Science.gov

Sample records for acid sodium dodecyl

  1. Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate and sodium oleate in acidic solutions

    SciTech Connect

    Luo, H.; Han, K.N.; Guan, Y.C.

    1998-08-01

    Inhibition of mild steel corrosion by sodium dodecyl benzene sulfonate (C{sub 12}H{sub 25}C{sub 6}H{sub 4}SO{sub 3}Na [SDBS]) and sodium oleate (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH{sub 2}]{sub 7}COONa) in acidic solutions was investigated using a potentiostat, a lock-in amplifier, a contact angle goniometer, A fourier transform infrared (FTIR) spectrometer, and an ultraviolet (UV)/visible spectrophotometer. In the presence of the organic inhibitors, the corrosion rate was reduced significantly, Anionic SDBS was adsorbed on the positively charged mild steel surface through the electrostatic attraction. However, for sodium oleate, the soluble oleic acid (CH{sub 3}[CH{sub 2}]{sub 7}CH{double_bond}CH[CH]{sub 7}COOH) chemisorbed on the steel surface at the first stage. Then, insoluble colloid adsorbed on the chemisorbed surface through van der Waals forces.

  2. Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study

    NASA Astrophysics Data System (ADS)

    Patriati, Arum; Giri Rachman Putra, Edy; Seok Seong, Baek

    2010-01-01

    The effect of a different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH)10COOH or lauric acid and hexadecanoic acid, CH3(CH2)14COOH or palmitic acid as a co-surfactant in the 0.3 M sodium dedecyl sulfate, SDS micellar solution has been studied using small angle neutron scattering (SANS). The present of lauric acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 22.6 Å to 37.1 Å at a fixed minor axis of 16.7 Å in the present of 0.005 M to 0.1 M lauric acid. Nevertheless, this effect did not occur in the present of palmitic acid with the same concentration range. The present of palmitic acid molecules performed insignificant effect on the SDS micelles growth where the major axis of the micelle was elongated from 22.9 Å to 25.3 Å only. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules emerged as one of the determining factors in forming a mixed micelles structure.

  3. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate.

    PubMed

    Obukhova, Elena N; Mchedlov-Petrossyan, Nikolay O; Vodolazkaya, Natalya A; Patsenker, Leonid D; Doroshenko, Andrey O; Marynin, Andriy I; Krasovitskii, Boris M

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR(+)⇄R+H(+)) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R(±). The indices of apparent ionization constants of fifteen rhodamine cations HR(+) with different substituents in the xanthene moiety vary within the range of pKa(app)=5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators. PMID:27423469

  4. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  5. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    PubMed

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest. PMID:24423544

  6. Control of pathogens in biofilms on the surface of stainless steel by levulinic acid plus sodium dodecyl sulfate.

    PubMed

    Chen, Dong; Zhao, Tong; Doyle, Michael P

    2015-08-17

    The efficacy of levulinic acid (LVA) plus sodium dodecyl sulfate (SDS) to remove or inactivate Listeria monocytogenes, Salmonella Typhimurium, and Shiga toxin-producing Escherichia coli (STEC) in biofilms on the surface of stainless steel coupons was evaluated. Five- or six-strain mixtures (ca. 9.0 log CFU/ml) of the three pathogens were separately inoculated on stainless steel coupons. After incubation at 21 °C for 72 h, the coupons were treated for 10 min by different concentrations of LVA plus SDS (0.5% LVA+0.05% SDS, 1% LVA+0.1% SDS, and 3% LVA+2% SDS) and other commonly used sanitizers, including a commercial quaternary ammonium-based sanitizer (150 ppm), lactic acid (3%), sodium hypochlorite (100 ppm), and hydrogen peroxide (2%). The pathogens grew in the biofilms to ca. 8.6 to 9.3 log CFU/coupon after 72 h of incubation. The combined activity of LVA with SDS was bactericidal in biofilms for cells of the three pathogens evaluated, with the highest concentrations (3% LVA+2% SDS) providing the greatest log reduction. Microscopic images indicated that the cells were detached from the biofilm matrix and the integrity of cell envelopes were decreased after the treatment of LVA plus SDS. This study is conducive to better understanding the antimicrobial behavior of LVA plus SDS to the foodborne pathogens within biofilms. PMID:25950851

  7. Efficacy of levulinic acid-sodium dodecyl sulfate against Encephalitozoon intestinalis, Escherichia coli O157:H7, and Cryptosporidium parvum.

    PubMed

    Ortega, Ynes R; Torres, Maria P; Tatum, Jessica M

    2011-01-01

    Foodborne parasites are characterized as being highly resistant to sanitizers used by the food industry. In 2009, a study reported the effectiveness of levulinic acid in combination with sodium dodecyl sulfate (SDS) in killing foodborne bacteria. Because of their innocuous properties, we studied the effects of levulinic acid and SDS at various concentrations appropriate for use in foods, on the viability of Cryptosporidium parvum and Encephalitozoon intestinalis. The viability of Cryptosporidium and E. intestinalis was determined by in vitro cultivation using the HCT-8 and RK-13 cell lines, respectively. Two Escherichia coli O157:H7 isolates were also used in the present study: strain 932 (a human isolate from a 1992 Oregon meat outbreak) and strain E 0018 (isolated from calf feces). Different concentrations and combinations of levulinic acid and SDS were tested for their ability to reduce infectivity of C. parvum oocysts (10(5)), E. intestinalis spores (10(6)), and E. coli O157:H7 (10(7)/ml) when in suspension. Microsporidian spores were treated for 30 and 60 min at 20 ± 2°C. None of the combinations of levulinic acid and SDS were effective at inactivating the spores or oocysts. When Cryptosporidium oocysts were treated with higher concentrations (3% levulinic acid-2% SDS and 2% levulinic acid-1% SDS) for 30, 60, and 120 min, viability was unaffected. E. coli O157:H7, used as a control, was highly sensitive to the various concentrations and exposure times tested. SDS and levulinic acid alone had very limited effect on E. coli O157:H7 viability, but in combination they were highly effective at 30 and 60 min of incubation. In conclusion, Cryptosporidium and microsporidia are not inactivated when treated for various periods of time with 2% levulinic acid-1% SDS or 3% levulinic acid-2% SDS at 20°C, suggesting that this novel sanitizer cannot be used to eliminate parasitic contaminants in foods. PMID:21219777

  8. Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates.

    PubMed

    Cannon, Jennifer L; Aydin, Ali; Mann, Amy N; Bolton, Stephanie L; Zhao, Tong; Doyle, Michael P

    2012-08-01

    Human noroviruses are the most common etiologic agent of foodborne illness in the United States. The inability to culture human noroviruses in the laboratory necessitates the use of surrogate viruses such as murine norovirus (MNV-1) and feline calicivirus (FCV) for inactivation studies. In this study, a novel sanitizer of organic acid (levulinic acid) plus the anionic detergent sodium dodecyl sulfate (SDS) was evaluated. Viruses were treated with levulinic acid (0.5 to 5%), SDS (0.05 to 2%), or combinations of levulinic acid plus SDS (1:10 solution of virus to sanitizer). MNV-1 inoculated onto stainless steel also was treated with a 5% levulinic acid plus 2% SDS liquid or foaming solution. Log reductions of viruses were determined with a plaque assay. Neither levulinic acid nor SDS alone were capable of inactivating MNV-1 or FCV, resulting in a ≤0.51-log reduction of the infectious virus titer. However, the combination of 0.5% levulinic acid plus 0.5% SDS inactivated both surrogates by 3 to 4.21 log PFU/ml after 1 min of exposure. Similarly, MNV-1 inoculated onto stainless steel was reduced by >1.50 log PFU/ml after 1 min and by >3.3 log PFU/ml after 5 min of exposure to a liquid or foaming solution of 5% levulinic acid plus 2% SDS. The presence of organic matter (up to 10%) in the virus inoculum did not significantly affect sanitizer efficacy. The fact that both of the active sanitizer ingredients are generally recognized as safe to use as food additives by the U.S. Food and Drug Administration further extends its potential in mitigating foodborne disease. PMID:22856583

  9. Inactivation of salmonella in biofilms and on chicken cages and preharvest poultry by levulinic Acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Cannon, Jennifer L; Doyle, Michael P

    2011-12-01

    Surface contamination (skin and feathers) of broilers with Salmonella occurs primarily during growth and transportation. Immediately after transporting chickens, chicken cage doors were sprayed with a foam containing 3% levulinic acid plus 2% sodium dodecyl sulfate (SDS). Samples were collected for Salmonella assay after 45 min. Salmonella on cage doors was reduced from 19% (19 of 100 doors) before treatment to 1% (1 of 100 doors) after treatment, coliform counts were reduced from 6 to 8 to 2 to 4 log CFU/9 cm(2), and aerobic plate counts were reduced from 7 to 9 to 4 to 6 log CFU/9 cm(2). Whole chicken carcasses with feathers were inoculated with 10(8) CFU of Salmonella Enteritidis, soaked for 5 min at 21°C in 72 liters of a treatment or control solution, and assayed for Salmonella. Salmonella counts on chickens treated with water were 6.8 to 8.5 log CFU/9 cm(2), those treated with 50 ppm of calcium hypochlorite were 7.6 to 8.9 log CFU/9 cm(2), and those treated with 3% levulinic acid plus 2% SDS were <1.7 to 2.8 CFU/9 cm(2) (>4-log reduction). Results of biofilm studies on surfaces of various materials revealed that a 3% levulinic acid plus 2% SDS treatment used as either a foam or liquid for 10 min effectively reduced Salmonella populations by 5 and >6 log CFU/cm(2), respectively. PMID:22186041

  10. Effects of sodium dodecyl sulfate of polyphenoloxidase

    SciTech Connect

    Moore, B.M.; Flurkey, W.H. )

    1989-04-01

    The effects of sodium dodecyl sulfate (SDS) on the enzymatic and physical characteristics of purified broad bean polyphenoloxidase (PPO) were examined. A sigmoidal increase in PPO activation was observed with increasing SDS concentrations. Half maximal activation occurred at .9 mM SDS well below the CMC of 3.5 mM. No apparent changes in the Km for catechol, pH optimum, of I{sub 50} for tropolone were observed in the presence vs absence of SDS. Thermal inactivation and binding of {sup 14}C dopa increased in the presence of SDS. Analytical ultracentrifugation and HPLC-SEC indicated that SDS did not change the apparent size of the PPO under nondenaturing conditions. Scanning fluorescence spectroscopy showed an increase in intrinsic trp/tyr fluorescence at approximately the same concentration in which SDS activation began. Further addition of SDS caused a large increase in intrinsic fluorescence. These results suggest the SDS causes an apparent conformational change induced by SDS binding which leads to enzyme activation.

  11. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package.

    PubMed

    Guan, Wenqiang; Huang, Lihan; Fan, Xuetong

    2010-10-01

    Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 °C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO(2) and lower O(2) in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage. PMID:21535517

  12. Synergistic effects of lactic acid and sodium dodecyl sulfate to decontaminate Escherichia coli O157:H7 on cattle hide sections.

    PubMed

    Elramady, Mohamed G; Aly, Sharif S; Rossitto, Paul V; Crook, Jennifer A; Cullor, James S

    2013-07-01

    The objective of this study was to investigate the antibacterial properties of chitosan acetate (CA), sodium dodecyl sulfate (SDS), lactic acid (LA) and their synergism when combined against a nontoxigenic strain of Escherichia coli O157:H7. Treatments that significantly reduced the concentration of E. coli O157:H7 in vitro by more than two logs were further investigated using a cattle hide decontamination model. In vitro treatments included CA (1% chitosan in 1% acetic acid vol/vol), SDS (1% vol/vol), SDS (2% vol/vol), LA (1% vol/vol), CA-SDS combination (1% chitosan in 1% acetic acid vol/vol mixed with 1% SDS vol/vol), and LA-SDS combination in two different concentrations (1% LA mixed with 1% SDS vol/vol, and 1% LA mixed with 2% SDS vol/vol). Butterfield's Phosphate Buffer water was used as a control. The antibacterial effect of 1% CA solution alone and in combination with 1% SDS in vitro resulted in a 1.8 and 1.7 log colony-forming units (CFU)/mL reduction, respectively (p<0.05). Only 1% LA, 1% SDS, 2% SDS and their combinations resulted in a >2 log reduction in E. coli O157:H7. On hide sections, both 1% LA-1% SDS and 1% LA-2% SDS combinations significantly (p<0.05) reduced E. coli O157:H7 concentration by 4.6 and 4.7 log CFU/ cm(2) greater than the control, respectively. There was no significant difference in the antibacterial effect of 1% LA compared to the control, 2% SDS compared to the control, or 1% LA compared to 2% SDS. Hence, the antibacterial efficacy of 1% LA against E. coli O157:H7 on hide sections was significantly enhanced when combined with 1% SDS. Results of this study support the use of low concentration LA-SDS combination as a hide wash to reduce the risk of E. coli O157:H7 contamination. PMID:23594235

  13. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  14. Effectiveness of levulinic acid and sodium dodecyl sulfate employed as a sanitizer during harvest or packing of cantaloupes contaminated with Salmonella Poona.

    PubMed

    Webb, Cathy C; Erickson, Marilyn C; Davey, Lindsey E; Doyle, Michael P

    2015-08-17

    Freshly harvested Eastern variety cantaloupes (Cucumis melo L. var. reticulatus cv. Athena) were subjected to three different harvest and wash treatments to examine conditions under which the efficacy of the sanitizer, levulinic acid (LV) plus sodium dodecyl sulfate (SDS), could be enhanced to reduce Salmonella contamination. In treatment set one, cantaloupes were spot inoculated with Salmonella enterica serovar Poona (prepared from solid or liquid media cultures) before or after a 1-min dip treatment in LV (2.5, 5.0, 7.5, or 10%) and 2.5% SDS. S. Poona initial populations on rind tissue (4.26-5.04 log CFU/sample) were reduced to detection by enrichment culture when cantaloupes were subsequently exposed to any of the LV/SDS solutions. When S. Poona was introduced after cantaloupes had been dip-treated, greater decreases in pathogen populations at the stem scar were observed when cantaloupes were treated with increasing concentrations of LV. In treatment set two, the response of S. Poona dip-treated with 5% LV/2.5% SDS was compared to a simulated commercial dump tank treatment incorporating 200 ppm chlorine as well as a two-stage treatment employing both the chlorine tank and LV/SDS dip treatments. S. Poona levels (log CFU/sample or # positive by enrichment culture/# analyzed) after treatments were 5.25, 3.07, 7/10, 5/10 (stem scar) and 3.90, 25/40, 28/40, 20/40 (rind) for non-treated, chlorine tank, LV/SDS dip, and tank plus dip treatments, respectively. In treatment set three, freshly harvested cantaloupes were first treated in the field using a needle-free stem scar injection (200 μl, 7.5% LV/1.0% SDS, 60 psi) and a cantaloupe spray (30 ml, 7.5% LV/0.5% SDS). Cantaloupe stem scar and rind tissue were then spot-inoculated with S. Poona using either a liquid or soil-based medium followed by a simulated dump tank treatment incorporating either 200 ppm chlorine or 5% LV/2% SDS. S. Poona inoculated on field-treated cantaloupe rind decreased by 4.7 and 5.31 (liquid

  15. A precise spectrophotometric method for measuring sodium dodecyl sulfate concentration.

    PubMed

    Rupprecht, Kevin R; Lang, Ewa Z; Gregory, Svetoslava D; Bergsma, Janet M; Rae, Tracey D; Fishpaugh, Jeffrey R

    2015-10-01

    Sodium dodecyl sulfate (SDS) is used to denature and solubilize proteins, especially membrane and other hydrophobic proteins. A quantitative method to determine the concentration of SDS using the dye Stains-All is known. However, this method lacks the accuracy and reproducibility necessary for use with protein solutions where SDS concentration is a critical factor, so we modified this method after examining multiple parameters (solvent, pH, buffers, and light exposure). The improved method is simple to implement, robust, accurate, and (most important) precise. PMID:26150094

  16. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2007-09-27

    The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation. PMID:17803299

  17. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  18. Fluorescent staining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide.

    PubMed

    Zhu, Zhongxin; Zhou, Xuan; Wang, Yang; Chi, Lisha; Ruan, Dandan; Xuan, Yuanhu; Cong, Weitao; Jin, Litai

    2014-06-01

    A fluorescent detection method for glycoproteins in SDS-PAGE by using 4H-[1]-benzopyrano[4,3-b]thiophene-2-carboxylic acid hydrazide (BH) was developed in this study. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be specifically detected by the BH staining method, which is twofold more sensitive than that of the most commonly used Pro-Q Emerald 488 glycoprotein stain. Furthermore, the specificity of the newly developed stain for glycoproteins was demonstrated by 1-D and 2-D SDS-PAGE, deglycosylation, glycoprotein affinity enrichment and LC-MS/MS, respectively. According to the results, it is concluded that BH stain may provide new choices for convenient, sensitive, specific and economic visualization of gel-separated glycoproteins. PMID:24712021

  19. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments.

    PubMed

    Afolayan, Olamide T; Webb, Cathy C; Cannon, Jennifer L

    2016-03-01

    Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method. PMID:26514820

  20. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  1. A CRITICAL EXAMINATION OF THE SODIUM DODECYL SULFATE (SDS) SEDIMENTATION TEST FOR WHEAT MEALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sedimentation tests have long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. However, the use of the sodium dodecyl sulfate (SDS) sedimentation test AACC International Approved Method 56-70 for durum wheat has not been characterized...

  2. Analysis of sperm antigens by sodium dodecyl sulfate gel/protein blot radioimmunobinding method

    SciTech Connect

    Lee, C.Y.G.; Huang, Y.S.; Hu, P.C.; Gomel, V.; Menge, A.C.

    1982-06-01

    A radioimmunobinding method based on the blotting of renatured proteins from sodium dodecyl sulfate gels on to nitrocellulose filter papers was developed to analyze the sperm antigens that elicit serum anti-sperm antibodies. In rabbits, serum anti-sperm antibodies were raised by immunization with homologous epididymal spermatozoa mixed with complete Freund's adjuvant. The raised antisera from either male or female rabbits were shown to react with three major sperm protein bands on sodium dodecyl sulfate gels with the corresponding molecular weights of about 70,000 +/- 5000, 14,000, and 13,000, respectively. In humans, the monoclonal antibodies against human sperm were raised by a hybridoma technique. Out of six independent hybrid cell lines that were generated, three of them were shown to secrete immunoglobulins that react with the same two protein bands on sodium dodecyl sulfate gels, which have the approximate molecular weight of 10,000. The same procedure was also used to analyze human serum samples that were shown to contain anti-sperm antibodies by the known techniques. Unique sperm antigens that elicit anti-sperm antibodies in humans were identified and correlated. The results of this study suggest that sodium dodecyl sulfate gel/protein blot radioimmunobinding method may be a sensitive and useful tool for the study of sperm antigens that elicit autoimmune responses and their association with human infertility.

  3. An examination of the solution phase and nucleation properties of sodium, potassium and rubidium dodecyl sulphates

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Roberts, K. J.; Machin, D.; McLeod, G.

    2001-06-01

    The nucleation of sodium, rubidium and potassium dodecyl sulphates are examined using temperature programmed milli-scale batch crystallisation experiments using optical turbidometry detection. As sodium dodecyl sulphate (SDS) crystallises as a hydrated system from aqueous solution, studies have also been carried out in the presence of sodium citrate, which causes the anhydrous phase to crystallise. The meta-stable zone widths (MSZW) and solution properties (the enthalpies and entropies of dissolution) as well as the nucleation reaction orders, are measured. The temperature of dissolution decreases with the decrease in cooling/heating rate whilst the temperature of crystallisation increases for all the systems, resulting in a decrease in the meta-stable zone width with decreasing temperature change rate. The enthalpies and entropies of dissolution of sodium, potassium and rubidium dodecyl sulphate increased with increasing alkali metal ionic radii. Very large values of MSZW for sodium citrate containing solutions occur. Extremely high reaction orders occur with SDS, at high concentrations when pure and at low concentrations when with sodium citrate.

  4. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    SciTech Connect

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties of rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.

  5. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  6. Reactions in microemulsion formed by sodium dodecyl sulfate, water, and hexanol

    SciTech Connect

    Valaulikar, B.S. . Chemistry Div.)

    1993-11-01

    The reactions, oxidation of iodide by persulfate and basic hydrolysis of crystal violet, were investigated in the w/o microemulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of emulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of water to surfactant molar ratio and hexanol content. The increased rates were attributed to the smaller droplet size of the water pools. The rates are shown to be controlled by the water content as well as the hexanol content. It is shown that the manner in which the rate is affected applies to the catalyzed as well as the retarded reactions. This system is shown to be more effective than the AOT/water/decane system.

  7. Surface modification to produce hydrophobic nano-silica particles using sodium dodecyl sulfate as a modifier

    NASA Astrophysics Data System (ADS)

    Qiao, Bing; Liang, Yong; Wang, Ting-Jie; Jiang, Yanping

    2016-02-01

    Hydrophobic silica particles were prepared using the surfactant sodium dodecyl sulfate (SDS) as a modifier by a new route comprising three processes, namely, aqueous mixing, spray drying and thermal treatment. Since SDS dissolves in water, this route is free of an organic solvent and gave a perfect dispersion of SDS, that is, there was excellent contact between SDS and silica particles in the modification reaction. The hydrophobicity of the modified surface was verified by the contact angle of the nano-sized silica particles, which was 107°. The SDS grafting density reached 1.82 nm-2, which is near the highest value in the literature. The optimal parameters of the SDS/SiO2 ratio in the aqueous phase, process temperature and time of thermal treatment were determined to be 20%, 200 °C and 30 min, respectively. The grafting mechanism was studied by comparing the modification with that on same sized TiO2 particles, which indicated that the protons of the Brønsted acid sites on the surface of SiO2 reacted with SDS to give a carbocation which then formed a Si-O-C structure. This work showed that the hydrophilic surface of silica can be modified to be a hydrophobic surface by using a water soluble modifier SDS in a new modification route.

  8. Concentration of polyaromatic hydrocarbons in water to sodium dodecyl sulfate-gamma-alumina admicelle.

    PubMed

    Saitoh, Tohru; Matsushima, Seiichi; Hiraide, Masataka

    2005-04-01

    Polyaromatic hydrocarbons (PAHs) in water were concentrated into sodium dodecyl sulfate (SDS)-gamma-alumina and di-2-ethylhexyl sodium sulfosuccinate (Aerosol-OT, AOT)-gamma-alumina admicelles. The comparison of the binding constants (Kad[={adsorbed concentration of the solute (mol/g surfactant)}/{the concentration in the bulk aqueous phase (mol/ml)}] indicated almost the same extraction abilities of the both admicelles. However, better and more reproducible recovery was obtained in the concentration of PAHs into the SDS-gamma-alumina admicelle. PAHs in tobacco smoke that were trapped in water were successfully concentrated into SDS-gamma-alumina admicelle for the HPLC analysis. PMID:15830954

  9. Sodium dodecyl sulfate monomers induce XAO peptide polyproline II to α-helix transition.

    PubMed

    Hong, Zhenmin; Damodaran, Krishnan; Asher, Sanford A

    2014-09-11

    XAO peptide (Ac-X2A7O2-NH2; X: diaminobutyric acid side chain, -CH2CH2NH3(+); O: ornithine side chain, -CH2CH2CH2NH3(+)) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of α-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO-SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO-SDS aggregate α-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ψ angle distributions of aggregated XAO peptides. We resolved α-, π- and 3(10)-helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO4-SDS16 aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables α-helix formation. Four XAO-SDS4 aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the α-helix peptide contacts the water environment. PMID:25121643

  10. Sodium Dodecyl Sulfate Monomers Induce XAO Peptide Polyproline II to α-Helix Transition

    PubMed Central

    2015-01-01

    XAO peptide (Ac–X2A7O2–NH2; X: diaminobutyric acid side chain, −CH2CH2NH3+; O: ornithine side chain, −CH2CH2CH2NH3+) in aqueous solution shows a predominantly polyproline II (PPII) conformation without any detectable α-helix-like conformations. Here we demonstrate by using circular dichroism (CD), ultraviolet resonance Raman (UVRR) and nuclear magnetic resonance (NMR) spectroscopy that sodium dodecyl sulfate (SDS) monomers bind to XAO and induce formation of α-helix-like conformations. The stoichiometry and the association constants of SDS and XAO were determined from the XAO–SDS diffusion coefficients measured by pulsed field gradient NMR. We developed a model for the formation of XAO–SDS aggregate α-helix-like conformations. Using UVRR spectroscopy, we calculated the Ramachandran ψ angle distributions of aggregated XAO peptides. We resolved α-, π- and 310- helical conformations and a turn conformation. XAO nucleates SDS aggregation at SDS concentrations below the SDS critical micelle concentration. The XAO4–SDS16 aggregates have four SDS molecules bound to each XAO to neutralize the four side chain cationic charges. We propose that the SDS alkyl chains partition into a hydrophobic core to minimize the hydrophobic area exposed to water. Neutralization of the flanking XAO charges enables α-helix formation. Four XAO–SDS4 aggregates form a complex with an SDS alkyl chain-dominated hydrophobic core and a more hydrophilic shell where one face of the α-helix peptide contacts the water environment. PMID:25121643

  11. Detection of Connexins in Liver Cells Using Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis and Immunoblot Analysis.

    PubMed

    Willebrords, Joost; Maes, Michaël; Yanguas, Sara Crespo; Cogliati, Bruno; Vinken, Mathieu

    2016-01-01

    Since connexin expression is partly regulated at the protein level, immunoblot analysis represents a frequently addressed technique in the connexin research field. The present chapter describes the setup of an immunoblot procedure, including protein extraction and quantification from biological samples, gel electrophoresis, protein transfer, and immunoblotting, which is optimized for analysis of connexins in liver tissue. In essence, proteins are separated on a polyacrylamide gel using sodium dodecyl sulfate followed by transfer of proteins on a nitrocellulose membrane. The latter allows specific detection of connexins with antibodies combined with revelation through enhanced chemiluminescence. PMID:27207285

  12. Isolation of Photosystem I Complexes from Octyl Glucoside/Sodium Dodecyl Sulfate Solubilized Spinach Thylakoids 1

    PubMed Central

    Dunahay, Terri G.; Staehelin, L. Andrew

    1985-01-01

    We have used the nonionic detergent octyl-β-d-glucopyranoside in combination with sodium dodecyl sulfate to isolate two novel Photosystem I (PSI) complexes from spinach (Spinacea oleracea L.) thylakoid membranes. These complexes have been characterized as to their spectral properties, content of PSI reaction center chlorophyll P700, and protein composition. PSI-B, purified from solubilized membranes by sucrose density gradient centrifugation, is a putative native PSI complex. PSI-B contains four polypeptides between 21 and 25 kilodaltons in addition to the components of the PSI antenna complex (LHCI); three of these polypeptides have not previously been associated with PSI. A second complex, CPI*, is purified from octyl glucoside/sodium dodecyl sulfate solubilized thylakoids by two cycles of preparative gel electrophoresis under mildly denaturing conditions. Electrophoresis under these conditions releases a discrete set of polypeptides from PSI producing a complex composed only of the PSI reaction center and the LHCI antenna. In addition, the PSI reaction center complex CPI isolated from preparative gels and PSI-B were reconstituted into lecithin liposomes for structural analysis using freeze-fracture electron microscopy. The results suggest that the native PSI complex produces 12- to 13-nanometer particles, while the PSI reaction center, depleted of LHCI and peripheral proteins, produces particles with an average diameter of 10 nanometers. Images Fig. 1 Fig. 2 Fig. 5 Fig. 6 Fig. 7 PMID:16664291

  13. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    SciTech Connect

    Liu, Renyu Bu, Weiming; Xi, Jin; Mortazavi, Shirin R.; Cheung-Lau, Jasmina C.; Dmochowski, Ivan J.; Loll, Patrick J.

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that the SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.

  14. Effect of 1-Butyl-3-methylimidazolium Halide on the Relative Stability between Sodium Dodecyl Sulfate Micelles and Sodium Dodecyl Sulfate-Poly(ethylene oxide) Nanoaggregates.

    PubMed

    Ferreira, Gabriel M Dias; Ferreira, Guilherme M Dias; Agudelo, Álvaro J Patiño; Hespanhol da Silva, Maria C; Rezende, Jaqueline de Paula; Pires, Ana Clarissa Dos Santos; da Silva, Luis Henrique Mendes

    2015-12-24

    It is well-known that ionic liquids (ILs) alter the properties of aqueous systems containing only surfactants. However, the effect of ILs on polymer-surfactant systems is still unknown. Here, the effect of 1-butyl-3-methylimidazolium bromide (bmimBr) and chloride (bmimCl) on the micellization of sodium dodecyl sulfate (SDS) and its interaction with poly(ethylene oxide) (PEO) was evaluated using conductimetry, fluorimetry, and isothermal titration calorimetry. The ILs decreased the critical micellar concentration (cmc) of the surfactant, stabilizing the SDS micelles. A second critical concentration (c2thc) was verified at high SDS concentrations, due to the micelle size decrease. The stability of PEO/SDS aggregates was also affected by ILs, and the critical aggregation concentration (cac) of SDS increased. Integral aggregation enthalpy changed from -0.72 in water to 2.16 kJ mol(-1) in 4.00 mM bmimBr. IL anions did not affect the SDS micellization or the beginning of PEO/SDS aggregation. Nevertheless, when chloride was replaced with bromide, the amount of SDS bound to the polymer increased. At 100.0 mM IL, the PEO-SDS interaction vanished. We suggest that the effect of ILs comes from participating in the structure of the formed aggregates, interacting with the SDS monomers at the core/interface of the micelles, and promoting preferential solvation of the polymer. PMID:26595360

  15. Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering.

    PubMed

    Revillod, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-François

    2005-03-24

    We report the use of the nonlinear optical technique of hyper-Rayleigh scattering to investigate the interaction of the cationic probe molecule crystal violet with micelles of sodium dodecyl sulfate. An absolute value of (847 +/- 80) x 10(-30) esu is measured at the fundamental wavelength of 870 nm for the molecular hyperpolarizability of crystal violet free in pure aqueous solutions. In aqueous solutions of sodium dodecyl sulfate, above and below the critical micelle concentration, the measured hyperpolarizability of crystal violet is weaker than in the solution free of sodium dodecyl sulfate. From the comparison with linear optical photoabsorption spectroscopy data, this difference is attributed to electrostatic interactions between the cationic crystal violet molecules and the negatively charged sodium dodecyl sulfate surfactant molecules present in excess. Polarization resolved hyper-Rayleigh scattering measurements are then performed to show that, below and above the critical micelle concentration, crystal violet molecules also undergo symmetry changes upon interaction with sodium dodecyl sulfate. Above the critical micelle concentration, the minimum fraction of micelles interacting with at least one CV molecule is estimated. For instance, for a crystal violet aqueous concentration of 150 microM, this fraction is larger than 7%. PMID:16863205

  16. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    SciTech Connect

    Ahmed, Abdullah Ahmed Ali; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8. The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by

  17. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    SciTech Connect

    Zhang Xifeng; Yin Hengbo . E-mail: yin@ujs.edu.cn; Cheng Xiaonong; Hu Huifeng; Yu Qi; Wang Aili

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweens on Cu nanoparticles was different from those arising from the individuals.

  18. Micelle enhanced and native spectrofluorimetric methods for determination of sertindole using sodium dodecyl sulfate as sensitizing agent

    NASA Astrophysics Data System (ADS)

    El-Kosasy, Amira M.; Hussein, Lobna A.; Sedki, Nehal G.; Salama, Nahla N.

    2016-01-01

    Two stability indicating spectrofluorimetric methods were developed and validated for the determination of sertindole (SER) in the presence of its acid and oxidative degradates at λex 257 nm and λem 335 nm. Method A was based on measuring the native fluorescence of SER using isopropanol as solvent. Method B was based on the enhancement of native fluorescence of SER quenched in aqueous media by using micellar microenvironment created by sodium dodecyl sulfate (SDS) anionic micelles using Britton Robinson Buffer (BRB) pH 3.29 as solvent. Different factors affecting fluorescence intensity; both native and enhanced, were carefully studied to reach the optimum conditions of measurements. The proposed spectrofluorimetric methods were validated in accordance with ICH guidelines and were successfully applied for the determination of SER in bulk powder and pharmaceutical preparation with high sensitivity and stability indicating power. They were also statistically compared to the manufacturer methods with no significant difference in performance.

  19. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate

    SciTech Connect

    Lacks, S.A.; Springhorn, S.S.

    1980-08-10

    A number of enzymes, including amylases, dehydrogenases, and proteases, were shown to be renaturable after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Enzyme activity was detected in situ by action on substrates introduced into the gel and subsequent staining of either the product or unreacted substrate. Enzymes appeared to recover activity as soon as the detergent diffused out of the gel. Renatured enzymes were retained in gels after electrophoresis longer than native enzymes which had been subjected to electrophoresis in the absence of detergent. Re-electrophoresis of the renatured enzymes showed that part of the retained activity was physically anchored to the gel, possibly by the folding of polypeptides around the gel matrix as the enzymes were renatured.

  20. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.

    PubMed

    Corti, Mario; Pannuzzo, Martina; Raudino, Antonio

    2015-06-16

    We report that at very low initial bulk concentrations, a couple of hundred times below the critical micellar concentration (CMC), anionic surfactant sodium dodecyl sulfate (SDS) adsorbed at the air-water interface of a gas bubble cannot be removed, on the time scale of the experiment (hours), when the surrounding solution is gently replaced by pure water. Extremely sensitive interferometric measurements of the resonance frequency of the bubble-forced oscillations give precise access to the concentration of the surfactant monolayer. The bulk-interface dynamic exchange of SDS molecules is shown to be inhibited below a concentration which we believe refers to a kind of gas-liquid phase transition of the surface monolayer. Above this threshold we recover the expected concentration-dependent desorption. The experimental observations are interpreted within simple energetic considerations supported by molecular dynamics (MD) calculations. PMID:26039913

  1. Improving the performance of starch-based wood adhesive by using sodium dodecyl sulfate.

    PubMed

    Li, Zhaofeng; Wang, Jian; Cheng, Li; Gu, Zhengbiao; Hong, Yan; Kowalczyk, Agnieszka

    2014-01-01

    Sodium dodecyl sulfate (SDS) was used to improve the performance of starch-based wood adhesive. The effects of SDS on shear strength, viscosity and storage stability were investigated. It was shown that, although the addition of 1.5-2% (dry starch basis) SDS resulted in a slight decrease in shear strength, the mobility and storage stability of adhesive were significantly enhanced. Possible mechanisms regarding specific action of SDS were discussed. It was proved, using blue value or differential scanning calorimetry (DSC) analysis, that the amylose-SDS complexes were formed in the adhesive. The complex formation or simple adsorption of SDS with starch molecules might hinder the aggregation of latex particles, as shown by scanning electron microscopy images, and inhibit starch retrogradation, as observed by DSC analysis. As a result, in the presence of SDS, the adhesive had higher mobility and storage stability, indicating that SDS could be used to prepare starch-based wood adhesives with high performance. PMID:24274546

  2. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    PubMed Central

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  3. NMR study about solubilization of phenyl alkyl alcohol in sodium dodecyl sulfate micelle and in BRIJ 35 micelle

    SciTech Connect

    Miyagishi, S.; Nishida, M.

    1980-11-01

    This work examines the NMR spectra of surfactant solutions solubilizing phenyl alkyl alcohols and the effect of holmium ion on them. More detailed information was obtained about the solubilization site. In addition, it was found that the solubilization in BRIJ 35 micelle was different from that in sodium dodecyl sulfate micelle. 16 references.

  4. Interaction of Sodium Dodecyl Sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of plant-derived precipitates of watermelon lycopene were examined in aqueous sodium dodecyl sulfate (SDS) as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% were found to increase the water solubility of ...

  5. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  6. Unfolding and folding pathway of lysozyme induced by sodium dodecyl sulfate.

    PubMed

    Sun, Yang; Filho, Pedro L O; Bozelli, José C; Carvalho, Juliana; Schreier, Shirley; Oliveira, Cristiano L P

    2015-10-21

    Proteins may exhibit an unfolding or folding state in the presence of a surfactant. In the present study, the unfolding and folding pathway of hen egg white lysozyme (HEWL) induced by sodium dodecyl sulfate (SDS) is studied. The stoichiometry obtained from isothermal titration calorimetry (ITC) provides guidelines for other techniques. The fluorescence spectra and circular dichroism show that the fluorescence properties and secondary structure of proteins undergo a two-step change upon binding with SDS, in which the intensity decreases, the emission blue shifts and the helical conformation decreases at low ratios of SDS to HEWL, while all of them return to the native-like state upon the addition of SDS at higher ratios. At the end of the binding, HEWL presents a higher α-helical content but its tertiary structure is lost compared to its native state, which is namely a molten globule state. Small angle X-ray scattering (SAXS) analysis and the derived model reveal that the complexes possess a decorated core-shell structure, with the core composed of dodecyl chains and the shell consisting of SDS head groups with a protein in molten globule state. Five binding steps, including the individual details involved in the denaturation, were obtained to describe the unfolding and folding pathway of HEWL induced by SDS. The results of this study not only present details about the denaturation of protein induced by SDS and the structure of the complexes involved in each binding step, but also provide molecular insights into the mechanism of the higher helical conformation of proteins in the presence of surfactant micelles. PMID:26308474

  7. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of urinary protein in acute kidney injury.

    PubMed

    Suhail, Sufi M; Woo, K T; Tan, H K; Wong, K S

    2011-07-01

    Recent experimental and clinical studies have shown the importance of urinary proteomics in acute kidney injury (AKI). We analyzed the protein in urine of patients with clinical AKI using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for its diagnostic value, and followed them up for 40 months to evaluate prognosis. Urine from 31 consecutive cases of AKI was analyzed with SDS-PAGE to determine the low, middle and high molecular weight proteins. Fractional excretion of sodium (FENa) was estimated from serum and urine creatinine and sodium (Na). The cases were followed-up for 40 months from the end of the recruitment of study cases. Glomerular protein was higher in the hematuria group when compared with the non-hematuria group (P <0.04) and in the AKI group than in the acute on chronic renal failure (AKI-on-CRF) group (P <0.002). Tubular protein was higher in the AKI-on-CRF group (P <0.003) than in the AKI group. Tubular protein correlated with FENa in groups with diabetes mellitus (DM), AKI-on-CRF, and without hematuria (P <0.03, P <0.02 and P <0.004, respectively). Pattern of protein did not differ between groups with and without DM and clinical acute tubular necrosis (ATN). At the end of 40 months follow-up, category with predominantly glomerular protein progressed to chronic renal failure (CRF) or end-stage renal failure in higher proportion (P <0.05). In clinical AKI, we observed that glomerular protein dominated in cases with glomerular insult, as indicated by hematuria. Tubular protein was common in the study cases with CRF, DM and cases without hematuria. This indicates tubulo-interstitial injury for AKI in these cases. Patients with predominantly glomerular protein had an adverse outcome. PMID:21743220

  8. Sodium dodecyl benzene sulfonate-assisted synthesis through a hydrothermal reaction

    SciTech Connect

    Sobhani, Azam; Salavati-Niasari, Masoud

    2012-08-15

    Graphical abstract: Reaction of a SeCl{sub 4} aqueous solution with a NiCl{sub 2}·6H{sub 2}O aqueous solution in presence of sodium dodecyl benzene sulfonate (SDBS) as capping agent and hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant, produces nanosized nickel selenide through a hydrothermal method. The effect of temperature, reaction time and amounts of reductant on the morphology, particle sizes of NiSe nanostructures has been investigated. Highlights: ► NiSe nanostructures were synthesized by hydrothermal method. ► A novel Se source was used to synthesize NiSe. ► SDBS as capping agent plays a crucial role on the morphology of products. ► A mixture of Ni{sub 3}Se{sub 2} and NiSe was prepared in the presence of 2 ml hydrazine. ► A pure phase of NiSe was prepared in the presence of 4 or 6 ml hydrazine. -- Abstract: The effects of the anionic surfactant on the morphology, size and crystallization of NiSe precipitated from NiCl{sub 2}·6H{sub 2}O and SeCl{sub 4} in presence of hydrazine (N{sub 2}H{sub 4}·H{sub 2}O) as reductant were investigated. The products have been successfully synthesized in presence of sodium dodecyl benzene sulfonate (SDBS) as surfactant via an improved hydrothermal route. A variety of synthesis parameters, such as reaction time and temperature, capping agent and amount of reducing agent have a significant effect on the particle size, phase purity and morphology of the obtained products. The sample size became bigger with decreasing reaction temperature and increasing reaction time. In the presence of 2 ml hydrazine, the samples were found to be the mixture of Ni{sub 3}Se{sub 2} and NiSe. With increasing the reaction time and amount of hydrazine a pure phase of hexagonal NiSe was obtained. X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images indicate phase, particle size and morphology of the products. Chemical composition and purity of the products were

  9. Atomistic Simulation of Solubilization of Polycyclic Aromatic Hydrocarbons in a Sodium Dodecyl Sulfate Micelle.

    PubMed

    Liang, Xujun; Marchi, Massimo; Guo, Chuling; Dang, Zhi; Abel, Stéphane

    2016-04-19

    Solubilization of two polycyclic aromatic hydrocarbons (PAHs), naphthalene (NAP, 2-benzene-ring PAH) and pyrene (PYR, 4-benzene-ring PAH), into a sodium dodecyl sulfate (SDS) micelle was studied through all-atom molecular dynamics (MD) simulations. We find that NAP as well as PYR could move between the micelle shell and core regions, contributing to their distribution in both regions of the micelle at any PAH concentration. Moreover, both NAP and PYR prefer to stay in the micelle shell region, which may arise from the greater volume of the micelle shell, the formation of hydrogen bonds between NAP and water, and the larger molecular volume of PYR. The PAHs are able to form occasional clusters (from dimer to octamer) inside the micelle during the simulation time depending on the PAH concentration in the solubilization systems. Furthermore, the micelle properties (i.e., size, shape, micelle internal structure, alkyl chain conformation and orientation, and micelle internal dynamics) are found to be nearly unaffected by the solubilized PAHs, which is irrespective of the properties and concentrations of PAHs. PMID:27049522

  10. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor. PMID:25314953

  11. Sodium dodecyl sulfate-capillary gel electrophoresis of proteins using non-cross-linked polyacrylamide.

    PubMed

    Wu, D; Regnier, F E

    1992-09-11

    Proteins with relative molecular masses of 14,000 to 205,000 were separated by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-CGE) using non-cross-linked linear polyacrylamide gels on both coated and uncoated fused-silica capillaries. It was determined that viscosity of the acrylamide solution was a major factor affecting column stability with linear acrylamide gels. When the viscosity of the acrylamide solution reaches 100 cP, electro-osmotically driven displacement of the gels is insignificant. Uncoated capillaries provided better resolution, stability, and reproducibility than surface coated capillaries when the concentration of linear polyacrylamide was greater than 4%. At lower gel concentrations, non-cross-linked polyacrylamide is easily displaced from the columns. A calibration plot of log molecular mass vs. mobility with non-linear polyacrylamide was linear, which indicated that resolution was equivalent to that obtained with cross-linked acrylamide. Separations with model proteins indicated that baseline resolution between protein species that vary 10% in molecular mass can be achieved. PMID:1430034

  12. Thermodynamic selectivity of functional agents on zeolite for sodium dodecyl sulfate sequestration.

    PubMed

    Leng, Ling; Wang, Jian; Qiu, Xianxiu; Zhao, Yanxiang; Yip, Yuk-Wang; Law, Ga-Lai; Shih, Kaimin; Zhou, Zhengyuan; Lee, Po-Heng

    2016-11-15

    This study proposes a thermodynamic approach to effectively select functional agents onto zeolite for sodium dodecyl sulfate (SDS) sequestration in greywater reuse. We combine isothermal titration calorimetry (ITC) and quantum chemistry simulation (QCS) to identify the interactions between SDS and agents at the molecular level. Three potential agents, cetyl trimethyl ammonium bromide (CTAB), N,N,N-trimethyltetradecan-1-aminium bromide (C14TAB), and 14-hydroxy-N,N,N-trimethyltetradecan-1-aminium bromide (C14HTAB), differ in carbon chain length and hydrophilic groups. The ITC titration of SDS with CTAB released the highest heat, followed by those with C14TAB and C14HTAB, as was the same trend for the amounts of SDS adsorbed by the respective functionalized-zeolites. Results suggest that the favorable SDS sorption occurred at the bilayer CTAB-zeolite is driven by enthalpy as similar as the SDS…CTAB interaction found, regardless of the contribution from electrostatic and/or hydrophobic behaviors, while the declined sorption is entropy-driven via the predominant hydrophobic interaction onto the monolayer CTAB-zeolite. The data presented here interpret the nature of molecularly thermodynamic quantities and enable the manipulation of sorption capacity optimization. PMID:27399145

  13. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin; Wang, Lu; Gao, Xiaoli; Su, Dian; Nicora, Carrie D.; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides. Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.

