition index of pups nursed by dams fed on water containing 1% NANA (NANA-intake dams) was significantly higher than that of pups nursed by dams fed only on water (NANA non-intake dams). There were no significant differences in the total sialic acid or docosahexaenoic acid contents in the cerebral cortex or hippocampus of pups nursed by dams fed on either type of water. The total dimethylacetal (DMA, from plasmalogen) level in the cerebral cortex of pups nursed by NANA-intake dams was significantly higher than that of pups nursed by NANA non-intake dams. These results suggest that dietary sialic acid in dams during pregnancy and lactation might be beneficial for the learning abilities of pups after weaning, which may be related to the plasmalogen level in the brain of pups.

  12. Characterization of a sialate-O-acetylesterase (NanS) from the oral pathogen Tannerella forsythia that enhances sialic acid release by NanH, its cognate sialidase.

    PubMed

    Phansopa, Chatchawal; Kozak, Radoslaw P; Liew, Li Phing; Frey, Andrew M; Farmilo, Thomas; Parker, Jennifer L; Kelly, David J; Emery, Robert J; Thomson, Rebecca I; Royle, Louise; Gardner, Richard A; Spencer, Daniel I R; Stafford, Graham P

    2015-12-01

    Tannerella forsythia, a Gram-negative member of the Bacteroidetes has evolved to harvest and utilize sialic acid. The most common sialic acid in humans is a mono-N-acetylated version termed Neu5Ac (5-N-acetyl-neuraminic acid). Many bacteria are known to access sialic acid using sialidase enzymes. However, in humans a high proportion of sialic acid contains a second acetyl group attached via an O-group, i.e. chiefly O-acetylated Neu5,9Ac2 or Neu5,4Ac2. This diacetylated sialic acid is not cleaved efficiently by many sialidases and in order to access diacetylated sialic acid, some organisms produce sialate-O-acetylesterases that catalyse the removal of the second acetyl group. In the present study, we performed bioinformatic and biochemical characterization of a putative sialate-O-acetylesterase from T. forsythia (NanS), which contains two putative SGNH-hydrolase domains related to sialate-O-acetylesterases from a range of organisms. Purification of recombinant NanS revealed an esterase that has activity against Neu5,9Ac2 and its glycolyl form Neu5Gc,9Ac. Importantly, the enzyme did not remove acetyl groups positioned at the 4-O position (Neu5,4Ac2). In addition NanS can act upon complex N-glycans released from a glycoprotein [erythropoietin (EPO)], bovine submaxillary mucin and oral epithelial cell-bound glycans. When incubated with its cognate sialidase, NanS increased sialic acid release from mucin and oral epithelial cell surfaces, implying that this esterase improves sialic acid harvesting for this pathogen and potentially other members of the oral microbiome. In summary, we have characterized a novel sialate-O-acetylesterase that contributes to the sialobiology of this important human pathogen and has potential applications in the analysis of sialic acid diacetylation of biologics in the pharmaceutical industry.

  13. Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site

    PubMed Central

    Huang, Lin-Ya; Patel, Ami; Ng, Robert; Miller, Edward Blake; Halder, Sujata; McKenna, Robert; Asokan, Aravind

    2016-01-01

    ABSTRACT The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Density consistent with SIA was observed in a pocket located at the base of capsid protrusions surrounding icosahedral 3-fold axes. Site-directed mutagenesis substitution of the amino acids forming this pocket with structurally equivalent residues from AAV2, a heparan sulfate binding serotype, followed by cell binding and transduction assays, further mapped the critical residues conferring SIA binding to AAV1 and AAV6. For both viruses five of the six binding pocket residues mutated (N447S, V473D, N500E, T502S, and W503A) abolished SIA binding, whereas S472R increased binding. All six mutations abolished or decreased transduction by at least 50% in AAV1. Surprisingly, the T502S substitution did not affect transduction efficiency of wild-type AAV6. Furthermore, three of the AAV1 SIA binding site mutants—S472R, V473D, and N500E—escaped recognition by the anti-AAV1 capsid antibody ADK1a. These observations demonstrate that common key capsid surface residues dictate both virus binding and entry processes, as well as antigenic reactivity. This study identifies an important functional capsid surface “hot spot” dictating receptor attachment, transduction efficiency, and antigenicity which could prove useful for vector engineering. IMPORTANCE The adeno-associated virus (AAV) vector gene delivery system has shown promise in several clinical trials and an AAV1-based vector has been approved as the first gene therapy treatment. However, limitations still exist with respect

  14. Purification and use of limulin: a sialic acid-specific lectin

    SciTech Connect

    Muresan, V.; Iwanij, V.; Smith, Z.D.; Jamieson, J.D.

    1982-09-01

    A simple and rapid method for the isolation of the sialic acid-specific lectin, Limulus polyphemus hemagglutinin (LPA), from the hemolymph of Limulus polyphemus is described. Declotted hemolymph is adsorbed to an affinity chromatographic column consisting of hog gastric mucin glycopeptides coupled to agarose and LPA is eluted in a single step with a Ca2+-free buffer, giving an apparent purification of approximately 25,000-fold. The eluted material is homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing and consists of identical subunits each of 29,000 daltons. Hemagglutination inhibition studies with horse red blood cells indicate specificity of LPA for N-acetyl- and N-glycolylneuraminic acid; binding is Ca2+ -dependent and abolished by neuraminidase treatment. LPA was covalently coupled to rhodamine and to horseradish peroxidase for use in detection of sialoglycoconjugates on cells and tissues by light and electron microscopy. Examples of the use of LPA for detection of sialoglycoconjugates in rat renal tubules and glomeruli, blood vessels in rat pancreas, and on horse red blood cells are shown. The procedures described here should prove useful as a cytochemical probe for detection of sialoglycoconjugates in a variety of systems. An accompanying article utilizes these probes for the detection of sialoglycoconjugates on the plasmalemma of adult and differentiating rat pancreatic acinar cells.

  15. New molecular motif for recognizing sialic acid using emissive lanthanide-macrocyclic polyazacarboxylate complexes: deprotonation of a coordinated water molecule controls specific binding.

    PubMed

    Ouchi, Kazuki; Saito, Shingo; Shibukawa, Masami

    2013-06-03

    A new molecular motif--lanthanide-macrocyclic polyazacarboxylate hexadentate complexes, Ln(3+)-ABNOTA--was found to specifically bind to sialic acid with strong emission enhancement and high affinity. The selectivity toward sialic acid over other monosaccharides was one of the highest among artificial receptors. Also, the novel binding mechanism was investigated in detail; binding selectivity is controlled by interactions between sialic acid and both the central metal and a hydroxyl group produced by deprotonation of a coordinated water molecule in the Ln(3+) complex.

  16. Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (l-KDO) aldolase

    PubMed Central

    Hsu, Che-Chang; Hong, Zhangyong; Wada, Masaru; Franke, Dirk; Wong, Chi-Huey

    2005-01-01

    An efficient l-3-deoxy-manno-2-octulosonic acid (l-KDO) aldolase was created by directed evolution from the Escherichia coli d-Neu5Ac (N-acetylneuraminic acid, d-sialic acid) aldolase. Five rounds of error-prone PCR and iterative screening were performed with sampling of 103 colonies per round. The specificity constant (kcat/Km) of the unnatural sugar l-KDO is improved to a level equivalent to the wild-type d-sialic acid aldolase for its natural substrate, d-Neu5Ac. The final evolved enzyme exhibits a >1,000-fold improved ratio of the specificity constant [kcat/Km (l-KDO)]/[kcat/Km (d-sialic acid)]. The protein sequence of the evolved aldolase showed eight amino acid changes from the native enzyme, with all of the observed changes occurring outside of the active site. Our effort demonstrates that an enzyme can be rapidly altered to accept enantiomeric substrates with screening of a small population of colonies iteratively toward the target substrate with improved catalytic efficiency. This work provides a method for the synthesis of enantiomeric sugars and for the study of enantiomeric catalysis affected by remote mutations. PMID:15967977

  17. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation.

    PubMed

    Spence, Shaun; Greene, Michelle K; Fay, François; Hams, Emily; Saunders, Sean P; Hamid, Umar; Fitzgerald, Marianne; Beck, Jonathan; Bains, Baljinder K; Smyth, Peter; Themistou, Efrosyni; Small, Donna M; Schmid, Daniela; O'Kane, Cecilia M; Fitzgerald, Denise C; Abdelghany, Sharif M; Johnston, James A; Fallon, Padraic G; Burrows, James F; McAuley, Daniel F; Kissenpfennig, Adrien; Scott, Christopher J

    2015-09-02

    Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.

  18. Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo

    PubMed Central

    McDonald, Nathan D.; Lubin, Jean-Bernard; Chowdhury, Nityananda

    2016-01-01

    ABSTRACT A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. PMID:27073099

  19. Plasmodium falciparum Field Isolates Commonly Use Erythrocyte Invasion Pathways That Are Independent of Sialic Acid Residues of Glycophorin A

    PubMed Central

    Okoyeh, Jude Nnaemeka; Pillai, C. R.; Chitnis, Chetan E.

    1999-01-01

    Erythrocyte invasion by malaria parasites is mediated by specific molecular interactions. Sialic acid residues of glycophorin A are used as invasion receptors by Plasmodium falciparum. In vitro invasion studies have demonstrated that some cloned P. falciparum lines can use alternate receptors independent of sialic acid residues of glycophorin A. It is not known if invasion by alternate pathways occurs commonly in the field. In this study, we used in vitro growth assays and erythrocyte invasion assays to determine the invasion phenotypes of 15 P. falciparum field isolates. Of the 15 field isolates tested, 5 multiply in both neuraminidase and trypsin-treated erythrocytes, 3 multiply in neuraminidase-treated but not trypsin-treated erythrocytes, and 4 multiply in trypsin-treated but not neuraminidase-treated erythrocytes; 12 of the 15 field isolates tested use alternate invasion pathways that are not dependent on sialic acid residues of glycophorin A. Alternate invasion pathways are thus commonly used by P. falciparum field isolates. Typing based on two polymorphic markers, MSP-1 and MSP-2, and two microsatellite markers suggests that only 1 of the 15 field isolates tested contains multiple parasite genotypes. Individual P. falciparum lines can thus use multiple invasion pathways in the field. These observations have important implications for malaria vaccine development efforts based on EBA-175, the P. falciparum protein that binds sialic acid residues of glycophorin A during invasion. It may be necessary to target parasite ligands responsible for the alternate invasion pathways in addition to EBA-175 to effectively block erythrocyte invasion by P. falciparum. PMID:10531229

  20. Expression and distribution of sialic acid influenza virus receptors in wild birds.

    PubMed

    França, M; Stallknecht, D E; Howerth, E W

    2013-02-01

    Avian influenza (AI) viruses have been detected in more than 105 wild bird species from 12 different orders but species-related differences in susceptibility to AI viruses exist. Expression of α2,3-linked (avian-type) and α2,6-linked (human-type) sialic acid (SA) influenza virus receptors in tissues is considered one of the determinants of the host range and tissue tropism of influenza viruses. We investigated the expression of these SA receptors in 37 wild bird species from 11 different orders by lectin histochemistry. Two isoforms of Maackia amurensis (MAA) lectin, MAA1 and MAA2, were used to detect α2,3-linked SA, and Sambucus nigra lectin was used to detect α2,6-linked SA. All species evaluated expressed α2,3-linked and α2,6-linked SA receptors in endothelial cells and renal tubular epithelial cells. Both α2,3-linked and α-2,6-linked SA receptors were expressed in respiratory and intestinal tract tissues of aquatic and terrestrial wild bird species from different taxa, but differences in SA expression and in the predominant isoform of MAA lectin bound were observed. With a few possible exceptions, these observed differences were not generally predictive of reported species susceptibility to AI viruses based on published experimental and field data.

  1. N-acetylgalactosamine, N-acetylglucosamine and sialic acid expression in primary breast cancers.

    PubMed

    Brooks, S A; Carter, T M

    2001-02-01

    Binding of the lectin from Helix pomatia (HPA), which recognises N-acetylgalactosamine and N-acetylglucosamine glycans, is a predictor of metastasis and poor prognosis in a number of human adenocarcinomas, including breast cancer. The glycoproteins to which it binds in these tumours have been only partially characterised, and the mechanisms underlying their biosynthesis remain unknown. In this study, 111 primary breast cancers were assessed for binding of HPA and labelling characteristics were compared directly with those of Dolichos biflorus agglutinin and soybean agglutinin, both of which also recognise N-acetylgalactosamine, Griffonia simplicifolia agglutinin II, which recognises N-acetylglucosamine, and Limax flavus agglutinin, Sambucus nigra agglutinin and Maackia amurensis lectin I, all of which recognise sialic acids. Results indicate that the HPA-binding partners expressed by cancer cells are predominantly N-acetylgalactosamine glycans, but some recognition of N-acetylglucosamine species is also likely. There was no evidence to support the hypothesis that overexpression of these moieties results from failure in sialylation. Alternative mechanisms, for example alterations in levels of activity of appropriate glycosyl transferases or disruption in transport and processing mechanisms leading to failure of normal chain extension of glycans may be responsible, and these are areas that warrant further investigation.

  2. GLYCOENGINEERING OF ESTERASE ACTIVITY THROUGH METABOLIC FLUX-BASED MODULATION OF SIALIC ACID.

    PubMed

    Mathew, Mohit; Tan, Elaine; Labonte, Jason W; Shah, Shivam; Saeui, Christopher T; Liu, Lingshu; Bhattacharya, Rahul; Bovonratwet, Patawut; Gray, Jeffrey J; Yarema, Kevin

    2017-02-20

    This report describes the metabolic glycoengineering (MGE) of intracellular esterase activity in human colon cancer (LS174T) and Chinese hamster ovary (CHO) cells. In silico analysis of the carboxylesterases CES1 and CES2 suggested that these enzymes are modified with sialylated N-glycans, which are proposed to stabilize the active multimeric forms of these enzymes. This premise was supported by treating cells with butanolylated ManNAc to increase sialylation, which in turn increased esterase activity. By contrast, hexosamine analogs not targeted to sialic acid biosynthesis (e.g., butanoylated GlcNAc or GalNAc) had minimal impact. Measurement of mRNA and protein confirmed that esterase activity was controlled through glycosylation and not through transcription or translation. Azide-modified ManNAc analogs widely used in MGE also enhanced esterase activity and provided a way to enrich targeted "glycoengineered" proteins (such as CES2), thereby providing unambiguous evidence that the compounds were converted to sialosides and installed into the glycan structures of esterases as intended. Overall, this study provides a pioneering example of the modulation of intracellular enzyme activity through MGE, which expands the value of this technology from its current status as a labeling strategy and modulator of cell surface biological events.

  3. Molecular characterization of the level of sialic acids N-acetylneuraminic acid, N-glycolylneuraminic acid, and ketodeoxynonulosonic acid in porcine milk during lactation.

    PubMed

    Jahan, M; Wynn, P C; Wang, B

    2016-10-01

    Sialic acids (Sia) are key monosaccharide constituents of sialylated glycoproteins (Sia-GP), human sialylated milk oligosaccharide (Sia-MOS), and gangliosides. Human milk sialylated glycoconjugates (Sia-GC) are bioactive compounds known to act as prebiotics and promote neurodevelopment, immune function, and gut maturation in newborns. Only limited data are available on the Sia content of porcine milk. The objective of this study was to quantitatively determine the total level of Sia N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and ketodeoxynonulosonic acid (KDN) in porcine milk and to compare these levels in gilt and sow milk during lactation. Milk from 8 gilts and 22 sows was collected at 3 stages of lactation (colostrum, transition, and mature milk). Standard and experimental samples were derivatized using 1,2-diamino-4,5-methylenedioxy-benzene and analyzed by ultra-high-performance liquid chromatography using a fluorescence detector. The following new findings are reported: (1) Gilt and sow milk contained significant levels of total Sia, with the highest concentration in colostrum (1,238.5 mg/L), followed by transition milk (778.3 mg/L) and mature milk (347.2 mg/L); (2) during lactation, the majority of Sia was conjugated to Sia-GP (41-46%), followed by Sia-MOS (31-42%) and a smaller proportion in gangliosides (12-28%); (3) Neu5Ac was the major form of Sia (93-96%), followed by Neu5Gc (3-6%) and then KDN (1-2%), irrespective of milk fraction or stage of lactation; (4) the concentration of Sia in Sia-GP and Sia-MOS showed a significant decline during lactation, but the level of ganglioside Sia remained relatively constant; (5) mature gilt milk contained a significantly higher concentration of Sia-GP than sow milk. The high concentration of total Sia in porcine milk suggests that Sia-GC are important nutrients that contribute to the optimization of neurodevelopment, immune function, and growth and development in piglets. These findings

  4. Assay of urinary protein-bound sialic acid can differentiate steroidsensitive nephrotic syndrome from steroid-resistant cases.

    PubMed

    Gopal, Niranjan; Koner, Bidhan Chandra; Bhattacharjee, Atanu; Bhat, Vishnu

    2016-01-01

    The protein selectivity index as measured from the ratio of urinary immunoglobulin to albumin failed to differentiate between steroid-sensitive (SS) and steroid-resistant (SR) cases of nephrotic syndrome (NS). Sialic acid contributes negative charges to many plasma proteins. The negative charge is a determinant of protein excretion rate. The prognostic significance of assay of urinary excretion of protein-bound sialic acid in NS has not been evaluated. Hence, the present study was designed to evaluate whether measurement of urinary protein bound sialic acid (UPBSA) can be used as a marker to differentiate SS from SR cases of NS. The urine samples of 70 (47 SS and 23 SR) pediatric NS children were assayed for UPBSA by Aminoff's method. The levels were compared and the receiver-operator curve was drawn to determine the optimum cutoff point to differentiate among the groups before starting the therapy. The excretion of UPBSA in SR cases of NS was significantly higher than that of SS cases (P<0.05). The optimum cutoff limit for UPBSA was 2.71 μg/mg of proteins with 75% sensitivity and 75.5% specificity for differentiating SS cases from SR cases (area under the plasma- concentration time curve=0.814, P=0.009). We conclude that UPBSA can differentiate SR cases from SS cases of NS in pediatric patients and may help in predicting the response to steroid therapy.

  5. Significance of serum fucose, sialic acid, haptoglobine and phospholipids levels in the evolution and treatment of breast cancer.

    PubMed

    Kiricuta, I; Bojan, O; Comes, R; Cristian, R

    1979-01-01

    Serum fucose, sialic acid, haptoglobine and phospholipids were determined in 167 women with breast cancer stages I--III, 30 with benign lesions of the breast, 42 women in various physiological states of the mammary gland (pregnancy, early childbed and lactation) and compared with 30 healthy women as control. Serial determinations of these parameters during the radio-surgical treatment were done in 28 patients with breast cancer stage III. Fucose and phospholipids levels were significantly increased respectively decreased in the group of patients with breast cancers but unmodified in the others. Sialic acid and haptoglobine -- increased in patients with cancer -- were also elevated in patients with early childbed and benign affections of the breast. The surveillance of these four parameters during the radio-surgical treatment of breast cancer evidenced a good correlation between their modified levels and clinical state of the patients. The increase in fucose, sialic acid and haptoglobine respectively the decrease in phospholipids levels was associated with the clinical evidence of recurrences and metastases.

  6. Characterization of influenza virus sialic acid receptors in minor poultry species.

    PubMed

    Kimble, Brian; Nieto, Gloria Ramirez; Perez, Daniel R

    2010-12-09

    It is commonly accepted that avian influenza viruses (AIVs) bind to terminal α2,3 sialic acid (SA) residues whereas human influenza viruses bind to α2,6 SA residues. By a series of amino acid changes on the HA surface protein, AIVs can switch receptor specificity and recognize α2,6 SA positive cells, including human respiratory epithelial cells. Animal species, like pigs and Japanese quail, that contain both α2,3 and α2,6 SA become ideal environments for receptor switching. Here, we describe the SA patterns and distributions in 6 common minor domestic poultry species: Peking duck, Toulouse geese, Chinese ring-neck pheasant, white midget turkey, bobwhite quail, and pearl guinea fowl. Lectins specific to α2,3 and α2,6 SA (Maakia amurensis agglutinin and Sambuca nigra agglutinin, respectively) were used to detect SA by an alkaline phosphotase-based method and a fluorescent-based method. Differences in SA moieties and their ability to bind influenza viruses were visualized by fluorescent labeling of 4 different H3N2 influenza viruses known to be specific for one receptor or the other. The geese and ducks showed α2,3 SA throughout the respiratory tract and marginal α2,6 SA only in the colon. The four other avian species showed both α2,3 and α2,6 SA in the respiratory tract and the intestines. Furthermore, the turkey respiratory tract showed a positive correlation between age and α2,6 SA levels. The fact that these birds have both avian and human flu receptors, combined with their common presence in backyard farms and live bird markets worldwide, mark them as potential mixing bowl species and necessitates improved surveillance and additional research about the role of these birds in influenza host switching.

  7. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid

    PubMed Central

    Taylor, Rachel E.; Gregg, Christopher J.; Padler-Karavani, Vered; Ghaderi, Darius; Yu, Hai; Huang, Shengshu; Sorensen, Ricardo U.; Chen, Xi; Inostroza, Jaime; Nizet, Victor

    2010-01-01

    The nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc) is metabolically incorporated into human tissues from certain mammalian-derived foods, and this occurs in the face of an anti-Neu5Gc “xeno-autoantibody” response. Given evidence that this process contributes to chronic inflammation in some diseases, it is important to understand when and how these antibodies are generated in humans. We show here that human anti-Neu5Gc antibodies appear during infancy and correlate with weaning and exposure to dietary Neu5Gc. However, dietary Neu5Gc alone cannot elicit anti-Neu5Gc antibodies in mice with a humanlike Neu5Gc deficiency. Other postnatally appearing anti-carbohydrate antibodies are likely induced by bacteria expressing these epitopes; however, no microbe is known to synthesize Neu5Gc. Here, we show that trace exogenous Neu5Gc can be incorporated into cell surface lipooligosaccharides (LOS) of nontypeable Haemophilus influenzae (NTHi), a human-specific commensal/pathogen. Indeed, infant anti-Neu5Gc antibodies appear coincident with antibodies against NTHi. Furthermore, NTHi that express Neu5Gc-containing LOS induce anti-Neu5Gc antibodies in Neu5Gc-deficient mice, without added adjuvant. Finally, Neu5Gc from baby food is taken up and expressed by NTHi. As the flora residing in the nasopharynx of infants can be in contact with ingested food, we propose a novel model for how NTHi and dietary Neu5Gc cooperate to generate anti-Neu5Gc antibodies in humans. PMID:20624889

  8. Evaluation of lipid-bound sialic acid (LSA) as a tumor marker.

    PubMed

    López Sáez, J J; Senra-Varela, A

    1995-01-01

    The objective of this study is the evaluation of serum levels of lipid-bound sialic acid (LSA) as a of marker cancer. This is a case-control study, and the levels of LSA were determined with blinded duplicates of cases and controls. Histologic verification of all cancer cases was used to confirm the diagnosis. The study included 135 patients with cancer (breast carcinoma, head and neck squamous cell carcinoma, lung cancer and gastrointestinal cancer) and 95 controls (57 normal subjects and 38 with chronic non-malignant diseases). Marker determination was done by the spectrophotometric procedure of Katopodis with resorcinol. The mean LSA level in the 57 healthy individuals was 15.09 mg/dl(95% C.I., 13.51-16.67), in the entire control group of 95 non-tumoral individuals it was 19.21 mg/dl (17.18-21.24), and in the 135 cancer patients it was 26.64 mg/dl (24.42-28.87). There was a statistically significant difference between patients with chronic non-tumoral diseases and healthy individuals (p < 0.001) and also between cancer patients and healthy individuals (p > 0.001), but not between cancer patients and patients with chronic non-tumoral diseases (p> 0.05). The mean LSA serum values related to tumor site were (mg/dl): breast cancer, 21.49; gastrointestinal tumors, 28.45; head and neck cancer, 28.61 and lung cancer, 32.54. The means according to clinical stage were: complete remission, 18.50 significantly higher than the healthy controls (p< 0.05); local disease, 23.50 (p < 0.01); locoregional disease, (p < 0.05); local disease, 23.50 (p < 0.01); locoregional disease, 27.21 (p < 0.001); metastatic disease, 34.49 (p < 0.001), and relapses, 20.87 (p< 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-07

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.

