Science.gov

Sample records for acid soil amended

  1. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  2. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  3. Proton binding to humic acids from organic amendments and amended soils by the NICA-Donnan model.

    PubMed

    Plaza, César; Brunetti, Gennaro; Senesi, Nicola; Polo, Alfredo

    2005-09-01

    The acid-base properties of humic acids (HAs) are known to significantly affect the acid-base buffering capacity of soils, thus having a marked influence on the speciation of cations in the soil solid and liquid phases. Detailed information on the proton binding behavior of humic-like acids (HALs) from organic amendments and humic acids (HAs) from amended soils is, therefore, of intrinsic interest for the evaluation of the agronomic efficacy and environmental impact of soil amendment. In this work, the acid-base properties of HLAs isolated from sewage sludge (SS) and municipal solid waste compost (MSWC), and HAs isolated from soils amended with either SS or MSWC and the corresponding nonamended control soils were investigated by potentiometric titrations at various ionic strengths (0.01, 0.05, 0.1, and 0.3 M) over the pH range from 3.5 to 10.5. The nonideal competitive adsorption (NICA)-Donnan model that describes proton binding by two classes of binding sites with low and high proton affinity, i.e., carboxylic- and phenolic-type groups, was fit to titration data, and a set of fitting parameters was obtained for each HLA and HA sample. The NICA-Donnan model successfully described the shapes of the titration curves, and highlighted substantial differences in site density and proton-binding affinity between the HLAs and HAs examined. With respect to the nonamended control soil HAs, SS-HLA and MSWC-HLA were characterized by smaller carboxylic-type and phenolic-type group contents, larger affinities for proton binding by the carboxylic-type groups, and smaller affinities for proton binding by the phenolic-type groups. Amendment with SS and MSWC determined a number of modifications in soil HAs, including decrease of acidic functional group contents, slight increase of proton affinity of carboxylic-type groups, and slight decrease of the affinities for proton binding by phenolic-type groups. These effects were more evident in the HA fraction from the SS-amended soil than

  4. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  5. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  6. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  7. Interactions between organic amendments and phosphate fertilizers modify phosphate sorption processes in an acid soil

    SciTech Connect

    Sckefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, W.R.

    2008-07-15

    To determine how organic amendments and phosphate fertilizers interact to modify P sorption processes, three phosphate fertilizers were applied to lignite- and compost-amended acid soil and incubated for either 3 or 26 days. The fertilizers applied were potassium dihydrogen phosphate, triple superphosphate, and diammonium phosphate (DAP). After 3 days of incubation, sorption of all three P sources was decreased in the lignite-amended treatments, whereas P sorption was increased in the compost-amended treatments. Increased incubation time (26 days) resulted in significantly decreased P sorption when DAP was added to lignite-amended treatments. Addition of triple superphosphate increased P sorption in lignite- and compost-amended treatments and decreased solution pH compared with DAP application. In addition to the effect of P source, differences in P sorption between the lignite- and compost-amended treatments were driven by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment and fertilizer addition also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. It is proposed that the combination of lignite and DAP may contribute to decreased P sorption in acid soils, with the positive effects likely caused by both chemical and biological processes, including the formation of soluble organic-metal complexes.

  8. A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil.

    PubMed

    Lepleux, C; Uroz, S; Collignon, C; Churin, J-L; Turpault, M-P; Frey-Klett, P

    2013-09-01

    Mineral amendment (i.e. calcium, phosphorous, potassium and/or magnesium) is a management practice used in forestry to improve nutrient availability and recover soil fertility, especially in nutrient-poor forest ecosystems. However, whether this amendment can lead to modifications of the soil characteristics and an improvement in tree growth, and its impact on the soil bacterial communities, especially the mineral weathering bacterial communities, remains poorly documented. In this study, we investigated the short-term impact of a mineral amendment on the taxonomic and functional structure of the mineral weathering bacterial communities. To do this, a plantation of four-year old oak (Quercus petraea) trees amended with or without dolomite [CaMg(CO3)2] was established in the experimental forest site of Breuil-Chenue, which is characterized by an acidic soil and a low availability of calcium and magnesium. Three years after amendment, soil samples were used to isolate bacteria as well as to determine the soil characteristics and the metabolic potentials of these soil microbial communities. Based on a bioassay for quantifying the solubilisation of inorganic phosphorous, we demonstrate that the bacterial isolates coming from the non-amended bulk soil were significantly more efficient than those from the amended bulk soil. No difference was observed between the bacterial isolates coming from the amended and non-amended rhizospheres. Notably, the taxonomic analyses revealed a dominance of bacterial isolates belonging to the Burkholderia genus in both samples. Overall, our results suggest that the bioavailability of nutritive cations into soil impacts the distribution and the efficacy of mineral weathering bacterial communities coming from the soil but not those coming from the rhizosphere.

  9. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site.

    PubMed

    Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng

    2015-05-15

    Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites.

  10. Screening and assessment of solidification/stabilization amendments suitable for soils of lead-acid battery contaminated site.

    PubMed

    Zhang, Zhuo; Guo, Guanlin; Teng, Yanguo; Wang, Jinsheng; Rhee, Jae Seong; Wang, Sen; Li, Fasheng

    2015-05-15

    Lead exposure via ingestion of soil and dust generally occurs at lead-acid battery manufacturing and recycling sites. Screening solidification/stabilization (S/S) amendments suitable for lead contaminated soil in an abandoned lead-acid battery factory site was conducted based on its chemical forms and environmental risks. Twelve amendments were used to immobilize the Pb in soil and assess the solidification/stabilization efficiency by toxicity leaching tests. The results indicated that three amendments, KH₂PO₄ (KP), KH₂PO₄:oyster shell power=1:1 (by mass ratio; SPP), and KH₂PO₄:sintered magnesia=1:1 (by mass ratio; KPM) had higher remediation efficiencies that led to a 92% reduction in leachable Pb with the addition of 5% amendments, while the acid soluble fraction of Pb (AS-Pb) decreased by 41-46% and the residual fraction (RS-Pb) increased by 16-25%. The S/S costs of the three selected amendments KP, SPP, and KPM could be controlled to $22.3 per ton of soil when the Pb concentration in soil ranged from 2000 to 3000 mg/kg. The results of this study demonstrated that KP, SPP, and KPM can effectively decrease bioavailability of Pb. These findings could provide basis for decision-making of S/S remediation of lead-acid battery contaminated sites. PMID:25699676

  11. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  12. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  13. Changes in soil chemistry following wood and grass biochar amendments to an acidic agricultural production soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Recent characterization of biochar produced from gasification of Kentucky bluegrass (Poa pr...