  14. Aqueous stability and mobility of C₆₀ complexed by sodium dodecyl benzene sulfonate surfactant.

    PubMed

    Peng, Xianjia; Yuan, Yue; Wang, Hongyu; Liang, Chuan

    2016-04-01

    Surfactant complexation may have significant effects on the environmental behavior of nano-particles. In order to understand the ecological exposure of nano-materials, it is important to determine the stability and mobility of surfactant-complexed nano-materials in aqueous systems. In this study, the aggregation and transport of C60 complexed by the surfactant sodium dodecyl benzene sulfonate (SDBS) were investigated. It was found that SDBS-complexed C60 had a ζ-potential of -49.5 mV under near-neutral pH conditions and remained stable during an aging period of 15 days. It had a critical coagulation concentration of 550 mmol/L for NaCl, which was higher than common natural colloids and many kinds of raw nano-materials, and was comparable to those of many kinds of surface-modified nano-materials. SDBS enhanced the stability of C60 colloid; however, at the same time, it also enhanced the colloidal particle aggregation rate. Much higher mobility was found for SDBS-complexed C60 than C60 colloid. Increase in ionic strength, Ca(2+) concentration or Al(3+) concentration decreased the mobility. In general, SDBS-complexed C60 had high stability and mobility. PMID:27090698

  15. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    NASA Astrophysics Data System (ADS)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  16. Solubilities of ethane in aqueous solutions of sodium dodecyl sulfate at elevated pressures

    SciTech Connect

    Li, P.; Han, B.; Yan, H.; Liu, R.

    1995-10-01

    The solubilities of ethane in aqueous solutions of sodium dodecyl sulfate (SDS) were measured at 313.15 K and at pressures up to 3 MPa. The molalities of SDS (m{sub SDS}) in the aqueous solution were 0.0000, 0.0020, 0.0040, 0.0060, 0.0070, 0.0080, 0.0090, 0.0100, 0.0126, 0.0150, 0.0200, and 0.0300. The effect of SDS on the gas solubility in both concentration regions below and above the critical micelle concentration (cmc) was studied. The existence of the micelles of SDS in the solution is favorable to the dissolution of ethane due to the hydrocarbon-like interior of the micelles. The solubilities of ethane in each micelle at different pressures were evaluated based on some assumptions. It was found that the intramicellar solubility of ethane is less than that of the gas in n-dodecane. It was also found that the solubility of ethane in the micelles increases linearly with the partial pressure of ethane. The cmc of SDS was evaluated based on the solubility vs m{sub SDS} curves and the effect of dissolved ethane on the cmc was studied. It was observed that the cmc shifts toward a higher value with the increase in dissolved ethane.

  17. Interactive forces between sodium dodecyl sulfate-suspended single-walled carbon nanotubes and agarose gels.

    PubMed

    Clar, Justin G; Silvera Batista, Carlos A; Youn, Sejin; Bonzongo, Jean-Claude J; Ziegler, Kirk J

    2013-11-27

    Selective adsorption onto agarose gels has become a powerful method to separate single-walled carbon nanotubes (SWCNTs). A better understanding of the nature of the interactive forces and specific sites responsible for adsorption should lead to significant improvements in the selectivity and yield of these separations. A combination of nonequilibrium and equilibrium studies are conducted to explore the potential role that van der Waals, ionic, hydrophobic, π-π, and ion-dipole interactions have on the selective adsorption between agarose and SWCNTs suspended with sodium dodecyl sulfate (SDS). The results demonstrate that any modification to the agarose gel surface and, consequently, the permanent dipole moments of agarose drastically reduces the retention of SWCNTs. Because these permanent dipoles are critical to retention and the fact that SDS-SWCNTs function as macro-ions, it is proposed that ion-dipole forces are the primary interaction responsible for adsorption. The selectivity of adsorption may be attributed to variations in polarizability between nanotube types, which create differences in both the structure and mobility of surfactant. These differences affect the enthalpy and entropy of adsorption, and both play an integral part in the selectivity of adsorption. The overall adsorption process shows a complex behavior that is not well represented by the Langmuir model; therefore, calorimetric data should be used to extract thermodynamic information. PMID:24164680

  18. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    SciTech Connect

    Yilmaz, Ceren; Unal, Ugur; Yagci Acar, Havva

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures. The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.

  19. Performing Isoelectric Focusing and Simultaneous Fractionation of Proteins on A Rotary Valve Followed by Sodium Dodecyl – Polyacrylamide Gel Electrophoresis

    PubMed Central

    Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-01-01

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755

  20. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  1. Sodium dodecyl sulfate/β-cyclodextrin vesicles embedded in chitosan gel for insulin delivery with pH-selective release.

    PubMed

    Li, Zhuo; Li, Haiyan; Wang, Caifen; Xu, Jianghui; Singh, Vikramjeet; Chen, Dawei; Zhang, Jiwen

    2016-07-01

    In an answer to the challenge of enzymatic instability and low oral bioavailability of proteins/peptides, a new type of drug-delivery vesicle has been developed. The preparation, based on sodium dodecyl sulfate (SDS) and β-cyclodextrin (β-CD) embedded in chitosan gel, was used to successfully deliver the model drug-insulin. The self-assembled SDS/β-CD vesicles were prepared and characterized by particle size, zeta potential, appearance, microscopic morphology and entrapment efficiency. In addition, both the interaction of insulin with vesicles and the stability of insulin loaded in vesicles in the presence of pepsin were investigated. The vesicles were crosslinked into thermo-sensitive chitosan/β-glycerol phosphate solution for an in-situ gel to enhance the dilution stability. The in vitro release characteristics of insulin from gels in media at different pH values were investigated. The insulin loaded vesicles-chitosan hydrogel (IVG) improved the dilution stability of the vesicles and provided pH-selective sustained release compared with insulin solution-chitosan hydrogel (ISG). In vitro, IVG exhibited slow release in acidic solution and relatively quick release in neutral solutions to provide drug efficacy. In simulated digestive fluid, IVG showed better sustained release and insulin protection properties compared with ISG. Thus IVG might improve the stability of insulin during its transport in vivo and contribute to the bioavailability and therapeutic effect of insulin. PMID:27471675

  2. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-01

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy. PMID:26458054

  3. Investigation of the interaction between sodium dodecyl sulfate and cationic polymers.

    PubMed

    Lee, Jungno; Moroi, Yoshikiyo

    2004-05-25

    Aggregation properties of sodium dodecyl sulfate (SDS) on a cationic hydroxyethyl cellulose, Polyquaternium-10 (PQ-10), of low charge density were studied by potentiometric and pyrene fluorescence methods and compared with those of poly(diallyldimethylammomium chloride) (PDADMAC) of high charge density. The critical aggregation concentration (cac) was measured with the potentiometric method and further confirmed with the fluorescence method. The former was found to be more accurate. The value of the cac for the SDS/PQ-10 system was measured at 100, 200, and 400 ppm polymer and at 288.2,298.2, and 308.2 K. They showed almost the same cac value, 0.04 mmol dm-3. The I1/I3 value of the pyrene fluorescence spectrum in the SDS/PQ-10 system at higher SDS concentration was smaller than that in SDS/PDADMAC solution and much larger than that of water. From the binding isotherm by the potentiometric method, the free DS- concentration (Cf) and the bound DS- concentration (Cb) could be evaluated with ease over the SDS concentration range above the cac. The aggregation number of DS- aggregates for both the above polymers was evaluated from the fluorescence quenching method using the values of Cf and Cb from the potentiometric method. Because Cf in the SDS/PQ-10 system above the cac did not maintain a constant value contrary to that in the SDS/PDADMAC system but increased quite a lot, Cb should not be regarded as [SDS] - cac above the cac. The aggregation number in the SDS/PQ-10 system increased almost linearly with increasing total concentration of SDS, while that in the SDS/PDADMAC system reached a plateau. With increasing temperature, the aggregation number of the SDS/PDADMAC system decreased more rapidly than that of the SDS/PQ-10 system. PMID:15969141

  4. Sodium Dodecyl Sulfate Adsorption onto Positively Charged Surfaces: Monolayer Formation With Opposing Headgroup Orientations

    PubMed Central

    Song, Sang-Hun; Koelsch, Patrick; Weidner, Tobias; Wagner, Matthew S.; Castner, David G.

    2013-01-01

    The adsorption and structure of sodium dodecyl sulfate (SDS) layers onto positively charged films have been monitored in situ with vibrational sum-frequency-generation (SFG) spectroscopy and surface plasmon resonance (SPR) sensing. Substrates with different charge densities and polarities used in these studies include CaF2 at different pH values as well as allylamine and heptylamine films deposited onto CaF2 and Au substrates by radio frequency glow discharge deposition. The SDS films were adsorbed from aqueous solutions ranging in concentration from 0.067 to 20 mM. In general the SFG spectra exhibited well resolved CH and OH peaks. However, at SDS concentrations between 1–8 mM the SFG CH and OH intensities decreased close to background levels. Combined data sets from molecular conformation, orientation, and order sensitive SFG with mass sensitive SPR suggest that the observed changes in SFG intensities above 0.2 mM are related to structural arrangements in the SDS layer. A model is proposed where the SFG intensity minimum between 1–8 mM is associated with a monolayer containing two head group orientations, one pointing towards the substrate and one pointing towards the solution phase. The SFG peaks observed at concentrations below 0.2 mM are dominated by the presence of adsorbed contaminants such as fatty alcohols (e.g., dodecanol), which are more surface active than SDS. As SDS solution concentration is increased above 1 mM SDS molecules are incorporated in the surface layer, with dodecanol continuing to be present in the surface layer for solution concentrations up to at least critical micelle concentration. PMID:24024777

  5. Metal ion dependence of a heat-modifiable protein from the outer membrane of Escherichia coli upon sodium dodecyl sulfate-gel electrophoresis.

    PubMed Central

    McMichael, J C; Ou, J T

    1977-01-01

    One heat-modifiable protein of Escherichia coli outer membrane does not completely change to the high-temperature form in the presence of magnesium ion in sodium dodecyl sulfate solution. When the metal ion complexing reagents ethylenediaminetetraacetic acid, phosphate ion, hydroxyl ion, or the competitive cations Zn2+ or Ca2+ are added to the sodium dodecyl sulfate-solubilized sample of outer membrane, and then the sample is heated to 100 degrees C and recooled to room temperature, the protein is almost completely converted to the high-temperature form. In control samples, or if sodium chloride, magnesium chloride, or manganous chloride are added to these samples and treated the same way, a large amount of the low-temperature form of the protein is preserved. beta-Mercaptoethanol additions gave the same results as the metal ion complexing reagents and may owe its activity in these solutions to metal-binding activity and not to its role as a reducing reagent. We concluded that magnesium ion may be involved with stabilization of the low-temperature form of the protein either by directly binding the magnesium or by mediating interaction with other components of the membrane. Images PMID:410782

  6. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene- block-polyethylene oxide and sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Loginova, T. P.; Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A.; Matyushin, A. A.; Khotina, I. A.; Shtykova, E. V.

    2016-01-01

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene- block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  7. Removal of sodium dodecyl sulfate from protein samples prior to matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Puchades, M; Westman, A; Blennow, K; Davidsson, P

    1999-01-01

    Sodium dodecyl sulfate (SDS) is widely used for protein solubilization and for separation of proteins by SDS polyacrylamide gel electrophoresis (SDS-PAGE). However, SDS interferes with other techniques used for characterization of proteins, such as mass spectrometry (MS) and amino acid sequencing. In this paper, we have compared three procedures to remove SDS from proteins, including chloroform/methanol/water extraction (C/M/W), cold acetone extraction and desalting columns, in order to find a rapid and reproducible procedure that provides sufficient reduction of SDS and high recovery rates for proteins prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). A 1000-fold reduction of SDS concentration and a protein recovery at approximately 50% were obtained with the C/M/W procedure. The cold acetone procedure gave a 100-fold reduction of SDS and a protein recovery of approximately 80%. By using desalting columns, the removal of SDS was 100-fold, with a protein recovery of nearly 50%. Both the C/M/W and the cold acetone methods provided sufficient reduction of SDS, high recovery rates of protein and allowed the acquisition of MALDI spectra. The use of n-octyl-beta-D-glucopyranoside in the protein sample preparation enhanced the MALDI signal for protein samples containing more than 2 10(-4)% SDS, after the C/M/W extraction. Following the cold acetone procedure, the use of n-octylglucoside was found to be necessary in order to obtain spectra, but they were of lower quality than those obtained with the C/M/W method, probably due to higher residual amounts of SDS. PMID:10209872

  8. Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: A computer simulation study.

    PubMed

    Peredo-Mancilla, Deneb; Dominguez, Hector

    2016-04-01

    Adsorption studies of phenol molecules on a sodium dodecyl sulfate (SDS) micelle were investigated by molecular dynamics simulations. Simulations were carried out in bulk and on three distinct solid surfaces, silicon dioxide, titanium dioxide and graphite. It was observed that different surfactant micellar shapes were formed on the surfaces. For the silicon dioxide and titanium dioxide surfaces the surfactants were adsorbed by their headgroups whereas for the graphite surface they were adsorbed mainly by their tail groups. It was found that the amount of phenol adsorbed on the SDS micelle was altered by the surfactant shape deposited on the solid surface. However, the best phenol adsorption was obtained by the surfactant modified silicon dioxide surface. Moreover, in all cases, from structural investigations, it was determined that the phenol molecules were located inside the surfactant micelle with their hydroxyl groups close to the SDS headgroups. PMID:26973047

  9. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. PMID:26796977

  10. Luminescent spectral characteristics of eosin in solutions of human serum albumin when denatured by treatment with sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Vlasova, I. M.; Zemlyanskii, A. Yu.; Saletskii, A. M.

    2006-09-01

    From analysis of the fluorescence spectra of eosin molecules in a solution with human serum albumin (HSA), we have obtained information about the dynamics of protein conformational rearrangements during denaturing of the protein when treated with sodium dodecyl sulfate (SDS) for different pH values of the solution. We hypothesize that HSA denaturing in the presence of SDS occurs in two stages: the first stage is loosening of the protein globules, and the second stage is complete unfolding of the protein molecules. We have shown that denaturating of the protein in the presence of SDS passes through both stages for a solution pH below the isoelectric point of the albumin, while the denaturing stops in the first stage for a solution pH above the isoelectric point of the albumin.

  11. Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics

    NASA Astrophysics Data System (ADS)

    Tummala, Naga Rajesh; Striolo, Alberto

    2009-08-01

    The effect of substrate curvature on surfactant self-assembly has been studied using all-atom molecular-dynamics simulations. We studied aqueous sodium-dodecyl-sulfate (SDS) surfactants on graphite, on the outer surface of single walled carbon nanotubes (SWNTs) and within SWNTs. Our results reveal that although the chemical nature of the substrates is constant, the self-assembled structures change significantly as the curvature varies. For example, at large surface density, SDS surfactants yield micellar structures on graphite, layered self-assemblies outside SWNTs, and cylindrical lamellar structures inside SWNTs. Changes in substrate curvature as well as surfactant surface density affect significantly surfactant orientation and, more importantly, headgroup-headgroup distribution, headgroup-counterion packing, and counterion residence time next to the headgroups.

  12. [Sensitivity to sodium dodecyl benzene sulfonate: a supplementary test for bacterial identification].

    PubMed

    Serov, G D

    1981-01-01

    The susceptibility to sodium dodecylbenzene sulfonate, an anion-active detergent, was studied with 10 Gram-positive and 18 Gram-negative bacterial cultures. According to this susceptibility, the cultures were subdivided into two groups identical in their tinctorial properties. The bacteria growing at a 0.05% concentration of sodium dodecylbenzene sulfonate or at its higher concentrations were Gram-negative. The threshold concentration of this compound in the medium at which Gram-positive cultures could grow was 0.008%; some of the bacteria ceased growing even at a 0.002% concentration. The bacteria varied in their susceptibility to the detergent also within one and the same group, and even within one and the same species. The subdivision of bacteria on the basis of their susceptibility to sodium dodecylbenzene sulfonate may be considered as a taxonomic feature. PMID:7321918

  13. Adhesion of sodium dodecyl sulfate surfactant monolayers with TiO2 (rutile and anatase) surfaces

    SciTech Connect

    Darkins, Robert; Sushko, Maria L.; Liu, Jun; Duffy, Dorothy M.

    2013-09-17

    Surfactants are widely used as templates to control the nucleation and growth of nanostructured metal oxides such as titania. To gain insight into the origin of surfactant-titania interactions responsible for polymorph and orientation selection, we simulate the self-assembly of an anionic surfactant monolayer on various low-index titania surfaces and for a range of densities. We characterize the binding in each case and compute the adhesion energies, finding anatase (100) and rutile (110) to be the strongest-binding surfaces. The sodium counterions in the monolayer are found to dominate the adhesion. It is also observed that the assembly is directed predominantly by surface-monolayer electrostatic complementarity.

  14. Evaluation of linear dodecyl benzene sulfonic acid as a teat dip in a commercial dairy.

    PubMed

    Pankey, J W; Boddie, R L; Philpot, W N

    1984-06-01

    A postmilking teat dip containing 1.94% linear dodecyl benzene sulfonic acid was evaluated for approximately 6 mo on a commercial dairy farm that milked an average of 75 cows. Sixteen Staphylococcus aureus infections were diagnosed, 12 in the undipped control quarters and 4 in the dipped. Incidence of intramammary infection with Staphylococcus aureus was reduced 68.1%. Seventy-five infections were diagnosed as micrococci, 42 in control and 33 in the dipped group, a 23.6% reduction. A total of 37 Corynebacterium sp. infections were diagnosed, 21 and 16 in control and dipped groups, a 25.8% reduction. Teat skin condition did not change during the study. PMID:6747046

  15. Binding isotherms of sodium dodecyl sulfate to protein polypeptides with special reference to SDS-polyacylamide gel electrophoresis.

    PubMed

    Takagi, T; Tsujii, K; Shirahama, K

    1975-05-01

    To clarify the mode of interaction between sodium dodecyl sulfate (SDS) and protein polypeptides with special reference to SDS-polyacrylamide gel electrophoresis, the binding of SDS to several protein polypeptides was investigated by the equilibrium dialysis technique. Each of the binding isotherms was characterized by the presence of two phases: an initial gradual increase in the amount of binding to 0.3-0.6 g/g (first phase) and a subsequent steep increase to 1.2-1.5 g/g (second phase). The binding was completed at a concentration of SDS below the critical micelle concentration. Throughout the first and second phases, the isotherms obtained were different for each kind of protein. On the basis of experiments with bovine serum albumin and ribonuclease (EC 3.1.4.22], the isotherms were profoundly affected by the method used for modification of the sulfhydryl groups. The claim of Reynolds and Tanford (Proc. Natl, Acad. Sci. U.S., 66, 1002 (1970)) that the isotherms are virtually identical for many kinds of proteins was not supported by the present data. Changes in the gross and local conformations were examined with reference to the isotherms by measurements of CD spectrum, free boundary electrophoresis, and gel filtration. The results obtained were collectively interpreted based on the model of SDS-protein polypeptide complexes proposed by the present authors (J. Biochem., 75, 309 (1974)). PMID:1158859

  16. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    PubMed

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-01

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment. PMID:27083354

  17. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  18. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study. PMID:19146099

  19. Use of sodium dodecyl sulfate-polymyxin B-sucrose medium for isolation of Vibrio vulnificus from shellfish.

    PubMed

    Bryant, R G; Jarvis, J; Janda, J M

    1987-07-01

    The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus. PMID:3662506

  20. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases. PMID:16256467

  1. Use of sodium dodecyl sulfate-polymyxin B-sucrose medium for isolation of Vibrio vulnificus from shellfish.

    PubMed Central

    Bryant, R G; Jarvis, J; Janda, J M

    1987-01-01

    The differential and selective sodium dodecyl sulfate-polymyxin B-sucrose medium (SPS) of Kitaura et al. (T. Kitaura, S. Doke, I. Azuma, M. Imaida, K. Miyano, K. Harada, and E. Yabuuchii, FEMS Microbiol. Lett. 17:205-209, 1983), which highlights alkylsulfatase activity, was evaluated for its potential use in the direct isolation and enumeration of Vibrio vulnificus from shellfish. V. vulnificus was detected by this method in six of nine shellfish samples collected from diverse geographic locales during the summer of 1986. Direct enumeration of V. vulnificus at 7.0 X 10(2) to 2.2 X 10(4) CFU/g of shellfish was achieved on SPS agar. All sample results were confirmed in parallel examinations by using conventional glucose-salt-Teepol (Shell Oil Co.) broth and alkaline peptone water enrichment with plating onto thiosulfate-citrate-bile salts-sucrose agar. Additionally, alkylsulfatase activity was evaluated in vitro for 97 strains representing 14 Vibrio spp. V. vulnificus and Vibrio cholerae-01 were the only species consistently found to possess this activity. The range of plating efficiencies for random V. vulnificus strains analyzed on SPS was 11 to 74% (mean, 39%). The use of SPS shows great promise for the study of shellfish and other environmental sources for V. vulnificus. Images PMID:3662506

  2. Carbon dots as fluorescent probe for "off-on" Detecting sodium dodecyl-benzenesulfonate in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tao, Huilin; Liao, Xiufen; Wu, Qingyi; Xie, Xiangli; Zhong, Fuxin; Yi, Zhongsheng; Qin, Mei; Wu, Zhenli

    2016-01-01

    In this paper, we propose an "off-on" approach for the detection of sodium dodecyl-benzenesulfonate (SDBS) using carbon dots (CDs) as fluorescent probe. We firstly demonstrated that the fluorescence of CDs decreased apparently in the presence of ruthenium (Ru), and the system was thus "turn-off". The resulting CDs-Ru system was found to be sensitive to SDBS, SDBS not only serves to shelter the CDs effectively from being quenched, but also to reverse the quenching and restore the fluorescence due to its ability to remove Ru from the surface of CDs (turn-on). An eco-friendly, simple and sensitive platform for the detection of SDBS based on the CDs-Ru probes has been proposed. After the experimental conditions were optimized, the linear range for detection SDBS was 0.10-7.50 μg/mL, with correlation coefficient (r) 0.9988, detection limit was 0.033 μg/mL (3σ). This method is facile, rapid, low cost, environment-friendly, and possesses the potential for practical application.

  3. Genetic diversity analysis of faba bean (Vicia faba L.) germplasms using sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Hou, W W; Zhang, X J; Shi, J B; Liu, Y J

    2015-01-01

    To investigate genetic diversity and relationships of 101 faba bean (Vicia faba L.), landraces and varieties from different provinces of China and abroad were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). A total of 2625 unambiguous and stable bands from 101 germplasms were detected, and 36 different bands were classified according to the electrophoretic mobility patterns of the proteins as determined by the SDS-PAGE analysis, of which 16 were polymorphic. Besides the common bands, the protein bands of 92, 75, 62, 40, 34, 17, and 13 kDa presented the highest frequencies of 92.08, 90.10, 99.01, 95.05, 95.05, 98.02, and 95.05%, respectively. The other 29 polymorphic protein bands showed higher polymorphism with 16.09 polymorphic bands in average. The genetic similarity of the 101 genotypes tested varied from 0.6111 to 0.9722, with an average of 0.7122. Cluster analysis divided the 101 genotypes into six major clusters, which was consistent with the systematic classification of faba bean done in previous studies. The overall results indicated that SDS-PAGE was a useful tool for genetic diversity analysis and laid a solid foundation for future faba bean breeding. PMID:26535710

  4. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    PubMed Central

    Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  5. Role of sol with iron oxyhydroxide/sodium dodecyl sulfate composites on Fenton oxidation of sorbed phenanthrene in sand.

    PubMed

    Park, Joo-Yang; Kim, Jung-Hwan

    2013-09-15

    In situ Fenton oxidation has been recently used to oxidize sorbed organic contaminants in soil. The objective of present contribution was to study the role of sodium dodecyl sulfate (SDS) as anionic surfactant and sol with iron oxyhydroxide/SDS for Fenton oxidation of sorbed phenanthrene in sand. The most effective experimental condition for phenanthrene oxidation was the Fenton-like reaction system with 0.35% H2O2, 30 mM SDS, and 4 mM FeCl2. The Fenton-like reactions under these experimental conditions resulted in the production and sustenance of a stable sol with iron oxyhydroxide/SDS composites over 24 h. The formation of iron oxyhydroxide/SDS composites resulted in stabilization of H2O2, and then the Fenton-like reactions were sustained over 24 h. Furthermore, the sol of iron oxyhydroxide/SDS composites gave suitable sites to sustain oxidations of dissolved phenanthrene over a prolonged reaction span, which is required for in situ chemical oxidation. PMID:23666072

  6. Interfacial properties and fluorescence of a coagulating protein extracted from Moringa oleifera seeds and its interaction with sodium dodecyl sulphate.

    PubMed

    Maikokera, R; Kwaambwa, H M

    2007-04-01

    The surfactant behaviour of aqueous coagulating protein extracted from Moringa oleifera seeds has been investigated by surface tension measurements. The interaction of the coagulant protein with an anionic surfactant sodium dodecyl sulphate (SDS) has been monitored by surface tension and intrinsic protein fluorescence measurements. The extracted protein shows some weak surface activity at low concentrations. To achieve maximum surface activity (i.e. maximum reduction in surface tension of water), substantially higher concentrations of protein are required. The coagulant protein-SDS interaction scheme did not exhibit the behaviour of weakly interacting polymer-surfactant systems and the SDS interacts in a monomeric form with the protein. The association process of SDS with the coagulant protein is supported by protein fluorescence measurements. SDS has an effect on the fluorescence of the coagulant protein indicating that the local environment of tryptophan in the protein changes as SDS concentration below its critical micelle concentration is increased. These results have led us to the conclusions that: (1) the protein extracted from M. oleifera seeds has significant surfactant behaviour; (2) the coagulant protein interacts strongly with SDS and the protein might have specific binding sites for SDS; (3) there is formation of protein-SDS complex. PMID:17207612

  7. Prestaining of glycoproteins in sodium dodecyl sulfate polyacrylamide gels by dansylhydrazine.

    PubMed

    Wang, Yang; Zhou, Xuan; Yu, Qing; Duan, Yuanmeng; Huang, Binbin; Hong, Guoying; Zhou, Ayi; Jin, Litai

    2014-06-01

    A new fluorescent prestaining method for gel-separated glycoproteins in 1D and 2D SDS-PAGE was developed by using dansylhydrazine in this study. The prestained gels could be easily imaged after electrophoresis without any time-consuming steps needed for poststains. As low as 4-8 ng glycoproteins (transferrin, α1-acid glycoprotein) could be selectively detected, which is comparable to that of Pro-Q Emerald 488, one of the most commonly used glycoprotein stain. In addition, a subsequent study of deglycosylation, glycoprotein affinity isolation, and LC-MS/MS analysis was performed to confirm the specificity of the newly developed method. PMID:24668852

  8. Electron spin echo modulation study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions in the presence of urea: Evidence for urea interaction at the micellar surface

    SciTech Connect

    Baglioni, P. ); Ferroni, E. ); Kevan, L. )

    1990-05-17

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x-DSA, x = 5,7,10,12,16) and 4-octanoyl-2,2,6,6-tetramethylpiperidine-1-oxy (C{sub 8}-TEMPO) spin probes in micellar solutions of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) in D{sub 2}O and in the presence of 2 or 6 M urea or urea-d{sub 4}. Modulation effects due to the interaction of the unpaired electron with urea and water deuteriums show that urea does not affect the bent conformation of the x-DSA probe in the micelle. The analysis of the deuterium modulation depth and the Fourier transformation of the two-pulse electron spin echo spectra show that urea interacts with the surfactant polar headgroups at the micelle surface. These results support recent molecular dynamics and Monte Carlo calculations of micellar systems and are in agreement with direct interaction of urea at micellar surfaces in which it replaces some water molecules in the surface region.

  9. Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence.

    PubMed

    Kang, Chulhun; Kim, Hyun Jung; Kang, Donghoon; Jung, Duk Young; Suh, Myungkoo

    2003-10-01

    Fluorescein has an extremely low luminescence intensity in acidic aqueous media. However, when it was bound to proteins, subsequent increase of luminescence intensity took place. Furthermore, when a hydrophobic tail, such as aliphatic hydrocarbons, was introduced to fluorescein, more dramatic increase of luminescence intensity was observed upon binding to proteins. In the present study, by utilizing this luminescence enhancement, three hydrophobic fluorescein dyes (5-dodecanoyl amino fluorescein, 5-hexadecanoyl amino fluorescein, and 5-octadecanoyl amino fluorescein) were examined as noncovalent fluorescent stains of protein bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Effective incorporation of the dyes to proteins in gels was accomplished either simply by adding dyes at the protein fixation step, or by treating gels with a staining solution after the fixation. The sensitivity of this staining method using the fluorescein derivatives was approximately 1 ng/band for most proteins. For some cases, protein bands containing as low as 0.1 ng were successfully visualized. In addition, the detection sensitivity showed much less protein-to-protein variation than silver staining. This new staining method was also successfully applied to two-dimensional electrophoresis of rat brain proteins. Its overall sensitivity was comparable to that of silver staining. PMID:14595675

  10. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina.

    PubMed

    Ghaedi, Mehrorang; Niknam, Khodabakhsh; Shokrollahi, Ardeshir; Niknam, Ebrahim; Rajabi, Hamid Reza; Soylak, Mustafa

    2008-06-30

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L(-1) nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples. PMID:18155354

  11. Highly sensitive method for specific, brief, and economical detection of glycoproteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis by the synthesis of a new hydrazide derivative.

    PubMed

    Cong, Weitao; Zhou, Ayi; Liu, Zhiguo; Shen, Jiayi; Zhou, Xuan; Ye, Weijian; Zhu, Zhongxin; Zhu, Xinliang; Lin, Jianjun; Jin, Litai

    2015-02-01

    A new hydrazide derivative was synthesized and used for the first time as a specific, brief, and economical probe to selectively visualize glycoproteins in 1-D and 2-D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with high sensitivity. The detection limit of the newly developed staining method is 2- and 4-fold higher than that of the widely used Pro-Q Emerald 300 and 488 stains, respectively. PMID:25565298

  12. Serum sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of patients with membranous nephropathy and focal and segmental glomerulosclerosis.

    PubMed

    Pant, Pragya; Singh, R G; Singh, Santosh K; Singh, Vijay P; Doley, Prodip K; Sivasankar, M

    2016-01-01

    Diagnosis of membranous nephropathy (MN) and focal and segmental glomerulo- sclerosis (FSGS) needs a renal biopsy, which is an invasive procedure with potentially serious complications. Proteomics may be applied for the development of a biomarker for these diseases which will obviate the need of biopsy. Serum sodium dodecyl sulfate-polyacrylamide gel electro-phoresis (SDS-PAGE) analysis gives an idea of the various proteins with different molecular weights (MWs) in a given sample. This study was conducted to analyze proteins with different MWs in patients with MN and FSGS and to compare the two groups with regard to their protein profile. This was a comparative, experimental study performed from June 2013 to July 2014 in the Department of Nephrology, Sir Sunderlal Hospital, Banaras Hindu University, Varanasi. Twenty-three histologically diagnosed cases of primary MN and 25 cases of FSGS were included in the study. Patients were categorized as having mild, moderate, and severe proteinuria with 24 h urinary protein levels of <4, 4- 8 and ≥8 g/24 h, respectively. SDS-PAGE analysis was performed by the method of Laemmli and revealed a significantly higher number of patients with FSGS (80%) having a protein corresponding to 29 kDa MW, than those with MN (39.1%) (P = 0.004). Protein of 5 kDa MW was present in a significantly higher number of patients with moderate (80%) and severe (100%) proteinuria than those with mild proteinuria (25%) (P <0.001). Thus, protein of MW 29 kDa may be a marker for FSGS and needs further characterization. Similarly, 5 kDa protein, present in patients with moderate and severe proteinuria, might be either contributing to or be a marker of severe illness. PMID:27215247

  13. Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: A spectroscopic and microscopic approach.

    PubMed

    Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2016-09-15

    Exploring and understanding the fundamental interaction between protein and surfactant is utmost important for various pharmaceutical and biomedical applications. However, very less is known about the arrangement of individual negatively charged sodium dodecyl sulfate (SDS) molecules on the human serum albumin (HSA). Here, we have investigated the morphology and mechanistic insights of complexation between HSA and SDS by means of photoluminescence (PL) spectroscopy, circular dichroism (CD) and PL microscopy using amine-functionalized silicon quantum dot (Si QD) as an external luminescent marker. The present study is based on a unique and dynamic SDS-Si QD system. The synthesized allylamine-functionalized Si QDs show a distinct PL band centered at 455nm upon excitation at 375nm. At neutral pH, these Si QDs form ordered aggregates in the presence of 1mM SDS due to the hydrogen bonding interaction with the sulfate head groups of surfactants, which is manifested in the appearance of a large Stokes shifted luminescence band centered at 610nm. It has been observed that the PL intensity of SDS-Si QD aggregates at 610nm decreases gradually with concomitant increase in the PL intensity of monomeric Si QDs at 455nm upon increasing the concentration of HSA from 1 to 10μM. These observations combined with PL lifetime, PL microscopy and CD results reveal that SDS forms micelle-like aggregates on the partially unfolded HSA mainly via electrostatic interaction between negatively charged sulfate head groups and positively charged residues of partially unfolded HSA. For the present HSA-SDS system, our results fit a model with type I "necklace and bead"-like structures, where micelle-like SDS aggregates wrap around by the partially unfolded HSA backbone. PMID:27280537

  14. Hexafluoroisopropanol-modified cetyltrimethylammonium bromide/sodium dodecyl sulfate vesicles as a pseudostationary phase in electrokinetic chromatography.

    PubMed

    Tian, Yu; Li, Yunfang; Mei, Jie; Deng, Bin; Xiao, Yuxiu

    2015-07-24

    A novel catanionic surfactant vesicle system, formulated from hexafluoroisopropanol (HFIP), cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), was developed as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). HFIP, as an organic modifier with the prominent properties of ionization, hydrogen bond donor and hydrophobicity, was used to effectively promote the spontaneous vesicle formation from CTAB/SDS mixed aqueous solutions, where precipitates are easy to occur due to long carbon chains, and adjust the performance of CTAB/SDS vesicles. The physical features (size and viscosity) and electrophoretic parameters (electroosmotic mobility, electrophoretic mobility and elution range) of HFIP-modified CTAB/SDS vesicles were characterized as HFIP volume content (0-4%, v/v), CTAB/SDS molar ratio (2:8-7:3mol/mol) and total surfactant concentration (10-50mM) varying, respectively. The 3% v/v HFIP-modified CTAB/SDS (3:7mol/mol, 50mM) vesicle system proves to have the largest mean diameter (288.20nm) and the widest elution range (12.41), which is also much wider than that of the corresponding other four PSP systems including trifluoroethanol (TFE)-modified CTAB/SDS vesicles (5.69), isopropanol-modified CTAB/SDS micelles (2.03), HFIP-modified SDS micelles (4.86) and unmodified SDS micelles (3.12). The chromatographic performance of the HFIP-modified vesicle system was evaluated by separating eight polycyclic aromatic hydrocarbons, nitrotoluene positional isomers, five positively charged and five negatively charged/neutral drugs, respectively. Baseline or near-baseline separation was achieved for each series of solutes. Compared with the TFE-modified vesicle system, as well as the HFIP-modified and unmodified SDS micelle systems, the HFIP-modified vesicle system shows the best separation selectivity, the highest or comparable efficiency, and the lowest retention. PMID:26044380

  15. Impact of sodium dodecyl sulphate on the dissolution of poorly soluble drug into biorelevant medium from drug-surfactant discs.

    PubMed

    Madelung, Peter; Ostergaard, Jesper; Bertelsen, Poul; Jørgensen, Erik V; Jacobsen, Jette; Müllertz, Anette

    2014-06-01

    The purpose was to elucidate the mechanism of action of sodium dodecyl sulphate (SDS) on drug dissolution from discs under physiologically relevant conditions. The effect of incorporating SDS (4-30%, w/w) and drug into discs on the dissolution constant and solubility were evaluated for the poorly soluble drugs griseofulvin and felodipine in a biorelevant dissolution medium (BDM). Dissolution constants from dissolution profiles of drug discs with and without SDS were measured using miniaturized rotating disc dissolution. Solid state changes were investigated by X-ray diffraction. Solubility was determined using HPLC-UV. The interaction between micelles in BDM and SDS was investigated by isothermal titration calorimetry and dynamic light scattering. Isothermal titration calorimetry showed that SDS formed mixed micelles with bile salt:phospholipid (BS:PC) micelles in BDM. Dynamic light scattering showed that the addition of SDS made the BS:PC micelles grow up to 2.5 times in volume. As a function of SDS addition, the dissolution constant showed an apparent exponential increase, while drug solubility showed a weak linear dependence. The pronounced effect on dissolution constant with SDS in the discs is not caused by an increased surface area as SDS dissolves, micelles in the bulk medium or changes in the solid state properties of the drugs. The proposed mechanism involves a high local concentration of SDS at the solid-liquid interface as SDS dissolves and this solubilizes the drug. The improved solubility at the solid-liquid interface provided a much steeper concentration gradient resulted in a faster dissolution. The total amount of SDS in the discs only gave a minor increase in total surfactant concentration in the dissolution medium and did therefore not to any large extent affect the drug solubility in the bulk. PMID:24594297

  16. Impact of organic nano-vesicles in soil: The case of sodium dodecyl sulphate/didodecyl dimethylammonium bromide.

    PubMed

    Gavina, A; Bouguerra, S; Lopes, I; Marques, C R; Rasteiro, M G; Antunes, F; Rocha-Santos, T; Pereira, R

    2016-03-15

    Aiming at contributing new insights into the effects of nanomaterials (NMs) in the terrestrial ecosystem, this study evaluated the impacts of organic nano-vesicles of sodium dodecyl sulphate/didodecyl dimethylammonium bromide (SDS/DDAB) on the emergence and growth of plant seeds, and on the avoidance and reproduction of soil invertebrates. For this purpose several ecotoxicological assays were performed with different test species (terrestrial plants: Zea mays, Avena sativa, Brassica oleracea and Lycopersicon esculentum; soil invertebrates: Eisenia andrei and Folsomia candida). A wide range of SDS/DDAB concentrations were tested, following standard protocols, and using the standard OECD soil as a test substrate (5% of organic matter). The aqueous suspensions of SDS/DDAB, used to spike the soils, were characterised by light scattering techniques for hydrodynamic size of the vesicles, aggregation index, polydispersity index, zeta potential and surface charge. The SDS/DDAB concentrations in the test soil were analysed by HPLC-UV at the end of the assays. Invertebrate species were revealed to be sensitive to nano-SDS/DDAB upon immediate exposure to freshly spiked soils. However, the degradation of SDS/DDAB nano-vesicles in the soil with time prevented the occurrence of significant reproduction effects on soil invertebrates. Plants were not particularly sensitive to SDS/DDAB, except B. oleracea (at concentrations above 375 mg kg(-1)dw). The results gathered in this study allowed a preliminary determination of a risk limit to nano-SDS/DDAB. The low toxicity of SDS/DDAB nano-vesicles could be explained by its high and fast degradation in the soil. The soil microbial community could have an important role in the fate of this NM, thus it is of remarkable importance to improve this risk limit by taking into account specific data addressing this community. PMID:26795542

  17. Supersaturated polymeric micelles for oral cyclosporine A delivery: The role of Soluplus-sodium dodecyl sulfate complex.

    PubMed

    Xia, Dengning; Yu, Hongzhen; Tao, Jinsong; Zeng, Jianrong; Zhu, Quanlei; Zhu, Chunliu; Gan, Yong

    2016-05-01

    Our previous study demonstrated that the retention of drug in the hydrophobic core of Soluplus micelle greatly impeded drug absorption from gastrointestinal tract. Using supersaturated polymeric micelles can improve drug release, however, insufficient maintaining of supersaturation of drug is still unfavorable for drug absorption. Here, we report adding small amount of small molecule, sodium dodecyl sulfate (SDS), to Soluplus solution can form a Soluplus-SDS complex. This complex not only showed a higher solubilization capability for the model drug cyclosporine A (CsA), but also maintained a longer period of and higher supersaturation than was achieved with Soluplus alone. The Soluplus-SDS interactions were characterized by analyzing surface tension, small-angle X-ray scattering (SAXS), fluorescence spectra, and nuclear magnetic resonance spectroscopy. The results demonstrated that the formation of Soluplus-SDS complex via SDS adsorption on hydrophobic segments of Soluplus, which have more hydrophobic domain than that of Soluplus micelle, contributed significantly to the solubilization and stabilization of supersaturated CsA. Using this amphiphilic copolymer-small molecule surfactant system, the cellular uptake and rat in vivo absorption of CsA were more effectively achieved than pure Soluplus. The area under the plasma concentration-time curve (AUC) and the maximal plasma concentration (Cmax) achieved by CsA-loaded Soluplus-SDS complex were 1.58- and 1.8-times higher than the corresponding values for CsA-loaded pure Soluplus, respectively. This study highlighted the benefits of Soluplus-SDS complex for optimizing the solubilization and oral absorption of a drug with low aqueous solubility. PMID:26866892

  18. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    SciTech Connect

    Wang, Feng; Huang, Wei; Zhang, Yunfeng; Wang, Mingyin; Sun, Lina; Tang, Bo; Wang, Wei

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.

  19. Physicochemistry of interaction between the cationic polymer poly(diallyldimethylammonium chloride) and the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate in water and isopropyl alcohol-water media.

    PubMed

    Mukherjee, Suvasree; Dan, Abhijit; Bhattacharya, Subhash C; Panda, Amiya K; Moulik, Satya P

    2011-05-01

    The physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration. The phenomena observed were affected by the presence of isopropyl alcohol (IP) in the medium. The hydrodynamic sizes of the dispersed polymer and its surfactant-interacted species were determined by DLS measurements. The surface morphologies of the solvent-removed PDADMAC and its surfactant-interacted complexes from water and IP-water media were examined by the SEM technique. The morphologies witnessed different patterns depending on the composition and the solvent environment. The head groups of the dodecyl chain containing surfactants made differences in the interaction process. PMID:21466231

  20. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  1. Characteristics of the complexing of chitosan with sodium dodecyl sulfate, according to IR spectroscopy data and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.

    2016-06-01

    The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.

  2. Inactivation of human immunodeficiency virus type 1 by nonoxynol-9, C31G, or an alkyl sulfate, sodium dodecyl sulfate.

    PubMed

    Krebs, F C; Miller, S R; Malamud, D; Howett, M K; Wigdahl, B

    1999-10-01

    A highly desirable approach to prevention of human immunodeficiency virus type 1 (HIV-1) transmission during sexual intercourse is the development of nontoxic, topical, broad spectrum microbicides effective against transmission of cell-associated and cell-free virus. Toward this end, the HIV-1 inactivation potential of surface active agents C31G and an alkyl sulfate, sodium dodecyl sulfate (SDS) was assessed. Because of its extensive use as a microbicidal agent, nonoxynol-9 (N-9) was used as a reference against which C31G and SDS were compared. Viral inactivation was measured using HIV-1 LTR-beta-galactosidase indicator cells (expressing CD4 or CD4/CCR5) derived from HeLa cells, a cell line of human cervical adenocarcinoma origin. In experiments which examined inactivation of cell-free HIV-1, C31G was generally more effective than N-9. Viral inactivation by SDS occurred at twice the concentration necessary to achieve similar levels of inactivation using either N-9 or C31G. Using HeLa and HeLa-derived cells in cytotoxicity studies, it was demonstrated that SDS is as much as 11 and five times less cytotoxic than N-9 or C31G, respectively, during 48 h of continuous exposure. SDS (unlike C31G and N-9) can inactivate non-enveloped viruses such as human papillomavirus (HPV) [Howett, M.K., Neely, E.B., Christensen, N.D., Wigdahl, B., Krebs, F.C., Malamud, D., Patrick, S.D., Pickel, M.D., Welsh, P.A., Reed, C.A., Ward, M.G., Budgeon, L.R., Kreider, J.W., 1999. A broad-spectrum microbicide with virucidal activity against sexually transmitted viruses. Antimicrob. Agents Chemother. 43(2), 314-321]. Since addition of SDS to C31G or N-9 may make the resulting microbicidal mixtures broadly effective against both enveloped and non-enveloped viruses, several surface active agent combinations were evaluated for their abilities to inactivate HIV-1. Addition of SDS to either C31G or N-9 resulted in mixtures that were only slightly less effective than equivalent concentrations of C31G

  3. Polyelectrolyte-surfactant complexes formed by poly[3,5-bis(trimethylammoniummethyl)4-hydroxystyrene iodide]-block-poly(ethylene oxide) and sodium dodecyl sulfate in aqueous solutions.