  10. A sialic acid-specific lectin from the mushroom Paecilomyces Japonica that exhibits hemagglutination activity and cytotoxicity.

    PubMed

    Park, Jee Hun; Ryu, Chang Soo; Kim, Ha Na; Na, Young Jun; Park, Hyun Joo; Kim, Hahyung

    2004-12-01

    The mushroom Paecilomyces japonica, grown on the silkworm larvae, has been used in Asia as a nutraceutical, tea, and Chinese medicine. In the present study, a sialic acid-specific lectin has been purified from the mushroom P. japonica using affinity chromatography on a fetuin-agarose column. Electrophoretical analyses indicated that this lectin, designated P. japonica agglutinin (PJA), is an acidic protein with a molecular mass of 16 kDa, and has no intermolecular disulfide bonds. PJA induced hemagglutination activity in human ABO, mouse, rat, and rabbit erythrocytes. This activity was inhibited by sialic acid and sialoglycoproteins, but not by any other carbohydrates. PJA was stable at pH 4.0-8.0, and at temperatures below 55 degrees C. The activity of PJA was independent of EDTA and divalent cations. In addition, PJA exerts cytotoxic effects on the following cancer cell lines: human stomach cancer SNU-1, human pancreas cancer AsPc-1, and human breast cancer MDA-MB-231.

  11. Analysis of the Changes in Expression Levels of Sialic Acid on Influenza-Virus-Infected Cells Using Lectin-Tagged Polymeric Nanoparticles

    PubMed Central

    Cho, Jaebum; Miyake, Yukari; Honda, Ayae; Kushiro, Keiichiro; Takai, Madoka

    2016-01-01

    Viral infections affect millions around the world, sometimes leading to severe consequences or even epidemics. Understanding the molecular dynamics during viral infections would provide crucial information for preventing or stopping the progress of infections. However, the current methods often involve the disruption of the infected cells or expensive and time-consuming procedures. In this study, fluorescent polymeric nanoparticles were fabricated and used as bioimaging nanoprobes that can monitor the progression of influenza viral infection through the changes in the expression levels of sialic acids expressed on the cell membrane. The nanoparticles were composed of a biocompatible monomer to prevent non-specific interactions, a hydrophobic monomer to form the core, a fluorescent monomer, and a protein-binding monomer to conjugate lectin, which binds sialic acids. It was shown that these lectin-tagged nanoparticles that specifically target sialic acids could track the changes in the expression levels of sialic acids caused by influenza viral infections in human lung epithelial cells. There was a sudden drop in the levels of sialic acid at the initial onset of virus infection (t = 0~1 h) and at approximately 4~5 h post-infection. The latter drop correlated with the production of viral proteins that was confirmed using traditional techniques. Thus, the accuracy, the rapidity and the efficacy of the nanoprobes were demonstrated. Such molecular bioimaging tools, which allow easy-handling and in situ monitoring, would be useful to directly observe and decipher the viral infection mechanisms. PMID:27493646

  12. Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations†

    PubMed Central

    Poonthiyil, Vivek; Nagesh, Prashanth T.; Husain, Matloob

    2015-01-01

    Abstract Gold nanoparticles decorated with full‐length sialic acid terminated complex bi‐antennary N‐glycans, synthesized with glycans isolated from egg yolk, were used as a sensor for the detection of both recombinant hemagglutinin (HA) and whole influenza A virus particles of the H1N1 subtype. Nanoparticle aggregation was induced by interaction between the sialic acid termini of the glycans attached to gold and the multivalent sialic acid binding sites of HA. Both dynamic light scattering (DLS) and UV/Vis spectroscopy demonstrated the efficiency of the sensor, which could detect viral HA at nanomolar concentrations and revealed a linear relationship between the extent of nanoparticle aggregation and the concentration of HA. UV/Vis studies also showed that these nanoparticles can selectively detect an influenza A virus strain that preferentially binds sialic acid terminated glycans with α(2→6) linkages over a strain that prefers glycans with terminal α(2→3)‐linked sialic acids. PMID:27308196

  13. Multifunctional phenylboronic acid-tagged fluorescent silica nanoparticles via thiol-ene click reaction for imaging sialic acid expressed on living cells.

    PubMed

    Cheng, Liwei; Zhang, Xianxia; Zhang, Zhengyong; Chen, Hui; Zhang, Song; Kong, Jilie

    2013-10-15

    Multifunctional fluorescent silica nanoparticles with phenylboronic acid tags were developed for labeling sialic acid on the surface of living cancer cells. In this paper, fluorescent silica nanoparticles (FSNPs) with strong and stable emission at 515 nm were firstly prepared through a reverse microemulsion process, and then modified with highly selective phenylboronic acid (PBA) tags on their surface via an aqueous 'thiol-ene' click reaction. These nanoparticles had a hydrodynamic diameter of 92.6 ± 9.1 nm, and a bright fluorescence signal, which is 366 times higher than that of a single dye molecule. Meanwhile, these PBA-tagged FSNPs were found very stable in aqueous solution as well as in cell culture medium, verified by transmission electron microscopy, X-ray photoelectron spectroscopy and zeta potential analysis. The over-expressed sialic acid (SA) on the membrane of living HeLa cells was visualized in situ by a confocal laser scanning microscopy, ascribed to the specific interaction between PBA and SA. Thus, the PBA-FSBPs showed a great potential in probing SA expressed on living cells with high selectivity and sensitivity.

  14. 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance.

    PubMed

    Urashima, Tadasu; Inamori, Hiroaki; Fukuda, Kenji; Saito, Tadao; Messer, Michael; Oftedal, Olav T

    2015-06-01

    Monotremes (echidnas and platypus) retain an ancestral form of reproduction: egg-laying followed by secretion of milk onto skin and hair in a mammary patch, in the absence of nipples. Offspring are highly immature at hatching and depend on oligosaccharide-rich milk for many months. The primary saccharide in long-beaked echidna milk is an acidic trisaccharide Neu4,5Ac2(α2-3)Gal(β1-4)Glc (4-O-acetyl 3'-sialyllactose), but acidic oligosaccharides have not been characterized in platypus milk. In this study, acidic oligosaccharides purified from the carbohydrate fraction of platypus milk were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. All identified structures, except Neu5Ac(α2-3)Gal(β1-4)Glc (3'-sialyllactose) contained Neu4,5Ac2 (4-O-acetyl-sialic acid). These include the trisaccharide 4-O-acetyl 3'-sialyllactose, the pentasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-tetraose d) and the hexasaccharide Neu4,5Ac2(α2-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (4-O-acetyl-3'-sialyllacto-N-fucopentaose III). At least seven different octa- to deca-oligosaccharides each contained a lacto-N-neohexaose core (LNnH) and one or two Neu4,5Ac2 and one to three fucose residues. We conclude that platypus milk contains a diverse (≥ 20) array of neutral and acidic oligosaccharides based primarily on lactose, lacto-N-neotetraose (LNnT) and LNnH structural cores and shares with echidna milk the unique feature that all identified acidic oligosaccharides (other than 3'-sialyllactose) contain the 4-O-acetyl-sialic acid moiety. We propose that 4-O-acetylation of sialic acid moieties protects acidic milk oligosaccharides secreted onto integumental surfaces from bacterial hydrolysis via steric interference with bacterial sialidases. This may be of evolutionary significance since taxa ancestral to monotremes and other mammals are

  15. The correlations among serum tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and sialic acids with peripheral lymphocytes in bovine tropical theileriosis.

    PubMed

    Razavi, Seyed Mostafa; Nazifi, Saeed; Emadi, Mahboobeh; Rakhshandehroo, Ehsan

    2010-10-01

    The infection with protozoan parasite Theileria annulata induces changes triggering the activation and/or proliferation of the host lymphocytes. In order to find out the possible correlations among peripheral circulatory lymphocytes, cytokine activities and the level of sialic acids, 50 dairy Holstein cattle, naturally infected with T. annulata, were divided into 4 subgroups according to their parasitemia rates (<1%, 1-3%, 3-5% and >5%). Also, ten non-infected cattle were sampled as control group. Blood samples were taken from jugular vein into acid citrate dextrose-containing tubes for measuring hematological parameters and B and T (CD(4) and CD(8)) cell populations and without anticoagulant for TNF-alpha, IFN-gamma and sialic acid concentrations. Remarkable decreases observed in red blood cells (RBCs), white blood cells (WBCs) and packed cell volume (PCV) in infected cattle compared to healthy ones (P < 0.05). Also, with increase in parasitemia rate, total lymphocytes and monocytes alleviated in the diseased groups. By contrast, total neutrohpils and the concentrations of TNF-alpha, IFN-gamma and total sialic acids were significantly elevated (P < 0.05) in infected animals. Accordingly, the circulatory populations of CD(4) and CD(8) T cells and B cells showed a substantial decrease, while a significant increase was observed in T (CD(4) and CD(8)) cells in cattle infected with <1% parasitemia rates. Decreased circulatory T cell population shows the ineffective responses of T cells to the stimulatory cytokines such as IFN-gamma or TNF-alpha. On the other hand, the elevation of cytokines (particularly IFN-gamma) and sialic acids have presumably an inhibitory role on circulatory B cell population in infected cattle. In addition, a high level of sialic acid concentration indicates the probable role of sialic acid to regulate the parasite-host cell adhesion during sporozoites invasion.

  16. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid.

    PubMed

    Pihikova, Dominika; Pakanova, Zuzana; Nemcovic, Marek; Barath, Peter; Belicky, Stefan; Bertok, Tomas; Kasak, Peter; Mucha, Jan; Tkac, Jan

    2016-12-01

    The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.

  17. Biochemical engineering of the N-acyl side chain of sialic acids alters the kinetics of a glycosylated potassium channel Kv3.1.

    PubMed

    Hall, M Kristen; Reutter, Werner; Lindhorst, Thisbe; Schwalbe, Ruth A

    2011-10-20

    The sialic acid of complex N-glycans can be biochemically engineered by substituting the physiological precursor N-acetylmannosamine with non-natural N-acylmannosamines. The Kv3.1 glycoprotein, a neuronal voltage-gated potassium channel, contains sialic acid. Western blots of the Kv3.1 glycoprotein isolated from transfected B35 neuroblastoma cells incubated with N-acylmannosamines verified sialylated N-glycans attached to the Kv3.1 glycoprotein. Outward ionic currents of Kv3.1 transfected B35 cells treated with N-pentanoylmannosamine or N-propanoylmannosamine had slower activation and inactivation rates than those of untreated cells. Therefore, the N-acyl side chain of sialic acid is intimately connected with the activation and inactivation rates of this glycosylated potassium channel.

  18. Automation of High-Throughput Mass Spectrometry-Based Plasma N-Glycome Analysis with Linkage-Specific Sialic Acid Esterification.

    PubMed

    Bladergroen, Marco R; Reiding, Karli R; Hipgrave Ederveen, Agnes L; Vreeker, Gerda C M; Clerc, Florent; Holst, Stephanie; Bondt, Albert; Wuhrer, Manfred; van der Burgt, Yuri E M

    2015-09-04

    Glycosylation is a post-translational modification of key importance with heterogeneous structural characteristics. Previously, we have developed a robust, high-throughput MALDI-TOF-MS method for the comprehensive profiling of human plasma N-glycans. In this approach, sialic acid residues are derivatized with linkage-specificity, namely the ethylation of α2,6-linked sialic acid residues with parallel lactone formation of α2,3-linked sialic acids. In the current study, this procedure was used as a starting point for the automation of all steps on a liquid-handling robot system. This resulted in a time-efficient and fully standardized procedure with throughput times of 2.5 h for a first set of 96 samples and approximately 1 h extra for each additional sample plate. The mass analysis of the thus-obtained glycans was highly reproducible in terms of relative quantification, with improved interday repeatability as compared to that of manual processing.

  19. Biomedical differences between human and nonhuman hominids: potential roles for uniquely human aspects of sialic acid biology.

    PubMed

    Varki, Nissi M; Strobert, Elizabeth; Dick, Edward J; Benirschke, Kurt; Varki, Ajit

    2011-01-01

    Although humans are genetically very similar to the evolutionarily related nonhuman hominids (chimpanzees, bonobos, gorillas, and orangutans), comparative studies suggest a surprising number of uniquely human differences in the incidence and/or severity of biomedical conditions. Some differences are due to anatomical changes that occurred during human evolution. However, many cannot be explained either by these changes or by known environmental factors. Because chimpanzees were long considered models for human disease, it is important to be aware of these differences, which appear to have been deemphasized relative to similarities. We focus on the pathophysiology and pathobiology of biomedical conditions that appear unique to humans, including several speculative possibilities that require further study. We pay particular attention to the possible contributions of uniquely human changes in the biology of cell-surface sialic acids and the proteins that recognize them. We also discuss the metabolic incorporation of a diet-derived nonhuman sialic acid, which generates a novel xeno-autoantigen reaction, and chronic inflammation known as xenosialitis.

  20. Nonrandom distribution of sialic acid over the cell surface of bristle- coated endocytic vesicles of the sinusoidal endothelium cells

    PubMed Central

    1978-01-01

    Previous studies with protein tracers have shown that the luminal surface of the vascular endothelium of the bone marrow is endocytic. The endocytosis occurs through the formation of large bristle-coated vesicles (LCV). The anionic charge distribution in this process was examined at the luminal surface of the endothelial cell, At pH 1.8, colloidal iron (CI), native ferritin, and polycationic ferritin (PCF) are bound by the luminal surface of the endothelial cell, but not at the sites of LCV formation. PCF used over a pH range of 1.8--7.2 (CI is unstable at higher pH levels) revealed LCV binding of this agent in increasing manner from pH 3.5 upwards. PCF binding at low pH (1.8) at the endothelial cell surface was markedly reduced by neuraminidase. Neuraminidase did not reduce PCF binding by the endothelial cell surface nor by the LCV at higher pH levels. It is concluded that the luminal surface of the endothelial cell has exposed sialic acid groups which are absent or significantly diminished at endocytic sites. The free surface of the endothelial cells as well as the sites of endocytosis have, in addition, anionic material with a pKa higher than that of sialic acid (pKa 2.6). These anionic materials may be different at the sites of endocytosis as compared to those present at the free cell surface. PMID:29050

  1. Comparative Studies of Salivary and Blood Sialic Acid, Lipid Peroxidation and Antioxidative Status in Oral Squamous Cell Carcinoma (OSCC)

    PubMed Central

    Rasool, Mahmood; Khan, Saima Rubab; Malik, Arif; Khan, Khalid Mahmood; Zahid, Sara; Manan, Abdul; Qazi, Mahmood Husain; Naseer, Muhammad Imran

    2014-01-01

    Objective : Oral squamous cell carcinoma (OSCC) is considered to be a serious life threatening issue for almost two decades. The objective of this study was to evaluate the over production of lipid peroxidation (LPO) byproducts and disturbances in antioxidant defense system in the pathogenesis of oral cancer. Methods : Lipid peroxidation and antioxidant status in OSCC patients were estimated and compared the sensitivity and specificity of circulating biomarkers (MDA, Sialic acid, Catalase, SOD, GSH and Neuraminidase) with β-2 microglobulin (β-2MG) at different thresholds in blood and saliva using receiver operating characteristics (ROC) curve design. R esults : Our results showed that the levels of MDA and Sialic acid were significantly increased in plasma of OSCC patients as compared to healthy subjects whereas antioxidant level was significantly decreased. Conclusion : ROC analysis indicated that MDA in saliva is a better diagnostic tool as compared to MDA in blood and β-2MG in blood is better diagnostic marker as compared to β-2MG level in saliva. PMID:24948960

  2. Oligosaccharide composition of the neurotoxin responsive Na/sup +/ channel and the requirement of sialic acid for activity

    SciTech Connect

    Negishi, M.; Shaw, G.W.; Glick, M.C.

    1986-05-01

    The neurotoxin responsive Na/sup +/ channel was purified to homogeneity in an 18% yield from a clonal cell line of mouse neuroblastoma, N-18, metabolically labeled with L-(/sup 3/H)fucose. The Na/sup +/ channel, a glycoprotein, M/sub r/=200,000 (gradient 7-14% PAGE) was digested with Pronase and the glycopeptides were characterized by serial lectin affinity chromatography. greater than 90% of the oligosaccharides contained sialic acid and 18% were biantennary, 39% were triantennary and 30% tetraantennary. The glycoprotein was reconstituted into artificial phospholipid vesicles and /sup 86/Rb flux was stimulated (65%) by 200 ..mu..M veratridine and 1.2 ..mu..g of scorpion venom and was inhibited (95%) by 5 ..mu..M tetrodotoxin. The requirement of sialic acid for Na/sup +/ channel activity was demonstrated since neuraminidase (0.01 U) treatment of the reconstituted glycoprotein eliminated the response of /sup 86/Rb flux to the stimulating neurotoxins. In other experiments, treatment of N-18 cells with 10 ..mu..M swainsonine, an inhibitor of glycoprotein processing, altered the oligosaccharide composition of the Na/sup +/ channel. When the abnormally glycosylated Na/sup +/ channel was reconstituted into artificial phospholipid vesicles, /sup 86/Rb flux in response to neurotoxins was impaired. Thus, glycosylation of the polypeptide with oligosaccharides of specific composition and structure is essential for expression of the biological activity of the neurotoxin responsive Na/sup +/ channel.

  3. Protein-bound carbohydrates in breast cancer. Liquid-chromatographic analysis for mannose, galactose, fucose, and sialic acid in serum.

    PubMed

    Mrochek, J E; Dinsmore, S R; Tormey, D C; Waalkes, T P

    1976-09-01

    We describr high-resolution chromatographic analysis for protein-bound sialic acid in serum, with use of a cerate oxidimetric detector. Values for sera from normal women averaged 680.5 mg/liter, with a coefficient of variation of 23%. Including data obtained by previously developed chromatographic procedures for protein-bound mannose, galactose, and fucsoe, we assessed sera from breast-cancer patients whose malignancy had been categorized as either stable, responsive, or progressive (based on clinical observations spaced from two to five months apart). All of 12 responsive patients had decreases of protein-bound fucose averaging 34.5% (SD, 16.1) and all of 10 patients with progressive disease had increases averaging 38.3% (SD 21.5). Changes in fucose averaged less than 6.7% (SD, 4.9) for eight patients with clinically stable breast cancer. Changes in protein-bound mannose, galactose, and sialic acid did not correlate as well as did fucose with the clinical disease status of the patients.

  4. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example.

    PubMed

    Badr, Haitham A; AlSadek, Dina M M; El-Houseini, Motawa E; Saeui, Christopher T; Mathew, Mohit P; Yarema, Kevin J; Ahmed, Hafiz

    2017-02-01

    Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.

  5. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner.

    PubMed

    Erikson, Elina; Wratil, Paul R; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L; Crocker, Paul R; Reutter, Werner; Keppler, Oliver T

    2015-11-06

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction.

  6. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner*

    PubMed Central

    Erikson, Elina; Wratil, Paul R.; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L.; Crocker, Paul R.; Reutter, Werner; Keppler, Oliver T.

    2015-01-01

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction. PMID:26370074

  7. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against Neisseria meningitidis group B and C1

    PubMed Central

    Moe, Gregory R.; Bhandari, Tamara S.; Flitter, Becca A.

    2009-01-01

    Murine monoclonal antibodies (mAbs) that were produced by immunization with a vaccine containing the N-propionyl derivative of Neisseria meningitidis group B (MenB) capsular polysaccharide (NPr MBPS) mediate protective responses against MenB but were not reactive with unmodified MBPS or chemically identical human polysialic acid (PSA). Recently, we showed that some of the mAbs were reactive with MBPS derivatives that contain de-N-acetyl sialic acid residues (Moe et al. 2005, Infect Immun 73:2123–2128). In this study we evaluated the immunogenicity of de-N-acetyl sialic acid-containing derivatives of PSA (de-N-acetyl PSA) in mice. Four de-N-acetyl PSA antigens were prepared and conjugated to tetanus toxoid, including completely de-N-acetylated PSA. All of the vaccines elicited anti-de-N-acetyl PSA responses (titers ≥1:10,000) but only vaccines enriched for non-reducing end de-N-acetyl residues by treatment with exoneuraminidase or complete de-N-acetylation elicited high titers against the homologous antigen. Also, non-reducing end de-N-acetyl residue-enriched vaccines elicited IgM and IgG antibodies of all subclasses that could bind to MenB. The results suggest that the zwitterionic characteristic of neuraminic acid, particularly at the non-reducing end may be important for processing and presentation mechanisms that stimulate T cells. Antibodies elicited by all four vaccines were able to activate deposition of human complement proteins and passively protect against challenge by MenB in the infant rat model of meningococcal bacteremia. Some vaccine antisera mediated bactericidal activity against a MenC strain with human complement. Thus, de-N-acetyl PSA antigens are immunogenic and elicit antibodies that can be protective against MenB and C strains. PMID:19414816

  8. Enzymatic Decoration of Prebiotic Galacto-oligosaccharides (Vivinal GOS) with Sialic Acid Using Trypanosoma cruzi trans-Sialidase and Two Bovine Sialoglycoconjugates as Donor Substrates.

    PubMed

    Wilbrink, Maarten H; ten Kate, Geert A; Sanders, Peter; Gerwig, Gerrit J; van Leeuwen, Sander S; Sallomons, Erik; Klarenbeek, Bert; Hage, Johannes A; van Vuure, Carine A; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2015-07-01

    Decoration of prebiotic galacto-oligosaccharides (GOS) with sialic acid yields mixtures of GOS and sialylated GOS (Sia-GOS), novel products that are expected to have both prebiotic and antiadhesive functionalities. The recombinantly produced trans-sialidase enzyme from Trypanosoma cruzi (TcTS), an enzyme with the ability to transfer (α2-3)-linked sialic acid from sialogalactoglycans to asialogalactoglycans, was employed to catalyze this sialylation. As sialic acid acceptor substrates, Vivinal GOS and derived fractions of specific degree of polymerization were taken. As sialic acid donor substrates, bovine κ-casein-derived glycomacropeptide [>99% N-acetylneuraminic acid (Neu5Ac); <1% N-glycolylneuraminic acid (Neu5Gc)] and bovine blood plasma glycoprotein mixture (45% Neu5Ac; 55% Neu5Gc) were selected, yielding potential food and feed products, respectively. High-pH anion-exchange chromatography, matrix-assisted laser-desorption ionization time-of-flight mass spectrometry, and nuclear magnetic resonance spectroscopy were used for product analysis.

  9. Identification of potential glycan cancer markers with sialic acid attached to sialic acid and up-regulated fucosylated galactose structures in epidermal growth factor receptor secreted from A431 cell line.

