Sample records for acid sodium dodecyl

  1. Green synthesis of gold nanoparticles reduced and stabilized by sodium glutamate and sodium dodecyl sulfate.

    PubMed

    Cabrera, Gil Felicisimo S; Balbin, Michelle M; Eugenio, Paul John G; Zapanta, Charleo S; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2017-03-18

    The Turkevich method has been used for many years in the synthesis of gold nanoparticles. Lately, the use of plant extracts and amino acids has been reported, which is valuable in the field of biotechnology and biomedicine. The AuNPs was synthesized from the reduction of HAuCl4 3H2O by sodium glutamate and stabilized with sodium dodecyl sulfate. The optimum concentrations for sodium glutamate and sodium dodecyl sulfate in the synthesis process were determined. The characteristics of the synthesized AuNPs was analysed through UV-Vis Spectroscopy and SEM. The AuNPs have spherical shape with a mean diameter of approximately 21.62 ± 4.39 nm and is well dispersed. FTIR analysis of the AuNPs reflected that the sulfate head group of sodium dodecyl sulfate is adsorbed at the surface of the AuNPs. Thus, we report herein the synthesis of AuNPs using sodium glutamate and sodium dodecyl sulfate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The binding of sodium dodecyl sulphate to various proteins

    PubMed Central

    Pitt-Rivers, Rosalind; Impiombato, F. S. Ambesi

    1968-01-01

    1. The binding of sodium dodecyl sulphate to proteins by equilibrium dialysis was investigated. 2. Most of the proteins studied bound 90–100% of their weight of sodium dodecyl sulphate. 3. The glycoproteins studied bound 70–100% of their weight of sodium dodecyl sulphate, calculated in terms of the polypeptide moiety of the molecule. 4. Proteins not containing S·S groups bound about 140% of their weight of sodium dodecyl sulphate. 5. Reduction of four proteins containing S·S groups caused a rise in sodium dodecyl sulphate binding to 140% of the weight of protein. 6. The apparent micellar molecular weights of the protein–sodium dodecyl sulphate complexes were measured by the dye-solubilization method; they were all found to have approximately the same micellar molecular weight (34000–41000) irrespective of the molecular weight of the protein to which they were attached. PMID:4177067

  3. Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Cevallos, M A; Navarro-Duque, C; Varela-Julia, M; Alagon, A C

    1992-08-01

    We describe a procedure for molecular mass determination of hyaluronidases present in animal venoms from different families. Hyaluronidases can be revealed, following their electrophoretic separation in sodium dodecyl sulfate-polyacrylamide gel containing hyaluronic acid, by incubating the gel in Triton X-100 to remove sodium dodecyl sulfate and restore in situ enzyme activity. This method allows the detection of as little as 0.025 turbidity-reducing units after 2 hr incubation. All the hyaluronidases from the analyzed invertebrate venoms had a mass below 50,000 and showed only one component, while those from vertebrate venoms were more than 60,000 and in many instances contained more than one form.

  4. Inactivation of Heat Adapted and Chlorine Adapted Listeria Monocytogenes ATCC 7644 on Tomatoes Using Sodium Dodecyl Sulphate, Levulinic Acid and Sodium Hypochlorite Solution.

    PubMed

    Ijabadeniyi, Oluwatosin Ademola; Mnyandu, Elizabeth

    2017-04-13

    The effectiveness of sodium dodecyl sulphate (SDS), sodium hypochlorite solution and levulinic acid in reducing the survival of heat adapted and chlorine adapted Listeria monocytogenes ATCC 7644 was evaluated. The results against heat adapted L. monocytognes revealed that sodium hypochlorite solution was the least effective, achieving log reduction of 2.75, 2.94 and 3.97 log colony forming unit (CFU)/mL for 1, 3 and 5 minutes, respectively. SDS was able to achieve 8 log reduction for both heat adapted and chlorine adapted bacteria. When used against chlorine adapted L. monocytogenes sodium hypochlorite solution achieved log reduction of 2.76, 2.93 and 3.65 log CFU/mL for 1, 3 and 5 minutes, respectively. Using levulinic acid on heat adapted bacteria achieved log reduction of 3.07, 2.78 and 4.97 log CFU/mL for 1, 3, 5 minutes, respectively. On chlorine adapted bacteria levulinic acid achieved log reduction of 2.77, 3.07 and 5.21 log CFU/mL for 1, 3 and 5 minutes, respectively. Using a mixture of 0.05% SDS and 0.5% levulinic acid on heat adapted bacteria achieved log reduction of 3.13, 3.32 and 4.79 log CFU/mL for 1, 3 and 5 minutes while on chlorine adapted bacteria it achieved 3.20, 3.33 and 5.66 log CFU/mL, respectively. Increasing contact time also increased log reduction for both test pathogens. A storage period of up to 72 hours resulted in progressive log reduction for both test pathogens. Results also revealed that there was a significant difference (P≤0.05) among contact times, storage times and sanitizers. Findings from this study can be used to select suitable sanitizers and contact times for heat and chlorine adapted L. monocytogenes in the fresh produce industry.

  5. Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest.

    PubMed

    Cid, A; Morales, J; Mejuto, J C; Briz-Cid, N; Rial-Otero, R; Simal-Gándara, J

    2014-05-15

    Micellar systems have excellent food applications due to their capability to solubilise a large range of hydrophilic and hydrophobic substances. In this work, the mixed micelle formation between the ionic surfactant sodium dodecyl sulphate (SDS) and the phenolic acid salicylic acid have been studied at several temperatures in aqueous solution. The critical micelle concentration and the micellization degree were determined by conductometric techniques and the experimental data used to calculate several useful thermodynamic parameters, like standard free energy, enthalpy and entropy of micelle formation. Salicylic acid helps the micellization of SDS, both by increasing the additive concentration at a constant temperature and by increasing temperature at a constant concentration of additive. The formation of micelles of SDS in the presence of salicylic acid was a thermodynamically spontaneous process, and is also entropically controlled. Salicylic acid plays the role of a stabilizer, and gives a pathway to control the three-dimensional water matrix structure. The driving force of the micellization process is provided by the hydrophobic interactions. The isostructural temperature was found to be 307.5 K for the mixed micellar system. This article explores the use of SDS-salicylic acid based micellar systems for their potential use in fruits postharvest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate.

    PubMed

    Wang, Ke; Wang, Yinjing; Zhao, Xu; Li, Yi; Yang, Tao; Zhang, Xue; Wu, Xiaoguang

    2017-06-01

    Hollow carbonated hydroxyapatite (HCHAp) microspheres as simvastatin (SV) sustained-release vehicles were fabricated through a novel and simple one-step biomimetic strategy. Firstly, hollow CaCO 3 microspheres were precipitated through the reaction of CaCl 2 with Na 2 CO 3 in the presence of aspartic acid and sodium dodecyl sulfate. Then, the as-prepared hollow CaCO 3 microspheres were transformed into HCHAp microspheres with a controlled anion-exchange method. The HCHAp microspheres were 3-5μm with a shell thickness of 0.5-1μm and were constructed of short needle nanoparticles. The HCHAp microspheres were then loaded with SV, exhibiting excellent drug-loading capacity and sustained release properties. These results present a new material synthesis strategy for HCHAp microspheres and suggest that the as-prepared HCHAp microspheres are promising for applications in drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  8. Efficacy of sodium dodecyl sulphate and natural extracts against E. coli biofilm.

    PubMed

    Fink, Rok; Kulaš, Stefan; Oder, Martina

    2018-05-02

    The aim of this study was to determine and compare the efficacy of a standard cleaning agent, sodium dodecyl sulphate, and natural extracts from pomegranate peel grape skin and bay laurel leaf against E. coli biofilm. The biofilm was exposed for 10 minutes to three different concentrations of each tested compound. The results show that bay laurel leaf extract is the most efficient with 43% biofilm biomass reduction, followed by pomegranate peel extract (35%); sodium dodecyl sulphate and grape skin extract each have 30% efficacy. Our study demonstrated that natural extracts from selected plants have the same or even better efficacy against E. coli biofilm removal from surfaces than the tested classical cleaning agent do. All this indicates that natural plant extracts, which are acceptable from the health and environment points of view, can be potential substitutes for classical cleaning agents.

  9. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  10. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceberg lettuce during storage in modified atmosphere package.

    PubMed

    Guan, Wenqiang; Huang, Lihan; Fan, Xuetong

    2010-10-01

    Recent studies showed that sodium acid sulfate (SAS) and levulinic acid (LA) in combination with sodium dodecyl sulfate (SDS) was effective in inactivating human pathogens on Romaine lettuce. The present study investigated the effects of LA and SAS in combination with SDS (as compared with citric acid and chlorine) on the inactivation of E. coli O157:H7 and sensory quality of fresh-cut Iceberg lettuce in modified atmosphere packages during storage at 4 °C. Results showed that LA (0.5% to 3%) and SAS (0.25% to 0.75%) with 0.05% SDS caused detrimental effects on visual quality and texture of lettuce. LA- and SAS-treated samples were sensorially unacceptable due to development of sogginess and softening after 7 and 14 d storage. It appears that the combined treatments caused an increase in the respiration rate of fresh-cut lettuce as indicated by higher CO(2) and lower O(2) in modified atmosphere packages. On the positive side, the acid treatments inhibited cut edge browning of lettuce pieces developed during storage. LA (0.5%), SAS (0.25%), and citric acid (approximately 0.25%) in combination with SDS reduced population of E. coli OH157:H7 by 0.41, 0.87, and 0.58 log CFU/g, respectively, while chlorine achieved a reduction of 0.94 log CFU/g without damage to the lettuce. Therefore, compared to chlorine, LA and SAS in combination with SDS have limited commercial value for fresh-cut Iceberg lettuce due to quality deterioration during storage.

  11. Comparative study on the mechanisms of rotavirus inactivation by sodium dodecyl sulfate and ethylenediaminetetraacetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    This report describes a comparative study on the effects of the anionic detergent sodium dodecyl sulfate and the chelating agent ethylenediaminetetraacetate on purified rotavirus SA-11 particles. Both chemicals readily inactivated rotavirus at quite low concentrations and under very mild conditions. In addition, both agents modified the viral capsid and prevented the adsorption of inactivated virions to cells. Capsid damage by ethylenediaminetetraacetate caused a shift in the densities of rotavirions from about l.35 to about 1.37 g/ml and a reduction in their sedimentation coefficients. Sodium dodcyl sulfate, on the other hand, did not detectably alter either of these physical properties ofmore » rotavirions. Both agents caused some alteration of the isoelectric points of the virions. Finally, analysis of rotavirus proteins showed that ethylenediaminetetraacetate caused the loss of two protein peaks from the electrophoretic pattern of virions but sodium dodecyl sulfate caused the loss of only one of these same protein peaks.« less

  12. Sodium dodecyl benzene sulphonate mediated tautomerism of Eriochrome Black-T: Effect of charge transfer interaction

    NASA Astrophysics Data System (ADS)

    Ghosh, Sumit

    2010-11-01

    Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.

  13. Effect of Tryptophan and Asparagine Structure on the Enthalpic Characteristics of Their Dissolution in Aqueous Solutions of Sodium Dodecyl Sulfate

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.; Tyunina, E. Yu.; Kamkina, S. V.

    2018-03-01

    The integral enthalpies of dissolution of L-tryptophan and L-asparagine in aqueous solutions of sodium dodecyl sulfate (surfactant) at surfactant concentrations of up to 0.05 mol/kg of the solvent are determined and estimated calorimetrically. Standard values of the enthalpies of dissolution and transfer of amino acids from water to a mixed solvent are calculated. The calculated enthalpy coefficients of pair interactions between amino acids and surfactant molecules have positive values. Hydrophobic interactions between amino acids and surfactants have the dominant effect on the enthalpy characteristics of the interaction in a three-component solution.

  14. Preparative isolation of a cytotoxic principle of a forest mushroom Suillus luteus by sodium dodecyl sulfate based "salting-in" countercurrent chromatography.

    PubMed

    Yang, Zhi; Hu, Xueqian; Wu, Shihua

    2016-02-01

    In the course of screening new anticancer natural products, an edible forest mushroom Suillus luteus (L. Ex Franch). Gray was found to have potent cytotoxicity against several human cancer cells. However, the lipophilic sample made some countercurrent chromatography solvent systems emulsify, which caused difficulties in the separation of its cytotoxic components. Here, we found that the addition of an organic salt sodium dodecyl sulfate could efficiently shorten the settling time of the mushroom sample solutions by eliminating the emulsification of two-phase solvent systems. Moreover, we found that sodium dodecyl sulfate could play a new "salting-in" role and made the partition coefficients of the solutes decrease with the increased concentrations. Thus, a sodium dodecyl sulfate based salting-in countercurrent chromatography method has been successfully established for the first time for preparative isolation of a cytotoxic principle of the mushroom. The active component was identified as isosuillin. Whole results indicated that sodium dodecyl sulfate could be used as an efficient salting-in reagent for two-phase solvent system selection and targeted countercurrent chromatography isolation. It is very useful for current natural products isolation and drug discovery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effect of Sodium Dodecyl Sulphate and Sodium Bromide Additives on Ni–W Nanocoatings.

    PubMed

    Das, Malay Kumar; Qin, Jiaqian; Zhang, Xinyu; Li, Rongxia; Thueploy, Adisak; Limpanart, Sarintorn; Boonyongmaneerat, Yuttanat; Ma, Mingzhen; Liu, Riping

    2017-02-01

    Nickel-tungsten (Ni–W) coatings were fabricated by electrodeposition method with varying quantities of sodium dodecyl sulphate and sodium bromide to examine the effects of the aforesaid additives on the coatings. The obtained nanocoatings were studied by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and hardness tester. The hardness, tungsten content and grain size attained a maximum value at current density of 0.15 A/cm²,0.1 A/cm² and 0.1 A/cm², respectively. There was a pronounced impact of both the additives on the microstructure and morphology of the coatings. According to results, there are considerable difference in terms of the impact caused by the additives to the tungsten content, hardness and grain size of the coatings. The obtained results suggest that hardness of coatings is mainly contributed by W content in the deposits.

  16. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  17. Dependence of erythrocyte vesiculation and hemolysis parameters on the concentration of sodium dodecyl sulfate. Vesicular-competitive hemolysis.

    PubMed

    Chernitsky, E A; Senkovich, O A; Rozin, V V

    2001-07-01

    The kinetic and concentration dependences of erythrocyte vesiculation and hemolysis induced by sodium dodecyl sulfate were studied. The similarity of the slopes of the dose dependence of the SDS-induced vesiculation and slow hemolysis rates in the double logarithmic coordinates suggested a close relation between the processes of vesiculation and pore formation for slow hemolysis by the detergent. Further evidence of the competitive nature of the detergent-induced vesiculation and fast hemolysis by sodium dodecyl sulfate was obtained. The phenomenon of partial hemolysis proceeding at a rate comparable to that of cell vesiculation is explained in terms of the competition between hemolysis and vesiculation, without resorting to erythrocyte heterogeneity. New vesicular-competitive hemolysis is described. Based on it, the action of different hemolysis-inducing agents is analysed.

  18. Synthesis and foaming properties of new anionic surfactants based on a renewable building block: sodium dodecyl isosorbide sulfates.

    PubMed

    Lavergne, Aurélie; Zhu, Ying; Pizzino, Aldo; Molinier, Valérie; Aubry, Jean-Marie

    2011-08-15

    Two agro-based anionic surfactants containing an isosorbide moiety have been synthesized and their amphiphilic properties evaluated. Since isosorbide is now considered as an important platform chemical of the starch industry, these compounds could represent bio-sourced alternatives to the alkyl ether sulfates (notably lauryl ether sulfate, LES) that are based on petroleum-derived ethylene oxides. As isosorbide is an asymmetric diol, two isomers can be prepared (2-O-dodecyl isosorbide sulfate and 5-O-dodecyl isosorbide sulfate) that show significantly different aqueous properties as regards to their Krafft temperatures and critical micellar concentrations. 5-O-dodecyl isosorbide sulfate is the most soluble and the most efficient surfactant. It possesses a much lower critical micelle concentration (cmc) than sodium dodecyl sulfate, SDS, leading to comparable foaming properties with a three times lower concentration. Its behavior compares well with the one of pure diethoxylated dodecyl sulfate that has also been prepared and evaluated in this work. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Measuring the enthalpies of interaction between glycine, L-cysteine, glycylglycine, and sodium dodecyl sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Mezhevoi, I. N.; Tyunina, E. Yu.

    2017-03-01

    Calorimetric measurements of enthalpies of solution Δsol H m for glycine, L-cysteine, and glycylglycine in aqueous solutions of sodium dodecyl sulfate (SDS) with concentrations of up to 0.05 mol kg-1 are made. Standard enthalpy of solution Δsol H 0 and enthalpy of transfer Δtr H 0 of the dipeptide from water into mixed solvent are calculated. The calculated enthalpy coefficients of paired interactions of amino acids and dipeptide with SDS prove to be positive. Hydrophobic interactions between the biomolecules and SDS are found to have a major impact on the enthalpies of interaction in the three-component systems under study, within the indicated range of concentrations.

  20. Inactivation of Escherichia coli O157:H7 and Salmonella typhimurium DT 104 on alfalfa seeds by levulinic acid and sodium dodecyl sulfate.

    PubMed

    Zhao, Tong; Zhao, Ping; Doyle, Michael P

    2010-11-01

    Studies were conducted to determine the best concentration and exposure time for treatment of alfalfa seeds with levulinic acid plus sodium dodecyl sulfate (SDS) to inactivate Escherichia coli O157:H7 and Salmonella without adversely affecting seed germination. Alfalfa seeds inoculated with a five-strain mixture of E. coli O157:H7 or Salmonella Typhimurium were dried in a laminar flow hood at 21°C for up to 72 h. Inoculated alfalfa seeds dried for 4 h then treated for 5 min at 21°C with 0.5% levulinic acid and 0.05% SDS reduced the population of E. coli O157:H7 and Salmonella Typhimurium by 5.6 and 6.4 log CFU/g, respectively. On seeds dried for 72 h, treatment with 0.5% levulinic acid and 0.05% SDS for 20 min at 21°C reduced E. coli O157:H7 and Salmonella Typhimurium populations by 4 log CFU/g. Germination rates of alfalfa seeds treated with 0.5% levulinic acid plus 0.05% SDS for up to 1 h at 21°C were compared with a treatment of 20,000 ppm of calcium hypochlorite or tap water only. Treatment of alfalfa seeds with 0.5% levulinic acid plus 0.05% SDS for 5 min at 21°C resulted in a >3.0-log inactivation of E. coli O157:H7 and Salmonella.

  1. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2007-09-27

    The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.

  2. Modification of an acetone-sodium dodecyl sulfate disruption method for cellular protein extraction from neuropathogenic Clostridium botulinum

    USDA-ARS?s Scientific Manuscript database

    An acetone-sodium dodecyl sulfate (SDS) disruption method was used for the extraction of cellular proteins from neurotoxigenic Clostridium botulinum. The amount of protein extracted per gram of dry weight and the protein profile as revealed by polyacrylamide gel electrophoresis (PAGE) was comparabl...

  3. Effects of various polyoxyethylene sorbitan monooils (Tweens) and sodium dodecyl sulfate on reflux synthesis of copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xifeng; Yin Hengbo; Cheng Xiaonong

    2006-11-09

    Size-controlled synthesis of phase pure Cu nanoparticles was carried out by using copper sulfate pentahydrate as a precursor, ascorbic acid as a reductant, Tweens and sodium dodecyl sulfate (SDS) as modifiers in an aqueous solution at 80 deg. C. The as-prepared Cu nanoparticles were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and Fourier transform infrared (FT-IR). The stabilizing effects of SDS and Tweens on the Cu nanoparticles should be through the coordination between Cu nanoparticles and the respective sulfate group and oxygen-containing bond. The synergic effect of the composite SDS and Tweensmore » on Cu nanoparticles was different from those arising from the individuals.« less

  4. Beyond the detergent effect: a binding site for sodium dodecyl sulfate (SDS) in mammalian apoferritin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Renyu, E-mail: renyu.liu@uphs.upenn.edu; Bu, Weiming; Xi, Jin

    2012-05-01

    Using X-ray crystallography and isothermal titration calorimetry, we show that sodium dodecyl sulfate (SDS) binds specifically to a pre-formed internal cavity in horse-spleen apoferritin. Although sodium dodecyl sulfate (SDS) is widely used as an anionic detergent, it can also exert specific pharmacological effects that are independent of the surfactant properties of the molecule. However, structural details of how proteins recognize SDS are scarce. Here, it is demonstrated that SDS binds specifically to a naturally occurring four-helix bundle protein: horse apoferritin. The X-ray crystal structure of the apoferritin–SDS complex was determined at a resolution of 1.9 Å and revealed that themore » SDS binds in an internal cavity that has previously been shown to recognize various general anesthetics. A dissociation constant of 24 ± 9 µM at 293 K was determined by isothermal titration calorimetry. SDS binds in this cavity by bending its alkyl tail into a horseshoe shape; the charged SDS head group lies in the opening of the cavity at the protein surface. This crystal structure provides insights into the protein–SDS interactions that give rise to binding and may prove useful in the design of novel SDS-like ligands for some proteins.« less

  5. pH at the micellar interface: synthesis of pH probes derived from salicylic acid, acid-base dissociation in sodium dodecyl sulfate micelles, and Poisson-Boltzmann simulation.

    PubMed

    Souza, T P; Zanette, D; Kawanami, A E; de Rezende, L; Ishiki, H M; do Amaral, A T; Chaimovich, H; Agostinho-Neto, A; Cuccovia, I M

    2006-05-01

    The study of the H+ concentration at the micellar interface is a convenient system for modeling the distribution of H+ at interfaces. We have synthesized salicylic acid derivatives to analyze the proton dissociation of both the carboxylic and phenol groups of the probes, determining spectrophotometrically the apparent pK(a)'s (pK(ap)) in sodium dodecyl sulfate, SDS, micelles with and without added salt. The synthesized probes were 2-hydroxy-5-(2-trimethylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumacetyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumhexanoyl)benzoate; 2-hydroxy-5-(2-dimethylhexadecylammoniumundecanoyl)benzoate; 2-hydroxy-5-acetylbenzoic acid; and 2-hydroxy-5-dodecanoylbenzoic acid. Upon incorporation into SDS micelles the pK(ap)'s of both carboxylic and phenol groups increased by ca. 3 pH units and NaCl addition caused a decrease in the probe-incorporated pK(ap). The experimental results were fitted with a cell model Poisson-Boltzmann (P-B) equation taking in consideration the effect of salt on the aggregation number of SDS and using the distance of the dissociating group as a parameter. The conformations of the probes were analyzed theoretically using two dielectric constants, e.g., 2 and 78. Both the P-B analysis and conformation calculations can be interpreted by assuming that the acid groups dissociate very close to, or at, the interface. Our results are consistent with the assumption that the intrinsic pK(a)'s of both carboxylic and phenol groups of the salicylic acid probes used here can be taken as those in water. Using this assumption the micellar and salt effects on the pK(ap)'s of the (trialkylammonium)benzoate probes were described accurately using a cell model P-B analysis.

  6. Performing Isoelectric Focusing and Simultaneous Fractionation of Proteins on A Rotary Valve Followed by Sodium Dodecyl – Polyacrylamide Gel Electrophoresis

    PubMed Central

    Wang, Wei; Lu, Joann J.; Gu, Congying; Zhou, Lei; Liu, Shaorong

    2013-01-01

    In this technical note, we design and fabricate a novel rotary valve and demonstrate its feasibility for performing isoelectric focusing and simultaneous fractionation of proteins, followed by sodium dodecyl – polyacrylamide gel electrophoresis. The valve has two positions. In one position, the valve routes a series of capillary loops together into a single capillary tube where capillary isoelectric focusing (CIEF) is performed. By switching the valve to another position, the CIEF-resolved proteins in all capillary loops are isolated simultaneously, and samples in the loops are removed and collected in vials. After the collected samples are briefly processed, they are separated via sodium dodecyl – polyacrylamide gel electrophoresis (SDS-PAGE, the 2nd-D separation) on either a capillary gel electrophoresis instrument or a slab-gel system. The detailed valve configuration is illustrated, and the experimental conditions and operation protocols are discussed. PMID:23819755

  7. Determination of the molecular weight of human gamma-3 chains by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate

    PubMed Central

    Virella, G.; Parkhouse, R. M. E.

    1972-01-01

    The molecular weights (mol. wt) for heavy chains of human IgG were estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Polyclonal IgG and monoclonal IgG proteins of different subclasses were extensively reduced with 50 mM dithioerythritol, in the presence of 2 per cent sodium dodecyl sulphate, at 100°. Four control proteins of known mol. wt (cytochrome C, chymotrypsinogen A, egg albumin, and serum albumin) were used to construct a linear plot of electrophoretic mobility versus log mol. wt. From this plot, the following mol. wts were calculated: 53,650±700 for polyclonal IgG; 54,200±1065 for γ1, γ2, and γ4 chains, and 60,950±585 for γ3 chains. Those results confirm the larger size of γ3 chains reported by Saluk and Clem (1971). PMID:4346255

  8. Erythrocyte membrane protein analysis by sodium dodecyl sulphate-capillary gel electrophoresis in the diagnosis of hereditary spherocytosis.

    PubMed

    Debaugnies, France; Cotton, Frédéric; Boutique, Charles; Gulbis, Béatrice

    2011-03-01

    Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is currently the reference method for detecting protein deficiencies related to hereditary spherocytosis. The aim of the study was to evaluate an automated capillary gel electrophoresis system, the Experion instrument from BioRad, for its ability to separate and quantify the erythrocyte membrane proteins. The major erythrocyte membrane proteins (actin, protein 4.2, protein 4.1, band 3, ankyrin, α- and β-spectrin) were extracted and purified from membrane ghosts by centrifugation, immunoprecipitation and electroelution. Analyses were performed using SDS-PAGE and sodium dodecyl sulphate capillary gel electrophoresis (SDS-CGE) to establish a separation profile of the total ghosts. Then, the samples from patients received for investigations of erythrocyte membrane defects were analysed. Five of the seven expected erythrocyte membrane proteins were finally separated and identified. In the 20 studied cases, taking into account the screening test results and the clinical and family histories, the SDS-CGE method allowed us to achieve the same conclusion as with SDS-PAGE, except for the patient with elliptocytosis. The new SDS-CGE method presents interesting features that could make this instrument a powerful diagnostic tool for detection of erythrocyte membrane protein abnormalities, and can be proposed as an automated alternative method to the labour intensive SDS-PAGE analysis.

  9. Roles of Sodium Dodecyl Sulfate on Tetrahydrofuran-Assisted Methane Hydrate Formation.

    PubMed

    Siangsai, Atsadawuth; Inkong, Katipot; Kulprathipanja, Santi; Kitiyanan, Boonyarach; Rangsunvigit, Pramoch

    2018-06-01

    Sodium dodecyl sulfate (SDS) markedly improved tetrahydrofuran (THF) - assisted methane hydrate formation. Firstly, methane hydrate formation with different THF amount, 1, 3, and 5.56 mol%, was studied. SDS with 1, 4, and 8 mM was then investigated for its roles on the methane hydrate formation with and without THF. The experiments were conducted in a quiescent condition in a fixed volume crystallizer at 8 MPa and 4°C. The results showed that almost all studied THF and SDS concentrations enhanced the methane hydrate formation kinetics and methane consumption compared to that without the promoters, except 1 mol% THF. Although, with 1 mol% THF, there were no hydrates formed for 48 hours, the addition of just 1 mM SDS surprisingly promoted the hydrate formation with a significant increased in the kinetics. This prompts the use of methane hydrate technology for natural gas storage application with minimal promoters.

  10. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  11. Dispersive admicelle solid-phase extraction based on sodium dodecyl sulfate coated Fe3 O4 nanoparticles for the selective adsorption of three alkaloids in Gegen-Qinlian oral liquid before high-performance liquid chromatography.

    PubMed

    Shi, Zhihong; Xu, Dan; Zhao, Xuan; Li, Xinghong; Shen, Huimin; Yang, Bing; Zhang, Hongyi

    2017-12-01

    A novel dispersive admicelle solid-phase extraction method based on sodium dodecyl sulfate-coated Fe 3 O 4 nanoparticles was developed for the selective adsorption of berberine, coptisine, and palmatine in Gegen-Qinlian oral liquid before high-performance liquid chromatography. Fe 3 O 4 nanoparticles were synthesized by a chemical coprecipitation method and characterized by using transmission electron microscopy. Under acidic conditions, the surface of Fe 3 O 4 nanoparticles was coated with sodium dodecyl sulfate to form a nano-sized admicelle magnetic sorbent. Owing to electrostatic interaction, the alkaloids were adsorbed onto the oppositely charged admicelle magnetic nanoparticles. The quick separation of the analyte-adsorbed nanoparticles from the sample solution was performed by using Nd-Fe-B magnet. Best extraction efficiency was achieved under the following conditions: 800 μL Fe 3 O 4 nanoparticles suspension (20 mg/mL), 150 μL sodium dodecyl sulfate solution (10 mg/mL), pH 2, and vortexing time 2 min for the extraction of alkaloids from 10 mL of diluted sample. Four hundred microliters of methanol was used to desorb the alkaloids by vortexing for 1 min. Satisfactory extraction recoveries were obtained in the range of 85.9-120.3%, relative standard deviations for intra- and interday precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied to analyze the alkaloids in two batches of Gegen-Qinlian oral liquids. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte.

    PubMed

    Wang, Liguang; Yoon, Roe-Hoan

    2004-12-21

    Further studies of the hydrophobic force in foam films were carried out, including the effect of added inorganic electrolyte. We used a thin film balance of Scheludko-Exerowa type to obtain the disjoining pressure isotherms of the foam films stabilized by 10(-4) M sodium dodecyl sulfate in varying concentrations of sodium chloride. The results were compared with the disjoining pressure isotherms predicted from the extended Derjaguin-Landau-Verwey-Overbeek theory, which considers contributions from hydrophobic force in addition to those from double layer and van der Waals dispersion forces. The double layer forces were calculated from the surface potentials (psi s) obtained using the Gibbs adsorption equation and corrected for the counterion binding effect, while the dispersion forces were calculated using the Hamaker constant (A232) of 3.7 x 10(-20) J. The hydrophobic forces were calculated from the equilibrium film thickness as described previously. The predicted disjoining pressure isotherms were in good agreement with the experimental ones. It was found that the hydrophobic force is dampened substantially by the added electrolyte.

  13. The Initial Comparison Study of Sodium Lignosulfonate, Sodium Dodecyl Benzene Sulfonate, and Sodium p-Toluene Sulfonate Surfactant for Enhanced Oil Recovery

    NASA Astrophysics Data System (ADS)

    Khoirul Anas, Argo; Iman Prakoso, Nurcahyo; Sasvita, Dilla

    2018-04-01

    Surfactant (surface active agent) exhibit numerous interesting properties that enable their use as additional component in mobilising of residual oil from capillary pore after secondary recovery process using gas injection and water flooding. In this study, Sodium Lignosulfonate (SLS) surfactant was successfully synthesized by applying batch method using lignin from oil palm empty fruit bunches as precursor. Furthermore, its performance in reducing interfacial tension of crude oil and formation water colloidal system was compared with commercial available surfactant including Sodium Dodecyl Benzene Sulfonate (SDBS) and Sodium p-Toluene Sulfonate (SpTS). The synthesized SLS surfactant was characterized by using Fourier Transform Infrared (FTIR) spectroscopy. Meanwhile, its performance in reducing interfacial tension of crude oil and formation water colloidal system was analyzed by using compatibility test, phase behaviour analysis, and interfacial tension (IFT) measurement. The compatibility test shows that SLS, SDBS, and SpTS surfactants were compatible with formation water. In addition, the phase behaviour analysis shows that SLS surfactant was better than SpTS surfactant, while SDBS surfactant generates the highest performance proved by the best microemulsion formation resulted by SDBS. Furthermore, the optimum concentration of SLS, SDBS, and SpTS surfactants in reducing the interfacial tension of crude oil and formation water was 1.0%. The IFT measurement indicates that the performance of SLS with the value of 1.67 mN/m was also better than SpTS surfactant with the value of 3.59 mN/m. Meanwhile, SDBS surfactant shows the best performance with the IFT value of 0.47 mN/m.

  14. Benzalkonium chloride neutralizes the irritant effect of sodium dodecyl sulfate.

    PubMed

    McFadden, J P; Holloway, D B; Whittle, E G; Basketter, D A

    2000-11-01

    When benzalkonium chloride (BKC), a cationic surfactant, is added to sodium dodecyl sulfate (SDS), an anionic surfactant, and used in patch testing, on the basis of their known physicochemical interaction, it is possible to predict that there will be a tendency towards a reduction in the expected irritant response when compared to SDS alone. The aim of this study was to investigate whether BKC could reduce the irritant response to SDS when applied after the SDS exposure. 54 non-atopic adult volunteers were recruited for the study. 20% SDS was applied for 2 h under occlusion. 1% BKC was then applied to the same site. Various controls, including SDS application followed by water for 2 h, were included. The irritant reaction was assessed at 24 h and 48 h. 40 of the 54 subjects had some reaction when SDS was applied for 2 h followed by either benzalkonium chloride or water control under occlusion. In comparison to water control, where BKC was applied after SDS, 20 of the 40 responders had a weaker reaction but only 4 had a stronger response. This study shows that BKC applied to skin exposed to SDS attenuates the resulting irritant reaction.

  15. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8.more » The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was

  16. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  17. Effect of Sodium Dodecyl Sulfate Surfactant on Methane Hydrate Formation: A Molecular Dynamics Study.

    PubMed

    Choudhary, Nilesh; Hande, Vrushali R; Roy, Sudip; Chakrabarty, Suman; Kumar, Rajnish

    2018-06-28

    In experimental studies, it has been observed that the presence of sodium dodecyl sulfate (SDS) significantly increases the kinetics of hydrate formation and the final water-to-hydrate conversion ratio. In this study, we intend to understand the molecular mechanism behind the effect of SDS on the formation of methane hydrate through molecular dynamics simulation. Hydrate formation conditions similar to that of laboratory experiments were chosen to study hydrate growth kinetics in 1 wt % SDS solution. We also investigate the effect of interactions with isolated SDS molecules on methane hydrate growth. It was observed that the hydrophobic tail part of the SDS molecule favorably interacts with the growing hydrate surface and may occupy the partial hydrate cages while the head groups remain exposed to water.

  18. Sodium Dodecyl Sulphate-Supported Nanocomposite as Drug Carrier System for Controlled Delivery of Ondansetron.

    PubMed

    Sharma, Gaurav; Naushad, Mu; Thakur, Bharti; Kumar, Amit; Negi, Poonam; Saini, Reena; Chahal, Anterpreet; Kumar, Ashok; Stadler, Florian J; Aqil, U M H

    2018-02-27

    Sodium dodecyl sulphate-supported iron silicophosphate (SDS/FeSP) nanocomposite was successfully fabricated by the co-precipitation method. The SDS/FeSP nanocomposite was investigated as a drug carrier for ondansetron. The cumulative drug release of ondansetron was observed at various pH values for different time intervals, i.e., from 20 min to 48 h. A ranking of the drug release was observed at different pHs; pH 2.2 > saline (pH 5.5) > pH 7.4 > pH 9.4 > distilled water. Maximum release of encapsulated drug was found to be about 45.38% at pH 2.2. The cell viability tests of SDS/FeSP nanocomposite concluded that SDS/FeSP nanocomposite was non-cytotoxic in nature.

  19. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    PubMed

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.

  20. Use of a mixture of n-dodecyl-beta-D-maltoside and sodium dodecyl sulfate in poly(dimethylsiloxane) microchips to suppress adhesion and promote separation of proteins.

    PubMed

    Huang, Bo; Kim, Samuel; Wu, Hongkai; Zare, Richard N

    2007-12-01

    Dynamic modification of poly(dimethylsiloxane) channels using a mixture of n-dodecyl-beta-D-maltoside (DDM) and sodium dodecyl sulfate (SDS) is able to suppress analyte adsorption and control electroosmotic flow (EOF). In this mixed surfactant system, the nonionic surfactant DDM functions as a surface blocking reagent, whereas the anionic surfactant SDS introduces negative charges to the channel walls. Changing the DDM/SDS mixing ratio tunes the surface charge density and the strength of EOF. Using 0.1% (w/v) DDM and 0.03% (w/v) SDS, Alexa Fluor 647 labeled streptavidin can be analyzed according to the charges added by the fluorophores. Protein molecules with different numbers of fluorophores are well resolved. DDM and SDS also form negatively charged mixed micelles, which act as a separation medium. The low critical micellar concentration of DDM/SDS mixed micelles also allows the use of SDS at a nondenaturing concentration, which enables the analysis of proteins in their native state. The immunocomplex between a membrane protein, beta2 adrenergic receptor, and anti-FLAG antibody has been fully separated using 0.1% (w/v) DDM and 0.03% (w/v) SDS. We have also analyzed the composition of light-harvesting protein-chromophore complexes in cyanobacteria.

  1. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  2. Acids in combination with sodium dodecyl sulfate caused quality deterioration of fresh-cut iceburg lettuce during storage in modified atmosphere package

    USDA-ARS?s Scientific Manuscript database

    Recent studies showed that levulinic acid (LA) and sodium acid sulfate (SAS) were effective in inactivating human pathogens on fresh produce. The present study investigated the effects of LA and SAS in comparison with citric acid and chlorine on the inactivation of E. coli O157:H7 and the sensory qu...

  3. Effect of Sodium Sulfite, Sodium Dodecyl Sulfate, and Urea on the Molecular Interactions and Properties of Whey Protein Isolate-Based Films

    PubMed Central

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2017-01-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm3 (STP/standard temperature and pressure) 100 μm (m2 d bar)−1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 μm (m2 d)−1 measured at 50 to 0% r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient. PMID:28149835

  4. Effect of sodium sulfite, sodium dodecyl sulfate, and urea on the molecular interactions and properties of whey protein isolate-based films

    NASA Astrophysics Data System (ADS)

    Schmid, Markus; Prinz, Tobias K.; Stäbler, Andreas; Sängerlaub, Sven

    2016-12-01

    Whey protein coatings and cast films are promising for use as food packaging materials. Ongoing research is endeavoring to reduce their permeability. The intention of this study was to evaluate the effect of the reactive additives sodium sulfite, sodium dodecyl sulfate (SDS), and urea on the oxygen barrier, water vapor barrier, and protein solubility of whey protein cast films. The concentration of the reactive additives was 1 to 20 wt.-%. Dried whey protein cast films were used as substrate materials. The water vapor transmission rate, the oxygen permeability, and the protein solubility were measured. Effective diffusion coefficients and effective sorption coefficients were calculated from the results of the water vapor sorption experiments. The presence of sodium sulfite resulted in an increased number of hydrophobic interactions and hydrogen bonds and a slightly decreased number of disulfide bonds. The oxygen permeability decreased from 68 to 46 cm³ (STP / standard temperature and pressure) 100 µm (m² d bar)-1 for 1 wt.-% SDS in the whey protein cast film. The water vapor transmission rate decreased from 165 to 44 g 100 µm (m² d)-1 measured at 50 to 0 % r. h. for 20 wt.-% SDS in the whey protein cast film. The reduction in the water vapor transmission rate correlated with the lower effective diffusion coefficient.

  5. The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles.

    PubMed

    Schibli, D J; Hwang, P M; Vogel, H J

    1999-03-12

    Lactoferricin B (LfcinB) is a 25-residue antimicrobial peptide released from bovine lactoferrin upon pepsin digestion. The antimicrobial center of LfcinB consists of six residues (RRWQWR-NH2), and it possesses similar bactericidal activity to LfcinB. The structure of the six-residue peptide bound to sodium dodecyl sulfate (SDS) micelles has been determined by NMR spectroscopy and molecular dynamics refinement. The peptide adopts a well defined amphipathic structure when bound to SDS micelles with the Trp sidechains separated from the Arg residues. Additional evidence demonstrates that the peptide is oriented in the micelle such that the Trp residues are more deeply buried in the micelle than the Arg and Gln residues.

  6. Inactivation of viruses and bacteria on strawberries using a levulinic acid plus sodium dodecyl sulfate based sanitizer, taking sensorial and chemical food safety aspects into account.

    PubMed

    Zhou, Zijin; Zuber, Sophie; Cantergiani, Frédérique; Butot, Sophie; Li, Dan; Stroheker, Thomas; Devlieghere, Frank; Lima, Anthony; Piantini, Umberto; Uyttendaele, Mieke

    2017-09-18

    The efficacy of levulinic acid (LVA) in combination with sodium dodecyl sulfate (SDS) in removal of foodborne viruses, enteric bacterial pathogens and their surrogates on fresh strawberries was investigated. Inoculated strawberries were treated with potable water, sodium hypochlorite solution (50ppm), 0.5% LVA plus 0.5% SDS solution, and 5% LVA plus 2% SDS solution respectively for 2min, followed by spray-rinsing with potable water. Water washing removed at least 1.0-log of the tested viral and bacterial strains from the strawberries' surfaces. The 50ppm chlorine wash induced 3.4, 1.5 and 2.1-log reductions for hepatitis A virus (HAV), murine norovirus-1 (MNV-1) and MS2 bacteriophage, respectively. In comparison, the tested bacterial strains showed uniform reductions around 1.6-log CFU/ml. The 0.5% LVA plus 0.5% SDS wash induced 2.7, 1.4 and 2.4-log reductions for HAV, MNV-1 and MS2, which were comparable with the reductions induced by chlorine (P>0.05). For bacteria, over 2.0-log reductions were obtained for Enterococcus faecium, Listeria monocytogenes and Salmonella, while Escherichia coli O157:H7 and Escherichia coli P1 showed reductions of 1.9 and 1.8-log CFU/ml. Higher concentration of LVA plus SDS showed no significantly higher reductions (P>0.05). Sensory tests of washed strawberries and chemical residue analysis of LVA on strawberries after washing were also performed. In conclusion, this study demonstrates good performance of 0.5% LVA plus 0.5% SDS to reduce the levels of enteric pathogens if present on strawberries without altering taste and introducing chemical safety issues. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electron spin resonance and electron spin echo modulation of n-doxylstearic acid and N,N,N',N'-tetramethylbenzidine photoionization in sodium versus lithium dodecyl sulfate micellar solutions: effect of 15-crown-5 and 18-crown-6 ether addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglioni, P.; Rivara-Minten, E.; Kevan, L.