    PubMed

    Štěpánek, Miroslav; Matějíček, Pavel; Procházka, Karel; Filippov, Sergey K; Angelov, Borislav; Šlouf, Miroslav; Mountrichas, Grigoris; Pispas, Stergios

    2011-05-01

    Formation of polyelectrolyte-surfactant (PE-S) complexes of poly[3,5-bis(trimethylammoniummethyl)-4-hydroxystyrene iodide]-block-poly(ethylene oxide) (QNPHOS-PEO) and sodium dodecyl sulfate (SDS) in aqueous solution was studied by dynamic and electrophoretic light scattering, small-angle X-ray scattering (SAXS), atomic force microscopy, and fluorometry, using pyrene as a fluorescent probe. SAXS data from the QNPHOS-PEO/SDS solutions were fitted assuming contributions from free copolymer, PE-S aggregates described by a mass fractal model, and densely packed surfactant micelles inside the aggregates. It was found that, unlike other systems of a double hydrophilic block polyelectrolyte and an oppositely charged surfactant, PE-S aggregates of the QNPHOS-PEO/SDS system do not form core-shell particles and the PE-S complex precipitates before reaching the charge equivalence between dodecyl sulfate anions and QNPHOS polycationic blocks, most likely because of conformational rigidity of the QNPHOS blocks, which prevents the system from the corresponding rearrangement. PMID:21446735

  4. Validation of mechanically-assisted sodium dodecyl-sulphate elution as a technique to remove pellicle protein components from human enamel.

    PubMed

    Svendsen, Ida E; Arnebrant, Thomas; Lindh, Liselott

    2008-01-01

    The salivary film, denoted the pellicle, formed on oral surfaces is of great importance for oral health and comfort. The present study describes mechanically-assisted sodium dodecyl sulphate (SDS) elution of the in vivo pellicle formed on human enamel and visualisation of the desorbed pellicle proteins using two-dimensional gel electrophoresis (2-DE). To verify this removal of the pellicle, a combined mechanical and surfactant procedure was additionally performed on an in vitro pellicle formed on human enamel, and the effectiveness was validated by mechanical removal in combination with HCl. As indicated by protein quantitation and one dimensional gel electrophoresis, rubbing with polyamide fibre pellets soaked in a 0.5% SDS solution was optimal for completely removing the adsorbed proteins from the enamel surface, and yet provided separation of the proteins by 2-DE to enable identification in future studies. PMID:18392990

  5. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.

    PubMed

    Nagata, Hideya; Tabuchi, Mari; Hirano, Ken; Baba, Yoshinobu

    2005-07-01

    In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems. PMID:15937980

  6. The Effect of Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB) on the Properties of ZnO Synthesized by Hydrothermal Method

    PubMed Central

    Ramimoghadam, Donya; Hussein, Mohd Zobir Bin; Taufiq-Yap, Yun Hin

    2012-01-01

    ZnO nanostructures were synthesized by hydrothermal method using different molar ratios of cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) as structure directing agents. The effect of surfactants on the morphology of the ZnO crystals was investigated by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) techniques. The results indicate that the mixture of cationic-anionic surfactants can significantly modify the shape and size of ZnO particles. Various structures such as flakes, sheets, rods, spheres, flowers and triangular-like particles sized from micro to nano were obtained. In order to examine the possible changes in other properties of ZnO, characterizations like powder X-ray diffraction (PXRD), thermogravimetric and differential thermogravimetric analysis (TGA-DTG), FTIR, surface area and porosity and UV-visible spectroscopy analysis were also studied and discussed. PMID:23202952

  7. Influence of the polyelectrolyte poly(ethyleneimine) on the adsorption of surfactant mixtures of sodium dodecyl sulfate and monododecyl hexaethylene glycol at the air-solution interface.

    PubMed

    Penfold, J; Tucker, I; Thomas, R K; Taylor, D J F; Zhang, J; Bell, C

    2006-10-10

    The polyelectrolyte poly(ethylenenimine), PEI, is shown to strongly influence the adsorption of the anionic-nonionic surfactant mixture of sodium dodecyl sulfate, SDS, and monododecyl hexaethylene glycol, C(12)E(6), at the air-solution interface. In the presence of PEI, the partitioning of the mixed surfactants to the interface is highly pH-dependent. The adsorption is more strongly biased to the SDS as the pH increases, as the PEI becomes a weaker polyelectrolyte. At surfactant concentrations >10(-4) M, the strong interaction and adsorption result in multilayer formation at the interface, and this covers a more extensive range of surfactant concentrations at higher pH values. The results are consistent with a strong interaction between SDS and PEI at the surface that is not predominantly electrostatic in origin. It provides an attractive route to selectively manipulate the adsorption and composition of surfactant mixtures at interfaces. PMID:17014126

  8. Single-step electrotransfer of reverse-stained proteins from sodium dodecyl sulfate-polyacrylamide gel onto reversed-phase minicartridge and subsequent desalting and elution with a conventional high-performance liquid chromatography gradient system for analysis.

    PubMed

    Fernandez-Patron, C; Madrazo, J; Hardy, E; Mendez, E; Frank, R; Castellanos-Serra, L

    1995-06-01

    Isolation of proteins from polyacrylamide electrophoresis gels by a novel combination of techniques is described. A given protein band from a reverse stained (imidazol-sodium dodecyl sulfate--zinc salts) gel can be directly electrotransferred onto a reversed-phase chromatographic support, packed in a self-made minicartridge (2 mm in thickness, 8 mm in internal diameter, made of inert polymeric materials). The minicartridge is then connected to a high-performance liquid chromatography system and the electrotransferred protein eluted by applying an acetonitrile gradient. Proteins elute in a small volume ( < 700 microL) of high-purity volatile solvents (water, trifluoroacetic acid, acetonitrile) and are free of contaminants (gel contaminants, salts, etc). Electrotransferred proteins were efficiently retained, e.g., up to 90% for radioiodinated alpha-lactalbumin, by the octadecyl matrix, and their recovery on elution from the minicartridge was in the range typical for this type of chromatographic support, e.g., 73% for alpha-lactalbumin. The technique was successfully applied to a variety of proteins in the molecular mass range 6-68 kDa, and with amounts between 50 and 2000 pmol. The good mechanical and chemical stability of the developed minicartridges, during electrotransfer and chromatography, allowed their repeated use. This new technique permitted a single-step separation of two proteins unresolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to their different elution from the reversed-phase support. The isolated proteins were amenable to analysis by N-terminal sequencing, enzymic digestion and mass spectrometry of their proteolytic fragments. Chromatographic elution of proteins from the reversed-phase mini-cartridge was apparently independent of the specific loading mode employed, i.e., loading by conventional loop injection or by electrotransfer. PMID:7498136

  9. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-01

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules. PMID:16262297

  10. Highly selective and sensitive simple sensor based on electrochemically treated nano polypyrrole-sodium dodecyl sulphate film for the detection of para-nitrophenol.

    PubMed

    Arulraj, Abraham Daniel; Vijayan, Muthunanthevar; Vasantha, Vairathevar Sivasamy

    2015-10-29

    An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM(-1)) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP. PMID:26547494

  11. Enhanced Binding of Phenosafranin to Triblock Copolymer F127 Induced by Sodium Dodecyl Sulfate: A Mixed Micellar System as an Efficient Drug Delivery Vehicle.

    PubMed

    Mondal, Ramakanta; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-03-24

    In this study, we explored the interaction of a cationic phenazinium dye, phenosafranin (PSF, here used as a model drug), with pluronic block copolymer F127, both in the presence and in the absence of the anionic surfactant sodium dodecyl sulfate (SDS), which forms mixed micelles with F127. We applied both steady-state and time-resolved spectroscopic techniques, along with isothermal titration calorimetry (ITC), to demonstrate the binding of the probe PSF to both the pluronic and F127/SDS mixed micelles. Dynamic light scattering (DLS) study revealed that, upon interaction with SDS, the hydrodynamic diameter (dH) of F127 micelles decreased due to the formation of the mixed micelles. The PSF penetrated to the more hydrophobic interior of the mixed micellar system as compared to F127 micelles alone. Micropolarity and fluorescence-quenching experiments revealed that PSF is more deeply seated in the case of F127/SDS mixed micelles. Through a partition coefficient, lifetime measurements, and time-resolved anisotropy experiments, we also established that the partitioning of the probe within the F127 micelles in the presence of SDS is almost double than that in its absence. ITC data corroborates the fact that the binding of PSF is the strongest and most thermodynamically favorable when mixed micelles are formed, which enables our system to serve as an excellent drug delivery vehicle when compared to F127 alone. PMID:26936205

  12. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  13. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    PubMed

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium. PMID:19743948

  14. Ag island film-enhanced rare earth co-luminescence effect of Tb-Gd-protein-sodium dodecyl benzene sulfonate system and sensitive detection of protein.

    PubMed

    Sun, Chang Xia; Wu, Xia; Zhou, Hai Ping; Wang, Fei; Ding, Hong Hong; Zhao, Liang Liang; Yang, Jing He

    2008-09-15

    This paper reported the coupling technique of Ag island film-enhanced fluorescence with rare earth co-luminescence effect of Tb-Gd-sodium dodecyl benzene sulfonate (SDBS)-protein system. While the collagen is used as the separator between Ag island film and the fluorophore because it not only can decrease the fluorescence of the blank, but also can promote the adsorption of other proteins and change the conformation of the protein. The effects of Ag island film on both the fluorescence and resonance energy transfer process of Tb-Gd-SDBS-protein system are studied, finding that Ag island film can enhance the energy transfer efficiency of this system, resulting in fluorescence enhancement about tenfold compared with this system without Ag island film. Therefore, this technique is used for the detection of proteins as low as 0.72 ng/mL for BSA and 1.3 ng/mL for HSA. In addition, Ag island film can also change the energy transfer process of Tb-SDBS-protein system. PMID:18761153

  15. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  16. Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions.

    PubMed

    Djordjevic, Darinka; Cercaci, Luisito; Alamed, Jean; McClements, D Julian; Decker, Eric A

    2007-05-01

    Citral and limonene are the major flavor components of citrus oils. Both of these compounds can undergo chemical degradation leading to loss of flavor and the formation of undesirable off-flavors. Engineering the interface of emulsion droplets with emulsifiers that inhibit chemical reactions could provide a novel technique to stabilize citral and limonene. At present, emulsified flavor oils are usually stabilized by gum arabic (GA), which is a naturally occurring polysaccharide-protein complex. The objective of this study was to examine if citral and limonene were more stable in emulsions stabilized with a sodium dodecyl sulfate (SDS)-chitosan complex than GA. Citral degraded less in GA-stabilized than in SDS-chitosan-stabilized emulsions at pH 3.0. However, SDS-chitosan-stabilized emulsions were more effective at retarding the formation of the citral oxidation product, p-cymene, than GA-stabilized emulsions. Limonene degradation and the formation of limonene oxidation products, limonene oxide and carvone, were lower in the SDS-chitosan- than GA-stabilized emulsions at pH 3.0. The ability of an SDS-chitosan multilayer emulsifier system to inhibit the oxidative deterioration of citral and limonene could be due to the formation of a cationic and thick emulsion droplet interface that could repel prooxidative metals, thus decreasing prooxidant-lipid interactions. PMID:17419641

  17. [Urine protein analysis with the sodium-dodecyl-sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE) in healthy cats and cats with kidney diseases].

    PubMed

    Meyer-Lindenberg, A; Wohlsein, P; Trautwein, G; Nolte, I

    1997-03-01

    In this investigation, the value of urine protein analysis by means of molecular-weight related sodium dodecyl-polyacryl gradient gel electrophoresis (SDS-PAGE) was examined with regard to its applicability and diagnostic significance in nephropathy in the cat. A total of 87 cats was included in the study, 30 of them that were clinically healthy served as the control group. The urine protein pattern of this group had, besides the band representing the market albumin, and additional broad band within the size of the marker transferrin. In some cases, weak bands were present within the range of the Tamm-Horsfall-protein and immunoglobulin G. Micromolecular protein bands were not demonstrable. The remaining 57 animals had a histologically proven nephropathy. Thirty-eight cats had elevated urea and/or creatinine values in the plasma (group 1), and 19 animals had values within the reference range (group 2). The urine protein pattern as evidenced by SDS-urine electrophoresis was altered in all cats with histologically proven nephropathy, and it is thus concluded that with this technique a nephropathy can be diagnosed very early and prior to changes of plasma urea and creatinine (group 2). Moreover, in most of the cases, the nephrological changes can be classified as glomerular or tubulo-interstitial (group 1 and group 2). However, it is not possible to draw exact conclusions concerning the underlying morphological changes, nor can the severity of the disease be correctly assessed. PMID:9123982

  18. In-tube magnetic solid phase microextraction of some fluoroquinolones based on the use of sodium dodecyl sulfate coated Fe3O4 nanoparticles packed tube.

    PubMed

    Manbohi, Ahmad; Ahmadi, Seyyed Hamid

    2015-07-23

    In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett-Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box-Behnken design. Calibration curves were linear (R(2)>0.990) in the range of 0.1-1000μgL(-1) for ciprofloxacin (CIP) and 0.5-500μgL(-1) for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05μgL(-1). The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction. PMID:26231896

  19. Interactions between sodium dodecyl sulfate micelles and peptides during matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of proteolytic digests.

    PubMed

    Tummala, Rama; Green-Church, Kari B; Limbach, Patrick A

    2005-09-01

    Although sodium dodecyl sulfate (SDS) is routinely used as a denaturing agent for proteins, its presence is highly detrimental on the analysis of peptides and proteins by mass spectrometry. It has been found, however, that when SDS is present in concentrations near to or above its critical micelle concentration (CMC), improvements in the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of peptide mixtures or hydrophobic proteins are obtained. To elucidate possible explanations for such improvements, here we have undertaken a study examining the effect of SDS micelles on peptide mixtures. Fluorescently labeled peptides were used as probes to determine whether hydrophobic or hydrophilic peptides interact exclusively with SDS micelles. In addition, four globular proteins were digested with trypsin and then various amounts of SDS were added before MALDI mass spectrometry. To examine the role of mixture complexity on the mass spectral results, the tryptic digest of bovine serum albumin was also fractionated according to hydrophobicity before SDS treatment. Results from these experiments suggest that micelle-peptide interactions increase peptide-matrix cocrystallization irrespective of analyte hydrophobicity. As these studies were performed using the dried-droplet method of sample spotting, the presence of micelles is also hypothesized to reduce Marangoni effects during the crystallization process. PMID:16006141

  20. Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia).

    PubMed

    Jorge, R A D L V C; Moreira, G S

    2005-06-01

    Effects of anthropogenic pollution have been observed at different trophic levels in the oceans, and toxicity tests constitute one way of monitoring these alterations. The present assay proposes the use of two reference substances, sodium dodecyl sulfate (SDS) and zinc sulfate, for Perna perna larvae. This common mussel on the Brazilian coast is used as a bioindicator and is of economic interest. The chronic static embryo-larval test of short duration (48 h) was employed to determine the NOEC, LOEC, and IC50 for SDS and zinc sulfate, as well as the coefficient of variation. Salinity, pH and un-ionized ammonia (NH3) and dissolved oxygen (DO) concentrations were measured to monitor water quality. The results demonstrated that the main alterations in veliger larvae are the development of only one shell, protruded mantle, malformed shell, formation of only part of a valve, clipped edges, uneven sizes and presence of a concave or convex hinge. NOEC values were lower than 0.25 mg L(-1) for zinc sulfate and 0.68 mg L(-1) for SDS. The coefficient of variation was 17.63% and 2.50% for zinc sulfate and SDS, respectively. PMID:15883100

  1. Temperature-dependent phase transition and desorption free energy of sodium dodecyl sulfate at the water/vapor interface: approaches from molecular dynamics simulations.

    PubMed

    Chen, Meng; Lu, Xiancai; Liu, Xiandong; Hou, Qingfeng; Zhu, Youyi; Zhou, Huiqun

    2014-09-01

    Adsorption of surfactants at the water/vapor interface depends upon their chemical potential at the interface, which is generally temperature-dependent. Molecular dynamics simulations have been performed to reveal temperature influences on the microstructure of sodium dodecyl sulfate (SDS) molecule adsorption layer. At room temperature, SDS molecules aggregate at the interface, being in a liquid-expanded phase, whereas they tend to spread out and probably transit to a gaseous phase as the temperature increases to above 318 K. This phase transition has been confirmed by the temperature-dependent changes in two-dimensional array, tilt angles, and immersion depths to the aqueous phase of SDS molecules. The aggregation of SDS molecules accompanies with larger immersion depths, more coordination of Na(+) ions, and less coordination of water. Desorption free energy profiles show that higher desorption free energy appears for SDS molecules at the aggregate state at low temperatures, but no energy barrier is observed. The shapes of desorption free energy profiles depend upon the distribution of SDS at the interface, which, in turn, is related to the phase state of SDS. Our study sheds light on the development of adsorption thermodynamics and kinetics theories. PMID:25127193

  2. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS).

    PubMed

    Forni, C; Braglia, R; Harren, F J M; Cristescu, S M

    2012-04-01

    Surfactants are used for several purposes and recently they have attracted the attention for their ability to modify the behavior of other preexistent or co-disposed contaminants, although their use or discharge in wastewaters can represent a real or potential risk for the environment. Lemna minor L. and Azolla filiculoides Lam. are floating aquatic macrophytes, very effective in accumulating several pollutants including sodium dodecyl sulphate (SDS). In this work we evaluated the effects of SDS on these species by determining the stress ethylene production via laser-based trace gas detection, and the activities of enzymes involved in stress response, such as guaiacol peroxidase (G-POD), phenylalanine ammonia-lyase (PAL) and polyphenol-oxidase (PPO). Phenolics content was also determined. The macrophytes were treated with different concentrations of SDS for one week. SDS affected duckweed enzymatic activities and phenol content. While in the fern phenolics amount, PAL, G-POD and PPO activities were not affected by SDS except for 100 ppm SDS, the only concentration that was taken up and not completely degraded. Stress ethylene production was induced only in the fern treated with 50 and 100 ppm SDS. PMID:22277247

  3. Rapid fluorescent monitoring of total protein patterns on sodium dodecyl sulfate-polyacrylamide gels and western blots before immunodetection and sequencing.

    PubMed

    Alba, F J; Daban, J R

    1998-10-01

    The fluorogenic dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) has been used for the detection of total protein patterns on polyvinylidene difluoride (PVDF) membranes. Fluorescent staining of protein bands on membranes with this covalent dye is completed in 20 min. Wet membranes are translucent, allowing protein visualization by transillumination with ultraviolet light. The resulting images can be recorded using Polaroid film or a charge-coupled device camera. Electrophoretic bands containing 5-10 ng of protein can be detected on the MDPF-stained Western blot. When proteins are directly transferred to the membrane using a slot blotting device, as little as 0.5 ng of protein can be detected. Previous visualization of protein bands on sodium dodecyl sulfate-polyacrylamide gels with the noncovalent fluorescent dye Nile red (Alba et al., BioTechniques, 1996, 21, 625-626) does not interfere with further MDPF staining and fluorescent detection of these bands transferred to PVDF membranes. Thus, Nile red and MDPF staining can be performed sequentially, allowing the rapid monitoring of total protein patterns on both the electrophoretic gel and Western blot. Using the conditions described in this study, MDPF staining does not preclude further N-terminal microsequencing and immunodetection of specific bands with polyclonal antibodies. PMID:9820958

  4. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate.

    PubMed

    Ma, Xinying; Chao, Mingyong; Wang, Zhaoxia

    2013-06-01

    This paper describes a novel electrochemical method for the determination of Sudan I in food samples based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GMGCE) and the enhancement effect of an anionic surfactant: sodium dodecyl sulphonate (SDS). Using pH 6.0 phosphate buffer solution (PBS) as supporting electrolyte and in the presence of 1.5 × 10(-4)mol L(-1) SDS, Sudan I yielded a well-defined and sensitive oxidation peak at a GMGCE. The oxidation peak current of Sudan I remarkably increased in the presence of SDS. The experimental parameters, such as supporting electrolyte, concentration of SDS, and accumulation time, were optimised for Sudan I determination. The oxidation peak current showed a linear relationship with the concentrations of Sudan I in the range of 7.50 × 10(-8)-7.50 × 10(-6)mol L(-1), with the detection limit of 4.0 × 10(-8)mol L(-1). This new voltammetric method was successfully used to determine Sudan I in food products such as ketchup and chili sauce with satisfactory results. PMID:23411169

  5. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-01-01

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased. PMID:27092476

  6. Study on the fluorescent enhancement effect in terbium-gadolinium-protein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level.

    PubMed

    Sun, Changxia; Yang, Jinghe; Wu, Xia; Liu, Shufang; Su, Benyu

    2004-08-01

    The co-luminescence effect in a terbium-gadolinium-protein-sodium dodecyl benzene sulfonate (SDBS) system is reported here. Based on it, the sensitive quantitative analysis of protein at nanogram levels is established. The co-luminescence mechanism is studied using fluorescence, resonance light scattering (RLS), absorption spectroscopy and NMR measurement. It is considered that protein could be unfolded by SDBS, then a efficacious intramolecular fluorescent energy transfer occurs from unfolded protein to rare earth ions through SDBS acting as a "transfer bridge" to enhance the emission fluorescence of Tb3+ in this ternary complex of Tb-SDBS-BSA, where energy transfer from protein to SDBS by aromatic ring stacking is the most important step. Cooperating with the intramolecular energy transfer above is the intermolecular energy transfer between the simultaneous existing complexes of both Tb3+ and Gd3+. The fluorescence quantum yield is increased by an energy-insulating sheath, which is considered to be another reason for the resulting enhancement of the fluorescence. Förster theory is used to calculate the distribution of enhancing factors and has led to a greater understanding of the mechanisms of energy transfer. PMID:15388234

  7. Comparison of sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles and antigenic relatedness among outer membrane proteins of 49 Brucella abortus strains.

    PubMed Central

    Verstreate, D R; Winter, A J

    1984-01-01

    Outer membrane proteins were solubilized from 49 strains of Brucella abortus by sequential extraction of physically disrupted cells with N-lauroylsarcosinate and a dipolar ionic detergent (Verstreate et al., Infect. Immun. 35:979-989, 1982). The strains tested included standard agglutination test strain 1119, virulent strain 2308, and eight reference strains representing each of the biotypes; the remainder were isolates from cattle in North America with natural infections and included biotypes 1, 2, and 4. Three principal protein groups with apparent molecular weights of 88,000 to 94,000 (group 1), 35,000 to 40,000 (group 2, now established as porins [Douglas et al., Infect. Immun. 44:16-21, 1984]), and 25,000 to 30,000 (group 3) were observed in every strain. Some variability in banding patterns occurred among strains, but intrastrain variation was sufficient to preclude the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles of outer membrane proteins for differentiating among strains of B. abortus. One antigen ([b]) was shared among the porin proteins, and three others ([c], ([d], and ([ e]) were shared among the group 3 proteins of all of the strains tested, indicating that these relationships are probably species wide. These results suggest that it may be possible to use outer membrane proteins from a representative strain of B. abortus in a vaccine for species-wide immunization. Images PMID:6434426

  8. Extraction of up to 95% of wheat (Triticum aestivum) flour protein using warm sodium dodecyl sulfate (SDS) without reduction or sonication.

    PubMed

    DuPont, Frances M; Samoil, Vitalie; Chan, Ronald

    2008-08-27

    Extraction of glutenin polymers without sonication is an essential prerequisite for accurate determination of their composition and molecular size distribution. Sequential fractionation of wheat flour with 0.1 M KCl and 0.25% sodium dodecyl sulfate (SDS) at 21 degrees C and 2% SDS at 60 degrees C extracted up to 95% of total protein. We propose that 2% SDS at 60 degrees C disrupts hydrogen bonds in glutenin and gliadin aggregates, reduces hydrophobic interactions, and facilitates solubilization. Analysis by size-exclusion high-performance liquid chromatography (SE-HPLC), reverse-phase (RP)-HPLC, and SDS-polyacrylamide gel electrophoresis (PAGE) revealed that partitioning of gliadins and glutenins among the extracts differed for two flours with good baking quality (Butte 86 and Jagger) and one with poor baking quality (Chinese Spring). More gliadin was associated with the 0.25% SDS extract for Chinese Spring, whereas more gliadin was associated with the 2% SDS extract for Butte 86 and Jagger. Unextractable glutenin polymer was only 4-5% of total protein for Butte 86 and Chinese Spring and 14% for Jagger. PMID:18616274

  9. Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction.

    PubMed

    Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader

    2014-10-01

    Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. PMID:25073074

  10. Electrophoretic Extraction of Low Molecular Weight Cationic Analytes from Sodium Dodecyl Sulfate Containing Sample Matrices for Their Direct Electrospray Ionization Mass Spectrometry

    PubMed Central

    Kinde, Tristan F.; Lopez, Thomas D.; Dutta, Debashis

    2015-01-01

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 µg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis. PMID:25664891

  11. Drop Coalescence during Emulsion Formation in a High-Pressure Homogenizer for Tetradecane-in-Water Emulsion Stabilized by Sodium Dodecyl Sulfate.

    PubMed

    Narsimhan, Ganesan; Goel, Parul

    2001-06-15

    The present study investigates the effects of homogenizer pressure, surfactant concentration, ionic strength, and dispersed phase fraction on the coalescence rate of tetradecane-in-water emulsions during their formation in a high-pressure homogenizer. Experiments were conducted in a recirculating system consisting of a Rannie laboratory-scale single-stage homogenizer and a stirred vessel for tetradecane-in-water emulsions stabilized by sodium dodecyl sulfate (SDS). The initial evolution of the number concentration of droplets in the stirred tank was measured when subjected to a negative stepchange in the homogenizer pressure. The average drop coalescence rate constant in the homogenizer was inferred by fitting the experimental evolution of the number concentration of drops to a simple model accounting for the coalescence in the homogenizer under the assumption of a quasi steady state in the homogenizer. The residence time of the emulsion in the homogenizer was evaluated from the analysis of radial turbulent flow between disks. The step down homogenizer pressure was varied in the range 20.7-48.3 MPa, the drop size in the range 174-209 nm, the dispersed phase fraction in the range 5%-15%, SDS concentration in the range 0.0033-0.25 wt%, and ionic strength in the range 0.01-0.1 M. The coalescence rate constants were found to be in the range from 3.34x10(-17) to 2.43x10(-16) m(3) s(-1). The coalescence rate constant was found to be higher for higher homogenizer pressures, smaller drop sizes, lower dispersed phase fractions, and lower SDS concentrations and was insensitive to variations in ionic strength. Copyright 2001 Academic Press. PMID:11374938

  12. Mixed micelles of Triton X-100, sodium dodecyl dioxyethylene sulfate, and synperonic l61 investigated by NOESY and diffusion ordered NMR spectroscopy.

    PubMed

    Denkova, Pavletta S; Van Lokeren, Luk; Willem, Rudolph

    2009-05-14

    Mixed micelles formed from nonionic surfactant Triton X-100 (TX100), anionic surfactant sodium dodecyl dioxyethylene sulfate (SDP2S), and triblock copolymer Synperonic L61 (SL61) were investigated by 1H NMR spectroscopy. The size and shape of the aggregates were determined by diffusion ordered NMR spectroscopy (DOSY), while 2D nuclear Overhauser enhanced spectroscopy (NOESY) NMR was used to study the mutual spatial arrangement of the surfactant molecules in the aggregated state. An average micellar hydrodynamic radius of 3.6 nm, slightly increasing upon increasing TX100 molar fraction, was found for the mixed systems without additives. Addition of SL61 to the mixed micellar systems results in a slight increase of micellar radii. In the presence of AlCl3, an increase of TX100/SDP2S micellar sizes from 4 to 10 nm was found when increasing the SDP2S molar fraction. The mixed TX100/SDP2S micelles in the presence of both AlCl3 and polymer SL61 are almost spherical, with a radius of 4.5 nm. 2D NOESY data reveal that, as the individual TX100 micelles, mixed TX100/SDP2S and TX100/SDP2S/SL61/AlCl3 micelles also have a multilayer structure, with partially overlapping internal and external layers of TX100 molecules. In these mixed micelles, the SDP2S molecules are located at the level of the external layer of TX100 molecules, whereas the SL61 polymer is partially incorporated inside of the micellar core. PMID:19385612

  13. On-line preconcentration of sodium dodecyl sulfate-protein complexes using electrokinetic supercharging method with a prefilled water plug in capillary sieving electrophoresis.

    PubMed

    Liu, Jing; Kang, Mingchao; Liu, Zhen

    2011-09-01

    An electrokinetic supercharging (EKS) method with a prefilled water plug at the head column of capillary was developed for on-line preconcentration of sodium dodecyl sulfate (SDS)-protein complexes in capillary sieving electrophoresis (CSE). Conventional EKS is a combination of electrokinetic injection with transient isotachophoresis (tr-ITP). The capillary is first filled with background electrolyte, then an appropriate amount of a leading electrolyte is filled and electro-injection is carried out for certain duration. After that, terminating electrolyte is filled, and tr-ITP is subsequently initiated, followed by capillary electrophoresis (CE) separation. In this work, the performance of EKS was evaluated by integrating multiple sub-methods step by step, and a water plug containing polymer was introduced before electrokinetic injection in order to further improve the concentration effect. The positive effects of the sub-methods were verified, including molecular sieving effect of polymer, field enhanced sample injection (FESI) with and without a water plug, and transient isotachophoretic electrophoresis-based FESI. It was observed that analyte discrimination usually encountered in conventional electrokinetic injection was eliminated due to the similar charge to mass ratios of SDS-protein complexes. Based on these results, a hybrid on-line preconcentration method, EKS with injecting a water plug containing polymer before sample electrokinetic injection, was proposed and used to indiscriminately preconcentrate SDS-protein complexes, which provided a sensitivity enhancement factor of more than 1000. It was very suitable for the analysis of low-abundance proteins, providing the information of their molecular mass. PMID:22233073

  14. Self-Assembly of Oleyl Bis(2-hydroxyethyl)methyl Ammonium Bromide with Sodium Dodecyl Sulfate and Their Interactions with Zein.

    PubMed

    Chen, Yao; Ji, Xiuling; Han, Yuchun; Wang, Yilin

    2016-08-16

    Surface tension and aggregation behavior in an aqueous solution of the mixture of cationic surfactant oleyl bis(2-hydroxyethyl)methylammonium bromide (OHAB) and anionic surfactant sodium dodecyl sulfate (SDS) have been studied by surface tension, conductivity, turbidity, zeta potential, isothermal titration microcalorimetry (ITC), cryogenic transmission electron microscopy (Cryo-TEM), and dynamic light scattering. The mixture shows pretty low critical micellar concentration and surface tension, and successively forms globular micelles, unilamellar vesicles, multilamellar vesicles, rod-like micelles, and globular micelles again by increasing the molar fraction of OHAB from 0 to 1.00. The cooperation of hydrophobic interaction between the alkyl chains, electrostatic attraction between the headgroups as well as hydrogen bonds between the hydroxyethyl groups leads to the abundant aggregation behaviors. Furthermore, the solubilization of zein by the OHAB/SDS aggregates and their interactions were studied by ITC, total organic carbon analysis (TOC), and Cryo-TEM. Compared with pure OHAB or pure SDS solution, the amount of zein solubilized by the OHAB/SDS mixture is significantly reduced. It means that the mixtures have much stronger abilities in solubilizing zein. This result has also been proved by the observed enthalpy changes for the interaction of OHAB/SDS mixture with zein. Mixing oppositely charged OHAB and SDS reduces the net charge of mixed aggregates, and thus, the electrostatic attraction between the aggregates and zein is weakened. Meanwhile, the large size of the aggregates may increase the steric repulsion to the zein backbone. This work reveals that surfactant mixtures with larger aggregates and smaller CMCs solubilize less zein, suggesting how to construct a highly efficient and nonirritant surfactant system for practical use. PMID:27452480

  15. One-Step Synthesis of Single-Layer MnO2 Nanosheets with Multi-Role Sodium Dodecyl Sulfate for High-Performance Pseudocapacitors.

    PubMed

    Liu, Zhenning; Xu, Kongliang; Sun, Hang; Yin, Shengyan

    2015-05-13

    A template-free, one-step and one-phase synthesis of single-layer MnO2 nanosheets has been developed via a redox reaction between KMnO4 and sodium dodecyl sulfate (SDS). The successful formation of single-layer MnO2 nanosheets has been confirmed by the characteristic absorption around 374 nm and the typical thickness of ~0.95 nm. The slow redox reaction controlled by the gradual hydrolysis of SDS is found to be the key factor for the successful formation of single-layer nanosheets. SDS not only serves as the precursor of dodecanol to reduce KMnO4 , but also aids the formation of single-layer MnO2 nanosheets as a structure-inducing agent. The resultant single-layer MnO2 nanosheets possess superior specific capacitance, which can be attributed to the extended surface and high porosity of MnO2 nanosheets on the electrode. The MnO2 nanosheets also show excellent durability, retaining 91% of the starting capacitance after 10 000 charge/discharge cycles. Moreover, the symmetric pseudocapacitor based on the synthesized single-layer MnO2 nanosheets exhibits a high specific capacitance, indicating great potential for real energy storage. Therefore, it has been demonstrated for the first time that a single readily available reagent, SDS, can play multiple roles in reducing KMnO4 to conveniently yield single-layer MnO2 nanosheets as a high-performance pseudocapacitive material. PMID:25565035

  16. Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis.

    PubMed Central

    Bernadsky, G; Beveridge, T J; Clarke, A J

    1994-01-01

    For the first time, peptidoglycan autolysins from cellular fractions derived from sonicated cultures of Pseudomonas aeruginosa PAO1, Escherichia coli W7, Klebsiella pneumoniae CWK2, and Proteus mirabilis 19 were detected and partially characterized by zymogram analysis. Purified murein sacculi from P. aeruginosa PAO1 were incorporated into a sodium dodecyl sulfate (SDS)-polyacrylamide gel at a concentration of 0.05% (wt/vol) to serve as a substrate for the separated autolysins. At least 11 autolysin bands of various intensities with M(r)s ranging between 17,000 and 122,000 were detected in each of the homogenated cultures. Some of the autolysins of the four bacteria had similar M(r)s. The zymogram analysis was used to show that a number of the autolysins from E. coli were inhibited by the heavy metals Hg2+ and Cu2+, at 1 and 10 mM, respectively, high ionic strengths, and reagents known to affect the packing of lipopolysaccharides. The activity of an autolysin with an M(r) of 65,000 was also impaired by penicillin G, whereas it was enhanced by gentamicin. A preliminary screen to determine the relationship between penicillin-binding proteins (PBPs) and autolysins was carried out by using a dual assay in which radiolabelled penicillin V bands were visualized on an autolysin zymogram. Radiolabelled bands corresponding to PBPs 3, 4, 5, and 6 from E. coli and P. aeruginosa; PBPs 3, 4, and 6 from Proteus mirabilis; and PBP 6 from K. pneumoniae degraded the murein sacculi in the gels and were presumed to have autolytic activity, although the possibility of two distinct enzymes, each with one of the activities, comigrating in the SDS-polyacrylamide gels could not be excluded. Some radiolabelled bands possessed an Mr of <34,000 and coincided with similar low-Mr autolysin bands. Images PMID:7915268

  17. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  18. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acid pyrophosphate. 582.1087 Section 582.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions...

  20. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acid pyrophosphate. 582.1087 Section 582.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions...

  1. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate....

  2. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6085 Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  3. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  4. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  5. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  6. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate....

  7. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  8. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate....

  9. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acid pyrophosphate. 582.1087 Section 582.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions...

  11. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acid pyrophosphate. 582.1087 Section 582.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions...

  12. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is...

  13. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate....

  14. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  15. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  16. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    PubMed Central

    Barnum, D. A.; Johnson, R. E.; Brooks, B. W.

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control are discussed. PMID:17422110

  17. Rapid Discrimination of Gram-Positive and Gram-Negative Bacteria in Liquid Samples by Using NaOH-Sodium Dodecyl Sulfate Solution and Flow Cytometry

    PubMed Central

    Wada, Atsushi; Kono, Mari; Kawauchi, Sawako; Takagi, Yuri; Morikawa, Takashi; Funakoshi, Kunihiro

    2012-01-01

    Background For precise diagnosis of urinary tract infections (UTI), and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. Methodology/Principal Findings We employed the NaOH-sodium dodecyl sulfate (SDS) solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation) for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. Conclusions/Significance Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history of UTIs. The method

  18. Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods.

    PubMed

    Esterman, Abbie L; Katiyar, Amit; Krishnamurthy, Girija

    2016-09-01

    Capillary electrophoresis sodium dodecyl sulfate (CE-SDS) is widely used for purity analysis of monoclonal antibody therapeutics for release and stability to demonstrate product consistency and shelf life during the manufacturing and life cycle of the product. CE-SDS method development is focused on exploring the method capability to provide the information about the product purity and product related degradants (fragmentation, aggregation etc.). In order to establish the functionality of the instrumentation, software, and sample preparation; system suitability criteria need to be defined for analytical methods using a well characterized reference standard run under the same protocol and analysis as the test articles. Typically the reference standard is produced using a manufacturing process representative of the clinical material. The qualification, control, and maintenance of in-house reference standards are established through rigorous quality and regulatory guidelines. The U.S. Pharmacopeia (USP) has developed a monoclonal IgG System Suitability Reference Standard to be utilized for assessment of system suitability in CE-SDS methods. In this communication, we evaluate the system suitability acceptance criteria performance of the USP IgG standard using two methods, the recommended USP protocol provided in monograph <129> and a molecule specific Bristol-Myers Squibb (BMS) CE-SDS method. The results from USP IgG standard were compared with two in-house monoclonal antibody reference standards. The data suggest that the USP CE-SDS method may not be suitable for CE-SDS analysis for release and stability of monoclonal antibody therapeutics due to the high level of method induced partial reduction observed for all molecules tested. This high level of fragmentation observed utilizing the USP method will result in reporting lower purity levels, which will impact the overall quality assessment of the molecule. The system suitability criteria recommended by the USP method

  19. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-01

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples. PMID:26154872

  20. Amended safety assessment of sodium picramate and picramic acid.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F

    2009-01-01

    Sodium picramate is the sodium salt of picramic acid, a substituted phenolic compound. Sodium picramate and picramic acid function as hair colorants; they are reportedly used in 31 and 3 hair-dye products, respectively. No concentration-of-use data were available for sodium picramate, but picramic acid was reported to be used at 0.6%. The Cosmetic Ingredient Review Expert Panel recognized that adding picramic acid to a hair-dye formulation likely results in formation of a salt such as sodium picramate, which suggested that safety test data for one ingredient would be applicable to the other. Hair dyes containing these ingredients bear a caution statement and patch test instructions for determining whether the product causes skin irritation. The panel finds that the available data support the safety of these colorants in hair dyes and expects that sodium picramate would be used at concentrations comparable to those reported for picramic acid. PMID:20086193

  1. Sodium Dodecyl Sulfate-Modified Doxorubicin-Loaded Chitosan-Lipid Nanocarrier with Multi Polysaccharide-Lecithin Nanoarchitecture for Augmented Bioavailability and Stability of Oral Administration In Vitro and In Vivo.

    PubMed

    Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan

    2016-05-01

    For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases. PMID:27305818

  2. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  3. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  4. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  5. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  6. 40 CFR 721.1650 - Alkylbenzenesulfonic acid and sodium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... salts. 721.1650 Section 721.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1650 Alkylbenzenesulfonic acid and sodium salts. (a) Chemical substances... alkyl benzenesulfonic acid and sodium salts (PMNs P-88-1783, P-88-2231, P-88-2237, and P-88-2530)...

  7. 40 CFR 721.1650 - Alkylbenzenesulfonic acid and sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... salts. 721.1650 Section 721.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1650 Alkylbenzenesulfonic acid and sodium salts. (a) Chemical substances... alkyl benzenesulfonic acid and sodium salts (PMNs P-88-1783, P-88-2231, P-88-2237, and P-88-2530)...

  8. 40 CFR 721.1650 - Alkylbenzenesulfonic acid and sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... salts. 721.1650 Section 721.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1650 Alkylbenzenesulfonic acid and sodium salts. (a) Chemical substances... alkyl benzenesulfonic acid and sodium salts (PMNs P-88-1783, P-88-2231, P-88-2237, and P-88-2530)...

  9. 40 CFR 721.1650 - Alkylbenzenesulfonic acid and sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... salts. 721.1650 Section 721.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1650 Alkylbenzenesulfonic acid and sodium salts. (a) Chemical substances... alkyl benzenesulfonic acid and sodium salts (PMNs P-88-1783, P-88-2231, P-88-2237, and P-88-2530)...

  10. 40 CFR 721.1650 - Alkylbenzenesulfonic acid and sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... salts. 721.1650 Section 721.1650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.1650 Alkylbenzenesulfonic acid and sodium salts. (a) Chemical substances... alkyl benzenesulfonic acid and sodium salts (PMNs P-88-1783, P-88-2231, P-88-2237, and P-88-2530)...

  11. Extraction of copper(II) from acid chloride solutions by N-dodecyl- and N,N-dihexylpyridinecarboxamides

    SciTech Connect

    Borowiak-Resterna, A.

    1999-01-01

    N-dodecyl- and N,N-dihexylpyridinecarboxamides with amide group at 2, 3 or 4 position were synthesized. Model individual amides were used to recover copper(II) from chloride solutions at constant water activity and constant total concentration of dissolved species in aqueous solution. It was found, that pyridine-2-carboxamide forms with copper complexes (CuCl{sub 2}){sub x}(Ext){sub 2}. Remaining amides form with copper complexes CuCl{sub 2}(Ext){sub 2}. Monoalkylamides are not suitable for extraction because they and their complexes are slightly soluble in the hydrocarbon diluents. N,N-dialkylpyridinecarboxamides and their copper complexes are sufficiently soluble in the hydrocarbon phase to carry out extraction. However, they are strong extractants and extract efficiently copper already from dilute chloride solutions ([Cl{sup {minus}}] = 0.1 M). They extract also significant amounts of copper from concentrated (3--4 M) nitrate solutions.

  12. Recovery of acids and sodium hydroxide from solutions of sodium sulfate and sodium chloride with the use of bipolar membranes

    SciTech Connect

    Bobrinskaya, G.A.; Pavlova, T.V.; Shatalov, A.Ya.

    1985-09-01

    The authors examined the kinetic laws governing the electrodialysis recovery of hydrochloric acid and sulfuric acid, as well as sodium hydroxide, from 1M sodium chloride and 0.5 M sodium sulfate solutions and from a mixture of these salts with the use of the MB-1, MB-2, and MB-3 bipolar membranes. Kinetic plots of the current density and the concentration of the acid and the base in the chambers next to the bipolar membranes during the electrodialysis treatment of 1M sodium chloride, 0.5 M sodium sulfate, and solutions are presented. It was established that it is better to use the MB-3 membrane for the electrodialysis conversion of sodium chloride and sodium sulfate into acids and sodium hydroxide owing to the high rate and current efficiency and low expenditure of electrical energy and degree of contamination of the products obtained by the salts. It was also established that the resistance of the MB-1 and MB-2 bipolar membranes is almost an order of magnitude higher than that of the MB-3 membrane.

  13. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to check ...

  14. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    PubMed

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. PMID:26864607

  15. Acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro.

    PubMed

    Shang, Xiaofei; Miao, Xiaolou; Lv, Huiping; Wang, Dongsheng; Zhang, Jiqin; He, Hua; Yang, Zhiqiang; Pan, Hu

    2014-06-01

    Usnic acid, a major active compound in lichens, was first isolated in 1884. Since then, usnic acid and its sodium salt (sodium usnic acid) have been used in medicine, perfumery, cosmetics, and other industries due to its extensive biological activities. However, its acaricidal activity has not been studied. In this paper, we investigated the acaricidal activity of usnic acid and sodium usnic acid against Psoroptes cuniculi in vitro. After evaluating the acaricidal activity and toxicity of usnic acid and sodium usnic acid in vitro, the results showed that at doses of 250, 125, and 62.5 mg/ml, usnic acid and sodium usnic acid can kill mites with 91.67, 85.00, and 55.00% and 100, 100, and 60.00% mortality after treatment 24 h. The LT50 values were 4.208, 8.249, and 16.950 h and 3.712, 7.339, and 15.773 h for usnic acid and sodium usnic acid, respectively. Sodium usnic acid has a higher acaricidal activity than usnic acid, which may be related to the difference in their structures. PMID:24770718

  16. Depolarization of the Electrogenic Transmembrane Electropotential of Zea mays L. by Bipolaris (Helminthosporium) maydis Race T Toxin, Azide, Cyanide, Dodecyl Succinic Acid, or Cold Temperature 1

    PubMed Central

    Mertz, Stuart M.; Arntzen, Charles J.