    PubMed

    Wu, Shiaw-Lin; Taylor, Allen D; Lu, Qiaozhen; Hanash, Samir M; Im, Hogune; Snyder, Michael; Hancock, William S

    2013-05-01

    We have used powerful HPLC-mass spectrometric approaches to characterize the secreted form of epidermal growth factor receptor (sEGFR). We demonstrated that the amino acid sequence lacked the cytoplasmic domain and was consistent with the primary sequence reported for EGFR purified from a human plasma pool. One of the sEGFR forms, attributed to the alternative RNA splicing, was also confirmed by transcriptional analysis (RNA sequencing). Two unusual types of glycan structures were observed in sEGFR as compared with membrane-bound EGFR from the A431 cell line. The unusual glycan structures were di-sialylated glycans (sialic acid attached to sialic acid) at Asn-151 and N-acetylhexosamine attached to a branched fucosylated galactose with N-acetylglucosamine moieties (HexNAc-(Fuc)Gal-GlcNAc) at Asn-420. These unusual glycans at specific sites were either present at a much lower level or were not observable in membrane-bound EGFR present in the A431 cell lysate. The observation of these di-sialylated glycan structures was consistent with the observed expression of the corresponding α-N-acetylneuraminide α-2,8-sialyltransferase 2 (ST8SiA2) and α-N-acetylneuraminide α-2,8-sialyltransferase 4 (ST8SiA4), by quantitative real time RT-PCR. The connectivity present at the branched fucosylated galactose was also confirmed by methylation of the glycans followed by analysis with sequential fragmentation in mass spectrometry. We hypothesize that the presence of such glycan structures could promote secretion via anionic or steric repulsion mechanisms and thus facilitate the observation of these glycan forms in the secreted fractions. We plan to use this model system to facilitate the search for novel glycan structures present at specific sites in sEGFR as well as other secreted oncoproteins such as Erbb2 as markers of disease progression in blood samples from cancer patients.

  10. A novel mutation in the SLC17A5 gene causing both severe and mild phenotypes of free sialic acid storage disease in one inbred Bedouin kindred.

    PubMed

    Landau, D; Cohen, D; Shalev, H; Pinsk, V; Yerushalmi, B; Zeigler, M; Birk, O S

    2004-06-01

    Four members of an extended consanguineous Bedouin family presented with different phenotypic variants of an autosomal recessive lysosomal free sialic acid storage disease. One affected individual had congenital ascites followed by rapid clinical deterioration and death, a presentation concordant with the clinical course of infantile free sialic acid storage disorder. His three first cousins had a more slowly progressive neurodegenerative disease, in line with the clinical phenotype of the milder form (Salla type) of this lysosomal disorder. Diagnosis of free sialic acid storage disease was based on clinical findings, histology, and biochemical assays of sialic acid. Molecular studies showed that all four affected individuals were homozygous for the same novel 983G > A mutation in exon 8 of the SLC17A5 gene, replacing glycine with glutamic acid at position 328 of the sialin protein. This family demonstrates the significant phenotypic variability of the disease in affected members of a single inbred kindred with precisely the same mutation, suggesting a role for modifier genes or environmental factors. It also highlights the need to consider this rare disorder in the differential diagnosis of congenital ascites and of unexplained psychomotor retardation, ataxia, and hypomyelination in infancy.

  11. Human Xeno-autoantibodies Against a Non-human Sialic acid Serve As Novel Serum Biomarkers and Immunotherapeutics in Cancer

    PubMed Central

    Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Pu, Minya; Yu, Hai; Huang, Shengshu; Muthana, Saddam; Chokhawala, Harshal A.; Cao, Hongzhi; Secrest, Patrick; Friedmann-Morvinski, Dinorah; Singer, Oded; Ghaderi, Darius; Verma, Inder M.; Liu, Yu-Tsueng; Messer, Karen; Chen, Xi; Varki, Ajit; Schwab, Richard

    2011-01-01

    Human carcinomas can metabolically incorporate and present the dietary non-human sialic acid Neu5Gc, which differs from the human sialic acid N-acetylneuraminic acid (Neu5Ac) by one oxygen atom. Tumor-associated Neu5Gc can interact with low levels of circulating anti-Neu5Gc antibodies, thereby facilitating tumor progression via chronic inflammation in a human-like Neu5Gc-deficient mouse model. Here we show that human anti-Neu5Gc antibodies can be affinity-purified in substantial amounts from clinically-approved intravenous IgG (IVIG) and used at higher concentrations to suppress growth of the same Neu5Gc-expressing tumors. Hypothesizing that this polyclonal spectrum of human anti-Neu5Gc antibodies also includes potential cancer biomarkers, we then characterize them in cancer and non-cancer patients’ sera, using a novel sialoglycan-microarray presenting multiple Neu5Gc-glycans and control Neu5Ac-glycans. Antibodies against Neu5Gcα2–6GalNAcα1-O-Ser/Thr (GcSTn) were found to be more prominent in patients with carcinomas than with other diseases. This unusual epitope arises from dietary Neu5Gc incorporation into the carcinoma marker Sialyl-Tn, and is the first example of such a novel mechanism for biomarker generation. Finally, human serum or purified antibodies rich in anti-GcSTn-reactivity kill GcSTn-expressing human tumors via complement-dependent-cytotoxicity or antibody-dependent-cellular-cytotoxicity. Such xeno-autoantibodies and xenoautoantigens have potential for novel diagnostics, prognostics and therapeutics in human carcinomas. PMID:21505105

  12. Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products

    PubMed Central

    Diaz, Sandra L.; Padler-Karavani, Vered; Ghaderi, Darius; Hurtado-Ziola, Nancy; Yu, Hai; Chen, Xi; Brinkman-Van der Linden, Els C. M.; Varki, Ajit; Varki, Nissi M.

    2009-01-01

    Background Humans are genetically defective in synthesizing the common mammalian sialic acid N-glycolylneuraminic acid (Neu5Gc), but can metabolically incorporate it from dietary sources (particularly red meat and milk) into glycoproteins and glycolipids of human tumors, fetuses and some normal tissues. Metabolic incorporation of Neu5Gc from animal-derived cells and medium components also results in variable contamination of molecules and cells intended for human therapies. These Neu5Gc-incorporation phenomena are practically significant, because normal humans can have high levels of circulating anti-Neu5Gc antibodies. Thus, there is need for the sensitive and specific detection of Neu5Gc in human tissues and biotherapeutic products. Unlike monoclonal antibodies that recognize Neu5Gc only in the context of underlying structures, chicken immunoglobulin Y (IgY) polyclonal antibodies can recognize Neu5Gc in broader contexts. However, prior preparations of such antibodies (including our own) suffered from some non-specificity, as well as some cross-reactivity with the human sialic acid N-acetylneuraminic acid (Neu5Ac). Methodology/Principal Findings We have developed a novel affinity method utilizing sequential columns of immobilized human and chimpanzee serum sialoglycoproteins, followed by specific elution from the latter column by free Neu5Gc. The resulting mono-specific antibody shows no staining in tissues or cells from mice with a human-like defect in Neu5Gc production. It allows sensitive and specific detection of Neu5Gc in all underlying glycan structural contexts studied, and is applicable to immunohistochemical, enzyme-linked immunosorbent assay (ELISA), Western blot and flow cytometry analyses. Non-immune chicken IgY is used as a reliable negative control. We show that these approaches allow sensitive detection of Neu5Gc in human tissue samples and in some biotherapeutic products, and finally show an example of how Neu5Gc might be eliminated from such

  13. Modulation of Fourier transform infrared spectra and total sialic acid levels by selenium during 1,2 dimethylhydrazine-induced colon carcinogenesis in rats.

    PubMed

    Ghadi, Fereshteh Ezzati; Malhotra, Anshoo; Ghara, Abdollah Ramzani; Dhawan, D K

    2013-01-01

    The present study investigated the modulatory potential of selenium supplementation, if any, on Fourier transform infrared (FTIR) spectra in brush border membranes (BBM) of colons and on serum total sialic acid as well as lipid bound sialic acid during 1,2 dimethyl hydrazine (DMH)-induced colorectal carcinogenesis in rats. The FTIR spectra of BBM from the colons of DMH-treated rats revealed a significant increase in the lipid contents but showed a significant decline in the protein contents. Further, decrease in the collagen as well as creatine contents was also noticed in the colons of DMH-treated rats. Supplementation with selenium appreciably restored protein as well as collagen contents and resulted in decreased lipids levels in the colons of DMH-treated rats. Interestingly, a significant increase in the levels of total sialic acid in serum of DMH-treated rats was observed which, however, got moderated significantly upon selenium supplementation. Moreover, no significant changes were observed in the levels of lipid bound sialic acid in all the treated groups as compared to controls. In conclusion, the present study suggested that supplementation of selenium act as a chemopreventive agent and delays considerably the process of colon carcinogenesis.

  14. Free Sialic Acid Acts as a Signal That Promotes Streptococcus pneumoniae Invasion of Nasal Tissue and Nonhematogenous Invasion of the Central Nervous System

    PubMed Central

    Hatcher, Brandon L.; Hale, Joanetha Y.

    2016-01-01

    Streptococcus pneumoniae (pneumococcus) is a leading cause of bacterial meningitis and neurological sequelae in children worldwide. Acute bacterial meningitis is widely considered to result from bacteremia that leads to blood-brain barrier breakdown and bacterial dissemination throughout the central nervous system (CNS). Previously, we showed that pneumococci can gain access to the CNS through a nonhematogenous route without peripheral blood infection. This access is thought to occur when the pneumococci in the upper sinus follow the olfactory nerves and enter the CNS through the olfactory bulbs. In this study, we determined whether the addition of exogenous sialic acid postcolonization promotes nonhematogenous invasion of the CNS. Previously, others showed that treatment with exogenous sialic acid post-pneumococcal infection increased the numbers of CFU recovered from an intranasal mouse model of infection. Using a pneumococcal colonization model, an in vivo imaging system, and a multiplex assay for cytokine expression, we demonstrated that sialic acid can increase the number of pneumococci recovered from the olfactory bulbs and brains of infected animals. We also show that pneumococci primarily localize to the olfactory bulb, leading to increased expression levels of proinflammatory cytokines and chemokines. These findings provide evidence that sialic acid can enhance the ability of pneumococci to disseminate into the CNS and provide details about the environment needed to establish nonhematogenous pneumococcal meningitis. PMID:27354445

  15. HA Antibody-Mediated FcγRIIIa Activity Is Both Dependent on FcR Engagement and Interactions between HA and Sialic Acids

    PubMed Central

    Cox, Freek; Kwaks, Ted; Brandenburg, Boerries; Koldijk, Martin H.; Klaren, Vincent; Smal, Bastiaan; Korse, Hans J. W. M.; Geelen, Eric; Tettero, Lisanne; Zuijdgeest, David; Stoop, Esther J. M.; Saeland, Eirikur; Vogels, Ronald; Friesen, Robert H. E.; Koudstaal, Wouter; Goudsmit, Jaap

    2016-01-01

    Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc–FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies. PMID:27746785

  16. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  17. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid.

    PubMed

    James, W M; Emerick, M C; Agnew, W S

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including alpha-(2----8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis alpha-(2----8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3200 pmol of [3H]TTX-binding sites/mg of protein and a single polypeptide of approximately 285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. We further describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  18. Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8

    SciTech Connect

    Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.; Szyczew, Alex J.; Kiefel, Milton J.; Itzstein, Mark von; Blanchard, Helen

    2005-06-01

    The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by the virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.

  19. Hemagglutinin protein of Asian strains of human influenza virus A H1N1 binds to sialic acid--a major component of human airway receptors.

    PubMed

    Chua, K H; Chai, H C

    2012-03-16

    Hemagglutinin (HA) protein plays an important role in binding the influenza virus to infected cells and therefore mediates infection. Deposited HA sequences of 86 Asian strains of influenza A (H1N1) viruses during the first outbreak were obtained from the NCBI database and compared. Interaction of the HA protein of influenza A (H1N1) virus with the human sialic acid receptor was also studied using bioinformatics. Overall, not more than three single-point amino acid variants/changes were observed in the HA protein region of influenza A (H1N1) virus from Asian countries when a selected group sequence comparison was made. The bioinformatics study showed that the HA protein of influenza A (H1N1) binds to the sialic acid receptor in human airway receptors, possibly key to air-borne infection in humans.

  20. Porcine Sapelovirus Uses α2,3-Linked Sialic Acid on GD1a Ganglioside as a Receptor

    PubMed Central

    Kim, Deok-Song; Son, Kyu-Yeol; Koo, Kyung-Min; Kim, Ji-Yun; Alfajaro, Mia Madel; Park, Jun-Gyu; Hosmillo, Myra; Soliman, Mahmoud; Baek, Yeong-Bin; Cho, Eun-Hyo; Lee, Ju-Hwan; Kang, Mun-Il

    2016-01-01

    ABSTRACT The receptor(s) for porcine sapelovirus (PSV), which causes diarrhea, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs, remains largely unknown. Given the precedent for other picornaviruses which use terminal sialic acids (SAs) as receptors, we examined the role of SAs in PSV binding and infection. Using a variety of approaches, including treating cells with a carbohydrate-destroying chemical (NaIO4), mono- or oligosaccharides (N-acetylneuraminic acid, galactose, and 6′-sialyllactose), linkage-specific sialidases (neuraminidase and sialidase S), lectins (Maakia amurensis lectin and Sambucus nigra lectin), proteases (trypsin and chymotrypsin), and glucosylceramide synthase inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and phospholipase C), we demonstrated that PSV could recognize α2,3-linked SA on glycolipids as a receptor. On the other hand, PSVs had no binding affinity for synthetic histo-blood group antigens (HBGAs), suggesting that PSVs could not use HBGAs as receptors. Depletion of cell surface glycolipids followed by reconstitution studies indicated that GD1a ganglioside, but not other gangliosides, could restore PSV binding and infection, further confirming α2,3-linked SA on GD1a as a PSV receptor. Our results could provide significant information on the understanding of the life cycle of sapelovirus and other picornaviruses. For the broader community in the area of pathogens and pathogenesis, these findings and insights could contribute to the development of affordable, useful, and efficient drugs for anti-sapelovirus therapy. IMPORTANCE The porcine sapelovirus (PSV) is known to cause enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. However, the receptor(s) that the PSV utilizes to enter host cells remains largely unknown. Using a variety of approaches, we showed that α2,3-linked terminal sialic acid (SA) on the cell surface GD1a ganglioside could be used for PSV

  1. Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis.

    PubMed

    Yang, Jialong; Wei, Xiumei; Liu, Xiangquan; Xu, Jie; Yang, Dinglong; Yang, Jianmin; Fang, Jinghui; Hu, Xiaoke

    2012-04-01

    Sialic acid-binding lectin (SABL) plays crucial role in both innate and adaptive immune responses benefiting from its predominant affinity toward glycan. In the present study, two SABLs from razor clam Solen grandis (designated as SgSABL-1 and SgSABL-2) were identified, and their expression patterns, both in tissues and towards microorganism glycan stimulation, were then characterized. The cDNA of SgSABL-1 and SgSABL-2 was 988 and 1281 bp, containing an open reading frame (ORF) of 744 and 570 bp, respectively, and deduced amino acid sequences showed high similarity to other invertebrates SABLs. Both SgSABL-1 and SgSABL-2 encoded a C1q domain. SgSABL-1 and SgSABL-2 were found to be constitutively expressed in a wide range of tissues with different levels, including mantle, gill, gonad, hemocyte, muscle, and hepatopancreas, and both of them were highly expressed in hepatopancreas. SgSABL-1 and SgSABL-2 could be significantly induced after razor clams were stimulated by acetylated subunits-containing glycan LPS and PGN, suggesting the two SgSABLs might perform potential function of glycan recognition. In addition, SgSABL-2 could also be induced by β-1,3-glucan. All these results indicated that SgSABL-1 and SgSABL-2 might be involved in the immune response against microbe infection and contributed to the pathogens recognition.

  2. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant.

    PubMed Central

    Schultze, B; Gross, H J; Brossmer, R; Herrler, G

    1991-01-01

    The S protein of bovine coronavirus (BCV) has been isolated from the viral membrane and purified by gradient centrifugation. Purified S protein was identified as a viral hemagglutinin. Inactivation of the cellular receptors by sialate 9-O-acetylesterase and generation of receptors by sialylation of erythrocytes with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicate that S protein recognizes 9-O-acetylated sialic acid as a receptor determinant as has been shown previously for intact virions. The second glycoprotein of BCV, HE, which has been thought previously to be responsible for the hemagglutinating activity of BCV, is a less efficient hemagglutinin; it agglutinates mouse and rat erythrocytes, but in contrast to S protein, it is unable to agglutinate chicken erythrocytes, which contain a lower level of Neu5,9Ac2 on their surface. S protein is proposed to be responsible for the primary attachment of virus to cell surface. S protein is proposed to be responsible for the primary attachement of virus to cell surface receptors. The potential of S protein as a probe for the detection of Neu5,9Ac2-containing glycoconjugates is demonstrated. Images PMID:1920630

  3. Both α2,3- and α2,6-Linked Sialic Acids on O-Linked Glycoproteins Act as Functional Receptors for Porcine Sapovirus

    PubMed Central

    Alfajaro, Mia Madel; Kim, Ji-Yun; Park, Jun-Gyu; Son, Kyu-Yeol; Ryu, Eun-Hye; Sorgeloos, Frederic; Kwon, Hyung-Jun; Park, Su-Jin; Lee, Woo Song; Cho, Duck; Kwon, Joseph; Choi, Jong-Soon; Kang, Mun-Il; Goodfellow, Ian; Cho, Kyoung-Oh

    2014-01-01

    Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation. PMID:24901849

  4. Lysosomal and cytosolic sialic acid 9-O-acetylesterase activities can Be encoded by one gene via differential usage of a signal peptide-encoding exon at the N terminus.

    PubMed

    Takematsu, H; Diaz, S; Stoddart, A; Zhang, Y; Varki, A

    1999-09-03

    9-O-Acetylation is one of the most common modifications of sialic acids, and it can affect several sialic acid-mediated recognition phenomena. We previously reported a cDNA encoding a lysosomal sialic acid-specific 9-O-acetylesterase, which traverses the endoplasmic reticulum-Golgi pathway and localizes primarily to lysosomes and endosomes. In this study, we report a variant cDNA derived from the same gene that contains a different 5' region. This cDNA has a putative open reading frame lacking a signal peptide-encoding sequence and is thus a candidate for the previously described cytosolic sialic acid 9-O-acetylesterase activity. Epitope-tagged constructs confirm that the new sequence causes the protein product to be targeted to the cytosol and has esterase activity. Using reverse transcription-polymerase chain reaction to distinguish the two forms of message, we show that although the lysosomal sialic acid-specific 9-O-acetylesterase message has a widespread pattern of expression in adult mouse tissues, this cytosolic sialic acid 9-O-acetylesterase form has a rather restricted distribution, with the strongest expression in the liver, ovary, and brain. Using a polyclonal antibody directed against the 69-amino acid region common to both proteins, we confirmed that the expression of glycosylated and nonglycosylated polypeptides occurred in appropriate subcellular fractions of normal mouse tissues. Rodent liver polypeptides reacting to the antibody also co-purify with previously described lysosomal sialic acid esterase activity and at least a portion of the cytosolic activity. Thus, two sialic acid 9-O-acetylesterases found in very different subcellular compartments can be encoded by a single gene by differential usage of a signal peptide-encoding exon at the N terminus. The 5'-rapid amplification of cDNA ends results and the differences in tissue-specific expression suggest that expression of these two products may be differentially regulated by independent promoters.

  5. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3-MSP1 complex.

    PubMed

    Baldwin, Michael; Yamodo, Innocent; Ranjan, Ravi; Li, Xuerong; Mines, Gregory; Marinkovic, Marina; Hanada, Toshihiko; Oh, Steven S; Chishti, Athar H

    2014-12-01

    Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1.

  6. Salivary Lipid Peroxidation and Total Sialic Acid Levels in Smokers and Smokeless Tobacco Users as Maraş Powder

    PubMed Central

    Kurtul, Naciye; Gökpınar, Engin

    2012-01-01

    Maraş powder (MP), a different type of smokeless tobacco (ST) and prepared from a tobacco of species Nicotiana rustica Linn, is widely used in Turkey. We aimed to investigate the effects of MP on salivary total sialic acid (TSA) and malondialdehyde (MDA) levels and to compare these parameters in smokers and MP users (MPUs). The salivary TSA and MDA concentrations were significantly higher in the smokers and MPU than those of control subjects and also in MPU than that of smokers. We have also observed that as the number of cigarettes consumed and MP amount increases, TSA and MDA levels increase too. In smokers, MDA values were significantly correlated with the number of cigarettes smoked and the duration of smoking. In MPU, both MDA and TSA levels were significantly correlated with the duration of MP use and the amount of daily consumed MP. We have concluded increased salivary TSA and MDA levels associated in MPU and smokers. Results can help to evaluate harmful effects of these habits. It is important to point out that bigger change in the measured parameters has been observed for MP use. This observation may be an important indication of harmful effects of ST use as MP. PMID:22577253

  7. Catechins and Sialic Acid Attenuate Helicobacter pylori-Triggered Epithelial Caspase-1 Activity and Eradicate Helicobacter pylori Infection

    PubMed Central

    Yang, Jyh-Chin; Yang, Hung-Chih; Shun, Chia-Tung; Wang, Teh-Hong; Chien, Chiang-Ting; Kao, John Y.

    2013-01-01

    The inflammasome/caspase-1 signaling pathway in immune cells plays a critical role in bacterial pathogenesis; however, the regulation of this pathway in the gastric epithelium during Helicobacter pylori infection is yet to be elucidated. Here, we investigated the effect of catechins (CAs), sialic acid (SA), or combination of CA and SA (CASA) on H. pylori-induced caspase-1-mediated epithelial damage, as well as H. pylori colonization in vitro (AGS cells) and in vivo (BALB/c mice). Our results indicate that the activity of caspase-1 and the expression of its downstream substrate IL-1β were upregulated in H. pylori-infected AGS cells. In addition, we observed increased oxidative stress, NADPH oxidase gp91phox, CD68, caspase-1/IL-1β, and apoptosis, but decreased autophagy, in the gastric mucosa of H. pylori-infected mice. We have further demonstrated that treatment with CASA led to synergistic anti-H. pylori activity and was more effective than treatment with CA or SA alone. In particular, treatment with CASA for 10 days eradicated H. pylori infection in up to 95% of H. pylori-infected mice. Taken together, we suggest that the pathogenesis of H. pylori involves a gastric epithelial inflammasome/caspase-1 signaling pathway, and our results show that CASA was able to attenuate this pathway and effectively eradicate H. pylori infection. PMID:23653660

  8. Serum sialic acid and prostate-specific antigen in differential diagnosis of benign prostate hyperplasia and prostate cancer.

    PubMed

    Romppanen, Jarkko; Haapalainen, Terhi; Punnonen, Kari; Penttilä, Ilkka

    2002-01-01

    In order to improve the diagnostic accuracy of the serum total and free prostate-specific antigen (PSA) in differential diagnosis between benign prostate hyperplasia (BPH) and prostate cancer, the serum total sialic acid (TSA) was measured and logistic regression (LR) models were built. Significantly higher serum PSA (p<0.001) concentrations were observed in patients with prostate cancer compared to control subjects, but no statistically significant differences were found in serum TSA concentrations between these groups. Serum PSA reliably discriminated patients with prostate cancer from control subjects, the area under the ROC curve (AUC) being 0.991 (0.010). When serum PSA was in the gray zone, from 4 to 10 microg/l, the diagnostic accuracy of PSA in discriminating patients with prostate cancer from BPH patients was very poor, AUC being 0.563 (0.132). However, using the same set of patients the LR model combining serum PSA, free to total PSA ratio and TSA values, as well as digital rectal examination results, had good diagnostic accuracy in discriminating the prostate cancer patients from patients with BPH, the area under the ROC curve being 0.895 (0.054). The present data suggest that the logistic regression model combining laboratory measurements and results of the clinical examination may be a useful adjunct in the differential diagnosis of benign and malignant prostate disease.