    1988-08-11

    Electron spin echo modulation and electron spin resonance spectra of photogenerated N,N,N',N'-tetramethylbenzidine (TMB) cation radical and n-doxylstearic acids (n-DSA) in frozen micellar solutions of sodium and lithium dodecyl sulfate containing 15-crown-5 and 18-crown-6 ethers in D/sub 2/O have been studied as a function of crown ether concentration. Modulation effects due to N-DSA with water deuteriums give direct evidence that both crown ethers are mainly located at the micellar interface and that this causes a decrease of the hydration of the micellar interface. Crown ether complexation constants for sodium and lithium micellar counterions are reported and show that 18-crown-6 > 15-crown-5more » for sodium counterion and 15-crown-5 > 18-crown-6 for lithium counterion. Modulation effects from TMB/sup +/ interaction with water deuteriums indicate that the TMB molecule moves toward the micelle interfacial region when sodium or lithium cations are complexed by crown ethers. The TMB/sup +/ yield upon TMB photoionization increases by about 10% with crown ether addition for SDS and LDS micellar systems, but it is greater if the absolute values for the LDS system are compared to those for the SDS micellar system. This behavior correlates with the strength of TMB/sup +/-water interactions and suggests that the main factor in the photoionization efficiency is the photocation-water interaction.« less

  8. Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate

    PubMed Central

    Vafaee, Tayyebeh; Thomas, Daniel; Desai, Amisha; Jennings, Louise M.; Berry, Helen; Rooney, Paul; Kearney, John; Fisher, John

    2017-01-01

    Abstract The clinical use of decellularized cardiac valve allografts is increasing. Long‐term data will be required to determine whether they outperform conventional cryopreserved allografts. Valves decellularized using different processes may show varied long‐term outcomes. It is therefore important to understand the effects of specific decellularization technologies on the characteristics of donor heart valves. Human cryopreserved aortic and pulmonary valved conduits were decellularized using hypotonic buffer, 0.1% (w/v) sodium dodecyl sulfate and nuclease digestion. The decellularized tissues were compared to cellular cryopreserved valve tissues using histology, immunohistochemistry, quantitation of total deoxyribose nucleic acid, collagen and glycosaminoglycan content, in vitro cytotoxicity assays, uniaxial tensile testing and subcutaneous implantation in mice. The decellularized tissues showed no histological evidence of cells or cell remnants and >97% deoxyribose nucleic acid removal in all regions (arterial wall, muscle, leaflet and junction). The decellularized tissues retained collagen IV and von Willebrand factor staining with some loss of fibronectin, laminin and chondroitin sulfate staining. There was an absence of major histocompatibility complex Class I staining in decellularized pulmonary valve tissues, with only residual staining in isolated areas of decellularized aortic valve tissues. The collagen content of the tissues was not decreased following decellularization however the glycosaminoglycan content was reduced. Only moderate changes in the maximum load to failure of the tissues were recorded postdecellularization. The decellularized tissues were noncytotoxic in vitro, and were biocompatible in vivo in a mouse subcutaneous implant model. The decellularization process will now be translated into a good manufacturing practices‐compatible process for donor cryopreserved valves with a view to future clinical use. Copyright © 2016 The Authors

  9. Supersaturation-Limited and Unlimited Phase Spaces Compete to Produce Maximal Amyloid Fibrillation near the Critical Micelle Concentration of Sodium Dodecyl Sulfate.

    PubMed

    So, Masatomo; Ishii, Akira; Hata, Yasuko; Yagi, Hisashi; Naiki, Hironobu; Goto, Yuji

    2015-09-15

    Although various natural and synthetic compounds have been shown to accelerate or inhibit the formation of amyloid fibrils, the mechanisms by which they achieve these adverse effects in a concentration-dependent manner currently remain unclear. Sodium dodecyl sulfate (SDS), one of the compounds that has adverse effects on fibrillation, is the most intensively studied. Here we examined the effects of a series of detergents including SDS on the amyloid fibrillation of β2-microglobulin at pH 7.0, a protein responsible for dialysis-related amyloidosis. In all the detergents examined (i.e., SDS, sodium decyl sulfate, sodium octyl sulfate, and sodium deoxycholate), amyloid fibrillation was accelerated and inhibited at concentrations near the critical micelle concentration (CMC) and higher than CMC, respectively. The most stable conformation changed from monomers with a β-structure to amyloid fibrils with a β-structure and then to α-helical complexes with micelles with an increase in detergent concentrations. These results suggest that competition between supersaturation-limited fibrillation and unlimited mixed micelle formation between proteins and micelles underlies the detergent concentration-dependent complexity of amyloid fibrillation.

  10. Electrochemistry of Cytochrome P450 BM3 in Sodium Dodecyl Sulfate Films

    PubMed Central

    Udit, Andrew K.; Hill, Michael G.; Gray, Harry B.

    2008-01-01

    Direct electrochemistry of the cytochrome P450 BM3 heme domain (BM3) was achieved by confining the protein within sodium dodecyl sulfate (SDS) films on the surface of basal-plane graphite (BPG) electrodes. Cyclic voltammetry revealed the heme FeIII/II redox couple at −330 mV (vs. Ag/AgCl, pH 7.4). Up to 10 V/s, the peak current was linear with scan rate, allowing us to treat the system as surface-confined within this regime. The standard heterogeneous rate constant determined at 10 V/s was estimated to be 10 s−1. Voltammograms obtained for the BM3-SDS-BPG system in the presence of dioxygen exhibited catalytic waves at the onset of FeIII reduction. The altered heme reduction potential of the BM3-SDS-graphite system indicates that SDS is likely bound in the enzyme active-site region. Compared to other P450-surfactant systems, we find redox potentials and electron transfer rates that differ by ~ 100 mV and > 10-fold, respectively, indicating that the nature of the surfactant environment has a significant effect on the observed heme redox properties. PMID:17129070

  11. Interactions between sodium dodecyl sulphate and non-ionic cellulose derivatives studied by size exclusion chromatography with online multi-angle light scattering and refractometric detection.

    PubMed

    Wittgren, Bengt; Stefansson, Morgan; Porsch, Bedrich

    2005-08-05

    The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.

  12. Flour sodium dodecyl sulfate (SDS)-extractable protein level as a cookie flour quality indicator.

    PubMed

    Pareyt, Bram; Bruneel, Charlotte; Brijs, Kristof; Goesaert, Hans; Delcour, Jan A

    2010-01-13

    Flour characteristics of laboratory-milled flour fractions of two wheat cultivars were related to their cookie-baking performance. Cultivar (cv.) Albatros wheat milling yielded fractions with lower damaged starch (DS) and arabinoxylan levels and higher sodium dodecyl sulfate-extractable protein (SDSEP) levels than did cv. Meunier wheat milling. During baking, cv. Albatros flour doughs spread faster and set later than their cv. Meunier counterparts and, hence, resulted in larger cookie diameters. DS levels negatively affected spread rate during both cv. Albatros (R2=0.68) and cv. Meunier (R2=0.51) cookie baking. SDSEP levels also influenced cookie quality. The use of flour heat-treated to reduce its SDSEP levels to different degrees led to reduction of the set time (R2=0.90). It was deduced that larger gluten polymer sizes limit dough spread time during baking and that, apart from DS level, the SDSEP level is an indicator for cookie flour quality.

  13. Interactions between dodecyl phosphates and hydroxyapatite or tooth enamel: relevance to inhibition of dental erosion.

    PubMed

    Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D

    2014-05-01

    Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Quantitation of yeast total proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer for uniform loading.

    PubMed

    Sheen, Hyukho

    2016-04-01

    Proteins in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer are difficult to quantitate due to SDS and reducing agents being in the buffer. Although acetone precipitation has long been used to clean up proteins from detergents and salts, previous studies showed that protein recovery from acetone precipitation varies from 50 to 100% depending on the samples tested. Here, this article shows that acetone precipitates proteins highly efficiently from SDS-PAGE sample buffer and that quantitative recovery is achieved in 5 min at room temperature. Moreover, precipitated proteins are resolubilized with urea/guanidine, rather than with SDS. Thus, the resolubilized samples are readily quantifiable with Bradford reagent without using SDS-compatible assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution.

    PubMed

    Steinberg, T H; Lauber, W M; Berggren, K; Kemper, C; Yue, S; Patton, W F

    2000-02-01

    SYPRO Tangerine stain is an environmentally benign alternative to conventional protein stains that does not require solvents such as methanol or acetic acid for effective protein visualization. Instead, proteins can be stained in a wide range of buffers, including phosphate-buffered saline or simply 150 mM NaCl using an easy, one-step procedure that does not require destaining. Stained proteins can be excited by ultraviolet light of about 300 nm or with visible light of about 490 nm. The fluorescence emission maximum of the dye is approximately 640 nm. Noncovalent binding of SYPRO Tangerine dye is mediated by sodium dodecyl sulfate (SDS) and to a lesser extent by hydrophobic amino acid residues in proteins. This is in stark contrast to acidic silver nitrate staining, which interacts predominantly with lysine residues or Coomassie Blue R, which in turn interacts primarily with arginine and lysine residues. The sensitivity of SYPRO Tangerine stain is similar to that of the SYPRO Red and SYPRO Orange stains - about 4-10 ng per protein band. This detection sensitivity is comparable to colloidal Coomassie blue staining and rapid silver staining procedures. Since proteins stained with SYPRO Tangerine dye are not fixed, they can easily be eluted from gels or utilized in zymographic assays, provided that SDS does not inactivate the protein of interest. This is demonstrated with in-gel detection of rabbit liver esterase activity using alpha-naphthyl acetate and Fast Blue BB dye as well as Escherichia coli beta-glucuronidase activity using ELF-97 beta-D-glucuronide. The dye is also suitable for staining proteins in gels prior to their transfer to membranes by electroblotting. Gentle staining conditions are expected to improve protein recovery after electroelution and to reduce the potential for artifactual protein modifications such as the alkylation of lysine and esterification of glutamate residues, which complicate interpretation of peptide fragment profiles generated by

  16. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal.

    PubMed

    Takayanagi, Akari; Kobayashi, Maki; Kawase, Yoshinori

    2017-03-01

    Mechanisms for removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in wastewaters by zero-valent iron (ZVI) were systematically examined. The contributions of four removal mechanisms, i.e., reductive degradation, oxidative degradation, adsorption, and precipitation, changed significantly with solution pH were quantified and the effective removal of SDBS by ZVI was found to be attributed to the adsorption capability of iron oxides/hydroxides on ZVI surface at nearly neutral pH instead of the degradation at acidic condition. The fastest SDBS removal rate and the maximum TOC (total organic carbon) removal efficiency were obtained at pH 6.0. The maximum TOC removal at pH 6.0 was 77.8%, and the contributions of degradation, precipitation, and adsorption to TOC removal were 4.6, 14.9, and 58.3%, respectively. At pH 3.0, which is an optimal pH for oxidative degradation by the Fenton reaction, the TOC removal was only 9.8% and the contributions of degradation, precipitation, and adsorption to TOC removal were 2.3, 4.6, and 2.9%, respectively. The electrostatic attraction between dodecyl benzene sulfate anion and the iron oxide/hydroxide layer controlled the TOC removal of SDBS. The kinetic model based on the Langmuir-Hinshelwood/Eley-Rideal approach could successfully describe the experimental results for SDBS removal by ZVI with the averaged correlation coefficient of 0.994. ZVI was found to be an efficient material toward the removal of anionic surfactant at nearly neutral pH under the oxic condition.

  17. Counterion dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic gel digestion of stained protein for mass spectrometry.

    PubMed

    Cong, Wei-Tao; Wang, Xu; Hwang, Sun-Young; Jin, Li-Tai; Choi, Jung-Kap

    2012-01-01

    A fast and matrix-assisted laser desorption/ionization mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, zincon and ethyl violet, to form an ion-pair complex. The protocol, including fixing, staining, and quick washing steps, can be completed in 1-1.5 h, depending upon gel thickness. It has the sensitivity comparable to the colloidal Coomassie Brilliant Blue G stain using phosphoric acid as a component of staining solution (4-8 ng). The counterion dye stain does not induce protein modifications that complicate interpretation of peptide mapping data from mass spectrometry. Considering the speed, sensitivity, and compatibility with mass spectrometry, the counterion dye stain may be more practical than any other dye-based protein stains for routine proteomic researches.

  18. Native and sodium dodecyl sulfate-capillary gel electrophoresis of proteins on a single microchip.

    PubMed

    Tsai, Shuo-Wen; Loughran, Michael; Suzuki, Hiroaki; Karube, Isao

    2004-02-01

    Simultaneous electrophoresis of both native and Sodium dodecyl sulfate (SDS) proteins was observed on a single microchip within 20 min. The capillary array prevented lateral diffusion of SDS components and avoided cross contamination of native protein samples. The planar sputtered electrode format provided a more uniform distribution of separation voltage into each of the 36 parallel microchannel capillaries than platinum wire electrodes commonly used in conventional electrophoresis. The customized geometry of the stacking capillary machined into the cover plate of the microchip facilitated reproducible sample injection without the requirement for stacking gel. Polyimide served as a mask and facilitated insulation of the anode and cathode to prevent electrode lift off and deterioration during continuous electrophoresis, even at a constant current of 8 mA. Improved protein separation was observed during capillary electrophoresis at lower currents. Ferguson plot analysis confirmed the electrophoretic mobility of native globular proteins in accordance with their charge and size. Corresponding Ferguson plot analysis of SDS-associated proteins on the same chip confirmed separation of marker proteins according to their molecular weight.

  19. Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation.

    PubMed

    Hu, Wenbing; Liu, Jianan; Luo, Qun; Han, Yumiao; Wu, Kui; Lv, Shuang; Xiong, Shaoxiang; Wang, Fuyi

    2011-05-30

    Hydrogen/deuterium exchange mass spectrometry (H/DX MS) has become a powerful tool to investigate protein-protein and protein-ligand interactions, but it is still challenging to localize the interaction regions/sites of ligands with pepsin-resistant proteins such as lipocalins. β-Lactoglobulin (BLG), a member of the lipocalin family, can bind a variety of small hydrophobic molecules including retinols, retinoic acids, and long linear fatty acids. However, whether the binding site of linear molecules locates in the external groove or internal cavity of BLG is controversial. In this study we used H/DX MS combined with docking simulation to localize the interaction sites of a tested ligand, sodium dodecyl sulfate (SDS), binding to BLG. H/DX MS results indicated that SDS can bind to both the external and the internal sites in BLG. However, neither of the sites is saturated with SDS, allowing a dynamic ligand exchange to occur between the sites at equilibrium state. Docking studies revealed that SDS forms H-bonds with Lys69 in the internal site and Lys138 and Lys141 in the external site in BLG via the sulfate group, and interacts with the hydrophobic residues valine, leucine, isoleucine and methionine within both of the sites via its hydrocarbon tail, stabilizing the BLG-SDS complex. Copyright © 2011 John Wiley & Sons, Ltd.

  20. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  1. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally...

  2. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  3. 21 CFR 182.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid pyrophosphate. 182.1087 Section 182.1087 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b...

  4. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  5. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  8. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance is...

  10. The Effect of Sodium Dodecyl Sulfate on PEDOT:PSS and Its Application to Organic Photovoltaic Solar Cells.

    PubMed

    Hwang, Ki-Hwan; Seo, Hyeon Jin; Nam, Sang-Hun; Boo, Jin-Hyo

    2015-10-01

    Recently, the use of PSS in flexible device electrodes has been reported. PSS treatment consists of a step in which a small amount of surfactant is added to enhance the adhesion between PSS and the substrate or TCO materials. However, basic research into the effect of the surfactant is lacking. We studied the effects of sodium dodecyl sulfate (SDS) at controlled concentrations in aqueous PSS solution and that it enhanced the conductivity in the mixed thin films with surfactant and PSS. The thin films were prepared by the spin coating method. To study the structural effects on the resulting electrical properties, the thin films were investigated by FE-SEM (Field Emission Scanning Electron Microscopy) and AFM (Atomic Force Microscopy). At the same time, the electrical properties were investigated using a 4-point probe and solar simulator.

  11. Occurrence of photoluminescence and onion like structures decorating graphene oxide with europium using sodium dodecyl sulfate surfactant

    NASA Astrophysics Data System (ADS)

    Cedeño, V. J.; Rangel, R.; Cervantes, J. L.; Lara, J.; Alvarado, J. J.; Galván, D. H.

    2017-07-01

    Graphene oxide decoration with europium was carried out using SDS (sodium dodecyl sulfate) as the surfactant. The reaction was performed in a microwave oven and subsequently underwent thermal treatment under hydrogen flow. The results found in the present work demonstrate that through the use of SDS surfactant aggregates of hemi-cylindrical and onion-like structures could be obtained; which propitiate an enhanced synergistic photoluminescence located at the red wavelength. On the other hand, after thermal treatment the aggregates disappear providing a good dispersion of europium, however a decrease in the photoluminescence signal is observed. The graphene oxide decorated with europium was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier infrared transform spectroscopy (FTIR), RAMAN spectroscopy, x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques, showing the characteristic features of graphene oxide and europium.

  12. Determination of trace tin by solid substrate-room temperature phosphorimetry using sodium dodecyl sulfate as sensitizer

    NASA Astrophysics Data System (ADS)

    Jiaming, Liu; Guohui, Zhu; Tianlong, Yang; Aihong, Wu; Yan, Fu; Longdi, Li

    2003-07-01

    The effects of different surfactants on solid substrate-room temperature phosphorescence (SS-RTP) properties of Sn4+-morin systems were investigated. It was found that the SS-RTP intensity of luminescence system was increased greatly in presence of sodium dodecyl sulfate (SDS). A new highly sensitive method for the determination of trace tin has been proposed based on sensitization of SDS on SS-RTP intensity of morin-tin system on the filter paper substrate. The linear dynamic range of this method is 8.0-112 ag per spot (with the volume of 0.4 μl per spot) with a detection limit of 4.0 ag per spot, and the regression equation is ΔIp=199.7+3.456mSn(IV) (ag per spot), with the correlation coefficient r=0.9998 (n=7). This simple, rapid and reproducible method has been applied to determine the amount of tin in real samples with satisfactory results.

  13. Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin.

    PubMed

    Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar

    2017-02-01

    The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.

  14. Highly selective and sensitive simple sensor based on electrochemically treated nano polypyrrole-sodium dodecyl sulphate film for the detection of para-nitrophenol.

    PubMed

    Arulraj, Abraham Daniel; Vijayan, Muthunanthevar; Vasantha, Vairathevar Sivasamy

    2015-10-29

    An ultrasensitive and highly selective electrochemical sensor for the determination of p-nitrophenol (p-NP) was developed based on electrochemically treated nano polypyrrole/sodium dodecyl sulphate film (ENPPy/SDS film) modified glassy carbon electrode. The nano polypyrrole/sodium dodecyl sulphate film (NPPy/SDS film) was prepared and treated electrochemically in phosphate buffer solution. The surface morphology and elemental analysis of treated and untreated NPPy/SDS film were characterized by FESEM and EDX analysis, respectively. Wettability of polymer films were analysed by contact angle test. The hydrophilic nature of the polymer film decreased after electrochemical treatment. Effect of the pH of electrolyte and thickness of the ENPPy/SDS film on determination of p-NP was optimised by cyclic voltammetry. Under the optimised conditions, the p-NP was determined from the oxidation peak of p-hydroxyaminophenol which was formed from the reduction of p-NP in the reduction segment of cyclic voltammetry. A very good linear detection range (from 0.1 nM to 100 μM) and the best LOD (0.1 nM) were obtained for p-NP with very good selectivity. This detection limit is below to the allowed limit in drinking water, 0.43 μM, proposed by the U.S. Environmental Protection Agency (EPA) and earlier reports. Moreover, ENPPy/SDS film based sensor exhibits high sensitivity (4.4546 μA μM(-1)) to p-NP. Experimental results show that it is a fast and simple sensor for p-NP. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less

  16. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  17. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  18. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  19. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  20. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a device...

  1. Photoionization of N,N,N',N'-tetramethylbenzidine in anionic-cationic mixed micelles of sodium dodecyl sulfate-dodecyltrimethylammonium chloride: electron spin resonance and electron spin echo modulation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivara-Minten, E.; Baglioni, P.; Kevan, L.

    1988-05-05

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less

  2. 21 CFR 182.6085 - Sodium acid phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6085 Sodium acid phosphate. (a) Product. Sodium...

  3. Enzymatic hydrolysis of sodium dodecyl sulphate (SDS)-pretreated newspaper for cellulosic ethanol production by Saccharomyces cerevisiae and Pichia stipitis.

    PubMed

    Xin, Fengxue; Geng, Anli; Chen, Ming Li; Gum, Ming Jun Marcus

    2010-10-01

    Fermentation of enzymatic hydrolysate of waste newspaper was investigated for cellulosic ethanol production in this study. Various nonionic and ionic surfactants were applied for waste newspaper pretreatment to increase the enzymatic digestibility. The surfactant-pretreated newspaper was enzymatically digested in 0.05 M sodium citrate buffer (pH 4.8) with varying solid content, filter paper unit loading (FPU/g newspaper), and ratio of filter paper unit/beta-glucosidase unit (FPU/CBU). Newspaper pretreated with the anionic surfactant sodium dodecyl sulphate (SDS) demonstrated the highest sugar yield. The addition of Tween-80 in the enzymatic hydrolysis process enhanced the enzymatic digestibility of newspaper pretreated with all of the surfactants. Enzymatic hydrolysis of SDS-pretreated newspaper with 15% solid content, 15 FPU/g newspaper, and FPU/CBU of 1:4 resulted in a newspaper hydrolysate conditioning 29.07 g/L glucose and 4.08 g/L xylose after 72 h of incubation at 50 degrees C. The fermentation of the enzymatic hydrolysate with Saccharomyces cerevisiae, Pichia stipitis, and their co-culture produced 14.29, 13.45, and 14.03 g/L of ethanol, respectively. Their corresponding ethanol yields were 0.43, 0.41, and 0.42 g/g.

  4. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  5. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  6. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  7. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  8. 21 CFR 582.1087 - Sodium acid pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Additives § 582.1087 Sodium acid pyrophosphate. (a) Product. Sodium acid pyrophosphate. (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing or...

  9. Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz

    NASA Astrophysics Data System (ADS)

    Kadve, A. M.; Vankar, H. P.; Rana, V. A.

    2017-05-01

    Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.

  10. SFG and SPR Study of Sodium Dodecyl Sulfate Film Assembly on Positively Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Song, Sanghun; Weidner, Tobias; Wagner, Matthew; Castner, David

    2012-02-01

    This study uses sum frequency generation (SFG) vibrational spectroscopy and surface plasmon resonance (SPR) sensing to investigate the structure of sodium dodecyl sulfate (SDS) films formed on positively charged and hydrophilic surfaces. The SPR signals show a good surface coverage suggesting that full monolayer coverage is reached at 1 mM. SFG spectra of SDS adsorbed exhibits well resolved CH3 peaks and OH peaks. At both 0.2 mM and 1 mM SDS concentration the intensity of both the CH3 and OH peaks decreased close to background levels. We found that the loss of SFG signal at 0.2 mM occurs at this concentration independent of surface charge density. It is more likely that the loss of signal is related to structural inhomogeneity induced by a striped phase - stand-up phase transition. This is supported by a distinct change of the relative SFG phase between CH3/OH near 0.2 mM. The second intensity minimum might be related to charge compensation effects. We observed a substrate dependence for the high concentration transition. We also observed distinct SFG signal phase changes for water molecules associated with SDS layers at different SDS solution concentrations indicating that the orientation of bound water changed with SDS surface structure.

  11. Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate

    PubMed Central

    Furmanczyk, Ewa M.; Kaminski, Michal A.; Spolnik, Grzegorz; Sojka, Maciej; Danikiewicz, Witold; Dziembowski, Andrzej; Lipinski, Leszek; Sobczak, Adam

    2017-01-01

    Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of

  12. Coupling Sodium Dodecyl Sulfate–Capillary Polyacrylamide Gel Electrophoresis with MALDI-TOF-MS via a PTFE Membrane

    PubMed Central

    Lu, Joann J.; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-01-01

    Sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS–capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI–TOF–MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  13. Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

    PubMed

    Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A

    2011-07-19

    The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.

  14. Proteomic Analysis of the Human Skin Proteome after In Vivo Treatment with Sodium Dodecyl Sulphate

    PubMed Central

    Parkinson, Erika; Skipp, Paul; Aleksic, Maja; Garrow, Andrew; Dadd, Tony; Hughes, Michael; Clough, Geraldine; O′Connor, C. David

    2014-01-01

    Background Skin has a variety of functions that are incompletely understood at the molecular level. As the most accessible tissue in the body it often reveals the first signs of inflammation or infection and also represents a potentially valuable source of biomarkers for several diseases. In this study we surveyed the skin proteome qualitatively using gel electrophoresis, liquid chromatography tandem mass spectrometry (GeLC-MS/MS) and quantitatively using an isobaric tagging strategy (iTRAQ) to characterise the response of human skin following exposure to sodium dodecyl sulphate (SDS). Results A total of 653 skin proteins were assigned, 159 of which were identified using GeLC-MS/MS and 616 using iTRAQ, representing the most comprehensive proteomic study in human skin tissue. Statistical analysis of the available iTRAQ data did not reveal any significant differences in the measured skin proteome after 4 hours exposure to the model irritant SDS. Conclusions This study represents the first step in defining the critical response to an irritant at the level of the proteome and provides a valuable resource for further studies at the later stages of irritant exposure. PMID:24849295

  15. Use of sodium dodecyl sulfate pretreatment and 2-stage curing for improved quality of salted duck eggs.

    PubMed

    Lian, Zixuan; Qiao, Longshan; Zhu, Guanghong; Deng, Yun; Qian, Bingjun; Yue, Jin; Zhao, Yanyun

    2014-03-01

    The effects of use of sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing on the microbial, physicochemical, and microstructural qualities of salted duck eggs were studied. After pretreatment in 0.5% (w/v) SDS solution at room conditions for 15 min, no discolorations were observed and no microorganisms were detected on the egg shells. In the 2-stage curing process, 25% (w/v) and 30% (w/v) saline solutions were evaluated in the 1st step (Stage I, approximately 18 d), whereas 4% (w/v) saline solution was applied in the 2nd step (Stage II, approximately 15 d). Along with increased curing time, water content decreased and NaCl content increased in the egg yolks from approximately 0.40% to 0.86%, whereas the water content of egg albumen remained at approximately 85% during the 2-stage curing. More importantly, the NaCl content of albumen maintained at approximately 4.0% at Stage II curing. Yolk index as a sign of maturity for salted duck eggs reached 1 at the end of Stage I (18 d) and retained the same value during Stage II curing regardless of the NaCl concentration in the Stage I saline solution. Oil exudation in egg yolks increased as the time of curing increased. As seen from scanning electron microscopy, oil was released from yolk granules. This study indicated that SDS pretreatment is effective to reduce microbial load on the shells of fresh duck eggs and the 2-stage curing can improve physicochemical qualities of the salted duck eggs and shortened curing time to about 7 to 17 d as compared to the traditional 1-step curing method. Spoiled saline solution and uneven distribution of salt are the 2 major problems in producing salted duck eggs. Sodium dodecyl sulfate (SDS) pretreatment and 2-stage curing process have shown effective to solve these problems, respectively. The SDS pretreatment was able to remove microorganisms and soil from the surface of fresh egg shells, thus preventing the spoilage of the saline solution. The 2-stage curing process

  16. Sodium Dodecyl Sulfate-Modified Doxorubicin-Loaded Chitosan-Lipid Nanocarrier with Multi Polysaccharide-Lecithin Nanoarchitecture for Augmented Bioavailability and Stability of Oral Administration In Vitro and In Vivo.

    PubMed

    Su, Chia-Wei; Chiang, Min-Yu; Lin, Yu-Ling; Tsai, Nu-Man; Chen, Yen-Po; Li, Wei-Ming; Hsu, Chin-Hao; Chen, San-Yuan

    2016-05-01

    For oral anti-cancer drug delivery, a new chitosan-lipid nanoparticle with sodium dodecyl sulfate modification was designed and synthesized using a double emulsification. TEM examination showed that the DOX-loaded nanoparticles, termed D-PL/TG NPs, exhibited a unique core-shell configuration composed of multiple amphiphilic chitosan-lecithin reverse micelles as the core and a triglyceride shell as a physical barrier to improve the encapsulation efficiency and reduce the drug leakage. In addition, the D-PL/TG NPs with sodium dodecyl sulfate modification on the surface have enhanced stability in the GI tract and increased oral bioavailability of doxorubicin. In vitro transport studies performed on Caco-2 monolayers indicated that the D-PL/TG NPs enhanced the permeability of DOX in the Caco-2 monolayers by altering the transport pathway from passive diffusion to transcytosis. The in vivo intestinal absorption assay suggested that the D-PL/TG NPs were preferentially absorbed through the specialized membranous epithelial cells (M cells) of the Peyer's patches, resulting in a significant improvement (8-fold) in oral bioavailability compared to that of free DOX. The experimental outcomes in this work demonstrate that the D-PL/TG NPs provide an exciting opportunity for advances in the oral administration of drugs with poor bioavailability that are usually used in treating tough and chronic diseases.

  17. Foam capacity and stability of Sodium Dodecyl Sulfate (SDS) on the presence of contaminant coffee and Cd ions in solution

    NASA Astrophysics Data System (ADS)

    Haryanto, B.; Chang, C. H.; Kuo, A. T.; Siswarni, M. Z.; Sinaga, T. M. A.

    2018-02-01

    In this study, the effect of the coffee colloidal particle and Cd ion contaminant on the foam capacity and stability of sodium dodecyl sulfate (SDS) solution was investigated. The foam was generated by using a foam generator. The foam capacity of SDS was first evaluated at different concentrations. After the foam capacity reaching a constant value, the foam stability was then measured by flowing to a column. The results showed that the presence the coffee colloidal particles or Cd ions in the solution would decrease the foam capacity and stability of SDS. In addition, the decreased foam capacity and stability was more pronounced in the presence of coffee colloidal particles than Cd ions. The colloidal particles may have stronger interaction with SDS and thus reduce the formation of the foam.

  18. Self-aggregation of sodium dodecyl sulfate within (choline chloride + urea) deep eutectic solvent.

    PubMed

    Pal, Mahi; Rai, Rewa; Yadav, Anita; Khanna, Rajesh; Baker, Gary A; Pandey, Siddharth

    2014-11-11

    Deep eutectic solvents (DESs) have shown tremendous promise as green solvents with low toxicity and cost. Understanding molecular aggregation processes within DESs will not only enhance the application potential of these solvents but also help alleviate some of the limitations associated with them. Among DESs, those comprising choline chloride and appropriate hydrogen-bond donors are inexpensive and easy to prepare. On the basis of fluorescence probe, electrical conductivity, and surface tension experiments, we present the first clear lines of evidence for self-aggregation of an anionic surfactant within a DES containing a small fraction of water. Namely, well-defined assemblies of sodium dodecyl sulfate (SDS) apparently form in the archetype DES Reline comprising a 1:2 molar mixture of choline chloride and urea. Significant enhancement in the solubility of organic solvents that are otherwise not miscible in choline chloride-based DESs is achieved within Reline in the presence of SDS. The remarkably improved solubility of cyclohexane within SDS-added Reline is attributed to the presence of spontaneously formed cyclohexane-in-Reline microemulsions by SDS under ambient conditions. Surface tension, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), density, and dynamic viscosity measurements along with responses from the fluorescence dipolarity and microfluidity probes of pyrene and 1,3-bis(1-pyrenyl)propane are employed to characterize these aggregates. Such water-free oil-in-DES microemulsions are appropriately sized to be considered as a new type of nanoreactor.

  19. Partial Characterization of Biosurfactant from Lactobacillus pentosus and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil

    PubMed Central

    Moldes, A. B.; Paradelo, R.; Vecino, X.; Cruz, J. M.; Gudiña, E.; Rodrigues, L.; Teixeira, J. A.; Domínguez, J. M.; Barral, M. T.

    2013-01-01

    The capability of a cell bound biosurfactant produced by Lactobacillus pentosus, to accelerate the bioremediation of a hydrocarbon-contaminated soil, was compared with a synthetic anionic surfactant (sodium dodecyl sulphate SDS-). The biosurfactant produced by the bacteria was analyzed by Fourier transform infrared spectroscopy (FTIR) that clearly indicates the presence of OH and NH groups, C=O stretching of carbonyl groups and NH nebding (peptide linkage), as well as CH2–CH3 and C–O stretching, with similar FTIR spectra than other biosurfactants obtained from lactic acid bacteria. After the characterization of biosurfactant by FTIR, soil contaminated with 7,000 mg Kg−1 of octane was treated with biosurfactant from L. pentosus or SDS. Treatment of soil for 15 days with the biosurfactant produced by L. pentosus led to a 65.1% reduction in the hydrocarbon concentration, whereas SDS reduced the octane concentration to 37.2% compared with a 2.2% reduction in the soil contaminated with octane in absence of biosurfactant used as control. Besides, after 30 days of incubation soil with SDS or biosurfactant gave percentages of bioremediation around 90% in both cases. Thus, it can be concluded that biosurfactant produced by L. pentosus accelerates the bioremediation of octane-contaminated soil by improving the solubilisation of octane in the water phase of soil, achieving even better results than those reached with SDS after 15-day treatment. PMID:23691515

  20. pH-dependent differential interacting mechanisms of sodium dodecyl sulfate with bovine serum fetuin: a biophysical insight.

    PubMed

    Zaidi, Nida; Nusrat, Saima; Zaidi, Fatima Kamal; Khan, Rizwan H

    2014-11-20

    Sodium dodecyl sulfate (SDS)-glycoprotein interaction serves as a model for a biological membrane. To get mechanistic insight into the interaction of SDS and glycoprotein, the effect of SDS on bovine serum fetuin (BSF) was studied in subcritical micellar concentrations at pH 7.4 and pH 2 using multiple approaches. SDS interacts electrostatically with BSF through its negatively charged head groups at pH 2 and hydrophobically via its alkyl chains at pH 7.4 up to a 1:20 molar ratio of BSF to SDS. However, at higher concentrations of SDS, BSF undergoes amyloid fibril formation at pH 2, as confirmed by enhanced ThT fluorescence, β-sheet formation, and TEM microscopy, whereas BSF undergoes induction of an α-helical structure in the presence of higher SDS concentration at pH 7.4. The increase in α-helical content with increasing SDS concentrations constrains the environment around tryptophan. As a consequence, the interconversion of tryptophan conformers decreases, resulting in a decrement of the fluorescence lifetime for BSF in the presence of SDS at pH 7.4.

  1. Platelets to rings: Influence of sodium dodecyl sulfate on Zn-Al layered double hydroxide morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, Ceren; Unal, Ugur; Koc University, Chemistry Department, Rumelifeneri yolu, Sariyer 34450, Istanbul

    2012-03-15

    In the current study, influence of sodium dodecyl sulfate (SDS) on the crystallization of Zn-Al layered double hydroxide (LDH) was investigated. Depending on the SDS concentration coral-like and for the first time ring-like morphologies were obtained in a urea-hydrolysis method. It was revealed that the surfactant level in the starting solution plays an important role in the morphology. Concentration of surfactant equal to or above the anion exchange capacity of the LDH is influential in creating different morphologies. Another important parameter was the critical micelle concentration (CMC) of the surfactant. Surfactant concentrations well above CMC value resulted in ring-like structures.more » The crystallization mechanism was discussed. - Graphical abstract: Dependence of ZnAl LDH Morphology on SDS concentration. Highlights: Black-Right-Pointing-Pointer In-situ intercalation of SDS in ZnAl LDH was achieved via urea hydrolysis method. Black-Right-Pointing-Pointer Morphology of ZnAl LDH intercalated with SDS depended on the SDS concentration. Black-Right-Pointing-Pointer Ring like morphology for SDS intercalated ZnAl LDH was obtained for the first time. Black-Right-Pointing-Pointer Growth mechanism was discussed. Black-Right-Pointing-Pointer Template assisted growth of ZnAl LDH was proposed.« less

  2. A novel three-stage bioreactor for the effective detoxification of sodium dodecyl sulphate from wastewater.

    PubMed

    Ambily, P S; Rebello, Sharrel; Jayachandran, K; Jisha, M S

    2017-10-01

    Anionic surfactants like sodium dodecyl sulphate (SDS), due to its extensive disposal to water bodies cause detrimental effects to the ecosystem. Among the various attempts to reduce the after effects of these toxicants, microbial induced bioremediation serves as a promising strategy. The current study aimed to develop a three stage bioreactor to remediate anionic surfactants in wastewater using effective bacterial isolates. Screening of effective SDS biodegraders led to isolation of Pseudomonas aeruginosa (MTCC 10311). Treatment of synthetic effluent with an immobilized packed bed reactor at a flow rate of 5 mL h -1 resulted in 81 ± 2% SDS eliminations and 70 ± 1% reduction in chemical oxygen demand (COD) in five cycles (6 h per cycle). The hydraulic retention time of the reactor was found to be 6 h. Combinatorial usage of a three stage bioreactor, involving aeration, adsorption with low cost scrap rubber granules and treatment with immobilized Pseudomonas aeruginosa, successfully reduced SDS concentrations and COD of wastewater to 99.8 ± 0.1% and 99 ± 1%, respectively, in 18 h by continuous treatment. Half-life of the three stage bioreactor was 72 h. In addition to reducing the surfactant concentrations, this novel bioreactor could resolve the surfactant associated foaming problems in treatment plants, which make it more unique.

  3. Effects of sodium citrate, citric acid and lactic acid on human blood coagulation.

    PubMed

    Scaravilli, Vittorio; Di Girolamo, Luca; Scotti, Eleonora; Busana, Mattia; Biancolilli, Osvaldo; Leonardi, Patrizia; Carlin, Andrea; Lonati, Caterina; Panigada, Mauro; Pesenti, Antonio; Zanella, Alberto

    2018-05-01

    Citric acid infusion in extracorporeal blood may allow concurrent regional anticoagulation and enhancement of extracorporeal CO 2 removal. Effects of citric acid on human blood thromboelastography and aggregometry have never been tested before. In this in vitro study, citric acid, sodium citrate and lactic acid were added to venous blood from seven healthy donors, obtaining concentrations of 9 mEq/L, 12 mEq/L and 15 mEq/L. We measured gas analyses, ionized calcium (iCa ++ ) concentration, activated clotting time (ACT), thromboelastography and multiplate aggregometry. Repeated measure analysis of variance was used to compare the acidifying and anticoagulant properties of the three compounds. Sodium citrate did not affect the blood gas analysis. Increasing doses of citric and lactic acid progressively reduced pH and HCO 3 - and increased pCO 2 (p<0.001). Sodium citrate and citric acid similarly reduced iCa ++ , from 0.39 (0.36-0.39) and 0.35 (0.33-0.36) mmol/L, respectively, at 9 mEq/L to 0.20 (0.20-0.21) and 0.21 (0.20-0.23) mmol/L at 15 mEq/L (p<0.001). Lactic acid did not affect iCa ++ (p=0.07). Sodium citrate and citric acid similarly incremented the ACT, from 234 (208-296) and 202 (178-238) sec, respectively, at 9 mEq/L, to >600 sec at 15 mEq/L (p<0.001). Lactic acid did not affect the ACT values (p=0.486). Sodium citrate and citric acid similarly incremented R-time and reduced α-angle and maximum amplitude (MA) (p<0.001), leading to flat-line thromboelastograms at 15 mEq/L. Platelet aggregometry was not altered by any of the three compounds. Citric acid infusions determine acidification and anticoagulation of blood similar to lactic acid and sodium citrate, respectively.

  4. Modulation of partition and localization of perfume molecules in sodium dodecyl sulfate micelles.

    PubMed

    Fan, Yaxun; Tang, Haiqiu; Strand, Ross; Wang, Yilin

    2016-01-07

    The influence of perfume molecules on the self-assembly of the anionic surfactant sodium dodecyl sulfate (SDS) and their localization in SDS micelles have been investigated by ζ potential, small angle X-ray scattering (SAXS), one- and two-dimensional NMR and isothermal titration microcalorimetry (ITC). A broad range of perfume molecules varying in octanol/water partition coefficients P are employed. The results indicate that the surface charge, size and aggregation number of the SDS micelles strongly depend on the hydrophobicity/hydrophilicity degree of perfume molecules. Three distinct regions along the log P values are identified. Hydrophilic perfumes (log P < 2.0) partially incorporate into the SDS micelles and do not lead to micelle swelling, whereas hydrophobic perfumes (log P > 3.5) are solubilized close to the end of the hydrophobic chains in the SDS micelles and enlarge the micelles with higher ζ potential and a larger aggregation number. The incorporated fraction and micelle properties show increasing tendency for the perfumes in the intermediate log P region (2.0 < log P < 3.5). Besides, the molecular conformation of perfume molecules also affects these properties. The perfumes with a linear chain structure or an aromatic group can penetrate into the palisade layer and closely pack with the SDS molecules. Furthermore, the thermodynamic parameters obtained from ITC show that the binding of the perfumes in the intermediate log P region is more spontaneous than those in the other two log P regions, and the micellization of SDS with the perfumes is driven by entropy.

  5. Inert Reassessment Document for Gluconic Acid and Sodium Salt

    EPA Pesticide Factsheets

    Gluconic acid and D-gluconic acid are classified as List 3 inert ingredients, sodium gluconate is classified as a List 4B inert ingredient, and D-gluconic acid, sodium salt has not been categorized as to inert ingredient list classification status.

  6. Small angle neutron scattering study of sodium dodecyl sulfate micellar growth driven by addition of a hydrotropic salt.

    PubMed

    Hassan, P A; Fritz, Gerhard; Kaler, Eric W

    2003-01-01

    The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.

  7. Evaluation of BacT/Alert 3D Liquid Culture System for Recovery of Mycobacteria from Clinical Specimens Using Sodium Dodecyl (Lauryl) Sulfate-NaOH Decontamination

    PubMed Central

    Carricajo, A.; Fonsale, N.; Vautrin, A. C.; Aubert, G.

    2001-01-01

    A total of 52 mycobacterial isolates were recovered from 1,197 clinical specimens decontaminated by a sodium dodecyl (lauryl) sulfate (SDS)-NaOH protocol. Of these, 94% were recovered with the BacT/Alert 3D system (Organon Teknika, Durham, N.C.) and 79% were recovered on Löwenstein-Jensen (LJ) medium. Mean times to detection of organisms of the Mycobacterium tuberculosis complex (n = 47) were 22.8 days with LJ medium and 16.2 days with the system. The BacT/Alert 3D system is a rapid and efficient detection system which can be used with an SDS-NaOH decontamination procedure. PMID:11574623

  8. Appearance of Sodium Dodecyl Sulfate-Stable Amyloid β-Protein (Aβ) Dimer in the Cortex During Aging

    PubMed Central

    Enya, Miho; Morishima-Kawashima, Maho; Yoshimura, Masahiro; Shinkai, Yasuhisa; Kusui, Kaoru; Khan, Karen; Games, Dora; Schenk, Dale; Sugihara, Shiro; Yamaguchi, Haruyasu; Ihara, Yasuo

    1999-01-01

    We previously noted that some aged human cortical specimens containing very low or negligible levels of amyloid β-protein (Aβ) by enzyme immunoassay (EIA) provided prominent signals at 6∼8 kd on the Western blot, probably representing sodium dodecyl sulfate (SDS)-stable Aβ dimer. Re-examination of the specificity of the EIA revealed that BAN50- and BNT77-based EIA, most commonly used for the quantitation of Aβ, capture SDS-dissociable Aβ but not SDS-stable Aβ dimer. Thus, all cortical specimens in which the levels of Aβ were below the detection limits of EIA were subjected to Western blot analysis. A fraction of such specimens contained SDS-stable dimer at 6∼8 kd, but not SDS-dissociable Aβ monomer at ∼4 kd, as judged from the blot. This Aβ dimer is unlikely to be generated after death, because (i) specimens with very short postmortem delay contained the Aβ dimer, and (ii) until 12 hours postmortem, such SDS-stable Aβ dimer is detected only faintly in PDAPP transgenic mice. The presence of Aβ dimer in the cortex may characterize the accumulation of Aβ in the human brain, which takes much longer than that in PDAPP transgenic mice. PMID:9916941

  9. Acid tolerance and acid shock response of Escherichia coli O157:H7 and non-O157:H7 isolates provide cross protection to sodium lactate and sodium chloride.