  14. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum.

    PubMed

    Álvarez-Ayuso, E; Giménez, A; Ballesteros, J C

    2011-09-15

    The application of flue gas desulphurisation (FGD) gypsum as an acid soil ameliorant was studied in order to establish the possible detrimental effects on plants and animals feeding on them caused by the high fluoride content in this by-product. A greenhouse experiment was conducted under controlled conditions to determine the F accumulation by two plant species (alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.)) grown in acid soils amended with different FGD gypsum doses (0-10%). The F concentrations in plant aerial parts were comprised in the range 22-65 mg kg(-1), and those in plant roots varied from 49 to 135 mg kg(-1). The F contents in the above-ground plant tissues showed to decrease with the FGD gypsum application rate, whereas an inverse trend was manifested by plant roots. The increase in the soil content of soluble Ca as a result of the FGD gypsum addition seemed to play an important role in limiting the translocation of F to plant aerial parts.

  15. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower.

    PubMed

    Chiang, Po-Neng; Wang, Ming Kuang; Chiu, Chih Yu; Chou, Shu-Yen

    2006-10-01

    To recognize physiological response of plants to cadmium (Cd) toxicity in rhizosphere of plants, the pot experiments were employed to investigate how low-molecular-weight organic acids (LMWOAs) were exudated from tobacco and sunflower roots of Cd-amended soils. The aims of this study were to assess the effect of LMWOAs on uptake of Cd by tobacco and sunflower under pot experiments, thus comparing the ability of tobacco and sunflower for phytoremediation. Surface soils (0-20 cm) were collected from Taichung Experiment Station (TC) (silty loam). Cadmium chloride (CdCl(2)) was amended into TC soil, giving Cd concentrations of 1, 5, 10 mg kg(-1) soil. Soils with different concentrations of Cd were put into 12 cm (i.d.) pots for incubation, and then 2-week-old tobacco and sunflower seedlings were transplanted into the pots. Tobacco and sunflower were grown in greenhouse for 50 days, respectively. The rhizosphere and bulk soils, and fresh plant tissues were collected after harvest. The Cd concentrations in the plant and transfer factor values in the sunflower were higher than that in the tobacco. No LMWOAs were detected by gas chromatograph in bulk soils, and low amounts of LMWOAs were found in uncontaminated rhizosphere soils. Acetic, lactic, glycolic, malic, maleic, and succinic acids were found in the tobacco and sunflower rhizosphere soils. Concentrations of LMWOAs increased with increasing amendment of Cd concentrations in tobacco and sunflower rhizosphere soils. Correlation coefficient (r) of concentrations of Cd amendment versus LMWOAs exudates of tobacco and sunflower were 0.85 and 0.98, respectively. These results suggest that the different levels of LMWOAs present in the rhizosphere soil play an important role in the solubilization of Cd that bound with soil particle into soil solution and then uptake by plants.

  16. Cu retention in an acid soil amended with perlite winery waste.

    PubMed

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2016-02-01

    The effect of perlite waste from a winery on general soil characteristics and Cu adsorption was assessed. The studied soil was amended with different perlite waste concentrations corresponding to 10, 20, 40 and 80 Mg ha(-1). General soil characteristics and Cu adsorption and desorption curves were determined after different incubation times (from 1 day to 8 months). The addition of perlite waste to the soil increased the amounts of organic matter as well as soil nutrients such as phosphorus and potassium, and these increments were stable with time. An increase in Cu adsorption capacity was also detected in the perlite waste-amended soils. The effect of perlite waste addition to the soil had special relevance on its Cu adsorption capacity at low coverage concentrations and on the energy of the soil-Cu bonds.

  17. Reutilization of granite powder as an amendment and fertilizer for acid soils.

    PubMed

    Barral Silva, M T; Silva Hermo, B; García-Rodeja, E; Vázquez Freire, N

    2005-11-01

    The properties of granite powders--a granite manufacturing waste product-were analyzed to assess their potential use as amendments and fertilizers on acid soils. Two types of powders were characterized: one produced during cutting of granite with a diamond-edged disc saw, comprising only rock powder, the other produced during cutting with a multi-blade bandsaw, containing calcium hydroxide and metal filings added during the cutting procedure. The acid neutralizing capacity of the granite powders was assessed in short- (2-3 h) and medium-term (1-30 d) experiments. The powders showed a buffering capacity at around pH 8, which corresponded to the rapid dissolution of basic cations, and another buffering effect at pH<4.5, attributable to the dissolution of Fe and Al. The acid neutralizing capacity (ANC) determined in the short-term experiments, to a final pH of 4.5, varied between 5 and 61 cmol H+kg(-1) powder. The ANC to pH 4.5 obtained in the medium-term experiments was much higher than that obtained in the short-term experiments, reaching a maximum ANC value of 200 cmol H+kg(-1) powder. There was no great difference in the neutralizing capacity determined at between 1 and 30 d. The most abundant elements in acid solutions obtained at the end of medium-term experiments were Mg and Ca for disc saw powders, whereas Ca and Fe (at pH<5) were the most soluble elements in the bandsaw powders. The rapid release of these cations suggests the possible effective use of the granite powders as a source of nutrients on being added to acid soils.

  18. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.

    PubMed

    Debela, F; Arocena, J M; Thring, R W; Whitcombe, T

    2013-02-15

    Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.

  19. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity. PMID:18954889

  20. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity.

  1. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements.

    PubMed

    Montiel-Rozas, María Del Mar; López-García, Álvaro; Kjøller, Rasmus; Madejón, Engracia; Rosendahl, Søren

    2016-08-01

    In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system. PMID:27072359

  2. Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements.

    PubMed

    Montiel-Rozas, María Del Mar; López-García, Álvaro; Kjøller, Rasmus; Madejón, Engracia; Rosendahl, Søren

    2016-08-01

    In 1998, a toxic mine spill polluted a 55-km(2) area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.