  9. A comparison of the effect of glitazones on serum sialic acid in patients with type 2 diabetes.

    PubMed

    ur Rahman, Inayat; Idrees, Muhammad; Salman, Mohammad; Khan, Rooh Ullah; Khan, M I; Amin, Fazli; Jan, Naeem Ullah

    2012-07-01

    Although management of hyperglycaemia represents one of the principal treatment goals of diabetes therapy, the high incidence of cardiovascular (CV) complications in diabetes also needs effective management. Therefore, the present study was designed to determine and compare the effect of glitazones on serum sialic acid (SSA), a known risk marker for CV disease, along with fasting plasma glucose (FPG), glycohaemoglobin (HbA1-c) and blood lipids, in overweight, previously only diet-treated patients with type 2 diabetes (n=60). The study was conducted for a period of 12 months. Significant improvement in FPG and HbA1-c were shown by both rosiglitazone (p<0.003 and p<0.001, respectively) and pioglitazone (p<0.005 and p<0.001, respectively), compared with baseline, and pioglitazone showed greater beneficial effects on other parameters monitored, significantly reducing total cholesterol (TC) (p≤0.05). Both the drugs showed a decrease in SSA and no significant differences were observed between the groups. However, the decrease was significant only in the pioglitazone-treated group at month 12 (p≤0.05), compared with baseline. A significant decrease in SSA by pioglitazone indicates its greater cardioprotective effect compared with rosiglitazone.

  10. Combined measurement and significance of lipid-bound sialic acid and carcinoembryonic antigen in detection of human cancer.

    PubMed

    Munjal, D D; Picken, J; Pritchard, J

    1984-01-01

    We evaluated the clinical usefulness of lipid-bound sialic acid (LSA) as a "tumor marker" and assessed individual and carcinoembryonic antigen (CEA) in cancer patients. Serum LSA and CEA concentrations were measured by the resorcinol method after total lipid extraction and isolation of the sialolipid fraction, and by Abbott enzyme immunoassay procedures, respectively. Results indicate that the frequency of elevation and mean LSA values were highest in patients with lung cancer (318 mg/liter), intermediate in miscellaneous (210 mg/liter) and colorectal cancers (200 mg/liter), and lowest in breast cancer (175 mg/liter); while mean CEA values were highest in colorectal cancer (162.5 micrograms/liter), followed by lung (33.8 micrograms/liter), miscellaneous (30.3 micrograms/liter), and breast cancers (11.6 micrograms/liter). Statistically, LSA and CEA values for cancer patients were significantly (P less than 0.001) higher than for normal subjects. The combined measurement of LSA and CEA in serum provides better detection potential for cancer patients than either of the two markers alone.

  11. Individual and combined usefulness of lipid associated sialic acid, mucoid proteins and hexoses as tumor markers in breast carcinoma.

    PubMed

    Patel, P S; Baxi, B R; Adhvaryu, S G; Balar, D B

    1990-06-15

    Serum levels of lipid associated sialic acid (LASA), mucoid proteins (MP) and hexoses (galactose + mannose) were measured in 41 breast cancer patients, 14 patients with benign breast diseases and 36 healthy age matched female individuals. In breast carcinoma patients, we have observed significant increase in the levels of the three markers compared with the controls (P less than 0.001) and in MP and hexoses compared to the patients with benign breast diseases (P less than 0.001). LASA and hexoses levels were significantly higher in benign breast diseases with respect to controls (P less than 0.001 and P less than 0.01, respectively). We evaluated the sensitivity and specificity of the markers individually and in combination. MP were most sensitive (71.8%) and specific (71.4%). Both sensitivity and specificity were increased when combinations of the markers were studied. Combination of MP with LASA was most sensitive (97.4%) while the combination of MP and hexoses was most specific (92.9%). LASA was significantly elevated in infiltrating duct carcinoma compared to lobular carcinoma (P less than 0.001). MP and hexoses also showed higher mean value in infiltrating duct carcinoma than lobular carcinoma. The present study suggests that the combination of the markers investigated might be useful for diagnosis and classification of breast carcinoma.

  12. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide

    PubMed Central

    Matsubara, Teruhiko; Ujie, Michiko; Yamamoto, Takashi; Akahori, Miku; Einaga, Yasuaki; Sato, Toshinori

    2016-01-01

    The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20–500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection. PMID:27457924

  13. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid.

    PubMed

    Huang, Yao-Xiong; Tuo, Wei-Wei; Wang, Di; Kang, Li-Li; Chen, Xing-Yao; Luo, Man

    2016-02-01

    Membrane sialic acid (SA) plays an important role in the survival of red blood cells (RBCs), the age-related reduction in SA content negatively impacts both the structure and function of these cells. We have therefore suggested that remodelling the SA in the membrane of aged cells would help recover cellular functions characteristic of young RBCs. We developed an effective method for the re-sialylation of aged RBCs by which the cells were incubated with SA in the presence of cytidine triphosphate (CTP) and α-2,3-sialytransferase. We found that RBCs could be re-sialylated if they had available SA-binding groups and after the re-sialylation, aged RBCs could restore their membrane SA to the level in young RBCs. Once the membrane SA was restored, the aged RBCs showed recovery of their biophysical and biochemical properties to similar levels as in young RBCs. Their life span in circulation was also extended to twofold. Our findings indicate that remodelling membrane SA not only helps restore the youth of aged RBCs, but also helps recover injured RBCs.

  14. Short-term intra-nasal erythropoietin administration with low sialic acid content is without toxicity or erythropoietic effects.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Sanchez, Jose A; Couret, Micaela; Valdes, Odalys; Barzaga, Pedro; Lopez, Raisell; Guerra, Isbel; Gabilondo, Tatiana; Vega, Yamile; Beausoleil, Irene

    2012-11-01

    The objective of this investigation was to assess the toxicological potential of nasal formulation of erythropoietin with low sialic acid content (Neuro EPO) after 28 days of intra-nasal dosing in rats besides to evaluate the immunogenicity and erythropoietic effect of the test substance. Healthy Wistar rats of both sexes were used for 28 days subacute toxicity and immunogenicity assays. Doses evaluated were 3450, 4830 and 6900 UI/kg/day. The toxicological endpoints examined included animal body weight, food consumption, hematological and biochemical patterns, antibodies determination, selected tissue weights and histopathological examination. Reversibility of toxic effects was evaluated at high dose 14 days after treatment period. Female B6D2F1 mice were used for evaluated erythropoietic effect of the nasal formulation. Hematological endpoints were examined every week during 28 days of intra-nasal dosing of 6900 UI/kg/day. Variations of hematological patterns were not observed after 28 days of intranasal dosing. A slight increase in glucose level of treated animals within the normal range was observed. This effect was not dose related and was reversible. Antibody formation was not observed in any of the test doses. Histopathological examination of organs and tissues did not reveal treatment induced changes. The administration of Neuro EPO in normocythaemic mice did not produce erythropoietic effect. These results suggest that Neuro EPO could be used as a neuroprotective agent, without significant systemic haematological side effects.

  15. Sialic acid expression in the mosquito Aedes aegypti and its possible role in dengue virus-vector interactions.

    PubMed

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Harduin-Lepers, Anne; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Zenteno, Edgar; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.

  16. Sialic Acid Expression in the Mosquito Aedes aegypti and Its Possible Role in Dengue Virus-Vector Interactions

    PubMed Central

    Cime-Castillo, Jorge; Delannoy, Philippe; Mendoza-Hernández, Guillermo; Monroy-Martínez, Verónica; Lanz-Mendoza, Humberto; Hernández-Hernández, Fidel de la Cruz; Cabello-Gutiérrez, Carlos; Ruiz-Ordaz, Blanca H.

    2015-01-01

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission. PMID:25874215

  17. Co-expression of sialic acid receptors compatible with avian and human influenza virus binding in emus (Dromaius novaehollandiae).

    PubMed

    Gujjar, Naveen; Chothe, Shubhada K; Gawai, Shashikant; Nissly, Ruth; Bhushan, Gitanjali; Kanagaraj, Vijayarani; Jayarao, Bhushan M; Kathaperumal, Kumanan; Subbiah, Madhuri; Kuchipudi, Suresh V

    2017-01-01

    Influenza A viruses (IAVs) continue to threaten animal and human health with constant emergence of novel variants. While aquatic birds are a major reservoir of most IAVs, the role of other terrestrial birds in the evolution of IAVs is becoming increasingly evident. Since 2006, several reports of IAV isolations from emus have surfaced and avian influenza infection of emus can lead to the selection of mammalian like PB2-E627K and PB2-D701N mutants. However, the potential of emus to be co-infected with avian and mammalian IAVs is not yet understood. As a first step, we investigated sialic acid (SA) receptor distribution across major organs and body systems of emu and found a widespread co-expression of both SAα2,3Gal and SAα2,6Gal receptors in various tissues that are compatible with avian and human IAV binding. Our results suggest that emus could allow genetic recombination and hence play an important role in the evolution of IAVs.

  18. Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis

    PubMed Central

    Chen, Sheng-Chia; Huang, Chi-Hung; Lai, Shu-Jung; Yang, Chia Shin; Hsiao, Tzu-Hung; Lin, Ching-Heng; Fu, Pin-Kuei; Ko, Tzu-Ping; Chen, Yeh

    2016-01-01

    The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme. PMID:26980148

  19. Impact of sialic acids on the molecular dynamic of bi-antennary and tri-antennary glycans

    PubMed Central

    Guillot, Alexandre; Dauchez, Manuel; Belloy, Nicolas; Jonquet, Jessica; Duca, Laurent; Romier, Beatrice; Maurice, Pascal; Debelle, Laurent; Martiny, Laurent; Durlach, Vincent; Baud, Stephanie; Blaise, Sebastien

    2016-01-01

    Sialic acids (SA) are monosaccharides that can be located at the terminal position of glycan chains on a wide range of proteins. The post-translational modifications, such as N-glycan chains, are fundamental to protein functions. Indeed, the hydrolysis of SA by specific enzymes such as neuraminidases can lead to drastic modifications of protein behavior. However, the relationship between desialylation of N-glycan chains and possible alterations of receptor function remains unexplored. Thus, the aim of the present study is to establish the impact of SA removal from N-glycan chains on their conformational behavior. We therefore undertook an in silico investigation using molecular dynamics to predict the structure of an isolated glycan chain. We performed, for the first time, 3 independent 500 ns simulations on bi-antennary and tri-antennary glycan chains displaying or lacking SA. We show that desialylation alters both the preferential conformation and the flexibility of the glycan chain. This study suggests that the behavior of glycan chains induced by presence or absence of SA may explain the changes in the protein function. PMID:27759083

  20. Removal of sialic acid from the surface of human MCF-7 mammary cancer cells abolishes E-cadherin-dependent cell-cell adhesion in an aggregation assay.

    PubMed

    Deman, J J; Van Larebeke, N A; Bruyneel, E A; Bracke, M E; Vermeulen, S J; Vennekens, K M; Mareel, M M

    1995-09-01

    MCF-7 human breast cancer cells express E-cadherin and show, at least in some circumstances, E-cadherin-dependent cell-cell adhesion (Bracke et al., 1993). The MCF-7/AZ variant spontaneously displays E-cadherin-dependent fast aggregation; in the MCF-7/6 variant, E-cadherin appeared not to be spontaneously functional in the conditions of the fast aggregation assay, but function could be induced by incubation of the suspended cells in the presence of insulinlike growth factor I (IGF-I) (Bracke et al., 1993). E-cadherin from MCF-7 cells was shown to contain sialic acid. Treatment with neuraminidase was shown to remove this sialic acid, as well as most of the sialic acid present at the cell surface. Applied to MCF-7/AZ, and MCF-7/6 cells, pretreatment with neuraminidase abolished spontaneous as well as IGF-I induced, E-cadherin-dependent fast cell-cell adhesion of cells in suspension, as measured in the fast aggregation assay. Treatment with neuraminidase did not, however, inhibit the possibly different, but equally E-cadherin-mediated, process of cell-cell adhesion of MCF-7 cells on a flat plastic substrate as assessed by determining the percentage of cells remaining isolated (without contact with other cells) 24 h after plating.

  1. Examination of the biological role of the alpha(2-->6)-linked sialic acid in gangliosides binding to the myelin-associated glycoprotein (MAG).

    PubMed

    Schwardt, Oliver; Gäthje, Heiko; Vedani, Angelo; Mesch, Stefanie; Gao, Gan-Pan; Spreafico, Morena; von Orelli, Johannes; Kelm, Sørge; Ernst, Beat

    2009-02-26

    The tetrasaccharide 1, a substructure of ganglioside GQ1b alpha, shows a remarkable affinity for the myelin-associated glycoprotein (MAG) and was therefore selected as starting point for a lead optimization program. In our search for structurally simplified and pharmacokinetically improved mimics of 1, modifications of the core disaccharide, the alpha(2-->3)- and the alpha(2-->6)-linked sialic acid were synthesized. Biphenylmethyl and (S)-lactate were identified as suitable replacements for the alpha(2-->6)-linked sialic acid. Combined with a core modification and the earlier found aryl amide substituent in the 9-position of the alpha(2-->3)-linked sialic acid, high affinity MAG antagonists were identified. All mimics were tested in a competitive target-based binding assay, providing relative inhibitory potencies (rIP). Compared to the reference tetrasaccharide 1, the rIPs of the most potent antagonists 59 and 60 are enhanced nearly 400-fold. Their K(D)s determined in surface plasmon resonance experiments are in the low micromolar range. These results are in semiquantitative agreement with molecular modeling studies. This new class of glycomimetics will allow to validate the role of MAG in the axon regeneration process.

  2. Exploration of the Oxazolidinthione Protecting System for the Synthesis of Sialic Acid Glycosides

    PubMed Central

    Rajender, Salla; Crich, David

    2016-01-01

    An N-acetyl oxazolidinthione protected sialyl thioglycoside was synthesized and its use as a sialyl donor studied. The strongly electron-withdrawing nature of the oxazolidinthione moiety is such that activation could not be achieved at −78 °C. Couplings were therefore conducted at the lowest convenient temperature (−50 °C). Glycosides were formed in good yield but in two out three cases studied selectivities were lower than those seen with the corresponding N-acetyl oxazoldinone protected donor. The resulting N-acetyl oxazolidinthione protectd disaccharides were converted to the corresponding N-acetyl oxazolidinones by treatment with N-iodosuccinimide and triflic acid in the presence of water at 0 °C. PMID:26807000

  3. Anti-Helicobacter pylori effect of CaG-NANA, a new sialic acid derivative

    PubMed Central

    Rhee, Yun-Hee; Ku, Hyun-Jeong; Noh, Hye-Ji; Cho, Hyang-Hyun; Kim, Hee-Kyong; Ahn, Jin-Chul

    2016-01-01

    AIM To investigate the bactericidal effects of calcium chelated N-acetylneuraminic acid-glycomacropeptide (CaG-NANA) against Helicobacter pylori (H. pylori). METHODS For manufacture of CaG-NANA, calcium (Ca) was combined with glycomacropeptide (GMP) by chelating, and N-acetylneuraminic acid (NANA) was produced with Ca-GMP substrate by an enzymatic method. The final concentration of each component was 5% Ca, 7% NANA, 85% GMP, and 3% water. For in vitro study, various concentrations of CaG-NANA were investigated under the minimal inhibitory concentration (MIC). For in vivo study, CaG-NANA was administered orally for 3 wk after H. pylori infection. The levels of inflammatory cytokines in blood were analyzed by enzyme-linked immunosorbent assay and eradication of H. pylori was assessed by histological observation. RESULTS The time-kill curves showed a persistent decrease in cell numbers, which depended on the dose of CaG-NANA, and MIC of CaG-NANA against H. pylori was 0.5% in vitro. Histopathologic observation revealed no obvious inflammation or pathologic changes in the gastric mucosa in the CaG-NANA treatment group in vivo. The colonization of H. pylori was reduced after CaG-NANA treatment. The levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, and IL-10 were also decreased by CaG-NANA. CONCLUSION CaG-NANA demonstrates effective anti-bactericidal activity against H. pylori both in vitro and in vivo. PMID:27895975

  4. Siglec-15, a member of the sialic acid-binding lectin, is a novel regulator for osteoclast differentiation

    SciTech Connect

    Hiruma, Yoshiharu; Hirai, Takehiro; Tsuda, Eisuke

    2011-06-10

    Highlights: {yields} Siglec-15 was identified as a gene overexpressed in giant cell tumor. {yields} Siglec-15 mRNA expression increased in association with osteoclast differentiation. {yields} Polyclonal antibody to Siglec-15 inhibited osteoclast differentiation in vitro. -- Abstract: Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells derived from monocyte/macrophage-lineage precursors and are critically responsible for bone resorption. In giant cell tumor of bone (GCT), numerous TRAP-positive multinucleated giant cells emerge and severe osteolytic bone destruction occurs, implying that the emerged giant cells are biologically similar to osteoclasts. To identify novel genes involved in osteoclastogenesis, we searched genes whose expression pattern was significantly different in GCT from normal and other bone tumor tissues. By screening a human gene expression database, we identified sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) as one of the genes markedly overexpressed in GCT. The mRNA expression level of Siglec-15 increased in association with osteoclast differentiation in cultures of mouse primary unfractionated bone marrow cells (UBMC), RAW264.7 cells of the mouse macrophage cell line and human osteoclast precursors (OCP). Treatment with polyclonal antibody to mouse Siglec-15 markedly inhibited osteoclast differentiation in primary mouse bone marrow monocyte/macrophage (BMM) cells stimulated with receptor activator of nuclear factor {kappa}B ligand (RANKL) or tumor necrosis factor (TNF)-{alpha}. The antibody also inhibited osteoclast differentiation in cultures of mouse UBMC and RAW264.7 cells stimulated with active vitamin D{sub 3} and RANKL, respectively. Finally, treatment with polyclonal antibody to human Siglec-15 inhibited RANKL-induced TRAP-positive multinuclear cell formation in a human OCP culture. These results suggest that Siglec-15 plays an important role in osteoclast differentiation.

  5. Microscale Measurements of Michaelis–Menten Constants of Neuraminidase with Nanogel Capillary Electrophoresis for the Determination of the Sialic Acid Linkage

    PubMed Central

    2016-01-01

    Phospholipid nanogels enhance the stability and performance of the exoglycosidase enzyme neuraminidase and are used to create a fixed zone of enzyme within a capillary. With nanogels, there is no need to covalently immobilize the enzyme, as it is physically constrained. This enables rapid quantification of Michaelis–Menten constants (KM) for different substrates and ultimately provides a means to quantify the linkage (i.e., 2-3 versus 2-6) of sialic acids. The fixed zone of enzyme is inexpensive and easily positioned in the capillary to support electrophoresis mediated microanalysis using neuraminidase to analyze sialic acid linkages. To circumvent the limitations of diffusion during static incubation, the incubation period is reproducibly achieved by varying the number of forward and reverse passes the substrate makes through the stationary fixed zone using in-capillary electrophoretic mixing. A KM value of 3.3 ± 0.8 mM (Vmax, 2100 ± 200 μM/min) was obtained for 3′-sialyllactose labeled with 2-aminobenzoic acid using neuraminidase from Clostridium perfringens that cleaves sialic acid monomers with an α2-3,6,8,9 linkage, which is similar to values reported in the literature that required benchtop analyses. The enzyme cleaves the 2-3 linkage faster than the 2-6, and a KM of 2 ± 1 mM (Vmax, 400 ± 100 μM/min) was obtained for the 6′-sialyllactose substrate. An alternative neuraminidase selective for 2-3 sialic acid linkages generated a KM value of 3 ± 2 mM (Vmax, 900 ± 300 μM/min) for 3′-sialyllactose. With a knowledge of Vmax, the method was applied to a mixture of 2-3 and 2-6 sialyllactose as well as 2-3 and 2-6 sialylated triantennary glycan. Nanogel electrophoresis is an inexpensive, rapid, and simple alternative to current technologies used to distinguish the composition of 3′ and 6′ sialic acid linkages. PMID:27936604

  6. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics

    PubMed Central

    Gulati, Sunita; Schoenhofen, Ian C.; Whitfield, Dennis M.; Cox, Andrew D.; Li, Jianjun; St. Michael, Frank; Vinogradov, Evgeny V.; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A.; Taylor, Rachel E.; Landig, Corinna S.; Diaz, Sandra; Reed, George W.; Varki, Ajit; Rice, Peter A.; Ram, Sanjay

    2015-01-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5’-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation (“serum-resistance”). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from

  7. Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

    PubMed

    Gulati, Sunita; Schoenhofen, Ian C; Whitfield, Dennis M; Cox, Andrew D; Li, Jianjun; St Michael, Frank; Vinogradov, Evgeny V; Stupak, Jacek; Zheng, Bo; Ohnishi, Makoto; Unemo, Magnus; Lewis, Lisa A; Taylor, Rachel E; Landig, Corinna S; Diaz, Sandra; Reed, George W; Varki, Ajit; Rice, Peter A; Ram, Sanjay

    2015-12-01

    Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP

  8. A functional splice variant of the human Golgi CMP-sialic acid transporter.

    PubMed

    Salinas-Marín, Roberta; Mollicone, Rosella; Martínez-Duncker, Iván

    2016-12-01

    The human Golgi Cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Sia) transporter SLC35A1, a member of the nucleotide sugar transporter family, translocates CMP-Sia from the cytosol into the Golgi lumen where sialyltransferases use it as donor substrate for the synthesis of sialoglycoconjugates. In 2005, we reported a novel Congenital Disorder of Glycosylation (CDG) termed CDG-IIf or SLC35A1-CDG, characterized by macrothrombocytopenia, neutropenia and complete lack of the sialyl-Le(x) antigen (NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAc-R) on polymorphonuclear cells. This disease was caused by the presence of inactive SLC35A1 alleles. It was also found that the SLC35A1 generates additional isoforms through alternative splicing. In this work, we demonstrate that one of the reported isoforms, the del177 with exon 6 skipping, is able to maintain sialylation in HepG2 cells submitted to wt knockdown and restore sialylation to normal levels in the Chinese Hamester Ovary (CHO) cell line Lec2 mutant deficient in CMP-Sia transport. The characteristics of the alternatively spliced protein are discussed as well as therapeutic implications of this finding in CDGs caused by mutations in nucleotide sugar transporters (NSTs).

  9. Developmental aspects of the rat brain insulin receptor: loss of sialic acid and fluctuation in number characterize fetal development

    SciTech Connect

    Brennan, W.A. Jr.

    1988-06-01

    In this study, I have investigated the structure of the rat brain insulin receptor during fetal development. There is a progressive decrease in the apparent molecular size of the brain alpha-subunit during development: 130K on day 16 of gestation, 126K at birth, and 120K in the adult. Glycosylation was investigated as a possible reason for the observed differences in the alpha-subunit molecular size. The results show that the developmental decrease in the brain alpha-subunit apparent molecular size is due to a parallel decrease in sialic acid content. This was further confirmed by measuring the retention of autophosphorylated insulin receptors on wheat germ agglutinin (WGA)-Sepharose. An inverse correlation between developmental age and retention of /sup 32/P-labeled insulin receptors on the lectin column was observed. Insulin binding increases 6-fold between 16 and 20 days of gestation (61 +/- 25 (+/- SE) fmol/mg protein and 364 +/- 42 fmol/mg, respectively). Thereafter, binding in brain membranes decreases to 150 +/- 20 fmol/mg by 2 days after birth, then reaches the adult level of 63 +/- 15 fmol/mg. In addition, the degree of insulin-stimulated autophosphorylation closely parallels the developmental changes in insulin binding. Between 16 and 20 days of fetal life, insulin-stimulated phosphorylation of the beta-subunit increases 6-fold. Thereafter, the extent of phosphorylation decreases rapidly, reaching adult values identical with those in 16-day-old fetal brain. These results suggest that the embryonic brain possesses competent insulin receptors whose expression changes markedly during fetal development. This information should be important in defining the role of insulin in the developing nervous system.