    PubMed

    Garren, D M; Harrison, M A; Russell, S M

    1998-02-01

    The survival of Escherichia coli O157:H7 and non-O157:H7 due to an enhanced acid tolerance response (ATR), and enhanced acid shock response (ASR), or the stationary phase protective system when exposed to lactic acid and the resulting cross protection against increased concentration of sodium chloride and sodium lactate was studied. Escherichia coli O157:H7 isolates (1932 and 009) and a non-O157:H7 strain (ATCC 23716) were grown to stationary phase at 32 degrees C and O157:H7 to one of two treatments in an attempt to either acid shock or acid adapt the survivors. Acid shocked cells were exposed to lactic acid at pH 4.0. Acid-adapted cells were first exposed to a pH of 5.5 and then an acid challenge of pH 4.0. Sodium lactate (10%, 20%, or 30%) or sodium chloride (5%, 10%, or 15%) were added to a minimal glucose medium after the acidification treatment. When acid shocked and acid adapted isolate 932 and strain ATCC 23716 tolerated the elevated levels of sodium lactate, and the strain ATCC 23716 tolerated the elevated levels of sodium chloride. Acid adaption allowed isolate 932 to tolerate higher levels of sodium chloride; however, the acid shocking did not provide the same protection. Neither of the acid treatment provided increased tolerance to sodium chloride for isolate E009. Evidence of cross protection against acid and sodium chloride or acid and sodium lactate in E. coli O157:H7 could point to a need for further evaluation of whether these combinations of preservation means are sufficient to control this pathogen.

  10. Comparison of microenvironments of aqueous sodium dodecyl sulfate micelles in the presence of inorganic and organic salts: a time-resolved fluorescence anisotropy approach.

    PubMed

    Dutt, G B

    2005-11-08

    Microenvironments of aqueous sodium dodecyl sulfate (SDS) micelles was examined in the presence of additives such as sodium chloride and p-toluidine hydrochloride (PTHC) by monitoring the fluorescence anisotropy decays of two hydrophobic probes, 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and coumarin 6 (C6). It has been well-established that SDS micelles undergo a sphere-to-rod transition and that their mean hydrodynamic radius increases from 19 to 100 A upon the addition of 0.0-0.7 M NaCl at 298 K. A similar size and shape transition is induced by PTHC at concentrations that are 20 times lower compared to that of NaCl. This study was undertaken to find out how the microviscosity of the micelles is influenced under these circumstances. It was noticed that the microviscosity of the SDS/NaCl system increased by approximately 45%, whereas there was a less than 10% variation in the microviscosity of the SDS/PTHC system. The large increase in the microviscosity of the former system with salt concentration has been rationalized on the basis of the high concentration of sodium ions in the headgroup region of the micelles and their ability to strongly coordinate with the water present in this region, which decreases the mobility of the probe molecules.

  11. Simultaneous separation and determination of praeruptorin A, B and C by micellar electrokinetic chromatography using sodium dodecyl sulphate and sodium cholate as mixed micelles.

    PubMed

    Chen, Meng; Chang, Ruimiao; Xu, Liying; Huang, Yayun; Zhang, Hongfen; Chen, Anjia

    2018-02-02

    Praeruptorin A, B and C are major bioactive constituents in Peucedani Radix. They display anti-inflammatory effect, anti-hypertension effect, antiplatelet aggregation, potential anti-cancer activities and so on. They are worthy of investigation as potentially novel and versatile drugs. To develop a method using micellar electrokinetic chromatography (MEKC) for the application in simultaneously separation and determination of praeruptorin A, B and C from Peucedani Radix and its medicinal preparations. Method optimisation was carried out by investigating influences of significant factors on the separation. The method was subjected to validation. The determination of praeruptorin A, B and C in Peucedani Radix and its drug formulations was accomplished by the developed method. The optimal separation condition was 20 mM borate buffer containing 40 mM sodium cholate (SC), 22 mM sodium dodecyl sulphate (SDS) and 25% (v/v) acetonitrile (pH 10.00); 15 kV of voltage; 25°C of temperature; detection at 224 nm. Under this condition, three analytes were baseline separated within 16 min. A good linearity was obtained with correlation coefficients from 0.9988 to 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.50 to 0.80 μg/mL and from 1.50 to 2.50 μg/mL, respectively. The recoveries ranged between 95.3% and 103.4%. The proposed method has been successfully applied to the simultaneous determination of praeruptorin A, B and C in Peucedani Radix and its pharmaceutical preparations. Additionally, it could be a potential alternative to the quality control of Peucedani Radix. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Effect of different concentrations of sodium dodecyl sulfate and additional anionic surfactant on properties of low protein natural rubber latex

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurulhuda; Manaf, Siti Nor Qamarina; Hassan, Aziana Abu

    2017-12-01

    This paper describes the chemical deproteinization process of natural rubber latex (NRL) using chemical denaturants namely urea and sodium dodecyl sulfate (SDS). Commercial high ammoniated natural rubber latex (HANRL) was incubated with both denaturants - urea and SDS for selected period of time before centrifugation and characterization. The role of SDS in NRL deproteinization process was further elucidated by manipulating the concentration of SDS at 0.3 phr and 0.5 phr during the incubation process. It was found that the physical properties of NRL especially stability, were governed by the amount of SDS, whereby higher concentration of SDS used led to greater NRL stability. However, too much concentration of SDS in the system might cause detrimental effect on the properties of low protein NRL. The effects of additional anionic surfactant namely potassium laurate on the physical properties of low protein NRL and its stabilization were also scrutinized. Characterizations include nitrogen determination by Kjeldahl method, zeta potential, and morphological analysis by Field Emission Scanning Electron Microscopy (FESEM).

  13. Quantitation of antihistamines in pharmaceutical preparations by liquid chromatography with a micellar mobile phase of sodium dodecyl sulfate and pentanol.

    PubMed

    Gil-Agustí, M; Monferrer-Pons, L; Esteve-Romero, J; García-Alvarez-Coque, M C

    2001-01-01

    A reversed-phase liquid chromatographic procedure with a micellar mobile phase of sodium dodecyl sulfate (SDS), containing a small amount of pentanol, was developed for the control of 7 antihistamines of diverse action in pharmaceutical preparations (tablets, capsules, powders, solutions, and syrups): azatadine, carbinoxamine, cyclizine, cyproheptadine, diphenhydramine, doxylamine, and tripelennamine. The retention times of the drugs were <9 min with a mobile phase of 0.15M SDS-6% (v/v) pentanol. The recoveries with respect to the declared compositions were in the range of 93-110%, and the intra- and interday repeatabilities and interday reproducibility were <1.2%. The results were similar to those obtained with a conventional 60 + 40 (v/v) methanol-water mixture, with the advantage of reduced toxicity, flammability, environmental impact, and cost of the micellar-pentanol solutions. The lower risk of evaporation of the organic solvent dissolved in the micellar solutions also increased the stability of the mobile phase.

  14. A comparative study of sodium dodecyl sulfate and freezing/thawing treatment on wheat starch: The role of water absorption.

    PubMed

    Tao, Han; Wang, Pei; Zhang, Bao; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-06-05

    The effect of freezing on functionality of native and sodium dodecyl sulfate (SDS)-treated wheat starches was investigated, with the aim of understanding the role of water absorption during freezing process. SDS is one of most efficient detergents to remove non-starch components (such as proteins and lipids) for starches but does not cause any apparent damage on granular structure. Slow swelling could be converted to rapid swelling by SDS washing, indicating higher water absorption. Freezing process induced slight roughness on starch granules but the non-starch components content was little affected. Combined SDS+freezing treatment significantly decreased both amylose and proteins non-starch components contents, which was accompanied with high gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from SDS+freezing-treated starches while the crumb firmness significantly increased (p<0.05). SDS mainly extracted the surface components from starch granules, leading to high water absorption and making granules sensitive to the freezing treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of Microheterogeneous Environments of Sodium Dodecyl Sulfate on the Kinetics of Oxidation of l-Serine by Chloro and Chlorohydroxo Complexes of Gold(III).

    PubMed

    Maiti, Krishnendu; Sen, Pratik K; Barik, Anil K; Pal, Biswajit

    2018-06-21

    The oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III) was spectrophotometrically investigated in acidic buffer media in the absence and presence of the anionic surfactant sodium dodecyl sulfate (SDS). The oxidation rate decreases with increase in either [H + ] or [Cl - ]. Gold(III) complex species react with the zwitterionic form of serine to yield acetaldehyde (principal reaction product) through oxidative decarboxylation and subsequent deamination processes. A reaction pathway involving one electron transfer from serine to Au(III) followed by homolytic cleavage of α-C-C bond with the concomitant formation of iminic cation intermediate has been proposed where Au(III) is initially reduced to Au(II). The surfactant in the submicellar region exhibits a catalytic effect on the reaction rate at [SDS] ≤ 4 mM; however, in the postmicellar region an inhibitory effect was prominent at [SDS] ≥ 4 mM. The catalytic effect below the critical micelle concentration (cmc) may be attributable to the electrostatic attraction between serine and SDS that, in turn, enhances the nucleophilicity of the carboxylate ion of the amino acid. The inhibition effect beyond cmc has been explained by considering the distribution of the reactant species between the aqueous and the micellar pseudophases that restricts the close association of the reactant species. The thermodynamic parameters Δ H 0 and Δ S 0 associated with the binding between serine and SDS micelle were calculated to be -14.4 ± 2 kJ mol -1 and -6.3 ± 0.5 J K -1 mol -1 , respectively. Water structure rearrangement and micelle-substrate binding play instrumental roles during the transfer of the reactant species from aqueous to micellar pseudophase.

  16. Adsorption of mixtures of poly(amidoamine) dendrimers and sodium dodecyl sulfate at the air-water interface.

    PubMed

    Arteta, Marianna Yanez; Campbell, Richard A; Nylander, Tommy

    2014-05-27

    We relate the adsorption from mixtures of well-defined poly(amidoamine) (PAMAM) dendrimers of generations 4 and 8 with sodium dodecyl sulfate (SDS) at the air-water interface to the bulk solution properties. The anionic surfactant shows strong attractive interactions with the cationic dendrimers at pH 7, and electrophoretic mobility measurements indicate that the association is primarily driven by electrostatic interactions. Optical density measurements highlight the lack of colloidal stability of the formed bulk aggregates at compositions close to charge neutrality, the time scale of which is dependent on the dendrimer generation. Adsorption at the air-water interface was followed from samples immediately after mixing using a combination of surface tension, neutron reflectometry, and ellipsometry measurements. In the phase separation region for dendrimers of generation 4, we observed high surface tension corresponding to a depleted surfactant solution but only when the aggregates carried an excess of surfactant. Interestingly, these depleted adsorption layers contained spontaneously adsorbed macroscopic aggregates, and these embedded particles do not rearrange to spread monomeric material at the interface. These findings are discussed in relation to the interfacial properties of mixtures involving dendrimers of generation 8 as well as polydisperse linear and hyperbranched polyelectrolytes where there is polyelectrolyte bound to a surfactant monolayer. The results presented here demonstrate the capability of dendrimers to sequester anionic surfactants in a controllable manner, with potential applications as demulsification and antifoaming agents.

  17. Biodegradation of resin acid sodium salts

    Treesearch

    Richard W. Hemingway; H. Greaves

    1973-01-01

    The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...

  18. Thermochemistry of the Dissolution of Dipeptides Containing DL-α-Alanine in Aqueous Solutions of Sodium Dodecyl Sulfate at 298.15 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2018-05-01

    Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0-0.07 mol kg-1 and temperature T = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (Δsol H m ) and the transfer of dipeptides (Δtr H m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of Δsol H m and Δtr H m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion-ion, ion-polar, and hydrophobic-hydrophobic interactions between SDS and dipeptide molecules.

  19. Biochemical analysis of human milk treated with sodium dodecyl sulfate, an alkyl sulfate microbicide that inactivates human immunodeficiency virus type 1.

    PubMed

    Hartmann, Sandra Urdaneta; Wigdahl, Brian; Neely, Elizabeth B; Berlin, Cheston M; Schengrund, Cara-Lynne; Lin, Hung-Mo; Howett, Mary K

    2006-02-01

    Reduction of transmission of human immunodeficiency virus type 1 (HIV-1) through human milk is needed. Alkyl sulfates such as sodium dodecyl sulfate (SDS) are microbicidal against HIV-1 at low concentrations, have little to no toxicity, and are inexpensive. The authors have reported that treatment of HIV-1-infected human milk with < or = 1% (10 mg/mL) SDS for 10 minutes inactivates cell-free and cell-associated virus. The SDS can be removed with a commercially available resin after treatment without recovery of viral infectivity. In this article, the authors report results of selective biochemical analyses (ie, protein, immunoglobulins, lipids, cells, and electrolytes) of human milk subjected to SDS treatment and removal. The SDS treatment or removal had no significant effects on the milk components studied. Therefore, the use of alkyl sulfate microbicides to treat milk from HIV-1-positive women may be a simple, practical, and nutritionally sound way to prevent or reduce transmission of HIV-1 while still feeding with mother's own milk.

  20. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  1. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex.

    PubMed

    Berggren, K; Chernokalskaya, E; Steinberg, T H; Kemper, C; Lopez, M F; Diwu, Z; Haugland, R P; Patton, W F

    2000-07-01

    SYPRO Ruby dye is a permanent stain comprised of ruthenium as part of an organic complex that interacts noncovalently with proteins. SYPRO Ruby Protein Gel Stain provides a sensitive, gentle, fluorescence-based method for detecting proteins in one-dimensional and two-dimensional sodium dodecyl sulfate-polyacrylamide gels. Proteins are fixed, stained from 3h to overnight and then rinsed in deionized water or dilute methanol/acetic acid solution for 30 min. The stain can be visualized using a wide range of excitation sources commonly used in image analysis systems including a 302 nm UV-B transilluminator, 473 nm second harmonic generation (SHG) laser, 488 nm argon-ion laser, 532 nm yttrium-aluminum-garnet (YAG) laser, xenon arc lamp, blue fluorescent light bulb or blue light-emitting diode (LED). The sensitivity of SYPRO Ruby Protein Gel Stain is superior to colloidal Coomassie Brilliant Blue (CBB) stain or monobromobimane labeling and comparable with the highest sensitivity silver or zinc-imidazole staining procedures available. The linear dynamic range of SYPRO Ruby Protein Gel stain extends over three orders of magnitude, which is vastly superior to silver, zinc-imidazole, monobromobimane and CBB stain. The fluorescent stain does not contain superfluous chemicals (formaldehyde, glutaraldehyde, Tween-20) that frequently interfere with peptide identification in mass spectrometry. While peptide mass profiles are severely altered in protein samples prelabeled with monobromobimane, successful identification of proteins by peptide mass profiling using matrix-assisted laser desorption/ionization mass spectrometry was easily performed after protein detection with SYPRO Ruby Protein Gel stain.

  2. Dietary Sodium Modifies Serum Uric Acid Concentrations in Humans.

    PubMed

    Todd, Alwyn S; Walker, Robert J; MacGinley, Robert J; Kelly, Jaimon; Merriman, Tony R; Major, Tanya J; Johnson, Richard J

    2017-11-06

    Subjects with hypertension are frequently obese or insulin resistant, both conditions in which hyperuricemia is common. Obese and insulin-resistant subjects are also known to have blood pressure that is more sensitive to changes in dietary sodium intake. Whether hyperuricemia is a resulting consequence, moderating or contributing factor to the development of hypertension has not been fully evaluated and very few studies have reported interactions between sodium intake and serum uric acid. We performed further analysis of our randomized controlled clinical trials (Australian New Zealand Clinical Trials Registry #12609000161224 and #12609000292279) designed to assess the effects of modifying sodium intake on concentrations of serum markers, including uric acid. Uric acid and other variables (including blood pressure, renin, and aldosterone) were measured at baseline and 4 weeks following the commencement of low (60 mmol/day), moderate (150 mmol/day), and high (200-250 mmol/day) dietary sodium intake. The median aldosterone-to-renin ratio was 1.90 [pg/ml]/[pg/ml] (range 0.10-11.04). Serum uric acid fell significantly in both the moderate and high interventions compared to the low sodium intervention. This pattern of response occurred when all subjects were analyzed, and when normotensive or hypertensive subjects were analyzed alone. Although previously reported in hypertensive subjects, these data provide evidence in normotensive subjects of an interaction between dietary sodium intake and serum uric acid. As this interaction is present in the absence of hypertension, it is possible it could play a role in hypertension development, and will need to be considered in future trials of dietary sodium intake. The trials were registered with the Australian and New Zealand Clinical Trials Registry as ACTRN12609000161224 and ACTRN1260. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Bacteria and Acidic Drainage from Coal Refuse: Inhibition by Sodium Lauryl Sulfate and Sodium Benzoate

    PubMed Central

    Dugan, Patrick R.; Apel, William A.

    1983-01-01

    The application of an aqueous solution of sodium lauryl sulfate and sodium benzoate to the surface of high-sulfur coal refuse resulted in the inhibition of iron-and sulfur-oxidizing chemoautotrophic bacteria and in the decrease of acidic drainage from the refuse, suggesting that acid drainage can be abated in the field by inhibiting iron- and sulfur-oxidizing bacteria. PMID:16346347

  4. The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium dodecyl sulfate (SDS) systems and the resulting changes to crystal structure, shape and the kinetics of crystal growth.

    PubMed

    Summerton, Emily; Hollamby, Martin J; Zimbitas, Georgina; Snow, Tim; Smith, Andrew J; Sommertune, Jens; Bettiol, Jeanluc; Jones, Christopher; Britton, Melanie M; Bakalis, Serafim

    2018-05-19

    At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N-dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. The presence of DDAO lowered the crystallisation temperature of a 20 wt% SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H 2 O or SDS·H 2 O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H 2 O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation. Copyright © 2018. Published by Elsevier Inc.

  5. [Study on THz spectra and vibrational modes of benzoic acid and sodium Benzoate].

    PubMed

    Zheng, Zhuan-Ping; Fan, Wen-Hui; Yan, Hui; Liu, Jia; Xu, Li-Min

    2013-03-01

    Terahertz time-domain spectroscopy was employed to measure the terahertz absorption spectra of benzoic acid and sodium benzoate at room temperature. The origins of the measured features of benzoic acid were summarized based on previous study. Density functional theory was used to compute and analyze the molecular structure and vibrational modes of sodium benzoate in monomer. Based on the obtained results, the authors found that the THz spectral features can be used to distinguish benzoic acid and sodium benzoate totally; the essential reason for the THz spectral difference between benzoic acid and sodium benzoate is that the electrovalent bond of sodium benzoate affects the values of covalent bond lengths and bond angles, as well as the molecular interactions and arrangement in unit cell; the measured features of benzoic acid and sodium benzoate come from the collective vibrations except the peaks located at 107 cm-1 of benzoic acid and 54 cm-1 of sodium benzoate.

  6. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction..., reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly... from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with...

  7. Computed phase diagrams for the system: Sodium hydroxide-uric acid-hydrochloric acid-water

    NASA Astrophysics Data System (ADS)

    Brown, W. E.; Gregory, T. M.; Füredi-Milhofer, H.

    1987-07-01

    Renal stone formation is made complex by the variety of solid phases that are formed, by the number of components in the aqueous phase, and by the multiplicity of ionic dissociation and association processes that are involved. In the present work we apply phase diagrams calculated by the use of equilibrium constants from the ternary system sodium hydroxide-uric acid-water to simplify and make more rigorous the understanding of the factors governing dissolution and precipitation of uric acid (anhydrous and dihydrate) and sodium urate monohydrate. The system is then examined in terms of four components. Finally, procedures are described for fluids containing more than four components. The isotherms, singular points, and fields of supersaturation and undersaturation are shown in various forms of phase diagrams. This system has two notable features: (1) in the coordinates -log[H 2U] versus -log[NaOH], the solubility isotherms for anhydrous uric acid and uric acid dihydrate approximate straight lines with slopes equal to +1 over a wide range of concentrations. As a result, substantial quantities of sodium acid urate monohydrate can precipitate from solution or dissolve without changing the degree of saturation of uric acid significantly. (2) The solubility isotherm for NaHU·H 2O has a deltoid shape with the low-pH branch having a slope of infinity. As a result of the vertical slope of this isotherm, substantial quantities of uric acid can dissolve or precipitate without changing the degree of saturation of sodium acid urate monohydrate significantly. The H 2U-NaOH singular point has a pH of 6.87 at 310 K in the ternary system.

  8. A new insight on the dynamics of sodium dodecyl sulfate aqueous micellar solutions by dielectric spectroscopy.

    PubMed

    Lanzi, Leandro; Carlà, Marcello; Lanzi, Leonardo; Gambi, Cecilia M C

    2009-02-01

    Aqueous sodium dodecyl sulfate micellar solutions were investigated by a recently developed double-differential dielectric spectroscopy technique in the frequency range 100 MHz-3 GHz at 22 degrees C, in the surfactant concentration range 29.8-524 mM, explored for the first time above 104 mM. The micellar contribution to dielectric spectra was analyzed according to three models containing, respectively, a single Debye relaxation, a Cole-Cole relaxation and a double Debye relaxation. The single Debye model is not accurate enough. Both Cole-Cole and double Debye models fit well the experimental dielectric spectra. With the double Debye model, two characteristic relaxation times were identified: the slower one, in the range 400-900 ps, is due to the motion of counterions bound to the micellar surface (lateral motion); the faster one, in the range 100-130 ps, is due to interfacial bound water. Time constants and amplitudes of both processes are in fair agreement with Grosse's theoretical model, except at the largest concentration values, where interactions between micelles increase. For each sample, the volume fraction of bulk water and the effect of bound water as well as the conductivity in the low frequency limit were computed. The bound water increases as the surfactant concentration increases, in quantitative agreement with the micellar properties. The number of water molecules per surfactant molecule was also computed. The conductivity values are in agreement with Kallay's model over the whole surfactant concentration range.

  9. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    PubMed

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Interaction of sodium dodecyl sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts.

    PubMed

    Fish, Wayne W

    2006-10-18

    The properties of plant-derived precipitates of watermelon lycopene were examined in aqueous sodium dodecyl sulfate (SDS) as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% were found to increase the water solubility of lycopene in the state in which it was isolated from watermelon. Electron microscopy and chemical analyses suggested that the watermelon lycopene as isolated is packaged inside a membrane to form a chromoplast. Spectral peaks in the visible region of the watermelon chromoplasts in SDS exhibited a bathochromic shift from those in organic solvent. Watermelon chromoplasts in SDS exhibited pronounced circular dichroic activity in the visible region. Binding measurements indicated that about 120 molecules of SDS were bound per molecule of lycopene inside the chromoplast; likely, the detergent molecules are bound to the chromoplast membrane. Around 80% of the chromoplast-SDS complexes were retained on a 0.45 mum membrane filter. Together, these observations are consistent with lycopene in a J-type chiral arrangement inside a membrane to form a chromoplast. The binding of SDS molecules to the chromoplast membrane form a complex that is extensively more water-soluble than the chromoplast alone.

  11. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    PubMed Central

    Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  12. Influence of sodium dodecyl sulfate on swelling, erosion and release behavior of HPMC matrix tablets containing a poorly water-soluble drug.

    PubMed

    Zeng, Aiguo; Yuan, Bingxiang; Fu, Qiang; Wang, Changhe; Zhao, Guilan

    2009-01-01

    The effect of sodium dodecyl sulfate (SDS) on the swelling, erosion and release behavior of HPMC matrix tablets was examined. Swelling and erosion of HPMC matrix tablets were determined by measuring the wet and subsequent dry weights of matrices. The rate of uptake of the dissolution medium by the matrix was quantified using a square root relationship whilst the erosion of the polymer was described using the cube root law. The extent of swelling decreased with increasing SDS concentrations in the dissolution medium but the rate of erosion was found to follow a reverse trend. Such phenomena might have been caused by the attractive hydrophobic interaction between HPMC and SDS as demonstrated by the cloud points of the solutions containing both the surfactant and polymer. Release profiles of nimodipine from HPMC tablets in aqueous media containing different concentrations of SDS were finally studied. Increasing SDS concentrations in the medium was shown to accelerate the release of nimodipine from the tablets, possibly due to increasing nimodipine solubility and increasing rate of erosion by increasing SDS concentrations in the dissolution medium.

  13. Stress responses of duckweed (Lemna minor L.) and water velvet (Azolla filiculoides Lam.) to anionic surfactant sodium-dodecyl-sulphate (SDS).

    PubMed

    Forni, C; Braglia, R; Harren, F J M; Cristescu, S M

    2012-04-01

    Surfactants are used for several purposes and recently they have attracted the attention for their ability to modify the behavior of other preexistent or co-disposed contaminants, although their use or discharge in wastewaters can represent a real or potential risk for the environment. Lemna minor L. and Azolla filiculoides Lam. are floating aquatic macrophytes, very effective in accumulating several pollutants including sodium dodecyl sulphate (SDS). In this work we evaluated the effects of SDS on these species by determining the stress ethylene production via laser-based trace gas detection, and the activities of enzymes involved in stress response, such as guaiacol peroxidase (G-POD), phenylalanine ammonia-lyase (PAL) and polyphenol-oxidase (PPO). Phenolics content was also determined. The macrophytes were treated with different concentrations of SDS for one week. SDS affected duckweed enzymatic activities and phenol content. While in the fern phenolics amount, PAL, G-POD and PPO activities were not affected by SDS except for 100 ppm SDS, the only concentration that was taken up and not completely degraded. Stress ethylene production was induced only in the fern treated with 50 and 100 ppm SDS. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-01

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  15. Influence of age on the correlations of hematological and biochemical variables with the stability of erythrocyte membrane in relation to sodium dodecyl sulfate.

    PubMed

    de Freitas, Mariana V; Marquez-Bernardes, Liandra F; de Arvelos, Letícia R; Paraíso, Lara F; Gonçalves E Oliveira, Ana Flávia M; Mascarenhas Netto, Rita de C; Neto, Morun Bernardino; Garrote-Filho, Mario S; de Souza, Paulo César A; Penha-Silva, Nilson

    2014-10-01

    To evaluate the influence of age on the relationships between biochemical and hematological variables and stability of erythrocyte membrane in relation to the sodium dodecyl sulfate (SDS) in population of 105 female volunteers between 20 and 90 years. The stability of RBC membrane was determined by non-linear regression of the dependency of the absorbance of hemoglobin released as a function of SDS concentration, represented by the half-transition point of the curve (D50) and the variation in the concentration of the detergent to promote lysis (dD). There was an age-dependent increase in the membrane stability in relation to SDS. Analyses by multiple linear regression showed that this stability increase is significantly related to the hematological variable red cell distribution width (RDW) and the biochemical variables blood albumin and cholesterol. The positive association between erythrocyte stability and RDW may reflect one possible mechanism involved in the clinical meaning of this hematological index.

  16. Effects of sodium dodecyl sulfate on the conformation and hemolytic activity of St I and St II, two isotoxins purified from Stichodactyla helianthus.

    PubMed

    Lanio, M E; Alvarez, C; Pazos, F; Martinez, D; Martínez, Y; Casallanovo, F; Abuin, E; Schreier, S; Lissi, E

    2003-01-01

    The effect of sodium dodecyl sulfate (SDS) upon the conformation and hemolytic activity of St I and St II strongly depends on its concentration. At relatively low surfactant concentrations (ca. 0.5-5mM range) the surfactant leads to the formation of aggregates, as suggested by the turbidity observed even at relatively low (micromolar range) protein concentrations. In this surfactant range, the proteins show an increase in intrinsic fluorescence intensity and reduced quenching by acrylamide, with an almost total loss of its hemolytic activity. At higher surfactant concentrations the protein adducts disaggregates. This produces a decrease in fluorescence intensity, increase in quenching efficiency by acrylamide, loss of the native tertiary conformation (as reported by the near UV-CD spectra), and increase in alpha-helix content (as evidenced by the far UV-CD spectra). However, and in spite of these substantial changes, the toxins partially recover their hemolytic activity. The reasons for this recovering of the activity at high surfactant concentrations is discussed.

  17. Study on glutathionesulfonic acid sodium salt as biodistribution promoter for thiopental sodium.

    PubMed

    Ohkawa, Yuhsuke; Fujimoto, Tomonori; Higashiyama, Kyohko; Maeda, Hiroshi; Asoh, Tomoyuki; Kurumi, Masateru; Sasaki, Kenji; Nakayama, Taiji

    2002-06-01

    The effects of glutathione (GSH) and glutathionesulfonic acid sodium salt [N-(N-gamma-L-glutamyl-L-beta-sulfoalanyl)glycine sodium salt, GSO3Na], which is a minor metabolite of GSH, on the pharmacokinetics of thiopental sodium were investigated in rats. The concomitant use of GSO3Na with thiopental sodium significantly increased the tissue-to-plasma concentration ratio (Kp) of thiopental sodium 60 min after its administration in the heart, lung, brain, liver, kidney, and spleen, while GSH did not affect them. On the other hand, the Kp value of thiopental sodium 5 min after its administration with concomitant GSO3Na decreased significantly only in the spleen. Neither GSO3Na nor GSH changes the pharmacokinetic parameters of thiopental sodium. Significant change of the binding ratio of thiopental sodium to bovine serum albumin (BSA) was not observed by the addition of less than 5-fold GSO3Na. About 50% of thiopental sodium was bound to the brain, lung or liver, however, no significant change of this binding ratio was observed by the concomitant use of GSO3Na. The partition coefficient of thiopental sodium apparently increased by the concomitant use of GSO3Na but not by GSH. This phenomenon seemed to be concerned with a mechanism to increase the Kp values of thiopental sodium in the tissues. The increment in the drug distribution to tissues with concomitant GSO3Na observed in this study is useful information for the application of drug combinations as a biodistribution promoter.

  18. Safety Assessment of Formic Acid and Sodium Formate as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-11-01

    Formic acid functions as a fragrance ingredient, preservative, and pH adjuster in cosmetic products, whereas sodium formate functions as a preservative. Because of its acidic properties, formic acid is a dermal and ocular irritant. However, when used as a pH adjuster in cosmetic formulations, formic acid will be neutralized to yield formate salts, for example, sodium formate, thus minimizing safety concerns. Formic acid and sodium formate have been used at concentrations up to 0.2% and 0.34%, respectively, with hair care products accounting for the highest use concentrations of both ingredients. The low use concentrations of these ingredients in leave-on products and uses in rinse-off products minimize concerns relating to skin/ocular irritation or respiratory irritation potential. The Cosmetic Ingredient Review Expert Panel concluded that formic acid and sodium formate are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating. © The Author(s) 2016.

  19. Titration of Monoprotic Acids with Sodium Hydroxide Contaminated by Sodium Carbonate.

    ERIC Educational Resources Information Center

    Michalowski, Tadeusz

    1988-01-01

    Discusses the effects of using carbon dioxide contaminated sodium hydroxide solution as a titrant for a solution of a weak monoprotic acid and the resulting distortion of the titration curve in comparison to one obtained when an uncontaminated titrant is used. (CW)

  20. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2008-03-13

    We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

  1. Impact of model perfume molecules on the self-assembly of anionic surfactant sodium dodecyl 6-benzene sulfonate.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig; Grillo, Isabelle

    2013-03-12

    The impact of two model perfumes with differing degrees of hydrophobicity/hydrophilicity, linalool (LL) and phenylethanol (PE), on the solution structure of anionic surfactant sodium dodecyl 6-benzene sulfonate, LAS-6, has been studied by small angle neutron scattering, SANS. For both types of perfume molecules, complex phase behavior is observed. The phase behavior depends upon the concentration, surfactant/perfume composition, and type of perfume. The more hydrophilic perfume PE promotes the formation of more highly curved structures. At relatively low surfactant concentrations, small globular micelles, L1, are formed. These become perfume droplets, L(sm), stabilized by the surfactant at much higher perfume solution compositions. At higher surfactant concentrations, the tendency of LAS-6 to form more planar structures is evident. The more hydrophobic linalool promotes the formation of more planar structures. Combined with the greater tendency of LAS-6 to form planar structures, this results in the planar structures dominating the phase behavior for the LAS-6/linalool mixtures. For the LAS-6/linalool mixture, the self-assembly is in the form of micelles only at the lowest surfactant and perfume concentrations. Over most of the concentration-composition space explored, the structures are predominantly lamellar, L(α), or vesicle, L(v), or in the form of a lamellar/micellar coexistence. At low and intermediate amounts of LL, a significantly different structure is observed, and the aggregates are in the form of small, relatively monodisperse vesicles (i.e., nanovesicles), L(sv).

  2. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas

    2012-06-01

    Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.

  3. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  4. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.

    PubMed

    Quirino, Joselito P; Aranas, Agnes T

    2011-10-14

    The on-line sample concentration technique, micelle to solvent stacking (MSS), was studied for small organic cations (quaternary ammonium herbicides, β-blocker drugs, and tricyclic antidepressant drugs) in reversed migration micellar electrokinetic chromatography. Electrokinetic chromatography was carried out in fused silica capillaries with a background solution of sodium dodecyl sulfate (SDS) in a low pH phosphate buffer. MSS was performed using anionic SDS micelles in the sample solution for analyte transport and methanol or acetonitrile as organic solvent in the background solution for analyte effective electrophoretic mobility reversal. The solvent also allowed for the separation of the analyte test mixtures. A model for focusing and separation was developed and the mobility reversal that involved micelle collapse was experimentally verified. The effect of analyte retention factor was observed by changing the % organic solvent in the background solution or the concentration of SDS in the sample matrix. With an injection length of 31.9 cm (77% of effective capillary length) for the 7 test drugs, the LODs (S/N=3) of 5-14 ng/mL were 101-346-fold better when compared to typical injection. The linearity (R(2), range=0.025-0.8 μg/mL), intraday and interday repeatability (%RSD, n=10) were ≥0.988, <6.0% and <8.5%, respectively. In addition, analysis of spiked urine samples after 10-fold dilution with the sample matrix yielded LODs=0.02-0.10 μg/mL. These LODs are comparable to published electrophoretic methods that required off-line sample concentration. However, the practicality of the technique for more complex samples will rely on dedicated sample preparation schemes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Improvement of the surface hydrophilic properties of naproxen particles with addition of hydroxypropylmethyl cellulose and sodium dodecyl sulphate: In vitro and in vivo studies.

    PubMed

    García-Herrero, Víctor; Torrado, Carlos; García-Rodríguez, Juan José; López-Sánchez, Alicia; Torrado, Susana; Torrado-Santiago, Santiago

    2017-08-30

    In this study, a new surface-modified naproxen was developed to enhance brain concentration in acute migraine treatment. Fast-dissolving naproxen granules were made by mixing hydroxypropylmethylcellulose (HPMC) sodium dodecyl sulphate (SDS) and sodium croscarmellose with micronized naproxen particles. The aim of this study was to evaluate the effect of adding proportions of SDS to the HPMC film caused changes in the polymer chains of the HPMC, producing a new hydrophilic HPMC-SDS structure. These formulations with different HPMC/SDS ratios were characterised using electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC). SDS 10% (w/w) produced a highly hydrophilic HPMC-SDS structure on the surface of the naproxen microparticles. The fast dissolution granules (SF-10%) showed a significant improvement in the dissolution rate of naproxen. Pharmacokinetic studies were conducted with mice, showing an improvement of Cmax (1.38 and 1.41-fold) and AUC0-2h (30% and 10% higher) for plasma and brain samples compared to the reference naproxen suspension. The faster Tmax ratio for SF-10% may be related to increased hydration in the gastrointestinal environment, enabling the drug to permeate the gastrointestinal hydration layer more easily due to the presence of the hydrophilic HPMC-SDS structure in the formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Purification and characterization of acid trehalase from the yeast suc2 mutant.

    PubMed

    Mittenbühler, K; Holzer, H

    1988-06-15

    Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.

  7. Effect of Sodium Dodecyl Sulfate Adsorption on the Behavior of Water inside Single Walled Carbon Nanotubes with Dissipative Particle Dynamics Simulation.

    PubMed

    Vo, Minh D; Papavassiliou, Dimitrios V

    2016-04-15

    Dissipative particle dynamics (DPD) simulations were utilized to investigate the ability of sodium dodecyl sulfate (SDS) to adsorb inside a single-walled, arm-chair carbon nanotube (SWCNT), as well as the effect of surfactant on the properties of water inside the SWCNT. The diameter of the SWCNT varied from 1 to 5 nm. The radial and axial density profiles of water inside the SWCNTs were computed and compared with published molecular dynamics results. The average residence time and diffusivity were also calculated to show the size effect on mobility of water inside the SWCNT. It was found that nanotubes with diameter smaller than 3 nm do not allow SDS molecules to enter the SWCNT space. For larger SWCNT diameter, SDS adsorbed inside and outside the nanotube. When SDS was adsorbed in the hollow part of the SWCNT, the behavior of water inside the nanotube was found to be significantly changed. Both radial and axial density profiles of water inside the SWCNT fluctuated strongly and were different from those in bulk phase. In addition, SDS molecules increased the retention of water beads inside SWCNT (d ≥ 3nm) while water diffusivity was decreased.

  8. Pre-labeling of diverse protein samples with a fixed amount of Cy5 for sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.

    PubMed

    Bjerneld, Erik J; Johansson, Johan D; Laurin, Ylva; Hagner-McWhirter, Åsa; Rönn, Ola; Karlsson, Robert

    2015-09-01

    A pre-labeling protocol based on Cy5 N-hydroxysuccinimide (NHS) ester labeling of proteins has been developed for one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. We show that a fixed amount of sulfonated Cy5 can be used in the labeling reaction to label proteins over a broad concentration range-more than three orders of magnitude. The optimal amount of Cy5 was found to be 50 to 250pmol in 20μl using a Tris-HCl labeling buffer at pH 8.7. Labeling protein samples with a fixed amount of dye in this range balances the requirements of sub-nanogram detection sensitivity and low dye-to-protein (D/P) ratios for SDS-PAGE. Simulations of the labeling reaction reproduced experimental observations of both labeling kinetics and D/P ratios. Two-dimensional electrophoresis was used to examine the labeling of proteins in a cell lysate using both sulfonated and non-sulfonated Cy5. For both types of Cy5, we observed efficient labeling across a broad range of molecular weights and isoelectric points. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putra, Edy Giri Rachman; Patriati, Arum; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia giri@batan.go.id

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol,more » octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.« less

  10. Investigating the fate of activated sludge extracellular proteins in sludge digestion using sodium dodecyl sulfate polyacrylamide gel electrophoresis.

    PubMed

    Park, Chul; Helm, Richard F; Novak, John T

    2008-12-01

    The fate of activated sludge extracellular proteins in sludge digestion was investigated using three different cation-associated extraction methods and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Extraction methods used were the cation exchange resin (CER) method for extracting calcium (Ca2+) and magnesium (Mg2+), sulfide extraction for removing iron, and base treatment (pH 10.5) for dissolving aluminum. Extracellular polymeric substances extracted were then subjected to SDS-PAGE, and the resultant protein profiles were examined before and after sludge digestion. The SDS-PAGE results showed that three methods led to different SDS-PAGE profiles for both undigested and digested sludges. The results further revealed that CER-extracted proteins remained mainly undegraded in anaerobic digestion, but were degraded in aerobic digestion. While the fate of sulfide- and base-extracted proteins was not clear for aerobic digestion, their changes in anaerobic digestion were elucidated. Most sulfide-extracted proteins were removed by anaerobic digestion, while the increase in protein band intensity and diversity was observed for base-extracted proteins. These results suggest that activated sludge flocs contain different fractions of proteins that are distinguishable by their association with certain cations and that each fraction undergoes different fates in anaerobic and aerobic digestion. The proteins that were resistant to degradation and generated during anaerobic digestion were identified by liquid chromatography tandem mass spectrometry. Protein identification results and their putative roles in activated sludge and anaerobic digestion are discussed in this study.

  11. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  12. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  13. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.

    PubMed

    Ruiz-Morales, Yosadara; Romero-Martínez, Ascención

    2018-04-12

    The first critical micelle concentration (CMC) of the ionic surfactant sodium dodecyl sulfate (SDS) in diluted aqueous solution has been determined at room temperature from the investigation of the bulk viscosity, at several concentrations of SDS, by means of coarse-grain molecular dynamics simulations. The coarse-grained model molecules at the mesoscale level are adopted. The bulk viscosity of SDS was calculated at several millimolar concentrations of SDS in water using the MARTINI force field by means of NVT shear Mesocite molecular dynamics. The definition of each bead in the MARTINI force field is established, as well as their radius, volume, and mass. The effect of the size of the simulation box on the obtained CMC has been investigated, as well as the effect of the number of SDS molecules, in the simulations, on the formation of aggregates. The CMC, which was obtained from a graph of the calculated viscosities versus concentration, is in good agreement with the reported experimental data and does not depend on the size of the box used in the simulation. The formation of a spherical micelle-like aggregate is observed, where the dodecyl sulfate tails point inward and the heads point outward the aggregation micelle, in accordance with experimental observations. The advantage of using coarse-grain molecular dynamics is the possibility of treating explicitly charged beads, applying a shear flow for viscosity calculation, and processing much larger spatial and temporal scales than atomistic molecular dynamics can. Furthermore, the CMC of SDS obtained with the coarse-grained model is in much better agreement with the experimental value than the value obtained with atomistic simulations.

  14. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Feng; Huang, Wei; Zhang, Yunfeng

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albuminmore » (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.« less

  15. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection.

    PubMed

    Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W

    2018-05-22

    Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Scanning Electron Microscopic Evaluation of Root Canal Irrigation with Saline, Sodium Hypochlorite, and Citric Acid,

    DTIC Science & Technology

    1983-12-01

    with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in "* removing superficial...EVALUATION OF ROOT CANAL IRRIGATION WITH SALINE, SODIUM HYPOCHLORITE , AND CITRIC ACID 4 *J. Craig Baumgartner, D.D.S., M.S. • **Carolyn M. Brown, D.D.S., M.S...preparation with six different irrigation regimens. Sodium hypochlorite (NaOCl) was significantly more effective than citric acid in removing superficial

  17. Cutaneous adverse reactions to amoxicillin-clavulanic acid suspension in children: the role of sodium benzoate.

    PubMed

    Mori, Francesca; Barni, Simona; Pucci, Neri; Rossi, Maria Elisabetta; de Martino, Maurizio; Novembre, Elio

    2012-04-01

    In Europe amoxicillin plus clavulanic acid is the most commonly prescribed antibiotic and sodium benzoate is contained in the suspension formulation as a preservative. We studied the relevance of sodium benzoate as the culprit agent. In a group of children with a history of adverse reactions to amoxicillin plus clavulanic acid suspension. A total of 89 children were enrolled over a period of 3 years (2006 - 2009). Single blind oral provocation tests (OPTs) with amoxicillin plus clavulanic acid, sodium benzoate and placebo were performed. 20 children with recurrent idiopathic urticaria were investigated as a control group. according to personal history: 70% of reactions were late in developing while 23% of reactions were immediate and for 5% of the cases it was not possible to define the timing. 8 children (8/89=9%) resulted positive to the provocation tests with amoxicillin plus clavulanic acid; ten children (10/89=11%) had positive results with sodium benzoate; 3% had a double positivity (i.e. excipient and active drug). The timing of reactions significantly differs between the Amoxicillin plus clavulanic acid and sodium benzoate groups (p=0.002). Sodium benzoate probably acts through a non-immunologic mechanism and care should be given to children allergic to sodium benzoate containing pharmaceutical formulations.

  18. Investigation of atmospheric oxidation of propyl gallate in an anionic surfactant system in the absence and presence of ascorbic acid.

    PubMed

    Szymula, M

    2004-01-01

    The antioxidant efficiency of two hydrophilic species, ascorbic acid (AA) and propyl gallate (PG), in an anionic surfactant system are studied. Ascorbic acid and propyl gallate are dissolved/solubilized in a microemulsion formed by water, pentanol, and sodium dodecyl sulfate. The determination of propyl gallate decomposition/oxidation kinetics shows enhanced oxidation of PG with increasing pentanol concentration in the system. When ascorbic acid and propyl gallate are both present in water, in surfactant aqueous solution, and in the studied microemulsion systems, the molecular complex AAPG is formed. After some time the complex decomposes.

  19. Acid-neutralizing capacity and sodium content of antacid products from Belgium.

    PubMed

    Gombatz, V W

    1984-01-01

    The acid-neutralizing capacity and sodium content of nine antacid products available in Belgium were evaluated and compared with typical values for Mylanta-II. Liquid and tablets of Mylanta-II have a higher acid-neutralizing capacity per unit dose than do all the other Belgian antacids tested. On a unit dose basis, the sodium contents of the Mylanta-II products are lower than those of all other Belgian antacids tested except Maalox products. Because the minimum recommended dose (MRD) of Mylanta-II liquid is 5 ml, while that of Maalox is 10 ml, the sodium content of the MRD of Mylanta-II liquid is lower than that of the MRD of any of the other Belgian liquid antacids tested.