  3. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.

    PubMed

    Stopnisek, Nejc; Gubry-Rangin, Cécile; Höfferle, Spela; Nicol, Graeme W; Mandic-Mulec, Ines; Prosser, James I

    2010-11-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.

  4. Enhancing the urea-N use efficiency in maize (Zea mays) cultivation on acid soils amended with zeolite and TSP.

    PubMed

    Ahmed, Osumanu H; Hussin, Aminuddin; Ahmad, Husni M H; Rahim, Anuar A; Majid, Nik Muhamad Abd

    2008-01-01

    Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea. PMID:18454247

  5. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    PubMed

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa.

  6. Phytotoxicity of citric acid and Tween® 80 for potential use as soil amendments in enhanced phytoremediation.

    PubMed

    Agnello, A C; Huguenot, D; van Hullebusch, E D; Esposito, G

    2015-01-01

    Enhanced phytoremediation adding biodegradable amendments like low molecular weight organic acids and surfactants is an interesting area of current research to overcome the limitation that represents low bioavailability of pollutants in soils. However, prior to their use in assisted phytoremediation, it is necessary to test if amendments per se exert any toxic effect to plants and to optimize their application mode. In this context, the present study assessed the effects of citric acid and Tween® 80 (polyethylene glycol sorbitan monooleate) on the development of alfalfa (Medicago sativa) plants, as influenced by their concentration and frequency of application, in order to evaluate the feasibility for their future use in enhanced phytoremediation of multi-contaminated soils. The results showed that citric acid negatively affected plant germination, while it did not have any significant effect on biomass or chlorophyll content. In turn, Tween® 80 did not affect plant germination and showed a trend to increase biomass, as well as it did not have any significant effect on chlorophyll levels. M. sativa appeared to tolerate citric acid and Tween® 80 at the tested concentrations, applied weekly. Consequently, citric acid and Tween® 80 could potentially be utilized to assist phytoremediation of contaminated soils vegetated with M. sativa. PMID:25976880

  7. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil.

    PubMed

    Tang, Xianjin; Li, Xia; Liu, Xingmei; Hashmi, Muhammad Z; Xu, Jianming; Brookes, Philip C

    2015-01-01

    A greenhouse study was conducted to investigate the effects of inorganic (phosphate rock, single superphosphate and calcium magnesium phosphate) and organic amendments (peat, straw manure and pig manure) on the uptake of lead (Pb) and trace elements by Chinese Cabbage (Brassica chinensis) grown in an acidic red soil. The application of all organic amendments increased the soil pH while inorganic amendments such as single superphosphate did not. Both inorganic and organic amendments decreased the availability and uptake of Pb while the organic amendments were superior to the inorganic (phosphate) amendments in reducing the availability of the more labile (soluble and exchangeable Pb) forms of soil Pb. More Pb was taken up by roots than shoots with all soil amendments. Among the organic amendments, straw manure and pig manure caused the largest decrease in Pb availability at 456.5 and 457.3 mg kg(-1), respectively, when a high level of 30 g organic amendments kg(-1) was applied. The organic amendments greatly increased the fraction D targeted to Fe-Mn oxides bound Pb, and decreased the fraction A (water-soluble), B (exchangeable), and C (carbonate-bound), thereby decreasing the solubility and mobility of Pb in soil. The organic amendments also significantly improved the concentrations of Fe, Mn, Cu and Zn in the soil and shoots (except Fe in shoots and/or roots), which are essential for plant nutrition. The organic amendments of straw and pig manure lowered the availability and uptake of Pb but not that of other trace metals. Thus, these amendments have the potential to remediate Pb-contaminated soils in situ. PMID:24992219

  8. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides.

  9. Comparative sorption and leaching study of the herbicides fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) in a soil amended with biochars and other sorbents.

    PubMed

    Cabrera, Alegria; Cox, Lucia; Spokas, Kurt A; Celis, Rafael; Hermosín, M Carmen; Cornejo, Juan; Koskinen, William C

    2011-12-14

    Biochar, the solid residual remaining after the thermochemical transformation of biomass for carbon sequestration, has been proposed to be used as a soil amendment, because of its agronomic benefits. The effect of amending soil with six biochars made from different feedstocks on the sorption and leaching of fluometuron and 4-chloro-2-methylphenoxyacetic acid (MCPA) was compared to the effect of other sorbents: an activated carbon, a Ca-rich Arizona montmorillonite modified with hexadecyltrimethylammonium organic cation (SA-HDTMA), and an agricultural organic residue from olive oil production (OOW). Soil was amended at 2% (w/w), and studies were performed following a batch equilibration procedure. Sorption of both herbicides increased in all amended soils, but decreased in soil amended with a biochar produced from macadamia nut shells made with fast pyrolysis. Lower leaching of the herbicides was observed in the soils amended with the biochars with higher surface areas BC5 and BC6 and the organoclay (OCl). Despite the increase in herbicide sorption in soils amended with two hardwood biochars (BC1 and BC3) and OOW, leaching of fluometuron and MCPA was enhanced with the addition of these amendments as compared to the unamended soil. The increased leaching is due to some amendments' soluble organic compounds, which compete or associate with herbicide molecules, enhancing their soil mobility. Thus, the results indicate that not all biochar amendments will increase sorption and decrease leaching of fluometuron and MCPA. Furthermore, the amount and composition of the organic carbon (OC) content of the amendment, especially the soluble part (DOC), can play an important role in the sorption and leaching of these herbicides. PMID:22023336

  10. Tracing and quantifying sources of fatty acids and steroids in amended cultivated soils.

    PubMed

    Jardé, Emilie; Gruau, Gérard; Jaffrezic, Anne

    2009-08-12

    Soluble organic fractions from soils of two agricultural sites from Brittany (France) have been analyzed to (i) identify the source of polar compounds in soils and (ii) evaluate the impact of organic fertilization and crop type on the distribution and concentration of polar compounds in soils. The main sources of polar compounds in soils are higher plants; they represent >70% of the polar compounds from the experimental sites and mainly originate from crop residues and animal manure. Crop type and animal manure application significantly increase the polar compound concentrations in soils. Among polar compounds, fatty acids cannot be used as specific markers because their distributions in soils whatever the crop type or organic fertilization type are the same. On the other hand, analysis of steroids provides interesting information. Cow and poultry manure applications increase only the concentration of steroids. Pig slurry fertilization modifies both the concentration and distribution of steroids. The identified pig slurry steroid fingerprint can persist in the soil for 9 years after the slurry application has been stopped. Those compounds are then robust markers to detect pig slurry contribution in soils.