  10. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses

    PubMed Central

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J.; Mohr, Elodie; Lino, Andreia C.; Fernandes, Alexandra R.; Lima, Flávia A.; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E.; Videira, Paula A.

    2016-01-01

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy. PMID:27203391

  11. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses.

    PubMed

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J; Mohr, Elodie; Lino, Andreia C; Fernandes, Alexandra R; Lima, Flávia A; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E; Videira, Paula A

    2016-07-05

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280-288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

  12. A Repetitive DNA Element Regulates Expression of the Helicobacter pylori Sialic Acid Binding Adhesin by a Rheostat-like Mechanism

    PubMed Central

    Vallström, Anna; Olofsson, Annelie; Öhman, Carina; Rakhimova, Lena; Borén, Thomas; Engstrand, Lars; Brännström, Kristoffer; Arnqvist, Anna

    2014-01-01

    During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors. PMID:24991812

  13. Metabolism-Based Click-Mediated Platform for Specific Imaging and Quantification of Cell Surface Sialic Acids.

    PubMed

    Liang, Yong; Jiang, Xin; Yuan, Rong; Zhou, Yang; Ji, Caixia; Yang, Limin; Chen, Haifeng; Wang, Qiuquan

    2017-01-03

    Although we believe that the cell surface sialic acids (Sias) are playing an important role in cell-cell interactions and related tumor metastasis processes, acquisition of their quantitative information has yet been a challenge to date. Here, we reported the construction of a new analytical platform for Sias-specific imaging and quantification. We used N-azidoacetyl-mannosamine tetraacylated as a metabolic sugar substrate to bioassemble azido-Sias on the surface of cells via the metabolic pathway of Sias de novo synthesis. These azido-Sias allow us to perform a duplex Sias-specific analysis with various fluorescent and elemental reporters such as DIBO-Alexa Fluor 647, DBCO-DOTA-Eu, and DBCO-PEG4-BODIPY, which can be easily labeled and/or tagged through an effective copper-free bioorthogonal click reaction. Compared to the previous reported strategies, we quantified the cell surface Sias with the LODs (3σ) down to 8.9 fmol and 0.24 pmol using (153)Eu- and (10)B-species unspecific isotope dilution ICPMS, in addition to their red- and green-CLSM profiling. Such a platform enables us to evaluate Sias regulation under the administration of paclitaxel, finding that 1 μM paclitaxel induced a significant Sias decrease of 67% on the surface of hepatic tumor cell SMMC-7721, while had no obvious adverse effect to that of para-carcinomatous liver cell LO2. Besides Sias, we believe that this metabolism-based click-mediated platform will provide opportunities to study other monosaccharides and their corresponding biological roles when more corresponding chemically modified sugar substrates and specific bioorthogonal reactions are developed.

  14. Absence of hematological side effects in acute and subacute nasal dosing of erythropoietin with a low content of sialic acid.

    PubMed

    Lagarto, Alicia; Bueno, Viviana; Guerra, Isbel; Valdés, Odalys; Couret, Micaela; López, Raisel; Vega, Yamile

    2011-09-01

    The use of human recombinant erythropoietin (EPO) as a neuroprotective agent is limited due to its hematological side effects. An erythropoietin along with a low content of sialic acid (rhEPOb), similar to that produced in the brain during hypoxia, may be used as a neuroprotective agent without risk of thrombotic events. The objective of this investigation was to assess the toxicological potential of a nasal formulation with rhEPOb in acute, subacute and nasal irritation assays in rats. Healthy Wistar rats (Cenp:Wistar) were used for the assays. In an irritation test, animals received 15 μl of rhEPOb into the right nostril. Rats were sacrificed after 24 h and slides of the nasal mucosa tissues were examined. Control and treated groups showed signs of a minimal irritation consisting of week edema and vascular congestion in all animals. In the acute toxicity test, the dose of 47,143 UI/kg was administered by nasal route. Hematological patterns, body weight, relative organ weight, and organ integrity were not affected by single dosing with rhEPOb. In the subacute toxicity test, Wistar rats of both sexes received 6,600 UI/kg/day for 14 days. The toxicological endpoints examined included animal body weight, food consumption, hematological and biochemical patterns, selected tissue weights, and histopathological examinations. An increase of lymphocytes was observed in males that was considered to reflect an immune response to treatment. Histopathological examination of organs and tissues did not reveal treatment-induced changes. The administration of rhEPOb at daily doses of 6,600 UI/kg during 14 days did not produce hematological side effects. These results suggest that rhEPOb could offer the same neuroprotection as EPO, without hematological side effects.

  15. Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase.

    PubMed

    Aizawa, Ken; Kawasaki, Ryohei; Tashiro, Yoshihito; Hirata, Michinori; Endo, Koichi; Shimonaka, Yasushi

    2016-08-01

    Erythropoiesis-stimulating agents (ESAs) are widely used for treating chronic kidney disease (CKD)-associated anemia. The biological activity of ESAs is mainly regulated by the number of sialic acid-containing carbohydrates on the erythropoietin (EPO) peptide. Sialidase, a sialic acid-metabolizing enzyme that accumulates in CKD patients, is suspected of contributing to shortening the circulation half-life of ESAs. Epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.), is an EPO integrated with methoxypolyethylene glycol (PEG). It has been suggested that C.E.R.A. may exert a favorable therapeutic effect, even under conditions of elevated sialidase; however, no detailed investigation of the pharmacological profile of C.E.R.A. in the presence of sialidase has been reported. In the present study, we injected C.E.R.A. or EPO pre-incubated with sialidase into rats, and assessed the hematopoietic effect by reticulocyte count. The hematopoietic effect of C.E.R.A., but not EPO, was preserved after sialidase treatment, despite the removal of sialic acid. Proliferation of EPO-dependent leukemia cells (AS-E2) was significantly increased by desialylated C.E.R.A. and EPO compared to non-treated C.E.R.A. or EPO. In conclusion, we show that C.E.R.A. exerts a favorable hematopoietic effect even under conditions of elevated sialidase. Our findings may contribute to a better understanding of CKD and more effective therapeutic approaches based on a patient's profile of anemia.

  16. Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model

    PubMed Central

    Chan, Yiumo Michael; Lee, Paul; Jungles, Steve; Morris, Gabrielle; Cadaoas, Jaclyn; Skrinar, Alison; Vellard, Michel; Kakkis, Emil

    2017-01-01

    GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM

  17. Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model

    PubMed Central

    Noh, Hye-Ji; Koh, Hong Bum; Kim, Hee-Kyoung; Cho, Hyang Hyun

    2017-01-01

    BACKGROUND/OBJECTIVES Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-1β and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention. PMID:28194260

  18. A novel approach for quantitation of nonderivatized sialic acid in protein therapeutics using hydrophilic interaction chromatographic separation and nano quantity analyte detection.

    PubMed

    Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen

    2015-01-01

    This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods.

  19. Evaluation of oxidative stress via total antioxidant status, sialic acid, malondialdehyde and RT-PCR findings in sheep affected with bluetongue

    PubMed Central

    Aytekin, I.; Aksit, H.; Sait, A.; Kaya, F.; Aksit, D.; Gokmen, M.; Baca, A. Unsal

    2015-01-01

    Introduction Bluetongue (BT) is a non-contagious infectious disease of ruminants. The disease agent bluetongue virus (BTV) is classified in the Reoviridae family Orbivirus. Aims and objectives The aim of this study was to determine serum malondialdehyde (MDA), total antioxidative stres (TAS), total sialic acid (TSA), ceruloplasmin, triglyceride, alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), cholesterol, creatinine, albumin, and total protein levels in sheep with and without bluetongue (BT). Materials and Methods The study included 13 Sakiz crossbreed sheep, aged 1–4 years and usually in the last stage of pregnancy, as the BT group and a control group consisting of 10 healthy sheep. All sheep were clinically examined before collecting blood samples. Serum ALT, AST, cholesterol, triglyceride, albumin, GGT, total protein, creatinine and TAS levels were measured using commercially available kits as per manufacturer's recommendations using a Biochemistry Auto Analyzer (Sinnowa D280, China). Serum lipid peroxidation was estimated through a previously described method in which MDA reacts with thiobarbituric acid (TBA) to form a coloured complex at a maximum absorbance of 535 nm. The TSA value was measured at 549 nm using the method described by Warren (1959): sialic acid was oxidised to formyl-pyruvic acid, which reacts with TBA to form a pink product. The ceruloplasmin concentration was measured according to Sunderman and Nomoto (1970): ceruloplasmin and p-phenylenediamine formed a coloured oxidation product that was proportional to the concentration of serum ceruloplasmin. Real time RT-PCR and conventional RT-PCR were performed as described by Shaw and others (2007). Results Biochemistry analysis of serum showed that in the BT group, TSA, MDA, triglyceride and ALT and AST were higher and that ceruloplasmin and TAS were lower than in the control group. Serum albumin, cholesterol, creatinine, total protein and GGT did

  20. Molecular dynamics of sialic acid analogues complex with cholera toxin and DFT optimization of ethylene glycol-mediated zinc nanocluster conjugation.

    PubMed

    Sharmila, D Jeya Sundara; Jino Blessy, J

    2017-01-01

    Cholera is an infectious disease caused by cholera toxin (CT) protein of bacterium Vibrio cholerae. A sequence of sialic acid (N-acetylneuraminic acid, NeuNAc or Neu5Ac) analogues modified in its C-5 position is modelled using molecular modelling techniques and docked against the CT followed by molecular dynamics simulations. Docking results suggest better binding affinity of NeuNAc analogue towards the binding site of CT. The NeuNAc analogues interact with the active site residues GLU:11, TYR:12, HIS:13, GLY:33, LYS:34, GLU:51, GLN:56, HIE:57, ILE:58, GLN:61, TRP:88, ASN:90 and LYS:91 through intermolecular hydrogen bonding. Analogues N-glycolyl-NeuNAc, N-Pentanoyl-NeuNAc and N-Propanoyl-NeuNAc show the least XPGscore (docking score) of -9.90, -9.16, and -8.91, respectively, and glide energy of -45.99, -42.14 and -41.66 kcal/mol, respectively. Stable nature of CT-N-glycolyl-NeuNAc, CT-N-Pentanoyl-NeuNAc and CT-N-Propanoyl-NeuNAc complexes was verified through molecular dynamics simulations, each for 40 ns using the software Desmond. All the nine NeuNAc analogues show better score for drug-like properties, so could be considered as suitable candidates for drug development for cholera infection. To improve the enhanced binding mode of NeuNAc analogues towards CT, the nine NeuNAc analogues are conjugated with Zn nanoclusters through ethylene glycol (EG) as carriers. The NeuNAc analogues conjugated with EG-Zn nanoclusters show better binding energy towards CT than the unconjugated nine NeuNAc analogues. The electronic structural optimization of EG-Zn nanoclusters was carried out for optimizing their performance as better delivery vehicles for NeuNAc analogues through density functional theory calculations. These sialic acid analogues may be considered as novel leads for the design of drug against cholera and the EG-Zn nanocluster may be a suitable carrier for sialic acid analogues.

  1. A new sialic acid analogue, 9-O-acetyl-deaminated neuraminic acid, and alpha -2,8-linked O-acetylated poly(N-glycolylneuraminyl) chains in a novel polysialoglycoprotein from salmon eggs.

    PubMed

    Iwasaki, M; Inoue, S; Troy, F A

    1990-02-15

    A new polysialoglycoprotein, designated PSGP(On), was isolated from the unfertilized eggs of the kokanee salmon, Oncorhynchus nerka adonis. 400-MHz 1H NMR analyses showed the O. nerka adonis PSGP contained alpha -2,8-linked oligo- and polysialic acid (polySia) chains that were made up of 4-O-Ac-, 7-O-Ac-, and 9-O-Ac esters of N-glycolylneuraminic acid (Neu5Gc) residues. The presence of a new sialic acid derivative, identified by 1H NMR as 9-O-acetyl-2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (trivial name, 9-O-acetyldeaminated neuraminic acid; 9-O-Ac-KDN), was also shown to be present as a minor component. The O-acetylated KDN residues appear to cap the nonreducing termini of the O-acetylated poly(Neu5Gc) chains. The O-acetylated polySia chains were resistant to depolymerization by bacterial exosialidases and a bacteriophage-derived endo-N-acylneuraminidase that is specific for catalyzing the hydrolysis of alpha -2,8-linkages in polySia containing either N-acetylneuraminic acid or Neu5Gc residues. After de-O-acetylation by mild alkali, the polySia chains were sensitive to digestion by endo-N-acylneuraminidase, yet partially resistant to exosialidase. These data confirm the alpha -2,8-ketosidic linkage in these chains and the nonreducing terminal location of the KDN residues. These results extend further the range of structural diversity in polySia-containing glycoconjugates, and in the family of naturally occurring sialic acids. They also suggest that the O-acetylated Neu5Gc and 9-O-Ac-KDN residues may have an important role during oogenesis.

  2. Post-Training Intrahippocampal Injection of Synthetic Poly-Alpha-2,8-Sialic Acid-Neural Cell Adhesion Molecule Mimetic Peptide Improves Spatial Long-Term Performance in Mice

    ERIC Educational Resources Information Center

    Florian, Cedrick; Foltz, Jane; Norreel, Jean-Chretien; Rougon, Genevieve; Roullet, Pascal

    2006-01-01

    Several data have shown that the neural cell adhesion molecule (NCAM) is necessary for long-term memory formation and might play a role in the structural reorganization of synapses. The NCAM, encoded by a single gene, is represented by several isoforms that differ with regard to their content of alpha-2,8-linked sialic acid residues (PSA) on their…

  3. Elucidation of several neglected reactions in the GC-MS identification of sialic acids as heptafluorobutyrates calls for an urgent reassessment of previous claims.

    PubMed

    Rota, Paola; Anastasia, Luigi; Allevi, Pietro

    2015-05-07

    The current analytical protocol used for the GC-MS determination of free or 1,7-lactonized natural sialic acids (Sias), as heptafluorobutyrates, overlooks several transformations. Using authentic reference standards and by combining GC-MS and NMR analyses, flaws in the analytical protocol were pinpointed and elucidated, thus establishing the scope and limitations of the method. It was demonstrated that (a) Sias 1,7-lactones, even if present in biological samples, decompose under the acidic hydrolysis conditions used for their release; (b) Sias 1,7-lactones are unpredicted artifacts, accidentally generated from their parent acids; (c) the N-acetyl group is quantitatively exchanged with that of the derivatizing perfluorinated anhydride; (d) the partial or complete failure of the Sias esterification-step with diazomethane leads to the incorrect quantification and structure attribution of all free Sias. While these findings prompt an urgent correction and improvement of the current analytical protocol, they could be instrumental for a critical revision of many incorrect claims reported in the literature.

  4. CXCL14 enhances proliferation and migration of NCI-H460 human lung cancer cells overexpressing the glycoproteins containing heparan sulfate or sialic acid.

    PubMed

    Park, Cho Rong; You, Dong-Joo; Kim, Dong-Kyu; Moon, Mi Jin; Lee, Cheolju; Oh, Seung-Hyun; Ahn, Curie; Seong, Jae Young; Hwang, Jong-Ik

    2013-05-01

    CXCL14 is a chemokine family member that is involved in various cellular responses in addition to immune cell activation. Although constitutive CXCL14 expression in normal epithelial cells may help protect against infection by activating immune systems, its expression in cancer cells has raised controversy regarding its possible role in tumorigenesis. However, the underlying mechanisms for this disparity remain unknown. Investigation of cellular CXCL14 binding properties might increase our understanding of the peptide's roles in tumorigenesis. In the present study, we found that CXCL14 binds to various cell types. Interestingly, binding to NCI-H460 cells was prevented by heparan sulfate and N-acetyl neuraminic acid. Next, we examined effect of CXCL14 binding in NCI-H460 and NCI-H23. CXCL14 enhanced proliferation and migration in NCI-H460 but had no effect on NCI-H23. A reporter gene assay with various transcription factor response elements revealed that only nuclear factor-κB (NF-κB) signaling was activated by CXCL14 in NCI-H460 cells, which was blocked by BAPTA-AM, TPCA-1, and brefeldin A. Exogenous expression of some glycoproteins such as syndecan-4, podoplanin, and CD43 in these cells enhanced CXCL14 binding and NF-κB activity. Collectively, these results demonstrate that CXCL14 binding to glycoproteins harboring heparan sulfate proteoglycans and sialic acids leads proliferation and migration of some cancer cells.

  5. Sialic acid, ferritin and CEA levels in peripheral blood and blood draining from the tumor in breast cancer.

    PubMed

    Monti, M; Catania, S; Locatelli, E; Scazzoso, A; Calzaferri, G; Cunietti, E

    1988-01-01

    Concentrations of total serum N-acetyl-neuraminic acid, carcinoembryonic antigen, ferritin, lactate dehydrogenase, creatine phosphokinase and total proteins were measured in both tumor drainage blood (axillary vein) and in peripheral blood taken during surgery from 44 breast cancer patients. There were no significant differences in any of the markers between mean values in peripheral and tumor drainage blood, between cancer patients and healthy controls, between patients with or without axillary lymph node metastases, or according to the site of breast mass.

  6. Affinity Capillary Electrophoresis for Selective Control of Electrophoretic Mobility of Sialic Acid Using Lanthanide-Hexadentate Macrocyclic Polyazacarboxylate Complexes.

    PubMed

    Goto, Daiki; Ouchi, Kazuki; Shibukawa, Masami; Saito, Shingo

    2015-01-01

    It is difficult to control the electrophoretic mobility in order to obtain high resolution among saccharides in complex samples. We report herein on a new affinity capillary electrophoresis (ACE) method for an anionic monosaccharide, N-acetylneuraminic acid (Neu5Ac), which is important in terms of pathological diagnosis, using lanthanide-hexadentate macrocyclic polyazacarboxylate complexes (Ln-NOTA) as affinity reagents. It was shown that Ln-NOTA complexes increased the anionic mobility of Neu5Ac by approximately 40% through selective complexation with Neu5Ac. The extent of change in the mobility strongly depended on the type of central metal ion of Ln-NOTA. The stability constant (K) of Lu-NOTA with Neu5Ac was determined by ACE to be log Kb = 3.62 ± 0.04, which is the highest value among artificial receptors for Neu5Ac reported so far. Using this ACE, the Neu5Ac content in a glycoprotein sample, α1-acid glycoprotein (AGP), was determined after acid hydrolysis. Complete separation between Neu5Ac and hydrolysis products was successful by controlling the mobility to determine the concentration of Neu5Ac.

  7. Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells.

    PubMed

    Panagiotopoulou, Maria; Kunath, Stephanie; Medina-Rangel, Paulina Ximena; Haupt, Karsten; Tse Sum Bui, Bernadette

    2017-02-15

    Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression.

  8. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    SciTech Connect

    Zhang, Yang-De Li, Hao; Liu, Hui; Pan, Yi-Feng

    2007-02-01

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P2{sub 1}2{sub 1}2{sub 1} and tetragonal P4{sub 1}2{sub 1}2) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8*{sub 65–224} structure was determined by molecular replacement.

  9. Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells

    PubMed Central

    Gruber, Sabrina; Hendrikx, Tim; Tsiantoulas, Dimitrios; Ozsvar-Kozma, Maria; Göderle, Laura; Mallat, Ziad; Witztum, Joseph L.; Shiri-Sverdlov, Ronit; Nitschke, Lars; Binder, Christoph J.

    2016-01-01

    Summary Atherosclerosis is initiated and sustained by hypercholesterolemia, which results in the generation of oxidized LDL (OxLDL) and other metabolic byproducts that trigger inflammation. Specific immune responses have been shown to modulate the inflammatory response during atherogenesis. The sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of the functions of several immune cells, including myeloid cells and B-1 cells. Here, we show that deficiency of Siglec-G in atherosclerosis-prone mice inhibits plaque formation and diet-induced hepatic inflammation. We further demonstrate that selective deficiency of Siglec-G in B cells alone is sufficient to mediate these effects. Levels of B-1 cell-derived natural IgM with specificity for OxLDL were significantly increased in the plasma and peritoneal cavity of Siglec-G-deficient mice. Consistent with the neutralizing functions of OxLDL-specific IgM, Siglec-G-deficient mice were protected from OxLDL-induced sterile inflammation. Thus, Siglec-G promotes atherosclerosis and hepatic inflammation by suppressing protective anti-inflammatory effector functions of B cells. PMID:26947073

  10. A sensitive and selective fluorimetric method of quick determination of sialic acids in egg products by lectin-CdTe quantum dots as nanoprobe.

    PubMed

    Wang, Qi; Wang, Beibei; Ma, Meihu; Cai, Zhaoxia

    2014-12-01

    Sialic acids (SA) are widely found as components of oligosaccharide units in mucins, glycoproteins and other microbial polymers in nature food. The aim of this study is to create a new fluorimetric detection method applied for determinating SA in egg products by using a sensitive lectin-CdTe quantum dots (QDs) nanoprobe. Water-soluble and high luminescent CdTe QDs were conjugated with sambucus nigra bark lectin (SNA) as probe for SA detection. As a result of specific interaction between SA and SNA-CdTe QDs, the conjugations finally lead to the change of a fluorescent signal. Under optimal conditions, fluorescence intensity increase linearly with the increase of the concentration of SA ranging from 12 to 680 ng/mL. The low detection limit is 0.67 ng/mL. This quick and selective analysis method for SA detection has been used in synthetic samples and egg products with recovery between 97.92% and 110.42%, which demonstrates the application of this assay is feasible and practical.

  11. Germinal Center Marker GL7 Probes Activation-Dependent Repression of N-Glycolylneuraminic Acid, a Sialic Acid Species Involved in the Negative Modulation of B-Cell Activation▿ †

    PubMed Central

    Naito, Yuko; Takematsu, Hiromu; Koyama, Susumu; Miyake, Shizu; Yamamoto, Harumi; Fujinawa, Reiko; Sugai, Manabu; Okuno, Yasushi; Tsujimoto, Gozoh; Yamaji, Toshiyuki; Hashimoto, Yasuhiro; Itohara, Shigeyoshi; Kawasaki, Toshisuke; Suzuki, Akemi; Kozutsumi, Yasunori

    2007-01-01

    Sialic acid (Sia) is a family of acidic nine-carbon sugars that occupies the nonreducing terminus of glycan chains. Diversity of Sia is achieved by variation in the linkage to the underlying sugar and modification of the Sia molecule. Here we identified Sia-dependent epitope specificity for GL7, a rat monoclonal antibody, to probe germinal centers upon T cell-dependent immunity. GL7 recognizes sialylated glycan(s), the α2,6-linked N-acetylneuraminic acid (Neu5Ac) on a lactosamine glycan chain(s), in both Sia modification- and Sia linkage-dependent manners. In mouse germinal center B cells, the expression of the GL7 epitope was upregulated due to the in situ repression of CMP-Neu5Ac hydroxylase (Cmah), the enzyme responsible for Sia modification of Neu5Ac to Neu5Gc. Such Cmah repression caused activation-dependent dynamic reduction of CD22 ligand expression without losing α2,6-linked sialylation in germinal centers. The in vivo function of Cmah was analyzed using gene-disrupted mice. Phenotypic analyses showed that Neu5Gc glycan functions as a negative regulator for B-cell activation in assays of T-cell-independent immunization response and splenic B-cell proliferation. Thus, Neu5Gc is required for optimal negative regulation, and the reaction is specifically suppressed in activated B cells, i.e., germinal center B cells. PMID:17296732

  12. Sialic acid C-glycosides with aromatic residues: investigating enzyme binding and inhibition of Trypanosoma cruzi trans-sialidase.