  20. Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate.

    PubMed

    Ma, Xinying; Chao, Mingyong; Wang, Zhaoxia

    2013-06-01

    This paper describes a novel electrochemical method for the determination of Sudan I in food samples based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GMGCE) and the enhancement effect of an anionic surfactant: sodium dodecyl sulphonate (SDS). Using pH 6.0 phosphate buffer solution (PBS) as supporting electrolyte and in the presence of 1.5 × 10(-4)mol L(-1) SDS, Sudan I yielded a well-defined and sensitive oxidation peak at a GMGCE. The oxidation peak current of Sudan I remarkably increased in the presence of SDS. The experimental parameters, such as supporting electrolyte, concentration of SDS, and accumulation time, were optimised for Sudan I determination. The oxidation peak current showed a linear relationship with the concentrations of Sudan I in the range of 7.50 × 10(-8)-7.50 × 10(-6)mol L(-1), with the detection limit of 4.0 × 10(-8)mol L(-1). This new voltammetric method was successfully used to determine Sudan I in food products such as ketchup and chili sauce with satisfactory results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia).

    PubMed

    Jorge, R A D L V C; Moreira, G S

    2005-06-01

    Effects of anthropogenic pollution have been observed at different trophic levels in the oceans, and toxicity tests constitute one way of monitoring these alterations. The present assay proposes the use of two reference substances, sodium dodecyl sulfate (SDS) and zinc sulfate, for Perna perna larvae. This common mussel on the Brazilian coast is used as a bioindicator and is of economic interest. The chronic static embryo-larval test of short duration (48 h) was employed to determine the NOEC, LOEC, and IC50 for SDS and zinc sulfate, as well as the coefficient of variation. Salinity, pH and un-ionized ammonia (NH3) and dissolved oxygen (DO) concentrations were measured to monitor water quality. The results demonstrated that the main alterations in veliger larvae are the development of only one shell, protruded mantle, malformed shell, formation of only part of a valve, clipped edges, uneven sizes and presence of a concave or convex hinge. NOEC values were lower than 0.25 mg L(-1) for zinc sulfate and 0.68 mg L(-1) for SDS. The coefficient of variation was 17.63% and 2.50% for zinc sulfate and SDS, respectively.

  2. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza; Kiekens, Filip; De Wael, Karolien

    2015-08-04

    Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g(-1), respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L(-1) of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL(-1). Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.

  3. Pd/C Synthesized with Citric Acid: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate

    PubMed Central

    Wang, Zhi-Li; Yan, Jun-Min; Wang, Hong-Li; Ping, Yun; Jiang, Qing

    2012-01-01

    A highly efficient hydrogen generation from formic acid/sodium formate aqueous solution catalyzed by in situ synthesized Pd/C with citric acid has been successfully achieved at room temperature. Interestingly, the presence of citric acid during the formation and growth of the Pd nanoparticles on carbon can drastically enhance the catalytic property of the resulted Pd/C, on which the conversion and turnover frequency for decomposition of formic acid/sodium formate system can reach the highest values ever reported of 85% within 160 min and 64 mol H2 mol−1 catalyst h−1, respectively, at room temperature. The present simple, low cost, but highly efficient CO-free hydrogen generation system at room temperature is believed to greatly promote the practical application of formic acid system on fuel cells. PMID:22953041

  4. [Analysis of preservatives used in cosmetic products: salicylic acid, sodium benzoate, sodium dehydroacetate, potassium sorbate, phenoxyethanol, and parabens].

    PubMed

    Ikarashi, Yoshiaki; Uchino, Tadashi; Nishimura, Tetsuji

    2010-01-01

    Preservatives are used to inhibit the growth of microorganisms in cosmetic products. The Japanese standards for cosmetics set restrictions on the maximum amount of each preservative added to cosmetics as per the purpose of use of cosmetics. For the investigation into the actual conditions of commonly used preservatives in commercial cosmetics, we analyzed parabens, phenoxyethanol, sodium benzoate, sodium dehydroacetate, salicylic acid, and potassium sorbate by high-performance liquid chromatography (HPLC). Twenty-one samples were obtained from cosmetic product manufacturers located in 14 prefectures in Japan. Among different acid- and salt-based preservatives, sodium benzoate was observed to have been used in many products. These acid- and salt-based preservatives were used with parabens in personal washing products, such as shampoo and soap. The labels of two of the cosmetic product samples displayed inaccurate ingredient information, that is, a preservative other than the one used in the corresponding product was listed on them. The amount of preservatives used did not exceed regulatory limits in any of the analyzed samples.

  5. Comparative bladder tumor promoting activity of sodium saccharin, sodium ascorbate, related acids, and calcium salts in rats.

    PubMed

    Cohen, S M; Ellwein, L B; Okamura, T; Masui, T; Johansson, S L; Smith, R A; Wehner, J M; Khachab, M; Chappel, C I; Schoenig, G P

    1991-04-01

    Sodium saccharin and sodium ascorbate are known to promote urinary bladder carcinogenesis in rats following initiation with N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide (FANFT) or N-butyl-N-(4-hydroxybutyl) nitrosamine. Sodium salts of other organic acids have also been shown to be bladder tumor promoters. In addition, these substances increase urothelial proliferation in short term assays in rats when fed at high doses. When they have been tested, the acid forms of these salts are without either promoting or cell proliferative inducing activity. The following experiment was designed to compare the tumor promoting activity of various forms of saccharin and to evaluate the role in promotion of urinary sodium, calcium, and pH as well as other factors. Twenty groups of 40 male F344 rats, 5 weeks of age, were fed either FANFT or control diet during a 6-week initiation phase followed by feeding of a test compound for 72 weeks in the second phase. The chemicals were administered to the first 18 groups in Agway Prolab 3200 diet and the last 2 groups were fed NIH-07 diet. The treatments were as follows: (a) FANFT----5% sodium saccharin (NaS); (b) FANFT----3% NaS; (c) FANFT----5.2% calcium saccharin (CaS); (d) FANFT----3.12% CaS; (e) FANFT----4.21% acid saccharin (S); (f) FANFT----2.53% S; (g) FANFT----5% sodium ascorbate; (h) FANFT----4.44% ascorbic acid; (i) FANFT----5% NaS plus 1.15% CaCO3; (j) FANFT----5.2% CaS plus 1.34% NaCl; (k) FANFT----5% NaS plus 1.23% NH4Cl; (l) FANFT----1.15% CaCO3; (m) FANFT----1.34% NaCl; (n) FANFT----control; (o) control----5% NaS; (p) control----5.2% CaS; (q) control----4.21% S; (r) Control----control; (s) FANFT----5% NaS (NIH-07 diet); (t) FANFT----control (NIH-07 diet). NaS, CaS and S without prior FANFT administration were without tumorigenic activity. NaS was found to have tumor promoting activity, showing a positive response at the 5 and 3% dose levels, with significantly greater activity at the higher dose. CaS had slight tumor

  6. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Glycine, N-(carboxymethyl)-N-dodecyl... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...

  7. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Glycine, N-(carboxymethyl)-N-dodecyl... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...

  8. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry.

    PubMed

    Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre

    2011-12-29

    We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society

  9. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    PubMed

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  10. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  11. Hydrophobic interactions between polymethacrylic acid and sodium laureth sulfate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.

    2014-09-01

    The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.

  12. Optical biosensor based on liquid crystal droplets for detection of cholic acid

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofang; Luo, Dan; Chen, Rui; Wang, Fei; Sun, Xiaowei; Dai, Haitao

    2016-12-01

    A highly sensitive cholic acid biosensor based on 4-cyano-4‧-penthlbiphenyl (5CB) Liquid crystal droplets in phosphate buffer saline solution was reported. A radial-to-bipolar transition of 5CB droplet would be triggered during competitive reaction of CA at the sodium dodecyl sulfate surfactant-laden 5CB droplet surface. Our liquid crystal droplet sensor is a low-cost, simple and fast method for CA detection. The detection limit (5 μM) of our method is 2.4 times lower than previously report by using liquid crystal film to detection of CA.

  13. Use of PCR and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Techniques for Differentiation of Prevotella intermedia Sensu Stricto and Prevotella nigrescens

    PubMed Central

    Premaraj, Thyagaseely; Kato, Naoki; Fukui, Katsuhito; Kato, Haru; Watanabe, Kunitomo

    1999-01-01

    Primers were designed from 16S rRNA sequences of Prevotella intermedia sensu stricto and Prevotella nigrescens and were used to discriminate these two species by PCR. The results were compared with those from the PCR technique using primers designed from arbitrarily primed PCR products by Guillot and Mouton (E. Guillot and C. Mouton, J. Clin. Microbiol. 35:1876–1882, 1997). The specificities of both assays were studied by using P. intermedia ATCC 25611, P. nigrescens ATCC 33563, 174 clinical isolates of P. intermedia sensu lato, and 59 reference strains and 58 clinical isolates of other Prevotella species and/or common oral flora. In addition, the usefulness and reliability of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the differentiation of the two species were examined by comparing the results with those from PCR assays. The controversial lipase test for distinguishing these species was also carried out. Unambiguous differentiation was made by both PCR assays, and the results matched each other. The SDS-PAGE assay was found to misidentify a few strains tested, compared with the results of PCR assays. The lipase test was positive for both species, including the reference strains of P. intermedia and P. nigrescens. We conclude that both PCR assays are simple, rapid, reliable, and specific methods which could be used in clinical studies and that the lipase test is not valuable in the differentiation. The reliable discrimination of the two species by SDS-PAGE is questionable. PMID:10074526

  14. Efficacy of sodium hypochlorite and peracetic acid in sanitizing green coconuts.

    PubMed

    Walter, E H M; Nascimento, M S; Kuaye, A Y

    2009-09-01

    To evaluate the efficacy of sanitizing green coconuts (Cocos nucifera L.) through the treatment applied by juice industries using sodium hypochlorite and peracetic acid. The surface of the fruits was inoculated with a mixture of five Listeria monocytogenes strains. The treatments consisted in immersing the fruits for 2 min at room temperature in sodium hypochlorite solution containing 200 mg l(-1) residual chlorine at pH 6.5, and 80 mg l(-1) solution of peracetic acid or sterile water. Bacterial populations were quantified by culturing on trypticase soy agar supplemented with yeast extract and Oxford selective culture medium; however, recovery was higher on the nonselective medium. Immersion in water produced a reduction in the L. monocytogenes population of 1.7 log(10) CFU per fruit, while immersion in sodium hypochlorite and peracetic acid solutions resulted in population reductions of 2.7 and 4.7 log(10) CFU per fruit respectively. The treatments studied are efficient to green coconuts. Sanitation of green coconut is one of the most important control measures to prevent the contamination of coconut water. This article provides information that shows the adequacy of sanitizing treatments applied by the juice industries.

  15. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  16. Properties of acid gels made from sodium caseinate-maltodextrin conjugates prepared by a wet heating method.

    PubMed

    Zhang, Shuwen; Gong, Yuansheng; Khanal, Som; Lu, Yanjie; Lucey, John A

    2017-11-01

    Covalent attachment of polysaccharides to proteins (conjugation) via the Maillard reaction has been extensively studied. Conjugation can lead to a significant improvement in protein functionality (e.g., solubility, emulsification, and heat stability). Caseins have previously been successfully conjugated with maltodextrin (Md), but the effect on the detailed acid gelation properties has not been examined. We studied the effect of conjugating sodium caseinate (NaCN) with 3 different sized Md samples via the Maillard reaction in aqueous solutions. The Md samples had dextrose equivalents of 4 to 7, 9 to 12, and 20 to 23 for Md40, Md100, and Md200, respectively. The conjugation reaction was performed in mixtures with 5% NaCN and 5% Md, which were heated at 90°C for 10 h. The degree of conjugation was estimated from the reduction in free amino groups as well as color changes. Sodium dodecyl sulfate-PAGE analysis was performed to confirm conjugation by employing staining of both protein and carbohydrate bands. The molar mass of samples was determined by size-exclusion chromatography coupled with multi-angle laser light scattering. After the conjugation reaction, samples were then gelled by the addition of 0.63% (wt/vol) glucono-δ-lactone at 30°C, such that samples reached pH 4.6 after about 13 h. The rheological properties of samples during acidification was monitored by small-strain dynamic oscillatory rheology. The microstructure of acid gels at pH 4.6 was examined by fluorescence microscopy. Conjugation resulted in a loss of 10.8, 8.8, and 11.9% of the available amino groups in the protein for the NaCN-Md40 conjugates (C40), NaCN-Md100 conjugates (C100), and NaCN-Md100 conjugates (C200), respectively. With a decrease in the size of the type of Md, an increase occurred in the molar mass of the resultant conjugate. The weight average molar masses of NaCN-Md samples were 340, 368, and 425 kDa for the conjugates C40, C100, and C200, respectively. Addition of Md to Na

  17. [The effect of 18β-sodium glycyrrhetinic acid on the nasal mucosa epithelial cilia in rat models of allergic rhinitis].

    PubMed

    Yang, Jing; Xi, Kehu; Gui, Yan; Wang, Youhu; Zhang, Fuhong; Ma, Chunxia; Hong, Hao; Liu, Xiangyi; Meng, Nannan; Zhang, Xiaobing

    2015-12-01

    To investigate 18β-sodium glycyrrhetinic acid impact on nasal mucosa epithelial cilia in rat models of allergic rhinitis (AR). AR models were established by ovalbumin-induction. Wister rats were randomly divided into groups as normal group, model group, budesonide (0.2 mg/kg) group and sodium glycyrrhetinic acid (20 mg/kg and 40 mg/kg) group after the success of AR models. At 2 weeks and 4 weeks after treatment, the behavioral changes of rats were observed and recorded, and nasal septum mucosae were collected after 2 week and 4 week intervention, and the morphological changes of nasal mucosae were observed by electron microscope. Model group developed typical AR symptoms, the total score in all animals was > 5. With budesonide and sodium glycyrrhetinic acid treatment, the AR symptoms were relieved, and the total scores were reduced significantly (P < 0.01). Compared with the model group: after 2 weeks' intervention, thick mucous secretions on the top of columnar epithelium cilia in rat nasal mucosa was significantly reduced, and cilia adhesion, lodging, shedding were relieved in budesonide group and sodium glycyrrhetinic acid group, the relieve in budesonide group was slightly better than that in sodium glycyrrhetinic acid group; after 4 week intervention, Cilia adhesion, lodging, shedding were completely vanished, and the cilia were ranged in regular direction in budesonide group and sodium glycyrrhetinic acid group. Cilia in sodium glycyrrhetinic acid (20 mg/kg) group was more orderly, smooth than that in budesonide group and sodium glycyrrhetinic acid group (40 mg/kg), and the condition of cilia in sodium glycyrrhetinic acid group (20 mg/kg) was similar to the normal group. 18β-sodium glycyrrhetinic acid is effective to restrain the pathological changes of nasal mucosa cilia in rat models of AR.

  18. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the Lubrol-solubilized enzume and its constituent polypeptides.

    PubMed

    Jean, D H; Albers, R W; Koval, G J

    1975-02-10

    Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.

  19. Mechanism of chemical activation of sodium chloride in the presence of amino acids.

    PubMed

    Rahn, Anja K K; Yaylayan, Varoujan A

    2015-01-01

    Sodium chloride has been shown to promote chlorination of glycerol during thermal processing. However, the detailed mechanism of this reaction is not well understood. Preliminary experiments have indicated that the reaction mixture should contain an amino acid and it should be dissolved thoroughly in water in order to induce chlorination. These observations are consistent with the process of dissociation of sodium chloride and its re-association with amino acid and eventual formation of the chlorinating agent in the form of the hydrochloride salt. Release of HCl from this salt can be manifested in chlorination and hydrolytic reactions occurring during thermal processing. The generation of HCl at room temperature from a mixture of sodium chloride and glycine was confirmed through spectrophotometric monitoring of the pH. Hydrolytic and chlorination reactions were demonstrated through monitoring of formation of HMF and chlorinated products under pyrolytic conditions using glucose or sucrose and amino acid mixtures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The influence of sodium lauryl sulfate on the crystal phases of titania by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Chaohong; Wang, Xin

    2012-11-01

    In this paper, we prepared TiO2 nanostructures by a hydrothermal method and investigated the influence of the SO4^{2-} ion and the effect of long alkyl chains of sodium dodecyl sulfate on the crystal phases of TiO2 by experiments and theoretical calculations. The results indicate that the absorption of the H+HSO4 fragment on rutile (110) is more stable than that of the 2H+SO4 fragment and more favorable to the formation of anatase. The absorption and steric effects of sodium dodecyl sulfate on the surfaces of TiO2 grains also have an important influence on the formation of mixed crystals by changing the speed and the way of octahedral TiO6 units combining. Based on the above facts, we revised the original reaction scheme for crystalline titania formation by previous authors.

  1. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  2. Bottom-up and Top-down Approaches to Explore Sodium Dodecyl Sulfate and Soluplus on the Crystallization Inhibition and Dissolution of Felodipine Extrudates.

    PubMed

    Chen, Jiali; Chen, Yuqi; Huang, Wencong; Wang, Hanning; Du, Yang; Xiong, Subin

    2018-05-05

    The objectives of this study were to explore sodium dodecyl sulfate (SDS) and Soluplus on the crystallization inhibition and dissolution of felodipine (FLDP) extrudates by bottom-up and top-down approaches. FLDP extrudates with Soluplus and/or SDS were prepared by hot melt extrusion (HME), and characterized by PLM, DSC and FT-IR. Results indicated that Soluplus inhibited FLDP crystallization and the whole amorphous solid dispersions (ASDs) were binary FLDP-Soluplus (1:3) and ternary FLDP-Soluplus-SDS(1:2:0.15∼0.3 and 1:3:0.2∼0.4) extrudates. Internal SDS (5%-10%) decreased Tgs of FLDP-Soluplus-SDS ternary ASDs without presenting molecular interactions with FLDP or Soluplus. The enhanced dissolution rate of binary or ternary Soluplus-rich ASDs in the non-sink condition of 0.05%SDS was achieved. Bottom-up approach indicated that Soluplus was a much stronger crystal inhibitor to the supersaturated FLDP in solutions than SDS. Top-down approach demonstrated that SDS enhanced the dissolution of Soluplus-rich ASDs via wettability and complexation with Soluplus to accelerate the medium uptake and erosion kinetics of extrudates, but induced FLDP recrystallization and resulted in incomplete dissolution of FLDP-rich extrudates. In conclusion, top-down approach is a promising strategy to explore the mechanisms of ASDs' dissolution, and small amount of SDS enhances the dissolution rate of polymer-rich ASDs in the non-sink condition. Copyright © 2018. Published by Elsevier Inc.

  3. Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction.

    PubMed

    Movaghati, Sina; Moosavi-Movahedi, Ali Akbar; Khodagholi, Fariba; Digaleh, Hadi; Kachooei, Ehsan; Sheibani, Nader

    2014-10-01

    Protein aggregation is impacted by many factors including temperature, pH, and the presence of surfactants, electrolytes, and metal ions. The addition of sodium dodecyl sulphate (SDS) at different concentrations may play a significant role in the human serum albumin (HSA) fibrillation pathway. Here the heat induction of HSA fibrillation incubated with different concentrations of SDS was evaluated using a variety of techniques. These included ThT fluorescence, Congo red absorbance, circular dichroism, dynamic light scattering, and atomic force microscopy (AFM). To explore HSA surface properties, the surface tension of solutions was measured using Du Noüy Ring method tensiometry. In addition, the criteria of neurite outgrowth and complexity were monitored by exposing PC12 cells to different forms of HSA amyloid intermediates. ThT fluorescence kinetic studies indicated that SDS at low concentrations induced more fibrillation of HSA, while SDS at high concentrations inhibited the fibrillation of HSA. At higher SDS concentrations hydrophobic forces had a significant role whereas at lower SDS concentrations electrostatic forces were dominant. The cell culture studies demonstrated the significant impact of SDS concentration on HSA fibrillation and subsequent neuronal cell morphology. The HSA incubated with low concentrations of SDS inhibited neurite outgrowth and complexity of the PC12 cells, whereas high concentrations of SDS had lesser effect. Thus, SDS acts as a salt at lower concentrations, while at higher concentrations acts as a chaperon, with significant impact on fibrillation of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of the effect of formic acid and sodium formate on hair reduction in rat

    PubMed Central

    Banihashemi, Mahnaz; Rad, Abolfazl Khajavi; Yazdi, Seyed Abbas Tabatabaee; Rakhshande, Hasan; Ghoyonlo, Vahid Mashayekhi; Zabihi, Zahra; Yousefzadeh, Hadis

    2011-01-01

    Hirsutism is a common problem in dermatology that imposes high socioeconomical costs on medical care. Consequently, researchers are actively searching for cheaper and safer methods for therapeutic treatment. The objective of the present study is to evaluate formic oil, enriched from formic acid, for the removal of unwanted hair. In this study, 32 female rats (150–200 g) were randomly divided into four groups and maintained with normal water and food availability. A patch of skin was shaved on each rat for application of test solutions. The control group was treated with local once-daily applications of normal saline. The formic acid, acetic acid, and sodium formate groups were treated with once-daily applications of formic acid (pH 5.5), acetic acid (pH 5.5), or sodium formate, respectively. After 2 weeks, horizontally cut sample biopsies were removed, and the numbers of hair follicles were counted under high field microscopy by a specialist blinded to the treatments. Kolmogorov–Smirnov test results indicated a nonparametric distribution for the rat groups. ANOVA analysis indicated no statistically significant differences between groups (P < 0.05). There weren’t any side effects or evidence for toxicity during the study period. However, hair follicle counts showed a descending order of control, acetic acid, formic acid, and sodium formate. Although the sodium formate group had the lowest hair follicle numbers, the difference was not statistically significant (P > 0.05). Formic acid was not effective in reducing hair follicle numbers in rats. PMID:21760741

  5. Synchronous fluorescence determination of ferulic acid with Ce(IV) and sodium tripolyphosphate.

    PubMed

    Meng, F; Liu, P; Huang, F; Wang, L; Wu, X; Shen, L

    2014-05-01

    In this study, a synchronous fluorescence detection method for ferulic acid (FA) is proposed based on a redox reaction between FA and Ce(IV) sulfate in dilute sulfuric acid medium at room temperature. It was found that FA could reduce Ce(IV) to Ce(III) in acidic medium, and sodium tripolyphosphate could further enhance the intrinsic fluorescence of the Ce(III) produced. The enhanced extent of synchronous fluorescence intensity was in proportion to the concentration of FA over the range 3.0 × 10(-8) to 1.0 × 10(-5) mol/L. The corresponding limit of determination (S/N = 3) was 1.3 × 10(-8) mol/L. The proposed method was applied to the determination of sodium ferulate for injection sample with satisfactory results. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis.

    PubMed

    Kubota, Kei; Kobayashi, Naoki; Yabuta, Masayuki; Ohara, Motomu; Naito, Toyohiro; Kubo, Takuya; Otsuka, Koji

    2017-06-05

    This report describes a novel, comprehensive approach to identifying a fragment peak of monoclonal antibody-A (mAb-A), detected by sodium dodecyl sulfate-capillary gel electrophoresis (SDS-cGE). The fragment migrated close to the internal standard (10kDa marker) of SDS-cGE and increased about 0.5% under a 25°C condition for 6 months. Generally, identification of fragments observed in SDS-cGE is challenging to carry out due to the difficulty of collecting analytical amounts of fractionations from the capillary. In this study, in-gel digestion peptide mapping and reversed phase liquid chromatography-mass spectrometry (RPLC-MS) were employed to elucidate the structure of the fragment. In addition, a Gelfree 8100 fractionation system was newly introduced to collect the fragment and the fraction was applied to the structural analysis of a mAb for the first time. These three analytical methods showed comparable results, proving that the fragment was a fraction of heavy chain HC1-104. The fragment contained complementarity determining regions (CDRs), which are significant to antigen binding, and thus would affect the efficacy of mAb-A. In addition, SDS-cGE without the 10kDa marker was demonstrated to clarify the increased amount of the fragment, and the experiment revealed that the fragment increases 0.2% per year in storage at 5°C. The combination of the three analytical methodologies successfully identified the impurity peak detected by SDS-cGE, providing information critical to assuring the quality and stability of the biotherapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang

    2002-07-25

    The separation and on-line concentrations of lysergic acid diethylamide (LSD), iso-lysergic acid diethylamide (iso-LSD) and lysergic acid N,N-methylpropylamide (LAMPA) in human urine were investigated by capillary electrophoresis-fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as an anionic surfactant. A number of parameters such as buffer pH, SDS concentration, Brij-30 concentration and the content of organic solvent used in separation, were optimized. The techniques of sweeping-micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were used for determining on-line concentrations. The advantages and disadvantages of this procedure with respect to sensitivity, precision and simplicity are discussed and compared. Copyright 2002 Elsevier Science BV.

  8. Sodium dodecyl sulfate-ethoxylated polyethylenimine adsorption at the air-water interface: how the nature of ethoxylation affects the pattern of adsorption.

    PubMed

    Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K

    2014-08-19

    The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.

  9. n-Dodecyl β-D-maltoside specifically competes with general anesthetics for anesthetic binding sites.

    PubMed

    Xu, Longhe; Matsunaga, Felipe; Xi, Jin; Li, Min; Ma, Jingyuan; Liu, Renyu

    2014-01-01

    We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd = 40 μM) with a lower affinity than SDS (Kd = 2 μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.

  10. The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water.

    PubMed

    Wang, Xiaoyu; Ozdemir, Orhan; Hampton, Marc A; Nguyen, Anh V; Do, Duong D

    2012-10-15

    Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Study of structural, surface and hydrogen storage properties of boric acid mediated metal (sodium)-organic frameworks

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Köse, Dursun A.; Sahin, Onur; Oztas, Nursen A.

    2018-04-01

    Three boric acid mediated metal organic frameworks were synthesized by solution method with using succinic acid, fumaric acid and acetylene dicarboxylic acid as a ligand source and sodium as a metal source. The complexes were characterized by FT-IR, powder XRD, elemental analyses and single crystal measurements. The complexes with the formula, C4H18B2Na2O14, C4H16B2Na2O14 and C4H14B2Na2O14 were successfully obtained. BET surface area of complexes were calculated and found as 13.474 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-succinato)-di-sodium boric acid solvate), 1.692 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-fumarato)-di-sodium boric acid solvate) and 5.600 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-acetylenedicarboxylato)-di-sodium boric acid solvate). Hydrogen storage capacities of the complexes were also studied at 77 K 1 bar pressure and found as 0.108%, 0.033%, 0.021% by mass. When different ligands were used, the pore volume, pore width and surface area of the obtained complexes were changed. As a consequence, hydrogen storage capacities also changed.

  13. Zoledronic acid and alendronate sodium and the implications in orthodontic movement.

    PubMed

    Franzoni, J S; Soares, F M P; Zaniboni, E; Vedovello Filho, M; Santamaria, M P; Dos Santos, G M T; Esquisatto, M A M; Felonato, M; Mendonca, F A S; Franzini, C M; Santamaria, M

    2017-08-01

    To evaluate orthodontic tooth movement (OTM) in rats treated with two types of bisphosphonates (BPs), alendronate sodium (A) and zoledronic acid (Z). In all, 15 male Wistar rats were randomly divided into three groups. Group OTM+A: orthodontic tooth movement and subcutaneous administration of alendronate sodium (2.5 mg/kg); Group OTM+Z: orthodontic tooth movement and subcutaneous administration of zoledronic acid (0.02 mg/kg), and Group OTM: orthodontic tooth movement and subcutaneous injection of saline. The BPs were administered once a day during 25 days before OTM started and during 10 days of OTM. The left upper first molar was moved with a stainless-steel closed coil spring which delivered an initial force of 0.4N. OTM was measured with a digital caliper comparing the moved and the contralateral side. The histomorphometric analysis counted the number of osteoclasts, inflammatory cells, blood vessels and fibroblasts (n/10 4  m 2 ) in periodontal ligament (PDL) of the distobuccal root. A reduction of 58.3% of OTM was found in Group OTM+A and 99.6% in Group OTM+Z, when compared with Group OTM. There was a significant decrease of osteoclasts and inflammatory cells in BP-treated groups. Blood vessels and fibroblastic cells decreased mainly in Group OTM+Z. Alendronate sodium and zoledronic acid have similar effects on the periodontal tissue during orthodontic treatment in rats. Especially, zoledronic acid can affect orthodontic tooth movement. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  15. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures.

    PubMed

    Halacheva, S S; Penfold, J; Thomas, R K; Webster, J R P

    2013-05-14

    Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.

  16. Deliquescence and crystallization of ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles

    NASA Astrophysics Data System (ADS)

    Pant, Atul; Fok, Abel; Parsons, Matthew T.; Mak, Jackson; Bertram, Allan K.

    2004-06-01

    In the following, we report the deliquescence relative humidities (DRH) and crystallization relative humidities (CRH) of mixed inorganic-organic particles, specifically ammonium sulfate-glutaric acid and sodium chloride-glutaric acid particles. Knowledge of the DRH and CRH of mixed inorganic-organic particles is crucial for predicting the role of aerosol particles in the atmosphere. Our DRH results are in good agreement with previous measurements, but our CRH results are significantly lower than some of the previous measurements reported in the literature. Our studies show that the DRH and CRH of ammonium sulfate and sodium chloride only decreased slightly when the mole fraction of the acid was less than 0.4. If other organics in the atmosphere behave in a similar manner, then the DRH and CRH of mixed inorganic-organic atmospheric particles will only be slightly less than the DRH and CRH of pure inorganic particles when the organic mole fraction is less than 0.4. Our results also show that if the particles contain a significant amount of organics (mole fraction > 0.5) the crystallization relative humidity decreases significantly and the particles are more likely to remain in the liquid state. Further work is needed to determine if other organics species of atmospheric importance have a similar effect.

  17. 40 CFR 721.980 - Sodium salt of azo acid dye.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 721.980 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.980 Sodium salt of azo acid dye. (a) Chemical substance and significant new uses subject to...

  18. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  19. Virucidal effects of bleach activators, sodium alkyl acyloxybenzene sulfonate and acyloxybenzoic acid, against Feline calicivirus.

    PubMed

    Tobe, Seiichi; Hoshi, Marika; Iizuka, Kinue; Tadenuma, Hirohiko; Takaoka, Hiromitsu; Komoriya, Tomoe; Kohno, Hideki

    2012-01-01

    Noroviruses (NVs) are major causative pathogens of gastroenteritis. The disinfection of contaminated clothing during common household washing is desirable. The virucidal effects of 2 bleach activators, sodium alkyl acyloxybenzene sulfonate (OBS) and alkyl acyloxybenzoic acid (OBC), were studied using Feline calicivirus (FCV) as a surrogate for NVs. FCV was added to solutions containing either OBS or OBC and sodium percarbonate at various temperatures and for varying lengths of time. OBS and OBC, which generate long carbon chain peroxy acids, enhanced the virucidal effect of sodium percarbonate (PC). In particular, sodium lauroyloxybenzene sulfonate (OBS-12) and decanoyloxybenzoic acid (OBC-10) showed superior virucidal effects. Although the virucidal effect of 38-200 mg/L OBS-12 was maintained with 2-5% (v/v) horse serum, there was less of an effect with the same concentration of available chlorine. OBS and OBC have been used as ingredients in some laundry products to increase bleaching activity. It is expected that the use of OBS and OBC is also effective for the inactivation of NVs under common household washing conditions.

  20. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  1. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    PubMed

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficacy of sodium hypochlorite, ethylenediaminetetraacetic acid, citric acid and phosphoric acid in calcium hydroxide removal from the root canal: a microscopic cleanliness evaluation.

    PubMed

    da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F

    2011-12-01

    Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. Electron spin resonance and proton matrix electron nuclear double resonance studies of N,N,N[prime],N[prime]-tetramethylbenzidine photoionization in sodium and lithium dodecyl sulfate micelles: Structural effects of crown ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManus, H.J.D.; Young Soo Kang; Kevan, L.

    1993-01-07

    The study of model membrane systems enjoys increasing attention within the area of solar energy research. An electron nuclear double resonance and electron spin resonance study of photogenerated N,N,N[prime],N[prime]-tetramethylbenzidine (TMB) cation in frozen suspensions of lithium (LDS) and sodium (SDS) dodecyl sulfate micelles containing various concentrations of cyclic polyethers was undertaken. The relative location of the TMB cation within the organic aggregate was determined from the proton matrix ENDOR line width at 142 K. A broader line width was observed in LDS compared to SDS micelles, which is due to the fact that the larger lithium cation opens the micellarmore » interface resulting in increased hydration and deeper solubilization of TMB. The proton matrix ENDOR line width decreased upon addition of crown ethers. This decrease may be explained by displacement of the TMB toward the interface as a result of the decrease in ionic strength caused by the complexation of the countercations. The photoyield shows a slight increase with addition of crown ethers. This increase is most likely caused by the increase in the effective anionic charge of the micelle effected by the complexation of the sodium or lithium ions by the crown ethers. This increase in the anionic charge mitigates the rate of thermal back electron transfer resulting in an increased photoyield. 54 refs., 6 figs., 2 tabs.« less

  4. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...

  5. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  6. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  7. A Novel High Energy Density Rechargeable Hybrid Sodium-Air Cell with Acidic Electrolyte.

    PubMed

    Kang, Yao; Su, Fengmei; Zhang, Qingkai; Liang, Feng; Adair, Keegan R; Chen, Kunfeng; Xue, Dongfeng; Hayashi, Katsuro; Cao, Shan Cecilia; Yadegari, Hossein; Sun, Xueliang

    2018-06-22

    Low cost, high energy density and highly efficient devices for energy storage have long been desired in our society. Herein, a novel high energy density hybrid sodium-air cell was fabricated successfully based on acidic catholytes. Such a hybrid sodium-air cell possess a high theoretical voltage of 3.94 V, capacity of 1121 mAh g-1, and energy density of 4418 Wh kg-1. Firstly, the buffering effect of an acidic solution was demonstrated, which provides relatively long and stable cell discharge behaviours. Secondly, the catholyte of hybrid sodium-air cells were optimized systematically from the solutions of 0.1 M H3PO4 + 0.1 M Na2SO4 to 0.1 M HAc + 0.1 M NaAc, and it was found that the cells with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed maximum power density of 34.9 mW cm-2. The cell with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed higher discharge capacity of 896 mAh g-1. Moreover, the fabricated acidic hybrid sodium-air cells exhibited stable cycling performance in ambient air, and they delivered a low voltage gap around 0.3 V when the current density is 0.13 mA cm-2, leading to a high energy efficiency up to 90%. Therefore, the present study provides new opportunities to develop highly cost-effective energy storage technologies.

  8. Inactivation of Foot-and-Mouth Disease Virus by Citric Acid and Sodium Carbonate with Deicers

    PubMed Central

    Hong, Jang-Kwan; You, Su-Hwa; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Seo, Min-Goo; Park, Jong-Hyeon; Kim, Byounghan

    2015-01-01

    Three out of five outbreaks of foot-and-mouth disease (FMD) since 2010 in the Republic of Korea have occurred in the winter. At the freezing temperatures, it was impossible to spray disinfectant on the surfaces of vehicles, roads, and farm premises because the disinfectant would be frozen shortly after discharge and the surfaces of the roads or machines would become slippery in cold weather. In this study, we added chemical deicers (ethylene glycol, propylene glycol, sodium chloride, calcium chloride, ethyl alcohol, and commercial windshield washer fluid) to keep disinfectants (0.2% citric acid and 4% sodium carbonate) from freezing, and we tested their virucidal efficacies under simulated cold temperatures in a tube. The 0.2% citric acid could reduce the virus titer 4 logs at −20°C with all the deicers. On the other hand, 4% sodium carbonate showed little virucidal activity at −20°C within 30 min, although it resisted being frozen with the function of the deicers. In conclusion, for the winter season, we may recommend the use of citric acid (>0.2%) diluted in 30% ethyl alcohol or 25% sodium chloride solvent, depending on its purpose. PMID:26319879

  9. An Efficacy and Pharmacokinetic Evaluation of a Dose of Diazepam That Will Reduce the Incidence of Convulsions in Indian Rhesus Monkeys Pretreated with Pyridostigmine Bromide, Challenged with Soman, and Treated with Atropine and Pralidoxime Chloride with the Diazepam

    DTIC Science & Technology

    1990-12-01

    benzophenone (Aldrich 23:985-2), tetrabutylammonium nitrate (Kodak 9664), sodium lauryl sulfate (dodecyl sulfide, sodium salt) (Aldrich 86-201-0), helium gas...phase buffer for the initial identity confirmation using a Supelco LC-I column by dissolving 6.0 g of sodium lauryl sulfate and 1.0 g of...water, glacial acetic acid (Baker Reagent’Grade), tetrabutylammonium chloride (Aldrich g8. percent), sodium lauryl sulfate (Aldrich 98 percent), sodium

  10. Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles

    NASA Astrophysics Data System (ADS)

    Birnbaum, Duane T.; Kosmala, Jacqueline D.; Brannon-Peppas, Lisa

    2000-06-01

    Microparticles and nanoparticles of poly(lactic acid-co-glycolic acid) (PLAGA) are excellent candidates for the controlled release of many pharmaceutical compounds because of their biodegradable nature. The preparation of submicron PLAGA particles poses serious challenges that are not necessarily present when preparing microparticles. We have evaluated several combinations of organic solvents and surfactants used in the formulation of PLAGA nanoparticles. Critical factors such as the ability to separate the nanoparticles from the surfactant, the ability to re-suspend the nanoparticles after freeze-drying, formulation yield and nanoparticle size were studied. The smallest particles were obtained using the surfactant/solvent combination of sodium dodecyl sulfate and ethyl acetate (65 nm) and the largest particles were obtained using poly(vinyl alcohol) and dichloromethane (466 nm). However, the optimal nanoparticles were produced using either acetone or ethyl acetate as the organic solvent and poly(vinyl alcohol) or human serum albumin as the surfactant. This is because the most critical measure of performance of these nanoparticles proved to be their ability to re-suspend after freeze-drying.

  11. Detection of xanthine oxidase and immunologically related proteins in fractions from bovine mammary tissue and milk after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate.

    PubMed Central

    Mather, I H; Sullivan, C H; Madara, P J

    1982-01-01

    A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk. Images Fig. 1. Fig. 2. Fig. 3. PMID:7046730

  12. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  13. Solid phase extraction of trace amounts of cadmium(II) ions in water and food samples using iron magnetite nanoparticles modified by sodium dodecyl sulfate and 2-mercaptobenzothiazole.

    PubMed

    Abbasi, Shahriar; ShanbehDehbalai, Mehdi; Khani, Hossein

    2017-03-01

    A new, simple and rapid method for solid phase extraction and preconcentration of trace amounts of cadmium ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on magnetite nanoparticles (MBT-SDS-MNPs) was proposed. The method is based on the extraction of cadmium ions via complexation with MBT immobilized on SDS-coated MNPs and their determination by flame atomic absorption spectrometry. The effects of different parameters - pH; eluent type, concentration and volume; amounts of salt and adsorbent; contact time and interfering ions - on the adsorption of cadmium ions were studied. Under optimized conditions, the calibration curve was linear in the range of 10-5,000 μg L -1 . Detection limit and relative standard deviation of the proposed method were 0.009 μg L -1 and 2.2%, respectively. The adsorption data were analyzed by Langmuir and Freundlich isotherm models and a maximum adsorption amount of 24.80 mg g -1 , a Langmuir adsorption equilibrium constant (b) of 4.62 and Freundlich constants K f and n of 6.075 mg 1-1/n L 1/n g -1 and 2.391, respectively, were obtained. Finally, this adsorbent was successfully used for extraction of cadmium from water and food samples.

  14. Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration

    NASA Technical Reports Server (NTRS)

    Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A.

    1999-01-01

    Chiral separations of fluorescein isothiocyanate-labeled amino acids have been performed on a microfabricated capillary electrophoresis chip to explore the feasibility of using such devices to analyze for extinct or extant life signs in extraterrestrial environments. The test system consists of a folded electrophoresis channel (19.0 cm long x 150 microns wide x 20 microns deep) that was photolithographically fabricated in a 10-cm-diameter glass wafer sandwich, coupled to a laser-excited confocal fluorescence detection apparatus providing subattomole sensitivity. Using a sodium dodecyl sulfate/gamma-cyclodextrin pH 10.0 carbonate electrophoresis buffer and a separation voltage of 550 V/cm at 10 degrees C, baseline resolution was observed for Val, Ala, Glu, and Asp enantiomers and Gly in only 4 min. Enantiomeric ratios were determined for amino acids extracted from the Murchison meteorite, and these values closely matched values determined by HPLC. These results demonstrate the feasibility of using microfabricated lab-on-a-chip systems to analyze extraterrestrial samples for amino acids.

  15. Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfluidic [correction of microfludic] network.

    PubMed

    Li, Yan; Buch, Jesse S; Rosenberger, Frederick; DeVoe, Don L; Lee, Cheng S

    2004-02-01

    An integrated protein concentration/separation system, combining non-native isoelectric focusing (IEF) with sodium dodecyl sulfate (SDS) gel electrophoresis on a polymer microfluidic chip, is reported. The system provides significant analyte concentration and extremely high resolving power for separated protein mixtures. The ability to introduce and isolate multiple separation media in a plastic microfluidic network is one of two key requirements for achieving multidimensional protein separations. The second requirement lies in the quantitative transfer of focused proteins from the first to second separation dimensions without significant loss in the resolution acquired from the first dimension. Rather than sequentially sampling protein analytes eluted from IEF, focused proteins are electrokinetically transferred into an array of orthogonal microchannels and further resolved by SDS gel electrophoresis in a parallel and high-throughput format. Resolved protein analytes are monitored using noncovalent, environment-sensitive, fluorescent probes such as Sypro Red. In comparison with covalently labeling proteins, the use of Sypro staining during electrophoretic separations not only presents a generic detection approach for the analysis of complex protein mixtures such as cell lysates but also avoids additional introduction of protein microheterogeneity as the result of labeling reaction. A comprehensive 2-D protein separation is completed in less than 10 min with an overall peak capacity of approximately 1700 using a chip with planar dimensions of as small as 2 cm x 3 cm. Significant enhancement in the peak capacity can be realized by simply raising the density of microchannels in the array, thereby increasing the number of IEF fractions further analyzed in the size-based separation dimension.

  16. Molecular Level Understanding of Sodium Dodecyl Sulfate (SDS) Induced Sol-Gel Transition of Pluronic F127 Using Fisetin as a Fluorescent Molecular Probe.

    PubMed

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-01-11

    The thermoreversible sol-gel transition of pluronic F127 is markedly altered even with addition of submicellar concentration of sodium dodecyl sulfate (SDS) surfactant. Multiple fluorescence parameters like fluorescence intensity, fluorescence anisotropy and fluorescence lifetime of both the prototropic forms (anion (A - *) and phototautomer FT*) of the photoprototropic fluorescent probe fisetin has been efficiently used to understand the molecular level properties like polarity and microviscosity of the PF127-SDS system as a function of temperature. The SDS-induced increase in the interfacial hydrophobicity level is seen to affect the sol-gel phase transition of PF127 (21-18 °C). The E T (30) polarity parameter value of anionic emission of fisetin suggests that there is a considerable decrease in the polarity of the PF127 medium with increase in temperature and with the addition of SDS. The microviscosity progressively increases from ∼5 mPa s (sol state, 10 °C) to ∼22.01 mPa s (gel state 35 °C) in aqueous solution of PF127. The variation in microviscosity with addition of SDS in PF127-SDS mixed system is significant in sol phase whereas in gel phase this variation is significantly less. Temperature dependent fluorescence lifetime of FT* indicates that there is heterogeneity in distribution of fisetin molecules at different domains of PF127. This work also show-cases the sensitivity of fisetin toward change in polarity and change in sol-gel transition temperature of copolymer PF127 with variation in temperature (both forward and reverse directions) and SDS.