    1978-01-01

    The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes. Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma. PMID:16660605

  17. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  18. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  19. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer, and... maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  20. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-10-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  1. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    PubMed

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. PMID:26877180

  2. Sodium and Potassium Interactions with Nucleic Acids.

    PubMed

    Auffinger, Pascal; D'Ascenzo, Luigi; Ennifar, Eric

    2016-01-01

    Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples. PMID:26860302

  3. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ...This regulation establishes an exemption from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly(oxyethylene) glycol; when used as an inert ingredient in a pesticide chemical formulation. Dow Corning Corporation submitted a petition to EPA under the Federal Food,......

  4. [Biocompatibility analysis of hyaluronic acid sodium gels for medical application].

    PubMed

    Wang, Yaning; Yuan, Tun; Jia, Lifang; Zou, Wen; Liang, Jie

    2012-08-01

    Hyaluronan acid sodium gels are used in ophthalmic surgery, orthopedic treatment and cosmetic surgery. In 2009,there were 12 domestic manufacturers in China producing 33 kinds of products. 23 kinds of imported products were allowed by SFDA to sale in the meantime. Since manufacturers use different production processes, product performances are quite different. According to the GB/T 16886. 1-2001, we designed a pilot program to evaluate the sodium hyaluronate gel products comprehensively in this paper. The results showed that, except chromosome aberration test of gel A and subchronic systemic toxicity of gel C appeared positive, the remaining samples of the test results were negative. This article provides a reference to write standard of cross-linked hyaluronic sodium gel and the revision of standard YY0308-2004. PMID:23016423

  5. Application of a liquid chromatographic procedure for the analysis of penicillin antibiotics in biological fluids and pharmaceutical formulations using sodium dodecyl sulphate/propanol mobile phases and direct injection.

    PubMed

    Rambla-Alegre, Maria; Martí-Centelles, Rosa; Esteve-Romero, Josep; Carda-Broch, Samuel

    2011-07-29

    A direct injection liquid chromatography procedure was developed for the simultaneous determination of four penicillin antibiotics (amoxicillin, ampicillin, cloxacillin and dicloxacillin) in pharmaceutical formulations and physiological fluids (urine) using hybrid micellar mobile phases. These antimicrobials are used to treat gastrointestinal and systemic infections. The four penicillins were analysed using a Zorbax C18 reversed-phase column and detected at 210 nm. These antibiotics were separated by an interpretive optimisation procedure based on the accurate description of the retention and shape of the chromatographic peaks. Antibiotics were eluted in less than 16 min with no interference by the urine protein band or endogenous compounds using the mobile phase 0.11 M sodium dodecyl sulphate-6% propanol-0.01 M NaH(2)PO(4) buffered at pH 3. The method was validated according to the Food and Drug Administration guideline, including analytical parameters such as linearity (R(2)>0.993), intra- and inter-day precisions (RSD, %: 0.1-4.4 and 1.2-5.9, respectively), and robustness for the four compounds. This method is sensitive enough for the routine analysis of penicillins at therapeutic urine levels, with limits of detection in the 1.5-15 ng mL(-1) range and limits of quantification of 50 ng mL(-1). Recoveries in a micellar medium and a spiked urine matrix were in the 92.4-108.2% and 96-110% ranges, respectively. Finally, the method was successfully applied to determine these antibiotics in urine samples and pharmaceutical formulations. PMID:21190691

  6. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  7. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  8. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  9. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  10. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sodium salt of azo acid dye. 721.980... Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a sodium salt of azo acid dye (PMN...

  11. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  12. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices §...

  13. Leaching of spent lead acid battery paste components by sodium citrate and acetic acid.

    PubMed

    Zhu, Xinfeng; He, Xiong; Yang, Jiakuan; Gao, Linxia; Liu, Jianwen; Yang, Danni; Sun, Xiaojuan; Zhang, Wei; Wang, Qin; Kumar, R Vasant

    2013-04-15

    A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes. PMID:23500418

  14. Sodium bicarbonate treatment extends life of formerly acid lake

    SciTech Connect

    Not Available

    1988-02-01

    For the second time, researchers have used a familiar home remedy to restore the balance of a once acid lake. On September 29, Wolf Pond, in New York's Adirondack State Park, was treated with sodium bicarbonate to adjust alkalinity and keep pH at normal levels at least into the 1990's. Since it was first treated with bicarbonate in 1984, Wolf Pond has recovered and stabilized enough to sustain fish life once again. Repeated dosing is necessary because acid rain and runoff gradually deplete alkalinity in the lake over a period of years. Wolf Pond was selected for study because it has very little outflow and its major source of replenishment is rain. As the 1986 study explained, sodium bicarbonate was chosen for this application because it provides four advantages: (1) it is very soluble; (2) it cannot raise pH above 8.5; (3) it is easy to handle and apply; and (4) it is safe enough to be a common ingredient of many pharmaceuticals and foods.

  15. Computed phase diagrams for the system: Sodium hydroxide-uric acid-hydrochloric acid-water

    NASA Astrophysics Data System (ADS)

    Brown, W. E.; Gregory, T. M.; Füredi-Milhofer, H.

    1987-07-01

    Renal stone formation is made complex by the variety of solid phases that are formed, by the number of components in the aqueous phase, and by the multiplicity of ionic dissociation and association processes that are involved. In the present work we apply phase diagrams calculated by the use of equilibrium constants from the ternary system sodium hydroxide-uric acid-water to simplify and make more rigorous the understanding of the factors governing dissolution and precipitation of uric acid (anhydrous and dihydrate) and sodium urate monohydrate. The system is then examined in terms of four components. Finally, procedures are described for fluids containing more than four components. The isotherms, singular points, and fields of supersaturation and undersaturation are shown in various forms of phase diagrams. This system has two notable features: (1) in the coordinates -log[H 2U] versus -log[NaOH], the solubility isotherms for anhydrous uric acid and uric acid dihydrate approximate straight lines with slopes equal to +1 over a wide range of concentrations. As a result, substantial quantities of sodium acid urate monohydrate can precipitate from solution or dissolve without changing the degree of saturation of uric acid significantly. (2) The solubility isotherm for NaHU·H 2O has a deltoid shape with the low-pH branch having a slope of infinity. As a result of the vertical slope of this isotherm, substantial quantities of uric acid can dissolve or precipitate without changing the degree of saturation of sodium acid urate monohydrate significantly. The H 2U-NaOH singular point has a pH of 6.87 at 310 K in the ternary system.

  16. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid.

    PubMed

    Ho, I-Ching; Yang, Sheng-Pin; Chiu, Wen-Yen; Huang, Shih-Yow

    2007-01-30

    PHAs (poly-3-hydroxyalkanoates) obtained by Pseudomonas oleovorans grown with mixed carbon sources were investigated. Mixed carbon sources were sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Effect of carbon source in pre-culture on PHAs structure was investigated. Main fermentation was conducted with mixture of sodium octanoate/undecylenic acid, and PHA contained both saturated and unsaturated units. When more undecylenic acid was used in the medium, the ratio of unsaturated unit increased and the T(g) of the products also changed. The PHA grown with mixture of sodium octanoate and undecylenic acid was a random copolymer, which was determined by DSC analysis. Using mixed carbon sources of sodium octanoate and 5-phenylvaleric acid, highest dry cell weight and PHA concentration were obtained when 0.02g or 0.04g of 5-phenylvaleric acid were added in 50mL medium. Cultured with sodium octanoate and 5-phenylvaleric acid, PHA containing HO (3-hydroxyoctanoate) unit and HPV (3-hydroxy-5-phenylvalerate) unit was produced. T(g) of the products fell between those of pure PHO and pure PHPV. By means of DSC analysis and fractionation method, the PHA obtained was regarded as a random copolymer. PMID:16919325

  17. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  18. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids.

    PubMed

    Li, Guihua; Hu, Yuanyuan; Sui, Jianfei; Song, Aixin; Hao, Jingcheng

    2016-02-16

    The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = nL-TA/nNaDC) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value <3.4. Small-angle X-ray diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules. PMID:26783993

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  20. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  1. Swelling assisted photografting of itaconic acid onto sodium alginate membranes

    NASA Astrophysics Data System (ADS)

    Taşkın, Gülşen; Şanlı, Oya; Asman, Gülsen

    2011-09-01

    Grafting of itaconic acid (IA) was achieved onto sodium alginate (NaAlg) membranes by using UV-radiation. Process was performed under nitrogen atmosphere and benzophenone (BP) was used as a photoinitiator. Membranes were preswelled before the polymerization process and ethanol was determined as the best swelling agent among the studied solvents. The effect of polymerization time, initiator and monomer concentrations on the grafting efficiency were investigated. The best conditions for optimum grafting were obtained with IA concentration of 1.0 M, a BP concentration of 0.1 M and a reaction time of 4 h at 25 °C. Under these conditions grafting efficiency for NaAlg-g-IA membranes was found to be 14% (w/w). To obtain further increase in grafting efficiency membranes were also preswelled in IA and BP solutions and polymerization was carried out at different temperatures after UV polymerization. Grafted membranes were characterized by using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Effect of grafting on membrane properties such as intrinsic viscosity and swelling percentage were also determined.

  2. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  3. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  4. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  5. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  6. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    PubMed Central

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment with aprotinin to inhibit tissue kallikrein reduced the scratching behaviour induced by sodium deoxycholic acid, whereas treatment with soybean trypsin inhibitor to inhibit plasma kallikrein did not.Although injection of kininase II inhibitor, lisinopril together with sodium deoxycholic acid did not alter the scratching behaviour, phosphoramidon, a neutral endopeptidase inhibitor, significantly increased the frequency of scratching.Homogenates of the skin excised from the backs of mice were subjected to gel-filtration column chromatography followed by an assay of kinin release by trypsin from each fraction separated. Less kinin release from the fractions containing kininogen of low molecular weight was observed in the skin injected with sodium deoxycholic acid than in normal skin.The frequency of scratching after the injection of sodium deoxycholic acid in plasma kininogen-deficient Brown Norway Katholiek rats was significantly lower than that in normal rats of the same strain, Brown Norway Kitasato rats.These results indicate that BK released from low-molecular-weight kininogen by tissue kallikrein, but not from high-molecular-weight kininogen by plasma kallikrein, may be involved in the scratching behaviour induced by the injection of sodium deoxycholic acid in the rodent. PMID:10051136

  7. Sodium-coupled sugar and amino acid transport in an acidic microenvironment.

    PubMed

    Ahearn, G A; Clay, L P

    1988-01-01

    1. Nutrient transport mechanisms of lobster hepatopancreatic epithelial brush border membrane vesicles (BBMV) are strongly influenced by the acidic nature of the tubular lumen. 2. Sodium-dependent glucose uptake by BBMV was electrogenic and was stimulated at low pH by reducing sugar transport Ki, without affecting JM. 3. Glutamate was largely transported in zwitterionic form at pH 4.0 by an electrically silent cotransport mechanism with both Na and Cl. 4. Increased H+ concentration tripled the apparent membrane permeability to glutamate as well as the amino acid transport JM. 5. At pH 4.0 leucine was transported as a cation by two dissimilar carrier systems: a Na-independent process shared by polar amino acids, and an electroneutral Na-2Cl-dependent mechanism shared with non-polar amino acids. 6. A model is proposed for hepatopancreatic BBMV at acidic pH which employs ionic chemical gradients and membrane potential as nutrient transport driving forces. PMID:2902970

  8. Leachability of retorted oil shale by strong complexometric agents. [Sodium citrates, diethylenetriaminepentaacetic acid and ethylenediaminetetraacetic acid

    SciTech Connect

    Esmaili, E.; Carroll, R.B.

    1985-01-01

    Extraction of solid waste materials with complexometric agents may offer a quick and effective method for assessing the potential long-term release of hazardous chemical constituents. Complexometric agent extraction may establish the maximum amount of elements of environmental concern that can be released to the environment and the capability of waste materials to release them. In this study, four samples of directly (DH) and indirectly (IH) retorted oil shales were extracted with deionized-distilled water and strong complexometric agents. The complexometric agent solutions were composed of 0.5M sodium citrate (citrate), 0.05M diethylenetriaminepentaacetic acid (DTPA), and 0.05M ethylenediaminetetraacetic acid (EDTA). The water extracts were very alkaline with pH values ranging from 11.0 to 11.8 for IH extracts and 12.2 to 12.8 for DH extracts. Sodium, chloride, sulfate, and fluoride were the predominant dissolved species in the IH water extracts. The DH water extracts contained mainly sodium, calcium, chloride, potassium, and sulfate. Water-extractable minor and trace elements were aluminum, arsenic, boron, barium, lithium, magnesium, molybdenum, silicon, and strontium. Complexometric extraction released detectable amounts of arsenic, antimony, selenium, lead, vanadium, and zinc. Other elements of environmental concern, including silver, cobalt, chromium, and nickel, were not detected in excess of the limits of quantitation in complexometric extracts. Based upon the analytical results, it was found that the retorted oil shale mineralogy influenced the extracting solution composition, i.e., when comparing the leachates from the IH and DH samples. Also, the complexometric agents hastened the release of certain constituents into solution compared to water extracts. 17 refs., 12 figs., 20 tabs.

  9. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  10. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-02-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, Scanning Electron Microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion: whereas the organic covering has little effect in NaBr particles, NaCl and NaI covered particles change their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  11. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  12. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  13. 21 CFR 173.45 - Polymaleic acid and its sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... method entitled “Determination of Molecular Weight Distribution of Poly(Maleic) Acid,” March 17, 1992... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the Office of Food... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polymaleic acid and its sodium salt....

  14. Hydrogen generation by tin corrosion in lactic acid solution promoted by sodium perchlorate

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2014-12-01

    A method to produce high purity hydrogen using the corrosion of tin metal in lactic acid solutions is studied. The addition of sodium perchlorate has been also investigated for promoting the tin-lactic acid reaction. The data reveal that the rate of hydrogen production increases with increasing lactic acid concentration. The presence of perchlorate ions in lactic acid solution enhances the active dissolution of tin metal and tends to breakdown the passive film and promoting the hydrogen generation rate. Polarization measurements show that the breakdown potential (Epit) decreases with increase in sodium perchlorate concentration. An increase in temperature accelerates the rate of solubility of passive layer on the tin surface. Moreover, a synergistic effect of sodium perchlorate in combination with increasing the solution temperature is key in promoting the hydrogen generation rate. Results obtained from hydrogen and polarization measurements are in good agreement. These measurements are complemented with SEM, EDX and XRD examinations of the electrode surface.

  15. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    ... picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, ... oxide and anhydrous citric acid combine when the powder is mixed with water to form a medication ...

  16. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    PubMed

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. PMID:22841594

  17. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  18. Production of biodiesel and lactic acid from rapeseed oil using sodium silicate as catalyst.

    PubMed

    Long, Yun-Duo; Guo, Feng; Fang, Zhen; Tian, Xiao-Fei; Jiang, Li-Qun; Zhang, Fan

    2011-07-01

    Biodiesel and lactic acid from rapeseed oil was produced using sodium silicate as catalyst. The transesterification in the presence of the catalyst proceeded with a maximum yield of 99.6% under optimized conditions [3% (w/w) sodium silicate, methanol/oil molar ratio 9/1, reaction time 60 min, reaction temperature 60°C, and stirring rate 250 rpm]. After six consecutive transesterification reactions, the catalyst was collected and used for catalysis of the conversion of glycerol to lactic acid. A maximum yield of 80.5% was achieved when the reaction was carried out at a temperature of 300°C for 90 min. Thus, sodium silicate is an effective catalyst for transesterification and lactic acid production from the biodiesel by-product, glycerol. PMID:21530245

  19. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  20. Effects of meconic and comenic acids on slow sodium channels of secondary neurons.

    PubMed

    Derbenev, A V; Krylov, B V; Shurygin AYa

    2000-01-01

    Effects of comenic and meconic acids on cultured dorsal root ganglion cells were investigated by the whole-cell patch clamp technique. The acids, having a well-known antiinflammatory and antibacterial action, decreased effective charge transfer in the activation gating system of TTX-resistant (slow) sodium channels in a dose-dependent manner. The effects were described by Hill's equation. The dissociation constant and Hill coefficient values were K(D) = 100 nM and X = 0.5 (for comenic acid) and K(D) = 10 nM and X = 0.34 (for meconic acid). The nonspecific antagonist of opioid receptors naltrexone totally blocked the effects. We suggest that the acids studied activate a subpopulation of opioid receptors negatively coupled to TTXr sodium channels. PMID:10768488

  1. Efficient hydrogen generation from sodium borohydride hydrolysis using silica sulfuric acid catalyst

    NASA Astrophysics Data System (ADS)

    Manna, Joydev; Roy, Binayak; Sharma, Pratibha

    2015-02-01

    A heterogeneous acid catalyst, silica sulfuric acid, was prepared from silica gel (SiO2) and sulfuric acid (H2SO4). Addition of SO3H functional group to SiO2 has been confirmed through various characterization techniques. The effect of this heterogeneous acid catalyst on hydrogen generation from sodium borohydride hydrolysis reaction was studied for different ratios of catalyst to NaBH4 and at different temperatures. The catalyst exhibited high catalytic activity towards sodium borohydride hydrolysis reaction. The activation energy of the NaBH4 hydrolysis reaction in the presence of silica sulfuric acid was calculated to be the lowest (17 kJ mol-1) among reported heterogeneous catalysts till date.

  2. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  3. Final report on the safety assessment of Malic Acid and Sodium Malate.

    PubMed

    Fiume, Z

    2001-01-01

    Malic Acid functions in cosmetic formulations as a pH adjuster, and Sodium Malate functions as a skin conditioning agent-humectant. Malic Acid is reportedly used in almost 50 cosmetic formulations across a range of product types at low concentrations, whereas Sodium Malate is used in only one. As a pH adjuster, Malic Acid is used at low concentrations. One commercial method of preparing Malic Acid is hydration of fumaric acid or maleic acid, and then purified to limit the amount of the starting material present. Because Malic Acid is a component of the Kreb's cycle, another method is fermentation. Malic Acid was relatively nontoxic in acute toxicity studies using animals. In a chronic oral study, feeding Malic Acid to rats resulted only in weight gain changes and changes in feed consumption. Malic Acid did not cause reproductive toxicity in mice, rats, or rabbits. Malic Acid was a moderate to strong skin irritatant in animal tests, and was a strong ocular irritant. Malic Acid was not mutagenic across a range of genotoxicity tests. Malic Acid was irritating in clinical tests, with less irritation seen as pH of the applied material increased. Patients patch tested with Malic Acid, placed on a diet that avoided foods containing Malic or citric acid, and then challenged with a diet high in Malic and citric acid had both immediate urticarial and delayed contact dermatitis reactions. These data were considered sufficient to determine that Malic Acid and Sodium Malate would be safe at the low concentrations at which these ingredients would be used to adjust pH (even though Sodium Malate is not currently used for that purpose). The data, however, were insufficient to determine the safety of these ingredients when used in cosmetics as other than pH adjusters and specifically, the data are insufficient to determine the safety of Sodium Malate when used as a skin conditioning agent-humectant. The types of data required for the Expert Panel to determine the safety of Sodium

  4. Copper-mediated ortho C-H sulfonylation of benzoic acid derivatives with sodium sulfinates.

    PubMed

    Liu, Jidan; Yu, Lin; Zhuang, Shaobo; Gui, Qingwen; Chen, Xiang; Wang, Wenduo; Tan, Ze

    2015-04-14

    Copper-mediated direct ortho C-H bond sulfonylation of benzoic acid derivatives with sodium sulfinates was achieved by employing an 8-aminoquinoline moiety as the bidentate directing group. Various aryl sulfones were synthesized in good yields with excellent regioselectivity. PMID:25766975

  5. 21 CFR 173.45 - Polymaleic acid and its sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymaleic acid and its sodium salt. 173.45 Section 173.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and...

  6. 21 CFR 173.45 - Polymaleic acid and its sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polymaleic acid and its sodium salt. 173.45 Section 173.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and...

  7. 21 CFR 173.45 - Polymaleic acid and its sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polymaleic acid and its sodium salt. 173.45 Section 173.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Polymer Substances and...

  8. Reaction Products of Unsaturated Polycarboxylic Acids and Sodium Hypophosphite for Improved Flame Resistance of Cotton-Containing Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaction products of unsaturated polycarboxylic acids and sodium hypophosite were found to improve flame resistance of cellulosic materials as determined by the 45 degree flammability test for apparel textiles. The most effective product was that from the reaction of maleic acid with sodium hypopho...

  9. Gymnemic acids inhibit sodium-dependent glucose transporter 1.

    PubMed

    Wang, Yu; Dawid, Corinna; Kottra, Gabor; Daniel, Hannelore; Hofmann, Thomas

    2014-06-25

    To evaluate the activity of botanicals used in Chinese Traditional Medicine as hypoglycemic agents for diabetes type II prevention and/or treatment, extracts prepared from 26 medicinal herbs were screened for their inhibitory activity on sodium-dependent glucose transporter 1 (SGLT1) by using two-electrode voltage-clamp recording of glucose uptake in Xenopus laevis oocytes microinjected with cRNA for SGLT1. Showing by far the strongest SGLT1 inhibitory effect, the phytochemicals extracted from Gymnema sylvestre (Retz.) Schult were located by means of activity-guided fractionation and identified as 3-O-β-D-glucuronopyranosyl-21-O-2-tigloyl-22-O-2-tigloyl gymnemagenin (1) and 3-O-β-D-glucuronopyranosyl-21-O-2-methylbutyryl-22-O-2-tigloyl gymnemagenin (2) by means of LC-MS/MS, UPLC-TOF/MS, and 1D/2D-NMR experiments. Both saponins exhibited low IC50 values of 5.97 (1) and 0.17 μM (2), the latter of which was in the same range as found for the high-affinity inhibitor phlorizin (0.21 μM). As SGLT1 is found in high levels in brush-border membranes of intestinal epithelial cells, these findings demonstrate for the first time the potential of these saponins for inhibiting electrogenic glucose uptake in the gastrointestinal tract. PMID:24856809

  10. Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes.

    PubMed

    Atkinson, J P; Weiss, A; Ito, M; Kelly, J; Parker, C W

    1979-01-01

    L-ascorbic acid (LAA) augmented cGMP many-fold in highly purified human peripheral blood lymphocytes. The cGMP response occurred within 10 sec and persisted for at least 60 min. D-ascorbic acid (DAA) and dehydroascorbic acid (DHAA) were also equally active in enhancing cGMP concentrations but metabolic precursors of ascorbic acid and other inorganic acids did not increase cGMP levels. Determination of the amount of DHAA contaminating the LAA precluded the possibility that it was solely responsible for the enhanced cGMP levels. The sodium or calcium salts of ascorbic acid did not increase cGMP concentrations. If these neutralized preparations were acidified, increased cGMP concentrations were then noted. In broken cell preparations, LAA, DAA, and DHAA and to a lesser extent sodium ascorbate (NaA) enhanced guanylate cyclase activity while neither inhibited cAMP or cGMP phosphodiesterase (PDE) activity. The possible role of H2O2, fatty acid liberation, prostaglandin production, oxidizing-reducing agents, and free radical formation in mediating the effects of ascorbic acid on cGMP levels were evaluated, but none of these potential mechanisms were definitively proven to be a required intermediary for the cGMP enhancing activity of ascorbic acid. LAA, DHAA or NaA did not induce lymphocyte transformation or modulate lectin-induced mitogenesis. PMID:36416

  11. Is the habitation of acidic-water sanctuaries by galaxiid fish facilitated by natural organic matter modification of sodium metabolism?

    PubMed

    Glover, Chris N; Donovan, Katherine A; Hill, Jonathan V

    2012-01-01

    Acidic waters of New Zealand's West Coast are hypothesized to be a refuge for native galaxiid fish, allowing them to escape predation from acid-sensitive invasive salmonid species. To determine the mechanisms by which galaxiids tolerate low pH, we investigated sodium metabolism in inanga Galaxias maculatus in response to water pH, short-term acclimation to acidic waters, the presence and source of natural organic matter (NOM), and fish life history. Contrary to expectation, inanga were physiologically sensitive to acid exposure, displaying inhibited sodium influx and exacerbated sodium efflux. Short-term (144 h) acclimation to acid did not modify this effect, and NOM did not exert a protective effect on sodium metabolism at low pH. Inanga sourced from naturally acidic West Coast waters did, however, display a sodium influx capacity (J(max)) that was significantly elevated when compared with that of fish collected from neutral waters. All inanga, independent of source, exhibited exceptionally high sodium uptake affinities (18-40 μM) relative to previously studied freshwater teleosts. Although inanga displayed relatively poor physiological tolerance to acidic waters, their high sodium influx affinity coupled with their occupation of near-coastal waters with elevated sodium levels may permit habitation of low-pH freshwaters. PMID:22902374

  12. Inactivation of Foot-and-Mouth Disease Virus by Citric Acid and Sodium Carbonate with Deicers

    PubMed Central

    Hong, Jang-Kwan; You, Su-Hwa; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jong-Hyeon; Kim, Byounghan

    2015-01-01

    Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at −20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at −20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose. PMID:26319879

  13. Inactivation of foot-and-mouth disease virus by citric acid and sodium carbonate with deicers.

    PubMed

    Hong, Jang-Kwan; Lee, Kwang-Nyeong; You, Su-Hwa; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jong-Hyeon; Kim, Byounghan

    2015-11-01

    Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at -20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at -20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose. PMID:26319879

  14. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    NASA Astrophysics Data System (ADS)

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-03-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry.

  15. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate.

    PubMed

    Nair, B

    2001-01-01

    Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzoic Acid is an aromatic acid used in a wide variety of cosmetics as a pH adjuster and preservative. Sodium Benzoate is the sodium salt of Benzoic Acid used as a preservative, also in a wide range of cosmetic product types. Benzyl Alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. Benzoic Acid and Sodium Benzoate are generally recognized as safe in foods according to the U.S. Food and Drug Administration. No adverse effects of Benzyl Alcohol were seen in chronic exposure animal studies using rats and mice. Effects of Benzoic Acid and Sodium Benzoate in chronic exposure animal studies were limited to reduced feed intake and reduced growth. Some differences between control and Benzyl Alcohol-treated populations were noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and Benzyl Alcohol-treated groups. Benzoic Acid was associated with an increased number of resorptions and malformations in hamsters, but there were no reproductive or developmental toxicty findings in studies using mice and rats exposed to Sodium Benzoate, and, likewise, Benzoic Acid was negative in two rat studies. Genotoxicity tests for these ingredients were mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicated that these ingredients can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions

  16. Increased cell loss in the human jejunum induced by laxatives (ricinoleic acid, dioctyl sodium sulphosuccinate, magnesium sulphate, bile salts).

    PubMed Central

    Bretagne, J F; Vidon, N; L'Hirondel, C; Bernier, J J

    1981-01-01

    Two conjugated bile salts (10 mmol/l sodium glycocholate, 10 mmol/l sodium taurodeoxycholate) and three laxatives (30 mmol/l magnesium sulphate, 10 mmol/l ricinoleic acid, 2 mmol/l dioctyl sodium sulphosuccinate) were tested on seven subjects with no intestinal lesions in 14 experiments by intestinal perfusion of the jejunum. A 25 cm segment was studied. Each solution was perfused at the rate of 10 ml/min. Water and electrolyte fluxes, losses of deoxyribonucleic acid (DNA), and intestinal cell enzyme activity were measured in the fluids collected. All the laxatives and bile salts tested (except sodium glycocholate) induced water and electrolyte secretion, a rise in intraluminal DNA loss, and enzyme activity. It was possible to establish a significant correlation (p less than 0.001) between the amounts of water fluxes and DNA loss under the effect of dioctyl sodium sulphosuccinate and ricinoleic acid. PMID:6165655

  17. Structural mechanisms underlying the function of epithelial sodium channel/acid-sensing ion channel

    PubMed Central

    Carattino, Marcelo D.

    2013-01-01

    Purpose of review The epithelial sodium channel/degenerin family encompasses a group of cation-selective ion channels that are activated or modulated by a variety of extracellular stimuli. This review describes findings that provide new insights into the molecular mechanisms that control the function of these channels. Recent findings Epithelial sodium channels facilitate Na+ reabsorption in the distal nephron and hence have a role in fluid volume homeostasis and arterial blood pressure regulation. Acid-sensing ion channels are broadly distributed in the nervous system where they contribute to the sensory processes. The atomic structure of acid-sensing ion channel 1 illustrates the complex trimeric architecture of these proteins. Each subunit has two transmembrane spanning helices, a highly organized ectodomain and intracellular N-terminus and C-terminus. Recent findings have begun to elucidate the structural elements that allow these channels to sense and respond to extracellular factors. This review emphasizes the roles of the extracellular domain in sensing changes in the extracellular milieu and of the residues in the extracellular–transmembrane domains interface in coupling extracellular changes to the pore of the channel. Summary Epithelial sodium channels and acid-sensing ion channels have evolved to sense extracellular cues. Future research should be directed toward elucidating how changes triggered by extracellular factors translate into pore opening and closing events. PMID:21709553

  18. Removal of ash from Indian Assam coking coal using sodium hydroxide and acid solutions

    SciTech Connect

    Kumar, M.; Shankar, R.H.

    2000-03-01

    Mineral matter (ash) removal from Assam coking coal by leaching with different concentrations of sodium hydroxide and acid (HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, and HF) solutions has been investigated at a temperature of 75 C. The parameters tested were concentration of NaOH, type of acid, concentration of acids, and number of acid leaching steps. Total ash removed increased with increase of NaOH and acid concentrations up to the range studied. For the same experimental conditions, treatment of caustic leached coal in HCl acid resulted in better demineralization than in H{sub 2}SO{sub 4} or HNO{sub 3} acid. In the NaOH-HNO{sub 3} leaching method, a higher concentration (>20%) of HNO{sub 3} acid had an adverse effect on the de-ashing of coal. The NaOH-HF leaching process has been found to be the most effective method of coal de-ashing. The two acid treatment steps (HCl-H{sub 2}SO{sub 4}/HCl-HNO{sub 3}) after caustic leaching are the next most effective methods of coal de-ashing. The removal of mineral matter (including S) from coal is expected to decrease the graphite reactivity and thus the atmospheric pollution (due to the generation of smaller quantities of CO and SO{sub 2} gases).

  19. High specificity in response of the sodium-dependent multivitamin transporter to derivatives of pantothenic acid.

    PubMed

    Chirapu, Srinivas Reddy; Rotter, Charles J; Miller, Emily L; Varma, Manthena V; Dow, Robert L; Finn, M G

    2013-01-01

    Essential nutrients are attractive targets for the transport of biologically active agents across cell membranes, since many are substrates for active cellular importation pathways. The sodium-dependent multivitamin transporter (SMVT) is among the best characterized of these, and biotin derivatives have been its most popular targets. We have surveyed 45 derivatives of pantothenic acid, another substrate of SMVT, long known as a competitive inhibitor of biotin transport. Variations of the β-alanyl fragment of pantothenate were uniformly rejected by the transporter, including derivatives with very similar steric and acidic characteristics to the natural substrate. The secondary hydroxyl of the 2,2-dimethyl-1,3-propanediol (pantoyl) fragment was the only position at which potential linkers could be attached while retaining activity as an inhibitor of biotin uptake and a substrate for sodium-dependent transport. However, triazole conjugates to several drug-like cargo motifs were not accepted as substrates by human SMVT in cell culture. Two compounds were observed which did not inhibit biotin uptake but were themselves transported in a sodium-dependent fashion, suggesting more complex behavior than expected. These studies represent the most extensive examination to date of pantothenate as an anchor for SMVT-mediated drug delivery, showing that this route requires further investigation before being judged promising. PMID:23578027

  20. Sodium-dependent transport of neutral amino acids by whole cells and membrane vesicles of Streptococcus bovis, a ruminal bacterium.

    PubMed Central

    Russell, J B; Strobel, H J; Driessen, A J; Konings, W N

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2-deoxyglucose and incubated in sodium phosphate buffer were still able to transport serine, and this result indicated that the chemical sodium gradient was capable of driving transport. However, when the deenergized cells were treated with valinomycin and diluted into sodium phosphate to create both an artificial membrane potential and a chemical sodium gradient, rates of serine uptake were fivefold greater than in cells having only a sodium gradient. If deenergized cells were preloaded with sodium (no membrane potential or sodium gradient), there was little serine transport. Nigericin and monensin, ionophores capable of reversing sodium gradients across membranes, strongly inhibited sodium-dependent uptake of the three amino acids. Membrane vesicles loaded with potassium and diluted into either lithium or choline chloride were unable to transport serine, but rapid uptake was evident if sodium chloride was added to the assay mixture. Serine transport had an extremely poor affinity for sodium, and more than 30 mM was needed for half-maximal rates of uptake. Serine transport was inhibited by an excess of threonine, but an excess of alanine had little effect. Results indicated that S. bovis had separate sodium symport systems for serine or threonine and alanine, and either the membrane potential or chemical sodium gradient could drive uptake. PMID:3136141

  1. Synergistic effects of sodium lauroyl sarcosinate and glutamic acid in inhibition assembly against copper corrosion in acidic solution

    NASA Astrophysics Data System (ADS)

    Yu, Yinzhe; Zhang, Daquan; Zeng, Huijing; Xie, Bin; Gao, Lixin; Lin, Tong

    2015-11-01

    A self-assembled multilayer (SAM) from sodium lauroyl sarcosinate (SLS) and glutamic acid (GLU) is formed on copper surface. Its inhibition ability against copper corrosion is examined by electrochemical analysis and weight loss test. In comparison to SAM formed by just SLS or GLU, a synergistic effect is observed when the coexistence of SLS and GLU in SAM. The SLS/GLU SAM has an acicular multilayer structure, and SAM prepared under the condition of 5 mM SLS and 1 mM GLU shows the best protection efficiency. PM6 calculation reveals that the synergistic effect stems from interactions between SLS, GLU and cupric ions.

  2. Comparative plasma pharmacokinetics of ceftiofur sodium and ceftiofur crystalline-free acid in neonatal calves.

    PubMed

    Woodrow, J S; Caldwell, M; Cox, S; Hines, M; Credille, B C

    2016-06-01

    The objective of this study was to compare the plasma pharmacokinetic profile of ceftiofur crystalline-free acid (CCFA) and ceftiofur sodium in neonatal calves between 4 and 6 days of age. In one group (n = 7), a single dose of CCFA was administered subcutaneously (SQ) at the base of the ear at a dose of 6.6 mg/kg of body weight. In a second group (n = 7), a single dose of ceftiofur sodium was administered SQ in the neck at a dose of 2.2 mg/kg of body weight. Concentrations of desfuroylceftiofur acetamide (DCA) in plasma were determined by HPLC. Median time to maximum DCA concentration was 12 h (range 12-48 h) for CCFA and 1 h (range 1-2 h) for ceftiofur sodium. Median maximum plasma DCA concentration was significantly higher for calves given ceftiofur sodium (5.62 μg/mL; range 4.10-6.91 μg/mL) than for calves given CCFA (3.23 μg/mL; range 2.15-4.13 μg/mL). AUC0-∞ and Vd/F were significantly greater for calves given CCFA than for calves given ceftiofur sodium. The median terminal half-life of DCA in plasma was significantly longer for calves given CCFA (60.6 h; range 43.5-83.4 h) than for calves given ceftiofur sodium (18.1 h; range 16.7-39.7 h). Cl/F was not significantly different between groups. The duration of time median plasma DCA concentrations remained above 2.0 μg/mL was significantly longer in calves that received CCFA (84.6 h; range 48-103 h) as compared to calves that received ceftiofur sodium (21.7 h; range 12.6-33.6 h). Based on the results of this study, CCFA administered SQ at a dose of 6.6 mg/kg in neonatal calves provided plasma concentrations above the therapeutic target of 2 μg/mL for at least 3 days following a single dose. It is important to note that the use of ceftiofur-containing products is restricted by the FDA and the use of CCFA in veal calves is strictly prohibited. PMID:26542633

  3. Effects of sulfhydryl compounds, carbohydrates, organic acids, and sodium sulfite on the formation of lysinoalanine in preserved egg.

    PubMed

    Luo, Xu-Ying; Tu, Yong-Gang; Zhao, Yan; Li, Jian-Ke; Wang, Jun-Jie

    2014-08-01

    To identify inhibitors for lysinoalanine formation in preserved egg, sulfhydryl compounds (glutathione, L-cysteine), carbohydrates (sucrose, D-glucose, maltose), organic acids (L-ascorbic acid, citric acid, DL-malic acid, lactic acid), and sodium sulfite were individually added at different concentrations to a pickling solution to prepare preserved eggs. Lysinoalanine formation as an index of these 10 substances was determined. Results indicate that glutathione, D-glucose, maltose, L-ascorbic acid, citric acid, lactic acid, and sodium sulfite all effectively diminished lysinoalanine formation in preserved egg albumen and yolk. When 40 and 80 mmol/L of sodium sulfite, citric acid, L-ascorbic acid, and D-glucose were individually added into the pickling solution, the inhibition rates of lysinoalanine in the produced preserved egg albumen and yolk were higher. However, the attempt of minimizing lysinoalanine formation was combined with the premise of ensuring preserved eggs quality. Moreover, the addition of 40 and 80 mmol/L of sodium sulfite, 40 and 80 mmol/L of D-glucose, 40 mmol/L of citric acid, and 40 mmol/L of L-ascorbic acid was optimal to produce preserved eggs. The corresponding inhibition rates of lysinoalanine in the albumen were approximately 76.3% to 76.5%, 67.6% to 67.8%, 74.6%, and 74.6%, and the corresponding inhibition rates of lysinoalanine in the yolk were about 68.7% to 69.7%, 50.6% to 51.8%, 70.4%, and 57.8%. It was concluded that sodium sulfite, D-glucose, L-ascorbic, and citric acid at suitable concentrations can be used to control the formation of lysinoalanine during preserved egg processing. PMID:25047093

  4. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  5. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  6. Phase diagram involving the mesomorphic behavior of binary mixture of sodium oleate and orthophosphoric acid

    NASA Astrophysics Data System (ADS)

    Govindaiah, T. N.; Sreepad, H. R.

    2015-04-01

    The present investigation deals with the binary mixture of two non-mesogenic compounds, viz. sodium oleate (Naol) and orthophosphoric acid (H3PO4) which exhibits very interesting liquid crystalline smectic phases at large range of concentrations and temperature. The mixtures with concentrations ranging from 10% to 90% Naol in H3PO4 exhibit SmA, SmC, SmE and SmB phases, sequentially when the specimen is cooled from its isotropic phase. Physical properties, such as ultrasonic velocity, adiabatic compressibility and molar compressibility, show anomalous behavior at the isotropic to mesosphase transition.

  7. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  8. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  9. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  10. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  11. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  12. Stimulation of water injection wells in the Los Angeles basin using sodium hypochlorite and mineral acids

    SciTech Connect

    Clementz, D.M.; Patterson, D.E.; Aseltine, R.J.; Young, R.E.

    1982-01-01

    A comprehensive stimulation program was developed to improve the injectivity and vertical coverage of water injection wells in the East Beverly Hills Hills and San Vicente Fields. In recent years the wells had low to zero injectivity and very limited vertical distribution of injected water as a result of formation damage, sand face plugging, and perforation blockage. A stimulaiton strategy was developed which sequentially removed this damage. It began with redesigning the central water plant to provide clean injection brine. The casing was mechanically cleaned. Near-wellbore solids were dissolved or loosened using hydrochloric acid and/or sodium hypochlorite (bleach); then, removed from the well by reverse circulating and suction washing. Remaining damage was treated with hydrochloric/hydrofluoric acid and bleach using circulation wash and selective squeeze techniques. Two- to three-fold improvements in injectivity after stimulation were common. Vertical distribution was typically improved from an initial 0-30% coverage to 85-95% after stimulation. 10 refs.

  13. Interactions in the solid state. I: Interactions of sodium bicarbonate and tartaric acid under compressed conditions.

    PubMed

    Usui, F; Carstensen, J T

    1985-12-01

    The interaction of NaHCO3 and tartaric acid in powder mixtures and compressed tablets has been studied. It has been found that in an open system the reaction is simply a decarboxylation of NaHCO3 and that the effect of compression on the reaction rate can be attributed to the brittle fracture (and subsequent surface area increase) that occurs on compaction. In a closed system the decomposition of the mixture is an interaction between the acid and the base, and it is mediated by the amount of moisture in the system. This latter is a product of reaction, and a suitable kinetic scheme is described for this. It is shown that "curing" the sodium bicarbonate by heating it to, e.g., 90 degrees C stabilizes the system by virtue of the formation of surface Na2CO3, which acts as a moisture scavenger. PMID:3003337

  14. Synthesis of Saturated Long Chain Fatty Acids from Sodium Acetate-1-C14 by Mycoplasma1

    PubMed Central

    Pollack, J. D.; Tourtellotte, M. E.

    1967-01-01

    Three strains of Mycoplasma, M. laidlawii A and B, and Mycoplasma sp. A60549, were grown in broth containing sodium acetate-1-C14. The methyl esters of the phospholipid fatty acids of harvested radioactive cells were prepared and identified by comparison of their mobilities to known radioactive fatty acid methyl esters by use of a modified reversed-phase partition-thin layer chromatographic technique. No radioactive methyl oleate or methyl linoleate was detected. Compounds migrating as radioactive methyl myristate, stearate, palmitate, and, with less certainty, laurate and octanoate were detected. The qualitative findings for all three organisms appeared similar. M. laidlawii B synthesized a radioactive substance, presumably a saturated fatty acid detected as the methyl ester derivative, which migrated in a position intermediate to methyl myristate-1-C14 and methyl palmitate-1-C14. This work indicates that M. laidlawii A and B and Mycoplasma sp. A60549 are capable, in a complex medium containing fatty acids, of synthesizing saturated but not unsaturated fatty acids entirely or in part from acetate. Images PMID:6020566

  15. Sodium mefenamate as a solution for the formulation and dissolution problems of mefenamic acid.

    PubMed

    Bani-Jaber, Ahmad; Hamdan, Imad; Al-Khalidi, Bashar

    2007-08-01

    Sodium salt formation of mefenamic acid (MA) was studied as a way to solve the formulation and dissolution problems of MA. For this purpose, sodium salt of mefenamic acid (Na-MA) was prepared by reacting MA powder with equimolar sodium hydroxide in an aqueous phase, and consequently, Na-MA solution was obtained. The resultant solution was lyophilized and Na-MA powder was collected. The salt formation was confirmed by the results of fourier transformation-infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies on Na-MA powder in comparison to MA powder. Na-MA powder was assessed for direct compressibility, in comparison to MA powder, when formulated as a mixture with minimum amount of Avicel((R)) pH 101 and then compressed into tablets using a hydraulic tablet press. Na-MA tablets exhibited satisfactory hardness and friability, and did not show capping or lamination. On the other hand, some MA tablets showed capping or lamination upon compression and all the tested MA tablets for friability capped. Na-MA tablets were also studied for drug dissolution, in comparison to MA tablets, in water, a pH 7.4 phosphate buffer, and a pH 7.4 phosphate buffer after soaking in 0.1 m HCl. Under these different dissolution conditions, Na-MA tablets showed much higher dissolution rate and extent than MA tablets. The results of the study suggested that Na-MA can be considered as a solution form for the formulation and dissolution problems of MA. PMID:17666833

  16. Evaluation of experimental teat dip containing sodium chlorite and lactic acid by excised teat assay.

    PubMed

    Schmidt, A L; Oliver, S P; Fydenkevez, M E

    1984-12-01

    An experimental teat dip containing sodium chlorite and lactic acid, diluted in water, was evaluated by excised teat protocol. The teat dip was tested against 21 microorganisms. Included were: Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Numerous strains were tested for strain differences. Environmental bacteria were included because of their increasing importance as a cause of bovine mastitis. All excised teats were dipped in a bacterial suspension containing about 1 X 10(8) cfu/ml. Negative control teats were not dipped in a germicidal compound. Positive controls were dipped in 1% iodophor. Effectiveness of the experimental teat dip was expressed as the percent reduction in mean log of bacteria recovered from dipped teats as compared to numbers recovered from control teats. The sodium chlorite - lactic acid dip caused a greater percent log reduction than iodophor for 14 of 21 strains tested. However, differences were generally slight. The experimental teat dip appeared effective against Gram-negative bacteria. Some differences in percent log reduction were observed between strains of the same species. Lowest effectiveness and greatest strain variation were observed with Staphylococcus aureus for both dips tested. PMID:6530497

  17. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298. 15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S. ); Rard, J.A. )

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  18. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298.15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S.; Rard, J.A.