    PubMed

    Meinke, Sebastian; Schroven, Andreas; Thiem, Joachim

    2011-06-21

    Several α-configured C-sialosides were synthesised by cross metathesis and further synthetic derivatisation to obtain ligands for Trypanosoma cruzi trans-sialidase (TcTS), a key enzyme in Chagas disease. Affinities of these compounds to immobilised TcTS were measured by surface plasmon resonance (SPR). The K(D) values thus obtained are in the lower millimolar range and will be discussed. The results show the importance of addressing Tyr(119) and Trp(312) side chains of TcTS in target oriented ligand synthesis, since these amino acids constitute the acceptor binding region in the active site of TcTS. The best ligand showed a significant decrease of TcTS activity in a preliminary NMR based inhibition assay.

  13. Structural basis for the divergence of substrate specificity and biological function within HAD phosphatases in lipopolysaccharide and sialic acid biosynthesis.

    PubMed

    Daughtry, Kelly D; Huang, Hua; Malashkevich, Vladimir; Patskovsky, Yury; Liu, Weifeng; Ramagopal, Udupi; Sauder, J Michael; Burley, Stephen K; Almo, Steven C; Dunaway-Mariano, Debra; Allen, Karen N

    2013-08-13

    The haloacid dehalogenase enzyme superfamily (HADSF) is largely composed of phosphatases that have been particularly successful at adaptating to novel biological functions relative to members of other phosphatase families. Herein, we examine the structural basis for the divergence of function in two bacterial homologues: 2-keto-3-deoxy-d-manno-octulosonate 8-phosphate phosphohydrolase (KDO8P phosphatase, KDO8PP) and 2-keto-3-deoxy-9-O-phosphonononic acid phosphohydrolase (KDN9P phosphatase, KDN9PP). KDO8PP and KDN9PP catalyze the final step in KDO and KDN synthesis, respectively, prior to transfer to CMP to form the activated sugar nucleotide. KDO8PP and KDN9PP orthologs derived from an evolutionarily diverse collection of bacterial species were subjected to steady-state kinetic analysis to determine their specificities toward catalyzed KDO8P and KDN9P hydrolysis. Although each enzyme was more active with its biological substrate, the degree of selectivity (as defined by the ratio of kcat/Km for KDO8P vs KDN9P) varied significantly. High-resolution X-ray structure determination of Haemophilus influenzae KDO8PP bound to KDO/VO3(-) and Bacteriodes thetaiotaomicron KDN9PP bound to KDN/VO3(-) revealed the substrate-binding residues. The structures of the KDO8PP and KDN9PP orthologs were also determined to reveal the differences in their active-site structures that underlie the variation in substrate preference. Bioinformatic analysis was carried out to define the sequence divergence among KDN9PP and KDO8PP orthologs. The KDN9PP orthologs were found to exist as single-domain proteins or fused with the pathway nucleotidyl transferases; the fusion of KDO8PP with the transferase is rare. The KDO8PP and KDN9PP orthologs share a stringently conserved Arg residue that forms a salt bridge with the substrate carboxylate group. The split of the KDN9PP lineage from the KDO8PP orthologs is easily tracked by the acquisition of a Glu/Lys pair that supports KDN9P binding. Moreover

  14. Correlation analyses on binding affinity of sialic acid analogues and anti-influenza drugs with human neuraminidase using ab initio MO calculations on their complex structures--LERE-QSAR analysis (IV).

    PubMed

    Hitaoka, Seiji; Matoba, Hiroshi; Harada, Masataka; Yoshida, Tatsusada; Tsuji, Daisuke; Hirokawa, Takatsugu; Itoh, Kohji; Chuman, Hiroshi

    2011-10-24

    We carried out full ab initio fragment molecular orbital (FMO) calculations for complexes comprising human neuraminidase-2 (hNEU2) and sialic acid analogues including anti-influenza drugs zanamivir (Relenza) and oseltamivir (Tamiflu) in order to examine the variation in the observed inhibitory activity toward hNEU2 at the atomic and electronic levels. We recently proposed the LERE (linear expression by representative energy terms)-QSAR (quantitative structure-activity relationship) procedure. LERE-QSAR analysis quantitatively revealed that the complex formation is driven by hydrogen-bonding and electrostatic interaction of hNEU2 with sialic acid analogues. The most potent inhibitory activity, that of zanamivir, is attributable to the strong electrostatic interaction of a positively charged guanidino group in zanamivir with negatively charged amino acid residues in hNEU2. After we confirmed that the variation in the observed inhibitory activity among sialic acid analogues is excellently reproducible with the LERE-QSAR equation, we examined the reason for the remarkable difference between the inhibitory potencies of oseltamivir as to hNEU2 and influenza A virus neuraminidase-1 (N1-NA). Several amino acid residues in close contact with a positively charged amino group in oseltamivir are different between hNEU2 and N1-NA. FMO-IFIE (interfragment interaction energy) analysis showed that the difference in amino acid residues causes a remarkably large difference between the overall interaction energies of oseltamivir with hNEU2 and N1-NA. The current results will be useful for the development of new anti-influenza drugs with high selectivity and without the risk of adverse side effects.

  15. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR

    PubMed Central

    Uhde, Andreas; Brühl, Natalie; Goldbeck, Oliver; Matano, Christian; Gurow, Oksana; Rückert, Christian; Marin, Kay; Wendisch, Volker F.; Krämer, Reinhard

    2016-01-01

    ABSTRACT Corynebacterium glutamicum metabolizes sialic acid (Neu5Ac) to fructose-6-phosphate (fructose-6P) via the consecutive activity of the sialic acid importer SiaEFGI, N-acetylneuraminic acid lyase (NanA), N-acetylmannosamine kinase (NanK), N-acetylmannosamine-6P epimerase (NanE), N-acetylglucosamine-6P deacetylase (NagA), and glucosamine-6P deaminase (NagB). Within the cluster of the three operons nagAB, nanAKE, and siaEFGI for Neu5Ac utilization a fourth operon is present, which comprises cg2936, encoding a GntR-type transcriptional regulator, here named NanR. Microarray studies and reporter gene assays showed that nagAB, nanAKE, siaEFGI, and nanR are repressed in wild-type (WT) C. glutamicum but highly induced in a ΔnanR C. glutamicum mutant. Purified NanR was found to specifically bind to the nucleotide motifs A[AC]G[CT][AC]TGATGTC[AT][TG]ATGT[AC]TA located within the nagA-nanA and nanR-sialA intergenic regions. Binding of NanR to promoter regions was abolished in the presence of the Neu5Ac metabolism intermediates GlcNAc-6P and N-acetylmannosamine-6-phosphate (ManNAc-6P). We observed consecutive utilization of glucose and Neu5Ac as well as fructose and Neu5Ac by WT C. glutamicum, whereas the deletion mutant C. glutamicum ΔnanR simultaneously consumed these sugars. Increased reporter gene activities for nagAB, nanAKE, and nanR were observed in cultivations of WT C. glutamicum with Neu5Ac as the sole substrate compared to cultivations when fructose was present. Taken together, our findings show that Neu5Ac metabolism in C. glutamicum is subject to catabolite repression, which involves control by the repressor NanR. IMPORTANCE Neu5Ac utilization is currently regarded as a common trait of both pathogenic and commensal bacteria. Interestingly, the nonpathogenic soil bacterium C. glutamicum efficiently utilizes Neu5Ac as a substrate for growth. Expression of genes for Neu5Ac utilization in C. glutamicum is here shown to depend on the transcriptional regulator

  16. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  17. A single site in human β-hexosaminidase A binds both 6-sulfate-groups on hexosamines and the sialic acid moiety of GM2 ganglioside

    PubMed Central

    Sharma, Rohita; Bukovac, Scott; Callahan, John; Mahuran, Don

    2010-01-01

    Human β-hexosaminidase A (Hex A) (αβ) is composed of two subunits whose primary structures are ~60% identical. Deficiency of either subunit results in severe neurological disease due to the storage of GM2 ganglioside; Tay–Sachs disease, α deficiency, and Sandhoff disease, β deficiency. Whereas both subunits contain active sites only the α-site can efficiently bind negatively charged 6-sulfated hexosamine substrates and GM2 ganglioside. We have recently identified the αArg424 as playing a critical role in the binding of 6-sulfate-containing substrates, and βAsp452 as actively inhibiting their binding. To determine if these same residues affect the binding of the sialic acid moiety of GM2 ganglioside, an αArg424Gln form of Hex A was expressed and its kinetics analyzed using the GM2 activator protein:[3H]-GM2 ganglioside complex as a substrate. The mutant showed a ~3-fold increase in its Km for the complex. Next a form of Hex B (ββ) containing a double mutation, βAspLeu453 AsnArg (duplicating the α-aligning sequences), was expressed. As compared to the wild type (WT), the mutant exhibited a >30-fold increase in its ability to hydrolyze a 6-sulfated substrate and was now able to hydrolyze GM2 ganglioside when the GM2 activator protein was replaced by sodium taurocholate. Thus, this α-site is critical for binding both types of negatively charge substrates. PMID:12527415

  18. Members of a Novel Protein Family Containing Microneme Adhesive Repeat Domains Act as Sialic Acid-binding Lectins during Host Cell Invasion by Apicomplexan Parasites*

    PubMed Central

    Friedrich, Nikolas; Santos, Joana M.; Liu, Yan; Palma, Angelina S.; Leon, Ester; Saouros, Savvas; Kiso, Makoto; Blackman, Michael J.; Matthews, Stephen; Feizi, Ten; Soldati-Favre, Dominique

    2010-01-01

    Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for α2–3- over α2–6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to α2–9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6′sulfo-sialyl Lewisx might have implications for tissue tropism. PMID:19901027

  19. Relationship between proliferative activity of bone marrow micrometastasis and plasmatic level of a new cancer marker: lipid associated sialic acid (LASA) in human breast cancer.

    PubMed

    Ginsbourg, M; Musset, M; Misset, J L; Mathé, G

    1986-01-01

    The correlation between elevated level of a new plasma cancer marker, Lipid Associated Sialic Acid (LASA) and detection of bone marrow heterotopic epithelial cells by monoclonal antibodies using an immunocytologic technique, associated with the study of the proliferative activity of these heterotopic cells by measurement of their labelling index (LI) was analyzed in 158 samples obtained from 94 breast cancer patients. Six different groups of patients in complete remission of breast cancer, after radical treatment of the primary (minimal residual disease (MRD] were defined, according to the presence with or without proliferative activity of heterotopic cells in the bone marrow or the absence of such cells and to the level, normal or elevated of LASA in the serum of the same patient at the same time. 115 samples (73%) of the patients had an elevated LASA level at the time of the study among which 71 (45%) came from patients in which heterotopic cells were detected in the bone marrow, 32 (20%) of which with proliferative activity (LI+) 39 (25%) without (LI-). In 44 (28%) samples, no heterotopic cells were detected in the B.M. 43 samples (27%) of the patients had a normal LASA level. In 29 (18%) no heterotopic cells could be detected in the B.M. In only 14 could such cells be found, 5 with LI+, 9 with LI-. Both of these cytological and biological parameters can be useful markers of minimal residual disease and help to determine the prognosis and define optimal therapeutic strategy for curable breast cancer. Their prognostic value in predicting relapse awaits further observation with longer follow-up.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity.

    PubMed

    Matsubara, Kohki; Matsushita, Yoshihiro; Sakai, Kiyoshi; Kano, Fumiya; Kondo, Megumi; Noda, Mariko; Hashimoto, Noboru; Imagama, Shiro; Ishiguro, Naoki; Suzumura, Akio; Ueda, Minoru; Furukawa, Koichi; Yamamoto, Akihito

    2015-02-11

    Engrafted mesenchymal stem cells from human deciduous dental pulp (SHEDs) support recovery from neural insults via paracrine mechanisms that are poorly understood. Here we show that the conditioned serum-free medium (CM) from SHEDs, administered intrathecally into rat injured spinal cord during the acute postinjury period, caused remarkable functional recovery. The ability of SHED-CM to induce recovery was associated with an immunoregulatory activity that induced anti-inflammatory M2-like macrophages. Secretome analysis of the SHED-CM revealed a previously unrecognized set of inducers for anti-inflammatory M2-like macrophages: monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9). Depleting MCP-1 and ED-Siglec-9 from the SHED-CM prominently reduced its ability to induce M2-like macrophages and to promote functional recovery after spinal cord injury (SCI). The combination of MCP-1 and ED-Siglec-9 synergistically promoted the M2-like differentiation of bone marrow-derived macrophages in vitro, and this effect was abolished by a selective antagonist for CC chemokine receptor 2 (CCR2) or by the genetic knock-out of CCR2. Furthermore, MCP-1 and ED-Siglec-9 administration into the injured spinal cord induced M2-like macrophages and led to a marked recovery of hindlimb locomotor function after SCI. The inhibition of this M2 induction through the inactivation of CCR2 function abolished the therapeutic effects of both SHED-CM and MCP-1/ED-Siglec-9. Macrophages activated by MCP-1 and ED-Siglec-9 extended neurite and suppressed apoptosis of primary cerebellar granule neurons against the neurotoxic effects of chondroitin sulfate proteoglycans. Our data suggest that the unique combination of MCP-1 and ED-Siglec-9 repairs the SCI through anti-inflammatory M2-like macrophage induction.

  1. Sialic acid associated with αvβ3 integrin mediates HIV-1 Tat protein interaction and endothelial cell proangiogenic activation.

    PubMed

    Chiodelli, Paola; Urbinati, Chiara; Mitola, Stefania; Tanghetti, Elena; Rusnati, Marco

    2012-06-08

    Sialic acid (NeuAc) is a major anion on endothelial cells (ECs) that regulates different biological processes including angiogenesis. NeuAc is present in the oligosaccharidic portion of integrins, receptors that interact with extracellular matrix components and growth factors regulating cell adhesion, migration, and proliferation. Tat is a cationic polypeptide that, once released by HIV-1(+) cells, accumulates in the extracellular matrix, promoting EC adhesion and proangiogenic activation by engaging α(v)β(3). By using two complementary approaches (NeuAc removal by neuraminidase or its masking by NeuAc-binding lectin from Maackia amurensis, MAA), we investigated the presence of NeuAc on endothelial α(v)β(3) and its role in Tat interaction, EC adhesion, and proangiogenic activation. α(v)β(3) immunoprecipitation with biotinylated MAA or Western blot analysis of neuraminidase-treated ECs demonstrated that NeuAc is associated with both the α(v) and the β(3) subunits. Surface plasmon resonance analysis demonstrated that the masking of α(v)β(3)-associated NeuAc by MAA prevents Tat/α(v)β(3) interaction. MAA and neuraminidase prevent α(v)β(3)-dependent EC adhesion to Tat, the consequent FAK and ERK1/2 phosphorylation, and EC proliferation, migration, and regeneration in a wound-healing assay. Finally, MAA inhibits Tat-induced neovascularization in the ex vivo human artery ring sprouting assay. The inhibitions are specific because the NeuAc-unrelated lectin from Ulex europaeus is ineffective on Tat. Also, MAA and neuraminidase affect only weakly integrin-dependent EC adhesion and proangiogenic activation by fibronectin. In conclusion, NeuAc is associated with endothelial α(v)β(3) and mediates Tat-dependent EC adhesion and proangiogenic activation. These data point to the possibility to target integrin glycosylation for the treatment of angiogenesis/AIDS-associated pathologies.

  2. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid.

    PubMed

    Alisson-Silva, Frederico; Kawanishi, Kunio; Varki, Ajit

    2016-10-01

    -human sialic acid N-glycolylneuraminic acid (Neu5Gc) into the tissues of red meat consumers and the subsequent interaction with inflammation-provoking antibodies against this "xenoautoantigen". Overall, we conclude that while multiple mechanisms are likely operative, many proposed theories to date are not specific for red meat, and that the viral and xenoautoantigen theories deserve further consideration. Importantly, there are potential non-toxic dietary antidotes, if the xenoautoantigen theory is indeed correct.

  3. Sialic acid-binding protein Sp2CBMTD protects mice against lethal challenge with emerging influenza A (H7N9) virus.

    PubMed

    Govorkova, Elena A; Baranovich, Tatiana; Marathe, Bindumadhav M; Yang, Lei; Taylor, Margaret A; Webster, Robert G; Taylor, Garry L; Connaris, Helen

    2015-03-01

    Compounds that target the cellular factors essential for influenza virus replication represent an innovative approach to antiviral therapy. Sp2CBMTD is a genetically engineered multivalent protein that masks sialic acid-containing cellular receptors on the respiratory epithelium, which are recognized by influenza viruses. Here, we evaluated the antiviral potential of Sp2CBMTD against lethal infection in mice with an emerging A/Anhui/1/2013 (H7N9) influenza virus and addressed the mechanistic basis of its activity in vivo. Sp2CBMTD was administered to mice intranasally as a single or repeated dose (0.1, 1, 10, or 100 μg) before (day -7, -3, and/or -1) or after (6 or 24 h) H7N9 virus inoculation. A single Sp2CBMTD dose (10 or 100 μg) protected 80% to 100% of the mice when administered 7 days before the H7N9 lethal challenge. Repeated Sp2CBMTD administration conferred the highest protection, resulting in 100% survival of the mice even at the lowest dose tested (0.1 μg). When treatment began 24 h after exposure to the H7N9 virus, a single administration of 100 μg of Sp2CBMTD protected 40% of the mice from death. The administration of Sp2CBMTD induced the pulmonary expression of proinflammatory mediators (interleukin-6 [IL-6], IL-1β, RANTES, monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], and inducible protein [IP-10]) and recruited neutrophils to the respiratory tract before H7N9 virus infection, which resulted in less pronounced inflammation and rapid virus clearance from mouse lungs. Sp2CBMTD administration did not affect the virus-specific adaptive immune response, which was sufficient to protect against reinfection with a higher dose of homologous H7N9 virus or heterologous H5N1 virus. Thus, Sp2CBMTD was effective in preventing H7N9 infections in a lethal mouse model and holds promise as a prophylaxis option against zoonotic influenza viruses.

  4. Sialic acid rescues repurified lipopolysaccharide-induced acute renal failure via inhibiting TLR4/PKC/gp91-mediated endoplasmic reticulum stress, apoptosis, autophagy, and pyroptosis signaling.

    PubMed

    Yang, Chih-Ching; Yao, Chien-An; Yang, Jyh-Chin; Chien, Chiang-Ting

    2014-09-01

    Lipopolysaccharides (LPS) through Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) activation induce systemic inflammation where oxidative damage plays a key role in multiple organ failure. Because of the neutralization of LPS toxicity by sialic acid (SA), we determined its effect and mechanisms on repurified LPS (rLPS)-evoked acute renal failure. We assessed the effect of intravenous SA (10 mg/kg body weight) on rLPS-induced renal injury in female Wistar rats by evaluating blood and kidney reactive oxygen species (ROS) responses, renal and systemic hemodynamics, renal function, histopathology, and molecular mechanisms. SA can interact with rLPS through a high binding affinity. rLPS dose- and time-dependently reduced arterial blood pressure, renal microcirculation and blood flow, and increased vascular resistance in the rats. rLPS enhanced monocyte/macrophage (ED-1) infiltration and ROS production and impaired kidneys by triggering p-IRE1α/p-JNK/CHOP/GRP78/ATF4-mediated endoplasmic reticulum (ER) stress, Bax/PARP-mediated apoptosis, Beclin-1/Atg5-Atg12/LC3-II-mediated autophagy, and caspase 1/IL-1β-mediated pyroptosis in the kidneys. SA treatment at 30 min, but not 60 min after rLPS stimulation, gp91 siRNA and protein kinase C-α (PKC) inhibitor efficiently rescued rLPS-induced acute renal failure via inhibition of TLR4/PKC/NADPH oxidase gp91-mediated ER stress, apoptosis, autophagy and pyroptosis in renal proximal tubular cells, and rat kidneys. In response to rLPS or IFNγ, the enhanced Atg5, FADD, LC3-II, and PARP expression can be inhibited by Atg5 siRNA. Albumin (10 mg/kg body weight) did not rescue rLPS-induced injury. In conclusion, early treatment (within 30 min) of SA attenuates rLPS-induced renal failure via the reduction in LPS toxicity and subsequently inhibiting rLPS-activated TLR4/PKC/gp91/ER stress/apoptosis/autophagy/pyroptosis signaling.

  5. Mutations during the adaptation of H9N2 avian influenza virus to the respiratory epithelium of pigs enhance the sialic acid binding activity and the virulence in mice.

    PubMed

    Yang, W; Punyadarsaniya, D; Lambertz, R L O; Lee, D C C; Liang, C H; Höper, D; Leist, S R; Hernández-Cáceres, A; Stech, J; Beer, M; Wu, C Y; Wong, C H; Schughart, K; Meng, F; Herrler, G

    2017-02-01

    The natural reservoir for influenza viruses is waterfowl from where they succeeded to cross the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1-P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1, and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. By contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.

  6. Multivalent Interactions of Human Primary Amine Oxidase with the V and C22 Domains of Sialic Acid-Binding Immunoglobulin-Like Lectin-9 Regulate Its Binding and Amine Oxidase Activity

    PubMed Central

    Fair-Mäkelä, Ruth; Salo-Ahen, Outi M. H.; Guédez, Gabriela; Bligt-Lindén, Eva; Grönholm, Janne; Jalkanen, Sirpa; Salminen, Tiina A.

    2016-01-01

    Sialic acid-binding immunoglobulin-like lectin-9 (Siglec-9) on leukocyte surface is a counter-receptor for endothelial cell surface adhesin, human primary amine oxidase (hAOC3), a target protein for anti-inflammatory agents. This interaction can be used to detect inflammation and cancer in vivo, since the labeled peptides derived from the second C2 domain (C22) of Siglec-9 specifically bind to the inflammation-inducible hAOC3. As limited knowledge on the interaction between Siglec-9 and hAOC3 has hampered both hAOC3-targeted drug design and in vivo imaging applications, we have now produced and purified the extracellular region of Siglec-9 (Siglec-9-EC) consisting of the V, C21 and C22 domains, modeled its 3D structure and characterized the hAOC3–Siglec-9 interactions using biophysical methods and activity/inhibition assays. Our results assign individual, previously unknown roles for the V and C22 domains. The V domain is responsible for the unusually tight Siglec-9–hAOC3 interactions whereas the intact C22 domain of Siglec-9 is required for modulating the enzymatic activity of hAOC3, crucial for the hAOC3-mediated leukocyte trafficking. By characterizing the Siglec-9-EC mutants, we could conclude that R120 in the V domain likely interacts with the terminal sialic acids of hAOC3 attached glycans whereas residues R284 and R290 in C22 are involved in the interactions with the active site channel of hAOC3. Furthermore, the C22 domain binding enhances the enzymatic activity of hAOC3 although the sialic acid-binding capacity of the V domain of Siglec-9 is abolished by the R120S mutation. To conclude, our results prove that the V and C22 domains of Siglec-9-EC interact with hAOC3 in a multifaceted and unique way, forming both glycan-mediated and direct protein-protein interactions, respectively. The reported results on the mechanism of the Siglec-9–hAOC3 interaction are valuable for the development of hAOC3-targeted therapeutics and diagnostic tools. PMID:27893774

  7. Two types of antibodies are induced by vaccination with A/California/2009 pdm virus: binding near the sialic acid-binding pocket and neutralizing both H1N1 and H5N1 viruses.