  17. Effect of Fatty acids and beeswax addition on properties of sodium caseinate dispersions and films.

    PubMed

    Fabra, M J; Jiménez, A; Atarés, L; Talens, P; Chiralt, A

    2009-06-08

    Edible films based on sodium caseinate and different saturated fatty acids, oleic acid, or beeswax were formulated. Film-forming emulsions were characterized in terms of particle size distribution, rheological behavior and surface tension. In order to evaluate the influence of lipids on sodium caseinate matrices, mechanical, optical, and water vapor barrier properties were studied, taking into account the effect of water content and film structure on such properties. Saturated fatty acids affected the film properties in a particular way due to the formation of bilayer structures which limited water vapor permeability, giving rise to nonflexible and more opaque films. Oleic acid and beeswax were less effective as water vapor barriers, although the former imparted more flexibility to the caseinate films and did not reduce the film transparency notably.

  18. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. High-resolution gel electrophoresis and sodium dodecyl sulphate-agarose gel electrophoresis on urine samples for qualitative analysis of proteinuria in dogs.

    PubMed

    Giori, Luca; Tricomi, Flavia Marcella; Zatelli, Andrea; Roura, Xavier; Paltrinieri, Saverio

    2011-07-01

    The aims of the current study were to assess whether sodium dodecyl sulphate-agarose gel electrophoresis (SDS-AGE) and high-resolution electrophoresis (HRE) can identify dogs with a urinary protein-to-creatinine ratio (UPC ratio) >0.2 and whether HRE can provide preliminary information about the type of proteinuria, using SDS-AGE as a reference method. HRE and SDS-AGE were conducted on 87 urine samples classified according to the International Renal Interest Society as non-proteinuric (NP; UPC ratio: <0.20; 32/87), borderline proteinuric (BP; UPC ratio: 0.21-0.50; 15/87), or proteinuric (P; UPC ratio: >0.51; 40/87). SDS-AGE and HRE were positive in 14 out of 32 and 3 out of 32 NP samples and in 52 out of 55 and 40 out of 55 samples with a UPC ratio >0.20, respectively. The concordance between HRE or SDS and UPC ratio was comparable (κ = 0.59; κ = 0.55). However, specificity (90%) and positive likelihood ratio (7.76) were higher for HRE than for SDS-AGE (56% and 2.16) while sensitivity was lower (73% vs. 94%). The analysis of HRE results revealed that a percentage of albumin >41.4% and an albumin/α(1)-globulin ratio (alb/α(1) ratio) >1.46 can identify samples classified by SDS-AGE as affected by glomerular proteinuria while a percentage of α(1)-globulin >40.8% and an alb/α(1) ratio <0.84 can identify samples classified by SDS-AGE as affected by tubular proteinuria. In conclusion, both SDS-AGE and HRE could misclassify samples with a UPC ratio higher or lower than 0.20. Therefore, UPC ratio must always be determined before conducting these tests. The percentage of albumin and α(1)-globulin or the alb/α(1) ratio determined by HRE can provide preliminary information about the origin of proteinuria.

  20. Final report of the safety assessment of L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate as used in cosmetics.

    PubMed

    Elmore, Amy R

    2005-01-01

    L-Ascorbic Acid, Calcium Ascorbate, Magnesium Ascorbate, Magnesium Ascorbyl Phosphate, Sodium Ascorbate, and Sodium Ascorbyl Phosphate function in cosmetic formulations primarily as antioxidants. Ascorbic Acid is commonly called Vitamin C. Ascorbic Acid is used as an antioxidant and pH adjuster in a large variety of cosmetic formulations, over 3/4 of which were hair dyes and colors at concentrations between 0.3% and 0.6%. For other uses, the reported concentrations were either very low (<0.01%) or in the 5% to 10% range. Calcium Ascorbate and Magnesium Ascorbate are described as antioxidants and skin conditioning agents--miscellaneous for use in cosmetics, but are not currently used. Sodium Ascorbyl Phosphate functions as an antioxidant in cosmetic products and is used at concentrations ranging from 0.01% to 3%. Magnesium Ascorbyl Phosphate functions as an antioxidant in cosmetics and was reported being used at concentrations from 0.001% to 3%. Sodium Ascorbate also functions as an antioxidant in cosmetics at concentrations from 0.0003% to 0.3%. Related ingredients (Ascorbyl Palmitate, Ascorbyl Dipalmitate, Ascorbyl Stearate, Erythorbic Acid, and Sodium Erythorbate) have been previously reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel and found "to be safe for use as cosmetic ingredients in the present practices of good use." Ascorbic Acid is a generally recognized as safe (GRAS) substance for use as a chemical preservative in foods and as a nutrient and/or dietary supplement. Calcium Ascorbate and Sodium Ascorbate are listed as GRAS substances for use as chemical preservatives. L-Ascorbic Acid is readily and reversibly oxidized to L-dehydroascorbic acid and both forms exist in equilibrium in the body. Permeation rates of Ascorbic Acid through whole and stripped mouse skin were 3.43 +/- 0.74 microg/cm(2)/h and 33.2 +/- 5.2 microg/cm(2)/h. Acute oral and parenteral studies in mice, rats, rabbits, guinea pigs, dogs, and cats demonstrated little toxicity

  1. Effect of high sodium intake during 14 days of bed-rest on acid-base balance

    NASA Astrophysics Data System (ADS)

    Frings, P.; Baecker, N.; Heer, M.

    Lowering mechanical load like in microgravity is the dominant stimulus leading to bone loss However high dietary sodium intake is also considered as a risk factor for osteoporosis and thereby might exacerbate the microgravity induced bone loss In a metabolic balance non bed-rest study we have recently shown that a very high sodium intake leads to an increased bone resorption most likely because of a mild metabolic acidosis Frings et al FASEB J 19 5 A1345 2005 To test if mild metabolic acidosis also occurs during immobilization we examined the effect of increased dietary sodium on bone metabolism and acid-base balance in eight healthy male test subjects mean age 26 25 pm 3 49 years body weight 77 98 pm 4 34 kg in our metabolic ward during a 14-day head-down tilt HDT bed-rest study The study was designed as a randomized crossover study with two study periods Each period was divided into three parts 4 ambulatory days with 200 mmol sodium intake 14 days of bed-rest with either 550 mmol or 50 mmol sodium intake and 3 recovery days with 200 mmol sodium intake The sodium intake was altered by variations in dietary sodium chloride content Blood pH P CO2 and P O2 were analyzed in fasting morning fingertip blood samples several times during the entire study Bicarbonate HCO 3 - and base excess BE were calculated according to the Henderson-Hasselbach equation Preliminary results in the acid-base balance from the first study period 4 subjects with 550 mmol and 4 subjects with 50 mmol sodium intake strongly

  2. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  3. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  4. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  5. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  6. The effect of amino acids and dipeptides on sodium-ion transport in rat enterocytes.

    PubMed

    Cheeseman, C I; Devlin, D

    1985-02-14

    Sodium efflux from isolated intestinal epithelial cells was measured during incubation with several different free amino acids and dipeptides. L-Leucine, which is cotransported with sodium across the brush border membrane, significantly stimulated the total sodium efflux and almost all of this increase involved the ouabain-sensitive flux, i.e., the active component. In contrast, glycyl-L-leucine had little or no effect on active sodium efflux either in the presence or absence of 0.1 mM bestatin, a peptide hydrolase inhibitor. A second dipeptide L-carnosine (beta-alanyl-L-histidine) which is poorly hydrolysed by enterocytes also had no effect upon sodium efflux. However, glycylglycine, which has been shown to be cotransported with sodium, did stimulate the ionic efflux. In addition, measurement of sodium uptake by sheets of small intestine showed that glycyl-L-leucine, carnosine and glycyl-L-proline failed to increase the uptake of the ion, while glycylglycine did significantly stimulate sodium uptake. These data indicate that some dipeptides are not cotransported with sodium, while others are. This suggests that there may well be multiple peptide transporters with very different characteristics in the brush border membrane of enterocytes.

  7. Synthesis of Non-Toxic Silica Particles Stabilized by Molecular Complex Oleic-Acid/Sodium Oleate

    PubMed Central

    Spataru, Catalin Ilie; Ianchis, Raluca; Petcu, Cristian; Nistor, Cristina Lavinia; Purcar, Violeta; Trica, Bogdan; Nitu, Sabina Georgiana; Somoghi, Raluca; Alexandrescu, Elvira; Oancea, Florin; Donescu, Dan

    2016-01-01

    The present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na+ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved. In order to obtain hydrophobically modified silica particles, octadecyltriethoxysilane (ODTES) was added in a sodium silicate sol–gel mixture at different molar ratios. The interactions between the octadecyl groups from the modified silica and the oleyl chains from the OLA/OLANa stabilizing system were investigated via simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC) (TG-DSC) analyses.A significant decrease in vaporization enthalpy and an increase in amount of ODTES were observed. Additionally, that the hydrophobic interaction between OLA and ODTES has a strong impact on the hybrids’ final morphology and on their textural characteristics was revealed. The highest hydrodynamic average diameter and the most negative ζ potential were recorded for the hybrid in which the ODTES/sodium silicate molar ratio was 1:5. The obtained mesoporous silica particles, stabilized by the OLA/OLANa vesicular system, may find application as carriers for hydrophobic bioactive molecules. PMID:27869768

  8. Sodium Bicarbonate-Ascorbic Acid Combination for Prevention of Contrast-Induced Nephropathy in Chronic Kidney Disease Patients Undergoing Catheterization.

    PubMed

    Komiyama, Kota; Ashikaga, Takashi; Inagaki, Dai; Miyabe, Tomonori; Arai, Marina; Yoshida, Kiyotaka; Miyazawa, Satoshi; Nakada, Akihiro; Kawamura, Iwanari; Masuda, Shinichiro; Nagamine, Sho; Hojo, Rintaro; Aoyama, Yuya; Tsuchiyama, Takaaki; Fukamizu, Seiji; Shibui, Takashi; Sakurada, Harumizu

    2017-01-25

    Sodium bicarbonate and ascorbic acid have been proposed to prevent contrast-induced nephropathy (CIN). The present study evaluated the effect of their combined use on CIN incidence.Methods and Results:We prospectively enrolled 429 patients with chronic kidney disease (CKD: baseline estimated glomerular filtration rate <60 mL/min/1.73 m 2 ) prior to elective coronary catheterization. CIN was defined as absolute (≥0.5 mg/dL) or relative (≥25%) increase in serum creatinine within 72 h. In the saline hydration (n=218) and combined sodium bicarbonate+ascorbic acid (n=211) groups, a total of 1,500-2,500 mL 0.9% saline was given before and after the procedure. In addition, the combination group received 20 mEq sodium bicarbonate and 3 g ascorbic acid i.v. before the procedure, followed by 2 g ascorbic acid after the procedure and a further 2 g after 12 h. There were no significant differences between the basic characteristics and contrast volume in the 2 groups. CIN occurred in 19 patients (8.7%) in the saline group, and in 6 patients (2.8%) in the combined treatment group (P=0.008). Combined sodium bicarbonate and ascorbic acid could prevent CIN following catheterization in CKD patients.

  9. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    USDA-ARS?s Scientific Manuscript database

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  10. Micellar electrokinetic chromatography with acid labile surfactant.

    PubMed

    Stanley, Bob; Lucy, Charles A

    2012-02-24

    We present a study of a degradable surfactant, sodium 4-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propane sulfonate that is also known as an acid-labile surfactant (ALS). The performance of ALS as a pseudostationary phase is assessed and compared with established pseudostationary phases such as sodium dodecyl sulphate (SDS), volatile surfactants and polymeric micelles. ALS achieves separation efficiency of 100,000-145,000 theoretical plates and relative standard deviation (RSD) of electrophoretic mobility (n=5) of less than 3%. Retention factors with ALS are strongly correlated with those with SDS. This is shown by the R2=0.79 for all eleven analytes and an R2=0.992 for specifically the non-hydrogen bonding (NHB) analytes. However, ALS displays different selectivity than SDS for hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) solutes (R2 of 0.74 and 0.88, respectively). ALS is degraded to less surface active compounds in acidic solution. These less surface-active compounds are more compatible with the electrospray ionization mass spectrometry (ESI-MS). ALS has a half-life of 48 min at pH 4. ALS has the potential to couple micellar electrokinetic chromatography (MEKC) with the ESI-MS. ALS can be used as a pseudostationary phase for a high efficiency separation and later acid hydrolyzed to enable an ESI-MS analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi.

    PubMed

    Oh, Chang-Kyung; Oh, Myung-Chul; Kim, Soo-Hyun

    2004-01-01

    Nitrites, whether added or naturally occurring in foods, are potential carcinogens, and controlling their concentrations is important for maintaining a safe food supply. In this study we investigated the depletion of sodium nitrite (150 microg/mL) during the fermentation in Lactobacilli MRS broth at 5, 10, 15, 20, 25, 30, and 36 degrees C by lactic acid bacteria (LAB-A, -B, -C, and -D) isolated from kimchi and Leuconostoc mesenteroides strain KCTC3100. The four species of lactic acid bacteria isolated from kimchi were identified as L. mesenteroides, and all produced depletion of less than 20% of sodium nitrite after 10 days of incubation at 5 degrees C. There was less than 40% depletion after 9 days at 10 degrees C, 86.4-92.8% after 7 days at 15 degrees C, 81.4-87.8% after 4 days and more than 90.0% after 5 days at 20 degrees C, 76.3-85.7% after 3 days and more than 90.0% after 5 days at 25 degrees C, and more than 90.0% after 2 days at 30 and 36 degrees C. The depletion by LAB isolates was similar or higher than that by L. mesenteroides strain KCTC3100, and in particular, the LAB-D strain showed the highest depletion effect of all the strains tested, up to 15 degrees C. From these results, the strains isolated from kimchi were very effective for the depletion of sodium nitrite at high temperature, and all sodium nitrite was depleted at the initial period of incubation (1-2 days) at 30 and 36 degrees C. But as the temperature was lowered, the depletion effect of sodium nitrite was decreased in all the strains tested from kimchi. This illustrates that the depletion of nitrite by each strain is subject to the influence of temperatures.

  12. Effects of propofol, midazolam and thiopental sodium on outcome and amino acids accumulation in focal cerebral ischemia-reperfusion in rats.

    PubMed

    Chen, Lianhua; Gong, Qinyan; Xiao, Changsi

    2003-02-01

    To investigate the effects of propofol, midazolam and thiopental sodium on outcomes and amino acid accumulation in focal cerebral ischemia-reperfusion in rats. Male Sprague Dawley (SD) rats were scheduled to undergo 3-hour middle cerebral artery occlusion by intraluminal suture and 24-hour reperfusion. Neurologic outcomes were scored on a 0-5 grading scale. Infarct volume was shown with triphenyltetrazolium chloride staining and measured by an image analysis system. Concentrations of various amino acids (aspartate, glutamate, glycine, taurine, and gama-aminobutyric acid) were measured after 3 hours of reperfusion using high performance liquid chromatography. Propofol, midazolam and thiopental sodium were given intraperitoneally at the beginning of reperfusion. Both propofol and midazolam attenuated neurological deficits and reduced infarct and edema volumes. Propofol showed better neurological protection than midazolam while thiopental sodium did not exhibit any protective effect. Both propofol and midazolam decreased excitatory amino acids accumulation, while propofol increased gama-aminobutyric acid accumulation in ischemic areas in reperfusion. Propofol and midazolam, but not thiopental sodium, may provide protective effects against reperfusion induced injury in rats subjected to focal cerebral ischemia. This neurological protection may be due to the acceleration of excitatory amino acids elimination in reperfusion.

  13. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  14. Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, Nancy; Carrillo-Romo, Felipe; Jaramillo-Vigueras, David

    2004-10-01

    This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol-1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.

  15. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry.

    PubMed

    Kinde, Tristan F; Lopez, Thomas D; Dutta, Debashis

    2015-03-03

    While the use of sodium dodecyl sulfate (SDS) in separation buffers allows efficient analysis of complex mixtures, its presence in the sample matrix is known to severely interfere with the mass-spectrometric characterization of analyte molecules. In this article, we report a microfluidic device that addresses this analytical challenge by enabling inline electrospray ionization mass spectrometry (ESI-MS) of low molecular weight cationic samples prepared in SDS containing matrices. The functionality of this device relies on the continuous extraction of analyte molecules into an SDS-free solvent stream based on the free-flow zone electrophoresis (FFZE) technique prior to their ESI-MS analysis. The reported extraction was accomplished in our current work in a glass channel with microelectrodes fabricated along its sidewalls to realize the desired electric field. Our experiments show that a key challenge to successfully operating such a device is to suppress the electroosmotically driven fluid circulations generated in its extraction channel that otherwise tend to vigorously mix the liquid streams flowing through this duct. A new coating medium, N-(2-triethoxysilylpropyl) formamide, recently demonstrated by our laboratory to nearly eliminate electroosmotic flow in glass microchannels was employed to address this issue. Applying this surface modifier, we were able to efficiently extract two different peptides, human angiotensin I and MRFA, individually from an SDS containing matrix using the FFZE method and detect them at concentrations down to 3.7 and 6.3 μg/mL, respectively, in samples containing as much as 10 mM SDS. Notice that in addition to greatly reducing the amount of SDS entering the MS instrument, the reported approach allows rapid solvent exchange for facilitating efficient analyte ionization desired in ESI-MS analysis.

  16. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and....1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium hydroxide or sodium carbonate...

  17. In vitro influence of D/L-lactic acid, sodium chloride and sodium nitrite on the infectivity of feline calicivirus and of ECHO virus as potential surrogates for foodborne viruses.

    PubMed

    Straube, J; Albert, T; Manteufel, J; Heinze, J; Fehlhaber, K; Truyen, U

    2011-11-15

    The importance of foodborne viruses is increasingly recognized. Thus, the effect of commonly used food preservation methods on the infectivity of viruses is questioned. In this context, we investigated the antiviral properties of D,L-lactic acid, sodium chloride and sodium nitrite by in vitro studies. Two model viruses, Feline Calicivirus (FCV) and Enteric Cytophatic Human Orphan (ECHO) virus, were chosen for this study simulating important foodborne viruses (human noroviruses (NoV) and human enteroviruses, resp.). The model viruses were exposed to different solutions of D,L-lactic acid (0.1-0.4% w/w, pH 6.0-3.2), of sodium chloride (2-20%, w/v) and of sodium nitrite (100, 150 and 200 ppm) at 4 and 20 °C for a maximum of 7 days. Different results were obtained for the two viruses. ECHO virus was highly stable against D,L-lactic acid and sodium chloride when tested under all conditions. On the contrary, FCV showed less stability but was not effectively inactivated when exposed to low acid and high salt conditions at refrigeration temperatures (4 °C). FCV titers decreased more markedly at 20 °C than 4 °C in all experiments. Sodium nitrite did not show any effect on the inactivation of both viruses. The results indicate that acidification, salting or curing maybe insufficient for effective inactivation of foodborne viruses such as NoV or human enteroviruses during food processing. Thus, application of higher temperature during fermentation and ripening processes maybe more effective toward the inactivation kinetics of less stable viruses. Nevertheless, more studies are needed to examine the antiviral properties of these preserving agents on virus survival and inactivation kinetics in the complex food matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration.

    PubMed

    Ke, Jing; Dou, Hanfei; Zhang, Ximin; Uhagaze, Dushimabararezi Serge; Ding, Xiali; Dong, Yuming

    2016-12-01

    As a mono-sodium salt form of alendronic acid, alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups. The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and pH value based on acid-base potentiometric titration reaction. The distribution curves of alendronate sodium were drawn according to the determined pKa values. There were 4 dissociation constants (pKa 1 =2.43, pKa 2 =7.55, pKa 3 =10.80, pKa 4 =11.99, respectively) of alendronate sodium, and 12 existing forms, of which 4 could be ignored, existing in different pH environments.

  19. Production of L-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Zheng, Zhaojuan; Ma, Cuiqing; Tang, Hongzhi; Xu, Ping

    2010-10-01

    A sodium lactate tolerant mutant strain named Bacillus sp. Na-2 was obtained and applied to sodium hydroxide-based L-lactic acid (LA) production process. The influences of aeration and pH were investigated to further improve the resistance of strain Na-2 against sodium lactate stress and to obtain the most efficient L-LA production process. Although mild aeration was favorable for cell growth and L-LA production, vigorous aeration resulted in a metabolic shift from homolactic to mixed-acid/acetoin fermentation. Therefore, a two-stage aeration control strategy was employed. Optimum pH was found to be 6.0. A total of 106.0 g/l L-LA was produced in 30 h by Bacillus sp. Na-2 using sodium hydroxide as neutralizing agent. Productivity, conversion rate and optical purity were 3.53 g/l/h, 94% and 99.5%, respectively. The remarkable fermentation traits of Bacillus sp. Na-2 and the environment-friendly characteristics of NaOH-based process represent new insight for industrial scale production of L-LA. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  1. Modelling the effects of lactic acid, sodium benzoate and temperature on the growth of Candida maltosa.

    PubMed

    Valík, Ľ; Ačai, P; Liptáková, D

    2017-11-01

    The growth of the oxidatively imperfect yeast Candida maltosa Komagata, Nakase et Katsuya was studied experimentally and modelled mathematically in relation to sodium benzoate and lactic acid concentrations at different temperatures. Application of gamma models for the growth rate resulted in determination of cardinal temperature parameters for the growth environment containing lactic acid or sodium benzoate (T min  = 0·7/1·3°C, T max  = 45·3/45·0°C, T opt  = 36·1/37·0°C, μ opt  = 0·88/0·96 h -1 ) as well as the maximal lactic acid concentration for growth (1·9%) or sodium benzoate (1397 mg kg -1 ). Based on the model, the times to reach the density of C. maltosa at the level of 10 5  CFU per ml can be determined at each combination of storage temperature and preservative concentration. The approach used in this study can broaden knowledge of the microbiological quality of fermented milk products during storage as well as the preservation efficacy of mayonnaise dressing for storage and consumption. The strain of Candida maltosaYP1 was originally isolated from air filters that ensured clean air overpressure in yoghurt fermentation tanks. Its growth in contaminated yoghurts manifested outwardly through surface growth, assimilation lactic acid and slight production of carbon dioxide. This was the opportunity to model the effects of lactic acid and sodium benzoate on growth and predict its behaviour in foods. The approach used in this study provides knowledge about microbiological quality development during storage of the fermented milk products as well as some preserved foods for storage and consumption. © 2017 The Society for Applied Microbiology.

  2. Sodium sulphite inhibition of potato and cherry polyphenolics in nucleic acid extraction for virus detection by RT-PCR.

    PubMed

    Singh, R P; Nie, X; Singh, M; Coffin, R; Duplessis, P

    2002-01-01

    Phenolic compounds from plant tissues inhibit reverse transcription-polymerase chain reaction (RT-PCR). Multiple-step protocols using several additives to inhibit polyphenolic compounds during nucleic acid extraction are common, but time consuming and laborious. The current research highlights that the inclusion of 0.65 to 0.70% of sodium sulphite in the extraction buffer minimizes the pigmentation of nucleic acid extracts and improves the RT-PCR detection of Potato virus Y (PVY) and Potato leafroll virus (PLRV) in potato (Solanum tuberosum) tubers and Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV) in leaves and bark in the sweet cherry (Prunus avium) tree. Substituting sodium sulphite in the nucleic acid extraction buffer eliminated the use of proteinase K during extraction. Reagents phosphate buffered saline (PBS)-Tween 20 and polyvinylpyrrolidone (PVP) were also no longer required during RT or PCR phase. The resultant nucleic acid extracts were suitable for both duplex and multiplex RT-PCR. This simple and less expensive nucleic acid extraction protocol has proved very effective for potato cv. Russet Norkotah, which contains a high amount of polyphenolics. Comparing commercially available RNA extraction kits (Catrimox and RNeasy), the sodium sulphite based extraction protocol yielded two to three times higher amounts of RNA, while maintaining comparable virus detection by RT-PCR. The sodium sulphite based extraction protocol was equally effective in potato tubers, and in leaves and bark from the cherry tree.

  3. Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters.

    PubMed

    Severi, Emmanuele; Hosie, Arthur H F; Hawkhead, Judith A; Thomas, Gavin H

    2010-03-01

    The function of sialic acids in the biology of bacterial pathogens is reflected by the diverse range of solute transporters that can recognize these sugar acids. Here, we use an Escherichia coliDeltananT strain to characterize the function of known and proposed bacterial sialic acid transporters. We discover that the STM1128 gene from Salmonella enterica serovar Typhimurium, which encodes a member of the sodium solute symporter family, is able to restore growth on sialic acid to the DeltananT strain and is able to transport [(14)C]-sialic acid. Using the DeltananT genetic background, we performed a direct in vivo comparison of the transport properties of the STM1128 protein with those of sialic acid transporters of the major facilitator superfamily and tripartite ATP-independent periplasmic families, E. coli NanT and Haemophilus influenzae SiaPQM, respectively. This revealed that both STM1128 and SiaPQM are sodium-dependent and, unlike SiaPQM, both STM1128 and NanT are reversible secondary carriers, demonstrating qualitative functional differences in the properties of sialic acid transporters used by bacteria that colonize humans.

  4. Extraction of trace amounts of mercury with sodium dodecyle sulphate-coated magnetite nanoparticles and its determination by flow injection inductively coupled plasma-optical emission spectrometry.

    PubMed

    Faraji, Mohammad; Yamini, Yadollah; Rezaee, Mohammad

    2010-05-15

    A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe(3)O(4) NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg(2)(TMK)(4)](2+) complex on the negatively charged surface of the SDS-coated Fe(3)O(4) NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe(3)O(4) NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe(3)O(4) NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100ngmL(-1) with r(2)=0.9994 (n=8). The limit of detection for Hg(II) determination was 0.04ngmL(-1). Also, relative standard deviation (R.S.D.) for the determination of 2 and 50ngmL(-1) of Hg(II) was 5.2 and 4.7% (n=6), respectively. Due to the quantitative extraction of Hg(II) from 1000mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.

  5. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.

    PubMed

    Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya

    2016-09-13

    In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.

  6. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  7. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  8. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  9. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68-0904-092) is the sodium salt of citric acid. It is prepared by neutralizing citric acid with sodium...

  10. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with sodium hydroxide. (b) The... ingredient is used in food at levels not to exceed current good manufacturing practice. (d) Prior sanctions...

  11. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES.

    PubMed

    GOLDMAN, M; DEIBEL, R H; NIVEN, C F

    1963-05-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017-1021. 1963.-An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation.

  12. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium stearoyl lactylate. 172.846 Section 172.846... Sodium stearoyl lactylate. The food additive sodium stearoyl lactylate (CAS Reg. No. 25-383-997) may be... mixture of sodium salts of stearoyl lactylic acids and minor proportions of sodium salts of related acids...

  13. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  14. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white to yellow powder. Commercially...

  15. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  16. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  17. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  18. 21 CFR 186.1771 - Sodium palmitate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium palmitate. 186.1771 Section 186.1771 Food... of Specific Substances Affirmed as GRAS § 186.1771 Sodium palmitate. (a) Sodium palmitate (C16H31O2Na, CAS Reg. No. 408-35-5) is the sodium salt of palmitic acid (hexadecanoic acid). It exists as a white...

  19. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  20. Bioavailability of ibuprofen following oral administration of standard ibuprofen, sodium ibuprofen or ibuprofen acid incorporating poloxamer in healthy volunteers

    PubMed Central

    2009-01-01

    Background The aim of this study was to compare the pharmacokinetic properties of sodium ibuprofen and ibuprofen acid incorporating poloxamer with standard ibuprofen acid tablets. Methods Twenty-two healthy volunteers were enrolled into this randomised, single-dose, 3-way crossover, open-label, single-centre, pharmacokinetic study. After 14 hours' fasting, participants received a single dose of 2 × 200 mg ibuprofen acid tablets (standard ibuprofen), 2 × 256 mg ibuprofen sodium dihydrate tablets (sodium ibuprofen; each equivalent to 200 mg ibuprofen acid) and 2 × 200 mg ibuprofen acid incorporating 60 mg poloxamer 407 (ibuprofen/poloxamer). A washout period of 2-7 days separated consecutive dosing days. On each of the 3 treatment days, blood samples were collected post dose for pharmacokinetic analyses and any adverse events recorded. Plasma concentration of ibuprofen was assessed using a liquid chromatographic-mass spectrometry procedure in negative ion mode. A standard statistical ANOVA model, appropriate for bioequivalence studies, was used and ratios of 90% confidence intervals (CIs) were calculated. Results Tmax for sodium ibuprofen was less than half that of standard ibuprofen (median 35 min vs 90 min, respectively; P = 0.0002) and Cmax was significantly higher (41.47 μg/mL vs 31.88 μg/mL; ratio test/reference = 130.06%, 90% CI 118.86-142.32%). Ibuprofen/poloxamer was bioequivalent to the standard ibuprofen formulation, despite its Tmax being on average 20 minutes shorter than standard ibuprofen (median 75 mins vs 90 mins, respectively; P = 0.1913), as the ratio of test/reference = 110.48% (CI 100.96-120.89%), which fell within the 80-125% limit of the CPMP and FDA guidelines for bioequivalence. The overall extent of absorption was similar for the three formulations, which were all well tolerated. Conclusion In terms of Tmax, ibuprofen formulated as a sodium salt was absorbed twice as quickly as from standard ibuprofen acid. The addition of poloxamer to

  1. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    PubMed Central

    Olek, Robert A.; Kujach, Sylwester; Wnuk, Damian; Laskowski, Radoslaw

    2014-01-01

    This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM) than in the placebo trial (10.6 ± 0.3 mM, p < 0.05) and remained elevated (nonsignificant) after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise. PMID:24841105

  2. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    USDA-ARS?s Scientific Manuscript database

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  3. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  4. Phenolic sodium sulphates of Frankenia laevis L.

    PubMed

    Hussein, S A M

    2004-04-01

    Four new phenolic anionic conjugates have been isolated from the whole plant aqueous alcohol extract of Frankenia laevis L. Their structures were established, mainly on the basis of ESI-MS, 1D and 2D NMR spectroscopic evidence, as gallic acid-3-methyl ether-5-sodium sulphate, acetophenone-4-methyl ether-2-sodium sulphate, ellagic acid-3,3'-dimethyl ether-4,4'-di-sodium sulphate and ellagic acid-3-methyl ether-4-sodium sulphate.

  5. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish powder...

  6. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish powder...

  7. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish powder...

  8. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish powder...

  9. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  10. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.

    PubMed

    Sohrabi, Mehri; Hesaraki, Saeed; Kazemzadeh, Asghar

    2014-04-01

    Different biocomposite pastes were prepared from a solid phase that was nanoparticles of sol-gel-derived bioactive glass and different liquid phases including 3% hyaluronic acid solution, sodium alginate solutions (3% and 10 %) or mixtures of hyaluronic acid and sodium alginate (3% or 10 %) solutions in 50:50 volume ratio. Rheological properties of the pastes were measured in both rotatory and oscillatory modes. The washout behavior and in vitro apatite formation of the pastes were determined by soaking them in simulated body fluid under dynamic situation for 14 days. The proliferation and alkaline phosphatase activity of MG-63 osteoblastic cells were also determined using extracts of the pastes. All pastes could be easily injected from the standard syringes with different tip diameters. All pastes exhibited visco-elastic character, but a nonthixotropic paste was obtained using hyaluronic acid in which the loss modulus was higher than the storage modulus. The thixotropy and storage modulus were increasingly improved by adding/using sodium alginate as mixing liquid. Moreover, the pastes in which the liquid phase was sodium alginate or mixture of hyaluronic acid and 10% sodium alginate solution revealed better apatite formation ability and washout resistance than that made of hyaluronic acid alone. No cytotoxicity effects were observed by extracts of the pastes on osteoblasts but better alkaline phosphatase activity was found for the pastes containing hyaluronic acid. Overall, injectable biocomposites can be produced by mixing bioactive glass nanoparticles and sodium alginate/hyaluronic acid polymers. They are potentially useful for hard and even soft tissues treatments. Copyright © 2013 Wiley Periodicals, Inc.

  11. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil.

  12. Stability of tranexamic acid in 0.9% sodium chloride, stored in type 1 glass vials and ethylene/propylene copolymer plastic containers.

    PubMed

    McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S

    2014-01-01

    Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.

  13. In vitro study of the effect of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate on acid-softened enamel.

    PubMed

    Rege, Aarti; Heu, Rod; Stranick, Michael; Sullivan, Richard J

    2014-01-01

    To investigate the possible mode of action of a dentifrice containing 8% arginine and calcium carbonate (Pro-Argin Technology), and sodium monofluorophosphate in delivering the benefits of preventing acid erosion and rehardening acid-softened enamel. The surfaces of acid-softened bovine enamel specimens were evaluated after application of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate in vitro. Scanning Electron Microscopy (SEM), Electronic Spectrometry for Chemical Analysis (ESCA), and Secondary Ion Mass Spectrometry (SIMS) were used to characterize the enamel surfaces. Exposure of pristine enamel surfaces to citric acid resulted in clear roughening of the surface. Multiple applications of a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate to the surface of the enamel resulted in the disappearance of the microscopic voids observed by SEM as a function of treatment applications. The ESCA analysis demonstrated that both the nitrogen and carbonate levels increased as the number of treatments increased, which provides evidence that arginine and calcium carbonate were bound to the surface. Observance of arginine's signature mass fragmentation pattern by SIMS analysis confirmed the identity of arginine on the enamel surface. A series of in vitro experiments has demonstrated a possible mode of action by which a dentifrice containing 8% arginine, calcium carbonate, and sodium monofluorophosphate delivers the benefits of preventing acid erosion and rehardening acid-softened enamel. The combination of arginine and calcium carbonate adheres to the enamel surface and helps to fill the microscopic gaps created by acid, which in turn helps repair the enamel and provides a protective coating against future acid attacks.

  14. Alpha 1-acid glycoprotein reverses cocaine-induced sodium channel blockade in cardiac myocytes.

    PubMed

    Ma, Yu-Ling; Peters, Nicholas S; Henry, John A

    2006-03-01

    Alpha 1-acid glycoprotein (AAG) is an acute phase protein capable of binding basic drugs. This action explains its reversal of sodium channel blockade by drugs such as amitriptyline and quinidine. We report here the reversal of cocaine-induced sodium channel blockade by AAG. The sodium channel blocking property of cocaine is a major mechanism behind cocaine-induced sudden cardiac death, since sodium channels play a key role in the initiation and regulation of the heart beat. Voltage-gated sodium current (I(Na)) was recorded using whole-cell patch-clamp techniques. Guinea-pig cardiac ventricular myocytes were isolated and continuously perfused at room temperature with physiological solutions. At concentrations ranging from 5 to 320 microM cocaine showed a dose-dependent and reversible blockade of I(Na) with an IC50 of 45.9 microM. The addition of equimolar amounts of AAG to cocaine produced almost complete reversal of cocaine's effects, suggesting a single binding site for cocaine on the AAG molecule. With changes of peak I(Na) normalized against control as 1, cocaine at 20 and 40 microM reduced I(Na) to 0.62+/-0.042 (n = 6) and 0.57+/-0.052 (n = 9), respectively, and the addition of an equimolar concentration of AAG reversed I(Na) to 0.86+/-0.022 and 0.91+/-0.060, respectively. AAG reverses cocaine-induced sodium channel blockade in a dose-dependent manner, indicating a therapeutic potential to reverse acute cocaine cardiac toxicity.

  15. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  16. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  17. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  18. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  19. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Polyvinylmethylether maleic anhydride (PVM-MA...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3500 Polyvinylmethylether maleic anhydride (PVM-MA.... Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture...

  20. Influence of fluorocarbon and hydrocarbon acyl groups at the surface of bovine carbonic anhydrase II on the kinetics of denaturation by sodium dodecyl sulfate.

    PubMed

    Lee, Andrew; Mirica, Katherine A; Whitesides, George M

    2011-02-10

    This paper examines the influence of acylation of the Lys-ε-NH(3)(+) groups of bovine carbonic anhydrase (BCA, EC 4.2.1.1) to Lys-ε-NHCOR (R = -CH(3), -CH(2)CH(3), and -CH(CH(3))(2), -CF(3)) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (k(Ac,n)) of each series of acylated derivatives depended on the number of acylations (n). Plots of log k(Ac,n) vs n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ∼7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ∼7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14, however, rates of denaturation stayed approximately constant; analysis suggested that these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ∼3 for n ∼ 14) in the order CH(3)CONH- < CH(3)CH(2)CONH- < (CH(3))(2)CHCONH- < CF(3)CONH-. These results suggested that the hydrophobicity of CF(3)CONH- is slightly greater (by a factor of <2) than that of RHCONH- with similar surface area.

  1. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  2. Structural and technological characterisation of pectin extracted with sodium citrate and nitric acid from sunflower heads.

    PubMed

    Muñoz-Almagro, Nerea; Rico-Rodriguez, Fabián; Wilde, Peter J; Montilla, Antonia; Villamiel, Mar

    2018-05-18

    An optimisation of temperature, time and extracting agent concentration of pectin extraction from sunflower heads using sodium citrate and nitric acid (SP-SC and SP-NA) was carried out. At optimal conditions, the yield of extraction with nitric acid (SPO-NA) was 2-fold greater than the corresponding with sodium citrate (SPO-SC) (14.3 vs 7.7%, respectively). Regarding pectin structure, the galacturonic acid (GalA) content in both, SPO-SC and SPO-NA, was similar (∼85%). However, SPO-NA showed lower molecular weight (Mw) (88.9 kDa) and neutral sugar content (4%) than SPO-SC (464 kDa, 9%), indicating that nitric acid deeply degraded pectin structure. These differences derived into dissimilar behaviour in their technological functionality. SPO-SC showed higher viscosity and better emulsifying capacity than SPO-NA, although any of them were able to stabilise the oil/water emulsion. Both sunflower pectins formed gels with Ca 2+ (75 mg/g of pectin) at pH 3.0. However, when sucrose was added, the gels formed by SP-SC and 20% sucrose presented the same hardness as those of SP-NA with 40% sucrose. These results suggest that the pectin extracted with sodium citrate, an eco-friendly agent, could be a promising ingredient, with good thickening and gelling properties. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  4. Changes in sodium and uric acid concentrations in plasma during the menstrual cycle.

    PubMed

    Mira, M; Stewart, P M; Gebski, V; Llewellyn-Jones, D; Abraham, S F

    1984-03-01

    Hormonal changes during the menstrual cycle are well documented, but many other biochemical variables have not been studied. We find that in the luteal phase of the menstrual cycle the concentrations of sodium and uric acid are significantly lower. The changes may be of significance for the determination of the normal reference interval.

  5. L-pyroglutamic acid protects rat cortical neurons against sodium glutamate-induced injury.

    PubMed

    Xiao, X Q; Liu, G Q

    1999-08-01

    To evaluate the effects of L-pyroglutamic acid (L-PGA, L-5-oxo-2-pyrrolidinecaroxylic acid) on sodium glutamate-induced neurotoxicity in rat cortical neurons. In primary cortical cultures from 16-d-old fetal rat, neuronal viability and contents of nitrite in the bathing medium after transient exposure to sodium glutamate (Glu) were measured; with Fura 2-AM as an intracellular calcium indicator, AR-CM-MIC cation measurement system was used to examine cytosolic free calcium ([Ca2+]i). L-PGA 10-80 mumol.L-1, inhibited Glu (500 mumol.L-1)-induced neuronal loss in a concentration-dependent manner with IC50 value of (41 +/- 9) mumol.L-1 (95% confidence limits: 30.3-54.7 mumol.L-1). L-PGA also attenuated Glu-induced NO release. L-PGA 1, 3, 10, 30, and 100 mumol.L-1 depressed Glu-caused [Ca2+]i elevation by 20.5%, 34.4%, 47.7%, 70.6%, and 80.4%, respectively. L-PGA protects cortical neurons against Glu-induced neurotoxity which may be related to inhibition of NO formation or suppression of the rise in [Ca2+]i.

  6. INTERRELATIONSHIP BETWEEN TEMPERATURE AND SODIUM CHLORIDE ON GROWTH OF LACTIC ACID BACTERIA ISOLATED FROM MEAT-CURING BRINES1

    PubMed Central

    Goldman, Manuel; Deibel, R. H.; Niven, C. F.

    1963-01-01

    Goldman, Manuel (American Meat Institute Foundation, Chicago, Ill.), R. H. Deibel, and C. F. Niven, Jr. Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J. Bacteriol. 85:1017–1021. 1963.—An elevation of the temperature limit for growth of some Pediococcus homari (Gaffkya homari) and motile Lactobacillus strains could be effected by the addition of sodium chloride to the growth medium. At the optimal temperature for growth, sodium chloride was stimulatory, and as the temperature of incubation was increased a mandatory requirement for sodium chloride was manifested. At the optimal temperature for growth (30 C), the highest sodium chloride concentrations were tolerated; as the temperature was increased, this tolerance decreased, although the optimal sodium chloride concentration increased. No other substances were found that would replace the sodium chloride requirement at higher temperatures of incubation. PMID:14043988

  7. Use of anionic surfactants for selective polishing of silicon dioxide over silicon nitride films using colloidal silica-based slurries

    NASA Astrophysics Data System (ADS)

    Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.

    2013-10-01

    Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.

  8. The mechanism of interaction of polymethacrylic acid with sodium dodecylbenzenesulfonate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.; Golod, T. Yu.

    2009-07-01

    A complex of physicochemical methods (light scattering, potentiometry, conductometry, viscometry, tensiometry, and fluorescence spectroscopy) were used to show the possibility of formation of intermolecular associates/complexes in systems with likely charged components. The driving forces of such interactions were analyzed and a possible scheme of complex formation between polymethacrylic acid and sodium dodecylbenzenesulfonate was suggested.

  9. Modelling the effect of ascorbic acid, sodium metabisulphite and sodium chloride on the kinetic responses of lactic acid bacteria and yeasts in table olive storage using a specifically implemented Quasi-chemical primary model.

    PubMed

    Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A

    2010-04-15

    The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations. (c) 2010 Elsevier B.V. All rights reserved.

  10. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    PubMed Central

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  11. Turnover of Phosphatidic Acid and Sodium Extrusion from Mammalian Erythrocytes

    PubMed Central

    Kirschner, Leonard B.; Barker, Jennifer

    1964-01-01

    Phosphatidic acid (PA) from swine and beef RBCs was isolated by chromatography on silicic acid columns. It comprised about 1 per cent of the total lipid phosphate in RBCs, but was eluted nearly pure from columns. An uncharacterized inositide accounted for 5 to 10 per cent of the phosphate in the PA-containing fraction. When cells were incubated with HP32O4 =, the fraction containing PA became more radioactive than any of the other fractions obtained. However, analysis of the labeled material by paper chromatography showed that most of the P32 was in the inositide, not in PA. With the assumption of kinetic homogeneity for cellular PA, compartmental analysis of the kinetics of tracer incorporation showed that PA turnover is 3 to 4 orders of magnitude too slow to account for sodium extrusion by these cells. PMID:14192545

  12. Application of magnetic nanoparticles coated with sodium dodecyl sulfate and modified with 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol as a novel adsorbent for dispersive-magnetic solid-phase extraction and determination of palladium in soil samples.