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l_brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r_brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center_dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  19. Treatment of renal uric acid stone by extracorporeal shock wave lithotripsy combined with sodium bicarbonate: 2 case reports

    PubMed Central

    Li, Hao-Yong; Lian, Pei-Yu; Zhou, Zhi-Yan; Song, Peng; Yan, Yi; Liu, Ji-Hong

    2015-01-01

    Uric acid stone is the most comment radiolucent renal stone with high recurrence rate, which would further cause acute upper urinary tract obstruction and kidney failure. Here we report two cases of renal uric acid stone from December 2012 to April 2013. One 43-year-old male patient suffered from chronic uric acid nephrolithiasis caused by the long-term indwelling of bilateral double-J stent. Another 69-year-old patient was also diagnosed with uric acid nephrolithiasis at the right kidney. Both patients were first treated with extracorporeal shock wave lithotripsy (ESWL), followed by 1.5% sodium bicarbonate dissolution therapy. After a week of the treatment, the uric acid stones in both patients were completely dissolved without retrograde infection. In summary, the use of ESWL and sodium bicarbonate dissolution therapy as a combined modality is a safe, effective, inexpensive treatment for uric acid nephrolithiasis. PMID:26550383

  20. Amino acid depletion activates TonEBP and sodium-coupled inositol transport.

    PubMed

    Franchi-Gazzola, R; Visigalli, R; Dall'Asta, V; Sala, R; Woo, S K; Kwon, H M; Gazzola, G C; Bussolati, O

    2001-06-01

    The expression of the osmosensitive sodium/myo-inositol cotransporter (SMIT) is regulated by multiple tonicity-responsive enhancers (TonEs) in the 5'-flanking region of the gene. In response to hypertonicity, the nuclear abundance of the transcription factor TonE-binding protein (TonEBP) is increased, and the transcription of the SMIT gene is induced. Transport system A for neutral amino acids, another osmosensitive mechanism, is progressively stimulated if amino acid substrates are not present in the extracellular compartment. Under this condition, as in hypertonicity, cells shrink and mitogen-activated protein kinases are activated. We demonstrate here that a clear-cut nuclear redistribution of TonEBP, followed by SMIT expression increase and inositol transport activation, is observed after incubation of cultured human fibroblasts in Earle's balanced salts (EBSS), an isotonic, amino acid-free saline. EBSS-induced SMIT stimulation is prevented by substrates of system A, although these compounds do not compete with inositol for transport through SMIT. We conclude that the incubation in isotonic, amino acid-free saline triggers an osmotic stimulus and elicits TonEBP-dependent responses like hypertonic treatment. PMID:11350742

  1. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules.

    PubMed

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-10-01

    Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX(®) Sprinkle (RAB) delayed-release capsules (ACIPHEX(®) Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX(®) Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX(®) Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX(®) Sprinkle. PMID:27066697

  2. Quantitative analysis of citric acid/sodium hypophosphite modified cotton by HPLC and conductometric titration.

    PubMed

    Ye, Tao; Wang, Bijia; Liu, Jian; Chen, Jiangang; Yang, Yiqi

    2015-05-01

    Isocratic HPLC was used in conjunction with conductometric titration to quantitatively examine the modification of cotton cellulose by citric acid (CA)/sodium hypophosphite (SHP). CA/SHP had been extensively used as a green crosslinking agent for enhancement of cellulose and other carbohydrate polymers without in-depth understanding of the mechanisms. The current study investigated all identifiable secondary polycarboxylic acids from CA decomposition in the CA/SHP-cellulose system under various curing conditions. It was found that CA decomposition was more sensitive to temperature compared with the desirable esterification reaction. Two crosslinking mechanisms, namely ester crosslinking and SHP crosslinking were responsible for the observed improvement in crease resistance of CA/SHP treated cotton fabrics. An oligomer of citraconic acid (CCA) and/or itaconic acid (IA) was identified as a possible contributor to fabric yellowing. Finally, the crease resistance of fabrics correlated strongly with CA preservation in polyol-added CA/SHP crosslinking systems. The dosage of polyol should be held below an inflexion point to keep the undesirable competition against cellulose minimum. The combination of HPLC and conductometric titration was demonstrated to be useful in studying the CA/SHP-cellulose crosslinking system. The findings have implications for better application of CA/SHP in polysaccharide modifications in general. PMID:25659676

  3. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules

    PubMed Central

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-01-01

    Abstract Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX® Sprinkle (RAB) delayed-release capsules (ACIPHEX® Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX® Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX® Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX® Sprinkle. PMID:27066697

  4. Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer.

    PubMed

    Takayama, Chie; Mukaizawa, Fuyuki; Fujita, Takuya; Ogawara, Ken-ichi; Higaki, Kazutaka; Kimura, Toshikiro

    2009-12-01

    The formulation containing sodium laurate (C12), an absorption enhancer, and several amino acids such as taurine (Tau) and L-glutamine (L-Gln) is a promising preparation that can safely improve the intestinal absorption of poorly absorbable drugs. The safety for intestinal mucosa is achieved because the amino acids prevent C12 from causing mucosal damages via several mechanisms. In the present study, the possible involvement of apoptosis, programmed cell death, in mucosal damages caused by C12 and cytoprotection by amino acids was examined. C12 induced DNA fragmentation, a typical phenomenon of apoptosis, in rat large-intestinal epithelial cells while the addition of amino acids significantly attenuated it. C12 alone significantly increased the release of cytochrome C, an apoptosis-inducing factor, from mitochondria, which could be via the decrease in the level of Bcl-2, an inhibiting factor of cytochrome C release. The enhancement of cytochrome C release by C12 led to the activation of caspase 9, an initiator enzyme, and the subsequent activation of caspase 3, an effector enzyme. On the other hand, Tau or L-Gln significantly suppressed the release of cytochrome C from mitochondria and attenuated the activities of both caspases, which could be attributed to the maintenance of Bcl-2 expression. PMID:19630065

  5. Effects of sodium bicarbonate and sodium sesquicarbonate on animal performance, ruminal metabolism, and systemic acid-base status.

    PubMed

    Ghorbani, G R; Jackson, J A; Hemken, R W

    1989-08-01

    Six rumen-fistulated lactating Holstein cows were arranged in a replicated 3 x 3 latin square design with 3-wk periods and offered diets containing concentrate and corn silage in a 60:40 ratio (DM basis). Treatments were: 1) basal diet, 2) basal diet with 1% NaHCO3, and 3) basal diet with 1% sodium sesquicarbonate. There were no differences among treatments in milk production, milk protein, or 3.5% FCM, but sodium sesquicarbonate increased milk fat percentage (3.89, 3.94, 4.06%) compared with that of the control. Rumen pH was higher for cows fed buffered diets than for control cows. Urine pH was higher for cows fed NaHCO3 diet than for those fed sodium sesquicarbonate and control diets. No differences were detected among treatment means for molar percentage of isobutyrate, isovalerate, or total VFA, Dietary sesquicarbonate addition increased molar percentage of acetate, decreased propionate, and resulted in a higher acetate:propionate ratio compared with the cows fed NaHCO3. However, molar percentage of butyrate and valerate decreased in cows fed sodium sesquicarbonate when compared with those fed the control diet. No differences among treatment means were detected for blood pH, pCO2, or HCO3. PMID:2551941

  6. A defect in sodium-dependent amino acid uptake in diabetic rabbit peripheral nerve. Correction by an aldose reductase inhibitor or myo-inositol administration.

    PubMed Central

    Greene, D A; Lattimer, S A; Carroll, P B; Fernstrom, J D; Finegold, D N

    1990-01-01

    A myo-inositol-related defect in nerve sodium-potassium ATPase activity in experimental diabetes has been suggested as a possible pathogenetic factor in diabetic neuropathy. Because the sodium-potassium ATPase is essential for other sodium-cotransport systems, and because myo-inositol-derived phosphoinositide metabolites regulate multiple membrane transport processes, sodium gradient-dependent amino acid uptake was examined in vitro in endoneurial preparations derived from nondiabetic and 14-d alloxan diabetic rabbits. Untreated alloxan diabetes reduced endoneurial sodium-gradient dependent uptake of the nonmetabolized amino acid 2-aminoisobutyric acid by greater than 50%. Administration of an aldose reductase inhibitor prevented reductions in both nerve myo-inositol content and endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Myo-inositol supplementation that produced a transient pharmacological elevation in plasma myo-inositol concentration, but did not raise nerve myo-inositol content, reproduced the effect of the aldose reductase inhibitor on endoneurial sodium-dependent 2-aminoisobutyric acid uptake. Phorbol myristate acetate, which acutely normalizes sodium-potassium ATPase activity in diabetic nerve, did not acutely correct 2-aminoisobutyric uptake when added in vitro. These data suggest that depletion of a small myo-inositol pool may be implicated in the pathogenesis of defects in amino acid uptake in diabetic nerve and that rapid correction of sodium-potassium ATPase activity with protein kinase C agonists in vitro does not acutely normalize sodium-dependent 2-aminoisobutyric acid uptake. PMID:2185278

  7. Effect of high sodium intake during 14 days of bed-rest on acid-base balance

    NASA Astrophysics Data System (ADS)

    Frings, P.; Baecker, N.; Heer, M.

    Lowering mechanical load like in microgravity is the dominant stimulus leading to bone loss However high dietary sodium intake is also considered as a risk factor for osteoporosis and thereby might exacerbate the microgravity induced bone loss In a metabolic balance non bed-rest study we have recently shown that a very high sodium intake leads to an increased bone resorption most likely because of a mild metabolic acidosis Frings et al FASEB J 19 5 A1345 2005 To test if mild metabolic acidosis also occurs during immobilization we examined the effect of increased dietary sodium on bone metabolism and acid-base balance in eight healthy male test subjects mean age 26 25 pm 3 49 years body weight 77 98 pm 4 34 kg in our metabolic ward during a 14-day head-down tilt HDT bed-rest study The study was designed as a randomized crossover study with two study periods Each period was divided into three parts 4 ambulatory days with 200 mmol sodium intake 14 days of bed-rest with either 550 mmol or 50 mmol sodium intake and 3 recovery days with 200 mmol sodium intake The sodium intake was altered by variations in dietary sodium chloride content Blood pH P CO2 and P O2 were analyzed in fasting morning fingertip blood samples several times during the entire study Bicarbonate HCO 3 - and base excess BE were calculated according to the Henderson-Hasselbach equation Preliminary results in the acid-base balance from the first study period 4 subjects with 550 mmol and 4 subjects with 50 mmol sodium intake strongly

  8. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  9. Effects of sodium lactate and acetic acid derivatives on the quality and sensory characteristics of hot-boned pork sausage patties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium lactate and acetic acid derivatives were evaluated for their effects on color retention, microbial growth, and sensory attributes of hot-boned pork sausage patties. Treatments included: (a) sodium lactate (L), (b) buffered vinegar (V), (c) sodium lactate and vinegar mixture (LV), (d) control ...

  10. Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp(2) -Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries.

    PubMed

    Hung, Tai-Feng; Cheng, Wei-Jen; Chang, Wen-Sheng; Yang, Chang-Chung; Shen, Chin-Chang; Kuo, Yu-Lin

    2016-07-18

    Herein, mesoporous sodium vanadium phosphate nanoparticles with highly sp(2) -coordinated carbon coatings (meso-Na3 V2 (PO4 )3 /C) were successfully synthesized as efficient cathode material for rechargeable sodium-ion batteries by using ascorbic acid as both the reductant and carbon source, followed by calcination at 750 °C in an argon atmosphere. Their crystalline structure, morphology, surface area, chemical composition, carbon nature and amount were systematically explored. Following electrochemical measurements, the resultant meso-Na3 V2 (PO4 )3 /C not only delivered good reversible capacity (98 mAh g(-1) at 0.1 A g(-1) ) and superior rate capability (63 mAh g(-1) at 1 A g(-1) ) but also exhibited comparable cycling performance (capacity retention: ≈74 % at 450 cycles at 0.4 A g(-1) ). Moreover, the symmetrical sodium-ion full cell with excellent reversibility and cycling stability was also achieved (capacity retention: 92.2 % at 0.1 A g(-1) with 99.5 % coulombic efficiency after 100 cycles). These attributes are ascribed to the distinctive mesostructure for facile sodium-ion insertion/extraction and their continuous sp(2) -coordinated carbon coatings, which facilitate electronic conduction. PMID:27346677

  11. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    PubMed

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity

  12. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  13. An oral sodium citrate-citric acid non-particulate buffer in humans.

    PubMed

    Hauptfleisch, J J; Payne, K A

    1996-11-01

    We have investigated the effect on the pH of the gastric fluid of a single dose of sodium citrate 0.3 mol litre-1 (antacid) and a solution containing sodium citrate dehydrate (100 mg ml-1) with citric acid monohydrate (66 mg ml-1) (buffer). The dose for both solutions was 0.4 ml kg-1 via a nasogastric tube. Each group comprised 10 patients undergoing neurosurgical operations of 5-7 h duration. A control group of 10 patients received no gastric solution. The pH of the gastric aspirate was measured hourly using a Metrohm 632 digital pH meter (Synectics Medical, Sweden). Mean baseline gastric pH was 2.64 (SD 1.71). In the control group, pH increased to 4.4 (1.51) at 5 h, returning to baseline at 7 h. In the antacid group, pH increased to 6.11 (0.47) at 15 min and decreased to 3.70 (1.94) at 7 h (P < 0.01). In the buffer group, pH was stable at 3.80-3.95 (0.22) over 7 h (P > 0.01). Total mean gastric aspirate was 0.5 ml kg-1. PMID:8957982

  14. Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

    NASA Astrophysics Data System (ADS)

    Hashem, E. Y.; Youssef, A. K.

    2013-05-01

    A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384-37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.

  15. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini; Zhang, Yang

    2014-05-25

    Sodium alginate/Na(+)rectorite-graft-itaconic acid/acrylamide (SA/Na(+)REC-g-IA/AM) hydrogel film was prepared via solution polymerization. The effect of Na(+)REC, KPS, and NMBA content and the ratio of IA to AM on graft ratio, graft efficiency and absorption of liquids were investigated. The structure and morphology were analyzed by FTIR, XRD, TEM and SEM. Results revealed that the optimal Na(+)REC, KPS, and NMBA content and the ratio of IA to AM were 2wt%, 0.8wt%, 0.38wt% and 4, respectively. The hydrogel film was found to exhibit an intercalative structure and coarse surface. The mechanism of graft copolymerization was discussed. A slower and more continuous release of salicylic acid for SA/Na(+)REC-g-IA/AM composite hydrogel film was shown in vitro drug-controlled release studies, in comparison with SA film. The salicylic acid release mechanism of SA/Na(+)REC-g-IA/AM hydrogel film followed Fickian diffusion. PMID:24708990

  16. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  17. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients.

    PubMed

    Perez-Ruiz, Fernando; Aniel-Quiroga, Maria Angeles; Herrero-Beites, Ana María; Chinchilla, Sandra Pamela; Erauskin, Gorka Garcia; Merriman, Toni

    2015-09-01

    Inefficient renal excretion of uric acid is the main pathophysiological mechanism for hyperuricemia in gout patients. Polymorphisms of renal tubular transporters linked with sodium and monosaccharide transport have yet to be demonstrated. We intended to evaluate the impact of insulin resistance, evaluated with the homeostasis model assessment (HOMA), through a transversal study of non-diabetic patients with gout, with normal renal function, not treated with any medication but colchicine as prophylaxis. One hundred and thirty-three patients were evaluated. Clearance of uric acid was inversely correlated with insulin resistance and directly correlated with fractional excretion of sodium. In multivariate analysis, hypertension and hyperlipidemia, in addition to insulin resistance and fractional excretion of sodium, were associated with renal clearance of uric acid. HOMA cutoff for efficient versus inefficient renal handling of uric acid was 2.72, close to that observed in studies of reference population. The impact of insulin resistance and renal handling of sodium on renal clearance of uric acid may help to explain why hyperuricemia is more commonly associated with diabetes and hypertension. PMID:25763991

  18. Corrosion of some chromium-nickel steels and alloys in sulfuric acid solutions of sodium sulfite

    SciTech Connect

    Kopeliovich, D.K.; Glagolenko, Yu.V.; Ermolinskii, S.P.

    1988-05-01

    Steels 12Kh18N1OT and 10Kh17N13M3T and alloys 06KhN28MDT and 46KhNM were studied in sulfuric acid solutions containing sodium sulfite and sulfur dioxide to determine the effects of different concentrations of the corrosive constituents on the anodic and cathodic active and passive corrosion behavior of the metals. Polarization curves were obtained with a P-5827 M potentiostat. Addition of sulfite facilitated both electrode processes and the region of the reactive state was broadened due to the shift of passivation potentials to more positive values. The activating effect of sulfite reduction products were confirmed by tests of alloys in spent solutions. This increased likelihood of activation and the decrease of the solutions's own corrosion potential were both attributed to retardation of the cathodic process by lower valence sulfur compounds.

  19. Synthesis, growth and characterization of a new nonlinear optical crystal sodium acid phthalate

    NASA Astrophysics Data System (ADS)

    Ganesh, R. Bairava; Kannan, V.; Meera, K.; Rajesh, N. P.; Ramasamy, P.

    2005-09-01

    Sodium acid phthalate (NaAP), a new semi-organic nonlinear optical material, has been synthesized and single crystals were grown from aqueous solution. The FTIR spectrum confirms the compound formation. Single crystals of NaAP have been grown by slow evaporation of solvent at room temperature up to dimensions of 10 mm×5 mm×3 mm. Powder X-ray diffraction study on grown crystals shows that they belong to an orthorhombic system. The UV-Vis-NIR transmission spectrum has been recorded in the range 200-1100 nm. The second harmonic generation conversion efficiency of NaAP was determined using Kurtz powder technique; it was observed that it has double the efficiency of KAP crystals. The laser damage threshold value was determined using a Q-switched Nd:YAG laser operating at 1064 nm and with 65 ns pulses in single shot mode.

  20. Interactions in the solid state. II: Interaction of sodium bicarbonate with substituted benzoic acids in the presence of moisture

    SciTech Connect

    Wright, J.L.; Carstensen, J.T.

    1986-06-01

    The interaction of an organic acid with sodium bicarbonate in water produces an effervescent reaction. The reaction products are carbon dioxide, water, and the sodium salt of the acid. The kinetic rate-determining step for this reaction is the dehydration of carbonic acid. The solid-solid interaction with known amounts of moisture was followed by quantitatively determining carbon dioxide evolution as a function of time. The aqueous solubilities, diffusion coefficients, dissociation constants, and solid-solid interaction rates of six different substituted benzoic acids were determined. Using a model based on diffusion of the organic acid through the aqueous layer coupled with chemical reaction, predicted rates and levels of carbon dioxide production were compared with experimental results. Included in the model were the effects of the reaction products on the solution properties of the reactants. It was found that high concentrations of substituted sodium benzoate were generated very quickly and affected the solubility of the reactants, diffusion coefficient of the acid, and the carbonic acid dehydration rate constant. Moisture content was found to have a profound influence on the interaction rate. Water provides a medium for diffusion of the reacting species as well as the reaction solvent.

  1. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    PubMed

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (p<0.05) differential negative effects on the A549 cell line in comparison to its unexposed control as well as to their effects on the MRC-5 cell line, presenting a potential promise for their use as cancer biotherapeutics. PMID:23686189

  2. Inhibition of Listeria monocytogenes in full- and low-sodium frankfurters at 4, 7, or 10°C using spray-dried mixtures of organic acid salts.

    PubMed

    Sansawat, Thanikarn; Zhang, Lei; Jeong, Jong Y; Xu, Yanyang; Hessell, Gerald W; Ryser, Elliot T; Harte, Janice B; Tempelman, Robert; Kang, Iksoon

    2013-09-01

    In meat processing, powdered ingredients are preferred to liquids because of ease of handling, mixing, and storing. This study was conducted to assess Listeria monocytogenes inhibition and the physicochemical and organoleptic characteristics of frankfurters that were prepared with organic acid salts as spray-dried powders (sodium lactate-sodium acetate, sodium lactate-sodium acetate-sodium diacetate, and potassium acetate-potassium diacetate) or liquids (sodium lactate, sodium lactate-sodium diacetate, potassium lactate, and potassium lactate-sodium diacetate). Full-sodium (1.8% salt) and low-sodium (1.0% salt) frankfurters were prepared according to 10 and 5 different formulations (n = 3), respectively, and were dip inoculated with a six-strain cocktail of L. monocytogenes (∼4 log CFU/g). Populations of Listeria and mesophilic aerobic bacteria were quantified during storage at 4, 7, and 10°C for up to 90 days. Four powder and two liquid full-sodium formulations and one powder low-sodium formulation, all of which contained diacetate except for 1% sodium lactate-sodium acetate powder, completely inhibited Listeria growth at 4°C. However, Listeria grew in full-sodium formulations at 10°C and in low-sodium formulations at 7 and 10°C except for the formulation containing 0.8% potassium acetate-0.2% potassium diacetate powder. All formulations were similar in terms of water activity, cooking yield, moisture, and protein content. Sodium content and pH were affected by the concentrations of sodium and diacetate, respectively. Frankfurter appearance, texture, flavor, and overall acceptability were similar (P > 0.05) regardless of the formulation, except for flavor and overall acceptability of the low-sodium formulation containing potassium acetate-potassium diacetate. Based on these findings, cosprayed powders appear to be a viable alternative to current liquid inhibitors for control of Listeria in processed meats. PMID:23992500

  3. Altered expression level of Escherichia coli proteins in response to treatment with the antifouling agent zosteric acid sodium salt.

    PubMed

    Villa, Federica; Remelli, William; Forlani, Fabio; Vitali, Alberto; Cappitelli, Francesca

    2012-07-01

    Zosteric acid sodium salt is a powerful antifouling agent. However, the mode of its antifouling action has not yet been fully elucidated. Whole cell proteome of Escherichia coli was analysed to study the different protein patterns expressed by the surface-exposed planktonic cells without and with sublethal concentrations of the zosteric acid sodium salt. Proteomic analysis revealed that at least 27 proteins showed a significant (19 upregulated and 8 downregulated, P < 0.001) altered expression level in response to the antifoulant. The proteomic signatures of zosteric acid sodium salt-treated cells are characterized by stress-associated (e.g. AhpC, OsmC, SodB, GroES, IscU, DnaK), motility-related (FliC), quorum-sensing-associated (LuxS) and metabolism/biosynthesis-related (e.g. PptA, AroA, FabD, FabB, GapA) proteins. Consistent with the overexpression of LuxS enzyme, the antifouling agent increased autoinducer-2 (AI-2) concentration by twofold. Moreover, treated cells experienced a statistically significant but modest increase of reactive oxygen species (+ 23%), tryptophanase (1.2-fold) and indole (1.2-fold) synthesis. Overall, our data suggest that zosteric acid sodium salt acts as environmental cue leading to global stress on E. coli cells, which favours the expression of various protective proteins, the AI-2 production and the synthesis of flagella, to escape from adverse conditions. PMID:22176949

  4. Sodium phenylbutyrate decreases plasma branched-chain amino acids in patients with urea cycle disorders.

    PubMed

    Burrage, Lindsay C; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H; Nagamani, Sandesh C S

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in the Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle Disorders Consortium, we evaluated whether treatment with NaPBA leads to a decrease in plasma BCAA levels. Our analysis shows that NaPBA use independently affects the plasma BCAA levels even after accounting for multiple confounding covariates. Moreover, NaPBA use increases the risk for BCAA deficiency. This effect of NaPBA seems specific to plasma BCAA levels, as levels of other essential amino acids are not altered by its use. Our study, in an unselected population of UCD subjects, is the largest to analyze the effects of NaPBA on BCAA metabolism and potentially has significant clinical implications. Our results indicate that plasma BCAA levels should to be monitored in patients treated with NaPBA since patients taking the medication are at increased risk for BCAA deficiency. On a broader scale, these findings could open avenues to explore NaPBA as a therapy in maple syrup urine disease and other common complex disorders with dysregulation of BCAA metabolism. PMID:25042691

  5. Rosmarinic Acid Attenuates Sodium Taurocholate-Induced Acute Pancreatitis in Rats by Inhibiting Nuclear Factor-κB Activation.

    PubMed

    Fan, Yu-Ting; Yin, Guo-Jian; Xiao, Wen-Qin; Qiu, Lei; Yu, Ge; Hu, Yan-Ling; Xing, Miao; Wu, De-Qing; Cang, Xiao-Feng; Wan, Rong; Wang, Xing-Peng; Hu, Guo-Yong

    2015-01-01

    Rosmarinic Acid (RA), a caffeic acid ester, has been shown to exert anti-inflammation, anti-oxidant and antiallergic effects. Our study aimed to investigate the effect of RA in sodium taurocholate ( NaTC )-induced acute pancreatitis, both in vivo and in vitro. In vivo, RA (50 mg/kg) was administered intraperitoneally 2 h before sodium taurocholate injection. Rats were sacrificed 12 h, 24 h or 48 h after sodium taurocholate injection. Pretreatment with RA significantly ameliorated pancreas histopathological changes, decreased amylase and lipase activities in serum, lowered myeloperoxidase activity in the pancreas, reduced systematic and pancreatic interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and inhibited NF-κB translocation in pancreas. In vitro, pretreating the fresh rat pancreatic acinar cells with 80 μ mol/L RA 2 h before 3750 nmol/L sodium taurocholate or 10 ng/L TNF-α administration significantly attenuated the reduction of isolated pancreatic acinar cell viability and inhibited the nuclear activation and translocation of NF-κB. Based on our findings, RA appears to attenuate damage in sodium taurocholate-induced acute pancreatitis and reduce the release of inflammatory cytokines by inhibiting the activation of NF-κB. These findings might provide a basis for investigating the therapeutic role of RA in managing acute pancreatits. PMID:26364660

  6. Effect of sodium vanadate on deoxyribonucleic acid and protein syntheses in cultured rat calvariae.

    PubMed

    Canalis, E

    1985-03-01

    Sodium vanadate, an agent known to have multiple cellular actions, was studied for its effects on aspects of bone formation in cultures of 21-day-old fetal rat calvariae. Vanadate (0.1-10 microM) stimulated the incorporation of [3H] thymidine into acid-insoluble residues (DNA); the effect appeared after 3 h and was sustained for 96 h. Vanadate increased the bone DNA content and mitotic index. Treatment with vanadate at 10 microM for 24 h or at 0.3-1 microM for 96 h increased the incorporation of [3H]proline into collagenase-digestible protein (CDP), but the effect was not specific for collagen; vanadate also increased the labeling of noncollagen protein (NCP). Vanadate increased the incorporation of [3H]proline into type I collagen without affecting other collagen types. Vanadate (100 microM) caused a marked and irreversible inhibitory effect on the labeling of DNA, CDP, and NCP. Treatment with vanadate at multiple doses for 3-96 h did not stimulate alkaline phosphatase activity, but this enzyme was inhibited in bones exposed to 1 mM vanadate for 24 h or 10 microM vanadate for 96 h. The stimulatory effect on DNA labeling was primarily observed in the periosteum, while that on CDP labeling was seen only in the periosteum-free bone. These studies indicate that sodium vanadate stimulates bone DNA, collagen, and NCP syntheses in vitro, although high doses of vanadate have an irreversible inhibitory effect. PMID:2578950

  7. Computational Models for Drug Inhibition of the Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E.

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid re-absorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, as well as a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested and their Ki values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or non-potent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  8. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT.

    PubMed

    Annaba, Fadi; Sarwar, Zaheer; Gill, Ravinder K; Ghosh, Amit; Saksena, Seema; Borthakur, Alip; Hecht, Gail A; Dudeja, Pradeep K; Alrefai, Waddah A

    2012-05-15

    Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis. PMID:22403793

  9. Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter.

    PubMed

    Zheng, Xiaowan; Ekins, Sean; Raufman, Jean-Pierre; Polli, James E

    2009-01-01

    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is the primary mechanism for intestinal bile acid reabsorption. In the colon, secondary bile acids increase the risk of cancer. Therefore, drugs that inhibit ASBT have the potential to increase the risk of colon cancer. The objectives of this study were to identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition. Inhibition was evaluated using ASBT-MDCK monolayers and taurocholate as the model substrate. Computational modeling employed a HipHop qualitative approach, a Hypogen quantitative approach, and a modified Laplacian Bayesian modeling method using 2D descriptors. Initially, 30 compounds were screened for ASBT inhibition. A qualitative pharmacophore was developed using the most potent 11 compounds and applied to search a drug database, yielding 58 hits. Additional compounds were tested, and their K(i) values were measured. A 3D-QSAR and a Bayesian model were developed using 38 molecules. The quantitative pharmacophore consisted of one hydrogen bond acceptor, three hydrophobic features, and five excluded volumes. Each model was further validated with two external test sets of 30 and 19 molecules. Validation analysis showed both models exhibited good predictability in determining whether a drug is a potent or nonpotent ASBT inhibitor. The Bayesian model correctly ranked the most active compounds. In summary, using a combined in vitro and computational approach, we found that many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors, are ASBT inhibitors. PMID:19673539

  10. Effects of sodium arsenate exposure on liver fatty acid profiles and oxidative stress in rats.

    PubMed

    Kharroubi, Wafa; Dhibi, Madiha; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-02-01

    The present study aimed to evaluate the effect of arsenic on liver fatty acids (FA) composition, hepatotoxicity and oxidative status markers in rats. Male rats were randomly devised to six groups (n=10 per group) and exposed to sodium arsenate at a dose of 1 and 10 mg/l for 45 and 90 days. Arsenate exposure is associated with significant changes in the FA composition in liver. A significant increase of saturated fatty acids (SFA) in all treated groups (p<0.01) and trans unsaturated fatty acids (trans UFA) in rats exposed both for short term for 10 mg/l (p<0.05) and long term for 1 and 10 mg/l (p<0.001) was observed. However, the cis UFA were significantly decreased in these groups (p<0.05). A markedly increase of indicator in cell membrane viscosity expressed as SFA/UFA was reported in the treated groups (p<0.001). A significant increase in the level of malondialdehyde by 38.3 % after 90 days of exposure at 10 mg/l was observed. Compared to control rats, significant liver damage was observed at 10 mg/l of arsenate by increasing plasma marker enzymes after 90 days. It is through the histological investigations in hepatic tissues of exposed rats that these damage effects of arsenate were confirmed. The antioxidant perturbations were observed to be more important at groups treated by the high dose (p<0.05). An increase in the level of protein carbonyls was observed in all treated groups (p<0.05). The present study provides evidence for a direct effect of arsenite on FA composition disturbance causing an increase of SFA and TFAs isomers, liver dysfunction and oxidative stress. Therefore, arsenate can lead to hepatic damage and propensity towards liver cancer. PMID:23949113

  11. Anion Effects on Sodium Ion and Acid Molecule Adduction to Protein Ions in Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2012-01-01

    Gaseous protein–metal ion and protein–molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol−1 and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol−1. The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein–ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions. PMID:21952761

  12. Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats.

    PubMed

    Kharroubi, Wafa; Dhibi, Madiha; Mekni, Manel; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-10-01

    Six groups of rats (n = 10 per group) were exposed to 1 and 10 mg/l of sodium arsenate for 45 and 90 days. Kidneys from treated groups exposed to arsenic showed higher levels of trans isomers of oleic and linoleic acids as trans C181n-9, trans C18:1n-11, and trans C18:2n-6 isomers. However, a significant decrease in eicosenoic (C20:1n-9) and arachidonic (C20:4n-6) acids were observed in treated rats. Moreover, the "Δ5 desaturase index" and the saturated/polyunsaturated fatty acids ratio were increased. There was a significant increase in the level of malondialdehyde at 10 mg/l of treatment and in the amount of conjugated dienes after 90 days (p < 0.05). Significant kidney damage was observed at 10 mg/l by increase of plasma marker enzymes. Histological studies on the ultrastructure changes of kidney supported the toxic effect of arsenate exposure. Arsenate intoxication activates significantly the superoxide dismutase at 10 mg/l for 90 days, whereas the catalase activity was markedly inhibited in all treated groups (p < 0.05). In addition, glutathione peroxidase activity was significantly increased at 45 days and dramatically declined after 90 days at 10 mg/l (p < 0.05). A significant increase in the level of glutathione was marked for the groups treated for 45 and 90 days at 1 mg/l followed by a significant decrease for rats exposed to 10 mg/l for 90 days. An increase in the level of protein carbonyl was observed in all treated groups (p < 0.05). In conclusion, the present study provides evidence for a direct effect of arsenate on fatty acid (FA) metabolism which concerns the synthesis pathway of n-6 polyunsaturated fatty acids and leads to an increase in the trans FAs isomers. Therefore, FA-induced arsenate kidney damage could contribute to trigger kidney cancer. PMID:24920263

  13. Effect of boric acid on intergranular corrosion and on hideout return efficiency of sodium in the tube support plate crevices

    SciTech Connect

    Paine, J.P.N.; Shoemaker, C.E.; Campan, J.L.; Brunet, J.P.; Schindler, P.; Stutzmann, A.

    1995-12-31

    Sodium hydroxide is one of the main causes of intergranular attack/stress corrosion cracking (IGA/SCC) of alloy 600 steam generator (S.G.) tubes. Boric acid appears to be one of the possible remedies for intergranular corrosion process inhibition. In order to obtain data on boric acid injection efficiency, an experimental program was performed on previously corroded tubes. To prevent premature tube wall cracking, samples were sleeved on alloy 690 tubes. The objective of the tests was to evaluate, on a statistically valid number of samples, the effectiveness of boric acid and tube sleeving as possible remedies for IGA/SCC extension. Another independent experimental program was initiated to determine the hideout return efficiency in the tube support plate (TSP) and tubesheet (TS) crevices after a significant duration ({<=} 180 hours) of sodium hideout. The main objective of the first tests being a statistical evaluation of the efficiency of boric acid treatment, was not achieved. The tests did demonstrate that sleeving effectively reduces IGA/SCC growth. In an additional program, cracks were obtained on highly susceptible tubes when specimens were not sleeved. The companion tests performed in the same conditions but with an addition of boric acid did not show any IGA or cracks. These results seem to demonstrate the possible effect of boric acid in preventing the corrosion process. Results of the second tests did not demonstrate any difference in the amount of sodium piled up in the crevices before and after boric acid injection. They however showed an increase of the hideout return efficiency at the tube support plate level from 78 % without boric acid to 95 % when boric acid is present in the feed water.

  14. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  15. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    PubMed

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. PMID:26005789

  16. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  17. Stereological studies of the effects of sodium benzoate or ascorbic acid on rats’ cerebellum

    PubMed Central

    Noorafshan, Ali; Erfanizadeh, Mahboobeh; Karbalay-Doust, Saied

    2014-01-01

    Objectives: To evaluate the cerebellar structure in sodium benzoate (NaB) or ascorbic acid (AA) treated rats. Methods: This experimental study was conducted between May and September 2013 in the Laboratory Animal Center of Shiraz University of Medical Sciences, Shiraz, Iran. The rats received distilled either water, NaB (200mg/kg/day), AA (100mg/kg/day), or NaB+AA. The hemispheres were removed after 28 days and underwent quantitative study. Results: The total volume of the cerebellar hemisphere, its cortex, intracerebellar nuclei; the total number of the Purkinje, Bergman, granule, neurons, and glial cells of the molecular layer; and neurons and glial cells of the intracerebellar nuclei reduced by 21-52% in the NaB-treated rats compared with the distilled water group (p=0.004). The total number of the Purkinje, Bergman, Golgi, and granule cells was 29-45% higher in the AA-treated rats compared with the distilled water group (p=0.05). However, these measures reduced by 17-50% in the NaB+AA-treated rats compared with the distilled water group (p=0.004). The NaB+AA group did not induce any significant structural changes in comparison with the NaB group (p>0.05). Conclusions: The NaB exposure with or without AA treatment could alter the cerebellum. Yet, AA could prevent the loss of some cells in the cerebellum. PMID:25491215

  18. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  19. Flow-injection determination of isoniazid using sodium dichloroisocyanurate- and trichloroisocyanuric acid-luminol chemiluminescence systems.

    PubMed

    Safavi, A; Karimi, M A; Hormozi Nezhad, M R

    2004-06-01

    A chemiluminescent (CL) method for the determination of isoniazid is described. The method is based on the CL generated during the oxidation of luminol by sodium dichloroisocyanurate (SDCC) and trichloroisocyanuric acid (TCCA) in alkaline medium. It was found that isoniazid greatly enhances this CL intensity when present in the luminol solution. Based on this observation, a new flow-injection CL method for the determination of isoniazid has been proposed in this paper. The detection limits were 2 and 3 ng ml(-1) isoniazid for the SDCC-luminol and TCCA-luminol CL systems, respectively. The relative CL intensity was linear with the isoniazid concentration in the range of 4-100 and 100-200 ng ml(-1) for the SDCC-luminol CL system, and 6-200 and 200-1000 ng ml(-1) for the TCCA-luminol CL system. The results obtained for the assay of pharmaceutical preparations compared well with those obtained by the official methods and demonstrated good accuracy and precision. PMID:15178311

  20. Voluntary feed intake, acid-base balance and partitioning of urinary nitrogen in lambs fed corn silage with added sodium bicarbonate or sodium sesquicarbonate.

    PubMed

    Phillip, L E; Hidalgo, V

    1989-08-01

    An experiment with growing lambs was designed to test the hypothesis that alterations in blood acid-base status would influence intake of corn silage. Six wethers (29 kg) were fed a diet of corn silage (36% DM, 8% CP) supplemented with 1.25% urea and .2% sulfur. At feeding time, sodium bicarbonate (NaHCO3) and sodium sesquicarbonate (NaSC) were added to the silage at levels of 0, 2% or 4% of diet DM. The treatments were arranged as a 2 x 3 factorial, and the study was conducted as a 6 x 4 incomplete latin square with four 17-d periods. Voluntary intake of OM was not different (P greater than .05) between NaHCO3 (1,008 g/d) and NaSC (1,041 g/d). There was no significant interaction between type of buffer (NaHCO3 or NaSC) and level of buffer on any of the variables measured. The progressive increase in buffer load did not alter feed intake (P greater than .05), although there was a quadratic response (P less than .05) in urine pH and a linear increase (P less than .01) in blood HCO3- 2 h after feeding. There was no evidence that lambs fed corn silage experienced metabolic acid stress. Urinary excretion of ammonia and urea were indicative of changes, although not pronounced, in ammoniuria and ureapoiesis in response to bicarbonate loading. This study implies that corn silage imposes no "acid stress" on lambs and, consequently, that there is no nutritional benefit in adding buffers to corn silage for sheep. PMID:2551870

  1. Enterobacteria modulate intestinal bile acid transport and homeostasis through apical sodium-dependent bile acid transporter (SLC10A2) expression.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hamatsu, Mayumi; Kuribayashi, Hideaki; Takamatsu, Yuki; Yamazoe, Yasushi

    2011-01-01

    In our study, ampicillin (AMP)-mediated decrease of enterobacteria caused increases in hepatic bile acid concentration through (at least in part) elevation of bile acid synthesis in C57BL/6N mice. We investigated the involvement of enterobacteria on intestinal bile acid absorption in AMP-treated mice in the present study. Fecal enterobacterial levels and fecal bile acid excretion rates were markedly decreased in mice treated with AMP (100 mg/kg) for 3 days, whereas bile acid concentrations in portal blood were significantly increased compared with those in mice treated with a vehicle. Ileal apical sodium-dependent bile acid transporter (SLC10A2) mRNA levels and ileal SLC10A2 protein levels in brush-border membranes were significantly increased compared with those in mice treated with the vehicle. In AMP-treated mice, total bile acid levels were increased, whereas levels of enterobacteria-biotransformed bile acid, taurodeoxycholic acid, and cholic acid were decreased in intestinal lumen. These phenomena were also observed in farnesoid X receptor-null mice treated with AMP for 3 days. Discontinuation of AMP administration after 3 days (vehicle administration for 4 days) increased levels of fecal enterobacteria, fecal bile acid excretion, and taurodeoxycholic acid and cholic acid in the intestinal lumen, whereas the discontinuation decreased ileal SLC10A2 expression and bile acid concentrations in the portal blood. Coadministration of taurodeoxycholic acid or cholic acid decreased ileal SLC10A2 expression in mice treated with AMP. These results suggest that enterobacteria-mediated bile acid biotransformation modulates intestinal bile acid transport and homeostasis through down-regulation of ileal SLC10A2 expression. PMID:20884752

  2. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh

  3. Asymmetric synthesis of crambescin A-C carboxylic acids and their inhibitory activity on voltage-gated sodium channels.

    PubMed

    Nakazaki, Atsuo; Nakane, Yoshiki; Ishikawa, Yuki; Yotsu-Yamashita, Mari; Nishikawa, Toshio

    2016-06-21

    Synthesis of both enantiomers of crambescin B carboxylic acid is described. A cis-enyne starting material was epoxidized under the conditions of Katsuki asymmetric epoxidation to give 95% ee of the epoxide, which was transformed to crambescin B carboxylic acid via bromocation-triggered cascade cyclization as the key step. Enantiomerically pure crambescin A and C carboxylic acids were also synthesized from the product of the cascade reaction. Structure-activity relationship (SAR) studies against voltage-gated sodium channel (VGSC) inhibition using those synthetic compounds revealed that the natural enantiomer of crambescin B carboxylic acid was most active and comparable to tetrodotoxin, and the unalkylated cyclic guanidinium structure is indispensible, while the carboxylate moiety is not important. The absolute stereochemistry of crambescin A was determined by a comparison of the methyl ester derived from natural crambescin A with that derived from the stereochemically defined crambescin A carboxylic acid synthesized in this study. PMID:27215973

  4. Effects of sodium dodecylbenzene sulfonate and sodium dodecyl sulfate on the Mytilus galloprovincialis biomarker system.

    PubMed

    Liu, Bo; Yu, Zhiming; Song, Xiuxian; Yang, Fei

    2010-07-01

    The effects of in vivo exposure of Mytilus galloprovincialis to two anionic surfactants (SDBS and SDS) on the molecular biomarker system were studied. After continuous exposure for 72 days, activities/levels of GST, GPx and GSH were significantly higher than in corresponding control groups following exposure to 3.000 mg/L SDS and SDBS. Activities of SOD and CAT were significantly inhibited by experimental SDBS (except CAT in 0.100mg/L group), but not by SDS. Statistical analysis of enzyme activities/levels suggested that there were significant positive relationships between GST and GPx, and negative relationships were found between GSH and CAT, GSH and SOD. Amplified fragment length polymorphism (AFLP) results showed that a greater genotoxic effect was observed for SDBS than for SDS. Based on the above results, the biomarker system of mussels can be affected by the two anionic surfactants (>or=3.000 mg/L); it was more easily affected by SDBS than by SDS. PMID:20045192

  5. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios. PMID:24191443

  6. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    SciTech Connect

    James, W.M.; Emerick, M.C.; Agnew, W.S. )

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated binding and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.

  7. The impact of sodium aescinate on acute lung injury induced by oleic acid in rats.

    PubMed

    Wei, Tian; Tong, Wang; Wen-ping, Sun; Xiao-hui, Deng; Qiang, Xue; Tian-shui, Li; Zhi-fang, Chen; Hong-fang, Jin; Li, Ni; Bin, Zhao; Jun-bao, Du; Bao-ming, Ge

    2011-12-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high rates of morbidity and mortality. Currently, several surfactant or anti-inflammatory drugs are under test as treatments for ALI. Sodium aescinate (SA) has been shown to exert anti-inflammatory and antiedematous effects. In the present work, the authors explored the effects of SA and the possible mechanisms of SA action in rats with ALI induced by oleic acid (OA) administration. Eight groups of rats received infusions of normal saline (NS) or OA. Rats exposed to OA were pretreated with 1 mg/kg of SA, or posttreated with SA at low (1 mg/kg), medium (2 mg/kg), or high (6 mg/kg) dose; a positive-control group received methylprednisolone. The pressure of oxygen in arterial blood (P(O(2))) levels, the pulmonary wet/dry weight (W/D) ratios, and indices of quantitative assessment (IQA) of histological lung injury were obtained 2 or 6 hours after OA injection (0.1 mL/kg, intravenously). The levels of superoxide dismutase (SOD), malondialdehyde (MDA), matrix metalloproteinase gelatinase B (MMP-9), and tissue inhibitor of metalloproteinase (TIMP-1) in both plasma and lung tissue were also determined. Both pre- and posttreatment with SA improved OA-induced pulmonary injury, increased P(O(2)) and SOD values, lowered IQA scores, and decreased the lung W/D ratio and MDA and MMP-9 levels in plasma and lung tissue. SA appeared to abrogate OA-induced ALI by modulating the levels of SOD, MDA, and MMP-9 in plasma and lung tissue. PMID:22087513

  8. Iodoacetic acid, but not sodium iodate, creates an inducible swine model of photoreceptor damage.

    PubMed

    Noel, Jennifer M; Fernandez de Castro, Juan P; Demarco, Paul J; Franco, Luisa M; Wang, Wei; Vukmanic, Eric V; Peng, Xiaoyan; Sandell, Julie H; Scott, Patrick A; Kaplan, Henry J; McCall, Maureen A

    2012-04-01

    Our purpose was to find a method to create a large animal model of inducible photoreceptor damage. To this end, we tested in domestic swine the efficacy of two chemical toxins, known to create photoreceptor damage in other species: Iodoacetic Acid (IAA) and Sodium Iodate (NaIO(3)). Intravenous (IV) administration of NaIO(3) up to 90 mg/kg had no effect on retinal function and 110 mg/kg was lethal. IV administration of IAA (5-20 mg/kg) produced concentration-dependent changes in visual function as measured by full-field and multi-focal electroretinograms (ffERG and mfERG), and 30 mg/kg IAA was lethal. The IAA-induced effects measured at two weeks were stable through eight weeks post-injection, the last time point investigated. IAA at 7.5, 10, and 12 mg/kg produce a concentration-dependent reduction in both ffERG b-wave and mfERG N1-P1 amplitudes compared to baseline at all post-injection times. Comparisons of dark- and light-adapted ffERG b-wave amplitudes show a more significant loss of rod relative to cone function. The fundus of swine treated with ≥10 mg/kg IAA was abnormal with thinner retinal vessels and pale optic discs, and we found no evidence of bone spicule formation. Histological evaluations show concentration-dependent outer retinal damage that correlates with functional changes. We conclude that NaIO(3,) is not an effective toxin in swine. In contrast, IAA can be used to create a rapidly inducible, selective, stable and concentration-dependent model of photoreceptor damage in swine retina. Because of these attributes this large animal model of controlled photoreceptor damage should be useful in the investigation of treatments to replace damaged photoreceptors. PMID:22251455

  9. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  10. Single sodium pyruvate ingestion modifies blood acid-base status and post-exercise lactate concentration in humans.