  11. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida).

    PubMed

    Wen, Bei; Zhang, Hongna; Li, Longfei; Hu, Xiaoyu; Liu, Yu; Shan, Xiao-quan; Zhang, Shuzhen

    2015-01-01

    The bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in seven biosolids-amended soils without any additionally spiking to earthworms (Eisenia fetida) was studied. The uptake and elimination kinetics of PFOS and PFOA fit a one-compartment first-order kinetic model. PFOS displayed higher uptake and lower elimination rate coefficients, and longer time to reach steady-state (t(ss)) than those of PFOA. The bioaccumulation factors (BAFs) of PFOS and PFOA ranged 1.54–4.12 and 0.52–1.34 g(soil) g(worm)(−1), respectively. The BAFs and tss decreased with increasing concentrations of PFOS and PFOA in soils. Stepwise multiple regression analysis was used to elucidate the bioavailability of PFOS and PFOA. The results showed that the total concentrations of PFOS and PFOA, and organic matter (OM) contents in soils explained 87.2% and 91.3% of the variation in bioavailable PFOS and PFOA, respectively. PFOS and PFOA concentrations exhibited positive influence and OM contents showed the negative influence on the accumulation of PFOS and PFOA in earthworms. Soil pH and clay contents played relatively unimportant role in PFOS and PFOA bioavailability.

  12. Bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in biosolids-amended soils to earthworms (Eisenia fetida).

    PubMed

    Wen, Bei; Zhang, Hongna; Li, Longfei; Hu, Xiaoyu; Liu, Yu; Shan, Xiao-quan; Zhang, Shuzhen

    2015-01-01

    The bioavailability of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in seven biosolids-amended soils without any additionally spiking to earthworms (Eisenia fetida) was studied. The uptake and elimination kinetics of PFOS and PFOA fit a one-compartment first-order kinetic model. PFOS displayed higher uptake and lower elimination rate coefficients, and longer time to reach steady-state (t(ss)) than those of PFOA. The bioaccumulation factors (BAFs) of PFOS and PFOA ranged 1.54–4.12 and 0.52–1.34 g(soil) g(worm)(−1), respectively. The BAFs and tss decreased with increasing concentrations of PFOS and PFOA in soils. Stepwise multiple regression analysis was used to elucidate the bioavailability of PFOS and PFOA. The results showed that the total concentrations of PFOS and PFOA, and organic matter (OM) contents in soils explained 87.2% and 91.3% of the variation in bioavailable PFOS and PFOA, respectively. PFOS and PFOA concentrations exhibited positive influence and OM contents showed the negative influence on the accumulation of PFOS and PFOA in earthworms. Soil pH and clay contents played relatively unimportant role in PFOS and PFOA bioavailability. PMID:25439283

  13. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and

  14. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil

    SciTech Connect

    Menon, M.P.

    1990-04-16

    The use of fly ash as amendment to compost is presented. Plant growth/yields of corn collard greens, mustard greens, and sorgum is described. The treatment parameters such as fly ash to compost ratio, fly ash-amended compost to soil ratio, type of compost used for treatment etc. are discussed. 2 refs., 5 figs., 8 tabs. (CBS)

  15. Immobilization of pentachlorophenol in soil using carbonaceous material amendments.

    PubMed

    Wen, Bei; Li, Rui-Juan; Zhang, Shuzhen; Shan, Xiao-Quan; Fang, Jing; Xiao, Ke; Khan, Shahamat U

    2009-03-01

    In this study, three pentachlorophenol (PCP) laboratory-spiked and one field-contaminated soil were amended with 2.0% char, humic acid (HA) and peat, respectively. The amended soils were aged for either 7 or 250 days. After amendment, CaCl(2) extractability of PCP was significantly decreased. Desorption kinetics indicated that the proposed amendment could lead to a strong binding and slow desorption of PCP in soils. Amendment with char reduced the bioaccumulation factor (BAF) of PCP most significantly for earthworms (Eisenia fetida) in all soils studied. The results of both physicochemical and biological tests suggested that amendment reduced PCP bioavailability quickly and enduringly, implying that carbonaceous material amendment, especially char amendment, was a potentially attractive in situ remediation method for sequestration of PCP in contaminated soil. PMID:19028411

  16. Influence of organic amendments on diuron leaching through an acidic and a calcareous vineyard soil using undisturbed lysimeters.

    PubMed

    Thevenot, M; Dousset, S; Rousseaux, S; Andreux, F

    2008-05-01

    The influence of different organic amendments on diuron leaching was studied through undisturbed vineyard soil columns. Two composts (A and D), the second at two stages of maturity, and two soils (VR and Bj) were sampled. After 1 year, the amount of residues (diuron+metabolites) in the leachates of the VR soil (0.19-0.71%) was lower than in the Bj soil (4.27-8.23%), which could be explained by stronger diuron adsorption on VR. An increase in the amount of diuron leached through the amended soil columns, compared to the blank, was observed for the Bj soil only. This result may be explained by the formation of mobile complexes between diuron and water-extractable organic matter (WEOM) through the Bj soil, or by competition between diuron and WEOM for the adsorption sites in the soil. For both soils, the nature of the composts and their degree of maturity did not significantly influence diuron leaching.

  17. Changes in soil properties and in the growth of Lolium multiflorum in an acid soil amended with a solid waste from wineries.