    PubMed

    Wang, Meng; Wu, Lan; Hu, Qiufen; Yang, Yaling

    2018-03-01

    A rapid, sensitive, precise, and accurate dispersive-magnetic solid-phase extraction technique combined with flame atomic absorption spectrometry was established for pre-concentration and separation of Pd (II) in soil samples. In the developed system, 5-amine-1,10-phenanthroline was used as synergistic complexant; sodium dodecyl sulfate and 2-(5-bromo-2-pyridylazo)-5-diethyl aminophenol ligand coated on magnetic nanoparticles were synthesized by a chemical precipitation method, and then employed as the efficient magnetic adsorbent with good magnetic properties and dispersibility. Various operational parameters affecting the extraction efficiency has been studied and optimized in details. Under the optimum experimental conditions, the detection limit of the mentioned method for palladium ions was 0.12 μg/L, while the relative standard deviation was 1.8%. Finally, the developed method was applied for the analysis of palladium ions in three kinds of soil samples and quantitative recoveries were achieved over the range of 96.7-104.0%. It can be a powerful alternative applied to the determination of traces of Pd ions from various real samples in further researches.

  13. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sulfuric...

  14. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  15. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  16. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  17. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  18. 40 CFR 180.1098 - Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium Gibberellate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and GA4 + GA7), and Sodium or Potassium Gibberellate]; exemption from the requirement of a tolerance... Tolerances § 180.1098 Gibberellins [Gibberellic Acids (GA3 and GA4 + GA7), and Sodium or Potassium... potassium gibberellate] in or on all food commodities when used as plant regulators on plants, seeds, or...

  19. Rapid Discrimination of Gram-Positive and Gram-Negative Bacteria in Liquid Samples by Using NaOH-Sodium Dodecyl Sulfate Solution and Flow Cytometry

    PubMed Central

    Wada, Atsushi; Kono, Mari; Kawauchi, Sawako; Takagi, Yuri; Morikawa, Takashi; Funakoshi, Kunihiro

    2012-01-01

    Background For precise diagnosis of urinary tract infections (UTI), and selection of the appropriate prescriptions for their treatment, we explored a simple and rapid method of discriminating gram-positive and gram-negative bacteria in liquid samples. Methodology/Principal Findings We employed the NaOH-sodium dodecyl sulfate (SDS) solution conventionally used for plasmid extraction from Escherichia coli and the automated urine particle analyzer UF-1000i (Sysmex Corporation) for our novel method. The NaOH-SDS solution was used to determine differences in the cell wall structures between gram-positive and gram-negative bacteria, since the tolerance to such chemicals reflects the thickness and structural differences of bacterial cell walls. The UF-1000i instrument was used as a quantitative bacterial counter. We found that gram-negative bacteria, including E. coli, in liquid culture could easily be lysed by direct addition of equal volumes of NaOH-SDS solution. In contrast, Enterococcus faecalis, which is a gram-positive bacterium, could not be completely lysed by the solution. We then optimized the reaction time of the NaOH-SDS treatment at room temperature by using 3 gram-positive and 4 gram-negative bacterial strains and determined that the optimum reaction time was 5 min. Finally, in order to evaluate the generalizability of this method, we treated 8 gram-positive strains and 8 gram-negative strains, or 4 gram-positive and 4 gram-negative strains incubated in voluntary urine from healthy volunteers in the same way and demonstrated that all the gram-positive bacteria were discriminated quantitatively from gram negative bacteria using this method. Conclusions/Significance Using our new method, we could easily discriminate gram-positive and gram-negative bacteria in liquid culture media within 10 min. This simple and rapid method may be useful for determining the treatment course of patients with UTIs, especially for those without a prior history of UTIs. The method

  20. The Influence of Fluorocarbon and Hydrocarbon Acyl Groups at the Surface of Bovine Carbonic Anhydrase II on the Kinetics of Denaturation by Sodium Dodecyl Sulfate

    PubMed Central

    Lee, Andrew; Mirica, Katherine A.; Whitesides, George M.

    2011-01-01

    This paper examines the influence of acylation of the Lys-ε-NH3+ groups of bovine carbonic anhydrase (BCA, E.C. 4.2.1.1) to Lys-ε-NHCOR (R = -CH3, -CH2CH3, and -CH(CH3)2, -CF3) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (kAc,n) of each series of acylated derivatives depended on the number of acylations (n). Plots of log kAc,n vs. n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ~7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ~7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14 however, rates of denaturation stayed approximately constant; analysis suggested these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ~3 for n ~ 14) in the order CH3CONH- < CH3CH2CONH- < (CH3)2CHCONH- < CF3CONH-. These results suggested that the hydrophobicity of CF3CONH- is slightly greater (by a factor of < 2) than that of RHCONH- similar in surface area. PMID:21182314

  1. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or sodium...

  2. Growth/no growth interfaces of table olive related yeasts for natamycin, citric acid and sodium chloride.

    PubMed

    Arroyo-López, F N; Bautista-Gallego, J; Romero-Gil, V; Rodríguez-Gómez, F; Garrido-Fernández, A

    2012-04-16

    The present work uses a logistic/probabilistic model to obtain the growth/no growth interfaces of Saccharomyces cerevisiae, Wickerhamomyces anomalus and Candida boidinii (three yeast species commonly isolated from table olives) as a function of the diverse combinations of natamycin (0-30 mg/L), citric acid (0.00-0.45%) and sodium chloride (3-6%). Mathematical models obtained individually for each yeast species showed that progressive concentrations of citric acid decreased the effect of natamycin, which was only observed below 0.15% citric acid. Sodium chloride concentrations around 5% slightly increased S. cerevisiae and C. boidinii resistance to natamycin, although concentrations above 6% of NaCl always favoured inhibition by this antimycotic. An overall growth/no growth interface, built considering data from the three yeast species, revealed that inhibition in the absence of citric acid and at 4.5% NaCl can be reached using natamycin concentrations between 12 and 30 mg/L for growth probabilities between 0.10 and 0.01, respectively. Results obtained in this survey show that is not advisable to use jointly natamycin and citric acid in table olive packaging because of the observed antagonistic effects between both preservatives, but table olives processed without citric acid could allow the application of the antifungal. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A sialic acid assay in isolation and purification of bovine k-casein glycomacropeptide: a review.

    PubMed

    Nakano, Takuo; Ozimek, Lech

    2014-01-01

    Sialic acid is a carbohydrate moiety of k-casein glycomacropeptide (GMP), which is a 64 amino acid residue C-terminal sialylated phosphorylated glycopeptide released from k-casein by the action of chymosin during cheese making. GMP lacks aromatic amino acids including phenylalanine, tyrosine, and tryptophan. Because of its unique amino acid composition and various biological activities, GMP is thought to be a potential ingredient for dietetic foods (e.g., a food for PKU patients) and pharmaceuticals. Thus, increased attention has been given to the development of techniques to purify GMP. In this review, techniques of GMP purification described in patents and scientific research papers were introduced. A sialic acid assay is the important method to track GMP isolation and purification processes, for which the thiobarbituric acid reaction with 1-propanol as a chromophore extracting solvent is an inexpensive, practical and specific technique. Sephacryl S-200 gel filtration chromatography, cellulose acetate electrophoresis, and sodium dodecyl sulfate polyacrylamide gel electrophoresis are the major techniques to identify sialic acid specific to GMP. Sephacryl S-200 chromatography and cellulose acetate electrophoresis are also used to detect GMP sialic acid in whey pearmeate and whey added commercial margarine samples. Future research includes development of an economical industrial scale method to produce high purity GMP.

  4. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  5. Lactic acid production from Sophora flavescens residues pretreated with sodium hydroxide: Reutilization of the pretreated liquor during fermentation.

    PubMed

    Wang, Juan; Gao, Ming; Liu, Jianguo; Wang, Qunhui; Wang, Cong; Yin, Zihe; Wu, Chuanfu

    2017-10-01

    The feasibility of lactic acid production from Sophora flavescens residues (SFRs) pretreated with sodium hydroxide with the reutilization of the pretreated liquor during fermentation was investigated. After sodium hydroxide pretreatment, 67.5% of the lignin was removed, and hydrolysis efficiency increased from 37.3% to 79.2%. The reutilization of pretreated liquor at 50% loading during open fermentation of unwashed SFR increased lactic acid production by 34.1%. The pretreated liquor acted as pH buffer and resulted in stable pH and high cellulase activity during fermentation. Inhibitors in the pretreated liquor did not affect the growth of lactic acid bacteria but severely inhibited the growth of ethanol-producing yeast. Consequently, lactic acid production increased and ethanol production was zero at 50% loading. Water consumption during pretreatment and fermentation with 50% pretreated liquor was 1.341L per 100g SFR, which was 67.6% lower than that during fermentation with washed SFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and....1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b) In...

  7. Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase.

    PubMed

    Mahendran, B; Raman, N; Kim, D-J

    2006-04-01

    An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl-cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate-PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50 degrees C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and (1)H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.

  8. Relative hypoglycemia of rectal insulin suppositories containing deoxycholic acid, sodium taurocholate, polycarbophil, and their combinations in diabetic rabbits.

    PubMed

    Hosny, E A

    1999-06-01

    In this study, insulin suppositories containing 50 U insulin incorporated with 50 mg of deoxycholic acid, sodium taurocholate, or both were placed in the rectum of alloxan-induced hyperglycemic rabbits. A large decrease in plasma glucose concentrations was observed, and the relative hypoglycemias were calculated to be 38.0%, 34.9%, and 44.4%, respectively, compared with insulin subcutaneous (s.c.) injection (40 U). Insulin suppositories containing 50 mg polycarbophil alone or mixed with 50 mg deoxycholic acid produced relative hypoglycemia of 43.1% and 42.2%, respectively. The most pronounced effect was observed with the addition of polycarbophil to the suppository formulation containing a combination of deoxycholic acid and sodium taurocholate, which produced a 56% relative hypoglycemia compared with subcutaneous injection. These suppository formulations could be very promising alternatives to the current insulin injections, being roughly half as efficacious as subcutaneous injection.

  9. Affinity purification of the voltage-sensitive sodium channel from electroplax with resins selective for sialic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, W.M.; Emerick, M.C.; Agnew, W.S.

    1989-07-11

    The voltage-sensitive sodium channel present in the eel (Electrophorus electricus) has an unusually high content of sialic acid, including {alpha}-(2{yields}8)-linked polysialic acid, not found in other electroplax membrane glycopeptides. Lectins from Limax flavus (LFA) and wheat germ (WGA) proved the most effective of 11 lectin resins tried. The most selective resin was prepared from IgM antibodies against Neisseria meningitidis {alpha}-(2{yields}8)-polysialic acid which were affinity purified and coupled to Sepharose 4B. The sodium channel was found to bind to WGA, LFA, and IgM resins and was readily eluted with the appropriate soluble carbohydrates. Experiments with LFA and IgM resins demonstrated bindingmore » and unbinding rates and displacement kinetics, which suggest highly specific binding at multiple sites on the sodium channel protein. In preparative-scale purification of protein previously fractionated by anion-exchange chromatography, without stabilizing TTX, high yields were reproducibly obtained. Further, when detergent extracts were prepared from electroplax membranes fractionated by low-speed sedimentation, a single step over the IgM resin provided a 70-fold purification, yielding specific activities of 3,200 pmol of ({sup 3}H)TTX-binding sites/mg of protein and a single polypeptide of {approximately}285,000 Da on SDS-acrylamide gels. No small peptides were observed after this 5-h isolation. The authors describe a cation-dependent stabilization with millimolar levels of monovalent and micromolar levels of divalent species.« less

  10. L-lactic acid and sodium p-toluenesulfonate co-doped polypyrrole for high performance cathode in sodium ion battery

    NASA Astrophysics Data System (ADS)

    Liao, Qishu; Hou, Hongying; Liu, Xianxi; Yao, Yuan; Dai, Zhipeng; Yu, Chengyi; Li, Dongdong

    2018-04-01

    In this work, polypyrrole (PPy) was co-doped with L-lactic acid (LA) and sodium p-toluenesulfonate (TsONa) for high performance cathode in sodium ion battery (SIB) via facile one-step electropolymerization on Fe foil. The as-synthesized LA/TsONa co-doped PPy cathode was investigated in terms of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), galvanostatic charge/discharge and cyclic voltammetry (CV). The results suggested that some oval-bud-like LA/TsONa co-doped PPy particles did form and tightly combine with the surface of Fe foil; furthermore, LA/TsONa co-doped PPy cathode also delivered higher electrochemical performances than TsONa mono-doped PPy cathode. For example, the initial specific discharge capacity was as high as about 124 mAh/g, and the reversible specific capacity still maintained at about 110 mAh/g even after 50 cycles, higher than those of TsONa mono-doped PPy cathode. The synergy effect of multi components of LA/TsONa co-doped PPy cathode should be responsible for high electrochemical performances.

  11. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium...

  12. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium...

  13. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by the...

  14. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is...

  15. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and....1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium hydroxide. (b) The ingredient is...

  16. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium benzoate. 184.1733 Section 184.1733 Food and... Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or...

  17. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium benzoate. 184.1733 Section 184.1733 Food... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium...

  18. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    PubMed

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  20. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  1. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled...

  2. Permeation of sumatriptan succinate across human skin using multiple types of self-dissolving microneedle arrays fabricated from sodium hyaluronate.

    PubMed

    Wu, Dan; Katsumi, Hidemasa; Quan, Ying-Shu; Kamiyama, Fumio; Kusamori, Kosuke; Sakane, Toshiyasu; Yamamoto, Akira

    2016-09-01

    Available formulations of sumatriptan succinate (SS) have low bioavailability or are associated with site reactions. We developed various types of self-dissolving microneedle arrays (MNs) fabricated from sodium hyaluronate as a new delivery system for SS and evaluated their skin permeation and irritation in terms of clinical application. In vitro permeation studies with human skin, physicochemical properties (needle length, thickness and density), and penetration enhancers (glycerin, sodium dodecyl sulfate and lauric acid diethanolamide) were investigated. SS-loaded high-density MNs of 800 µm in length were the optimal formulation and met clinical therapeutic requirements. Penetration enhancers did not significantly affect permeation of SS from MNs. Optical coherence tomography images demonstrated that SS-loaded high-density MNs (800 µm) uniformly created drug permeation pathways for the delivery of SS into the skin. SS-loaded high-density MNs induced moderate primary skin irritations in rats, but the skin recovered within 72 h of removal of the MNs. These findings suggest that high-density MNs of 800 µm in length are an effective and promising formulation for transdermal delivery of SS. To our knowledge, this is the first report of SS permeation across human skin using self-dissolving MNs.

  3. Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, Added to Clozapine for the Treatment of Schizophrenia: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Lin, Chieh-Hsin; Lin, Ching-Hua; Chang, Yue-Cune; Huang, Yu-Jhen; Chen, Po-Wei; Yang, Hui-Ting; Lane, Hsien-Yuan

    2017-12-26

    Clozapine is the last-line antipsychotic agent for refractory schizophrenia. To date, there is no convincing evidence for augmentation on clozapine. Activation of N-methyl-D-aspartate receptors, including inhibition of D-amino acid oxidase that may metabolize D-amino acids, has been reported to be beneficial for patients receiving antipsychotics other than clozapine. This study aimed to examine the efficacy and safety of a D-amino acid oxidase inhibitor, sodium benzoate, for schizophrenia patients who had poor response to clozapine. We conducted a randomized, double-blind, placebo-controlled trial. Sixty schizophrenia inpatients that had been stabilized with clozapine were allocated into three groups for 6 weeks' add-on treatment of 1 g/day sodium benzoate, 2 g/day sodium benzoate, or placebo. The primary outcome measures were Positive and Negative Syndrome Scale (PANSS) total score, Scale for the Assessment of Negative Symptoms, Quality of Life Scale, and Global Assessment of Functioning. Side effects and cognitive functions were also measured. Both doses of sodium benzoate produced better improvement than placebo in the Scale for the Assessment of Negative Symptoms. The 2 g/day sodium benzoate also produced better improvement than placebo in PANSS-total score, PANSS-positive score, and Quality of Life Scale. Sodium benzoate was well tolerated without evident side effects. The changes of catalase, an antioxidant, were different among the three groups and correlated with the improvement of PANSS-total score and PANSS-positive score in the sodium benzoate group. Sodium benzoate adjuvant therapy improved symptomatology of patients with clozapine-resistant schizophrenia. Further studies are warranted to elucidate the optimal dose and treatment duration as well as the mechanisms of sodium benzoate for clozapine-resistant schizophrenia. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium...

  5. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium...

  6. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium...

  7. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium...

  8. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric acid...

  9. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric acid...

  10. 21 CFR 522.460 - Cloprostenol sodium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Cloprostenol sodium. 522.460 Section 522.460 Food... Cloprostenol sodium. (a)(1) Specifications. Each milliliter of the aqueous solution contains 263 micrograms of cloprostenol sodium (equivalent to 250 micrograms of cloprostenol) in a sodium citrate, anhydrous citric acid...

  11. Enteric-coated mycophenolate sodium.

    PubMed

    Gabardi, Steven; Tran, Jennifer L; Clarkson, Michael R

    2003-11-01

    To review the pharmacology, pharmacokinetics, efficacy, and safety of mycophenolate sodium. Primary literature was obtained via a MEDLINE search (1966-June 2003). Abstracts were obtained from the manufacturer and included in the analysis. All studies and abstracts evaluating mycophenolate sodium in solid organ transplantation were considered for inclusion. English-language studies and abstracts were selected for inclusion, but were limited to those consisting of human subjects. Mycophenolate sodium, a mycophenolic acid prodrug, is an inhibitor of T-lymphocyte proliferation. Mycophenolic acid reduces the incidence of acute rejection in renal transplantation. Mycophenolate sodium is enteric coated and has been suggested as a potential method to reduce the gastrointestinal adverse events seen with mycophenolate mofetil. Both mycophenolate mofetil and mycophenolate sodium have been shown to be therapeutically equivalent at decreasing the incidence of allograft rejection and loss. The frequency of adverse events is similar between both compounds, with the most common events being diarrhea and leukopenia. Mycophenolate sodium is effective in preventing acute rejection in renal transplant recipients. At doses of 720 mg twice daily, the efficacy and safety profiles are similar to those of mycophenolate mofetil 1000 mg twice daily. Mycophenolate sodium has been approved in Switzerland; approval in the US is pending.

  12. Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system.

    PubMed

    Darvas, Mária; Gilányi, Tibor; Jedlovszky, Pál

    2011-02-10

    Competitive adsorption of a neutral amphiphilic polymer, namely poly(ethylene oxide) (PEO) and an ionic surfactant, i.e., sodium dodecyl sulfate (SDS), is investigated at the free water surface by computer simulation methods at 298 K. The sampled equilibrium configurations are analyzed in terms of the novel identification of the truly interfacial molecules (ITIM) method, by which the intrinsic surface of the aqueous phase (i.e., its real surface corrugated by the capillary waves) instead of an ideally flat surface approximating its macroscopic surface plane, can be taken into account. In the simulations, the surface density of SDS is gradually increased from zero up to saturation, and the structural, dynamical, and energetic aspects of the gradual squeezing out of the PEO chains from the surface are analyzed in detail. The obtained results reveal that this squeezing out occurs in a rather intricate way. Thus, in the presence of a moderate amount of SDS the majority of the PEO monomer units, forming long bulk phase loops in the absence of SDS, are attracted to the surface of the solution. This synergistic effect of SDS of moderate surface density on the adsorption of PEO is explained by two factors, namely by the electrostatic attraction between the ionic groups of the surfactant and the moderately polar monomer units of the polymer, and by the increase of the conformational entropy of the polymer chain in the presence of the surfactant. This latter effect, thought to be the dominant one among the above two factors, also implies the formation of similar polymer/surfactant complexes at the interface than what are known to exist in the bulk phase of the solution. Finally, in the presence of a large amount of SDS the more surface active surfactant molecules gradually replace the PEO monomer units at the interfacial positions, and squeezing out the PEO molecules from the surface in a monomer unit by monomer unit manner.

  13. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed Central

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-01-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  14. FURFURAL YIELD AND DECOMPOSITION IN SODIUM 2,4DIMETHYLBENZENESULFONATE--SULFURIC ACID--WATER SOLUTIONS.

    DTIC Science & Technology

    Batch-type microreactors (about 1/40 milliliter of reactants) were used to measure furfural yields from acidified xylose solutions containing sodium...It was found that presence of the salt did not affect the quantity of furfural produced, but greatly increased the rate of formation. The regular...increase in rate of furfural formation was directly related to the increase in the rate xylose decomposition, and furfural yields for all salt and acid

  15. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium polyacrylate. 173.73 Section 173.73 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate. Sodium polyacrylate (CAS... polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled “Determination...

  16. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study.

    PubMed

    Derkach, Andriy; Sampson, Joshua; Joseph, Justin; Playdon, Mary C; Stolzenberg-Solomon, Rachael Z

    2017-10-01

    Background: High sodium intake is known to increase blood pressure and is difficult to measure in epidemiologic studies. Objective: We examined the effect of sodium intake on metabolites within the DASH (Dietary Approaches to Stop Hypertension Trial)-Sodium Trial to further our understanding of the biological effects of sodium intake beyond blood pressure. Design: The DASH-Sodium Trial randomly assigned individuals to either the DASH diet (low in fat and high in protein, low-fat dairy, and fruits and vegetables) or a control diet for 12 wk. Participants within each diet arm received, in random order, diets containing high (150 nmol or 3450 mg), medium (100 nmol or 2300 mg), and low (50 nmol or 1150 mg) amounts of sodium for 30 d (crossover design). Fasting blood samples were collected at the end of each sodium intervention. We measured 531 identified plasma metabolites in 73 participants at the end of their high- and low-sodium interventions and in 46 participants at the end of their high- and medium-sodium interventions ( N = 119). We used linear mixed-effects regression to model the relation between each log-transformed metabolite and sodium intake. We also combined the resulting P values with Fisher's method to estimate the association between sodium intake and 38 metabolic pathways or groups. Results: Six pathways were associated with sodium intake at a Bonferroni-corrected threshold of 0.0013 (e.g., fatty acid, food component or plant, benzoate, γ-glutamyl amino acid, methionine, and tryptophan). Although 82 metabolites were associated with sodium intake at a false discovery rate ≤0.10, only 4-ethylphenylsufate, a xenobiotic related to benzoate metabolism, was significant at a Bonferroni-corrected threshold ( P < 10 -5 ). Adjustment for coinciding change in blood pressure did not substantively alter the association for the top-ranked metabolites. Conclusion: Sodium intake is associated with changes in circulating metabolites, including gut microbial

  17. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  18. Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode Caenorhabditis elegans

    PubMed Central

    Massie, Michelle R.; Lapoczka, Elizabeth M.; Boggs, Kristy D.; Stine, Karen E.; White, Glenn E.

    2003-01-01

    Historically, sodium azide has been used to anesthetize the nematode Caenorhabditis elegans; however, the mechanism by which it survives this exposure is not understood. In this study, we report that exposure of wild-type C elegans to 10 mM sodium azide for up to 90 minutes confers thermotolerance (defined as significantly increased survival probability [SP] at 37°C) on the animal. In addition, sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed enhanced Hsp70 expression, whereas Western blot analysis revealed the induction of Hsp16. We also tested the only known C elegans Hsp mutant daf-21 (codes for Hsp90), which constitutively enters the stress-resistant state known as the dauer larvae. Daf-21 mutants also acquire sodium azide–induced thermotolerance, whereas 3 non-Hsp, constitutive dauer-forming mutants exhibited a variable response to azide exposure. We conclude that the ability of C elegans to survive exposure to azide is associated with the induction of at least 2 stress proteins. PMID:12820649

  19. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  20. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  1. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  2. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae...

  3. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    PubMed

    Leventhal, J M; Chambliss, G H

    1982-12-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.

  4. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a granular crystalline...

  5. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's salt... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as a...

  6. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  7. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  8. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  9. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The...

  10. Quantitative analysis of flavonoids and phenolic acids in Arnica montana L. by micellar electrokinetic capillary chromatography.

    PubMed

    Ganzera, Markus; Egger, Christoph; Zidorn, Christian; Stuppner, Hermann

    2008-05-05

    Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (sigma(rel) < or = 4.4%), precision (inter-day sigma(rel) < or = 8.13%, intra-day sigma(rel) < or = 4.32%), accuracy (recovery rates from 96.8 to 102.4%), sensitivity (limit of detection (LOD) < or = 4.5 microg mL(-1)) and linearity (R(2) > or = 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.

  11. Comparative transcriptome analysis reveals different molecular mechanisms of Bacillus coagulans 2-6 response to sodium lactate and calcium lactate during lactic acid production.

    PubMed

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that 'ATP-binding cassette transporters' were significantly affected by calcium lactate stress, and 'amino sugar and nucleotide sugar metabolism' was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of 'glycolysis/gluconeogenesis' genes but positive effect on the expression of 'citrate cycle (TCA cycle)' genes. However, calcium lactate stress had positive influence on the expression of 'glycolysis/gluconeogenesis' genes and had minor influence on 'citrate cycle (TCA cycle)' genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans.

  12. Comparative Transcriptome Analysis Reveals Different Molecular Mechanisms of Bacillus coagulans 2-6 Response to Sodium Lactate and Calcium Lactate during Lactic Acid Production

    PubMed Central

    Qin, Jiayang; Wang, Xiuwen; Wang, Landong; Zhu, Beibei; Zhang, Xiaohua; Yao, Qingshou; Xu, Ping

    2015-01-01

    Lactate production is enhanced by adding calcium carbonate or sodium hydroxide during fermentation. However, Bacillus coagulans 2-6 can produce more than 180 g/L L-lactic acid when calcium lactate is accumulated, but less than 120 g/L L-lactic acid when sodium lactate is formed. The molecular mechanisms by which B. coagulans responds to calcium lactate and sodium lactate remain unclear. In this study, comparative transcriptomic methods based on high-throughput RNA sequencing were applied to study gene expression changes in B. coagulans 2-6 cultured in non-stress, sodium lactate stress and calcium lactate stress conditions. Gene expression profiling identified 712 and 1213 significantly regulated genes in response to calcium lactate stress and sodium lactate stress, respectively. Gene ontology assignments of the differentially expressed genes were performed. KEGG pathway enrichment analysis revealed that ‘ATP-binding cassette transporters’ were significantly affected by calcium lactate stress, and ‘amino sugar and nucleotide sugar metabolism’ was significantly affected by sodium lactate stress. It was also found that lactate fermentation was less affected by calcium lactate stress than by sodium lactate stress. Sodium lactate stress had negative effect on the expression of ‘glycolysis/gluconeogenesis’ genes but positive effect on the expression of ‘citrate cycle (TCA cycle)’ genes. However, calcium lactate stress had positive influence on the expression of ‘glycolysis/gluconeogenesis’ genes and had minor influence on ‘citrate cycle (TCA cycle)’ genes. Thus, our findings offer new insights into the responses of B. coagulans to different lactate stresses. Notably, our RNA-seq dataset constitute a robust database for investigating the functions of genes induced by lactate stress in the future and identify potential targets for genetic engineering to further improve L-lactic acid production by B. coagulans. PMID:25875592

  13. Study of nucleic acid-gold nanorod interactions and detecting nucleic acid hybridization using gold nanorod solutions in the presence of sodium citrate.

    PubMed

    Kanjanawarut, Roejarek; Su, Xiaodi

    2010-09-01

    In this study, the authors report that sodium citrate can aggregate hexadecyl-trimethyl-ammonium ion(+)-coated gold nanorods (AuNRs), and nucleic acids of different charge and structure properties, i.e., single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded peptide nucleic acid (PNA), and PNA-DNA complex, can bind to the AuNRs and therefore retard the sodium citrate-induced aggregation to different extents. The discovery that hybridized dsDNA (and the PNA-DNA complex) has a more pronounced protection effect than ssDNA (and PNA) allows the authors to develop a homogeneous phase AuNRs-based UV-visible (UV-vis) spectral assay for detecting specific sequences of oligonucleotides (20 mer) with a single-base-mismatch selectivity and a limit of detection of 5 nM. This assay involves no tedious bioconjugation and on-particle hybridization. The simple "set and test" format allows for a highly efficient hybridization in a homogeneous phase and a rapid display of the results in less than a minute. By measuring the degree of reduction in AuNR aggregation in the presence of different nucleic acid samples, one can assess how different nucleic acids interact with the AuNRs to complement the knowledge of spherical gold nanoparticles. Besides UV-vis characterization, transmission electron microscopy and zeta potential measurements were conduced to provide visual evidence of the particle aggregation and to support the discussion of the assay principle.

  14. Determination of 1-aminocyclopropane-1-carboxylic acid in apple extracts by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Liu, Xin; Li, Dian-Fan; Wang, Yun; Lu, Ying-Tang

    2004-12-17

    A rapid and sensitive method for the determination of 1-aminocyclopropane-1-carboxylic acid (ACC) in apple tissues has been described. This method is based on the derivatization of ACC with 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), and separation and quantification of the resulting FQ-ACC derivative by capillary electrophoresis coupled to laser-induced fluorescence detection (CE-LIF). Our results indicated that ACC derivatized with FQ could be well separated from other interfering amino acids using 20 mM borate buffer (pH 9.35) containing 40 mM sodium dodecyl sulfate and 10 mM Brij 35. The linearity of ACC was determined in the range from 0.05 to 5 microM with a correlation of 0.9967. The concentration detection limit for ACC was 10 nM (signal-to-noise = 3). The sensitivity and selectivity of this described method allows the analysis of ACC in crude apple extracts without extra purification and enrichment procedure.

  15. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    PubMed

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  16. Sodium hypochlorite-, chlorine dioxide- and peracetic acid-induced genotoxicity detected by the Comet assay and Saccharomyces cerevisiae D7 tests.

    PubMed

    Buschini, Annamaria; Carboni, Pamela; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2004-03-01

    Mutagenicity of drinking water is due not only to industrial, agricultural and urban pollution but also to chlorine disinfection by-products. Furthermore, residual disinfection is used to provide a partial safeguard against low level contamination and bacterial re-growth within the distribution system. The aims of this study were to further evaluate the genotoxic potential of the world wide used disinfectants sodium hypochlorite and chlorine dioxide in human leukocytes by the Comet assay and in Saccharomyces cerevisiae strain D7 (mitotic gene conversion, point mutation and mitochondrial DNA mutability, with and without endogenous metabolic activation) and to compare their effects with those of peracetic acid, proposed as an alternative disinfectant. All three disinfectants are weakly genotoxic in human leukocytes (lowest effective dose 0.2 p.p.m. for chlorine dioxide, 0.5 p.p.m. for sodium hypochlorite and peracetic acid). The results in S.cerevisiae show a genotoxic response on the end-points considered with an effect only at doses higher (5- to 10-fold) than the concentration normally used for water disinfection; sodium hypochlorite and peracetic acid are able to induce genotoxic effects without endogenous metabolic activation (in stationary phase cells) whereas chlorine dioxide is effective in growing cells. The Comet assay was more sensitive than the yeast tests, with effective doses in the range normally used for water disinfection processes. The biological effectiveness of the three disinfectants on S.cerevisiae proved to be strictly dependent on cell-specific physiological/biochemical conditions. All the compounds appear to act on the DNA and peracetic acid shows effectiveness similar to sodium hypochlorite and chlorine dioxide.

  17. Antibacterial effect of roselle extracts (Hibiscus sabadariffa), sodium hypochlorite and acetic acid against multidrug-resistant Salmonella strains isolated from tomatoes.

    PubMed

    Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J

    2016-02-01

    Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.

  18. Improvement of absorption enhancing effects of n-dodecyl-beta-D-maltopyranoside by its colon-specific delivery using chitosan capsules.

    PubMed

    Fetih, Gihan; Lindberg, Sara; Itoh, Katsuhito; Okada, Naoki; Fujita, Takuya; Habib, Fawsia; Artersson, Per; Attia, Mohammed; Yamamoto, Akira

    2005-04-11

    In general, absorption enhancing effects of various absorption enhancers were greater in the large intestine than those in the small intestinal regions. Therefore, the effectiveness of absorption enhancers is expected to be remarkably observed, if these enhancers can be delivered to the large intestine with some poorly absorbable drugs after oral administration. In this study, therefore, we examined whether chitosan capsules were effective for the colon-specific delivery of a certain absorption enhancer and can improve the absorption enhancing action of the absorption enhancer after oral administration. 5(6)-Carboxyfluorescein (CF) was used as a model drug to investigate the site-dependent effectiveness of various absorption enhancers by an in situ closed loop method. Sodium glycocholate (NaGC), n-dodecyl-beta-d-maltopyranoside (LM), sodium salicylate (NaSal) and sodium caprate (NaCap) were used as models of absorption enhancers in this study. Overall, the absorption enhancing effects of these enhancers for intestinal absorption of CF were greater in the colon than those in the jejunum and the ileum. Especially, among these enhancers tested in this study, LM showed much greater absorption enhancing effect in the colon than in the jejunum and the ileum. Therefore, LM was selected as a model absorption enhancer to examine the effect of chitosan capsules on the absorption enhancing effect of LM. When CF and LM were orally administered to rats using chitosan capsules, the plasma concentration of CF was much higher than those in other dosage forms including solution and gelatin capsules. Therefore, chitosan capsules may be useful carriers for colon-specific delivery of LM, thereby increasing its absorption enhancing effect from the intestinal membranes.

  19. Depolarization of the Electrogenic Transmembrane Electropotential of Zea mays L. by Bipolaris (Helminthosporium) maydis Race T Toxin, Azide, Cyanide, Dodecyl Succinic Acid, or Cold Temperature 1

    PubMed Central

    Mertz, Stuart M.; Arntzen, Charles J.

    1978-01-01

    The transmembrane electrical potential of root cells of Zea mays L. cv. W64A in a modified 1× Higinbotham solution was partially depolarized by semipurified toxin obtained from Bipolaris (Helminthosporium) maydis race T. At a given toxin concentration depolarization of Texas cytoplasm cells was much greater than for normal cytoplasm cells. This observation correlated directly to the differential host susceptibility to the fungus. The time course and magnitude of depolarization were dependent on toxin concentration; at high concentration the electropotential difference change was rapid. Cortex cells depolarized more slowly than epidermal cells indicating that the toxin slowly permeated intercellular regions. Toxin concentrations which affected electropotential difference were of the same magnitude as those required to inhibit root growth, ion uptake, and mitochondrial processes. Azide, cyanide, and cold temperature (5 C) gave the same partial depolarization as did the toxin. Dodecyl succinic acid caused complete depolarization. These and other data indicate that one of the primary actions of the toxin is to inhibit electrogenic ion pumps in the plasmalemma. PMID:16660605

  20. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  1. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a...

  2. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a...

  3. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a...

  4. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is the sodium salt of propionic acid. It occurs as colorless, transparent crystals or a...

  5. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    PubMed

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and....1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and animal tissues. Sodium...

  7. Linear, Single-Stranded Deoxyribonucleic Acid Isolated from Kilham Rat Virus

    PubMed Central

    Salzman, Lois Ann; White, Wesley L.; Kakefuda, Tsuyoshi

    1971-01-01

    Kilham rat virus (KRV) was grown in a rat nephroma cell line and was purified by two isopycnic centrifugations in cesium chloride. The virus contains single-stranded deoxyribonucleic acid (DNA) with a molecular weight of approximately 1.6 × 106. The DNA was extracted from the virion by both phenol extraction and by 2% sodium dodecyl sulfate at 50 C. KRV DNA, extracted by both procedures, was observed in an electron microscope by using a cytochrome c or diethylaminoethyldextran monolayer. The DNA was also exposed to exonuclease I, an enzyme which hydrolyzes specifically linear, single-stranded DNA. Hydrolysis of 70 to 80% of the DNA was observed. Both the enzymatic and the electron microscope studies support the conclusion that extracted KRV DNA is a single-stranded, linear molecule. The length of the DNA was measured in the electron microscope and determined to be 1.505 ± 0.206 μm. Images PMID:4327590

  8. 21 CFR 172.846 - Sodium stearoyl lactylate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium stearoyl lactylate. 172.846 Section 172.846... CONSUMPTION Multipurpose Additives § 172.846 Sodium stearoyl lactylate. The food additive sodium stearoyl... conditions: (a) The additive, which is a mixture of sodium salts of stearoyl lactylic acids and minor...

  9. Identification and In Silico Analysis of Major Redox Modulated Proteins from Brassica juncea Seedlings Using 2D Redox SDS PAGE (2-Dimensional Diagonal Redox Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis).

    PubMed

    Chaurasia, Satya Prakash; Deswal, Renu

    2017-02-01

    The thiol-disulphide exchange regulates the activity of proteins by redox modulation. Many studies to analyze reactive oxygen species (ROS), particularly, hydrogen peroxide (H 2 O 2 ) induced changes in the gene expression have been reported, but efforts to detect H 2 O 2 modified proteins are comparatively few. Two-dimensional diagonal redox sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) was used to detect polypeptides which undergo thiol-disulphide exchange in Brassica juncea seedlings following H 2 O 2 (10 mM) treatment for 30 min. Eleven redox responsive polypeptides were identified which included cruciferin, NLI [Nuclear LIM (Lin11, Isl-1 & Mec-3 domains)] interacting protein phosphatase, RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) large subunit, and myrosinase. Redox modulation of RuBisCO large subunit was further confirmed by western blotting. However, the small subunit of RuBisCO was not affected by these redox changes. All redox modulated targets except NLI interacting protein (although it contains two cysteines) showed oxidation sensitive cysteines by in silico analysis. Interestingly, interactome of cruciferin and myrosinase indicated that they may have additional function(s) beside their well-known roles in the seedling development and abiotic stress respectively. Cruciferin showed interactions with stress associated proteins like defensing-like protein 192 and 2-cys peroxiredoxin. Similarly, myrosinase showed interactions with nitrilase and cytochrome p450 which are involved in nitrogen metabolism and/or hormone biosynthesis. This simple procedure can be used to detect major stress mediated redox changes in other plants.

  10. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  11. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers

  12. Effect of the nature of the counterion on the properties of anionic surfactants. 5. Self-association behavior and micellar properties of ammonium dodecyl sulfate.

    PubMed

    Tcacenco, Celize M; Zana, Raoul; Bales, Barney L

    2005-08-25

    Micelles formed in water from ammonium dodecyl sulfate (AmDS) are characterized using time-resolved fluorescence quenching (TRFQ), electron paramagnetic resonance (EPR), conductivity, Krafft temperature, and density measurements. TRFQ was used to measure the aggregation number, N, and the quenching rate constant of pyrene by dodecylpyridinium chloride, k(Q). N depends only on the concentration (C(aq)) of ammonium ions in the aqueous phase whether these counterions are derived from the surfactant alone or from the surfactant plus added ammonium chloride as follows: N = N0(C(aq)/cmc0)(gamma), where N0 is the aggregation number at the critical micelle concentration in the absence of added salt, cmc0, and is equal to 77, 70, and 61 at 16, 25, and 35 degrees C, respectively. The exponent gamma = 0.22 is independent of temperature in the range 16 to 35 degrees C. The fact that N depends only on C(aq) permits the determination of the micelle ionization degree (alpha) by employing various experimental approaches to exploit a recent suggestion (J. Phys. Chem. B 2001, 105, 6798) that N depends only on C(aq). Utilizing various combinations of salt and surfactant, values of alpha were obtained by finding common curves as a function of C(aq) of the following experimental results: the Krafft temperature, N, k(Q), the microviscosity of the Stern layer determined from the rotational correlation time of a spin probe, 5-doxyl stearic acid methyl ester, and the spin-probe sensed hydration of the micelle surface. The values of alpha, determined from applying the aggregation number-based definition of alpha to all of these quantities, were within experimental uncertainty of the values alpha = 0.19, 0.20, and 0.21 derived from conductivity measurements at 16, 25, and 35 degrees C, respectively. The volume fraction of the Stern layer occupied by water decreases as N increases. For AmDS micelles, both the hydration and its decrease are predicted by a simple theory of micelle hydration by

  13. Hard Surface Detergency. Part I. Interfacial Tensions of Candidate Surface Decontaminating Agents in Contact with Model Fluids.

    DTIC Science & Technology

    1982-04-23

    monolayer A + -t -10 2 where B = 4.01 x 10 cm A = 0.128 and = o/s The data of Rehfeld (17) for the adsorption of sodium dodecyl sulfate has also been...estimates of Aerosol OT and sodium dodecyl sulfate saturation adsorption at the inter- face can be made when the ¢ of the oil-water system and the i of the...Aerosol OT. For sodium dodecyl sulfate , a value of 37.6A2 would be obtained, slightly lower than the value of 43.9A2 obtained at the air surfactant

  14. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...

  15. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...

  16. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...

  17. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The...

  18. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The technical grade is prepared...

  19. Structure of Bordetella pertussis peptidoglycan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folkening, W.J.; Nogami, W.; Martin, S.A.

    1987-09-01

    Bordetella pertussis Tohama phases I and III were grown to the late-exponential phase in liquid medium containing (/sup 3/H)diaminopimelic acid and treated by a hot (96/sup 0/C) sodium dodecyl sulfate extraction procedure. Washed sodium dodecyl sulfate-insoluble residue from phases I and III consisted of complexes containing protein (ca. 40%) and peptidoglycan (60/sup 6/). Subsequent treatment with proteinase K yielded purified peptidoglycan which contained N-acetylglucosamine, N-acetylmuramic acid, alanine, glutamic acid, and diaminopimelic acid in molar ratios of 1:1:2:1:1 and <2% protein. Radiochemical analyses indicated that /sup 3/H added in diaminopimelic acid was present in peptidoglycan-protein complexes and purified peptidoglycan as diaminopimelicmore » acid exclusively and that pertussis peptidoglycan was not O acetylated, consistent with it being degraded completely by hen egg white lysozyme. Muramidase-derived disaccharide peptide monomers and peptide-cross-linked dimers and higher oligomers were isolated by molecular-sieve chromatography; from the distribution of these peptidoglycan fragments, the extent of peptide cross-linking of both phase I and III peptidoglycan was calculated to be ca. 48%. Unambiguous determination of the structure of muramidase-derived pepidoglycan fragments by fast atom bombardment-mass spectrometry and tandem mass spectrometry indicated that the pertussis peptidoglycan monomer fraction was surprisingly homogeneous, consisting of >95% N-acetylglucosaminyl-N-acetylmuramyl-alanyl-glutamyl-diaminopimelyl-alanine.« less

  20. 21 CFR 173.385 - Sodium methyl sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium methyl sulfate. 173.385 Section 173.385... CONSUMPTION Specific Usage Additives § 173.385 Sodium methyl sulfate. Sodium methyl sulfate may be present in... pectin by sulfuric acid and methyl alcohol and subsequent treatment with sodium bicarbonate. (b) It does...

  1. Effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid from rats prefrontal cortical synaptosomes.

    PubMed

    Liu, Hongliang; Yao, Shanglong

    2004-01-01

    To investigate the effect of thiopental sodium on the release of glutamate and gamma-aminobutyric acid (GABA) from synaptosomes in the prefrontal cortex, synaptosomes were made, the spontaneous release and the evoked release by 30 mmol/L KCl or 20 micromol/L veratridine of glutamate and GABA were performed under various concentrations of thiopental sodium (10-300 micromol/L), glutamate and GABA concentrations were determined by reversed-phase high-performance liquid chromatography. Our results showed that spontaneous release and evoked release of glutamate were significantly inhibited by 30 micromol/L, 100 micromol/L and 300 micromol/L thiopental sodium, IC50 of thiopental sodium was 25.8 +/- 2.3 micromol/L for the spontaneous release, 23.4 +/- 2.4 micromol/L for KCl-evoked release, and 24.3 +/- 1.8 micromol/L for veratridine-evoked release. But GABA spontaneous release and evoked release were unaffected. The study showed that thiopental sodium with clinically related concentrations could inhibit the release of glutamate, but had no effect on the release of GABA from rats prefrontal cortical synaptosomes.