    PubMed

    Olek, Robert A; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-05-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg(-1) of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% VO2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  11. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    PubMed Central

    Olek, Robert A.; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-01-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  12. Thermodynamics of aqueous borate solutions I. Mixture of boric acid with sodium or potassium borate and chloride

    SciTech Connect

    Simonson, J.M.; Roy, R.N.; Roy, L.N.; Johnson, D.A.

    1987-10-01

    Potentials for the cell without liquid junction H/sub 2/, Ptlt. slashB(OH)/sub 3/(m/sub 1/),MB(OH)/sub 4/(m/sub 2/),MCl(m/sub 3/)lt. slashAgCl,Ag where M is sodium or potassium are reported over a range of ionic strength to I = 3 mol-kg/sup -1/ at 5 to 55/sup 0/C. Total boron concentration in the solutions was restricted to low levels to minimize formation of polynuclear boron species. Cell potentials are treated with the Pitzer ion interaction treatment for mixed electrolytes, with linear ionic strength dependence assumed for the activity coefficient of undissociated boric acid. Trace activity coefficients of sodium and potassium borates in chloride media are calculated at various temperatures.

  13. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model.

    PubMed

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A

    2010-04-15

    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations. PMID:20185187

  14. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber.

    PubMed

    Yang, Jen Ming; Yang, Jhe Hao; Tsou, Shu Chun; Ding, Chian Hua; Hsu, Chih Chin; Yang, Kai Chiang; Yang, Chun Chen; Chen, Ko Shao; Chen, Szi Wen; Wang, Jong Shyan

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1day seeded. Cell-cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  15. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals

    NASA Astrophysics Data System (ADS)

    Nirmala, L. Ruby; Prakash, J. Thomas Joseph

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  16. Prevention of acid drainage from stored coal. [Inhibition of bacterial action by treatment with a solution of sodium lauryl sulfate

    SciTech Connect

    Olem, H.; Bell, T.L.; Longaker, J.J.

    1983-06-01

    A method has been identified for controlling acid production and subsequent dissolution of toxic pollutants in drainage from coal storage piles. Results of laboratory and field experiments indicate that it may be possible to prevent, rather than treat, acid drainage by periodically applying an environmentally safe detergent formulation to the coal. These experiments showed that a mild solution of sodium lauryl sulfate (SLS) effectively blocks the activity of the bacteria that promote acid formation and chemical leaching. Drainage from coal treated once with 50 mg/L of SLS remained neutral for 60 days, about three times longer than the untreated control sample. An extrapolation of results to an industrial-scale application revealed that the cost of the SLS needed for a single application would likely be no more than $200 per acre of coal storage area ($500 per hectare ) or, expressed per unit weight of coal, $4,000 per million metric tons.

  17. Acceleration of Acid-Catalyzed Hydrolysis in a Biphasic System by Sodium Tetracyanocyclopentadienides.

    PubMed

    Sakai, Takeo; Bito, Mariko; Itakura, Makoto; Sato, Honami; Mori, Yuji

    2016-01-01

    The hydrolysis of tert-butyldimethylsilyl L-menthyl ether (3) in a CH2Cl2-1 M HCl biphasic solvent system was accelerated by the addition of sodium tetracyanocyclopentadienides 1. Particularly, the reaction rate was enhanced using sodium salt 1a-c with a lipophilic substituent on the cyclopentadienide ring. From the results obtained by a triphasic experiment, hydrolysis proceeds via the formation of hydronium ion 2 in the aqueous phase by ion exchange, followed by the transfer of 2 to the CH2Cl2 phase. PMID:27373648

  18. Management of traveller's diarrhoea with a combination of sodium butyrate, organic acids, and A-300 silicon dioxide

    PubMed Central

    Mackiewicz, Jacek; Wejman-Matela, Anna; Krokowicz, Piotr; Drews, Michal; Banasiewicz, Tomasz

    2014-01-01

    Introduction Traveller's diarrhoea (TD), defined by UNICEF/WHO as three or more unformed stools with or without other symptoms, imposes a considerable burden on travellers from developed countries. Various efforts have focused on decreasing the prevalence and severity of this condition. Aim To assess the efficacy of a combination of sodium butyrate, organic acids, and A-300 silicon dioxide in treatment providing symptomatic relief of TD. Material and methods The study was conducted in accordance with a protocol presented to the Bioethical committee of Poznan University of Medical Sciences. A total of 278 patients travelling to countries with higher risk of diarrhoea for at least 10 days were divided into a study arm being administered, in case of TD, a combination of sodium butyrate, organic acids, and A-300 silicon dioxide (n = 139) and a placebo arm (n = 139) with placebo administration. Results Forty-seven patients completed the study (22 in the study arm and 25 in the placebo arm). The diarrhoea occurrence after initiation of treatment at first symptoms was significantly lower in the study arm as compared to the placebo arm (9% vs. 36%, p = 0.041). Also, subjects from the study arm more frequently reported that the regimen administered had been efficient for their symptoms in comparison to the placebo arm (72.7% vs. 32%, p = 0.008). No adverse effects of the administered medication were noted during the study. Conclusions Sodium butyrate, organic acids, and A-300 silicon dioxide can be successful in decreasing symptoms of TD. Because of its efficacy and lack of observed side effects it has a strong potential in the treatment of patients with TD. PMID:25396003

  19. Ileal apical sodium-dependent bile acid transporter protein levels are down-regulated through ubiquitin-dependent protein degradation induced by bile acids.

    PubMed

    Miyata, Masaaki; Yamakawa, Hiroki; Hayashi, Kenjiro; Kuribayashi, Hideaki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2013-08-15

    The ileal apical sodium-dependent bile acid transporter (ASBT or SLC10A2) has a crucial role in intestinal bile acid absorption. We previously reported that enterobacteria-mediated bile acid conversion was involved in the alteration of ileal ASBT expression levels. In the present study, to investigate the hypothesis that ileal ASBT protein levels are post-translationally regulated by enterobacteria-associated bile acids, alteration of ileal ASBT protein levels was analysed in mice 12 h and 24 h after anti-bacterial drug ampicillin (ABPC) treatment (100 mg/kg, single shot) that altered bile acid composition in the intestinal lumen. In ABPC-treated mice, enterobacteria-biotransformed bile acid, taurodeoxycholic acid (TDCA) and cholic acid (CA) levels were decreased, whereas taurocholic acid (TCA) and tauro-β-muricholic acid levels were increased in the intestinal lumen. Ileal ASBT protein levels in brush-border membrane vesicles (BBMVs), but not ileal Asbt mRNA levels, were significantly increased in the ABPC-treated mice, and the extent of ubiquitination of the ileal ASBT protein was reduced in the ABPC-treated mice. Treatment of ABPC-pretreated mice with CA or TDCA, but not TCA, significantly decreased ileal ASBT protein levels and increased the extent of ubiquitination of ileal ASBT protein. Treatment of mice with the lysosome inhibitor, chloroquine, or the proteasome inhibitor, MG132, increased ileal ASBT protein levels in BBMVs. CA-mediated reduction of ASBT protein levels in the ABPC-pretreated mice was attenuated by co-treatment with chloroquine or MG132. These results suggest that ileal ASBT protein is degraded by a ubiquitin-dependent pathway in response to enterobacteria-associated bile acids. PMID:23872411

  20. Investigations on the SR method growth, etching, birefringence, laser damage threshold and dielectric characterization of sodium acid phthalate single crystals

    NASA Astrophysics Data System (ADS)

    Senthil, A.; Ramasamy, P.; Verma, Sunil

    2011-03-01

    Optically good quality semi-organic single crystal of sodium acid phthalate (NaAP) was successfully grown by Sankaranarayanan-Ramasamy (SR) method. Transparent, colourless <0 0 1> oriented unidirectional bulk single crystals of diameters 10 and 20 mm and length maximum up to 75 mm were grown by the SR method. The grown crystals were subjected to various characterization studies such as etching, birefringence, laser damage threshold, UV-vis spectrum and dielectric measurement. The value of birefringence and quality were ascertained by birefringence studies.

  1. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    PubMed

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  2. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid)

    PubMed Central

    Costa, M. I. C. F.; Steter, J. R.; Purgato, F. L. S.; Romero, J. R.

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H+ with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H+ was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  3. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...'s mouth to improve denture retention and comfort. (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be... carboxymethylcellulose sodium (NACMC) denture adhesive shall have an approved PMA or a declared completed PDP in...

  4. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...'s mouth to improve denture retention and comfort. (b) Classification. Class III. (c) Date PMA or notice of completion of a PDP is required. A PMA or a notice of completion of a PDP is required to be... carboxymethylcellulose sodium (NACMC) denture adhesive shall have an approved PMA or a declared completed PDP in...

  5. Comparing Peracetic Acid with Sodium Hypochlorite for Disinfection of Combined Sewer Overflows

    EPA Science Inventory

    This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effective...

  6. Molecular structure of the 2:2 complex of cyclic oxaalkyl diamide of o-phthalic acid with sodium perchlorate

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil

    2010-04-01

    Structure of the 2:2 complex of cyclic oxaalkyl diamide of o-phthalic acid (CPhDA) with sodium perchlorate is studied by X-ray diffraction, ESI-MS, FT-IR, 1H and 13C NMR as well as PM5 semiempirical methods. The crystal space group is P21/n with a = 8.599(1) Å, b = 14.802(2) Å, c = 13.988(2) Å, β = 93.37(1)° and Z = 4. In the dimeric crystal structure each sodium cation is coordinated by oxygen atoms of two CPhDA molecules. The ESI-MS measurements have proved that in the gas phase the 2:2 (or 1:1) as well as 2:1 complexes are formed. In the acetonitrile solution the equilibrium between the 2:2 and 1:1 complexes is found. The structures of the 2:2, 1:1 and 2:1 complexes of CPhDA with sodium cation are visualized using the PM5 method and discussed in detail.

  7. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    ERIC Educational Resources Information Center

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  8. Thermodynamics of micelle formation of the counterion coupled gemini surfactant Bis(4-(2-dodecyl)benzenesulfonate)-Jeffamine salt and its dynamic adsorption on sandstone.

    PubMed

    Páhi, Annamária B; Király, Zoltán; Mastalir, Agnes; Dudás, József; Puskás, Sándor; Vágó, Arpád

    2008-12-01

    A novel counterion-coupled gemini (cocogem) surfactant, DBSJ, was synthetized via the 2:1 coupling reaction between 4-(2-dodecyl)benzenesulfonic acid (Lutensit A-LBS) and polypropyleneglycol-bis(2-aminopropyl) ether (Jeffamine D230). The surfactant had a polydispersity index of Mw/Mn = 1.04, as determined by electrospray-ionization mass spectrometry. The micellar properties of DBSJ in water were investigated in the temperature range 283-348 K by conductometry and titration microcalorimetry. The critical micelle concentration (cmc) of the cocogem was found to be more than 1 order of magnitude less than that of monomeric sodium 4-(2-dodecyl)benzenesulfonate (SDBS). The mean degree of dissociation in the temperature range studied proved to be alpha = 0.39. The calorimetric enthalpies of micelle formation agreed well with the enthalpies calculated via the van't Hoff relation. The cmc versus T curve passes through a minimum just below room temperature, after which the micelle formation changes from endothermic to exothermic. The Gibbs free energy of micelle formation was nearly constant as the temperature was increased, due to enthalpy/entropy compensation. The isotherm for DBSJ adsorption from aqueous solution onto sandstone was determined by continuous flow frontal analysis solid/liquid chromatography at 298 K and 60 bar. The adsorption of DBSJ on sandstone followed an S-type isotherm. Surface aggregation occurred over an extended range of concentration. Surface saturation was reached at a solution concentration more than 1 order of magnitude less than for monomeric SDBS. This finding is a point of concern in the chemical flooding of oil reservoir rocks to enhance oil recovery. PMID:18989918

  9. Investigation of low levels of plasma valproic acid concentration following simultaneous administration of sodium valproate and rizatriptan benzoate.

    PubMed

    Hokama, Nobuo; Hobara, Norio; Kameya, Hiromasa; Ohshiro, Susumu; Hobara, Narumi; Sakanashi, Matao

    2007-03-01

    Drug interaction between rizatriptan benzoate, an anti-migraine agent, and sodium valproate (VPA-Na), an anticonvulsant, was studied in rats. When rizatriptan benzoate was administered orally immediately after VPA-Na oral administration, the pharmacokinetic parameters, such as plasma valproic acid (VPA) and area under the plasma concentration-time curve up to 3 h (AUC(0-3)), were significantly decreased compared with those in the control group. However, when rizatriptan benzoate was administered intraperitoneally immediately after VPA-Na orally, these parameters were not changed. In addition, when benzoic acid was administered orally immediately after VPA-Na orally, these were significantly lower compared with the control values. Therefore, it might be possible that VPA transport by monocarboxylate transporter was competitively inhibited by rizatriptan benzoate and thus absorption of VPA was decreased. PMID:17331341

  10. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice.

    PubMed

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  11. Enantioselective Crystallization of Sodium Chlorate in the Presence of Racemic Hydrophobic Amino Acids and Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zorzano, María-Paz; Osuna-Esteban, Susana; Ruiz-Bermejo, Marta; Menor-Salván, Cesar; Veintemillas-Verdaguer, Sabino

    2014-06-01

    We study the bias induced by a weak (200 mT) external magnetic field on the preferred handedness of sodium chlorate crystals obtained by slow evaporation at ambient conditions of its saturated saline solution with 20 ppm of added racemic (dl) hydrophobic amino acids. By applying the Fisher test to pairs of experiments with opposing magnetic field orientation we conclude, with a confidence level of 99.7%, that at the water-air interface of this saline solution there is an enantioselective magnetic interaction that acts upon racemic mixtures of hydrophobic chiral amino acids. This interaction has been observed with the three tested racemic hydrophobic amino acids: dl-Phe, dl-Try and dl-Trp, at ambient conditions and in spite of the ubiquitous chiral organic contamination. This enantioselective magnetic dependence is not observed when there is only one handedness of added chiral amino-acid, if the added amino acid is not chiral or if there is no additive. This effect has been confirmed with a double blind test. This novel experimental observation may have implications for our view of plausible initial prebiotic scenarios and of the roles of the geomagnetic field in homochirality in the biosphere.

  12. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  13. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  14. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.)

    PubMed Central

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  15. Salicylic Acid and Sodium Salicylate Alleviate Cadmium Toxicity to Different Extents in Maize (Zea mays L.).

    PubMed

    Gondor, Orsolya Kinga; Pál, Magda; Darkó, Éva; Janda, Tibor; Szalai, Gabriella

    2016-01-01

    The role of salicylic acid in Cd tolerance has attracted more attention recently but no information is available on the efficiency of different forms of salicylic acid. The aim was thus to investigate whether both the acid and salt forms of salicylic acid provide protection against Cd stress and to compare their mode of action. Young maize plants were grown under controlled environmental conditions. One group of 10-day-old seedlings were treated with 0.5 mM SA or NaSA for 1 day then half of the pants were treated with 0.5 mM Cd for 1 day. Another group of seedlings was treated with 0.5 mM CdSO4 for 1 day without pre-treatment with SA or NaSA, while a third group was treated simultaneously with Cd and either SA or NaSA. Both salicylic acid forms reduced the Cd accumulation in the roots. Treatment with the acidic form meliorated the Cd accumulation in the leaves, while Na-salicylate increased the phytochelatin level in the roots and the amount of salicylic acid in the leaves. Furthermore, increased antioxidant enzyme activity was mainly induced by the acid form, while glutathione-related redox changes were influenced mostly by the salt form. The acidic and salt forms of salicylic acid affected the two antioxidant systems in different ways, and the influence of these two forms on the distribution and detoxification of Cd also differed. The present results also draw attention to the fact that generalisations about the stress protective mechanisms induced by salicylic acid are misleading since different forms of SA may exert different effects on the plants via separate mechanisms. PMID:27490102

  16. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  17. The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses

    PubMed Central

    Waller, Amanda; Lindinger, Michael I

    2007-01-01

    Aim Sodium acetate (NaAcetate) has received some attention as an alkalinizing agent and possible alternative energy source for the horse, however the effects of oral administration remain largely unknown. The present study used the physicochemical approach to characterize the changes in acid-base status occurring after oral NaAcetate/acetic acid (NAA) administration in horses. Methods Jugular venous blood was sampled from 9 exercise-conditioned horses on 2 separate occasions, at rest and for 24 h following a competition exercise test (CET) designed to simulate the speed and endurance test of 3-day event. Immediately after the CETs horses were allowed water ad libitum and either: 1) 8 L of a hypertonic NaAcetate/acetic acid solution via nasogastric tube followed by a typical hay/grain meal (NAA trial); or 2) a hay/grain meal alone (Control trial). Results Oral NAA resulted in a profound plasma alkalosis marked by decreased plasma [H+] and increased plasma [TCO2] and [HCO3-] compared to Control. The primary contributor to the plasma alkalosis was an increased [SID], as a result of increased plasma [Na+] and decreased plasma [Cl-]. An increased [Atot], due to increased [PP] and a sustained increase in plasma [acetate], contributed a minor acidifying effect. Conclusion It is concluded that oral NaAcetate could be used as both an alkalinizing agent and an alternative energy source in the horse. PMID:18096070

  18. Unidirectional growth of <0 0 1> sodium acid phthalate single crystal by Sankaranarayanan-Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Senthil, A.; Ramasamy, P.

    2009-12-01

    A transparent uniaxial semi-organic sodium acid phthalate (NaAP) single crystal having dimension of 36 mm length and 20 mm diameter was successfully grown by Sankaranarayanan-Ramasamy (SR) method for the first time in the literature. The solubility and the nucleation of the material for different temperatures have been studied. The metastable zone width for NaAP has been investigated. The grown crystals were characterized by UV-vis and microhardness studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The range and percentage of optical transmission are ascertained by recording UV-vis spectrum. Microhardness measurements reveal the mechanical strength of the grown ingot.

  19. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  20. EPR investigation of thermal decay of radiation-induced species of benzoic acid and its sodium and potassium salts.

    PubMed

    Tuner, Hasan; Kayıkçı, Mehmet Ali

    2015-05-01

    The structural and kinetic features of the radiation-induced radicals of benzoic acid and its sodium and potassium salts were investigated using electron paramagnetic resonance (EPR) spectroscopy. Two main different radicals were found to be responsible for the measured spectra of the irradiated samples. It is concluded that these two radicals have a structure similar to that of cyclohexadienyl-type (CHD) and benzyl-type (BNZ) radicals. The relative contributions of the CHD and BNZ radicals to the measured peak-to-peak amplitude and to the total spectra were calculated. The room-temperature stability of the EPR signals and the decay kinetic features of the radiation-induced radicals derived from annealing at high temperatures were determined. PMID:25744174

  1. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods. PMID:25577894

  2. Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters.

    PubMed

    Tan, Boon Siang Nicholas; Rathjen, Peter D; Harvey, Alexandra J; Gardner, David K; Rathjen, Joy

    2016-08-01

    The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment, and inappropriate concentrations of amino acids, or the loss of amino acid-sensing mechanisms, can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells, a cell population derived from the blastocyst, has been shown in culture. l-proline acts as a signalling molecule, exerting its effects through cell uptake and subsequent metabolism. Uptake in ES cells occurs predominantly through the sodium-coupled neutral amino acid transporter 2, Slc38a2 (SNAT2). Dynamic expression of amino acid transporters has been shown in the early mammalian embryo, reflecting functional roles for amino acids in embryogenesis. The expression of SNAT2 and family member Slc38a1 (SNAT1) was determined in mouse embryos from the 2-cell stage through to the early post-implantation pre-gastrulation embryo. Key changes in expression were validated in cell culture models of development. Both transporters showed temporal dynamic expression patterns and changes in intracellular localisation as differentiation progressed. Changes in transporter expression likely reflect different amino acid requirements during development. Findings include the differential expression of SNAT1 in the inner and outer cells of the compacted morula and nuclear localisation of SNAT2 in the trophectoderm and placental lineages. Furthermore, SNAT2 expression was up-regulated in the epiblast prior to primitive ectoderm formation, an expression pattern consistent with a role for the transporter in later developmental decisions within the pluripotent lineage. We propose that the differential expression of SNAT2 in the epiblast provides evidence for an l-proline-mediated mechanism contributing to the regulation of embryonic development. PMID:27373508

  3. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains.

    PubMed

    Kim, Nam Hee; Rhee, Min Suk

    2016-02-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  4. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-Adapted Escherichia coli O157:H7 Strains

    PubMed Central

    Kim, Nam Hee

    2015-01-01

    The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. PMID:26637600

  5. Flow injection determination of diclofenac sodium based on its sensitizing effect on the chemiluminescent reaction of acidic potassium permanganate-formaldehyde.

    PubMed

    Song, Jingjing; Sun, Pulv; Ji, Zhongling; Li, Jianguo

    2015-02-01

    A sensitive and simple chemiluminescent (CL) method for the determination of diclofenac sodium has been developed by combining the flow injection technique and its sensitizing effect on the weak CL reaction between formaldehyde and acidic potassium permanganate. A calibration curve is constructed for diclofenac sodium under optimized experimental parameters over the range 0.040-5.0 µg/mL and the limit of detection is 0.020 µg/mL (3σ). The inter-assay relative standard deviation for 0.040 µg/mL diclofenac sodium (n = 11) is 2.0%. This method is rapid, sensitive, simple, and shows good selectivity and reproducibility. The proposed method has been successfully applied to the determination of the studied diclofenac sodium in pharmaceutical preparations with satisfactory results. Furthermore, the possible mechanism for the CL reaction has been discussed in detail on the basis of UV and CL spectra. PMID:24802238

  6. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or sodium... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  7. Further work on sodium montmorillonite as catalyst for the polymerization of activated amino acids

    NASA Technical Reports Server (NTRS)

    Eirich, F. R.; Paecht-Horowitz, M.

    1986-01-01

    When the polycondensation of amino acid acylates was catalyzed with Na-montmorillonite, the polypeptides were consistently found to exhibit a distribution of discrete molecular weights, for as yet undiscovered reasons. One possible explanation was connected to the stepwise mode of monomer addition. New experiments have eliminated this possibility, so that there is the general assumption that this discreteness is the result of a preference of shorter oligomers to add to others of the same length, a feature that could be attributed to some structure of the platelet aggregates of the montmorillonite. The production of optical stereoisomers is anticipated when D,L-amino acids are polymerized on montmorillonite. Having used an optically active surface, the essence of the results lies not only in the occurrence of optically active oligomers and polymers, but also in the fact that the latter exhibit the same molecular weight characteristics as the D,L-polymers. Preparatory to work contemplated on a parallel synthesis of amino acid and nucleotide oligomers, studies were continued on the co-adsorption of amino acids, nucleotides, and amino acid-nucleotides on montmorillonite.

  8. The polymerization of amino acid adenylates on sodium-montmorillonite with preadsorbed polypeptides

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, Mella; Eirich, Frederick R.

    1988-01-01

    The spontaneous polymerization of amino acid adenylates on Na-montmorillonite in dilute, neutral suspension, after polypeptides were adsorbed on the clay, is studied. It is found that the degrees of polymerization of the oligopeptides and polypeptides obtained is dependent on the amounts of polypeptides that were preadsorbed. It is concluded that a catalytic activity may derive from c-spacings that offer adsorption sites for the reagent amino acid adenylate within the peripheral recesses of irregularly stacked clay platelets by bringing the anhydride bonds and neutral amino groups into favorable reaction distances.

  9. [The use of hydroxamic acids and sodium nitrate to enhance the antitumor effect of cyclophosphamide].

    PubMed

    Bogatyrenko, T N; Kuropteva, Z V; Sashenkova, T E; Baĭder, L M; Konovalova, N P

    2013-01-01

    It has been showed that the introduction of nitrocompounds (as nitic oxide donors) in to the compositions of cyclophosphamide and hydroxamic acids for curing animals having leukemia P-388 increased duration of life by 290%. Thereby 40% of animals have recovered. The therapeutic dose cyclophosphamide have been reduced by 6 times. PMID:23814833

  10. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro.

    PubMed

    Fraser, Scott P; Hemsley, Faye; Djamgoz, Mustafa B A

    2016-02-01

    Caffeic acid phenethyl ester, derived from natural propolis, has been reported to have anti-cancer properties. Voltage-gated sodium channels are upregulated in many cancers where they promote metastatic cell behaviours, including invasiveness. We found that micromolar concentrations of caffeic acid phenethyl ester blocked voltage-gated sodium channel activity in several invasive cell lines from different cancers, including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). In the MDA-MB-231 cell line, which was adopted as a 'model', long-term (48 h) treatment with 18 μM caffeic acid phenethyl ester reduced the peak current density by 91% and shifted steady-state inactivation to more hyperpolarized potentials and slowed recovery from inactivation. The effects of long-term treatment were also dose-dependent, 1 μM caffeic acid phenethyl ester reducing current density by only 65%. The effects of caffeic acid phenethyl ester on metastatic cell behaviours were tested on the MDA-MB-231 cell line at a working concentration (1 μM) that did not affect proliferative activity. Lateral motility and Matrigel invasion were reduced by up to 14% and 51%, respectively. Co-treatment of caffeic acid phenethyl ester with tetrodotoxin suggested that the voltage-gated sodium channel inhibition played a significant intermediary role in these effects. We conclude, first, that caffeic acid phenethyl ester does possess anti-metastatic properties. Second, the voltage-gated sodium channels, commonly expressed in strongly metastatic cancers, are a novel target for caffeic acid phenethyl ester. Third, more generally, ion channel inhibition can be a significant mode of action of nutraceutical compounds. PMID:26724521

  11. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. PMID:27060992

  12. Inhibitory effects of sodium salicylate and acetylsalicylic acid on UVB-induced mouse skin carcinogenesis.

    PubMed

    Bair, Warner B; Hart, Nancy; Einspahr, Janine; Liu, Guangming; Dong, Zigang; Alberts, David; Bowden, G Tim

    2002-12-01

    We conducted an in vivo carcinogenesis experiment to determine the efficacy of topical aspirin and sodium salicylate (NAS) in preventing UVB-induced nonmelanoma skin cancer. Hairless SKH-1 mice were randomly divided into eight treatment groups. They were treated topically with either 40 or 10 micromol aspirin or NAS three times weekly before 9 kJ/m(2) UVB irradiation. The experiment was carried out over 25 weeks. Both dose levels of NAS significantly inhibited (P < 0.05) the rate of tumor formation when compared with vehicle control. The 40 micromol dose of aspirin significantly inhibited the rate of tumor formation (P < 0.05), whereas the 10 micromol dose had no inhibitory effect when compared with the vehicle control. To investigate the mechanism of this inhibition, we studied UVB-induced thymine dimer formation in the epidermis of the mouse skin. We found that NAS inhibited UVB-induced thymine dimer formation (P = 0.0001), whereas aspirin did not. Therefore, we conclude that NAS prevents UVB-induced tumor growth and formation through a sunscreen effect; whereas, the moderate inhibition of aspirin may be because of a molecular event, such as the inhibition of various UVB signaling pathways. PMID:12496056

  13. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA.

  14. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.

    PubMed

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  15. Extraction and solubilization of crude oil and volatile petroleum hydrocarbons by purified humic and fulvic acids and sodium dodecylbenzenesulfonate.

    PubMed

    Eljack, Mahmoud D; Hussam, Abul

    2014-01-01

    Solubilization of crude oil (Fula, Sudan) in water demonstrates humic acid (HA), completely dissolves oil with a solubilization efficiency of 1600 g oil /g HA. The order of solubilization increases: HA > HA+ FA (fulvic acid) > FA > SDBS (sodium dodecylbenzene sulfonate). Synthetic surfactant like, SDBS, exhibits the lowest efficiency even with 23 times the concentration of FA or HA. Extraction of diesel contaminated sand and GC-MS analysis show that HA and FA exhibit 50-90% extraction efficiency for C10-C22 at pH 11.9 with just one extraction. SDBS exhibits the least removal efficiency (<1%) for normal hydrocarbons. The effect of pH on extraction with HA by its micelles such as the surface active property was found to be greater than that for FA. On the basis of critical concentration, the extraction efficiencies with FA and HA are 1287 and 11453 times compared to SDBS, respectively, for the least extracted hydrocarbon at pH 10.8. The HSGC experiments showed that the solubilization efficiency of alkylbenzenes in gasoline (Shell 87) increases almost linearly with FA concentration with a slight deviation at 5-6 μM FA. About 35-60% of alkylbenzenes in gasoline were solubilized and partitioned at the highest FA concentration (15 μM) studied. Both studies with gasoline and diesel show similar extraction efficiencies even at 227-fold increased FA with diesel. PMID:25320849

  16. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  17. DCl Transport through Dodecyl Sulfate Films on Salty Glycerol: Effects of Seawater Ions on Gas Entry.

    PubMed

    Shaloski, Michael A; Sobyra, Thomas B; Nathanson, Gilbert M

    2015-12-17

    Gas-liquid scattering experiments were employed to measure the entry and dissociation of the acidic gas DCl into salty glycerol coated with dodecyl sulfate ions (DS(-) = CH3(CH2)11OSO3(-)). Five sets of salty solutions were examined: 0.25 and 0.5 M NaCl, 0.25 M MgCl2, 0.25 M CaCl2, and artificial sea salt. DS(-) bulk concentrations were varied from 0 to 11 mM, generating DS(-) surface coverages of up to 34% of a compact monolayer, as determined by surface tension and argon scattering measurements. DS(-) surface segregation is enhanced by the dissolved salts in the order MgCl2 ≈ CaCl2 > sea salt > NaCl. We find that DCl penetration through the dodecyl chains decreases at first gradually and then sharply as more chains segregate to the surface, dropping from 70% entry on bare glycerol to 11% for DS(-) surface concentrations of 1.8 × 10(14) cm(-2). When plotted against DS(-) surface concentration, the DCl entry probabilities fall within a single band for all solutions. These observations imply that the monovalent Na(+) and divalent Ca(2+) and Mg(2+) ions do not bind differently enough to the ROSO3(-) headgroup to significantly alter the diffusive passage of DCl molecules through the dodecyl chains at the same DS(-) chain density. The chief difference among the salts is the greater propensity for the divalent salts to expel the soluble ionic surfactant to the surface. PMID:26317681

  18. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  19. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  20. 40 CFR 721.10253 - Butanedioic acid, 2-methylene-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, polymer with 2,5 furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated. 721...+) sodium zinc salt, hydrogen peroxide-initiated. (a) Chemical substance and significant new uses subject to... furanedione, copper(2+) manganese(2+) sodium zinc salt, hydrogen peroxide-initiated (PMN P-09-388; CAS...

  1. Enhanced antitumour drug delivery to cholangiocarcinoma through the apical sodium-dependent bile acid transporter (ASBT).

    PubMed

    Lozano, Elisa; Monte, Maria J; Briz, Oscar; Hernández-Hernández, Angel; Banales, Jesus M; Marin, Jose J G; Macias, Rocio I R

    2015-10-28

    Novel antitumour drugs, such as cationic tyrosine kinase inhibitors, are useful in many types of cancer but not in others, such as cholangiocarcinoma (CCA), where their uptake through specific membrane transporters, such as OCT1, is very poor. Here we have investigated the usefulness of targeting cytostatic bile acid derivatives to enhance the delivery of chemotherapy to tumours expressing the bile acid transporter ASBT and whether this is the case for CCA. The analysis of paired samples of CCA and adjacent non-tumour tissue collected from human (n=15) and rat (n=29) CCA revealed that ASBT expression was preserved. Moreover, ASBT was expressed, although at different levels, in human and rat CCA cell lines. Both cells in vitro and rat tumours in vivo were able to carry out efficient uptake of bile acid derivatives. Using Bamet-UD2 (cisplatin-ursodeoxycholate conjugate) as a model ASBT-targeted drug, in vitro and in vivo antiproliferative activity was evaluated. ASBT expression enhanced the sensitivity to Bamet-UD2, but not to cisplatin, in vitro. In nude mice, Bamet-UD2 (more than cisplatin) inhibited the growth of human colon adenocarcinoma tumours with induced stable expression of ASBT. As compared with cisplatin, administration of Bamet-UD2 to rats with CCA resulted in an efficient liver and tumour uptake but low exposure of extrahepatic tissues to the drug. Consequently, signs of liver/renal toxicity were absent in animals treated with Bamet-UD2. In conclusion, endogenous or induced ASBT expression may be useful in pharmacological strategies to treat enterohepatic tumours based on the use of cytostatic bile acid derivatives. PMID:26278512

  2. Mechanical properties of the sodium montmorillonite interlayer intercalated with amino acids.

    PubMed

    Katti, Dinesh R; Ghosh, Pijush; Schmidt, Steven; Katti, Kalpana S

    2005-01-01

    Nanosized montmorillonite clay dispersed in small amounts in polymer results in polymer nanocomposites having superior engineering properties compared to those of the native polymer. These nanoinclusions are created by treating clay with an organic modifier which makes clay organophilic and results in intercalation or exfoliation of the montmorillonite. The modifiers used are usually long carbon chains with alkylammonium or alkylphosphonium cations. In this work, we have investigated the use of some alternative molecules which can act as modifiers for clay composites using clay for reinforcing a matrix of biopeptides or proteins. Such composites have potential applications in the fields of biomedical engineering and pharmaceutical science. In this work, the amino acids arginine and lysine are used as modifiers. The intercalation and mechanical behavior of the interlayer spacing with these amino acids as inclusions under compression and tension are studied using molecular dynamics simulations. Significant differences in the responses are observed. This work also provides an insight into the orientation and interaction of amino acids in the interlayer under different stress paths. PMID:16283756

  3. A sodium-indpendent low affinity transport system for neutral amino acids in rabbit ileal mucosa.

    PubMed Central

    Paterson, J Y; Sepúlveda, F V; Smith, M W

    1980-01-01

    1. The kinetic parameters for serine, alanine and methionine uptake by rabbit ileal mucosa have been determined in the absence of Na. 2. Uptake of all three amino acids took place through a single mediated system. The apparent Km values of serine, alanine and methionine for this system were equal to their respective apparent K1 values (approximately 89, 75 and 23 mM respectively). 3. Autoradiography was used to measure the cellular location of alanine uptake by rabbit ileum. Approximately 80% of the total uptake took place in the upper third of each villus. This uptake was reduced by 75% either by removal of Na or addition of serine. The proportional distribution of Na-dependent and Na-independent alanine uptakes along the villus was found to be equal. 4. The kinetic properties of the low affinity uptake mechanism for neutral amino acids, seen in the absence of Na, were virtually identical with those of one of the uptake mechanisms seen previously in the presence of Na. 5. The low affinity uptake mechanism appears to be Na-independent. It is suggested that the Na-coupled uptake of amino acid takes place through the high affinity system. PMID:7359411

  4. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250{degrees}C

    SciTech Connect

    Kettler, R.M.; Palmer, D.A.; Wesolowski, D.J.

    1995-04-01

    The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250{degrees}C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25{degrees}C and 1 bar: logK{sub a} = -4.206{+-}0.006, {Delta}H{sub a}{sup 0} = 0.3{+-}0.3 kJ-mol{sup {minus}1}, {Delta}S{sub a}{sup 0} = -79.6{+-}1.0 J-mol{sup {minus}1}-K{sup {minus}1}, and {Delta}C{sub p;a}{sup 0} = -207{+-}5 J-mol{sup {minus}1}-K{sup {minus}1}. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250{degrees}C and 200 MPa.

  5. Germicidal activity of a chlorous acid-chlorine dioxide teat dip and a sodium chlorite teat dip during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae.

    PubMed

    Boddie, R L; Nickerson, S C; Adkinson, R W

    1998-08-01

    Three postmilking teat dips were tested for efficacy against Staphylococcus aureus and Streptococcus agalactiae in two separate studies using experimental challenge procedures that were recommended by the National Mastitis Council. The first study evaluated a barrier teat dip product containing chlorous acid-chlorine dioxide as the germicidal agent, and the second study evaluated a sodium chlorite product with a barrier component as well as a sodium chlorite product without a barrier component. The chlorous acid-chlorine dioxide teat dip reduced new intramammary infections (IMI) caused by Staph. aureus by 91.5% and reduced new IMI caused by Strep. agalactiae by 71.7%. The barrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus and Strep. agalactiae by 41.0 and 0%, respectively. The nonbarrier dip containing sodium chlorite reduced new IMI caused by Staph. aureus by 65.6% and reduced new IMI caused by Strep. agalactiae by 39.1%. Teat skin and teat end conditions were evaluated before and after the second study; no deleterious effects among dipped quarters compared with control quarters were noted for the two sodium chlorite products. PMID:9749396

  6. Structural characterization of hydroperoxide lyase in dodecyl maltoside by using circular dichroism.

    PubMed

    Panagakou, I; Touloupakis, E; Ghanotakis, D F

    2013-01-01

    Fatty acid hydroperoxide lyase (HPL) is a membrane protein, member of the lipoxygenase pathway, which holds a central role in plant defense. Green bell pepper fatty acid hydroperoxide lyase, overexpressed in Escherichia coli, was purified and solubilized in two different non ionic detergents, Triton X-100 and dodecyl maltoside (DM). DM is considered to be more useful compared to Triton X-100, as it allows characterization of the protein with spectroscopic techniques, for which Triton X-100 was inapplicable. Circular dichroism demonstrated that HPL's secondary structure in DM consists of 13.53 % α-helix, 32.73 % β-sheet, 21.76 % turn and 31.13 % unordered. PMID:23076732

  7. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    NASA Astrophysics Data System (ADS)

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  8. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  9. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  10. Copper Catalyzed Sodium Tetraphenylborate, Triphenylborane, Diphenylborinic Acid and Phenylboronic Acid Decomposition Kinetic Studies in Aqueous Alkaline Solutions

    SciTech Connect

    Crawford, C.L.

    1999-03-15

    This work studied the kinetics of copper-catalyzed decomposition of tetraphenylborate, triphenylborane, diphenylborinic acid and phenylboronic acid (NaTPB, 3PB, 2PB and 1PB, respectively) in aqueous alkaline solution over the temperature range of 25 to 70 degrees C. The statistically designed test matrices added copper sulfate to maximum concentrations of 10 mg/L. The relative rates of decomposition increase in the order of NaTPB < 1PB {tilde} 3PB < 2PB. Dependence of decomposition on the amount of added copper increases in the order of 3PB {tilde} 2PB < 1PB {tilde} NaTPB. Activation energies ranged from 82 to 143 kJ/mole over the temperature range studied. Final decomposition products predominately involved benzene and phenol. All 3PB, 2PB and 1PB intermediate phenylborate species proved relatively stable (< 8 percent decomposition over {tilde} 500 h) towards thermal hydrolysis in 1.5 M NaOH when contained in carbon-steel vessels sealed under air at ambient temperature (23 - 25 degrees C) with no added copper. Measurable (> 10-7 Mh-1) thermal hydrolysis of the phenylborate species occurs at 55 to 70 degrees C in alkaline (0.6-2.3 M OH-, 2-4.7 M Na+) solution with no added copper. The experiments suggest an important role for oxygen in copper-catalyzed phenylborate decomposition. NaTPB decomposes promptly under anoxic conditions while 3PB, 2PB and 1PB decompose faster in aerobic solutions. Benzene and phenol form as the predominant end-products from alkaline copper catalysis in static systems sealed under air. Both 2PB and 1PB decompose with near equal rates and quantitatively produce phenol under flowing air-purge conditions at 25 to 60 degrees C. Mechanisms for copper-catalyzed phenylborate decomposition likely involve a redox process giving loss of a phenyl group from the phenylborate with reduction of cupric ion, or dephenylation by reduced cuprous ion involving a phenylated copper intermediate.

  11. Disinfective process of strongly acidic electrolyzed product of sodium chloride solution against Mycobacteria.

    PubMed

    Yamamoto, Tomoyo Matsushita; Nakano, Takashi; Yamaguchi, Masaki; Shimizu, Mitsuhide; Wu, Hong; Aoki, Hiroaki; Ota, Rie; Kobayashi, Toyohide; Sano, Kouichi

    2012-12-01

    Electrolyzed acid water (EAW) has been studied for its disinfective potential against pathogenic microbes; however, the bactericidal process against Mycobacteria has not been clearly presented. In this study, to clarify the disinfective process against Mycobacteria, EAW-treated bacteria were examined against laboratory strains of Mycobacterium bovis (M. bovis), Mycobacterium smegmatis (M. smegmatis), and Mycobacterium terrae (M. terrae) by recovery culture and observation of morphology, enzymatic assay, and the detection of DNA. All experiments were performed with the use of EAW containing 30 ppm free chlorine that kills Mycobacteria, including three pathogenic clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) and six isolates of other Mycobacteria, within 5 min. In morphology, the bacterial surface became rough, and a longitudinal concavity-like structure appeared. The intrabacterial enzyme of EAW-contacted bacteria was inactivated, but chromosomal DNA was not totally denatured. These results suggest that the bactericidal effect of EAW against Mycobacteria occurs by degradation of the cell wall, followed by denaturation of cytoplasmic proteins, but degeneration of the nucleic acid is not always necessary. PMID:23224598

  12. Influence of Dispersion in Composites of Chopped PAN-Based Carbon Fiber Modified by Dodecyl Ether Carboxylate

    NASA Astrophysics Data System (ADS)

    Wu, B.; Zheng, G.; Liu, Y. J.; Sun, Y.; Wang, L.

    2016-03-01

    In this article, dodecyl ether carboxylate (AECNa) was prepared by dodecanol polyoxyethylene, sodium chloroacetate, and sodium hydroxide and employed as a treatment agent for PAN-based carbon fiber (CF) surface. The results show that the optimum adsorption amount of AECNa modifying CF was determined to be 4.0 mg/g. In addition, the equivalent variation regularity is obtained the CF surface charge properties and its dispersion behavior. The optimal dispersion effect of the short CFs in epoxy matrix is achieved when the surface charges reach the maximum by quantitative measurement using Faraday cup; the surface morphology and wettability are improved depending on the field emission scanning electron microscopy, Thermogravimetry, x-ray photoelectron spectroscopy, and monofilament contact angle testing. Furthermore, the flexural strength and modulus of the treated CF composite were proven to advance by flexural tests.

  13. Accumulation of Amino Acids in Rhizobium sp. Strain WR1001 in Response to Sodium Chloride Salinity

    PubMed Central

    Hua, Sui-Sheng T.; Tsai, Victor Y.; Lichens, Georgia M.; Noma, Amy T.

    1982-01-01

    Rhizobium sp. strain WR1001, isolated from the Sonoran Desert by Eskew and Ting, was found to be able to grow in defined medium containing NaCl up to 500 mM, a concentration approaching that of sea water. Therefore, it is a valuable strain for studying the biochemical basis of salt tolerance. Intracellular free glutamate was found to increase rapidly in response to osmotic stress by NaCl. It accounted for 88% of the amino acid pool when the bacterium was grown in 500 mM NaCl. The role of glutamate dehydrogenase in glutamate biosynthesis was examined in several Rhizobium strains. Both NADH- and NADPH-dependent glutamate dehydrogenase activities in various Rhizobium strains were observed. The range of activity differed considerably depending on the particular strain. KCl (500 mM) did not stimulate glutamate dehydrogenase activity, as reported in a number of bacterial strains by Measures. The low activity of glutamate dehydrogenase in Rhizobium sp. strain WR1001 apparently cannot fulfill a biosynthetic function of glutamate formation in response to medium NaCl concentrations. PMID:16346049

  14. Antimicrobial Hyaluronic Acid-Cefoxitin Sodium Thin Films Produced by Electrospraying.

    PubMed

    Ahire, Jayesh J; Dicks, Leon M T

    2016-08-01

    The healing properties of hyaluronic acid (HA) in the recovery of wounds are well known. Cefoxitin (Cef), a cephalosporin antibiotic, is generally used to prevent and treat postoperative infections. In this study, we describe the incorporation of Cef in HA thin films (Cef-HAF) by using electrospraying. Scanning electron microscopy images showed that HA-containing thin films (HAF) were composed of numerous nanoparticles (255 ± 177 nm in diameter) with irregular surfaces, connected to each other with nanofibers of 50 ± 11 nm in diameter. Cef-HAF contained fewer, but larger, particles (551 ± 293 nm) with smooth surfaces and were interconnected with nanofibers of 61 ± 13 nm in diameter. Differences in surface morphology between HAF and Cef-HAF were confirmed by atomic force microscopy. Fourier transform infrared and X-ray diffraction analyses revealed that Cef was not modified when incorporated into Cef-HAF and remained active against Klebsiella pneumoniae Xen 39, Staphylococcus aureus Xen 36 and Listeria monocytogenes EDGe. Nanofiber scaffolds of HA-containing Cef may be used in dressings to control postoperative infections. PMID:27146506

  15. Sodium and potassium-gated translocation of calcium by phosphatidic acid in multiphase systems

    SciTech Connect

    Reusch, R.