    PubMed

    Ohshima, Nobuko; Kubota-Koketsu, Ritsuko; Iba, Yoshitaka; Okuno, Yoshinobu; Kurosawa, Yoshikazu

    2014-01-01

    Many people have a history of catching the flu several times during childhood but no additional flu in adulthood, even without vaccination. We analyzed the total repertoire of antibodies (Abs) against influenza A group 1 viruses induced in such a flu-resistant person after vaccination with 2009 H1N1 pandemic influenza virus. They were classified into two types, with no exceptions. The first type, the products of B cells newly induced through vaccination, binds near the sialic acid-binding pocket. The second type, the products of long-lived memory B cells established before vaccination, utilizes the 1-69 VH gene, binds to the stem of HA, and neutralizes both H1N1 and H5N1 viruses with few exceptions. These observations indicate that the sialic acid-binding pocket and its surrounding region are immunogenically very potent and majority of the B cells whose growth is newly induced by vaccination produce Abs that recognize these regions. However, they play a role in protection against influenza virus infection for a short period since variant viruses that have acquired resistance to these Abs become dominant. On the other hand, although the stem of HA is immunogenically not potent, the second type of B cells eventually becomes dominant. Thus, a selection system should function in forming the repertoire of long-lived memory B cells and the stability of the epitope would greatly affect the fate of the memory cells. Acquisition of the ability to produce Abs that bind to the stable epitope could be a major factor of flu resistance.

  8. Lectin affinity chromatography of articular cartilage fibromodulin: Some molecules have keratan sulphate chains exclusively capped by α(2-3)-linked sialic acid.

    PubMed

    Lauder, Robert M; Huckerby, Thomas N; Nieduszynski, Ian A

    2011-10-01

    Fibromodulin from bovine articular cartilage has been subjected to lectin affinity chromatography by Sambucus nigra lectin which binds α(2-6)- linked N-acetylneuraminic acid, and the structure of the keratan sulphate in the binding and non-binding fractions examined by keratanase II digestion and subsequent high pH anion exchange chromatography. It has been confirmed that the keratan sulphate chains attached to fibromodulin isolated from bovine articular cartilage may have the chain terminating N-acetylneuraminic acid residue α(2-3)- or α(2-6)-linked to the adjacent galactose residue. Although the abundance of α(2-6)-linked N-acetylneuraminic acid (ca. 22%) is such that this could cap one of the four chains in almost all fibromodulin molecules, it was found that ca. 34% of the fibromodulin proteoglycan molecules from bovine articular cartilage were capped exclusively with α(2-3)-linked N-acetylneuraminic acid. The remainder of the fibromodulin proteoglycans, which bound to the lectin had a mixture of α(2-3)- and α(2-6)-linked N-acetylneuraminic acid capping structures. The keratan sulphates attached to fibromodulin molecules capped exclusively with α(2-3)- linked N-acetylneuraminic acid were found to have a higher level of galactose sulphation than those from fibromodulin with both α(2-3)- and α(2-6)-linked N-acetylneuraminic acid caps, which bound to the Sambucus nigra lectin. In addition, both pools contained chains of similar length (ca. 8-9 disaccharides). Both also contained α(1-3)-linked fucose, showing that this feature does not co-distribute with α(2-6)-linked N-acetylneuraminic acid, although these two features are present only in mature articular cartilage. These data show that there are discrete populations of fibromodulin within articular cartilage, which may have differing impacts upon tissue processes.

  9. Recombinant sialidase NanA (rNanA) cleaves α2-3 linked sialic acid of host cell surface N-linked glycoprotein to promote Edwardsiella tarda infection.

    PubMed

    Chigwechokha, Petros Kingstone; Tabata, Mutsumi; Shinyoshi, Sayaka; Oishi, Kazuki; Araki, Kyosuke; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2015-11-01

    Edwardsiella tarda is one of the major pathogenic bacteria affecting both marine and freshwater fish species. Sialidase NanA expressed endogenously in E. tarda is glycosidase removing sialic acids from glycoconjugates. Recently, the relationship of NanA sialidase activity to E. tarda infection has been reported, however, the mechanism with which sialidase NanA aids the pathogenicity of E. tarda remained unclear. Here, we comprehensively determined the biochemical properties of NanA towards various substrates in vitro to provide novel insights on the potential NanA target molecule at the host cell. GAKS cell pretreated with recombinant NanA showed increased susceptibility to E. tarda infection. Moreover, sialidase inhibitor treated E. tarda showed a significantly reduced ability to infect GAKS cells. These results indicate that NanA-induced desialylation of cell surface glycoconjugates is essential for the initial step of E. tarda infection. Among the natural substrates, NanA exhibited the highest activity towards 3-sialyllactose, α2-3 linked sialic acid carrying sialoglycoconjugates. Supporting this finding, intact GAKS cell membrane exposed to recombinant NanA showed changes of glycoconjugates only in α2-3 sialo-linked glycoproteins, but not in glycolipids and α2-6 sialo-linked glycoproteins. Lectin staining of cell surface glycoprotein provided further evidence that α2-3 sialo-linkage of the N-linked glycoproteins was the most plausible target of NanA sialidase. To confirm the significance of α2-3 sialo-linkage desialylation for E. tarda infection, HeLa cells which possessed lower amount of α2-3 sialo-linkage glycoprotein were used for infection experiment along with GAKS cells. As a result, infection of HeLa cells by E. tarda was significantly reduced when compared to GAKS cells. Furthermore, E. tarda infection was significantly inhibited by mannose pretreatment suggesting that the bacterium potentially recognizes and binds to mannose or mannose containing

  10. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells

    PubMed Central

    Kariya, Yukiko; Tatsuta, Takeo; Sugawara, Shigeki; Kariya, Yoshinobu; Nitta, Kazuo; Hosono, Masahiro

    2016-01-01

    Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribo-nuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA-MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA-MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase-3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase-3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA-MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase-3/7. PMID:27513956

  11. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    SciTech Connect

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  12. RNase activity of sialic acid-binding lectin from bullfrog eggs drives antitumor effect via the activation of p38 MAPK to caspase-3/7 signaling pathway in human breast cancer cells.

    PubMed

    Kariya, Yukiko; Tatsuta, Takeo; Sugawara, Shigeki; Kariya, Yoshinobu; Nitta, Kazuo; Hosono, Masahiro

    2016-10-01

    Sialic acid-binding lectin obtained from bullfrog eggs (SBL) induces cell death in cancer cells but not in normal cells. This antitumor effect is mediated through its ribonuclease (RNase) activity. However, the underlying molecular mechanisms remain unclear. We found that the p38 mitogen-activated protein kinase (MAPK) signaling pathway was activated when SBL induced cell death in three human breast cancer cell lines: SK-BR-3, MCF-7, and MDA‑MB231. The suppression of p38 MAPK phosphorylation by a p38 MAPK inhibitor as well as short interference RNA knockdown of p38 MAPK expression significantly decreased cell death and increased the cell viability of SBL-treated MDA‑MB231 cells. H103A, an SBL mutant lacking in RNase activity, showed decreased SBL-induced cell death compared with native SBL. However, the loss of RNase activity of SBL had no effect on its internalization into cells. The H103A mutant also displayed decreased phosphorylation of p38 MAPK. Moreover, SBL promoted caspase‑3/7 activation followed by a cleavage of poly (ADP-ribose)-polymerase, whereas the SBL mutant, H103A, lost this ability. The SBL-induced caspase‑3/7 activation was suppressed by the p38 MAPK inhibitor, SB203580, as well as pan-caspase inhibitor, zVAD-fmk. In the presence of zVAD-fmk, the SBL-induced cell death was decreased. In addition, the cell viability of SBL-treated MDA‑MB231 cells recovered by zVAD-fmk treatment. Taken together, our results suggest that the RNase activity of SBL leads to breast cancer cell death through the activation of p38 MAPK followed by the activation of caspase‑3/7.

  13. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins.

    PubMed

    Baker, Heather M; Basu, Indira; Chung, Matthew C; Caradoc-Davies, Tom; Fraser, John D; Baker, Edward N

    2007-12-14

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  14. [Change in acylneuraminic acid content of T-lymphocytes and in plasma in breast cancer].

    PubMed

    Stickl, H; Huber, W; Faillard, H; Becker, A; Holzhauser, R; Graeff, H

    1991-01-04

    Increased sialic acid levels reflecting tumor burden are found on the surface of T-lymphocytes and in the plasma of patients with carcinoma of the mammary gland. The data of the determinations of sialic acid content and distribution on T-cells, using microanalytical methods such as HPLC and a colorimetric test, show that the total sialic acid content is increased by about 60% and that nearly 80-90% of the sialic acids consist of N-acetyl-9-O-acetyl-neuraminic acid, in comparison to the healthy controls (not containing O-acetylated neuraminic acid). Investigations on lymphocytes of malignant melanoma patients show similar changes of sialic acid content and distribution on the cell surface. Increased sialic acid levels are also found in the plasma of patients with cancer but no O-acetylated derivative can be found. Furthermore the examinations show that the separation of the T-lymphocytes from the total lymphocyte fraction is not required. Determination of sialic acids in the total lymphocyte fraction can be a simplification in carrying out further diagnostic investigations. A high level of sialic acids as "antirecognition factor" seems to be not only a marker of tumor cells but also an attribute of T-lymphocytes, involved in the defence against the malignoma (malignant melanoma, breast cancer). Considering the possible contribution of sialic acid to the immunoregulatory protective mechanism during the first stage of pregnancy, sialic acid content and distribution on T-cells of pregnant women are investigated. Both an increase and a change in the distribution of sialic acids can be excluded.

  15. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  16. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  17. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  18. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  19. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  20. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  1. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  2. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  3. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  4. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  5. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  6. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  7. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  8. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  9. Selective synthesis and labeling of the polysialic acid capsule in Escherichia coli K1 strains with mutations in nanA and neuB.

    PubMed Central

    Vimr, E R

    1992-01-01

    The enzymes required for polysialic acid capsule synthesis in Escherichia coli K1 are encoded by region 2 neu genes of the multigenic kps cluster. To facilitate analysis of capsule synthesis and translocation, an E. coli K1 strain with mutations in nanA and neuB, affecting sialic acid degradation and synthesis, respectively, was constructed by transduction. The acapsular phenotype of the mutant was corrected in vivo by exogenous addition of sialic acid. By blocking sialic acid degradation, the nanA mutation allows intracellular metabolite accumulation, while the neuB mutation prevents dilution by the endogenous sialic acid pool and allows capsule synthesis to be controlled experimentally by the exogenous addition of sialic acid to the growth medium. Complementation was detected by bacteriophage K1F adsorption or infectivity assays. Polysialic acid translocation was observed within 2 min after addition of sialic acid to the growth medium, demonstrating the rapidity in vivo of sialic acid transport, activation, and polymerization and translocation of polysaccharide to the cell surface. Phage adsorption was not inhibited by chloramphenicol, demonstrating that de novo protein synthesis was not required for polysialic acid synthesis or translocation at 37 degrees C. Exogenous radiolabeled sialic acid was incorporated exclusively into capsular polysaccharide. The polymeric nature of the labeled capsular material was confirmed by gel permeation chromatography and susceptibility of sialyl polymers to K1F endo-N-acylneuraminidase. The ability to experimentally manipulate capsule expression provides new approaches for investigating polysialic acid synthesis and membrane translocation mechanisms. PMID:1400168

  10. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  11. Phytic acid increases mucin and endogenous amino acid losses from the gastrointestinal tract of chickens.

    PubMed

    Onyango, Edward M; Asem, Elikplimi K; Adeola, Olayiwola

    2009-03-01

    The influence of the form of phytic acid on the regulation of mucin and endogenous losses of amino acids, nitrogen and energy in chickens was investigated. Forty-eight 10-week-old male broilers were grouped by weight into eight blocks of six cages with one bird per cage. Birds received by intubation six dextrose-based combinations of phytic acid and phytase arranged in a 3 x 2 factorial consisting of phytic acid form (no phytic acid, 1.0 g free phytic acid or 1.3 g magnesium-potassium phytate) and phytase (0 or 1000 units). Each bird received the assigned combination added to 25 g dextrose at each of the two feedings on the first day of experimentation. All excreta were collected continuously for 54 h following feeding and frozen until analysed. Frozen excreta were thawed, pooled for each bird, lyophilised, ground, and analysed for DM, energy, nitrogen, amino acids, mucin, and sialic and uric acids. Chickens fed either magnesium-potassium phytate or free phytic acid showed increased (P < 0.05) loss of crude mucin and sialic acid. The amount of crude mucin lost was significantly greater (P < 0.05) with magnesium-potassium phytate than with free phytic acid treatment. Both phytic acid treatments also increased (P < 0.05) endogenous loss of threonine, proline and serine. In conclusion, the form of phytic acid fed to chickens affects the extent of mucin and endogenous amino acid losses from the gastrointestinal tract.

  12. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-02-16

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  13. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  14. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  15. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  16. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  17. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  18. Acid Rain

    MedlinePlus

    ... EPA Is Doing Acid Rain Program Cross-State Air Pollution Rule Progress Reports Educational Resources Kid's Site for ... Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  19. Folic Acid

    MedlinePlus

    ... folic acid can hide signs that you lack vitamin B12, which can cause nerve damage. 10 Do I ... Rosenberg, I.H., et al. (2007). Folate and vitamin B12 status in relation to anemia, macrocytosis and cognitive ...

  20. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  1. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  2. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  3. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  4. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  5. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  6. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 007 www.epa.gov / iris TOXICOLOGICAL REVIEW OF DICHLOROACETIC ACID ( CAS No . 79 - 43 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) August 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revi

  7. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 003F www.epa.gov / iris TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID ( CAS No . 76 - 03 - 9 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2011 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document has

  8. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  9. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  10. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  11. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  12. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  13. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  14. Azelaic acid.

    PubMed

    Nazzaro-Porro, M

    1987-12-01

    This review is an update on the literature accumulated over the past 10 years following the original observation that azelaic acid, a naturally occurring and nontoxic C9 dicarboxylic acid, possesses significant biologic properties and a potential as a therapeutic agent. These studies have shown that azelaic acid is a reversible inhibitor of tyrosinase and other oxidoreductases in vitro and that it inhibits mitochondrial respiration. It can also inhibit anaerobic glycolysis. Both in vitro and in vivo it has an antimicrobial effect on both aerobic and anaerobic (Propionibacterium acnes) microorganisms. In tissue culture it exerts a dose- and time-dependent cytotoxic effect on malignant melanocytes, associated with mitochondrial damage and inhibition of deoxyribonucleic acid (DNA) synthesis. Tumoral cell lines not containing tyrosinase are equally affected. Normal cells in culture exposed to the same concentrations of the diacid that are toxic for tumoral cells are in general not damaged. Radioactive azelaic acid has been shown to penetrate tumoral cells at a higher level than normal cells of the corresponding line. Topically applied (a 20% cream), it has been shown to be of therapeutic value in skin disorders of different etiologies. Its beneficial effect on various forms of acne (comedogenic, papulopustular, nodulocystic) has been clearly demonstrated. Particularly important is its action on abnormal melanocytes, which has led to the possibility of obtaining good results on melasma and highly durable therapeutic responses on lentigo maligna. It is also capable of causing regression of cutaneous malignant melanoma, but its role in melanoma therapy remains to be investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Crystal structure of anti-polysialic acid antibody single chain Fv fragment complexed with octasialic acid: insight into the binding preference for polysialic acid.

    PubMed

    Nagae, Masamichi; Ikeda, Akemi; Hane, Masaya; Hanashima, Shinya; Kitajima, Ken; Sato, Chihiro; Yamaguchi, Yoshiki

    2013-11-22

    Polysialic acid is a linear homopolymer of α2-8-linked sialic acids attached mainly onto glycoproteins. Cell surface polysialic acid plays roles in cell adhesion and differentiation events in a manner that is often dependent on the degree of polymerization (DP). Anti-oligo/polysialic acid antibodies have DP-dependent antigenic specificity, and such antibodies are widely utilized in biological studies for detecting and distinguishing between different oligo/polysialic acids. A murine monoclonal antibody mAb735 has a unique preference for longer polymers of polysialic acid (DP >10), yet the mechanism of recognition at the atomic level remains unclear. Here, we report the crystal structure of mAb735 single chain variable fragment (scFv735) in complex with octasialic acid at 1.8 Å resolution. In the asymmetric unit, two scFv735 molecules associate with one octasialic acid. In both complexes of the unit, all the complementarity-determining regions except for L3 interact with three consecutive sialic acid residues out of the eight. A striking feature of the complex is that 11 ordered water molecules bridge the gap between antibody and ligand, whereas the direct antibody-ligand interaction is less extensive. The dihedral angles of the trisialic acid unit directly interacting with scFv735 are not uniform, indicating that mAb735 does not strictly favor the previously proposed helical conformation. Importantly, both reducing and nonreducing ends of the bound ligand are completely exposed to solvent. We suggest that mAb735 gains its apparent high affinity for a longer polysialic acid chain by recognizing every three sialic acid units in a paired manner.

  16. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  17. Acidic domains around nucleic acids.

    PubMed Central

    Lamm, G; Pack, G R

    1990-01-01

    The hydrogen ion concentration in the vicinity of DNA was mapped out within the Poisson-Boltzmann approximation. Experimental conditions were modeled by assuming Na-DNA to be solvated in a buffer solution containing 45 mM Tris and 3 mM Mg cations at pH 7.5. Three regions of high H+ concentration (greater than 10 microM) are predicted: one throughout the minor groove of DNA and two localized in the major groove near N7 of guanine and C5 of cytosine for a G.C base pair. These acidic domains correlate well with the observed covalent binding sites of benzo[a]pyrene epoxide (N2 of guanine) and of aflatoxin B1 epoxide (N7 of guanine), chemical carcinogens that presumably undergo acid catalysis to form highly reactive carbocations that ultimately bind to DNA. It is suggested that these regions of high H+ concentration may also be of concern in understanding interactions involving proteins and noncarcinogenic molecules with or near nucleic acids. PMID:2123348

  18. Folic Acid and Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  19. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida#

    PubMed Central

    Huynh, Nhung; Aye, Aye; Li, Yanhong; Yu, Hai; Cao, Hongzhi; Tiwari, Vinod Kumar; Shin, Don-Wook; Chen, Xi; Fisher, Andrew J.

    2013-01-01

    N -Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-D-mannosamine (ManNAc). Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)8 TIM barrel. Two wild-type structures were determined; in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), respectively. Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme and the residues that determine specificity were identified. Additionally, the structures lend some clues in explaining the natural discrimination of sialic acid substrates between the P. multocida and E. coli NALs. PMID:24152047

  20. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  1. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  2. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  3. Acid rain

    SciTech Connect

    Boyle, R.H.; Boyle, R.A.

    1983-01-01

    Acid rain, says Boyle is a chemical leprosy eating into the face of North America and Europe, perhaps the major ecological problem of our time. Boyle describes the causes and scope of the phenomenon; the effects on man, wildlife, water, and our cultural heritage. He probes the delays of politicians and the frequent self-serving arguments advanced by industry in the face of what scientists have proved. The solutions he offers are to strengthen the Clean Air Act and require emission reductions that can be accomplished by establishing emission standards on a regional or bubble basis, burn low-sulfur coal, install scrubbers at critical plants, and invest in alternative energy sources. 73 references, 1 figure.

  4. [Teichoic acids from lactic acid bacteria].

    PubMed

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  5. Organic acids tunably catalyze carbonic acid decomposition.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-07-10

    Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.

  6. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  7. Uric acid - urine

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  8. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  9. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  10. Methylmalonic acid blood test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid ...

  11. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  12. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  13. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  14. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  15. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  16. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  17. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  18. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  19. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  20. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  1. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  2. Lactic acid test

    MedlinePlus

    Lactate test ... test. Exercise can cause a temporary increase in lactic acid levels. ... not getting enough oxygen. Conditions that can increase lactic acid levels include: Heart failure Liver disease Lung disease ...

  3. Folic Acid Quiz

    MedlinePlus

    ... About Us Information For... Media Policy Makers Folic Acid Quiz Language: English Español (Spanish) Recommend on Facebook ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  4. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  5. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  6. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  7. Alpha Hydroxy Acids

    MedlinePlus

    ... Cosmetics Home Cosmetics Products & Ingredients Ingredients Alpha Hydroxy Acids Share Tweet Linkedin Pin it More sharing options ... for Industry: Labeling for Cosmetics Containing Alpha Hydroxy Acids The following information is intended to answer questions ...

  8. Uric Acid Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  9. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  10. Valproic Acid and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  11. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  12. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  13. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  14. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  15. Refining Lurgi tar acids

    SciTech Connect

    Greco, N.P.

    1984-04-17

    There is disclosed a process for removing tar bases and neutral oils from the Lurgi tar acids by treating the tar acids with aqueous sodium bisulfate to change the tar bases to salts and to hydrolyze the neutral oils to hydrolysis products and distilling the tar acids to obtain refined tar acid as the distillate while the tar base salts and neutral oil hydrolysis products remain as residue.

  16. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  17. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  18. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  19. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  20. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  1. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  2. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  3. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  4. Fumaric and sorbic acid as additives in broiler feed.

    PubMed

    Pirgozliev, V; Murphy, T C; Owens, B; George, J; McCann, M E E

    2008-06-01

    The aim of the experiment was to study the effect of dietary organic acids, fumaric and sorbic, on nitrogen corrected apparent metabolisable energy (AME(N)), metabolisability of nutrients, endogenous losses and performance on young broiler chickens. A total of 56 male Ross broilers were used in a growing experiment from 14 to 30d age. Seven experimental wheat-based (655g/kg) diets were formulated. The control diet did not contain organic acids. The other six diets were produced with the addition of fumaric or sorbic acids, replacing 0.5% , 1.0% or 1.5% of the wheat. The organic acid supplemented diets contained higher levels of AME(N) compared to the control diet. Overall, birds offered organic acids had lower feed intake. Dietary organic acids did not significantly affect weight gain or feed efficiency, however, birds offered supplemented diets had lower numbers of Lactic acid bacteria and Coliforms in the ileum and caeca. Birds offered organic acids had lower levels of endogenous losses compared to control fed birds. There was a negative relationship between AME(N) of the diets and excreted endogenous losses, measured as sialic acid. It can be concluded that the decrease in secretions from the gastrointestinal tract in the presence of fumaric and sorbic acids may be a mechanism involved in the mode of action of dietary organic acids.

  5. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  7. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  8. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  12. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  13. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  14. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  15. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  16. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  17. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  18. Separation of oligo/polymers of 5-N-acetylneuraminic acid, 5-N-glycolylneuraminic acid, and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid by high-performance anion-exchange chromatography with pulsed amperometric detector.

    PubMed

    Zhang, Y; Inoue, Y; Inoue, S; Lee, Y C

    1997-08-01

    A sensitive and efficient method to analyze oligo/ poly-sialic acids containing alpha2-8-linked 5-N-acetylneuraminic acid (Neu5Ac), 5-N-glycolylneuraminic acid (Neu5Gc), and deaminated neuraminic acid (KDN) using high-performance anion-exchange chromatography (HPAEC) with a pulsed amperometric detector (PAD-2) has been developed. Using a CarboPac PA-100 column and sodium nitrate as the pushing agent, polymers in colominic acid with degree of polymerization (DP) up to 80 were separated in 68 min. A similar DP-based resolution was also obtained on a CarboPac PA-1 column. The elution ladders of the Neu5Ac, Neu5Gc, and KDN series were sufficiently different to be used as diagnostic indices. This technique was applied to identification of the sialic acid components in a polysialoglycoprotein (PSGP) sample as well as monitoring the oligo/poly-KDN-containing fractions during the purification of KDN-containing glycoprotein (KDN-gp). The maximum DPs of oligo-Neu5Gc and oligo-KDN that can be detected in PSGP and KDN-gp hydrolysates were 11 and 8, respectively. The high sensitivity of this method was demonstrated by the quantification of Neu5Ac oligomers. Distributions of the monomer and oligo/polymers in the acid and enzymatic hydrolysates of colominic acid and PSGP under different conditions were also studied.