  2. Extracting Silicon From Sodium-Process Products

    NASA Technical Reports Server (NTRS)

    Kapur, V.; Sanjurjo, A.; Sancier, K. M.; Nanis, L.

    1982-01-01

    New acid leaching process purifies silicon produced in reaction between silicon fluoride and sodium. Concentration of sodium fluoride and other impurities and byproducts remaining in silicon are within acceptable ranges for semi-conductor devices. Leaching process makes sodium reduction process more attractive for making large quantities of silicon for solar cells.

  3. Mechanochemical synthesis of dodecyl sulfate anion (DS-) intercalated Cu-Al layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Qu, Jun; He, Xiaoman; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-12-01

    Dodecyl sulfate anion (DS-) was successfully intercalated into the gallery space of Cu-Al layered double hydroxides (LDH) by a non-heating mechanochemical route, in which basic cupric carbonate (Cu2(OH)2CO3) and aluminum hydroxide (Al(OH)3) were first dry ground and then agitated in SDS solution under ambient environment. The organics modified Cu-Al LDH showed good adsorption ability toward 2,4-dichlorophenoxyacetic acid (2, 4-D). The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), CHS elemental analysis and Scanning electron microscopy (SEM). The LDH precursor prepared by ball-milling could directly react with SDS molecules forming a pure phase of DS- pillared Cu-Al LDH, which was not observed with the LDH product through the ion-exchange of DS- at room temperature. The process introduced here may be applied to manufacture other types of organic modified composites for pollutants removal and other applications.

  4. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    PubMed

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Ascorbic acid and sodium benzoate synergistically aggravates testicular dysfunction in adult Wistar rats.

    PubMed

    Kehinde, Olaniyi S; Christianah, Oyewopo I; Oyetunji, Oyewopo A

    2018-01-01

    The effect of the concomitant use of sodium benzoate (NaB) and ascorbic acid on human health remains controversial. Therefore, the current study is designed to investigate the effect of NaB and ascorbic acid on the testicular function of adult Wistar rats. Adult Wistar rats were randomly allotted into Control (vehicle; received 1 ml of distilled water), NaB-treated (SB-treated; received 100 mg/kg body weight; b.w ), ascorbic acid-treated (AA-treated; received 150 mg/kg b.w ) and NaB+ ascorbic acid-treated (SB+AA-treated) groups. The treatment lasted for 28 days and the administration was given orally. The body weight change was monitored. Semen analysis, biochemical assay and histological examination were performed. Treatment with NaB significantly altered the cytoarchitecture of testicular tissue, sperm quality, testicular endocrine function and oxidative stress status without any alteration in body weight gain compared to control. In addition, treatment with NaB+ ascorbic acid exacerbated testicular tissue disruption, impaired sperm quality and testicular endocrine impairment with significant reduction in oxidative stress and unaltered body weight gain when compared with NaB-treated group. This study suggests that ascorbic acid and NaB synergistically aggravates testicular dysfunction. This is independent of oxidative stress status.

  6. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by (gamma-32P)ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiographymore » showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from (3H)ouabain bound to the cell surface before maturation could be phosphorylated with inorganic (32P)phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane.« less

  7. Formation of dimethylarsinic acid from methylation of sodium arsenite in lumbricus terrestris.

    PubMed

    Lin, K W; Behl, S; Furst, A; Chien, P; Toia, R F

    1998-04-01

    Arsenic is ubiquitous in the environment and the toxicological response of various organisms to it is dependent on the particular chemical form involved. In general, methylation of inorganic arsenic is considered to be a detoxification reaction. While this transformation is known to be mediated by methyltransferases in several species of mammals, less is known about the fate of arsenic in invertebrates. As part of a continuing interest in heavy metals and metalloid toxicology, the alkylating activity of cytosol prepared from the common earthworm, Lumbricus terrestris, towards sodium arsenite has now been investigated. Thus, S-adenosyl-l-[(14)C]methionine ([(14)C-methyl]SAM) fortified earthworm cytosol was incubated with sodium arsenite at 37 degrees C for 90 min. Initial TLC analysis of the incubation mixture suggested incorporation of radiolabel into dimethylarsinic acid. This was subsequently proven by isolation of the metabolite through radiodilution followed by recrystallization of the recovered material to constant specific activity. This result suggests that earthworm cytosol has the same methylating reactivity towards arsenite as do similar preparations from various tissues of several species of mammals.

  8. Dynamics of a camphoric acid boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, V. S.; Singh, Dhiraj K.; Mandre, Shreyas; Bandi, M. M.

    2018-05-01

    We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air-water interfacial tension using Sodium Dodecyl Sulfate (SDS).

  9. Study of reverse flotation of calcite from scheelite in acidic media

    NASA Astrophysics Data System (ADS)

    Deng, Rongdong; Huang, Yuqing; Hu, Yuan; Ku, Jiangang; Zuo, Weiran; Yin, Wanzhong

    2018-05-01

    A new coated-reactive reverse flotation method based on the generation of CO2 bubbles at a calcite surface in acidic solution was used to separate calcite from scheelite. The dissolution kinetics of coated and uncoated calcite were studied in sulfuric acid. The CO2 bubbles generated on the uncoated calcite particle surface are enough to float the particle. However, most of these bubbles left the surface quickly, preventing calcite from floating. Here, a mixture of polyvinyl alcohol polymer and sodium dodecyl sulfonate was used to coat the mineral particles and form a stable membrane, resulting in the formation of a stable foam layer on the calcite surface. After the calcite is coated, the generated bubbles could be successfully captured on the calcite surface, and calcite particles could float to the air-water interface and remain there for more than one hour. Flotation tests indicated that a high-quality tungsten concentrate with a grade of more than 75% and a recovery of more than 99% could be achieved when the particle size was between 0.3 and 1.5 mm. The present results provide theoretical support for the development of a highly efficient flotation separation for carbonate minerals.

  10. Spectrophotometric determination of norepinephrine with sodium iodate and determination of its acidity constants

    NASA Astrophysics Data System (ADS)

    Hashem, E. Y.; Youssef, A. K.

    2013-05-01

    A spectrophotometric method is proposed for the determination of norepinephrine (NE) and its bitartrate salts. The method was based on the development of a red color (λmax = 495 nm) with sodium iodate in aqueous alcoholic medium at pH 5. The color was stable for at least 4 hrs. The molar reacting ratio of NE to sodium iodate was 1:4. A linear relationship was obtained between the absorption intensity and NE concentration in the range of 3.384-37.224 μg/ml with detection limit of 0.067 μg/ml and correlation coefficient of 0.9972. The present work facilitated the determination of the three acidity constants, 7.564 ± 0.02, 9.036 ± 0.034, and 10.761 ± 0.023. The reaction mechanism was also described. The proposed method was successfully applied for the determination of NE in pharmaceutical formulations. Results for analysis of bulk drugs and injections agree with those of official methods.

  11. A novel sodium N-fatty acyl amino acid surfactant using silkworm pupae as stock material

    PubMed Central

    Wu, Min-Hui; Wan, Liang-Ze; Zhang, Yu-Qing

    2014-01-01

    A novel sodium N-fatty acyl amino acid (SFAAA) surfactant was synthesized using pupa oil and pupa protein hydrolysates (PPH) from a waste product of the silk industry. The aliphatic acids from pupa oil were modified into N-fatty acyl chlorides by thionyl chloride (SOCl2). SFAAA was synthesized using acyl chlorides and PPH. GC-MS analysis showed fatty acids from pupa oil consist mainly of unsaturated linolenic and linoleic acids and saturated palmitic and stearic acids. SFAAA had a low critical micelle concentration, great efficiency in lowering surface tension and strong adsorption at an air/water interface. SFAAA had a high emulsifying power, as well as a high foaming power. The emulsifying power of PPH and SFAAA in an oil/water emulsion was better with ethyl acetate as the oil phase compared to n-hexane. The environment-friendly surfactant made entirely from silkworm pupae could promote sustainable development of the silk industry. PMID:24651079

  12. Viscosity measurements of CO2-in-water foam with dodecyl polypropoxy sulfate surfactants for enhanced oil recovery application

    NASA Astrophysics Data System (ADS)

    Pramudita, Ria Ayu; Ryoo, Won Sun

    2016-08-01

    Apparent viscosities of CO2-in-water foams were measured in a wide range of shear rate from 50 to 105 inverse second for enhanced oil recovery (EOR) application. The CO2-in-water dispersions, made of 50:50 weight proportions of CO2 and water with 1 wt.% surfactant concentration, were prepared in high-pressure recirculation apparatus under pressure where CO2 density becomes 0.7, 0.8, and 0.9 g/mL at each temperature of 35, 45, and 55°C. The surfactants used for the foam generation were sodium dodecyl polypropoxy sulfates with average propoxylation degrees of 4.7 and 6.2. The foam viscosity showed shear thinning behaviors with power-law indices ranging from 0.80 to 0.85, and approached a Newtonian regime in the lower shear rate range at several tens of inverse second. Zero-shear viscosity values projected from experimental data based on Ellis model were as high as 57.4 mPa·s and enough to control the mobility of water and CO2 in oil reservoirs.

  13. Association between urinary sodium excretion and uric acid, and its interaction on the risk of prehypertension among Chinese young adults.

    PubMed

    Wang, Yang; Hu, Jia-Wen; Qu, Peng-Fei; Wang, Ke-Ke; Yan, Yu; Chu, Chao; Zheng, Wen-Ling; Xu, Xian-Jing; Lv, Yong-Bo; Ma, Qiong; Gao, Ke; Yuan, Yue; Li, Hao; Yuan, Zu-Yi; Mu, Jian-Jun

    2018-05-17

    High uric acid (UA) level and high salt intake are reportedly associated with cardiovascular disease. This study investigated the association between UA and urinary sodium excretion, as well as its interaction on the risk of prehypertension. A total of 1869 participants without hypertension were recruited from a previously established cohort in Shaanxi Province, China. The participants were classified as normotensive or prehypertensive on the basis of their blood pressure. Increasing quartiles of sodium excretion were associated with high urinary UA/creatinine levels in prehypertensive participants. Estimated sodium excretion positively correlated with urinary UA/creatinine excretions in the prehypertensive group. In addition, the multivariate-adjusted odds ratios for prehypertension compared with normotension were 1.68 (1.27-2.22) for sodium excretion and 1.71 (1.21-2.42) for serum UA. Increasing sodium excretion and serum UA were associated with higher risk of prehypertension. Compared with the lowest quartiles, the highest sodium excretion and serum UA quartiles entailed 3.48 times greater risk of prehypertension. Sodium excretion is associated with urinary UA excretion in prehypertensive participants. The present study shows that high levels of salt intake and serum UA simultaneously are associated with a higher risk of prehypertension.

  14. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  15. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  16. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  17. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and...

  18. 21 CFR 173.325 - Acidified sodium chlorite solutions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acidified sodium chlorite solutions. 173.325... § 173.325 Acidified sodium chlorite solutions. Acidified sodium chlorite solutions may be safely used in... solution of sodium chlorite (CAS Reg. No. 7758-19-2) with any generally recognized as safe (GRAS) acid. (b...

  19. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    PubMed

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  20. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  1. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium potassium tartrate. 184.1804 Section 184... as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is also called the Rochelle...

  2. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  3. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is...

  4. Determination of lysergic acid diethylamide (LSD) in mouse blood by capillary electrophoresis/ fluorescence spectroscopy with sweeping techniques in micellar electrokinetic chromatography.

    PubMed

    Fang, Ching; Liu, Ju-Tsung; Chou, Shiu-Huey; Lin, Cheng-Huang

    2003-03-01

    The separation and on-line concentration of lysergic acid diethylamide (LSD) in mouse blood was achieved by means of capillary electrophoresis/fluorescence spectroscopy using sodium dodecyl sulfate (SDS) as the surfactant. Techniques involving on-line sample concentration, including sweeping micellar electrokinetic chromatography (sweeping-MEKC) and cation-selective exhaustive injection-sweep-micellar electrokinetic chromatography (CSEI-sweep-MEKC) were applied; the optimum on-line concentration and separation conditions were determined. In the analysis of an actual sample, LSD was found in a blood sample from a test mouse (0.1 mg LSD fed to a 20 g mouse; approximately 1/10 to the value of LD(50)). As a result, 120 and 30 ng/mL of LSD was detected at 20 and 60 min, respectively, after ingestion of the doses.

  5. Isolation of Lysophosphatidic Acid Phosphatase from Developing Peanut Cotyledons1

    PubMed Central

    Shekar, Sunil; Tumaney, Ajay W.; Rao, T.J.V. Sreenivasa; Rajasekharan, Ram

    2002-01-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [3H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min−1 mg−1. The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 ± 1.5 kD. The Km values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 μm, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  6. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Omics approaches on fresh-cut lettuce reveal global molecular responses to sodium hypochlorite and peracetic acid treatment.

    PubMed

    Daddiego, Loretta; Bianco, Linda; Capodicasa, Cristina; Carbone, Fabrizio; Dalmastri, Claudia; Daroda, Lorenza; Del Fiore, Antonella; De Rossi, Patrizia; Di Carli, Mariasole; Donini, Marcello; Lopez, Loredana; Mengoni, Alessio; Paganin, Patrizia; Perrotta, Gaetano; Bevivino, Annamaria

    2018-01-01

    Lettuce is a leafy vegetable that is extensively commercialized as a ready-to-eat product because of its widespread use in human nutrition as salad. It is well known that washing treatments can severely affect the quality and shelf-life of ready-to-eat vegetables. The study presented here evaluated the effect of two washing procedures on fresh-cut lettuce during storage. An omics approach was applied to reveal global changes at molecular level induced by peracetic acid washing in comparison with sodium hypochlorite treatment. Microbiological analyses were also performed to quantify total bacterial abundance and composition. The study revealed wide metabolic alterations induced by the two sanitizers. In particular, transcriptomic and proteomic analyses pointed out a number of transcripts and proteins differentially accumulated in response to peracetic acid washing, mainly occurring on the first day of storage. In parallel, different microbiota composition and significant reduction in total bacterial load following washing were also observed. The results provide useful information for the fresh-cut industry to select an appropriate washing procedure preserving fresh-like attributes as much as possible during storage of the end product. Molecular evidence indicated peracetic acid to be a valid alternative to sodium hypochlorite as sanitizer solution. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment.

    PubMed

    Qing, Qing; Guo, Qi; Zhou, Linlin; He, Yucai; Wang, Liqun; Zhang, Yue

    2017-01-01

    A stepwise pretreatment method that combines sodium hydroxide and organic acid pretreatments was proposed and investigated to maximize the recovery of main constituents of lignocellulose. The sodium hydroxide pretreatment was firstly optimized by a designed orthogonal experiment with the optimum pretreatment conditions determined as 1 wt% NaOH at 70 °C for 1 h, and 60.42 % of lignin was successfully removed during this stage. In the second stage, 0.5 % acetic acid was selected to pretreat the first-stage solid residue at 80 °C for 40 min in order to decompose hemicelluloses to soluble oligomers or monomers. Then, the whole slurry was subjected to in situ enzymatic saccharification by cellullase with a supplementation of xylanase to further degrade the xylooligosaccharides generated during the acetic acid pretreatment. The maximum reducing sugar and glucose yields achieved were 20.74 and 12.03 g/L, respectively. Furthermore, rapid ethanol fermentation and a yield of 80.3 % also testified this pretreatment method, and the in situ saccharification did not bring any negative impact on ethanol fermentation and has a broad application prospect.

  9. [Pleural covering method of polyglycolic acid felt with sodium alginate water solution for prevention of postoperative pulmonary fistula].

    PubMed

    Ohta, S; Hirose, M; Ishibashi, H

    2008-07-01

    Sodium alginate is the main ingredient of the seaweed, and its water solution has moderate viscosity. The areas of the pleural defect and around the suture line were covered with polyglycolic acid felt by using 5% sodium alginate water solution in 41 patients who underwent pulmonary resection from November 2006 to April 2007. 28 patients were lung cancer, 6 patients were pulmonary metastasis, and 7 patients were pneumothorax. The duration of the postoperative air leakage was 0.7 days on average. Neither side effect nor complication was observed. This method is cheap, safe, and effective for prevention for postoperative pulmonary fistula.

  10. Characterization of airag collected in Ulaanbaatar, Mongolia with emphasis on isolated lactic acid bacteria.

    PubMed

    Choi, Suk-Ho

    2016-01-01

    Airag, alcoholic sour-tasting beverage, has been traditionally prepared by Mongolian nomads who naturally ferment fresh mares' milk. Biochemical and microbiological compositions of airag samples collected in Ulaanbaatar, Mongolia and physiological characteristics of isolated lactic acid bacteria were investigated. Protein composition and biochemical composition were determined using sodium dodecyl sulfate-gel electrophoresis and high performance liquid chromatography, respectively. Lactic acid bacteria were identified based on nucleotide sequence of 16S rRNA gene. Carbohydrate fermentation, acid survival, bile resistance and acid production in skim milk culture were determined. Equine whey proteins were present in airag samples more than caseins. The airag samples contained 0.10-3.36 % lactose, 1.44-2.33 % ethyl alcohol, 1.08-1.62 % lactic acid and 0.12-0.22 % acetic acid. Lactobacillus (L.) helveticus were major lactic acid bacteria consisting of 9 isolates among total 18 isolates of lactic acid bacteria. L. helveticus survived strongly in PBS, pH 3.0 but did not grow in MRS broth containing 0.1 % oxgall. A couple of L. helveticus isolates lowered pH of skim milk culture to less than 4.0 and produced acid up to more than 1.0 %. Highly variable biochemical compositions of the airag samples indicated inconsistent quality due to natural fermentation. Airag with low lactose content should be favorable for nutrition, considering that mares' milk with high lactose content has strong laxative effect. The isolates of L. helveticus which produced acid actively in skim milk culture might have a major role in production of airag.

  11. Effect of sodium lauryl sulfate-fumaric Acid coupled addition on the in vitro rumen fermentation with special regard to methanogenesis.

    PubMed

    Abdl-Rahman, M A; Sawiress, F A R; Abd El-Aty, A M

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH(3)-N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (Y(ATP)). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH(3)-N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency.

  12. Effect of Sodium Lauryl Sulfate-Fumaric Acid Coupled Addition on the In Vitro Rumen Fermentation with Special Regard to Methanogenesis

    PubMed Central

    Abdl-Rahman, M. A.; Sawiress, F. A. R.; Abd El-Aty, A. M.

    2010-01-01

    The aim of the current study was to evaluate the effect of sodium lauryl sulfate-fumaric acid coupled addition on in vitro methangenesis and rumen fermentation. Evaluation was carried out using in vitro gas production technique. Ruminal contents were collected from five steers immediately after slaughtering and used for preparation of inoculums of mixed rumen microorganisms. Rumen fluid was then mixed with the basal diet of steers and used to generate four treatments, negative control (no additives), sodium lauryl sulfate (SLS) treated, fumaric acid treated, and SLS-fumaric acid coupled addition treated. The results revealed that, relative to control, efficiency in reduction of methanogenesis was as follows: coupled addition > SLS-addition > fumaric acid addition. Both SLS-addition and SLS-fumaric acid coupled addition demonstrated a decremental effect on ammonia nitrogen (NH3–N), total short chain volatile fatty acids (SCVFAs) concentrations and the amount of substrate degraded, and an increment effect on microbial mass and microbial yield (YATP). Nevertheless, fumaric acid did not alter any of the previously mentioned parameters but induced a decremental effect on NH3–N. Furthermore, both fumaric acid and SLS-fumaric acid coupled addition increased propionate at the expense of acetate and butyrate, while, defaunation increased acetate at the expense of propionate and butyrate. The pH value was decreased by all treatments relative to control, while, cellulase activity did not differ by different treatments. The current study can be promising strategies for suppressing ruminal methane emissions and improving ruminants feed efficiency. PMID:20445794

  13. Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat

    PubMed Central

    Willard, F. L.; Kodras, Rudolph

    1967-01-01

    Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407

  14. Survey of chemical compounds tested in vitro against rumen protozoa for possible control of bloat.

    PubMed

    Willard, F L; Kodras, R

    1967-09-01

    Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-beta-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants.

  15. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  16. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    PubMed

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  17. Comparison of the amino acid compositions and antigenic properties of spiralins purified from the plasma membranes of different spiroplasmas.

    PubMed

    Wróblewski, H; Robic, D; Thomas, D; Blanchard, A

    1984-01-01

    Spiralins were purified by agarose-suspension electrophoresis after extraction with detergents from the membranes of the following spiroplasmas: Spiroplasma citri C189, S. citri Maroc (R8A2), S. citri Scaph and the honey-bee spiroplasma B88. The four proteins (molecular mass congruent to 26,000 daltons, as determined by sodium dodecyl sulphate-pore gradient electrophoresis) showed very similar amino acid compositions characterized by the absence of methionine and tryptophan and a high polarity index (greater than 49%). When compared with the amino acid composition of S. citri membrane, the four spiralins had little or no histidine, a low content of glycine, leucine, tyrosine, phenylalanine and arginine, and a high content of threonine, alanine and valine. Comparison of the amino acid compositions according to the criteria described by Cornish-Bowden (Anal. Biochem., 1980, 105, 233-238) strongly suggests that all four spiralins are related. A crossed immunoelectrophoretical comparison, however, shows that though the three proteins purified from S. citri strains (serogroup I-1) are antigenically similar, they do not seem to share common epitopes with spiralin from the honey-bee spiroplasma B88 (serogroup I-2).

  18. Characterization and quantification of N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques.

    PubMed

    Mondin, Andrea; Bogialli, Sara; Venzo, Alfonso; Favaro, Gabriella; Badocco, Denis; Pastore, Paolo

    2014-01-01

    The present paper reports the determination of the tri-amine N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine (TA) present in a raw material called LONZABAC used to formulate various, widely used commercial biocides. The active principle, TA, is present in LONZABAC together with other molecules at lower concentration levels. Three independent analytical approaches, namely solution NMR spectroscopy, liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) and acid-base titration in mixed solvent, were used to overcome the problem of the non-availability of the active principle as high purity standard. NMR analysis of raw material, using a suitable internal standard, evidenced in all analyzed lots the presence of the active principle, the N-dodecyl-1,3-propanediamine (DA) and the n-dodecylamine (MA) and the absence of non-organic, NMR-inactive species. NMR peak integration led to a rough composition of the MA:DA:TA as 1:9:90. The LC/HRMS analysis allowed the accurate determination of DA and MA and confirmed in all samples the presence of the TA, which was estimated by difference: MA=1.4±0.3%, DA=11.1±0.7%, TA=87.5±1.3%. The obtained results were used to setup an easy, rapid and cheap acid-base titration method able to furnish a sufficiently accurate evaluation of the active principle both in the raw material and in diluted commercial products. For the raw material the results were: TA+MA=91.1±0.8% and DA-MA=8.9±0.8%, statistically coherent with LC/MS ones. The LC/MS approach demonstrated also its great potentialities to recognize trace of the biocide components both in environmental samples and in the formulated commercial products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of ingredients on rheological, physico-sensory, and nutritional characteristics of omega-3-fatty acid enriched eggless cake.

    PubMed

    Abhay Kumar, N; Prasada Rao, U J S; Jeyarani, T; Indrani, D

    2017-10-01

    The effect of defatted soya flour (DS), flax seed powder (FS) in combination (DSFS) with emulsifiers such as glycerol monostearate, GMS (DSFSG) and sodium stearoyl-2-lactylate, SSL (DSFSS) on the rheological, physico-sensory, protein subunit composition by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), fatty acid profile, and nutritional characteristics of eggless cake was studied. Use of DSFS, DSFSG, and DSFSS increased the amylograph peak viscosity, hot and cold paste viscosities similar to the egg. Addition of DSFS, DSFSG, and DSFSS increased viscosity of eggless cake batter; cake volume and the overall quality score (OQS) of eggless cake. Among these, highest improvement in OQS was brought about by DSFSG. According to SDS-PAGE results, the improvement by DSFSG is due to crosslinking of wheat-soya-flax proteins similar to wheat-egg proteins crosslinking. The eggless cake with DSFSG was found to be rich in omega-3-fatty acid as it contained 0.6% of linolenic acid compared to 0.1% each of cake with egg and eggless cake. As eggs are significant source of cholesterol, there has been an increased interest in search of ingredients that can replace egg in cakes. Hence, recent trend in the baking industry is to produce eggless cake using a combination of different ingredients and additives. However, there is no scientific information on the interaction of non-egg protein with wheat protein in building up the structure and also to improve the nutritional quality with respect to protein and fatty acids profiles of eggless cake. The information generated on the use of combination of defatted soya flour and flax seed along with emulsifiers will be helpful for the commercial manufacture of omega-3-fatty acid rich eggless cake with desired quality attributes. © 2017 Wiley Periodicals, Inc.

  20. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  1. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  2. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  3. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with... manufacturing practice. (d) Prior sanctions for this ingredient different from the uses established in this...

  4. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...

  5. 21 CFR 522.144 - Arsenamide sodium aqueous injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Arsenamide sodium aqueous injection. 522.144... § 522.144 Arsenamide sodium aqueous injection. (a) Chemical name. [[(p-Carbamoylphenyl) arsylene]dithio diacetic acid, sodium salt. (b) Specifications. The drug is a sterile aqueous solution and each milliliter...

  6. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    ERIC Educational Resources Information Center

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  7. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  8. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    PubMed

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  9. Extrachromosomal DNA length and antibiograms of Staphylococcus aureus and Pseudomonas aeruginosa isolated from tears of HIV/AIDS patients after curing with sodium dodecyl sulphate.

    PubMed

    Ajayi, B O; Otajevwo, F D

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa strains were isolated from eye swab samples randomly obtained from 100 seropositive HIV/AIDS patients who reported to various anti-retroviral treatment clinics at the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria. Invitro antibiotic sensitivity patterns of strains before curing were determined by the Kirby-Bauer disc diffusion technique. Resistance plasmid DNA of multidrug resistant strains was cured with 0.1% sodium dodecyl sulphate and cured strains were again subjected to in vitro antibiotic sensitivity testing. EcoRI and Hind III restriction endonuclease enzymes were used to make cuts on extracted plasmid DNA whose length sizes were then determined. A total of 36 (36.0%) strains made up of 27 (75.0%) Staphylococcus. aureus and 9 (25.0%) Pseudomonas aeruginosa were isolated of which 7 (19.4%) strains showed multidrug resistance to ciprofloxacin, pefloxacin, ofloxacine, gentamycin, tetracycline, ampicillin, chloramphenicol, nitrofurantoin and erythromycin. All seven multidrug resistant strains before curing, recorded 85.7%, 42.9%, 14.3% and 14.3% sensitivity in that decreasing order to ciprofloxacin, pefloxacin, ofloxacin and gentamycin respectively. There was 0.0% sensitivity each to tetracycline and ampicillin. After curing, there was enhanced sensitivity of 100.0%, 85.7%, 28.6% and 71.4% respectively. There was also 28.6% and 57.1% improved sensitivity to tetracycline and ampicillin after curing. Before curing, there was 76.2% average resistance to all used antibiotics and this reduced to 47.6% after curing Staph. aureus plasmid DNA. In the case of Pseudomonas aeruginosa, there was an average resistance of 76.3% before curing which fell to 42.5% after curing. EcoRI restriction enzyme gave the plasmid DNA length of Staphylococcus aureus strain 04 as 4.0Kb and this size depended upon the distance between recognition sites. Isolation of 36 (36.0%) strains of both

  10. Extrachromosomal DNA Length and Antibiograms of Staphylococcus aureus and Pseudomonas aeruginosa Isolated from Tears of HIV/AIDS Patients after Curing with Sodium Dodecyl Sulphate

    PubMed Central

    B. O., Ajayi; F. D., Otajevwo

    2012-01-01

    Staphylococcus aureus and Pseudomonas aeruginosa strains were isolated from eye swab samples randomly obtained from 100 seropositive HIV/AIDS patients who reported to various anti-retroviral treatment clinics at the University of Benin Teaching Hospital and Central Hospital both based in Benin City, Nigeria. Invitro antibiotic sensitivity patterns of strains before curing were determined by the Kirby-Bauer disc diffusion technique. Resistance plasmid DNA of multidrug resistant strains was cured with 0.1% sodium dodecyl sulphate and cured strains were again subjected to invitro antibiotic sensitivity testing. EcoRI and Hind III restriction endonuclease enzymes were used to make cuts on extracted plasmid DNA whose length sizes were then determined. A total of 36 (36.0%) strains made up of 27 (75.0%) Staphylococcus. aureus and 9 (25.0%) Pseudomonas aeruginosa were isolated of which 7 (19.4%) strains showed multidrug resistance to ciprofloxacin, pefloxacin, ofloxacine, gentamycin, tetracycline, ampicillin, chloramphenicol, nitrofurantoin and erythromycin. All seven multidrug resistant strains before curing, recorded 85.7%, 42.9%, 14.3% and 14.3% sensitivity in that decreasing order to ciprofloxacin, pefloxacin, ofloxacin and gentamycin respectively. There was 0.0% sensitivity each to tetracycline and ampicillin. After curing, there was enhanced sensitivity of 100.0%, 85.7%, 28.6% and 71.4% respectively. There was also 28.6% and 57.1% improved sensitivity to tetracycline and ampicillin after curing. Before curing, there was 76.2% average resistance to all used antibiotics and this reduced to 47.6% after curing Staph. aureus plasmid DNA. In the case of Pseudomonas aeruginosa, there was an average resistance of 76.3% before curing which fell to 42.5% after curing. EcoRI restriction enzyme gave the plasmid DNA length of Staphylococcus aureus strain 04 as 4.0Kb and this size depended upon the distance between recognition sites. Isolation of 36 (36.0%) strains of both

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecarot-Charrier, B.; Bouchard, F.; Delloye, C.

    Isolated mouse osteoblasts that retain their osteogenic activity in culture were incubated with (35S) sulfate. Two radiolabeled proteins, in addition to proteoglycans, were extracted from the calcified matrix of osteoblast cultures. All the sulfate label in both proteins was in the form of tyrosine sulfate as assessed by amino acid analysis and thin layer chromatography following alkaline hydrolysis. The elution behavior on DEAE-Sephacel of the major sulfated protein and the apparent Mr on sodium dodecyl sulfate gels were characteristic of bone sialoprotein II extracted from rat. This protein was shown to cross-react with an antiserum raised against bovine bone sialoproteinmore » II, indicating that bone sialoprotein II synthesized by cultured mouse osteoblasts is a tyrosine-sulfated protein. The minor sulfated protein was tentatively identified as bone sialoprotein I or osteopontin based on its elution properties on DEAE-Sephacel and anomalous behavior on sodium dodecyl sulfate gels similar to those reported for rat bone sialoprotein I.« less

  12. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  13. Effects of heat/citric acid reprocessing on high-flux polysulfone dialyzers.

    PubMed

    Cornelius, Rena M; McClung, W Glenn; Richardson, Robert M A; Estridge, Charles; Plaskos, Nicholas; Yip, Christopher M; Brash, John L

    2002-01-01

    The surface features, morphology, and tensile properties of fibers obtained from pristine, reprocessed, and reused Fresenius Polysulfone High-Flux (Hemoflow F80A) hemodialyzers have been studied. Scanning electron microscopy of the dialyzer fibers revealed a dense skin layer on the inner surface of the membrane and a relatively thick porous layer on the outer surface. Transmission electron microscopy and atomic force microscopy showed an alteration in membrane morphology due to reprocessing and reuse, or to a deposition of blood-borne material on the membrane that is not removed with reprocessing. Fluorescent microscopy images also showed that a fluorescent material not removed by heat/citric acid reprocessing builds up with continued use of the dialyzers. The tensile properties of the dialyzer fibers were not affected by the heat/citric acid reprocessing procedure. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were also studied using sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. A considerable amount of protein was found on the blood side of single and multiple use dialyzers. Proteins adsorbed on the dialysate side of the membrane were predominantly in the molecular weight region below 30 kDa. Little protein was detected on the membranes of reprocessed hemodialyzers.

  14. The role of sodium in the salty taste of permeate.

    PubMed

    Frankowski, K M; Miracle, R E; Drake, M A

    2014-09-01

    Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Immediate acid-suppressing effects of ranitidine hydrochloride and rabeprazole sodium following initial administration and reintroduction: A randomized, cross-over study using wireless pH monitoring capsules.

    PubMed

    Ono, Shouko; Kato, Mototsugu; Ono, Yuji; Imai, Aki; Yoshida, Takeshi; Shimizu, Yuichi; Asaka, Masahiro

    2009-04-01

    Histamine 2 receptor antagonists and proton-pump inhibitors, drugs that are widely used for the treatment of acid-related diseases, have different clinical characteristics. The objective of this study was to compare the acid-suppressing effects of ranitidine hydrochloride and those of rabeprazole sodium at the first administration and re-administration after withdrawal. The study was designed as an open-label, randomized, two-way cross-over trial. Seven Helicobacter pylori-negative healthy volunteers were enrolled in this study. Ranitidine hydrochloride (300 mg/day) or rabeprazole sodium (20 mg/day) was administered from days 1 to 7 and from days 11 to 13. The percentage of time with gastric pH < 4 and the median gastric pH were evaluated for 15 consecutive days by a Bravo capsule fixed to the stomach. On day 1, there was no significant difference between the acid-suppressing effects of the two drugs (ranitidine vs rabeprazole: not significant). Although rabeprazole sodium maintained a potent and stable effect from days 2 to 7 (ranitidine vs rabeprazole: P < 0.05), the effect of ranitidine hydrochloride was attenuated after day 4. In addition, the effect of ranitidine hydrochloride at re-administration was attenuated (days 11, 12, and 13 vs pre-administration: not significant). In view of our observations, we expect symptoms associated with gastric acidity to be more adequately controlled with rabeprazole sodium in the short term when compared to ranitidine hydrochloride.

  16. Eu(III)-Sensitized Luminescence Probe for Determination of Tolnaftate in Pharmaceuticals and Biological Fluids.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-01-01

    A highly selective, sensitive, accurate, and reproducible luminescence procedure for determination of antifungal drug tolnaftate was developed. The introduced method was based on the formation of Europa Universalis III (Eu(III))-tolnaftate complex using sodium sulfite as a deoxygenated agent in the presence of acetate buffer (pH = 6) and micellar solution of anionic surfactant sodium dodecyl sulfate. The optimum conditions (effect of pH, buffer, surfactant, Eu(III), and sodium sulfite concentrations) for the luminescence signal were investigated and optimized. The luminescence signals were recorded at λex = 270 nm and λem = 460 nm. The method has a good linear response (0.2-130 μg/mL(-1)) between the luminescence intensity and the concentrations of the drug (r = 0.999), with a LOD 0.07 μg/mL(-1) and LOQ 0.2 μg/mL(-1). The luminescence signals of Eu (III)-tolnaftate-sodium dodecyl sulfate were found to be 200-fold more sensitive without the presence of micelle solution. The interferences of some additives, metals, amino acids, sugars, and other related pharmacological action drugs were examined and no interference was recorded. The proposed method was used for quick and simple determination of tolnaftate in its pharmaceuticals and biological fluids.

  17. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  18. Copper-catalyzed aerobic decarboxylative sulfonylation of cinnamic acids with sodium sulfinates: stereospecific synthesis of (E)-alkenyl sulfones.

    PubMed

    Jiang, Qing; Xu, Bin; Jia, Jing; Zhao, An; Zhao, Yu-Rou; Li, Ying-Ying; He, Na-Na; Guo, Can-Cheng

    2014-08-15

    A copper-catalyzed aerobic decarboxylative sulfonylation of alkenyl carboxylic acids with sodium sulfinates is developed. This study offers a new and expedient strategy for stereoselective synthesis of (E)-alkenyl sulfones that are widely present in biologically active natural products and therapeutic agents. Moreover, the transformation is proposed to proceed via a radical process and exhibits a broad substrate scope and good functional group tolerance.

  19. Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough.

    PubMed

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-12-15

    The impact of differences in dough transient gluten network on gluten cross-linking during baking is insufficiently understood. We varied dough mixing times and/or added sodium stearoyl lactylate (SSL; 1.0% on flour dry matter basis) to the recipe and studied the effect on subsequent gluten polymerization during heating. The level of proteins extractable in sodium dodecyl sulfate containing media was fitted using first order kinetics. The extent and rate of gluten polymerization were lower when mixing for 8 min than when mixing for 2 min. This effect was even more outspoken in the presence of SSL. The present observations were explained as resulting from less gliadin incorporation in the polymer gluten network and from interaction of SSL with the gluten proteins. Finally, a higher degree of gluten polymerization during baking increased the firmness of the baked products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  1. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  2. Effects of water, sodium hypochlorite, peroxyacetic acid, and acidified sodium chlorite on in-shell hazelnuts inoculated with Salmonella enterica serovar Panama.

    PubMed

    Weller, Lisa D; Daeschel, Mark A; Durham, Catherine A; Morrissey, Michael T

    2013-12-01

    Recent foodborne disease outbreaks involving minimally processed tree nuts have generated a need for improved sanitation procedures. Chemical sprays and dips have shown promise for reducing pathogens on fresh produce, but little research has been conducted for in-shell hazelnuts. This study analyzed the effectiveness of 3 chemical sanitizers for reducing Salmonella on in-shell hazelnuts. Treatments of water, sodium hypochlorite (NaOCl; 25 and 50 ppm), peroxyacetic acid (PAA; 80 and 120 ppm), and acidified sodium chlorite (ASC; 450, 830, and 1013 ppm) were sprayed onto hazelnut samples inoculated with Salmonella enterica serovar Panama. Hazelnut samples were immersed in liquid cultures of S. Panama for 24 h, air-dried, and then sprayed with water and chemical treatments. Inoculation achieved S. Panama populations of approximately 8.04 log CFU/hazelnut. Surviving S. panama populations were evaluated using a nonselective medium (tryptic soy agar), incubated 3 h, and then overlaid with selective media (xylose lysine deoxycholate agar). All of the chemical treatments significantly reduced S. Panama populations (P ≤ 0.0001). The most effective concentrations of ASC, PAA, and NaOCl treatments reduced populations by 2.65, 1.46, and 0.66 log units, respectively. ASC showed the greatest potential for use as a postharvest sanitation treatment. © 2013 Institute of Food Technologists®

  3. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake.

    PubMed

    Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H

    2016-11-01

    Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid

  4. Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends

    NASA Astrophysics Data System (ADS)

    Thakur, Amrita; Reddy, Giridhar

    2017-08-01

    A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.

  5. Effect of Ginger Extract and Citric Acid on the Tenderness of Duck Breast Muscles

    PubMed Central

    2015-01-01

    The objective of this study was to examine the effect of ginger extract (GE) combined with citric acid on the tenderness of duck breast muscles. Total six marinades were prepared with the combination of citric acid (0 and 0.3 M citric acid) and GE (0, 15, and 30%). Each marinade was sprayed on the surface of duck breasts (15 mL/100 g), and the samples were marinated for 72 h at 4℃. The pH and proteolytic activity of marinades were determined. After 72 h of marination, Warner Bratzler shear force (WBSF), myofibrillar fragmentation index (MFI), pH, cooking loss, moisture content, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein solubility were evaluated. There was no significant (p>0.05) difference in moisture content or cooking loss among all samples. However, GE marination resulted in a significant (p<0.05) decrease in WBSF but a significant (p<0.05) increase in pH and MFI. In addition, total protein and myofibrillar protein solubility of GE-marinated duck breast muscles in both WOC (without citric acid) and WC (with citric acid) conditions were significantly (p<0.05) increased compared to non-GE-marinated duck breast muscles. SDS-PAGE showed an increase of protein degradation (MHC and actin) in WC condition compared to WOC condition. There was a marked actin reduction in GE-treated samples in WC. The tenderization effect of GE combined with citric acid may be attributed to various mechanisms such as increased MFI and myofibrillar protein solubility. PMID:26877631

  6. Attenuation by all-trans-retinoic acid of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats.

    PubMed

    Tatsuta, M; Iishi, H; Baba, M; Hirasawa, R; Yano, H; Sakai, N; Nakaizumi, A

    1999-02-01

    The effect of prolonged administration of all-trans-retinoic acid (RA) on sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine, and the labelling and apoptotic indices and immunoreactivity of transforming growth factor (TGF) alpha in the gastric cancers was investigated in Wistar rats. After 25 weeks of carcinogen treatment, the rats were given chow pellets containing 10% sodium chloride and subcutaneous injections of RA at doses of 0.75 or 1.5 mg kg(-1) body weight every other day. In week 52, oral supplementation with sodium chloride significantly increased the incidence of gastric cancers compared with the untreated controls. Long-term administration of RA at both doses significantly reduced the incidence of gastric cancers, which was enhanced by oral administration of sodium chloride. RA at both doses significantly decreased the labelling index and TGF-alpha immunoreactivity of gastric cancers, which were enhanced by administration of sodium chloride, and significantly increased the apoptotic index of cancers, which was lowered by administration of sodium chloride. These findings suggest that RA attenuates gastric carcinogenesis, enhanced by sodium chloride, by increasing apoptosis, decreasing DNA synthesis, and reducing TGF-alpha expression in gastric cancers.

  7. Contribution of Sialic Acid to the Voltage Dependence of Sodium Channel Gating

    PubMed Central

    Bennett, Eric; Urcan, Mary S.; Tinkle, Sally S.; Koszowski, Adam G.; Levinson, Simon R.

    1997-01-01

    A potential role for sialic acid in the voltage-dependent gating of rat skeletal muscle sodium channels (rSkM1) was investigated using Chinese hamster ovary (CHO) cells stably transfected with rSkM1. Changes in the voltage dependence of channel gating were observed after enzymatic (neuraminidase) removal of sialic acid from cells expressing rSkM1 and through the expression of rSkM1 in a sialylation-deficient cell line (lec2). The steady-state half-activation voltages (Va) of channels under each condition of reduced sialylation were ∼10 mV more depolarized than control channels. The voltage dependence of the time constants of channel activation and inactivation were also shifted in the same direction and by a similar magnitude. In addition, recombinant deletion of likely glycosylation sites from the rSkM1 sequence resulted in mutant channels that gated at voltages up to 10 mV more positive than wild-type channels. Thus three independent means of reducing channel sialylation show very similar effects on the voltage dependence of channel gating. Finally, steady-state activation voltages for channels subjected to reduced sialylation conditions were much less sensitive to the effects of external calcium than those measured under control conditions, indicating that sialic acid directly contributes to the negative surface potential. These results are consistent with an electrostatic mechanism by which external, negatively charged sialic acid residues on rSkM1 alter the electric field sensed by channel gating elements. PMID:9089440

  8. Linoleic acid and its potassium and sodium salts: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gocen, Tuğba; Haman Bayarı, Sevgi; Haluk Guven, Mehmet

    2017-12-01

    Linoleic acid (cis, cis-9,12-octodecadienoic acid) is the main polyunsaturated -omega 6- essential fatty acid. The conformational behaviour of linoleic acid (LA) in the gas phase was investigated by means of density functional theory (DFT). The structures of conformers of LA were fully optimized by using the B3LYP/6-311++G(d,p) method. The theory showed that the tttttts‧CssCs‧tt conformation of LA (conformer I) is the more stable than the other conformations. Fourier Transform Infrared (FTIR) and micro-Raman spectra of pure LA in liquid form were recorded in the region 4000-450 and 3500-100 cm-1, respectively. The DFT calculations on the molecular structure and vibrational spectra of the dimer form of most stable conformer of LA were also performed using the same method. The assignment of the vibrational modes was made based on calculated potential energy distributions (PEDs). The simulated spectra of dimer form of LA are in reasonably good agreement with the experimental spectra. The sodium and potassium salts of LA were synthesized and characterized by FTIR and Raman spectroscopy, X-ray diffraction and DFT calculations. Several molecular and electronic properties of LA and its salts such as HOMO-LUMO energies, chemical hardness and electronegativity were also calculated and interpreted.