    1986-05-01

    The rate at which /sup 45/Ca/sup 2 +/ is translocated from aqueous into hydrocarbon solvents by phosphatidic acid (PA) dispersed in the aqueous phase was examined as a function of concentration, pH, temperature, chain composition, nature of organic solvent, and presence of monovalent cations. Translocation required dianionic, diacyl PA in the liquid-crystalline state. Monovalent cations were also required with each manifesting unique effects. Rb/sup +/ and Cs/sup +/ increased translocation in proportion to the concentrations with Rb/sup +/ effecting higher rates. Na/sup +/, however, did not permit ionophore formation until a critical concentration was reached (0.325-0.40 M depending on the organic solvent) at which there was a very sharp pulse-like increase in rate. K/sup +/ exhibited a combination of effects. At low concentrations (<0.15 M) translocation increased in proportion to concentration; then, after a period of little change, there was a sharp increase similar to that observed with Na/sup +/ but at 1/15 the magnitude. These findings can be rationalized by considering the effects of these ions on the surface potential, surface tension, diffuse double layer and interfacial water structure. The results are inconsistent with an inverted micelle or hexagonal (HII) phase structure for the ionophoretic species, but are compatible with the dimer ionophore model previously proposed. These studies suggest a molecular mechanism by which the rapid entry of Ca/sup 2 +/ into stimulated cells may be mediated by PA.

  16. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles using sodium carboxymethyl cellulose as colloidal stabilize.

    PubMed

    Chittasupho, Chuda; Thongnopkoon, Thanu; Kewsuwan, Prartana

    2016-01-01

    Poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been widely used as drug delivery systems for both small molecules and macromolecules. However, the colloidal stability problem remains unsolved. This study aims to investigate the possibility of using sodium carboxymethyl cellulose (SCMC) as a stabilizing agent of PLGA NPs. In this study, PLGA NPs were fabricated using various concentrations of SCMC (0.01, 0.1 and 0.5% w/v) by solvent displacement method. SCMC coated NPs were characterized using DLS, FTIR, DSC, colorimetric method. Particle size, polydispersity index, zeta potential values and SCMC adsorption increased with SCMC concentration. FTIR spectra, DSC thermograms and results of colorimetry suggested the interaction of SCMC and PLGA NPs. The stability of SCMC coated PLGA NPs was observed during the storage of three weeks in water. The stability of SCMC coated NPs in serum was also evaluated. Cell viability study revealed that there was no toxicity increased when SCMC was used as a stabilizing agent up to a concentration of 0.1% w/v. SCMC coated PLGA NPs bound A549 cells in a time dependent manner and with a greater extent than uncoated PLGA NPs. In conclusion, SCMC can be used to stabilize PLGA NPs by adsorbing on the surface of NPs. PMID:26338259

  17. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  18. Use of pooled sodium acetate acetic acid formalin-preserved fecal specimens for the detection of intestinal parasites.

    PubMed

    Gaafar, Maha R

    2011-01-01

    This study aimed at comparing detection of intestinal parasites from single unpreserved stool sample vs. sodium acetate acetic acid formalin (SAF)-preserved pooled samples, and stained with chlorazol black dye in routine practice. Unpreserved samples were collected from 120 patients and represented as Group I. Other three SAF-preserved samples were collected from the same patients over a 6-day period and represented as Groups IIa, IIb, and IIc. The latter groups were equally subdivided into two subgroups. The first subgroup of each of the three samples was examined individually, whereas the second subgroup of each were pooled and examined as a single specimen. All groups were examined by the routine diagnostic techniques; however, in group II when the diagnosis was uncertain, the chlorazol black dye staining procedure was carried out. Results demonstrated that out of 74 patients who continued the study, 12 cases (16%) were positive in group I, compared with 29 (39%) in the subgroups examined individually, and 27 (36%) in the pooled subgroups. Therefore, pooling of preserved fecal samples is an efficient and economical procedure for the detection of parasites. Furthermore, the chlorazol black dye was simple and effective in detecting the nuclear details of different parasites. PMID:21567472

  19. Synthesis and characterization of secondary nitrosamines from secondary amines using sodium nitrite and p-toluenesulfonic acid.

    PubMed

    Miró Sabaté, Carles; Delalu, Henri

    2015-03-01

    We synthesized nitrosamines (R2N-NO) with R = iPr (1), nPr (2), nBu (3), and hydroxyethyl (4) from the amine using sodium nitrite/p-toluenesulfonic acid in CH2Cl2. The rate of formation of 1-4 increases in the direction iPr

  20. Optimizing application parameters for lactic acid and sodium metasilicate against pathogens on fresh beef, pork and deli meats.

    PubMed

    DeGeer, Staci L; Wang, Luxin; Hill, Gretchen N; Singh, Manpreet; Bilgili, Sacit F; Bratcher, Christy L

    2016-08-01

    Lactic acid (LA) and sodium metasilicate (SM) have been approved for use as antimicrobials on meat. The objectives were to determine optimum concentrations, temperatures and hot-water dips of LA and SM for reduction of Escherichia coli O157:H7, non-O157 Shiga-toxin producing E. coli (STEC), Salmonella spp., and Listeria monocytogenes on beef, pork and deli meats. LA was applied at 1, 2, 3, and 4% and SM was applied at 2, 3, 4, and 5%. SM4 and LA4 were the lowest concentrations most effective against all pathogens. LA4 and SM4, the combination of the two (LASM), and distilled water control were applied at 4, 25, and 60°C. Temperature of application had no effect on pathogens. LA or SM alone were more effective in reduction of pathogens than LASM. Regardless of anti-microbial used in post-packaging lethality treatments, there were no differences in L. monocytogenes. Treating deli meats with LA or SM did not reduce L. monocytogenes. Both LA and SM can be applied to fresh beef and pork to decrease pathogens. PMID:27050408

  1. Identification of a Disulfide Bridge in Sodium-Coupled Neutral Amino Acid Transporter 2(SNAT2) by Chemical Modification.

    PubMed

    Chen, Chen; Wang, Jiahong; Cai, Ruiping; Yuan, Yanmeng; Guo, Zhanyun; Grewer, Christof; Zhang, Zhou

    2016-01-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins. PMID:27355203

  2. Enteric-coated tablet of risedronate sodium in combination with phytic acid, a natural chelating agent, for improved oral bioavailability.

    PubMed

    Kim, Jeong S; Jang, Sun W; Son, Miwon; Kim, Byoung M; Kang, Myung J

    2016-01-20

    The oral bioavailability (BA) of risedronate sodium (RS), an antiresorptive agent, is less than 1% due to its low membrane permeability as well as the formation of non-absorbable complexes with multivalent cations such as calcium ion (Ca(2+)) in the gastrointestinal tract. In the present study, to increase oral BA of the bisphosphonate, a novel enteric-coated tablet (ECT) dosage form of RS in combination with phytic acid (IP6), a natural chelating agent recognized as safe, was formulated. The chelating behavior of IP6 against Ca(2+), including a stability constant for complex formulation was characterized using the continuous variation method. Subsequently, in vitro dissolution profile and in vivo pharmacokinetic profile of the novel ECT were evaluated comparatively with that of the marketed product (Altevia, Sanofi, US), an ECT containing ethylenediaminetetraacetic acid (EDTA) as a chelating agent, in beagle dogs. The logarithm of stability constant for Ca(2+)-IP6 complex, an equilibrium constant approximating the strength of the interaction between two chemicals to form complex, was 19.05, which was 3.9-fold (p<0.05) and 1.7-fold (p<0.05) higher than those of Ca(2+)-RS and Ca(2+)-EDTA complexes. The release profile of RS from both enteric-coated dosage forms was equivalent, regardless of the type of chelating agent. An in vivo absorption study in beagle dogs revealed that the maximum plasma concentration and area under the curve of RS after oral administration of IP6-containing ECT were approximately 7.9- (p<0.05) and 5.0-fold (p<0.05) higher than those of the marketed product at the same dose (35mg as RS). Therefore, our study demonstrates the potential usefulness of the ECT system in combination with IP6 for an oral therapy with the bisphosphonate for improved BA. PMID:26594027

  3. Identification of a Disulfide Bridge in Sodium-Coupled Neutral Amino Acid Transporter 2(SNAT2) by Chemical Modification

    PubMed Central

    Cai, Ruiping; Yuan, Yanmeng; Guo, Zhanyun; Grewer, Christof; Zhang, Zhou

    2016-01-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) belongs to solute carrier 38 (SLC38) family of transporters, which is ubiquitously expressed in mammalian tissues and mediates transport of small, neutral amino acids, exemplified by alanine(Ala, A). Yet structural data on SNAT2, including the relevance of intrinsic cysteine residues on structure and function, is scarce, in spite of its essential roles in many tissues. To better define the potential of intrinsic cysteines to form disulfide bonds in SNAT2, mutagenesis experiments and thiol-specific chemical modifications by N-ethylmaleimide (NEM) and methoxy-polyethylene glycol maleimide (mPEG-Mal, MW 5000) were performed, with or without the reducing regent dithiothreitol (DTT) treatment. Seven single mutant transporters with various cysteine (Cys, C) to alanine (Ala, A) substitutions, and a C245,279A double mutant were introduced to SNAT2 with a hemagglutinin (HA) tag at the C-terminus. The results showed that the cells expressing C245A or C279A were labeled by one equivalent of mPEG-Mal in the presence of DTT, while wild-type or all the other single Cys to Ala mutants were modified by two equivalents of mPEG-Mal. Furthermore, the molecular weight of C245,279A was not changed in the presence or absence of DTT treatment. The results suggest a disulfide bond between Cys245 and Cys279 in SNAT2 which has no effect on cell surface trafficking, as well as transporter function. The proposed disulfide bond may be important to delineate proximity in the extracellular domain of SNAT2 and related proteins. PMID:27355203

  4. Efficacy of two acidified chlorite postmilking teat disinfectants with sodium dodecylbenzene sulfonic acid on prevention of contagious mastitis using an experimental challenge protocol.

    PubMed

    Oura, L Y; Fox, L K; Warf, C C; Kempt, G K

    2002-01-01

    Two acidified sodium chlorite postmilking teat disinfectants were evaluated for efficacy against Staphylococcus aureus and Streptococcus agalactiae by using National Mastitis Council experimental challenge procedures. The effect of these teat dips on teat skin and teat end condition was also determined. Both dips contained 0.32% sodium chlorite, 1.32% lactic, and 2.5% glycerin. Dips differed in the amount of sodium dodecylbenzene sulfonic acid (0.53 or 0.27%) added as a surfactant. Both dips significantly reduced new intramammary infection (IMI) rates compared with undipped controls. The dip containing 0.53% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 72% and Strep. agalactiae by 75%. The dip containing 0.27% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 100% and by Strep. agalactiae by 88%. Changes in teat skin and teat end condition for treatment and control groups varied in parallel over time. Teats treated with either teat dip had higher mean teat skin and teat end scores than control teats at some weeks. However, teat skin and teat end condition did not tend to change from the start to the completion of the trial. Application of the two new postmilking teat dips was effective in reducing new IMI from contagious mastitis pathogens. (Key words: teat dip, contagious mastitis, chlorous acid) PMID:11860118

  5. The comparison of the effects of ellagic acid and diclofenac sodium on intra-abdominal adhesion: an in vivo study in the rat model.

    PubMed

    Allahverdi, Tulay Diken; Allahverdi, Ertuğrul; Yayla, Sadık; Deprem, Turgay; Merhan, Oğuz; Vural, Sevil

    2014-01-01

    Peritoneal adhesions are seen frequently after abdominal surgery and can cause serious complications. We aimed to evaluate the effects of the oral use of diclofenac sodium and ellagic acid on formation of postoperative adhesions in rats Studies have shown that agents with anti-inflammatory properties and antioxidant substances can prevent adhesion by decreasing oxidative stress. We compared and evaluated the effects of ellagic acid that has strong antioxidant and anti-inflammatory properties and the nonsteroidal anti-inflammatory diclofenac sodium on peritoneal adhesion development in our experimental study. Laparotomy was performed with a midline incision under general anesthesia and an adhesion model was created on the antimesenteric side of the cecum in Groups I, II, and III. Group I received 85 mg/kg ellagic acid and Group II, 50 mg/kg diclofenac sodium through the nasogastric catheter while Group III received no medication. Only laparotomy was performed in Group IV. The rats were sacrificed at the end of the 14th day. Following macroscopic scoring, tissue samples were removed and subjected to biochemical and histopathologic evaluation. The degree of adhesion and the malondialdehyde level were decreased (P < 0.05), and glutathione level increased (P < 0.05) in Group I compared to Group II and Group III. The effects of ellagic acid on the prevention of peritoneal adhesion were found to be stronger than diclofenac sodium. This can be explained by the fact that ellagic acid is a strong antioxidant and decreases oxidative stress with anti-inflammatory and anti-angiogenic effects. PMID:25216418

  6. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC)

    PubMed Central

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Mattson, David L.; Roman, Richard J.

    2011-01-01

    Sodium reabsorption via the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabolism of AA in cultured mpkCCDc14 principal cells and the effects of these metabolites on ENaC activity. Liquid chromatography/mass spectrometry analysis of the mpkCCDc14 cells indicated that these cells produce prostaglandins, 8,9-EET, 11,12-EET, 14,15-EET, 5-HETE, 12/8-HETE, and 15-HETE, but not 20-HETE. Single-channel patch-clamp experiments revealed that 8,9-EET, 14,15-EET, and 11,12-EET all decrease ENaC activity. Neither 5-, 12-, nor 15-HETE had any effect on ENaC activity. Diclofenac and ibuprofen, inhibitors of cyclooxygenase, decreased transepithelial Na+ transport in the mpkCCDc14 cells. Inhibition of cytochrome P-450 (CYP450) with MS-PPOH activated ENaC-mediated sodium transport when cells were pretreated with AA and diclofenac. Coexpression of CYP2C8, but not CYP4A10, with ENaC in Chinese hamster ovary cells significantly decreased ENaC activity in whole-cell experiments, whereas 11,12-EET mimicked this effect. Thus both endogenously formed EETs and their exogenous application decrease ENaC activity. Downregulation of ENaC activity by overexpression of CYP2C8 was PKA dependent and was prevented by myristoylated PKI treatment. Biotinylation experiments and single-channel analysis revealed that long-term treatment with 11,12-EET and overexpression of CYP2C8 decreased the number of channels in the membrane. In contrast, the acute inhibitory effects are mediated by a decrease in the open probability of the ENaC. We conclude that 11,12-EET, 8,9-EET, and 14,15-EET are endogenously formed eicosanoids that modulate ENaC activity in the collecting duct. PMID:21697242

  7. Sodium vanadate combined with l-ascorbic acid delays disease progression, enhances motor performance, and ameliorates muscle atrophy and weakness in mice with spinal muscular atrophy

    PubMed Central

    2013-01-01

    Background Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality, has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model. Methods Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies, and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and Student's t test for paired variables were used to measure significant differences (P < 0.05) between values. Results Combined treatment protected cells against vanadate-induced cell death with decreasing B cell lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially decreased vanadium accumulation

  8. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  9. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium benzoate. 184.1733 Section 184.1733 Food...

  10. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  11. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and....1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium hydroxide. (b) The ingredient...

  12. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  13. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  14. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  15. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate

    PubMed Central

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  16. Inhibition of collagen synthesis by select calcium and sodium channel blockers can be mitigated by ascorbic acid and ascorbyl palmitate.

    PubMed

    Ivanov, Vadim; Ivanova, Svetlana; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2016-01-01

    Calcium, sodium and potassium channel blockers are widely prescribed medications for a variety of health problems, most frequently for cardiac arrhythmias, hypertension, angina pectoris and other disorders. However, chronic application of channel blockers is associated with numerous side effects, including worsening cardiac pathology. For example, nifedipine, a calcium-channel blocker was found to be associated with increased mortality and increased risk for myocardial infarction. In addition to the side effects mentioned above by different channel blockers, these drugs can cause arterial wall damage, thereby contributing to vascular wall structure destabilization and promoting events facilitating rupture of plaques. Collagen synthesis is regulated by ascorbic acid, which is also essential for its optimum structure as a cofactor in lysine and proline hydroxylation, a precondition for optimum crosslinking of collagen and elastin. Therefore, the main objective in this study was to evaluate effects of various types of channel blockers on intracellular accumulation and cellular functions of ascorbate, specifically in relation to formation and extracellular deposition of major collagen types relevant for vascular function. Effects of select Na- and Ca- channel blockers on collagen synthesis and deposition were evaluated in cultured human dermal fibroblasts and aortic smooth muscle cells by immunoassay. All channel blockers tested demonstrated inhibitory effects on collagen type I deposition to the ECM by fibroblasts, each to a different degree. Ascorbic acid significantly increased collagen I ECM deposition. Nifedipine (50 µM), a representative of channel blockers tested, significantly reduced ascorbic acid and ascorbyl palmitate-dependent ECM deposition of collagen type l and collagen type lV by cultured aortic smooth muscle cells. In addition, nifedipine (50 µM) significantly reduced ascorbate-dependent collagen type l and type lV synthesis by cultured aortic smooth

  17. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with sodium hydroxide. (b)...

  18. Methods for Purifying and Detoxifying Sodium Dodecyl Sulfate-Stabilized Polyacrylate Nanoparticles

    PubMed Central

    Garay-Jimenez, Julio C.; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-01-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). For this intended application, it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain, rather than to any extraneous components. To investigate this, we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  19. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    SciTech Connect

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-05-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with (..gamma..-/sup 32/P)ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 ..mu..g can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger ..cap alpha.. subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines.

  20. Highly sensitive fluorescent stain for detecting lipopolysaccharides in sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Wang, Xu; Zhou, Ayi; Cai, Wanhui; Yu, Dongdong; Zhu, Zhongxin; Jiang, Chengxi; Jin, Litai

    2015-08-01

    A sensitive and simple technique was developed for the visualization of gel-separated lipopolysaccharides by using a hydrazide derivative, UGF202. As low as 0.5-1 ng total LPS could be detected by UGF202 stain, which is 2- and 16-fold more sensitive than that of the commonly used Pro-Q Emerald 300 and Keenan et al. developed silver stain, respectively. The results indicated that UGF202 stain could be a good choice for LPS determination in polyacrylamide gels. PMID:25930092

  1. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Peláez, Miguel A; Salgado, Maria J; Torres, Luis

    2008-03-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR15). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice. PMID:17658215

  2. Diffusion-controlled evaporation of sodium dodecyl sulfate solution drops placed on a hydrophobic substrate.

    PubMed

    Doganci, Merve Dandan; Sesli, Belma Uyar; Erbil, H Yildirim

    2011-10-15

    In this work, the effect of SDS anionic surfactant on the diffusion-controlled evaporation rate of aqueous solution drops placed on TEFLON-FEP substrate was investigated with 11 different SDS concentrations. Drop evaporation was monitored in a closed chamber having a constant RH of 54-57% by a video camera. The initial contact angle, θ(i) decreased from 104±2° down to 68±1° due to the adsorption of SDS both at the water-air and the solid-water interfaces. The adsorption of SDS on the solid surface was found to be 76% of that of its adsorption at the water-air interface by applying Lucassen-Reynders approach. An equation was developed for the comparison of the evaporation rates of drops having different θ(i) on the same substrate. It was found that the addition of SDS did not alter the drop evaporation rate considerably for the first 1200 s for all the SDS concentrations. The main difference was found to be the change of the mode of drop evaporation by varying the SDS concentration. The constant θ mode was operative up to 80 mM SDS concentration, whereas constant contact area mode was operative after 200 mM SDS concentrations due to rapid drop pining on the substrate. PMID:21784429

  3. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    PubMed

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties. PMID:27283643

  4. Methods for purifying and detoxifying sodium dodecyl sulfate-stabilized polyacrylate nanoparticles.

    PubMed

    Garay-Jimenez, Julio C; Young, Ashley; Gergeres, Danielle; Greenhalgh, Kerriann; Turos, Edward

    2008-06-01

    Recent research in our laboratory has centered on studies of polyacrylate and polyacrylamide nanoparticle emulsions for use in antibiotic delivery. Our goal is to develop these nanoparticle emulsions for treatment of life-threatening bacterial infections such as those caused by methicillin-resistant Staphylococcus aureus. For this intended application it is necessary to ensure that the biological activity of the emulsion is due only to the drug attached to the polymeric chain and not to any extraneous components. To investigate this we evaluated cytotoxicity and microbiological activity of the nanoparticle emulsions before and after purification by centrifugation, dialysis, and gel filtration. Depending on the amount of surfactant used, all or most of the microbial and cellular toxicity can be removed by a simple purification procedure. PMID:18472305

  5. Microdisc gel electrophoresis in sodium dodecyl sulfate of organic material from rat otoconial complexes

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Pote, K. G.; Rarey, K. E.; Verma, L. M.

    1981-01-01

    The gravity receptors of all vertebrates utilize a 'test mass' consisting of a complex arrangement of mineral and organic substance that lies over the sensory receptor areas. In most vertebrates, the mineral is a polymorph of calcium carbonate in the form of minute, single crystals called otoconia. An investigation is conducted to determine the number of proteins in otoconial complexes and their molecular weights. The investigation makes use of a microdisk gel electrophoresis method reported by Gainer (1971). The most important finding of the reported research is that analysis of the proteins of the organic material of the otoconial complexes is possible when sensitive microanalytical methods are employed. Further modification of the basic technique employed and the inclusion of other sensitive staining methods should mean that, in the future, protein separation by molecular weight will be possible in sample pools containing only two otoconial masses.

  6. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    SciTech Connect

    Davis, K.R.; Darvill, A.G.; Albersheim, P.; Dell, A.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysis of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.

  7. EFFECT OF QUARTZ/MULLITE BLEND CERAMIC ADDITIVE ON IMPROVING RESISTANCE TO ACID OF SODIUM SILICATE-ACTIVATED SLAG CEMENT. CELCIUS BRINE.

    SciTech Connect

    SUGAMA, T.; BROTHERS, L.E.; VAN DE PUTTE, T.R.

    2006-06-01

    We evaluated the usefulness of manufactured quartz/mullite blend (MQMB) ceramic powder in increasing the resistance to acid of sodium silicate-activated slag (SSAS) cementitious material for geothermal wells. A 15-day exposure to 90{sup o} CO{sub 2}-laden H{sub 2}SO{sub 4} revealed that the MQMB had high potential as an acid-resistant additive for SSAS cement. Two factors, the appropriate ratio of slag/MQMB and the autoclave temperature, contributed to better performance of MQMB-modified SSAS cement in abating its acid erosion. The most effective slag/MQMB ratio in minimizing the loss in weight by acid erosion was 70/30 by weight. For autoclave temperature, the loss in weight of 100 C autoclaved cement was a less than 2%, but at 300 C it was even lower. Before exposure to acid, the cement autoclaved at 100 C was essentially amorphous; increasing the temperature to 200 C led to the formation of crystalline analcime in the zeolitic mineral family during reactions between the mullite in MQMB and the Na from sodium silicate. In addition, at 300 C, crystal of calcium silicate hydrate (1) (CSH) was generated in reactions between the quartz in MQMB and the activated slag. These two crystalline phases (CSH and analcime) were responsible for densifying the autoclaved cement, conveying improved compressive strength and minimizing water permeability. The CSH was susceptible to reactions with H{sub 2}SO{sub 4}, forming two corrosion products, bassanite and ionized monosilicic acid. However, the uptake of ionized monosilicic acid by Mg dissociated from the activated slag resulted in the formation of lizardite as magnesium silicate hydrate. On the other hand, the analcime was barely susceptible to acid if at all. Thus, the excellent acid resistance of MQMB-modified SSAS cement was due to the combined phases of lizardite and analcime.

  8. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  9. Prenatal exposure to sodium phenytoin in rats induces complex maze learning deficits comparable to those induced by exposure to phenytoin acid at half the dose.

    PubMed

    Vorhees, C V; Acuff-Smith, K D; Schilling, M A; Moran, M S

    1995-01-01

    Gravid Sprague-Dawley CD (VAF) rats were administered sodium phenytoin suspended in corn oil by gavage once per day on embryonic days 7-18 at a dose of 100 mg/kg. Controls were administered corn oil alone by gavage on E7-18. Litters were randomly culled to 10. Offspring were regularly weighted, mortality noted, and males checked for preputial separation. At approximately 50 days of age offspring were evaluated in a straight water-filled channel for swimming proficiency and motivation to escape. Following this, rats were tested in the Cincinnati multiple T-water maze and scored for errors, latency to find the goal, and presence of phenytoin-induced abnormal circling behavior while swimming. Sodium phenytoin-exposed dams gained weight normally and delivered normally. Offspring mortality in the sodium phenytoin group was not increased above controls. No treatment effects on preputial separation or offspring growth were observed. No differences between groups in swimming proficiency in straight channel performance were obtained. In the Cincinnati maze, phenytoin offspring committed significantly more errors and had longer latencies to find the goal than controls. Among the phenytoin offspring, those exhibiting abnormal circling committed more errors than noncircling animals. When compared to previous data using the same maze and test protocol, it was found that 100 mg/kg of sodium phenytoin induced performance deficits similar to those induced by a dose of 200 mg/kg of phenytoin acid. Accordingly, the present data help explain why other investigators have reported sodium phenytoin to be more developmentally neurotoxic than phenytoin acid. Because the prenatal neurotoxic effects seen with the salt of phenytoin occur at lower doses, it suggests that phenytoin is more developmentally neurotoxic than previously believed. PMID:8747744

  10. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis.

    PubMed

    Bhattacharjee, Amrita; Majumder, Saikat; Majumdar, Suchandra Bhattacharyya; Choudhuri, Soumitra Kumar; Roy, Syamal; Majumdar, Subrata

    2015-03-01

    Since there are very few affordable antileishmanial drugs available, antimonial resistance has crippled antileishmanial therapy, thereby emphasising the need for development of novel therapeutic strategies. This study aimed to evaluate the antileishmanial role of combined therapy with sodium antimony gluconate (SAG) and the triterpenoid glycyrrhizic acid (GA) against infection with SAG-resistant Leishmania (GE1F8R). Combination therapy with GA and SAG successfully limited infection with SAG-resistant Leishmania in a synergistic manner (fractional inhibitory concentration index <1.0). At the same time, mice infected with SAG-resistant Leishmania and co-treated with GA and SAG exhibited a significant reduction in hepatic and splenic parasite burden. In probing the mechanism, it was observed that GA treatment suppressed the expression and efflux activity of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1), two host ABC transporters responsible for antimony efflux from host cells infected with SAG-resistant parasites. This suppression correlated with greater intracellular antimony retention during SAG therapy both in vitro and in vivo, which was reflected in the reduced parasite load. Furthermore, co-administration of GA and SAG induced a shift in the cytokine balance towards a Th1 phenotype by augmenting pro-inflammatory cytokines (such as IL-12, IFNγ and TNFα) and inducing nitric oxide generation in GE1F8R-infected macrophages as well as GE1F8R-infected mice. This study aims to provide an affordable leishmanicidal alternative to expensive antileishmanial drugs such as miltefosine and amphotericin B. Furthermore, this report explores the role of GA as a resistance modulator in MRP1- and P-gp-overexpressing conditions. PMID:25600891

  11. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. PMID:27208305

  12. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance1[OPEN

    PubMed Central

    Ali, Akhtar; Aman, Rashid; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A.; Lee, Keun Woo; Maggio, Albino; Yun, Dae-Jin

    2016-01-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K+ TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na+ from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K+ transporter in the presence of Na+ in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T. salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1N-D) complemented K+-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1N-D and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1. Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na+ and K+ based on the n/d variance in the pore region. This change also dictated inward-rectification for Na+ transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. PMID:27208305

  13. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro

    PubMed Central

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-01-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  14. Influence of salicylic acid on rubisco and rubisco activase in tobacco plant grown under sodium chloride in vitro.

    PubMed

    Lee, So Young; Damodaran, Puthanveettil Narayanankutty; Roh, Kwang Soo

    2014-11-01

    The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10(-4) mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control. PMID:25313276

  15. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats.

    PubMed

    Naito, Yukiko; Ji, Xu; Tachibana, Shigehiro; Aoki, Satoko; Furuya, Mami; Tazura, Yoshiyuki; Miyazawa, Daisuke; Harauma, Akiko; Moriguchi, Toru; Nagata, Tomoko; Iwai, Naoharu; Ohara, Naoki

    2015-09-14

    The aim of this study was to investigate the effects of the administration of oral arachidonic acid (AA) in rats with or without dextran sulphate sodium (DSS)-induced inflammatory bowel disease. Male Wistar rats were administered AA at 0, 5, 35 or 240 mg/kg daily by gavage for 8 weeks. Inflammatory bowel disease was induced by replacing drinking water with 3 % DSS solution during the last 7 d of the AA dosing period. These animals passed loose stools, diarrhoea and red-stained faeces. Cyclo-oxygenase-2 concentration and myeloperoxidase activity in the colonic tissue were significantly increased in the animals given AA at 240 mg/kg compared with the animals given AA at 0 mg/kg. Thromboxane B2 concentration in the medium of cultured colonic mucosae isolated from these groups was found to be dose-dependently increased by AA, and the increase was significant at 35 and 240 mg/kg. Leukotriene B4 concentration was also significantly increased and saturated at 5 mg/kg. In addition, AA at 240 mg/kg promoted DSS-induced colonic mucosal oedema with macrophage infiltration. In contrast, administration of AA for 8 weeks, even at 240 mg/kg, showed no effects on the normal rats. These results suggest that in rats with bowel disease AA metabolism is affected by oral AA, even at 5 mg/kg per d, and that excessive AA may aggravate inflammation, whereas AA shows no effects in rats without inflammatory bowel disease. PMID:26234346

  16. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  17. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    PubMed

    Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E

    2015-11-01

    Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings. PMID:26555519

  18. Sodium bisulfate poisoning

    MedlinePlus

    ... in large amounts. This article discusses poisoning from swallowing sodium bisulfate. This article is for information only. ... Symptoms from swallowing more than a tablespoon of this acid may include: Burning pain in the mouth Chest pain from burns ...

  19. All-Trans Retinoic Acid and Sodium Butyrate Enhance Natriuretic Peptide Receptor A Gene Transcription: Role of Histone Modification

    PubMed Central

    Kumar, Prerna; Periyasamy, Ramu; Das, Subhankar; Neerukonda, Smitha; Mani, Indra

    2014-01-01

    The objective of the present study was to delineate the mechanisms of GC-A/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) expression in vivo. We used all-trans retinoic acid (ATRA) and histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu) to examine the expression and function of Npr1 using gene-disrupted heterozygous (1-copy; +/−), wild-type (2-copy; +/+), and gene-duplicated heterozygous (3-copy; ++/+) mice. Npr1+/− mice exhibited increased renal HDAC and reduced histone acetyltransferase (HAT) activity; on the contrary, Npr1++/+ mice showed decreased HDAC and enhanced HAT activity compared with Npr1+/+ mice. ATRA and NaBu promoted global acetylation of histones H3-K9/14 and H4-K12, reduced methylation of H3-K9 and H3-K27, and enriched accumulation of active chromatin marks at the Npr1 promoter. A combination of ATRA-NaBu promoted recruitment of activator-complex containing E26 transformation–specific 1, retinoic acid receptor α, and HATs (p300 and p300/cAMP response element–binding protein-binding protein–associated factor) at the Npr1 promoter, and significantly increased renal NPRA expression, GC activity, and cGMP levels. Untreated 1-copy mice showed significantly increased systolic blood pressure and renal expression of α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) compared with 2- and 3-copy mice. Treatment with ATRA and NaBu synergistically attenuated the expression of α-SMA and PCNA and reduced systolic blood pressure in Npr1+/− mice. Our findings demonstrate that epigenetic upregulation of Npr1 gene transcription by ATRA and NaBu leads to attenuation of renal fibrotic markers and systolic blood pressure in mice with reduced Npr1 gene copy number, which will have important implications in prevention and treatment of hypertension-related renal pathophysiological conditions. PMID:24714214

  20. Synergistic interaction between nitrogen dioxide and respirable aerosols of sulfuric acid or sodium chloride on rat lungs

    SciTech Connect

    Last, J.A.; Warren, D.L.

    1987-08-01

    We examined interactions in rats between NO/sub 2/ gas and respirable aerosols of sulfuric acid (H/sub 2/SO/sub 4/) or sodium chloride (NaCl). Rats were exposed for 1, 3, or 7 days to 5 ppm of NO/sub 2/ gas, alone or in combination with 1 mg/m3 of H/sub 2/SO/sub 4/ or NaCl aerosols. The apparent rate of collagen synthesis by lung minces was measured after 7 days of exposure, and the protein content of whole lung lavage fluid was measured after 1 or 3 days of exposure. Responses from rats exposed to 5 ppm of NO/sub 2/ alone were significantly different from controls by these assays. A synergistic interaction was demonstrated between 5 ppm of NO/sub 2/ and 1 mg/m3 of either H/sub 2/SO/sub 4/ or NaCl aerosol as evaluated by measurement of the rate of lung collagen synthesis. A synergistic interaction was also demonstrated by the criterion of increased protein content of lung lavage fluid in rats exposed to 5 ppm of NO/sub 2/ and 1 mg/m3 of H/sub 2/SO/sub 4/ aerosol after 1 day of exposure and between 5 ppm of NO/sub 2/ and 1 mg/m3 of NaCl aerosol after 3 days of exposure. These observations with 5 ppm of NO/sub 2/ alone and in combination with 1 mg/m3 of NaCl aerosol support the hypothesis that formation of nitrosyl chloride may contribute to a synergistic interaction between NO/sub 2/ gas and NaCl aerosol. These results suggest that, in general, combinations of oxidant gases with respirable acidic aerosols or with acidogenic gases will demonstrate interactive effects on rat lungs. Such a hypothesis is testable and makes specific predictions about effects of inhalation of pollutant mixtures.

  1. Production of concentrated caustic soda and hydrochloride acid solutions from sodium chloride by electrodialysis with the aid of bipolar ion-exchange membranes

    SciTech Connect

    Greben', V.P.; Pivovarov, N.Ya.; Latskov, V.L.

    1988-10-20

    This paper gives a comparative analysis of the action of electrodialyzers containing three and five compartments in the structural unit, and equipped with bipolar, cation-exchange, and anion-exchange membranes, used for production of hydrochloric acid and caustic soda from sodium chloride solutions. It was shown that an electrodialyzer with five compartments gives hydrochloric acid and caustic soda for 2.5-3 M concentration with 0.2-0.3 current efficiency, whereas an electrodialyzer with three compartments in the structural unit gives hydrochloric acid and caustic soda concentrations of about 1.2 M at the same current efficiency. The performance of the electrodialyzers was analyzed and equations were derived for calculating the current efficiencies for acid and alkali under conditions of acidification of the salt solution; this was based on determination of the transport numbers of ions passing through the membranes.

  2. EFFECTS OF ADDITION RATE AND ACID MATRIX ON THE DESTRUCTION OF AMMONIUM BY THE SEMI-CONTINUOUS ADDITION OF SODIUM NITRITE DURING EVAPORATION

    SciTech Connect

    Kyser, E

    2007-08-27

    The destruction of ammonium by the semi-continuous addition of sodium nitrite during acidic evaporation can be achieved with a wide range of waste compositions. The efficiency of nitrite utilization for ammonium destruction was observed to vary from less than 20% to 60% depending on operating conditions. The effects of nitric acid concentration and nitrite addition rate are dominant factors that affect the efficiency of nitrite utilization for ammonium destruction. Reducing the acid concentration by performing acid recovery via steam stripping prior to performing nitrite destruction of ammonium will require more nitrite due to the low destruction efficiency. The scale-up of the baseline rate nitrite addition rate from the 100 mL to the 1600 gallon batch size has significant uncertainty and poses the risk of lower efficiency at the plant scale. Experience with plant scale processing will improve confidence in the application of nitrite destruction of ammonium to different waste streams.

  3. Sodium chloride induces an NhaA/NhaR-independent acid sensitivity at neutral external pH in Escherichia coli.

    PubMed Central

    Rowbury, R J; Goodson, M; Humphrey, T J

    1994-01-01

    Escherichia coli previously grown in low-salt broth, pH 7.0, produced organisms which were markedly more acid sensitive when subsequently cultured in the same broth with 200 mM or more salt (NaCl) added. Induction of acid sensitivity occurred rapidly at both 37 and 30 degrees C, with a substantial effect within 15 min. Sensitization was partially inhibited by chloramphenicol and tetracycline and may depend on both protein synthesis-dependent and -independent physiological changes in the NaCl-induced organisms; sensitization did not result from osmotic shocking on transfer to challenge medium. Induction of acid sensitivity was affected by neither the sodium ion pore inhibitor amiloride nor the DNA synthesis inhibitor nalidixic acid; rifampin had a small effect, similar to that of chloramphenicol. Chlorides of other monovalent cations, especially Li+ and NH4+, also produced sensitization to acid, although CsCl was ineffective but did not interfere with sensitization by NaCl. Other sodium salts were also active as sensitizers, as were chlorides of divalent cations, but although sucrose (but not glycerol) was a good inducer, the results were not fully in accord with triggering of induction solely by the NaCl-associated increase in osmotic pressure. Sensitization was not prevented by deletion of the nhaA, nhaR, or nhaB gene. Acid sensitivity of NaCl-induced cells was slightly reduced after 90 min of growth at 37 degrees C in low-salt broth but was completely lost after 240 min. For NaCl-induced cells, acid killing in challenge media was not inhibited by amiloride. The NaCl-induced sensitization is distinct from the phenomenon of acid sensitivity induction in E. coli at alkaline external pH. PMID:8017942

  4. Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide.

    PubMed

    Pan, Hong; Chen, Pei-Yao; Liu, Hai-Xue; Chen, Yu; Wei, Yu-Ping; Zhang, Ming-Jie; Cheng, Fa

    2012-07-01

    A comb ethyl cellulose-g-sodium polyacrylate (EC-g-SPA) was synthesized by atom transfer radical polymerization. The amphiphilic properties of the EC-g-SPA were determined by surface tension measurements. The interactions between EC-g-SPA and the cationic surfactant dodecyl-trimethylammonium bromide (C12TAB) were investigated by surface tension, turbidity, dynamic light scattering and transmission electron microscopy (TEM). The results revealed that the critical aggregate concentration (CAC) of the complexes was 0.8mM. When the C12TAB concentration was lower than the CAC, the hydrodynamic diameter (Dh) of the complexes decreased as the surfactant concentration was increased. As the C12TAB concentration was increased above the CAC, the Dh initially increased slightly, followed by a sharp decrease. The changes in the sizes and shapes of the aggregates were studied by TEM. The interactions between two species and the structure of the EC-g-SPA/C12TAB complexes were also discussed. PMID:24750878

  5. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 2: Sampling capacity and breakthrough tests for sodium carbonate-impregnated filters.

    PubMed

    Demange, Martine; Oury, Véronique; Rousset, Davy

    2011-11-01

    In France, the MétroPol 009 method used to measure workplace exposure to inorganic acids, such as HF, HCl, and HNO3, consists of a closed-face cassette fitted with a prefilter to collect particles, and two sodium carbonate-impregnated filters to collect acid vapor. This method was compared with other European methods during the development of a three-part standard (ISO 21438) on the determination of inorganic acids in workplace air by ion chromatography. Results of this work, presented in a companion paper, led to a need to go deeper into the performance of the MétroPol 009 method regarding evaluation of the breakthrough of the acids, both alone and in mixtures, interference from particulate salts, the amount of sodium carbonate required to impregnate the sampling filter, the influence of sampler components, and so on. Results enabled improvements to be made to the sampling device with respect to the required amount of sodium carbonate to sample high HCl or HNO3 concentrations (500 μL of 5% Na2CO3 on each of two impregnated filters). In addition, a PVC-A filter used as a prefilter in a sampling device showed a propensity to retain HNO3 vapor so a PTFE filter was considered more suitable for use as a prefilter. Neither the material of the sampling cassette (polystyrene or polypropylene) nor the sampling flowrate (1 L/min or 2 L/min) influenced the performance of the sampling device, as a recovery of about 100% was achieved in all experiments for HNO3, HCl, and HF, as well as HNO3+HF and HNO3+HCl mixtures, over a wide range of concentrations. However, this work points to the possibility of interference between an acid and salts of other acids. For instance, interference can occur through interaction of HNO3 with chloride salts: the stronger the acid, the greater the interference. Methods based on impregnated filters are reliable for quantitative recovery of inorganic volatile acids in workplace atmosphere but are valuable only in the absence of interferents. PMID

  6. Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells

    PubMed Central

    Boyle, Jennifer; Pielen, Amelie; Lagrèze, Wolf Alexander

    2011-01-01

    Purpose Histone deacetylase inhibitors (HDACi) have neuroprotective effects under various neurodegenerative conditions, e.g., after optic nerve crush (ONC). HDACi-mediated protection of central neurons by increased histone acetylation has not previously been demonstrated in rat retinal ganglion cells (RGCs), although epigenetic changes were shown to be associated with cell death after ONC. We investigated whether HDACi can delay spontaneous cell death in purified rat RGCs and analyzed concomitant histone acetylation levels. Methods RGCs were purified from newborn (postnatal day [P] 0–P2) rat retinas by immunopanning with antibodies against Thy-1.1 and culturing in serum-free medium for 2 days. RGCs were treated with HDACi, each at several different concentrations: 0.1–10 mM sodium butyrate (SB), 0.1–2 mM valproic acid (VPA), or 0.5–10 nM trichostatin A (TSA). Negative controls were incubated in media alone, while positive controls were incubated in 0.05–0.4 IU/µl erythropoietin. Survival was quantified by counting viable cells using phase-contrast microscopy. The expression of acetylated histone proteins (AcH) 3 and 4 was analyzed in RGCs by immunohistochemistry. Results SB and VPA enhanced RGC survival in culture, with both showing a maximum effect at 0.1 mM (increase in survival to 188% and 163%, respectively). Their neuroprotective effect was comparable to that of erythropoietin at 0.05 IU/µl. TSA 0.5–1.0 nM showed no effect on RGC survival, and concentrations ≥5 nM increased RGC death. AcH3 and AcH4 levels were only significantly increased in RGCs treated with 0.1 mM SB. VPA 0.1 mM produced only a slight effect on histone acetylation. Conclusions Millimolar concentrations of SB and VPA delayed spontaneous cell death in purified RGCs; however, significantly increased histone acetylation levels were only detectable in RGCs after SB treatment. As the potent HDACi TSA was not neuroprotective, mechanisms other than histone acetylation may be the

  7. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity

    PubMed Central

    Ma, Lei-lei; Wu, Zhi-tao; Wang, Le; Zhang, Xue-feng; Wang, Jing; Chen, Chen; Ni, Xuan; Lin, Yun-fei; Cao, Yi-yi; Luan, Yang; Pan, Guo-yu

    2016-01-01

    Aim: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. Methods: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg·kg−1·d−1, ig) for 4 weeks, their blood samples were analyzed. Results: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg−1·d−1) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg−1·d−1, all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. Conclusion: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major

  8. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and....1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b)...

  9. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  10. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  11. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  12. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  13. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject...

  14. Role of α-lipoic acid in dextran sulfate sodium-induced ulcerative colitis in mice: studies on inflammation, oxidative stress, DNA damage and fibrosis.