    PubMed

    Nóvoa-Muñoz, J C; Simal-Gándara, J; Fernández-Calviño, D; López-Periago, E; Arias-Estévez, M

    2008-10-01

    The agronomic utility of a solid waste, waste perlite (WP), from wine companies was assessed. In this sense, the natural characteristics of the waste were measured, followed by the monitoring of its effects on the chemical properties of acid soils and the growth of Lolium multiflorum. Taking into account that heavy metals associated to the waste (such as Cu, Zn and Mn) could cause problems when used as amendment, the changes in their total levels and in their soil fractionation were also studied, together with their total contents in L. multiflorum. The high content in C (214gkg(-1)), N (25gkg(-1)), P (534mgkg(-1)) and K (106gkg(-1)) of WP turned it into an appropriate amendment to increase soil fertility, solving at the same time its disposal. WP contributed to increase soil pH (in 2 pH units) and cation exchange capacity (CEC increased in 3cmolckg(-1)units), but reduced the potential Cu phytotoxicity due to a change in Cu distribution towards less soluble fractions. The growth of L. multiflorum adequately responds to the treatment with WP at addition rates below 2.5gkg(-1), whereas the imbalance between nutrients can justify the reduction in biomass production at higher WP addition rates. The levels of heavy metals analyzed in L. multiflorum biomass (8-85gkg(-1)) do not seem to cause undesirable effects on its growth. PMID:18331789

  18. Immobilization and phytotoxicity of Pb in contaminated soil amended with γ-polyglutamic acid, phosphate rock, and γ-polyglutamic acid-activated phosphate rock.

    PubMed

    Zhu, Jun; Cai, Zhijian; Su, Xiaojuan; Fu, Qingling; Liu, Yonghong; Huang, Qiaoyun; Violante, Antonio; Hu, Hongqing

    2015-02-01

    Pot experiments were conducted to investigate the effects of γ-polyglutamic acid (γ-PGA), phosphate rock (PR), and γ-PGA-activated PR (γ-PGA-PR) on the immobilization and phytotoxicity of Pb in a contaminated soil. The proportion of residual Pb (Re-Pb) in soil was reduced by the addition of γ-PGA but was increased by the application of PR and γ-PGA-PR. The addition of γ-PGA in soil improved the accumulation of Pb in pak choi and decreased the growth of pak choi, suggesting the intensification of Pb phytotoxicity to pak choi. However, opposite effects of PR and γ-PGA-PR on the phytotoxicity of Pb to pak choi in soil were observed. Moreover, in the examined range, γ-PGA-PR activated by a higher amount of γ-PGA resulted in a greater proportion of Re-Pb in soil and weaker phytotoxicity of Pb to pak choi. The predominance of γ-PGA-PR in relieving the phytotoxicity of Pb was ascribed mainly to the increase of soil pH and available phosphate after the amendment, which could facilitate the precipitation of Pb in soil and provide pak choi with more phosphorus nutrient.

  19. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution.

  20. Time evolution of the general characteristics and Cu retention capacity in an acid soil amended with a bentonite winery waste.

    PubMed

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-03-01

    The effect of bentonite waste added to a "poor" soil on its general characteristic and copper adsorption capacity was assessed. The soil was amended with different bentonite waste concentrations (0, 10, 20, 40 and 80 Mg ha(-1)) in laboratory pots, and different times of incubation of samples were tested (one day and one, four and eight months). The addition of bentonite waste increased the pH, organic matter content and phosphorus and potassium concentrations in the soil, being stable for P and K, whereas the organic matter decreased with time. Additionally, the copper sorption capacity of the soil and the energy of the Cu bonds increased with bentonite waste additions. However, the use of this type of waste in soil presented important drawbacks for waste dosages higher than 20 Mg ha(-1), such as an excessive increase of the soil pH and an increase of copper in the soil solution. PMID:25560662

  1. Uptake of perfluorooctanoic acid, perfluorooctane sulfonate and perfluorooctane sulfonamide by carrot and lettuce from compost amended soil.

    PubMed

    Bizkarguenaga, E; Zabaleta, I; Mijangos, L; Iparraguirre, A; Fernández, L A; Prieto, A; Zuloaga, O

    2016-11-15

    Sewage sludge, which acts like a sink for many pollutants, including metals, pathogens and organic pollutants, that are not completely removed in waste water treatment plants (WWTPs), is applied as a nutrient rich organic fertilizer in many agricultural applications. In the present work, carrot and lettuce crops were grown in two different compost amended soils fortified with perfluorooctanoic acid (PFOA), perfluorosulfonate acid (PFOS) and perfluorosulfonamide (FOSA) and cultivated in a greenhouse. The plants were harvested and divided into root core, root peel and leaves in the case of carrots and into heart and leaves for lettuces. Concentrations for all the different compartments were determined to assess the bioconcentration factors (BCFs) and the plant distribution of the target analytes. The highest carrot BCFs for PFOA and PFOS were determined in the leaves (0.6-3.4), while lower values were calculated in the core (0.05-0.6) and the peel (0.05-1.9) compartments. However, PFOA was taken up in the translocation stream and accumulated more than PFOS in the edible part of lettuce. FOSA was totally degraded in the presence of carrot; however, a lower FOSA degradation was observed in presence of the lettuce, which was dependent on the total organic carbon (TOC) content of the soil. The higher the TOC value, the higher the FOSA degradation observed. No degradation was observed in the crop absence. In the case of the carrot experiments, different polymeric materials (polyethersulfone, PES, polyoxymethylene, and silicone rod) were tested to predict the concentration in the cultivation media. A high correlation (r(2)>0.63) was observed for the BCFs in the PES and in the carrot core and peel for PFOA and PFOS. It could be, concluded that the PES can be used as a first approach for the determination of the uptake of compounds such as PFOS and PFOA in carrot. PMID:27450950

  2. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil

    SciTech Connect

    Menon, M.P.

    1991-08-01

    Application of fly ash-amended composts as manure enhances the crop yield of certain plants like corn, sorghum, collard and mustard greens. Organic compost made out of grass and leaves (home-made) is better than the commercial composts for amendment with fly ash. A 20--40% fly ash in the amended compost and a soil to ash-amended compost ratio of 3:1 are recommended for making bed for plantation. Organic compost mixed with fly ash, due to reduced porosity, will help the bed to retain water and conserve water supply to plants. Organic compost will release to the manure additional quantities of N, P, and S that are not substantially available in fly ash. It appears that chemical reaction and/or mineralization occurs during composting of fly ash with organic manure to release more N, P, K and S to the system. Potassium is more elevated in all plants grown in potted soil treated with fly ash-amended compost than in those grown in soil or soil treated with organic manure. Contrary to expectation Ca in fly ash is not effectively used by plants as the latter treated with ash- amended compost is not rich in Ca. This suggests that Ca may be tied up as insoluble CaSO{sub 4} in the manure so that it may not be bioavailable to the plant. Uptake of boron by bean, bell pepper and egg plant is considerably higher than that absorbed by corn, sorghum and greens resulting in poor yield for the former.