  19. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  20. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  1. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  2. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  3. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  4. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  5. Diterpenoid acids from Grindelia nana.

    PubMed

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  6. Identification of N-acetylneuraminic acid and its 9-O-acetylated derivative on the cell surface of Cryptococcus neoformans: influence on fungal phagocytosis.

    PubMed Central

    Rodrigues, M L; Rozental, S; Couceiro, J N; Angluster, J; Alviano, C S; Travassos, L R

    1997-01-01

    Sialic acids from sialoglycoconjugates present at the cell surface of Cryptococcus neoformans yeast forms were analyzed by high-performance thin-layer chromatography, binding of influenza A and C virus strains, enzymatic treatment, and flow cytofluorimetry with fluorescein isothiocyanate-labeled lectins. C. neoformans yeast forms grown in a chemically defined medium contain N-acetylneuraminic acid and its 9-O-acetylated derivative. A density of 3 x 10(6) residues of sialic acid per cell was found in C. neoformans. Sialic acids in cryptococcal cells are glycosidically linked to galactopyranosyl units as inferred from the increased reactivity of neuraminidase-treated yeasts with peanut agglutinin. N-Acetylneuraminic acids are alpha-2,6 and alpha-2,3 linked, as indicated by using virus strains M1/5 and M1/5 HS8, respectively, as agglutination probes. The alpha-2,6 linkage markedly predominated. These findings were essentially confirmed by the interaction of cryptococcal cells with the lectins Sambucus nigra agglutinin and Maackia amurensis agglutinin. We also investigated whether the sialyl residues present in C. neoformans are involved in the fungal interaction with a cationic solid-phase substrate and with mouse resident macrophages. Adhesion of yeast cells to poly-L-lysine was mediated, in part, by sialic acid residues, since the number of adherent cells was markedly reduced after treatment with bacterial neuraminidase. The enzymatic removal of sialic acids also made C. neoformans yeast cells more susceptible to endocytosis by macrophages. The results show that sialic acids are components of the cryptococcal cell surface that contribute to its negative charge and protect yeast forms against phagocytosis. PMID:9393779

  7. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  8. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  9. Folic Acid and Pregnancy

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Folic Acid ... > For Parents > Folic Acid and Pregnancy A A A What's ...

  10. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  11. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  12. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  13. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  14. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  15. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  16. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  17. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  18. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  19. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers.

  20. Analysis of putative nonulosonic acid biosynthesis pathways in Archaea reveals a complex evolutionary history.

    PubMed

    Kandiba, Lina; Eichler, Jerry

    2013-08-01

    Sialic acids and the other nonulosonic acid sugars, legionaminic acid and pseudaminic acid, are nine carbon-containing sugars that can be detected as components of the glycans decorating proteins and other molecules in Eukarya and Bacteria. Yet, despite the prevalence of N-glycosylation in Archaea and the variety of sugars recruited for the archaeal version of this post-translational modification, only a single report of a nonulosonic acid sugar in an archaeal N-linked glycan has appeared. Hence, to obtain a clearer picture of nonulosonic acid sugar biosynthesis capability in Archaea, 122 sequenced genomes were scanned for the presence of genes involved in the biogenesis of these sugars. The results reveal that while Archaea and Bacteria share a common route of sialic acid biosynthesis, numerous archaeal nonulosonic acid sugar biosynthesis pathway components were acquired from elsewhere via various routes. Still, the limited number of Archaea encoding components involved in the synthesis of nonulosonic acid sugars implies that such saccharides are not major components of glycans in this domain.

  1. Synthesis, saccharide-binding and anti-cancer cell proliferation properties of arylboronic acid derivatives of indoquinolines.

    PubMed

    Meng, Junxiu; Yu, Shaoqing; Wan, Shengbiao; Ren, Sumei; Jiang, Tao

    2011-11-01

    A facile synthesis of a series of saccharide-binding arylboronic acid derivatives of indoloquinoline was described. The key synthetic steps were polyphosphoric acid-mediated cyclization, chlorinative aromatization, and amidation. Mass spectrometry experiments revealed these synthetic arylboronic acid derivatives of indoquinolines could bind to biologically important carbohydrates (sialic acid, fucose, glucose, and galactose) by forming boronate di-esters in alkaline aqueous solution. Most of the arylboronic acid derivatives of indoquinolines inhibited human breast cancer cell (MDA-231) proliferation at a concentration of 5 μm, whereas the compound 17 exhibited highest percentages (76.74%) of the cancer cell proliferation inhibition.

  2. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  3. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  4. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  5. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  6. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  7. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  8. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  9. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  10. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth ... allergic to amoxicillin (Amoxil, Trimox, Wymox), clavulanic acid, penicillin, cephalosporins, or any other medications.tell your doctor ...

  11. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  12. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  13. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The normal range is 320 ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  14. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  15. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  16. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  17. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  18. [Acids in coffee. XI. The proportion of individual acids in the total titratable acid].

    PubMed

    Engelhardt, U H; Maier, H G

    1985-07-01

    22 acids in ground roast coffees and instant coffees were determined by GLC of their silyl derivatives (after preseparation by gel electrophoresis) or isotachophoresis. The contribution to the total acidity (which was estimated by titration to pH 8 after cation exchange of the coffee solutions) was calculated for each individual acid. The mentioned acids contribute with 67% (roast coffee) and 72% (instant coffee) to the total acidity. In the first place citric acid (12.2% in roast coffee/10.7% in instant coffee), acetic acid (11.2%/8.8%) and the high molecular weight acids (8%/9%) contribute to the total acidity. Also to be mentioned are the shares of chlorogenic acids (9%/4.8%), formic acid (5.3%/4.6%), quinic acid (4.7%/5.9%), malic acid (3.9%/3%) and phosphoric acid (2.5%/5.2%). A notable difference in the contribution to total acidity between roast and instant coffee was found for phosphoric acid and pyrrolidonecarboxylic acid (0.7%/1.9%). It can be concluded that those two acids are formed or released from e.g. their esters in higher amounts than other acids during the production of instant coffee.

  19. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  20. The second acidic constant of salicylic acid.

    PubMed

    Porto, Raffaella; De Tommaso, Gaetano; Furia, Emilia

    2005-01-01

    The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.

  1. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  2. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  3. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  4. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  5. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  6. Recurrent uric acid stones.

    PubMed

    Kamel, K S; Cheema-Dhadli, S; Shafiee, M A; Davids, M R; Halperin, M L

    2005-01-01

    A 46-year-old female had a history of recurrent uric acid stone formation, but the reason why uric acid precipitated in her urine was not obvious, because the rate of urate excretion was not high, urine volume was not low, and the pH in her 24-h urine was not low enough. In his discussion of the case, Professor McCance provided new insights into the pathophysiology of uric acid stone formation. He illustrated that measuring the pH in a 24-h urine might obscure the fact that the urine pH was low enough to cause uric acid to precipitate during most of the day. Because he found a low rate of excretion of NH(4)(+) relative to that of sulphate anions, as well as a high rate of citrate excretion, he speculated that the low urine pH would be due to a more alkaline pH in proximal convoluted tubule cells. He went on to suspect that there was a problem in our understanding of the function of renal medullary NH(3) shunt pathway, and he suggested that its major function might be to ensure a urine pH close to 6.0 throughout the day, to minimize the likelihood of forming uric acid kidney stones.

  7. Interaction between carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and saturating concentrations of Calcofluor White. A fluorescence study.

    PubMed

    Albani, J R; Sillen, A; Plancke, Y D; Coddeville, B; Engelborghs, Y

    2000-07-24

    Calcofluor White is a fluorescent probe that interacts with polysaccharides and is commonly used in clinical studies. Interaction between Calcofluor White and carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) was previously followed by fluorescence titration of the Trp residues of the protein. A stoichiometry of one Calcofluor for one protein has been found [J.R. Albani and Y.D. Plancke, Carbohydr. Res., 318 (1999) 193-200]. Alpha1-acid glycoprotein contains 40% carbohydrate by weight and has up to 16 sialic acid residues. Since binding of Calcofluor to alpha1-acid glycoprotein occurs mainly on the carbohydrate residues, we studied in the present work the interaction between Calcofluor and the protein by following the fluorescence change of the fluorophore. In order to establish the role of the sialic acid residues in the interaction, the experiments were performed with the sialylated and asialylated protein. Interaction of Calcofluor with sialylated alpha1-acid glycoprotein induces a red shift of the emission maximum of the fluorophore from 438 to 450 nm at saturation (one Calcofluor for one sialic acid) and an increase in the fluorescence intensity. At saturation the fluorescence intensity increase levels off. Binding of Calcofluor to asialylated acid glycoprotein does not change the position of the emission maximum of the fluorophore and induces a decrease in its fluorescence intensity. Saturation occurs when 10 molecules of Calcofluor are bound to 1 mol of alpha1-acid glycoprotein. Since the protein contains five heteropolysaccharide groups, we have 2 mol of Calcofluor for each group. Addition of free sialic acid to Calcofluor induces a continuous decrease in the fluorescence intensity of the fluorophore but does not change the position of the emission maximum. Our results confirm the presence of a defined spatial conformation of the sialic acid residues, a conformation that disappears when they are free in solution. Dynamics studies on Calcofluor

  8. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  9. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  10. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  11. [Aristolochic acid nephropathy].

    PubMed

    Witkowicz, Joanna

    2009-01-01

    Aristolochic acid nephropathy is a chronic, fibrosing, interstitial nephritis caused by aristolochic acid (AA), which is a component of the plants of Aristolochiacae family. It was first reported in 1993, in Belgium as a Chinese herb nephropathy, in patients who received a slimming regimen containing AA. The term aristolochic acid nephropathy also includes Balcan endemic nephropathy and other endemic tubulointerstitial fibrosis. Moreover, AA is a human carcinogen which induces urothelial cancer. The AA-containing herbs are banned in many countries and FDA published the warnings concerning the safety of AA-containing botanical remedies in 2000. Regarding the increasing interest in herbal medicines, uncontrolled access to botanical remedies and replacement of one herb by another AA-containing compounds makes thousands of people all around the world at risk of this grave disease.

  12. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  13. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  14. Ethylenediaminetetraacetic acid in endodontics.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  15. Ethylenediaminetetraacetic acid in endodontics

    PubMed Central

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented. PMID:24966721

  16. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  17. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  18. Oxalic acid excretion after intravenous ascorbic acid administration.

    PubMed

    Robitaille, Line; Mamer, Orval A; Miller, Wilson H; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L John

    2009-02-01

    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at -30 degrees C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function.

  19. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  20. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  1. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  2. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New York, NY: McGraw Hill; 2006. Wax PM, Young A. ...

  3. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  4. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  5. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  6. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  7. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  8. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  9. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  10. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  11. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  12. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  13. Acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1984-01-01

    Discusses the problem of acid rain and how it can be controlled. The book is divided into seven key sections: the problem and the legislative solutions; international mitigation programs; planning the US program; emissions reduction-before combustion; emissions/reduction-during combustion; emissions reduction-after combustion and engineering solutions under development. 13 papers have been abstracted separately.

  14. The acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1985-01-01

    A reference collection of specialized information discussions on areas critical to the acid rain issue: problem definition, impact of legislation, emissions standards, international perspective, cost scenarios, and engineering solutions. The text is reinforced with 130 illustrations and about 50 tables. Contents: International mitigation programs. Emissions reduction: before combustion; during combustion; after combustion. Engineering solutions under development.

  15. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  16. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  17. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  18. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  19. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  20. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  1. Radioenzymatic assay for quinolinic acid

    SciTech Connect

    Foster, A.C.; Okuno, E.; Brougher, D.S.; Schwarcz, R.

    1986-10-01

    A new and rapid method for the determination of the excitotoxic tryptophan metabolite quinolinic acid is based on its enzymatic conversion to nicotinic acid mononucleotide and, in a second step utilizing (/sup 3/H)ATP, further to (/sup 3/H) deamido-NAD. Specificity of the assay is assured by using a highly purified preparation of the specific quinolinic acid-catabolizing enzyme, quinolinic acid phosphoribosyltransferase, in the initial step. The limit of sensitivity was found to be 2.5 pmol of quinolinic acid, sufficient to conveniently determine quinolinic acid levels in small volumes of human urine and blood plasma.

  2. Progress in engineering acid stress resistance of lactic acid bacteria.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  3. 3-Aminoquinoline/p-coumaric acid as a MALDI matrix for glycopeptides, carbohydrates, and phosphopeptides.

    PubMed

    Fukuyama, Yuko; Funakoshi, Natsumi; Takeyama, Kohei; Hioki, Yusaku; Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-Ichirou; Iwamoto, Shinichi; Tanaka, Koichi

    2014-02-18

    Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.

  4. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    PubMed

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  5. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  6. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  7. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  8. Circulating folic acid in plasma: relation to folic acid fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of folic acid fortification in the United States has resulted in unprecedented amounts of this synthetic form of folate in the American diet. Folic acid in circulation may be a useful measure of physiologic exposure to synthetic folic acid, and there is a potential for elevated co...

  9. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  10. New form of acid phosphatase during lysosome biogenesis.

    PubMed Central

    Rao, G R; Aithal, H N; Toback, F G; Getz, G S

    1981-01-01

    Lysosome formation was induced in cells of the renal medulla by feeding rats on a K+-deficient diet. The role of the endoplasmic reticulum in the production of acid phosphatase, a typical lysosomal enzyme, was examined. Lysosomal and microsomal fractions were prepared for study by differential centrifugation of homogenates of renal papilla and inner stripe of red medulla. Acid phosphatase activity in the microsomal fraction was distinguished from the activity in the lysosomal fraction in normal tissue by differences in pH optima, tartrate inhibition, distribution of multiple forms after polyacrylamide-gel electrophoresis and detergent-sensitivity. During progressive K+ depletion, acid phosphatase activity in both microsomal and lysosomal fractions of the tissue increased 3-fold. In the lysosomes, K+ depletion was associated with the appearance of a new band of acid phosphatase. The neuraminidase-sensitivity of this band on polyacrylamide-gel electrophoresis indicated that the enzyme protein had been modified by the addition of sialic acid residues. K+ depletion also altered the lysosomal enzyme so that thiol compounds were able to stimulate its activity. Images Fig. 4. PMID:7326004

  11. Evidence for a bladder cell glycolipid receptor for Escherichia coli and the effect of neuraminic acid and colominic acid on adherence.

    PubMed Central

    Davis, C P; Avots-Avotins, A E; Fader, R C

    1981-01-01

    The rat bladder epithelial cell receptors involved in mannose-sensitive adherence of Escherichia coli strains were studied. Sodium metaperiodate and lipase pretreatment of epithelial cells significantly reduced bacterial adherence to cells whereas trypsin and phospholipase C had a marginal or insignificant effect on adherence. Neuraminidase and colominic acid significantly increased adherence, whereas N-acetylneuraminic acid significantly reduced adherence. These data suggest that the rat bladder epithelial cell receptors involved in mannose-sensitive adherence are glycolipids. In addition, the data suggested that sialic acid on bladder epithelial cells acts as a nonspecific inhibitor of adherence, whereas colominic acid, a component of some E. coli K1 capsules, may act as a promoter of adherence. PMID:6277793

  12. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  13. Autohydrolysis of phytic acid.

    PubMed

    Hull, S R; Gray, J S; Montgomery, R

    1999-09-10

    The autohydrolysis of phytic acid at 120 degrees C resulted in the formation of most of the phosphate esters of myo-inositol in varying amounts depending upon the reaction time. Eighteen of the 39 chromatographically distinct myo-inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates have been characterized using two different HPLC systems. These myo-inositol phosphates were partially purified by preparative anion-exchange chromatography under acidic and alkaline elution conditions. The combination of these two methods provides a two-tiered chromatographic approach to the rapid and sensitive identification of inositol phosphates in complex mixtures. Identification of the products was confirmed by 1D and 2D (1)H NMR analysis. The analytical procedure was applied to the autohydrolysis of the mixture of inositol phosphates from corn steep water.

  14. Optimize acid gas removal

    SciTech Connect

    Nicholas, D.M.; Wilkins, J.T.

    1983-09-01

    Innovative design of physical solvent plants for acid gas removal can materially reduce both installation and operating costs. A review of the design considerations for one physical solvent process (Selexol) points to numerous arrangements for potential improvement. These are evaluated for a specific case in four combinations that identify an optimum for the case in question but, more importantly, illustrate the mechanism for use for such optimization elsewhere.

  15. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  16. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  17. Pantothenic acid (Vitamin B5)

    MedlinePlus

    Pantothenic acid is a vitamin, also known as vitamin B5. It is widely found in both plants and animals ... Vitamin B5 is commercially available as D-pantothenic acid, as well as dexpanthenol and calcium pantothenate, which ...

  18. Folic Acid Questions and Answers

    MedlinePlus

    ... Controls NCBDDD Cancel Submit Search The CDC Folic Acid Note: Javascript is disabled or is not supported ... please visit this page: About CDC.gov . Folic Acid Homepage Facts Quiz Frequently Asked Questions General Information ...

  19. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  20. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  1. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  2. Microbial naphthenic Acid degradation.

    PubMed

    Whitby, Corinne

    2010-01-01

    Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.

  3. Amino acids in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Peterson, E.

    1975-01-01

    Studies with the combined gas chromatograph-mass spectrometer were conducted to characterize further the amino acids found in extracts of the Murchison meteorite. With the exception of beta-aminoisobutyric acid, all of the amino acids which were found in previous studies of the Murchison meteorite and the Murray meteorite have been identified. The results obtained lend further support to the hypothesis that amino acids are present in the Murchison meteorite as the result of an extraterrestrial abiotic synthesis.

  4. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  5. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  6. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  7. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  8. Scientists Puzzle Over Acid Rain

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Reports on a growing concern over increased acidity in atmospheric percipitation. Explores possible causes of the increased acidity, identifies chemical components of precipitation in various parts of the world, and presents environmental changes that might be attributed to the acidity. (GS)

  9. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  10. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  11. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  12. Polysialic acid in human neuroblastoma cells

    SciTech Connect

    Livingston, B.D.; Jacobs, J.; Shaw, G.W.; Glick, M.C.; Troy, F.A.

    1987-05-01

    Prokaryotic-derived probes that specifically detect ..cap alpha..-2,8-linked polysialic acid (PSA) units on embryonic neural cell adhesion molecules (N-CAM) were used to show that membrane glycoproteins (GPs) from metastatic human neuroblastoma cells (CHP-134) also contain these unique carbohydrate moieties. This conclusion was based on the following evidence: (1) membranes from CHP-134 cells served as an exogenous acceptor of (/sup 14/C)NeuNAc units in an E. coli K1 sialyltransferase (ST) assay. The bacterial ST is specific for the transfer of (/sup 14/C)NeuNAc to exogenous acceptors containing at least 3 sialyl units (DP3); (2) in SDS-PAGE, the (/sup 14/C)NeuNAc-labeled CHP-134 membranes showed a major peak of radioactivity that was polydisperse. N-CAM shows a similar Mr heterogeneity; (3) treatment of the high Mr CHP-134 product with Endo-N-acetylneuraminidase (Endo-N) released the (/sup 14/C)NeuNAc label as a DP4. Endo-N is specific for hydrolysing ..cap alpha..-2,8-linked PSA chains containing a minimum of 5 sialyl residues; (4) treatment of the DP4 with sialidase converted the label to (/sup 14/C)NeuNAc, thus proving the tetramer contained sialic acid; (5) CHP-134 cells were labeled in vivo with (/sup 3/H)GlcN. A glycopeptide fraction representing ca. 1% of the (/sup 3/H)GlcN incorporated was isolated. Based on Endo-N sensitivity, this glycopeptide contained at least 15-20% of the (/sup 3/H)GlcN label as PSA. Endo-N digestion of the (/sup 3/H)-labeled glycopeptide released (/sup 3/H)-DP4. These results suggest that the surface expression of PSA-containing GPs may be important in neuroblastoma metastasis.

  13. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  14. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  15. The politics of acid rain

    SciTech Connect

    Wilcher, M.E. )

    1989-01-01

    This work examines and compares the acid rain policies through the different political systems of Canada, Great Britain and the United States. Because the flow of acid rain can transcend national boundaries, acid rain has become a crucial international problem. According to the author, because of differences in governmental institutions and structure, the extent of governmental intervention in the industrial economy, the degree of reliance on coal for power generation, and the extent of acid rain damage, national responses to the acid rain problem have varied.

  16. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  17. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    DTIC Science & Technology

    2010-06-17

    Investigaciones Científicas y Servicios de Alta Tecnología -AIP (INDICASAT- AIP), Ciudad del Saber, Clayton, Panamá, 4 Division of Malaria Vaccine Development, the...a training grant from the Secretaría Nacional de Ciencia y Tecnología (SENACYT), República de Panamá. The funders had no role in study design, data

  18. The Determination of Sialic Acid--An Experiment that Demonstrates Many Important Aspects of Spectrophotometric Assays.

    ERIC Educational Resources Information Center

    O'Kennedy, Richard

    1988-01-01

    Describes an instructional experiment that was designed to illustrate the use of periodate oxidation in sugar analysis, and the consequence that the absorbance of mixtures of non-interacting substances is additive. (TW)

  19. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  20. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  1. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  2. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  3. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  4. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid.

    PubMed

    Májer, Ferenc; Sharma, Ruchika; Mullins, Claire; Keogh, Luke; Phipps, Sinead; Duggan, Shane; Kelleher, Dermot; Keely, Stephen; Long, Aideen; Radics, Gábor; Wang, Jun; Gilmer, John F

    2014-01-01

    We have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death. Several compounds were identified with low micromolar IC₅₀ values for reducing cell viability in the Caco-2 and HT1080 cell lines, making them among the most potent BA apoptotic agents reported to date. There was no evidence of relationship between overall hydrophobicity and cytotoxicity supporting the idea that cell death induction by BAs may be structure-specific. Compounds derived from DCA caused cell death through apoptosis. There was some evidence of selectivity between the two cell lines studied which may be due to differing expression of CD95/FAS. The more toxic compounds increased ROS production in Caco-2 cells, and co-incubation with the antioxidant N-acetyl cysteine blunted pro-apoptotic effects. The properties these compounds suggest that there may be specific mechanism(s) mediating BA induced cell death. Compound 8 could be useful for investigating this phenomenon.

  5. Cryoprotection from lipoteichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  6. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  7. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  8. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification.

  9. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  10. CELL PENETRATION BY ACIDS : VI. THE CHLOROACETIC ACIDS.

    PubMed

    Crozier, W J

    1922-09-20

    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  11. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  12. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  13. [Analysis of citric acid and citrates. Citric acid and urolithiasis].

    PubMed

    Leskovar, P

    1979-08-01

    In the first part the physico-chemical, analytic chemical and physiologic biochemical properties of the citric acid are discussed. In the second part the author enters the role of the citric acid in the formation of uric calculi. In the third part is reported on the individual methods of the determination of citric acid and the method practised in the author's laboratory is described.

  14. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  15. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  16. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  17. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  18. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  19. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  20. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...