    PubMed

    Trivedi, P P; Jena, G B

    2013-09-01

    Ulcerative colitis affects many people worldwide. Inflammation and oxidative stress play a vital role in its pathogenesis. Previously, we reported that ulcerative colitis leads to systemic genotoxicity in mice. The present study was aimed at elucidating the role of α-lipoic acid in ulcerative colitis-associated local and systemic damage in mice. Experimental colitis was induced using 3%w/v dextran sulfate sodium in drinking water for 2 cycles. α-Lipoic acid was administered in a co-treatment (20, 40, 80 mg/kg bw) and post-treatment (80 mg/kg bw) schedule. Various biochemical parameters, histological evaluation, comet and micronucleus assays, immunohistochemistry and western blot analysis were employed to evaluate the effect of α-lipoic acid in mice with ulcerative colitis. The protective effect of α-lipoic acid was mediated through the modulation of nuclear factor kappa B, cyclooxygenase-2, interleukin 17, signal transducer and activator of transcription 3, nuclear erythroid 2-related factor 2, NADPH: quinone oxidoreductase-1, matrix metalloproteinase-9 and connective tissue growth factor. Further, ulcerative colitis led to an increased gut permeability, plasma lipopolysaccharide level, systemic inflammation and genotoxicity in mice, which was reduced with α-lipoic acid treatment. The present study identifies the underlying mechanisms involved in α-lipoic acid-mediated protection against ulcerative colitis and the associated systemic damage in mice. PMID:23793040

  15. Arsanilic acid-Sepharose chromatography of pyruvate kinase from KB cells.

    PubMed

    Huang, R N; Yeh, H Y; Cheng, S C; Chow, L P; Lee, T C

    2000-03-31

    In the present study, arsanical-based affinity chromatography for pyruvate kinase (PK) isolation was explored. p-Arsanilic acid (4-aminophenyl arsonic acid), which contains an arsonic acid moiety structurally similar to inorganic pentavalent arsenate, was conjugated to Sepharose 4B via its para-amino group to form an As(V)-Sepharose matrix. The cellular proteins from KB cells bound to arsonic acid moieties were eluted by 50 mM sodium arsenate in Tris-HCl buffer (50 mM, pH 7.6). A single protein band with a molecular mass of 58 kDa was shown on a sodium dodecyl sulfate-polyacrylamide gel. By immunoblotting, amino acid sequencing and enzymatic analysis, the sodium arsenate-eluted 58-kDa protein was demonstrated to be a human PK (type M2). By using this one-step As(V)-Sepharose chromatography, PK from KB cells was purified 35.4-fold with a specific activity of 153.15 U/mg protein in the presence of 6 mM fructose-1,6-biphosphate. Although PK was eluted from an As(V)-Sepharose column with sodium arsenate, PK activity was apparently inhibited by the used eluent system, but not by p-arsanilic acid, indicating a specific interaction of As(V) to PK. In summary, our results indicate that As(V)-Sepharose can serve as a simple and efficient chromatographic support for PK purification from KB cells. PMID:10798300

  16. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  17. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  18. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  19. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  20. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  1. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  2. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  3. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as...

  4. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  5. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method...

  6. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  7. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  8. Analytical method for the quantitative determination of cyanuric acid as the degradation product of sodium dichloroisocyanurate in urine by liquid chromatography mass spectrometry.

    PubMed

    Patel, Katan; Jones, Kate

    2007-06-15

    A simple and selective analytical method for the quantitative determination of cyanuric acid, the degradation product of sodium dichloroisocyanurate (NaDCC), in human urine is reported herein. The sample preparation involved the use of diatomaceous earth extraction columns. Quantification was achieved by liquid chromatography mass spectrometry using negative ion electrospray with a cyano (CN) column. Between day relative standard deviation less than 10% (n=6) was obtained at the 5 mg L(-1) level. The assay was linear over the investigated range 0-20 mg L(-1) and the limit of detection (LOD) was confirmed to be 0.1 mg L(-1). The method was applied to monitoring levels of cyanuric acid in healthcare workers using disinfectants products containing NaDCC. PMID:17409034

  9. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1121 Boric acid and its... the requirement of a tolerance is established for residues of the pesticidal chemical boric acid...

  10. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1121 Boric acid and its... the requirement of a tolerance is established for residues of the pesticidal chemical boric acid...

  11. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1121 Boric acid and its... the requirement of a tolerance is established for residues of the pesticidal chemical boric acid...

  12. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1121 Boric acid and its... the requirement of a tolerance is established for residues of the pesticidal chemical boric acid...

  13. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1121 Boric acid and its... the requirement of a tolerance is established for residues of the pesticidal chemical boric acid...

  14. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators

    PubMed Central

    Köhnke, Thomas; Bilal, Süleyman; Zhou, Xiangzhi; Rothe, Michael; Baumgart, Daniel C.; Weylandt, Karsten H.

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  15. Acetylsalicylic Acid reduces the severity of dextran sodium sulfate-induced colitis and increases the formation of anti-inflammatory lipid mediators.

    PubMed

    Köhnke, Thomas; Gomolka, Beate; Bilal, Süleyman; Zhou, Xiangzhi; Sun, Yanping; Rothe, Michael; Baumgart, Daniel C; Weylandt, Karsten H

    2013-01-01

    The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA) enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI) protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA) after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation. PMID:24083240

  16. Primary Biliary Acids Inhibit Hepatitis D Virus (HDV) Entry into Human Hepatoma Cells Expressing the Sodium-Taurocholate Cotransporting Polypeptide (NTCP)

    PubMed Central

    Veloso Alves Pereira, Isabel; Buchmann, Bettina; Sandmann, Lisa; Sprinzl, Kathrin; Schlaphoff, Verena; Döhner, Katinka; Vondran, Florian; Sarrazin, Christoph; Manns, Michael P.; Pinto Marques Souza de Oliveira, Cláudia; Sodeik, Beate; Ciesek, Sandra; von Hahn, Thomas

    2015-01-01

    Background The sodium-taurocholate cotransporting polypeptide (NTCP) is both a key bile acid (BA) transporter mediating uptake of BA into hepatocytes and an essential receptor for hepatitis B virus (HBV) and hepatitis D virus (HDV). In this study we aimed to characterize to what extent and through what mechanism BA affect HDV cell entry. Methods HuH-7 cells stably expressing NTCP (HuH-7/NTCP) and primary human hepatocytes (PHH) were infected with in vitro generated HDV particles. Infectivity in the absence or presence of compounds was assessed using immunofluorescence staining for HDV antigen, standard 50% tissue culture infectious dose (TCID50) assays and quantitative PCR. Results Addition of primary conjugated and unconjugated BA resulted in a dose dependent reduction in the number of infected cells while secondary, tertiary and synthetic BA had a lesser effect. This effect was observed both in HuH-7/NTCP and in PHH. Other replication cycle steps such as replication and particle assembly and release were unaffected. Moreover, inhibitory BA competed with a fragment from the large HBV envelope protein for binding to NTCP-expressing cells. Conversely, the sodium/BA-cotransporter function of NTCP seemed not to be required for HDV infection since infection was similar in the presence or absence of a sodium gradient across the plasma membrane. When chenodeoxycolic acid (15 mg per kg body weight) was administered to three chronically HDV infected individuals over a period of up to 16 days there was no change in serum HDV RNA. Conclusions Primary BA inhibit NTCP-mediated HDV entry into hepatocytes suggesting that modulation of the BA pool may affect HDV infection of hepatocytes. PMID:25646622

  17. Na+/Taurocholate Cotransporting Polypeptide and Apical Sodium-Dependent Bile Acid Transporter Are Involved in the Disposition of Perfluoroalkyl Sulfonates in Humans and Rats

    PubMed Central

    Zhao, Wen; Zitzow, Jeremiah D.; Ehresman, David J.; Chang, Shu-Ching; Butenhoff, John L.; Forster, Jameson; Hagenbuch, Bruno

    2015-01-01

    Among the perfluoroalkyl sulfonates (PFASs), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) have half-lives of several years in humans, mainly due to slow renal clearance and potential hepatic accumulation. Both compounds undergo enterohepatic circulation. To determine whether transporters involved in the enterohepatic circulation of bile acids are also involved in the disposition of PFASs, uptake of perfluorobutane sulfonate (PFBS), PFHxS, and PFOS was measured using freshly isolated human and rat hepatocytes in the absence or presence of sodium. The results demonstrated sodium-dependent uptake for all 3 PFASs. Given that the Na+/taurocholate cotransporting polypeptide (NTCP) and the apical sodium-dependent bile salt transporter (ASBT) are essential for the enterohepatic circulation of bile acids, transport of PFASs was investigated in stable CHO Flp-In cells for human NTCP or HEK293 cells transiently expressing rat NTCP, human ASBT, and rat ASBT. The results demonstrated that both human and rat NTCP can transport PFBS, PFHxS, and PFOS. Kinetics with human NTCP revealed Km values of 39.6, 112, and 130 µM for PFBS, PFHxS, and PFOS, respectively. For rat NTCP Km values were 76.2 and 294 µM for PFBS and PFHxS, respectively. Only PFOS was transported by human ASBT whereas rat ASBT did not transport any of the tested PFASs. Human OSTα/β was also able to transport all 3 PFASs. In conclusion, these results suggest that the long half-live and the hepatic accumulation of PFOS in humans are at least, in part, due to transport by NTCP and ASBT. PMID:26001962

  18. Influence of UV rays on Feulgen-type staining with azure A-SO2 prepared with normal hydrochloric acid and sodium thiosulphate.

    PubMed

    Dutt, M K

    1981-07-01

    This communication presents a new method for the preparation of azure A-SO2 for use in Feulgen procedure. The salient feature of this method lies in the fact that azure A-SO2 can be decolourised with normal hydrochloric acid and sodium thiosulphate. The pH of this dye reagent is 2.3 and it is of water colour after filtration. The pH of this dye-reagent is raised to 4.0 with an aqueous solution of sodium hydroxide. Nuclear colouration with this newly developed dye-reagent on acid-hydrolysed DNA of tissue sections becomes fairly satisfactory under the usual laboratory conditions. Staining with this dye-reagent under exposure to UV ray is, however, vastly improved within 5 minutes as compared with the control. Stained sections do withstand treatment in SO2 water without exhibiting any leaching of the dye from the nuclei. Possible mode of action of UV rays in increasing the intensity of staining as well as the speed of reaction has been suggested. PMID:6167839

  19. Improvement of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production by dual feeding with levulinic acid and sodium propionate in Cupriavidus necator.

    PubMed

    Berezina, Nathalie; Yada, Bopha

    2016-01-25

    In the context of increasing volatility of oil prices, replacement of petroleum based plastics by bioplastics is a topic of increasing interest. Poly(hydroxyalkanoate)s (PHAs) are among the most promising families in this field. Controlling composition of the polymer on the monomeric level remains a pivotal issue. This control is even more difficult to achieve when the polymer is not synthesized by chemists, but produced by nature, in this case, bacteria. In this study mechanism and role of two 3-hydroxyvalerate (3-HV) inducing substrates on the production of PHBV with high, 80%, 3-HV content were evaluated. It was found that levulinic acid contributes to biomass and bio-polymer content enhancement, whereas sodium propionate mainly contributes to 3-HV enhancement. Optimized proportions of feeding substrates at 1 g/L and 2.5 g/L, respectively for levulinic acid and sodium propionate allowed a 100% productivity enhancement, at 3.9 mg/L/hour, for the production of PHBV with 80% 3-HV. PMID:26141376

  20. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein.

    PubMed Central

    Stremmel, W; Strohmeyer, G; Berk, P D

    1986-01-01

    Several studies suggest that a portion of hepatocellular nonesterified fatty acid uptake may be carrier mediated. To further investigate this process, initial rates (Vo) of [14C]oleate uptake into rat hepatocytes, isolated by collagenase perfusion and incubated at 37 degrees C with oleate in the presence of bovine serum albumin, were studied as a function of the concentration of unbound [14C]oleate in the medium. Vo was saturable with increasing unbound oleate concentration (Km = 8.3 X 10(-8) M; Vmax = 197 pmol per min per 5 X 10(4) hepatocytes) and was not inhibited by up to 40 microM sulfobromophthalein, taurocholate, or cholic acid. Oleate uptake was sodium dependent. Vo was significantly diminished when Li+, K+, choline, or sucrose were substituted for Na+ in the incubation medium and was reduced 46% by 1 mM ouabain. Uptake was also markedly reduced after exposure of cells to metabolic inhibitors (e.g., 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, antimycin, KCN). To evaluate the physiologic significance of the previously isolated rat liver plasma membrane fatty acid-binding protein, the effect of an antibody directed against this protein on hepatocellular [14C]oleate uptake was examined. Preincubation of hepatocytes with the IgG fraction of this antiserum inhibited Vo of [14C]oleate by up to 65% in dose-related fashion, without altering Vo for [35S]sulfobromophthalein, [14C]taurocholate, or [3H]cholate. These data indicate that at least a portion of hepatocellular oleate uptake is energy dependent, sodium linked, and mediated by a specific liver plasma membrane-fatty acid-binding protein. PMID:3459144

  1. LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS

    SciTech Connect

    DUNCAM JB; GUTHRIE MD; LUECK KJ; AVILA M

    2007-07-18

    This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.

  2. Sodium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  3. Survival mechanism of Escherichia coli O157:H7 against combined treatment with acetic acid and sodium chloride.

    PubMed

    Lee, Sun-Young; Kang, Dong-Hyun

    2016-05-01

    The combination of salt and acid is commonly used in the production of many foods, including pickles and fermented foods. However, in our previous studies, the addition of salt significantly reduced the inhibitory effect of acetic acid on Escherichia coli O157:H7 in laboratory media and pickled cucumbers. Therefore, this study was conducted to determine the mechanism by which salt confers resistance against acetic acid in E. coli O157:H7. The addition of high concentrations (up to 9% or 15% [w/v]) of salt increased the resistance of E. coli O157:H7 to acetic acid treatment. Combined treatment with acetic acid and salt showed varying results among different bacterial strains (an antagonistic effect for E. coli O157:H7 and Shigella and a synergistic effect for Listeria monocytogenes and Staphylococcus aureus). The addition of salt increased the cytoplasmic pH of E. coli O157:H7, but decreased the cytoplasmic pH of L. monocytogenes and S. aureus on treatment with acetic acid. Therefore, the addition of salt increases the acid resistance of E. coli O157:H7 possibly by increasing its acid resistance response and consequently preventing the acidification of its cytoplasm by organic acids. PMID:26742620

  4. Comparison of fatty acid profile in the chicken meat after feeding with narasin, nicarbazin and salinomycin sodium and phyto-additive substances.

    PubMed

    Angelovičová, Mária; Kunová, Simona; Čapla, Jozef; Zajac, Peter; Bučko, Ondřej; Angelovič, Marek

    2016-06-01

    The purpose of this study was an experimental investigation and a statistical evaluation of the influence of various additives in feed mixtures of broiler chickens on fatty acids content and their ratio in breast and thigh muscles. First feed additive consisted of narasin, nicarbasin and salinomycin sodium, and other five additives were of phytogenic origin. In vivo experiment was realized on the poultry experimental station with deep litter breeding system. A total of 300 one-day-old hybrid chickens Cobb 500 divided into six groups were used for the experiment. The experimental period was divided into four phases, i.e. Starter, Grower 1, Grower 2 and Final, according to the application of commercial feed mixture of soy cereal type. Additive substances used in feed mixtures were different for each group. Basic feed mixtures were equal for all groups. Fatty acid profile of breast and thigh muscles was measured by the method of FT IR Nicolet 6700. Investigated additive substances in the feed mixtures did not have statistically significant effect on fatty acid content and omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio in breast and thigh muscles. Strong statistically significant relation between omega-6 PUFAs and total PUFAs were proved by experiment. A relation between omega-3 PUFAs and total PUFAs was found only in the group with Biocitro additive. PMID:26950416

  5. Dynamics of dilute solutions of poly(aspartic acid) and its sodium salt elucidated from atomistic molecular dynamics simulations with explicit water.

    PubMed

    Ramachandran, Sanoop; Katha, Anki Reddy; Kolake, Subramanya Mayya; Jung, Bokyung; Han, Sungsoo

    2013-11-01

    The use of forward osmosis (FO) process for seawater desalination has attracted tremendous interest in recent years. Besides the manufacture of suitable membranes, the major technical challenge in the efficient deployment of the FO technology lies in the development of a suitable "draw solute". Owing to its inherent advantages, poly(aspartic acid) has arisen to be an attractive candidate for this purpose. However, an investigation of its molecular level properties has not been studied in detail. In this paper, the dynamics of poly(aspartic acid) and its sodium salt in the dilute concentration regime have been reported. The quantification of the polymer conformational properties, its solvation behavior, and the counterion dynamics are studied. The neutral polymer shows a preferentially coiled structure whereas the fully ionized polymer has an extended structure. Upon comparing with poly(acrylic acid) polymer, another polymer which has been used as a draw solute, poly(aspartic acid) forms more number of hydrogen bonds as well as fewer ion pairs. PMID:24099271

  6. Diclofenac sodium.

    PubMed

    Small, R E

    1989-08-01

    The pharmacology, pharmacokinetics, clinical efficacy, adverse effects, and dosage of diclofenac sodium are reviewed. Diclofenac, the first nonsteroidal anti-inflammatory agent (NSAID) to be approved that is a phenylacetic acid derivative, competes with arachidonic acid for binding to cyclo-oxygenase, resulting in decreased formation of prostaglandins. The drug has both analgesic and antipyretic activities. Diclofenac is efficiently absorbed from the gastrointestinal tract; peak plasma concentrations occur 1.5 to 2.0 hours after ingestion in fasting subjects. Even though diclofenac has a relatively short elimination half-life in plasma (1.5 hours), it persists in synovial fluid. The drug is metabolized in the liver and is eliminated by urinary and biliary excretion. In clinical trials, diclofenac was as effective as aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, and naproxen in improving function and reducing pain in patients with rheumatoid arthritis. For treatment of osteoarthritis, diclofenac was equivalent in efficacy to aspirin, diflunisal, indomethacin, sulindac, ibuprofen, ketoprofen, naproxen, flurbiprofen, mefenamic acid, and piroxicam. Diclofenac was as effective as indomethacin or sulindac in treating ankylosing spondylitis. The most frequent adverse effects reported for diclofenac were gastrointestinal, but these effects were fewer and less serious than occurred with aspirin or indomethacin; in addition, diclofenac caused fewer central nervous system reactions than indomethacin. Diclofenac is administered in divided doses with meals. The recommended total daily dosage is 100 to 150 mg (osteoarthritis and ankylosing spondylitis) or 150 to 200 mg (rheumatoid arthritis). Diclofenac is effective, but no more so than other NSAIDs. It is structurally distinct and offers another choice in the treatment of rheumatological conditions. PMID:2670397

  7. Effects of Saline, an Ambient Acidic Environment, and Sodium Salicylate on OXA-Mediated Carbapenem Resistance in Acinetobacter baumannii.

    PubMed

    Zander, Esther; Seifert, Harald; Higgins, Paul G

    2016-06-01

    Different physiological conditions, such as NaCl, low pH, and sodium salicylate, have been shown to affect antibiotic resistance determinants in Acinetobacter baumannii isolates. Therefore, the aim of this study was to investigate the effects of NaCl, sodium salicylate, and low pH on the susceptibility of A. baumannii to carbapenem. We cloned genes encoding oxacillinases (OXA) of different subclasses, with their associated promoters, from carbapenem-resistant A. baumannii isolates into the same vector and transferred them to the A. baumannii reference strains ATCC 19606 and ATCC 17978. Carbapenem MICs were determined at least in triplicate by agar dilution under standard conditions, as well as in the presence of 200 mM NaCl or 16 mM sodium salicylate, or at pH 5.8. OXA-58-like gene expression was determined by reverse transcription-quantitative PCR (qRT-PCR). Under some experimental conditions, significant MIC reductions were shown for some transformants but not for others. Only in one instance were all transformants harboring the same OXA affected by the same condition: at pH 5.8, the imipenem and meropenem MICs for strains expressing OXA-58-like enzymes decreased from a resistant level (32 to 64 mg/liter) to an intermediate-susceptible level (8 mg/liter). However, blaOXA-58-like gene expression remained the same. MICs for both wild-type reference strains were not affected by the conditions tested. Our results indicate that the effects of the experimental conditions tested on OXA in vivo are mostly strain dependent. MICs were not reduced to wild-type levels, suggesting that the conditions tested do not lead to complete OXA inhibition in the bacterial cell. PMID:27001819

  8. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system.

    PubMed

    Li, Jianmei; Jiang, Zhicheng; Hu, Libin; Hu, Changwei

    2014-09-01

    Increased energy consumption and environmental concerns have driven efforts to produce chemicals from renewable biomass with high selectivity. Here, the selective conversion of cellulose in corncob residue, a process waste from the production of xylose, to levulinic acid was carried out using AlCl3 as catalyst and NaCl as promoter by a hydrothermal method at relatively low temperature. A levulinic acid yield of 46.8 mol% was obtained, and the total selectivity to levulinic acid with formic acid was beyond 90%. NaCl selectively promoted the dissolution of cellulose from corncob residue, and significantly improved the yield and selectivity to levulinic acid by inhibiting lactic acid formation in the subsequent dehydration process. Owing to the salt effect of NaCl, the obtained levulinic acid could be efficiently extracted to tetrahydrofuran from aqueous solution. The aqueous solution with AlCl3 and NaCl could be recycled 4 times. Because of the limited conversion of lignin, this process allows for the production of levulinic acid with high selectivity directly from corncob residue in a simple separation process. PMID:25045141

  9. Allergic contact stomatitis to dodecyl gallate? A review of the relevance of positive patch test results to gallates.

    PubMed

    Gamboni, Sarah E; Palmer, Amanda M; Nixon, Rosemary L

    2013-08-01

    Gallic acid esters or gallates are antioxidants used as preservatives in food and cosmetics. Few cases of gallates causing allergic contact dermatitis (ACD) have been reported in the literature. We present a case report of a 42-year-old beauty therapist who presented with a swollen tongue. Patch testing was positive to dodecyl gallate, commonly reported as being present in edible oil and oily foods such as margarine. Our patient avoided foods presumed to contain gallates and at the 6-week review reported a substantial improvement in her tongue symptoms. We reviewed our database and found 16 (7%) definitely or possibly relevant reactions to dodecyl gallate, seven (15%) definitely or possibly relevant reactions to propyl gallate and six (3%) definitely or possibly relevant reactions to octyl gallate. Most reactions were attributed to margarine, moisturising cream and lipstick. These products are often mentioned in the literature as containing gallates; however, ingredient labelling and discussions with manufacturers made it difficult to establish whether they are currently present in foods. Ascertaining relevance for these reactions is not always possible. PMID:22943875

  10. Low volume polyethylene glycol with ascorbic acid, sodium picosulfate-magnesium citrate, and clear liquid diet alone prior to small bowel capsule endoscopy

    PubMed Central

    Rayner-Hartley, Erin; Alsahafi, Majid; Cramer, Paula; Chatur, Nazira; Donnellan, Fergal

    2016-01-01

    AIM: To compare low volume polyethylene glycol with ascorbic acid, sodium picosulfate-magnesium citrate and clear liquid diet alone as bowel preparation prior to small bowel capsule endoscopy (CE). METHODS: We retrospectively collected all CE studies done from December 2011 to July 2013 at a single institution. CE studies were reviewed only if low volume polyethylene glycol with ascorbic acid, sodium picosulfate-magnesium citrate or clear liquid diet alone used as the bowel preparation. The studies were then reviewed by the CE readers who were blinded to the preparation type. Cleanliness and bubble burden were graded independently within the proximal, middle and distal small bowel using a four-point scale according to the percentage of small bowel mucosa free of debris/bubbles: grade 1 = over 90%, grade 2 = between 90%-75%, grade 3 = between 50%-75%, grade 4 = less than 50%. Data are expressed as mean ± SEM. ANOVA and Fishers exact test were used where appropriate. P values < 0.05 were considered statistically significant. RESULTS: A of total of 123 CE studies were reviewed. Twenty-six studies were excluded from analysis because of incomplete small bowel examination. In the remaining studies, 39 patients took low volume polyethylene glycol with ascorbic acid, 31 took sodium picosulfate-magnesium citrate and 27 took a clear liquid diet alone after lunch on the day before CE, followed by overnight fasting in all groups. There was no significant difference in small bowel cleanliness (1.98 ± 0.09 vs 1.84 ± 0.08 vs 1.76 ± 0.08) or small bowel transit time (213 ± 13 vs 248 ± 14 ± 225 ± 19 min) for clear liquid diet alone, MoviPrep and Pico-Salax respectively. The bubble burden in the mid small bowel was significantly higher in the MoviPrep group (1.6 ± 0.1 vs 1.9 ± 0.1 vs 1.6 ± 0.1, P < 0.05). However this did not result in a significant difference in diagnosis of pathology. CONCLUSION: There was no significant difference in small bowel cleanliness or

  11. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish...

  12. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish...

  13. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  14. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white to yellow powder....

  15. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  16. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  17. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish...

  18. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  19. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  20. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  1. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a...

  2. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid...

  3. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish...

  4. Pegylated liposomal doxorubicin in combination with mitomycin C, infusional 5-fluorouracil and sodium folinic acid. A phase-I-study in patients with upper gastrointestinal cancer.

    PubMed

    Hofheinz, R-D; Willer, A; Weisser, A; Gnad, U; Saussele, S; Kreil, S; Hartmann, J T; Hehlmann, R; Hochhaus, A

    2004-05-17

    Mitomycin C (MMC) in combination with infusional 5-fluorouracil (FU) plus folinic acid (FA) is an effective treatment for metastatic gastrointestinal cancer. Anthracyclines are commonly used in the treatment of upper gastrointestinal cancer. The aim of this study was to determine the maximum tolerated dose of liposomal, pegylated doxorubicin (Caelyx) in combination with infusional 5-FU/sodium FA and MMC. Escalating doses of Caelyx (15-25-30-35 mg m(-2) corresponding to dose levels I-IV) were applied on days 1 and 29, given to fixed doses of 24-h 5-FU (2000 mg m(-2)) and sodium FA (500 mg m(-2), mixed with 5-FU in one pump) weekly for 6 weeks, and MMC 7 mg m(-2) on days 8 and 36. At least three patients were treated at each dose level. A total of 25 patients are evaluable. No dose-limiting toxicity (DLT) was observed on level I (n=3). On level II, DLT occurred in three out of five patients (mucositis and leucopenia). Owing to the early DLTs at this dose, we added a 20 mg m(-2) Caelyx dose level (Ia). In total, 17 patients were treated at this dose level. Among these, only two patients experienced DLT in cycle one and 37 complete cycles have been administered in association with a low toxicity profile. The median dose intensity was 100% for each drug during the first course and no treatment delay exceeding 7 days was required. The recommended dose of 4-weekly Caelyx in combination with weekly 24-h 5-FU/sodium FA and 4-weekly MMC is 20 mg m(-2). Preliminary antitumour activity has been observed in patients with pretreated pancreatic cancer and in untreated gastric cancer. PMID:15138468

  5. Adaptation of Escherichia coli to elevated sodium concentrations increases cation tolerance and enables greater lactic acid production.

    PubMed

    Wu, Xianghao; Altman, Ronni; Eiteman, Mark A; Altman, Elliot

    2014-05-01

    Adaptive evolution was employed to generate sodium (Na(+))-tolerant mutants of Escherichia coli MG1655. Four mutants with elevated sodium tolerance, designated ALS1184, ALS1185, ALS1186, and ALS1187, were independently isolated after 73 days of serial transfer in medium containing progressively greater Na(+) concentrations. The isolates also showed increased tolerance of K(+), although this cation was not used for selective pressure. None of the adapted mutants showed increased tolerance to the nonionic osmolyte sucrose. Several physiological parameters of E. coli MG1655 and ALS1187, the isolate with the greatest Na(+) tolerance, were calculated and compared using glucose-limited chemostats. Genome sequencing showed that the ALS1187 isolate contained mutations in five genes, emrR, hfq, kil, rpsG, and sspA, all of which could potentially affect the ability of E. coli to tolerate Na(+). Two of these genes, hfq and sspA, are known to be involved in global regulatory processes that help cells endure a variety of cellular stresses. Pyruvate formate lyase knockouts were constructed in strains MG1655 and ALS1187 to determine whether increased Na(+) tolerance afforded increased anaerobic generation of lactate. In fed-batch fermentations, E. coli ALS1187 pflB generated 76.2 g/liter lactate compared to MG1655 pflB, which generated only 56.3 g/liter lactate. PMID:24584246

  6. Selection of suitable mineral acid and its concentration for biphasic dilute acid hydrolysis of the sodium dithionite delignified Prosopis juliflora to hydrolyze maximum holocellulose.

    PubMed

    Naseeruddin, Shaik; Desai, Suseelendra; Venkateswar Rao, L

    2016-02-01

    Two grams of delignified substrate at 10% (w/v) level was subjected to biphasic dilute acid hydrolysis using phosphoric acid, hydrochloric acid and sulfuric acid separately at 110 °C for 10 min in phase-I and 121 °C for 15 min in phase-II. Combinations of acid concentrations in two phases were varied for maximum holocellulose hydrolysis with release of fewer inhibitors, to select the suitable acid and its concentration. Among three acids, sulfuric acid in combination of 1 & 2% (v/v) hydrolyzed maximum holocellulose of 25.44±0.44% releasing 0.51±0.02 g/L of phenolics and 0.12±0.002 g/L of furans, respectively. Further, hydrolysis of delignified substrate using selected acid by varying reaction time and temperature hydrolyzed 55.58±1.78% of holocellulose releasing 2.11±0.07 g/L and 1.37±0.03 g/L of phenolics and furans, respectively at conditions of 110 °C for 45 min in phase-I & 121 °C for 60 min in phase-II. PMID:26716889

  7. Dextran Sodium Sulfate (DSS) Induces Colitis in Mice by Forming Nano-Lipocomplexes with Medium-Chain-Length Fatty Acids in the Colon

    PubMed Central

    Laroui, Hamed; Ingersoll, Sarah A.; Liu, Hong Chun; Baker, Mark T.; Ayyadurai, Saravanan; Charania, Moiz A.; Laroui, Famina; Yan, Yutao; Sitaraman, Shanthi V.; Merlin, Didier

    2012-01-01

    Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ∼200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity. PMID:22427817

  8. Oxyhalogen-sulfur chemistry: kinetics and mechanism of oxidation of chemoprotectant, sodium 2-mercaptoethanesulfonate, MESNA, by acidic bromate and aqueous bromine.

    PubMed

    Adigun, Risikat Ajibola; Mhike, Morgen; Mbiya, Wilbes; Jonnalagadda, Sreekanth B; Simoyi, Reuben H

    2014-03-27

    The oxidation of a well-known chemoprotectant in anticancer therapies, sodium 2-mercaptoethanesulfonate, MESNA, by acidic bromate and aqueous bromine was studied in acidic medium. Stoichiometry of the reaction is: BrO3(-) + HSCH2CH2SO3H → Br(-) + HO3SCH2CH2SO3H. In excess bromate conditions the stoichiometry was deduced to be: 6BrO3(-) + 5HSCH2CH2SO3H + 6H(+) → 3Br2 + 5HO3SCH2CH2SO3H + 3H2O. The direct reaction of bromine and MESNA gave a stoichiometric ratio of 3:1: 3Br2 + HSCH2CH2SO3H + 3H2O → HO3SCH2CH2SO3H + 6Br(-) + 6H(+). This direct reaction is very fast; within limits of the mixing time of the stopped-flow spectrophotometer and with a bimolecular rate constant of 1.95 ± 0.05 × 10(4) M(-1) s(-1). Despite the strong oxidizing agents utilized, there is no cleavage of the C-S bond and no sulfate production was detected. The ESI-MS data show that the reaction proceeds via a predominantly nonradical pathway of three consecutive 2-electron transfers on the sulfur center to obtain the product 1,2-ethanedisulfonic acid, a well-known medium for the delivery of psychotic drugs. Thiyl radicals were detected but the absence of autocatalytic kinetics indicated that the radical pathway was a minor oxidation route. ESI-MS data showed that the S-oxide, contrary to known behavior of organosulfur compounds, is much more stable than the sulfinic acid. In conditions where the oxidizing equivalents are limited to a 4-electron transfer to only the sulfinic acid, the products obtained are a mixture of the S-oxide and the sulfonic acid with negligible amounts of the sulfinic acid. It appears the S-oxide is the preferred conformation over the sulfenic acid since no sulfenic acids have ever been stabilized without bulky substituent groups. The overall reaction scheme could be described and modeled by a minimal network of 18 reactions in which the major oxidants are HOBr and Br2(aq). PMID:24506703

  9. Hydrogen from formic acid through its selective disproportionation over sodium germanate--a non-transition-metal catalysis system.

    PubMed

    Amos, Ruth I J; Heinroth, Falk; Chan, Bun; Zheng, Sisi; Haynes, Brian S; Easton, Christopher J; Masters, Anthony F; Radom, Leo; Maschmeyer, Thomas

    2014-10-13

    A robust catalyst for the selective dehydrogenation of formic acid to liberate hydrogen gas has been designed computationally, and also successfully demonstrated experimentally. This is the first such catalyst not based on transition metals, and it exhibits very encouraging performance. It represents an important step towards the use of renewable formic acid as a hydrogen-storage and transport vector in fuel and energy applications. PMID:25169798

  10. Constants and thermodynamics of the acid-base equilibria of triglycine in water-ethanol solutions containing sodium perchlorate at 298 K

    NASA Astrophysics Data System (ADS)

    Pham Tkhi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.

    2016-02-01

    The acid-base equilibrium constants for glycyl-glycyl-glycine (triglycine) in water-ethanol solvents containing 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol are determined by potentiometric titration at 298.15 K and an ionic strength of 0.1, maintained with sodium perchlorate. It is established that an increase in the ethanol content in the solvent reduces the dissociation constant of the carboxyl group of triglycine (increases p K 1) and increases the dissociation constant of the amino group of triglycine (decreases p K 2). It is noted that the weakening of the acidic properties of a triglycinium ion upon an increase of the ethanol content in the solvent is due to the attenuation of the solvation shell of the zwitterionic form of triglycine, and to the increased solvation of triglycinium ions. It is concluded that the acid strength of triglycine increases along with a rise in the EtOH content in the solvent, due to the desolvation of the tripeptide zwitterion and the enhanced solvation of protons.

  11. Preparation of Poly[Styrene(ST)-co-Allyloxy-2-Hydroxypropane Sulfonic Acid Sodium Salt(COPS-I)] Colloidal Crystalline Photonic Crystals.

    PubMed

    Choo, Hun Seung; Lee, Ki Chang

    2015-10-01

    Colloidal crystalline photonic crystals using highly monodisperse poly[Styrene(ST)-co-Allyloxy-2-hydroxypropane sulfonic acid sodium salt(COPS-I)] microspheres were prepared to study their optical properties under visible light. For this purpose, a series of surfactant-free emulsion copolymerizations was carried out at various reaction conditions such as the changes of ST/COPS-I ratio, polymerization temperature, KPS initiator and DVB crosslinker concentration. All the latices showed highly uniform spherical particles in the size range of 165-550 nm and the respective opaline structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. PMID:26726395

  12. A study of structure and dynamics of poly(aspartic acid) sodium/poly(vinyl alcohol) blends by 13C CP/MAS NMR

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ando, I.

    1999-09-01

    Solid state 13C CP/MAS NMR measurements have been carried out on poly(aspartic acid) sodium (PAANa)/poly(vinyl alcohol) (PVA) blends over a wide range of temperatures. From these experimental results, it is found that the main-chain conformations of PAANa in PAANa/PVA blends take the α-helix form over a wide range of blend ratios, and, in contrast, the conformation and dynamics of the side chains of PAANa are strongly influenced by the formation of an intermolecular hydrogen bond between the carboxyl group of the side chains and the hydroxyl group of PVA. The behavior of the proton spin-lattice relaxation times in the rotating frame ( T1 ρ(H)) and the laboratory frame ( T1(H)) indicates that when the blend ratio of PAANa and PVA is 1:1, they are miscible.

  13. Serum Amino Acids Profile and the Beneficial Effects of L-Arginine or L-Glutamine Supplementation in Dextran Sulfate Sodium Colitis

    PubMed Central

    Wu, Miaomiao; Liu, Gang; Yang, Guan; Xion, Yan; Su, Dingding; Wu, Li; Li, Tiejun; Chen, Shuai; Duan, Jielin; Yin, Yulong; Wu, Guoyao

    2014-01-01

    This study was conducted to investigate serum amino acids profile in dextran sulfate sodium (DSS)-induced colitis, and impacts of graded dose of arginine or glutamine supplementation on the colitis. Using DSS-induced colitis model, which is similar to human ulcerative colitis, we determined serum profile of amino acids at day 3, 7, 10 and 12 (5 days post DSS treatment). Meanwhile, effects of graded dose of arginine (0.4%, 0.8%, and 1.5%) or glutamine (0.5%, 1.0% and 2.0%) supplementation on clinical parameters, serum amino acids, colonic tight junction proteins, colonic anti-oxidative indicators [catalase, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px)], colonic pro-inflammatory cytokines [interleukin-1 beta (IL-1β), IL-6, IL-17 and tumor necrosis factor alpha (TNF-α)] in DSS-induced colitis were fully analyzed at day 7 and 12. Additionally, the activation of signal transduction pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt), and myosin light chain kinase (MLCK)- myosin light chain (MLC20), were analyzed using immunoblotting. Serum amino acids analysis showed that DSS treatment changed the serum contents of amino acids, such as Trp, Glu, and Gln (P<0.05). Dietary arginine or glutamine supplementation had significant (P<0.05) influence on the clinical and biochemical parameters (T-SOD, IL-17 and TNF-α) in colitis model. These results were associated with colonic NF-κB, PI3K-Akt and MLCK signaling pathways. In conclusion, arginine or glutamine could be a potential therapy for intestinal inflammatory diseases. PMID:24505477

  14. Characterization of primary structure and tissue expression profile of the chicken apical sodium-dependent bile acid transporter mRNA.

    PubMed

    Nakao, N; Kaneda, H; Tsushima, N; Ohta, Y; Tanaka, M

    2015-04-01

    The ileal apical sodium-dependent bile acid cotransporter (ASBT) plays an essential role in the absorption of bile acids from intestinal lumina. ASBT cDNA has been cloned from mammalian and fish species, and the primary structure of the protein and expression properties of the mRNA have been characterized. In this study, we identified chicken ASBT mRNA by cDNA cloning. Chicken ASBT cDNA consisted of 91 bp of the 5'-untranslated region, 1,083 bp of the coding region, and 1,896 bp of the 3'-untranslated region. The cDNA encoded a protein of 360 amino acids showing significant sequence identity with mammalian and fish ASBT. The amino acid residues known to participate in the functions of mammalian ASBT were conserved in chicken ASBT. Real-time polymerase chain reaction analysis revealed that chicken ASBT mRNA was expressed at markedly higher levels in the ileum and proximal colon/rectum, relatively lower levels in the kidney, and very low levels in the jejunum and cecum. Expression levels in the ileum markedly increased after hatching, reached the highest levels on day 7 posthatching, and then decreased to adult levels. A similar expression pattern was observed in the proximal colon/rectum except for the significant decrease from day 7 posthatching to day 21 posthatching. These results suggest that chicken ASBT functions as a bile acid transporter in the ileum and proximal colon/rectum, particularly during the early posthatching period. PMID:25681609

  15. Forensic applications of sodium rhodizonate and hydrochloric acid: a new histological technique for detection of gunshot residues.

    PubMed

    Andreola, Salvatore; Gentile, Guendalina; Battistini, Alessio; Cattaneo, Cristina; Zoja, Riccardo

    2011-05-01

    Demonstration of the presence of lead residues deriving from gunshot in skin and underlying tissues is essential for the correct forensic analysis of numerous legal cases. Optical microscopy remains the fastest, cheapest diagnostic technique, even though its sensitivity and specificity are poor because of the scarce quantity of histological tissue that can be examined and possible environmental lead pollution. To confirm the presence of lead from gunshot residues, we applied to histological sections of human skin a technique proposed by Owens and George in 1991 for macroscopic detection of lead on the clothing of shooting victims, involving a reaction with sodium rhodizonate and subsequent confirmation by color change on application of HCl. Our results demonstrate the technical possibility of using this macroscopic technique even on histological samples and support the need for further studies on a larger series of cases correlated with the type of ammunition and firing distance. PMID:21521219

  16. Successful correction of D-lactic acid neurotoxicity (drunken lamb syndrome) by bolus administration of oral sodium bicarbonate.

    PubMed

    Angell, J W; Jones, G L; Voigt, K; Grove-White, D H

    2013-08-31

    Drunken lamb syndrome (DLS) has recently been described as lamb D-lactic acidosis syndrome (LDLAS). In 2012, 18 lambs aged between 7 days and 28 days with LDLAS were identified. Biochemically, each lamb had a metabolic acidosis characterised by D-lactic acidosis and exhibited clinical signs including: not hyperthermic, no evidence of dehydration, demonstrating an ataxic gait tending to recumbency (DLS) and possibly somnolence. These lambs received 50 mmol of sodium bicarbonate as an 8.4 per cent solution given orally, together with parenteral long-acting amoxicillin. All 18 cases made a full clinical recovery. This study demonstrates a novel effective treatment for a disease that is usually fatal, and also demonstrates a strong correlation between venous plasma bicarbonate concentrations and venous plasma D-lactate concentrations (R(2)=0.49). PMID:23812111

  17. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.

    PubMed

    Serra, Aida; Zhu, Hongbin; Gallart-Palau, Xavier; Park, Jung Eun; Ho, Hee Haw; Tam, James P; Sze, Siu Kwan

    2016-03-01

    The ionic detergent sodium deoxycholate (SDC) is compatible with in-solution tryptic digestion and LC-MS/MS-based shotgun proteomics by virtue of being easy to separate from the peptide products via precipitation in acidic buffers. However, it remains unclear whether unique human peptides co-precipitate with SDC during acid treatment of complex biological samples. In this study, we demonstrate for the first time that a large quantity of unique peptides in human blood plasma can be co-precipitated with SDC using an optimized sample preparation method prior to shotgun proteomic analysis. We show that the plasma peptides co-precipitated with SDC can be successfully recovered using a sequential re-solubilization and precipitation procedure, and that this approach is particularly efficient at the extraction of long peptides. Recovery of peptides from the SDC pellet dramatically increased overall proteome coverage (>60 %), thereby improving the identification of low-abundance proteins and enhancing the identification of protein components of membrane-bound organelles. In addition, when we analyzed the physiochemical properties of the co-precipitated peptides, we observed that SDC-based sample preparation improved the identification of mildly hydrophilic/hydrophobic proteins that would otherwise be lost upon discarding the pellet. These data demonstrate that the optimized SDC protocol is superior to sodium dodecyl sulfate (SDS)/urea treatment for identifying plasma biomarkers by shotgun proteomics. PMID:26804737

  18. Lasalocid and dietary sodium and potassium effects on mineral metabolism, ruminal volatile fatty acids and performance of finishing steers.

    PubMed

    Spears, J W; Harvey, R W

    1987-09-01

    Thirty Angus steers averaging 357 kg were used to: 1) determine the effect of feeding lasalocid (33 mg/kg diet) on mineral metabolism and 2) determine the effects of varying dietary sodium (Na) and potassium (K) on finishing steers fed lasalocid. Treatments consisted of: 1) control (.25% Na, .5% K); 2) lasalocid (.05% Na, .5% K); 3) lasalocid (.25% Na, .5% K); 4) lasalocid (.05% Na, 1.4% K) and 5) lasalocid (.25% Na, 1.4% K). Ruminal fluid and blood samples were collected on d 28 and 90 of the 102-d study. Gain and feed conversion tended to be higher for steers fed lasalocid with the exception of the .05% Na, 1.4% K treatment. Control steers had lower (P less than .05) erythrocyte K concentrations, reduced (P less than .05) soluble concentrations of magnesium and copper in ruminal fluid and decreased plasma concentrations of zinc (P less than .05) and phosphorus (P less than .10) at 90 d compared with steers fed lasalocid and similar concentrations of Na (.25%) and K (.5%). Increasing dietary Na from .05 to .25% in the presence of lasalocid increased (P less than (P less than .05) molar proportion of ruminal acetate at 28 and 90 d reduced (P less than .05) propionate at 90 d. Increasing K from .5 to 1.4% decreased (P less than .01) soluble Na and increased (P less than .01) soluble K concentrations in ruminal fluid. Steers fed lasalocid (.25% Na, .5% K) had lower concentrations of K (P less than .10) and zinc (P less than .10) in liver than control steers. Sodium and K level also affected tissue concentrations of certain minerals. Results suggest that dietary Na and K influence mineral metabolism and that dietary Na affects ruminal molar proportion of acetate in cattle fed lasalocid. PMID:3667445

  19. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  20. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer

    NASA Astrophysics Data System (ADS)

    Yokel, Robert A.; Urbas, Aaron A.; Lodder, Robert A.; Selegue, John P.; Florence, Rebecca L.

    2005-04-01

    We synthesized 26Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down (∼3000- and 850-fold) to prepare ∼300-400 mg of each SALP. The 26Al was incorporated at the beginning of the syntheses to maximize 26Al and 27Al equilibration and incorporate the 26Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The 26Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the 26Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was ∼0.02% and from basic SALP in cheese ∼0.05%, lower than our previous determination of Al bioavailability from drinking water, ∼0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.