  3. Investigation on the utilization of coal fly ash as amendment to compost for vegetation in acid soil. Technical terminal report

    SciTech Connect

    Menon, M.P.

    1991-08-01

    Application of fly ash-amended composts as manure enhances the crop yield of certain plants like corn, sorghum, collard and mustard greens. Organic compost made out of grass and leaves (home-made) is better than the commercial composts for amendment with fly ash. A 20--40% fly ash in the amended compost and a soil to ash-amended compost ratio of 3:1 are recommended for making bed for plantation. Organic compost mixed with fly ash, due to reduced porosity, will help the bed to retain water and conserve water supply to plants. Organic compost will release to the manure additional quantities of N, P, and S that are not substantially available in fly ash. It appears that chemical reaction and/or mineralization occurs during composting of fly ash with organic manure to release more N, P, K and S to the system. Potassium is more elevated in all plants grown in potted soil treated with fly ash-amended compost than in those grown in soil or soil treated with organic manure. Contrary to expectation Ca in fly ash is not effectively used by plants as the latter treated with ash- amended compost is not rich in Ca. This suggests that Ca may be tied up as insoluble CaSO{sub 4} in the manure so that it may not be bioavailable to the plant. Uptake of boron by bean, bell pepper and egg plant is considerably higher than that absorbed by corn, sorghum and greens resulting in poor yield for the former.

  4. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost.

    PubMed

    Wong, Jonathan W C; Selvam, Ammaiyappan

    2009-10-01

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)--amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg(-1), respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg(-1) for 10% ASC- and 9.4 to 18.6 mg kg(-1) for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. Furthermore, there were fewer plant-available heavy metals in 25% ASC, which decreased the uptake of heavy metals by plants. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting

  5. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost

    SciTech Connect

    Wong, J.W.C.; Selvam, A.

    2009-10-15

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soil receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.

  6. Effects of Biochar amendments on soil chemistry

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Zimmerman, A. R.

    2009-12-01

    Humans have been transforming soil composition, both accidentally and purposefully, for centuries. For example, terra preta soils found in Amazonia that are greatly enriched in organic carbon and phosphorus and have enhanced fertility relative to the surrounding depleted oxisols, seem to have been deliberately created by native pre-Colombian Indians through the addition of combusted biomass, or biochar. Biochar amendment has gained attention recently as a way to enhance soil carbon sequestration while increasing soil fertility. It may also have adsorptive properties that are useful for pollution control. Our research examines the chemical and morphological properties of biochar with the goals of understanding the origin of terra preta, as well as how biochar can best be put to use as a soil amendment. Biochar was produced from a range of parent biomass types (hardwoods, softwoods and grasses) and under a range of combustion conditions (250 to 650 oC, under air and N2). Surface areas, determined by gas sorptometry, ranged from 3 to 394 m2g-1 (for N2) and from 129 to 345 m2g-1 (for CO2) and were found to generally increase with increasing pyrolysis temperature. The pH of the biochars ranged from 1.8 to 4.5, from 6.2 to 8.7, and from 6.2 to 9.2 for the 250, 400, and 650 oC biochars, respectively, and did not vary consistently with parent biomass types. Cation exchange capacity (CEC), determined using K+ exchange, ranged between 5 to 60 cmolc kg-1, higher than most soils, and generally increased with charring temperature. Anion exchange capacity (AEC) was low or undetectable. Lastly, the isoelectric point of the chars, determined using a zeta potential analyzer, ranged from a pH of 1.3 to 1.5, indicating that the biochar surfaces will be predominantly negatively charged in soil solutions. These data are complimentary and show that, when added to soil, biochar, particularly those produced at higher temperatures, would function as a cation exchanger system. The acid

  7. Alum amendment effects on phosphorus release and distribution in poultry litter-amended sandy soils

    USGS Publications Warehouse

    Staats, K.E.; Arai, Y.; Sparks, D.L.

    2004-01-01

    Increased poultry production has contributed to excess nutrient problems in Atlantic Coastal Plain soils due to land application of poultry litter (PL). Aluminum sulfate [alum, Al2(SO4)3?? 14H2O] amendment of PL effectively reduces soluble phosphorus (P) in the PL; however, the effects of these litters when added to acidic, sandy soils are not well understood. The objective of this study was to investigate the efficacy of alum-amended poultry litter in reducing P release from three Delaware Coastal Plain soils: Evesboro loamy sand (Ev; excessively drained, mesic, coated Typic Quartzipsamments), Rumford loamy sand (Ru; well drained, coarse-loamy, siliceous, subactive, thermic Typic Hapludults), and Pocomoke sandy loam (Pm; very poorly drained, coarse-loamy, siliceous, active, thermic Typic Umbraquults). Long-term (25 d) and short-term (24 h) desorption studies were conducted, in addition to chemical extractions and kinetic modeling, to observe the changes that alum-amended versus unamended PL caused in the soils. The Ev, Ru, and Pm soils were incubated with 9 Mg ha-1 of alum-amended or unamended PL. Long-term desorption (25 d) of the incubated material resulted in approximately 13.5% (Ev), 12.7% (Ru), and 13.3% (Pm) reductions in cumulative P desorbed when comparing soil treated with unamended and alum-amended PL. In addition, the P release from the soil treated with alum-amended litter was not significantly different from the control (soil alone). Short-term desorption (24 h) showed 7.3% (Ev), 15.4% (Ru), and 20% (Pm) reductions. The overall implication from this study is that the use of alum as a PL amendment is useful in coarse-textured soils of the Coastal Plain. With increased application of alum-amended PL, more significant decreases may be possible with little or no effect on soil quality.

  8. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.