  9. Acid residues in the transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae involved in sodium translocation†

    PubMed Central

    Juárez, Oscar; Athearn, Kathleen; Gillespie, Portia; Barquera, Blanca

    2009-01-01

    Vibrio cholerae and many other marine and pathogenic bacteria posses a unique respiratory complex, the Na+-pumping NADH: quinone oxidoreductase (Na+-NQR)1, which pumps Na+ across the cell membrane using the energy released by the redox reaction between NADH and ubiquinone. In order to function as a selective sodium pump, Na+-NQR must contain structures that: 1) allow the sodium ion to pass through the hydrophobic core of the membrane, and 2) provide cation specificity to the translocation system. In other sodium transporting proteins, the structures that carry out these roles frequently include aspartate and glutamate residues. The negative charge of these residues facilitates binding and translocation of sodium. In this study we have analyzed mutants of acid residues located in the transmembrane helices of subunits B, D and E of Na+-NQR. The results are consistent with the participation of seven of these residues in the translocation process of sodium. Mutations at NqrB-D397, NqrD-D133 and NqrE-E95 produced a decrease of approximately ten times or more in the apparent affinity of the enzyme for sodium (Kmapp), which suggests that these residues may form part of a sodium-binding site. Mutation at other residues, including NqrB-E28, NqrB-E144, NqrB-E346 and NqrD-D88, had a large effect on the quinone reductase activity of the enzyme and its sodium sensitivity, but less effect on the apparent sodium affinity, consistent with a possible role in sodium conductance pathways. PMID:19694431

  10. Influence of Concentration and Agitation of Sodium Hypochlorite and Peracetic Acid Solutions on Tissue Dissolution.

    PubMed

    Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria

    2015-11-01

    To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.

  11. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite.

    PubMed Central

    Robach, M C

    1979-01-01

    The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present. PMID:44445

  12. Effect of processing variables on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted meat cured with sorbic acid and sodium nitrite.

    PubMed

    Robach, M C

    1979-11-01

    The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present.

  13. Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.

    PubMed

    Moriyama, Yoshiko; Takeda, Kunio

    2017-05-01

    The secondary structural changes of human serum albumin with the intact 17 disulfide bridges (HSA) and the disulfide bridges-cleaved human serum albumin (RCM-HSA) in thermal denaturation were examined. Most of the helical structures of HSA, whose original helicity was 66%, were sharply disrupted between 50 and 100°C. However, 14% helicity remained even at 130°C. The temperature dependence of the degree of disrupted helical structures of HSA was discussed in connection with questions about a general protein denaturation model. When HSA lost the disulfide bridges, about two-thirds of the original helices were disrupted. Although the helices of RCM-HSA remaining after the cleavage of the disulfide bridges were relatively resistant against the heat treatment, the helicity changed from 22% at 25°C to 14% at 130℃. The helicity of RCM-HSA at 130°C agreed with the helicity of HSA at the same temperature, indicating that the same helical moieties of the polypeptides remained unaffected at this high temperature. The additive effects of sodium dodecyl sulfate (SDS) on the structural changes of HSA and RCM-HSA in thermal denaturation were also examined. A slight amount of SDS protected the helical structures of HSA from thermal denaturation below 80°C. Upon cooling to 25°C after heat treatment at temperatures below 70°C with the coexistence of SDS of low concentrations, the helical structures of HSA were reformed to the original level at 25°C before heating. A similar tendency was also observed after heat treatment at 80°C. In contrast, the helical structures of the RCM-HSA complexes with SDS are completely recovered upon cooling to 25°C even after heat treatment up to 100°C. Similar investigations were also carried out on bovine serum albumins which had the intact 17 disulfide bridges and lost all of the bridges.

  14. Oral soft tissue wound healing after laser surgery with or without a pool of amino acids and sodium hyaluronate: a randomized clinical study.

    PubMed

    Romeo, Umberto; Libotte, Fabrizio; Palaia, Gaspare; Galanakis, Alexandros; Gaimari, Gianfranco; Tenore, Gianluca; Del Vecchio, Alessandro; Polimeni, Antonella

    2014-01-01

    The purpose of this study was to compare secondary intention healing of oral soft tissues after laser surgery with and without the use of a compound containing amino acids and sodium hyaluronate. Sodium hyaluronate has been successfully used in medicine to promote healing. It has not been studied in the healing of laser-produced wounds. Excisional biopsy was performed in oral soft tissues with a potassium-titanyl-phosphate (KTP) laser (532 nm, SmartLite, DEKA, Florence, Italy) in 49 patients divided into two groups. In the study group (SG), 31 patients received a compound gel containing four amino acids and sodium hyaluronate (Aminogam(®), Errekappa, Italy) after laser surgery; in the control group (CG), 18 subjects received no treatment involving a drug or gel. Numeric rating scale (NRS) was used to evaluate pain experienced after surgery [pain index (PI)]. Using a grid as a benchmark and computer software, the lesion area was measured after surgery (T0) and after 7 days (T1). A percentage healing index (PHI) was calculated indicating healing extension in 7 days. SG cases showed an average PHI of 64.38±26.50, whereas the average PHI in the CG was 47.88%±27.84. Mean PI was 2.67±0.96 for SG and 2.75±0.86 for CG. A statistically significant difference was detected between the groups for PHI (p=0.0447), whereas no difference was detectable for PI (p=0.77). The use of a gel containing amino acids and sodium hyaluronate can promote faster healing via secondary intention in laser-induced wounds, although it does not seem to affect pain perception.

  15. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption

    PubMed Central

    Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A

    2006-01-01

    The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805

  16. Spectrofluorometry, thin layer chromatography, and column high-performance liquid chromatography determination of rabeprazole sodium in the presence of its acidic and oxidized degradation products.

    PubMed

    Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed

    2009-01-01

    The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.

  17. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    PubMed

    Qi, Ping; Liang, Zhi-An; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-Qiong; Zheng, Chun-Hao; Luo, Li-Ni; Lin, Zi-Hao; Zhu, Fang; Zhang, Xue-Wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  19. Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries.

    PubMed

    Kumar, A Ganesh; Nagesh, N; Prabhakar, T G; Sekaran, G

    2008-05-01

    The untanned proteinaceous tannery solid waste, animal fleshing (ANFL), was used as a substrate for acid protease production by Synergistes sp. The strain was isolated from an anaerobic digester used for the treatment of tannery solid waste and was selected for its enhanced protease production at activity 350-420 U/ml. The optimum pH was in the acidic range of 5.5-6.5 and optimum temperature was in mesophilic range of 25-35 degrees C. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the zymogram analyses of the purified protein indicated an estimated molecular mass of 60 kDa. This protease could be classified as aspartic protease based on its inhibition by aspartate type protease inhibitor pepstatin and on non-inhibition by 1,10-phenanthroline, EDTA, EGTA and phenylmethylsulfonyl fluoride. The degradation of ANFL was confirmed by Gas Chromatography-Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance Spectroscopy (H1 NMR) and Scanning Electron Microscopy (SEM) analyses. In this study we found that the activity of acid protease depended on factors such as calcium concentration, pH and temperature. Based on these lines of evidence, we postulate that this protease is a highly catalytic novel protease of its type.

  20. Mixed Micelle System Produced by Interaction Between Transglycosylated Stevia and an Ionic Surfactant Improves Dissolution Profile of Mefenamic Acid.

    PubMed

    Fujimori, Miki; Kadota, Kazunori; Tozuka, Yuichi

    2017-04-01

    Transglycosylated stevia (stevia-G) can effectively improve the dissolution and bioavailability of poorly water-soluble drugs. Furthermore, addition of an ionic surfactant to stevia-G solution has been shown to enhance the dissolution effect of stevia-G on flurbiprofen. Herein, 4 surfactants, namely sodium dodecyl sulfate, sodium N-dodecanoylsarcosinate, sodium monododecyl phosphate, and lauryltrimethylammonium chloride (LTAC) were screened to investigate their synergistic effect with stevia-G in enhancing the solubility of mefenamic acid (MFA). The ternary formulation containing LTAC produced the highest increase in solubility, whereas the binary MFA/LTAC formulation did not increase the solubility of MFA. Surface tension was evaluated to analyze the interaction between stevia-G and each ionic surfactant, wherein the Rubingh model was applied to predict mixed micelle formation between stevia-G and LTAC. Interaction parameters calculated by the Rubingh model reflected mixed micelle formation between stevia-G and LTAC relative to the self-interactions of the 2 individual surfactants. All interaction parameters in this system showed negative values, indicating a favorable interaction (e.g., hydrogen bond or electrostatic and dipole) between binary components in the mixed micelles. Spray-dried particles of ternary formulations (MFA/stevia-G/LTAC) were prepared to evaluate the dissolution profile and physicochemical properties. Dissolution profiling showed that the concentration of MFA released from spray-dried particles was significantly higher than untreated MFA. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Host-pathogen interactions. XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexins in soybean. [Glycine max L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, K.R.; Darvill, A.G.; Albersheim, P.

    1986-02-01

    Recent studies have demonstrated that an apparently homogeneous preparation of an ..cap alpha..-1,4-D-endopolygalacturonic acid lyase (EC 4.2,2.2) isolated from the phytopathogenic bacterium Erwinia carotovora induced phytoalexin accumulation in cotyledons of soybean (Glycine max (L.) Merr. cv Wayne) and that this pectin-degrading enzyme released heat-stable elicitors of phytoalexins from soybean cell walls, citrus pectin, and sodium polypectate. The present paper reports the purification, by anion-exchange chromatography on QAE-Sephadex columns followed by gel-permeation chromatography on a Bio-Gel P-6 column, of the two fractions with highest specific elicitor activity present in a crude elicitor-preparation obtained by lyase treatment of sodium polypectate. Structural analysismore » of the fraction with highest specific elicitor activity indicated that the major, if not only, component was a decasaccharide of ..cap alpha..-1,4-D-galactosyluronic acid that contained the expected product of lyase cleavage, 4-deoxy-..beta..-L-5-threo-hexopyranos-4-enyluronic acid (4,5-unsaturated galactosyluronic acid), at the nonreducing terminus. This modified decagalacturonide fraction exhibited half-maximum and maximum elicitor activity at 1 microgram/cotyledon (6 micromolar) and 5 micrograms/cotyledon (32 micromolar) galactosyluronic acid equivalents, respectively. Reducing 90 to 95% of the carboxyl groups of the galactosyluronic acid residues abolished the elicitor activity of the decagalacturonide fraction. The second most elicitor-active fraction contained mostly undeca-..cap alpha..-1,4-D-galactosyluronic acid that contained 4,5-unsaturated galactosyluronic acid at the nonreducing termini. This fraction exhibited half-maximum and maximum elicitor activity at approximately 3 micrograms/cotyledon (17 micromolar) and 6 micrograms/cotyledon (34 micromolar) galactosyluronic acid equivalents, respectively.« less

  2. A Patient with MSUD: Acute Management with Sodium Phenylacetate/Sodium Benzoate and Sodium Phenylbutyrate.

    PubMed

    Köse, Melis; Canda, Ebru; Kagnici, Mehtap; Uçar, Sema Kalkan; Çoker, Mahmut

    2017-01-01

    In treatment of metabolic imbalances caused by maple syrup urine disease (MSUD), peritoneal dialysis, and hemofiltration, pharmacological treatments for elimination of toxic metabolites can be used in addition to basic dietary modifications. Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate (NaPB) in urea-cycle disorder cases has been associated with a reduction in branched-chain amino acid (BCAA) concentrations when the patients are on adequate dietary protein intake. Moreover, NaPB in treatment of MSUD patients is also associated with reduction of BCAA levels in a limited number of cases. However, there are not enough studies in the literature about application and efficacy of this treatment. Our case report sets an example of an alternative treatment's efficacy when extracorporeal procedures are not available due to technical difficulties during attack period of the disease.

  3. Theoretical Investigation of the Reactivity of Sodium Dicyanamide with Nitric Acid.

    PubMed

    Vogelhuber, Kristen M; Booth, Ryan S; Annesley, Christopher J

    2018-03-01

    There is a need to replace current hydrazine fuels with safer propellants, and dicyanamide (DCA - )-based systems have emerged as promising alternatives because they autoignite when mixed with some oxidizers. Previous studies of the hypergolic reaction mechanism have focused on the reaction between DCA - and the oxidizer HNO 3 ; here, we compare the calculated pathway of DCA - + HNO 3 with the reaction coordinate of the ion pair sodium dicyanamide with nitric acid, Na[DCA] + HNO 3 . Enthalpies and free energies are calculated in the gas phase and in solution using a quantum mechanical continuum solvation model, SMD-GIL. The barriers to the Na[DCA] + HNO 3 reaction are dramatically lowered relative to those of the reaction with the bare anion, and an exothermic exit channel to produce NaNO 3 and the reactive intermediate HDCA appears. These results suggest that Na[DCA] may accelerate the ignition reaction.

  4. The aggregational status of cholera enterotoxin fragment A following biochemical fractionation.

    PubMed

    Knoop, F C

    1978-01-01

    Aggregates of frabment A of Vibrio cholerae enterotoxin were revealed following isoelectric focusing in 8 M urea of molecular sieve chromatography in 4% (v/v) formic acid. These aggregates consisted of dimers which required the presence of 10 M urea, 1% sodium dodecyl sulfate (SDS), 2 mM ethylenediaminetetracetic acid (EDTA) and heat (60 degrees C for 1 h) for complete dissociation. All aggregates were homogeneous when tested by standard analytical and SDS polyacrylamide gel electrophoresis or immunodiffusion analysis. Aggregates of fragment A were biologically active in the mouse Y1 adrenal cell assay.

  5. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Gao, Tao; Wang, Jing; Wang, Chunsheng

    2014-03-01

    Croconic acid disodium salt (CADS), a renewable or recyclable organic compound, is investigated as an anode material in sodium ion battery for the first time. The pristine micro-sized CADS delivers a high capacity of 246.7 mAh g-1, but it suffers from fast capacity decay during charge/discharge cycles. The detailed investigation reveals that the severe capacity loss is mainly attributed to the pulverization of CADS particles induced by the large volume change during sodiation/desodiation rather than the generally believed dissolution of CADS in the organic electrolyte. Minimizing the particle size can effectively suppress the pulverization, thus improving the cycling stability. Wrapping CADS with graphene oxide by ultrasonic spray pyrolysis can enhance the integration and conductivity of CADS electrodes, thus providing a high capacity of 293 mAh g-1.

  6. Fluorimetric study of the mechanism of molecular association in aqueous solutions of polymethacrylic acid and sodium dodecylbenzenesulfonate

    NASA Astrophysics Data System (ADS)

    Sachko, A. V.; Zakordonskii, V. P.; Voloshinovskii, A. S.

    2013-03-01

    Fluorescent spectroscopy is used to investigate the processes of intermolecular association in mixed solutions of polymethacrylic acid (PMAA) and anionic sodium dodecylbenzenesulfonate (SDBS). We propose a model for describing the stage-by-stage mechanism of association processes and conclude that the nature of intermolecular associates depends on the PMAA-SDBS concentration ratio in the solution. Studying the kinetics of fluorescence decay reveals the simultaneous existence of two types of formations capable of pyrene solubilization.

  7. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Quantitation of total protein deposits on contact lenses by means of amino acid analysis.

    PubMed

    Yan, G; Nyquist, G; Caldwell, K D; Payor, R; McCraw, E C

    1993-04-01

    This study was done to characterize and quantify the protein deposits on worn contact lenses and to measure the residual deposits after extraction in 2% sodium dodecyl sulfate and the total protein deposits on worn vifilcon, atlafilcon, and tefilcon lenses (Food and Drug Administration Types IV, II, and I, respectively). Contact lens extracts were separated with gel electrophoresis, and the amount of protein was estimated after silver staining and densitometry. To determine the residual deposits, the contact lenses were hydrolyzed, and amino acid analysis was carried out by reverse-phase high-performance liquid chromatography after precolumn derivatization with phenylisothiocyanate. Refinement of the hydrolysis conditions was undertaken to minimize interference by the lens polymers. The extraction removed only approximately 25% of the protein deposits. Mild hydrolytic conditions, 20 hr in 6 N HCl at 105 degrees C, were found to cause minimal polymer interference. Of the 350, 10, and 20 micrograms of protein typically determined on whole vifilcon, atlafilcon, and tefilcon lenses, the polymers were estimated to account for 4, 0.5, and less than 0.4 micrograms, respectively. Hydrolysis of worn contact lenses with subsequent amino acid separation can be applied to determine the total protein deposits without the uncertainty inherent in extraction of the deposits.

  9. Dog rose (Rosa canina L.) as a functional ingredient in porcine frankfurters without added sodium ascorbate and sodium nitrite.

    PubMed

    Vossen, Els; Utrera, Mariana; De Smet, Stefaan; Morcuende, David; Estévez, Mario

    2012-12-01

    The effect of dog rose (Rosa canina L.; RC), rich in polyphenols and ascorbic acid, on lipid and protein oxidation, colour stability and texture of frankfurters was investigated. Four treatments were prepared: with 5 or 30 g/kg RC extract and without sodium ascorbate and sodium nitrite (5RC and 30RC, respectively), a positive control (with sodium ascorbate and sodium nitrite; PC) and a negative control (without sodium ascorbate, sodium nitrite or RC extract; NC). Hexanal values were much higher throughout storage in NC compared to RC and PC frankfurters (P<0.001). The RC extracts protected against protein oxidation, but not as efficiently as PC (P<0.05). In the RC treated frankfurters, lower a* values were measured compared to PC due to the lack of sodium nitrite. In conclusion, dog rose can act as a natural antioxidant in frankfurters, but not as full replacer for sodium nitrite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identification of lactic acid bacteria from chili bo, a Malaysian food ingredient.

    PubMed

    Leisner, J J; Pot, B; Christensen, H; Rusul, G; Olsen, J E; Wee, B W; Muhamad, K; Ghazali, H M

    1999-02-01

    Ninety-two strains of lactic acid bacteria (LAB) were isolated from a Malaysian food ingredient, chili bo, stored for up to 25 days at 28 degreesC with no benzoic acid (product A) or with 7,000 mg of benzoic acid kg-1 (product B). The strains were divided into eight groups by traditional phenotypic tests. A total of 43 strains were selected for comparison of their sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) whole-cell protein patterns with a SDS-PAGE database of LAB. Isolates from product A were identified as Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus farciminis, Pediococcus acidilactici, Enterococcus faecalis, and Weissella confusa. Five strains belonging to clusters which could not be allocated to existing species by SDS-PAGE were further identified by 16S rRNA sequence comparison. One strain was distantly related to the Lactobacillus casei/Pediococcus group. Two strains were related to Weissella at the genus or species level. Two other strains did not belong to any previously described 16S rRNA group of LAB and occupied an intermediate position between the L. casei/Pediococcus group and the Weissella group and species of Carnobacterium. The latter two strains belong to the cluster of LAB that predominated in product B. The incidence of new species and subspecies of LAB in chili bo indicate the high probability of isolation of new LAB from certain Southeast Asian foods. None of the isolates exhibited bacteriocin activity against L. plantarum ATCC 14917 and LMG 17682.

  11. Improved pH buffering agent for sodium hypochlorite

    NASA Technical Reports Server (NTRS)

    Nash, J. R.; Veeder, L. N.

    1969-01-01

    Sodium citrate/citric acid was found to be an effective buffer for pH control when used with sodium hypochlorite. The mixture does not corrode aluminum. The buffer appears to form a type of conversion coating that may provide corrosion-resistant properties to aluminum in other applications.

  12. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch

    PubMed Central

    2014-01-01

    Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as

  13. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch.

    PubMed

    Zhou, Xiang; Lu, Xi-Hong; Li, Xue-Hu; Xin, Zhi-Jun; Xie, Jia-Rong; Zhao, Mei-Rong; Wang, Liang; Du, Wen-Yue; Liang, Jian-Ping

    2014-02-18

    Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined

  14. The effect of thiopental sodium, methoxyflurane and halothane on the acid-base status in sheep.

    PubMed Central

    Edjtehadi, M; Howard, B R

    1978-01-01

    Experiments have been carried out on 20 adult fat-tailed ewes to determine the effects of thiopental sodium, methoxyflurane and halothane on acid-base status of the saliva loss during prolonged surgical anaesthesia. The rate of loss of base in saliva depends on the volume of saliva produced, which fell sharply at the onset of anesthesia with the volatile anaesthesia. Plasma pH and plasma pvCO2 excess were both increased by the volatile anaesthetics but fell sharply during thiopental anaesthesia. Plasma pH and plasma PvCO2 showed no consistent relationship. PMID:688076

  15. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajewska, A., E-mail: aldonar@jinr.ru; Medrzycka, K.; Hallmann, E.

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  16. Preparation, Electromechanical, and Structural Study of Carbon Nanotube/Gelatin Nanocomposites

    DTIC Science & Technology

    2008-01-15

    surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the composite and pure gelatin films were studied in order...vacuum-dried gels samples into a 0.1 M NaCl aqueous solution at room temperature. The incorporation of MWNT gradually decreased the swelling of the...ultrasonication in an aqueous medium with anionic surfactant sodium dodecyl sulfate (SDS). The swelling behavior and the bending mechanism of the

  17. A Patient with MSUD: Acute Management with Sodium Phenylacetate/Sodium Benzoate and Sodium Phenylbutyrate

    PubMed Central

    Canda, Ebru; Kagnici, Mehtap; Uçar, Sema Kalkan; Çoker, Mahmut

    2017-01-01

    In treatment of metabolic imbalances caused by maple syrup urine disease (MSUD), peritoneal dialysis, and hemofiltration, pharmacological treatments for elimination of toxic metabolites can be used in addition to basic dietary modifications. Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate (NaPB) in urea-cycle disorder cases has been associated with a reduction in branched-chain amino acid (BCAA) concentrations when the patients are on adequate dietary protein intake. Moreover, NaPB in treatment of MSUD patients is also associated with reduction of BCAA levels in a limited number of cases. However, there are not enough studies in the literature about application and efficacy of this treatment. Our case report sets an example of an alternative treatment's efficacy when extracorporeal procedures are not available due to technical difficulties during attack period of the disease. PMID:28589054

  18. Synthesis of a Possible Precursor of α-Amylase in Wheat Aleurone Cells 1

    PubMed Central

    Okita, Thomas W.; Decaleya, Roberto; Rappaport, Lawrence

    1979-01-01

    α-Amylase from wheat aleurone (Triticum aestivum) was synthesized in a S-150 wheat germ readout system using polysomes, and a messenger RNA-dependent reticulocyte lysate system using polyadenylic acid [poly(A)]-enriched RNA. The product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, precipitation by specific λ-globulin for α-amylase, and proteolysis. Two immunoprecipitated products were synthesized from the readout system, the predominant species migrating coincidentally with authentic α-amylase on sodium dodecyl sulfate-polyacrylamide gels. A putative precursor, 1,500 daltons larger, was evident but was less abundant. The relationship between the two polypeptides was established by proteolytic analysis using Staphylococcus aureus V8 protease. At least nine fragments were generated and were identical in both species. The poly(A)-enriched RNA synthesized only the putative precursor in the reticulocyte lysate system. Attempts to process the precursor to the mature size of α-amylase failed. These findings are discussed in connection with the signal hypothesis (proposed for the transport of proteins across membranes) and the mode of secretion of α-amylase in aleurone cells. Images PMID:16660677

  19. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it; Romagnoli, Marcello; Pollastri, Simone

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for constructionmore » purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.« less

  20. Synthesis and Properties of Dodecyl Trehaloside Detergents for Membrane Protein Studies

    PubMed Central

    Tao, Houchao; Fu, Yu; Thompson, Aaron; Lee, Sung Chang; Mahoney, Nicholas; Stevens, Raymond C.; Zhang, Qinghai

    2012-01-01

    Sugar-based detergents, mostly derived from maltose or glucose, prevail in the extraction, solubilization, stabilization and crystallization of membrane proteins. Inspired by the broad use of trehalose for protecting biological macromolecules and lipid bilayer structures, we synthesized new trehaloside detergents for potential applications in membrane protein research. We devised an efficient synthesis of four dodecyl trehalosides, each with the 12-carboned alkyl chain attached to different hydroxyl groups of trehalose, thus presenting a structurally diverse but related family of detergents. The detergent physical properties, including solubility, hydrophobicity, critical micelle concentration (CMC) and size of micelles, were evaluated and compared with the most popular maltoside analog, β- D-dodecylmaltoside (DDM), which varied from each other due to distinct molecular geometries and possible polar group interactions in resulting micelles. Crystals of 2-dodecyl trehaloside (2-DDTre) were also obtained in methanol, and the crystal packing revealed multiple H-bonded interactions among adjacent trehalose groups. The few trehaloside detergents were tested for the solubilization and stabilization of the nociceptin/orphanin FQ peptide receptor (ORL1) and MsbA, which belong to the G-protein coupled receptor (GPCR) and ATP-binding cassette transporter families, respectively. Our results demonstrated the utility of trehaloside detergents as membrane protein solubilization reagents with the optimal detergents being protein dependent. Continuing development and investigations of trehaloside detergents are attractive given their interesting and unique chemical-physical properties and potential interactions with membrane lipids. PMID:22780816

  1. Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity.

    PubMed

    Shea, Michael E; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-10-25

    The Na(+)-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC).

  2. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  3. In vitro studies of the antibacterial activity of Copaifera spp. oleoresins, sodium hypochlorite, and peracetic acid against clinical and environmental isolates recovered from a hemodialysis unit.

    PubMed

    Vieira, Rosimara Gonçalves Leite; Moraes, Thaís da Silva; Silva, Larissa de Oliveira; Bianchi, Thamires Chiquini; Veneziani, Rodrigo Cassio Sola; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Pires, Regina Helena; Martins, Carlos Henrique Gomes

    2018-01-01

    Patients submitted to hemodialysis therapy are more susceptible to infection, especially to infection by Gram-positive bacteria. Various research works have attempted to discover new antimicrobial agents from plant extracts and other natural products. The present study aimed to assess the antibacterial activities of Copaifera duckei , C. reticulata , and C. oblongifolia oleoresins; sodium hypochlorite; and peracetic acid against clinical and environmental isolates recovered from a Hemodialysis Unit. The Minimum Inhibitory Concentration and the Fractionated Inhibitory Concentration Index were determined; the ability of the tested compounds/extracts to inhibit biofilm formation was evaluated by calculating the MICB 50 and IC 50 . C. duckei was the most efficient among the assayed Copaifera species, and its oleoresin was more effective than peracetic acid and sodium hypochlorite. Copaifera oleoresins and disinfectants did not act synergistically at any of the tested combinations. Certain of C. duckei oleoresin, peracetic acid, and sodium hypochlorite concentrations inhibited biofilm formation and eradicated 50% of the biofilm population. C. duckei oleoresin is a potential candidate for disinfectant formulations. Based on these results and given the high incidence of multi-resistant bacteria in hemodialysis patients, it is imperative that new potential antibacterial agents like C. duckei oleoresin, which is active against Staphylococcus , be included in disinfectant formulations.

  4. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins

    PubMed Central

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-01-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4–5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. PMID:25283538

  5. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins.

    PubMed

    Han, Seong-Gu; Na, Jung-Hyun; Lee, Won-Kyu; Park, Dongkook; Oh, Jihye; Yoon, Sung-Ho; Lee, Cheng-Kang; Sung, Moon-Hee; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2014-12-01

    Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins. © 2014 The Protein Society.

  6. [DIURETIC ACTIVITY OF 4-O-CARBOXYPHENYL-D-GLUCOPYRANOSIDE SODIUM SALT ADMINISTERED VIA DIFFERENT ROUTES].

    PubMed

    Smirnov, I V; Murashko, T O; Ivanov, A A; Nemtsev, A O; Postnikov, P S; Bondarev, A A; Udut, V V

    2016-01-01

    It was compared the diuretic activity of the sodium salt of 4-(O-β-D-glucopyranosyloxy)benzoic acid for enteral (intragastric) and parenteral ways of administration. The test substance was administered enterally and parenterally (subcutaneously in the region of the withers) in a daily dose of 18 µmol/kg for the first seven days and in a dose of 54 mmol/kg for the next seven days. Diuretic activity of the sodium salt of 4-(O-β-D-glucopyranosyloxy)benzoic acid was evaluated in terms of urine volume. Urine was analyzed for creatinine and the concentration of sodium, potassium and chloride ions. Experiments showed that the sodium salt of 4-(O-β-D-glucopyranosyloxy)benzoic acid produced a diuretic effect only for the enteral administration route.

  7. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family.

    PubMed

    Mackenzie, Bryan; Erickson, Jeffrey D

    2004-02-01

    The sodium-coupled neutral amino acid transporters (SNAT) of the SLC38 gene family resemble the classically-described System A and System N transport activities in terms of their functional properties and patterns of regulation. Transport of small, aliphatic amino acids by System A subtypes (SNAT1, SNAT2, and SNAT4) is rheogenic and pH sensitive. The System N subtypes SNAT3 and SNAT5 also countertransport H(+), which may be key to their operation in reverse, and have narrower substrate profiles than do the System A subtypes. Glutamine emerges as a favored substrate throughout the family, except for SNAT4. The SLC38 transporters undoubtedly play many physiological roles including the transfer of glutamine from astrocyte to neuron in the CNS, ammonia detoxification and gluconeogenesis in the liver, and the renal response to acidosis. Probing their regulation has revealed additional roles, and recent work has considered SLC38 transporters as therapeutic targets in neoplasia.

  8. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity.

    PubMed

    Higgins, N P; Peebles, C L; Sugino, A; Cozzarelli, N R

    1978-04-01

    Extensively purified DNA gyrase from Escherichia coli is inhibited by nalidixic acid and by novobiocin. The enzyme is composed of two subunits, A and B, which were purified as separate components. Subunit A is the product of the gene controlling sensitivity to nalidixic acid (nalA) because: (i) the electrophoretic mobility of subunit A in the presence of sodium dodecyl sulfate is identical to that of the 105,000-dalton nalA gene product; (ii) mutants that are resistant to nalidixic acid (nalA(r)) produce a drug-resistant subunit A; and (iii) wild-type subunit A confers drug sensitivity to in vitro synthesis of varphiX174 DNA directed by nalA(r) mutants. Subunit B contains a 95,000-dalton polypeptide and is controlled by the gene specifying sensitivity to novobiocin (cou) because cou(r) mutants produce a novobiocin-resistant subunit B and novobiocin-resitant gyrase is made drug sensitive by wild-type subunit B. Subunits A and B associate, so that gyrase was also purified as a complex containing 105,000- and 95,000-dalton polypeptides. This enzyme and gyrase reconstructed from subunits have the same drug sensitivity, K(m) for ATP, and catalytic properties. The same ratio of subunits gives efficient reconstitution of the reactions intrinsic to DNA gyrase, including catalysis of supercoiling of closed duplex DNA, relaxation of supercoiled DNA in the absence of ATP, and site-specific cleavage of DNA induced by sodium dodecyl sulfate.

  9. Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition

    PubMed Central

    Deese, Rachel D.; LeBlanc, Madeline R.

    2016-01-01

    Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688

  10. Intestinal permeability enhancement of levothyroxine sodium by straight chain fatty acids studied in MDCK epithelial cell line.

    PubMed

    Pabla, Dimple; Akhlaghi, Fatemeh; Zia, Hossein

    2010-08-11

    Levothyroxine sodium (T4), administered orally, is used for the treatment of hypothyroidism. T4 is a narrow therapeutic index drug with highly variable bioavailability (40-80%). The purpose of the present study was to increase the transepithelial transport of T4 using straight chain fatty acids across Madin-Darby Canine kidney (MDCK) cell line. Capric acid (C10), lauric acid (C12) and oleic acid (C18) were studied in molar ratios of 1:0.5, 1:1, 1:2 and 1:3 (T4:fatty acid). Transport of the hydrophilic marker, Lucifer yellow, was also studied. All three fatty acids proved to significantly increase T4 transport and the order of enhancement was to the effect of C12 approximately C18>C10. This Increase in transport was accompanied by reductions in transepithelial electrical resistance (TEER) values, which indicates an opening of tight junctions. Cytotoxic effects of the fatty acids were evaluated by TEER measurements, lactate dehydrogenase release, percent viability and propidium iodide staining of the cells. At the lower molar concentrations of 1:1, the fatty acids did not show any toxicity. However, C12 and C18 when added, to T4:fatty acid molar ratio of 1:2 and 1:3, respectively showed severe toxicity with irreversible damage to the cells. Hence, addition of fatty acids to T4 formulations at low concentrations can significantly improve intestinal permeability of T4 without any toxicity potentially leading to improved bioavailability. 2010 Elsevier B.V. All rights reserved.

  11. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance

    PubMed Central

    Monteiro, Paulo S.; Guimarães, Valéria M.; de Melo, Ricardo R.; de Rezende, Sebastião T.

    2015-01-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 5 s −1 and 4.7 × 10 6 s −1 .M −1 , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg 2+ , Cd 2+ , K + and Ca 2+ , and it was drastically inhibited by F − . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment. PMID:26221114

  12. Effect of sodium metabisulfite on hydrogen peroxide production in light-exposed pediatric parenteral amino acid solutions.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1998-06-15

    The effect of sodium metabisulfite (MBS) on hydrogen peroxide (HP) production in model and commercial amino acid solutions exposed to phototherapy light was studied. Model and commercial pediatric amino acid solutions were prepared such that the amino acid concentration was 1%. MBS concentration, riboflavin concentration, and duration of exposure to phototherapy light were varied to determine the effect on HP production. Control solutions were kept in the dark. HP production was assayed in the model amino acid solutions by using potassium iodide in the presence of ammonium molybdate. In all experiments, HP production was measured at 360 nm in the presence and absence of catalase. In light-exposed solutions, HP production increased linearly for several hours and reached a plateau by eight hours. A mean maximum of 940 microM was produced (data pooled for all solutions). No detectable HP was generated in the solutions kept in the dark. After two hours of light exposure, it was necessary to add at least 10 times more MBS than is typically found in commercial total parenteral nutrient solutions to scavenge all the HP produced. An average of up to 940 microM of HP was produced in model and commercial pediatric parenteral 1% amino acid solutions in the presence of phototherapy light and clinically relevant concentrations of riboflavin and MBS. Light exposure decreased the antioxidant effect of MBS.

  13. Assessment of the Target Engagement and D-Serine Biomarker Profiles of the D-Amino Acid Oxidase Inhibitors Sodium Benzoate and PGM030756.

    PubMed

    Howley, Eimear; Bestwick, Michael; Fradley, Rosa; Harrison, Helen; Leveridge, Mathew; Okada, Kengo; Fieldhouse, Charlotte; Farnaby, Will; Canning, Hannah; Sykes, Andy P; Merchant, Kevin; Hazel, Katherine; Kerr, Catrina; Kinsella, Natasha; Walsh, Louise; Livermore, David G; Hoffman, Isaac; Ellery, Jonathan; Mitchell, Phillip; Patel, Toshal; Carlton, Mark; Barnes, Matt; Miller, David J

    2017-11-01

    Irregular N-methyl-D-aspartate receptor (NMDAR) function is one of the main hypotheses employed to facilitate understanding of the underlying disease state of schizophrenia. Although direct agonism of the NMDAR has not yielded promising therapeutics, advances have been made by modulating the NMDAR co-agonist site which is activated by glycine and D-serine. One approach to activate the co-agonist site is to increase synaptic D-serine levels through inhibition of D-amino acid oxidase (DAO), the major catabolic clearance pathway for this and other D-amino acids. A number of DAO inhibitors have been developed but most have not entered clinical trials. One exception to this is sodium benzoate which has demonstrated efficacy in small trials of schizophrenia and Alzheimer's disease. Herein we provide data on the effect of sodium benzoate and an optimised Takeda compound, PGM030756 on ex vivo DAO enzyme occupancy and cerebellar D-serine levels in mice. Both compounds achieve high levels of enzyme occupancy; although lower doses of PGM030756 (1, 3 and 10 mg/kg) were required to achieve this compared to sodium benzoate (300, 1000 mg/kg). Cerebellar D-serine levels were increased by both agents with a delay of approximately 6 h after dosing before the peak effect was achieved. Our data and methods may be useful in understanding the effects of sodium benzoate that have been seen in clinical trials of schizophrenia and Alzheimer's disease and to support the potential clinical assessment of other DAO inhibitors, such as PGM030756, which demonstrate good enzyme occupancy and D-serine increases following administration of low oral doses.

  14. Sodium-tetravalent sulfur molten chloroaluminate cell

    DOEpatents

    Mamantov, Gleb

    1985-04-02

    A sodium-tetravalent sulfur molten chloroaluminate cell with a .beta."-alumina sodium ion conductor having a S-Al mole ratio of above about 0.15 in an acidic molten chloroaluminate cathode composition is disclosed. The cathode composition has an AlCl.sub.3 -NaCl mole percent ratio of above about 70-30 at theoretical full charge. The cell provides high energy densities at low temperatures and provides high energy densities and high power densities at moderate temperatures.

  15. Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.

    PubMed

    Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R

    2006-01-01

    It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.

  16. Comparison of sodium acid sulfate to citric acid to inhibit browning of fresh-cut potatoes.

    PubMed

    Calder, Beth L; Kash, Emily A; Davis-Dentici, Katherine; Bushway, Alfred A

    2011-04-01

    Sodium acid sulfate (SAS) dip treatments were evaluated against a distilled water control and citric acid (CA) to compare its effectiveness in reducing enzymatic browning of raw, French-fry cut potatoes. Two separate studies were conducted with dip concentrations ranging from 0%, 1%, and 3% in experiment 1 to 0%, 2%, and 2.5% in experiment 2 to determine optimal dip concentrations. Russet Burbank potatoes were peeled, sliced, and dipped for 1 min and stored at 3 °C. Color, texture, fry surface pH, and microbiological analyses were conducted on days 0, 7, and 14. The 3% SAS- and CA-treated samples had significantly (p<0.0001) lower pH levels on fry surfaces than all other treatments. Both acidulants had significantly (p≤0.05) lower aerobic plate counts compared to controls in both studies by day 7. However, SAS appeared to be the most effective at the 3% level in maintaining a light fry color up to day 14 and had the highest L-values than all other treatments. The 3% SAS-treated fry slices appeared to have the least change in textural properties over storage time, having a significantly (p=0.0002) higher force value (kg force [kgf]) than the other treatments during experiment 1, without any signs of case-hardening that appeared in the control and CA-treated samples. SAS was just as comparable to CA in reducing surface fry pH and also lowering microbial counts over storage time. According to the results, SAS may be another viable acidulant to be utilized in the fresh-cut fruit and vegetable industry.

  17. Synthesis and optoelectronic properties of dodecyl substituted diphenylamine and pyridine based conjugated molecule

    NASA Astrophysics Data System (ADS)

    Priyanka, V.; Vijai Anand, A. S.; Mahesh, K.; Karpagam, S.

    2017-11-01

    The new donor-acceptor type conjugated moiety, namely 3-([4-(2-Cyano-2pyridine-2yl-vinyl)-phenyl]-dodecyl-amino)-phenyl)-2-pyridine-2-yl-acrylonitrile (DPA-PA) has been synthesized according to the Knoevenagel condensation. Here dodecyloxy diphenylamine moiety acts as an electron donor and cyano-pyridyl moiety acts as an electron acceptor. These moieties are recently showing great interest in optoelectronic applications. The structure of the DPA-PA was confirmed by FT-IR, 1H NMR. The final product showed great solubility in common organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to the dodecyl chain. The absorption maximum of DPA-PA appeared at 433 nm in chloroform solution. The optical band gap is 2.2 eV calculated from thin film absorption edge (550 nm). The photoluminescence spectra exhibited a maximum peak at 513 nm with greenish fluorescence in chloroform solution and at 541 nm as the thin film state. The emission spectra of thin film state are 28 nm red shifted with broadening peak. The lower electrochemical band gap 1.55 eV was observed by cyclic voltammetry. This type of low band gap materials has much attention for their various potential applications in optoelectronic devices.

  18. Clostridium botulinum serotype D neurotoxin and toxin complex bind to bovine aortic endothelial cells via sialic acid.

    PubMed

    Yoneyama, Tohru; Miyata, Keita; Chikai, Tomoyuki; Mikami, Akifumi; Suzuki, Tomonori; Hasegawa, Kimiko; Ikeda, Toshihiko; Watanabe, Toshihiro; Ohyama, Tohru; Niwa, Koichi

    2008-12-01

    Botulinum neurotoxin (BoNT) is produced as a large toxin complex (L-TC) associated with nontoxic nonhemagglutinin (NTNHA) and three hemagglutinin subcomponents (HA-70, -33 and -17). The binding properties of BoNT to neurons and L-TC to intestinal epithelial cells are well documented, while those to other tissues are largely unknown. Here, to obtain novel insights into the pathogenesis of foodborne botulism, we examine whether botulinum toxins bind to vascular endothelial cells. BoNT and 750 kDa L-TC (a complex of BoNT, NTNHA and HAs) of Clostridium botulinum serotype D were incubated with bovine aortic endothelial cells (BAECs), and binding to the cells was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot. Both BoNT and L-TC bound to BAECs, with L-TC showing stronger binding. Binding of BoNT and L-TC to BAECs was significantly inhibited by N-acetyl neuraminic acid in the cell culture medium or by treatment of the cells with neuraminidase. However, galactose, lactose or N-acetyl galactosamine did not significantly inhibit toxin binding to the cells. This is the first report demonstrating that BoNT and L-TC bind to BAECs via sialic acid, and this mechanism may be important in the trafficking pathway of BoNT in foodborne botulism.

  19. Sodium perxenate permits rapid oxidation of manganese for easy spectrophotometric determination

    NASA Technical Reports Server (NTRS)

    Bane, R. W.

    1967-01-01

    Sodium perxenate oxidizes manganese to permanganate almost instantaneously in dilute acid solution and without a catalyst. A solution is prepared by dissolving 200 mg of sodium perxenate in distilled water and diluting to 100 ml.

  20. Antibrowning and antimicrobial properties of sodium acid sulfate in apple slices.

    PubMed

    Fan, Xuetong; Sokorai, Kimberly J B; Liao, Ching-Hsing; Cooke, Peter; Zhang, Howard Q

    2009-01-01

    There are few available compounds that can both control browning and enhance microbial safety of fresh-cut fruits. In the present study, the antibrowning ability of sodium acid sulfate (SAS) on "Granny Smith" apple slices was first investigated in terms of optimum concentration and treatment time. In a separate experiment, the apple slices were treated with water or 3% of SAS, calcium ascorbate, citric acid, or acidified calcium sulfate for 5 min. Total plate count, color, firmness, and tissue damage were assessed during a 21-d storage at 4 degrees C. Results showed that the efficacy of SAS in inhibiting browning of apple slices increased with increasing concentration. A minimum 3% of SAS was needed to achieve 14 d of shelf life. Firmness was not significantly affected by SAS at 3% or lower concentrations. Antibrowning potential of SAS was similar for all treatment times ranging from 2 to 10 min. However, SAS caused some skin discoloration of apple slices. When cut surface of apple slices were stained with a fluorescein diacetate solution, tissue damage could be observed under a microscope even though visual damage was not evident. Among the antibrowning agents tested, SAS was the most effective in inhibiting browning and microbial growth for the first 14 d. Total plate count of samples treated with 3% SAS was significantly lower than those treated with calcium ascorbate, a commonly used antibrowning agent. Our results suggested that it is possible to use SAS to control browning while inhibiting the growth of microorganisms on the apple slices if the skin damage can be minimized. Practical Application: Fresh-cut apples have emerged as one of the popular products in restaurants, schools, and food service establishments as more consumers demand fresh, convenient, and nutritious foods. Processing of fresh-cut apples induces mechanical damage to the fruit and exposes apple tissue to air, resulting in the development of undesirable tissue browning. The fresh