    PubMed

    Garau, Giovanni; Castaldi, Paola; Deiana, Salvatore; Campus, Paolo; Mazza, Antonio; Deiana, Pietrino; Pais, Antonio

    2012-10-30

    In this study we evaluated the influence of ground purple sea urchin (Paracentrotus lividus) endoskeletons, a processing waste common to all edible sea urchin plants, on the chemical, biochemical and microbiological features of an acidic (pH 5.65) sandy-loam soil. The purple sea urchin endoskeletons were characterized by a high content of total carbonates (∼94%), a moderately alkaline pH in water (pH 7.88) and electrical conductivity values (3.55 mS/cm) very similar to those of commercial lime. To evaluate the influence of the P. lividus endoskeletons on soil properties four different amendment rates were tested, notably 0.5, 1.0, 3.0 and 5.0% based on soil dry weight, and the effects compared with those recorded on unamended control soil. The addition of the purple sea urchin processing waste caused an immediate and significant pH increase which was positively related to the rate of the amendment addition. After a six months equilibration period, the differences in soil pH were still evident and significant increases of electrical conductivity and available phosphorus were also detected in soils with the higher amendment rates. The number of heterotrophic and cellulolytic bacteria and actinomycetes significantly increased after amendment addition while the number of culturable fungi steadily declined. The analysis of the Biolog Community Level Physiological Profile indicated a clear influence of the purple sea urchin processing waste on the structure of the native microbial community while a significant increase of microbial functionality (i.e. dehydrogenase activity) was recorded in soil treated with the higher amendment rates (i.e. 3.0 and 5.0%). The improvement of microbial abundance and functionality as well as the change of the microbial community structure were ascribed to the pH shift induced by the P. lividus processing waste. To investigate possible effects on soil fertility, dwarf bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth were also

  9. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil.

    PubMed

    Garau, Giovanni; Castaldi, Paola; Deiana, Salvatore; Campus, Paolo; Mazza, Antonio; Deiana, Pietrino; Pais, Antonio

    2012-10-30

    In this study we evaluated the influence of ground purple sea urchin (Paracentrotus lividus) endoskeletons, a processing waste common to all edible sea urchin plants, on the chemical, biochemical and microbiological features of an acidic (pH 5.65) sandy-loam soil. The purple sea urchin endoskeletons were characterized by a high content of total carbonates (∼94%), a moderately alkaline pH in water (pH 7.88) and electrical conductivity values (3.55 mS/cm) very similar to those of commercial lime. To evaluate the influence of the P. lividus endoskeletons on soil properties four different amendment rates were tested, notably 0.5, 1.0, 3.0 and 5.0% based on soil dry weight, and the effects compared with those recorded on unamended control soil. The addition of the purple sea urchin processing waste caused an immediate and significant pH increase which was positively related to the rate of the amendment addition. After a six months equilibration period, the differences in soil pH were still evident and significant increases of electrical conductivity and available phosphorus were also detected in soils with the higher amendment rates. The number of heterotrophic and cellulolytic bacteria and actinomycetes significantly increased after amendment addition while the number of culturable fungi steadily declined. The analysis of the Biolog Community Level Physiological Profile indicated a clear influence of the purple sea urchin processing waste on the structure of the native microbial community while a significant increase of microbial functionality (i.e. dehydrogenase activity) was recorded in soil treated with the higher amendment rates (i.e. 3.0 and 5.0%). The improvement of microbial abundance and functionality as well as the change of the microbial community structure were ascribed to the pH shift induced by the P. lividus processing waste. To investigate possible effects on soil fertility, dwarf bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth were also

  10. SOIL ORGANIC AMENDMENT AS AFFECTING HERBICIDE FATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments or organic wastes to soils have been shown to affect the fate of soil applied herbicides, although it is an issue very seldom considered when making the decision of fertilizing soil or disposing organic wastes. The addition of organic wastes to soils is viewed as v...

  11. Acid-base properties of humic substances from composted and thermally-dried sewage sludges and amended soils as determined by potentiometric titration and the NICA-Donnan model.

    PubMed

    Fernández, José M; Plaza, César; Senesi, Nicola; Polo, Alfredo

    2007-09-01

    The acid-base properties of humic acids (HAs) and fulvic acids (FAs) isolated from composted sewage sludge (CS), thermally-dried sewage sludge (TS), soils amended with either CS or TS at a rate of 80 t ha(-1)y(-1) for 3y and the corresponding unamended soil were investigated by use of potentiometric titrations. The non-ideal competitive adsorption (NICA)-Donnan model for a bimodal distribution of proton binding sites was fitted to titration data by use of a least-squares minimization method. The main fitting parameters of the NICA-Donnan model obtained for each HA and FA sample included site densities, median affinity constants and widths of affinity distributions for proton binding to low and high affinity sites, which were assumed to be, respectively, carboxylic- and phenolic-type groups. With respect to unamended soil HA and FA, the HAs and FAs from CS, and especially TS, were characterized by smaller acidic functional group contents, larger proton binding affinities of both carboxylic- and phenolic-type groups, and smaller heterogeneity of carboxylic and phenolic-type groups. Amendment with CS or TS led to a decrease of acidic functional group contents and a slight increase of proton binding affinities of carboxylic- and phenolic-type groups of soil HAs and FAs. These effects were more evident in the HA and FA fractions from CS-amended soil than in those from TS-amended soil.

  12. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. PMID:24950211

  13. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils.

  14. Predicting bioavailability of metals from sludge-amended soils.

    PubMed

    Golui, Debasis; Datta, S P; Rattan, R K; Dwivedi, B S; Meena, M C

    2014-12-01

    We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.

  15. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  16. Char-amended farm soils – effects on soil chemistry and wheat growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm gasification of agricultural residues, the non-food byproducts from crop harvests, could provide a means to generate value-added income from the production of fuel or electrical generation. Char produced during the process also has potential value as a soil amendment to adjust acid soil pH (...

  17. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    PubMed

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system.

  18. Simultaneous production of l-lactic acid with high optical activity and a soil amendment with food waste that demonstrates plant growth promoting activity.

    PubMed

    Kitpreechavanich, Vichien; Hayami, Arisa; Talek, Anfal; Chin, Clament Fui Seung; Tashiro, Yukihiro; Sakai, Kenji

    2016-07-01

    A unique method to produce highly optically-active l-lactic acid and soil amendments that promote plant growth from food waste was proposed. Three Bacillus strains Bacillus subtilis KBKU21, B. subtilis N3-9 and Bacillus coagulans T27, were used. Strain KBKU21 accumulated 36.9 g/L l-lactic acid with 95.7% optical activity and 98.2% l-lactic acid selectivity when fermented at 43°C for 84 h in a model kitchen refuse (MKR) medium. Residual precipitate fraction (anaerobically-fermented MKR (AFM) compost) analysis revealed 4.60%, 0.70% and 0.75% of nitrogen (as N), phosphorous (as P2O5), and potassium (as K2O), respectively. Additionally, the carbon to nitrogen ratio decreased from 13.3 to 10.6. AFM compost with KBKU21 promoted plant growth parameters, including leaf length, plant height and fresh weight of Brassica rapa (Komatsuna), than that by chemical fertilizers or commercial compost. The concept provides an incentive for the complete recycling of food waste, contributing towards a sustainable production system. PMID:26819060

  19. Mineralization of soil organic matter in biochar amended agricultural landscape

    NASA Astrophysics Data System (ADS)

    Chintala, R.; Clay, D. E.; Schumacher, T. E.; Kumar, S.; Malo, D. D.

    2015-12-01

    Pyrogenic biochar materials have been identified as a promising soil amendment to enhance climate resilience, increase soil carbon recalcitrance and achieve sustainable crop production. A three year field study was initiated in 2013 to study the impact of biochar on soil carbon and nitrogen storage on an eroded Maddock soil series - Sandy, Mixed, Frigid Entic Hapludolls) and deposition Brookings clay loam (Fine-Silty, Mixed, Superactive, Frigid Pachic Hapludolls) landscape positions. Three biochars produced from corn stover (Zea mays L.), Ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue, and switchgrass (Panicum virgatum L.) were incorporated at 9.75 Mg ha-1 rate (≈7.5 cm soil depth and 1.3 g/cm3 soil bulk density) with a rototiller. The changes in chemical fractionation of soil carbon (soluble C, acid hydrolyzable C, total C, and δ13 C) and nitrogen (soluble N, acid hydrolyzable N, total N, and δ14 N) were monitored for two soil depths (0-7.5 and 7.5 - 15 cm). Soluble and acid hydrolyzable fractions of soil C and N were influenced by soil series and were not significantly affected by incorporation of biochars. Based on soil and plant samples to be collected in the fall of 2015, C and N budgets are being developed using isotopic and non-isotopic techniques. Laboratory studies showed that the mean residence time for biochars used in this study ranged from 400 to 666 years. Laboratory and field studies will be compared in the presentation.

  20. Organic waste amendments effect on zinc fraction of two soils

    SciTech Connect

    Shuman, L.M.

    1999-10-01

    Organic soil amendments can ameliorate metal toxicity to plants by redistributing metals to less available fractions. The objective of this study was to determine the effects of organic amendments on Zn distribution among soil fractions. Two soils were amended with five organic waste materials (some of which contained Zn) or commercial humic acid with and without 400 mg kg{sup {minus}1} Zn, incubated, and fractionated using a sequential extraction technique. Where no Zn was added most of the metals were in the residual fraction. Commercial compost, poultry litter, and industrial sewage sludge increased Zn in the exchangeable (EXC), organic (OM), and manganese oxide (MnOx) fractions due to Zn in the materials. Spent mushroom compost (SMC) redistributed Zn from the EXC fraction to the MnOx fraction for the coarse-textured soil. Where Zn was added, most of the metal was in the EXC and OM fractions. The SMC and humic acid lowered Zn in the EXC fraction and increased Zn in the other fractions. Effects of the organic materials on Zn in soil fractions were more evident for the sandy soil dominated by quartz in the clay than for the finer-textured soil dominated by kaolinite in the clay-size fraction. It was concluded that organic materials high in Zn can increase Zn in the EXC, OM, and MnOx fractions where the soil is not contaminated and others such as SMC and HA can lower the potential availability of Zn in contaminated soils by redistributing it from the EXC to less soluble fractions.

  1. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization.

  2. Managing compost stability and amendment to soil to enhance soil heating during soil solarization.

    PubMed

    Simmons, Christopher W; Guo, Hongyun; Claypool, Joshua T; Marshall, Megan N; Perano, Kristen M; Stapleton, James J; Vandergheynst, Jean S

    2013-05-01

    Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with compost during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10%(g/g) compost containing 16.9 mg CO2/gdry weight organic carbon resulted in soil temperatures that were 2-4 °C higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil after 22 days of field solarization. PMID:23422041

  3. Immobilization of potentially toxic metals using different soil amendments.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2011-10-01

    The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them.

  4. Immobilization of potentially toxic metals using different soil amendments.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2011-10-01

    The in situ stabilization of potentially toxic metals (PTMs), using various easily available amendments, is a cost-effective remediation method for contaminated soils. In the present study, we investigated the effectiveness of apatite and a commercial mixture of dolomite, diatomite, smectite basaltic tuff, bentonite, alginite and zeolite (Slovakite) on Pb, Zn, Cu and Cd stabilization by means of decreasing their bioavailability in contaminated soil from an old lead and zinc smelter site in Arnoldstein, Austria. We also investigated the impact of 5% (w/w) apatite and Slovakite applications on soil functionality and quality, as assessed by glucose-induced soil respiration, dehydrogenase, acid and alkaline phosphatase and β-glucosidase activity. Both amendments resulted in increased soil pH and decreased PTM potential bioavailability assessed by diethylenetriamine pentaacetic acid extraction and by sequential extractions in the water-soluble and exchangeable fractions. The efficiency of stabilization was reflected in the soil respiration rate and in enzymatic activity. The β-glucosidase activity assay was the most responsive of them. PMID:21767865

  5. Effects of soil amendment on soil characteristics and maize yield in Horqin Sandy Land

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Liu, J. H.; Zhao, B. P.; Xue, A.; Hao, G. C.

    2016-08-01

    A 4-year experiment was conducted to investigate the inter-annual effects of sandy soil amendment on maize yield, soil water storage and soil enzymatic activities in sandy soil in Northeast China in 2010 to 2014. We applied the sandy soil amendment in different year, and investigated the different effects of sandy soil amendment in 2014. There were six treatments including: (1) no sandy soil amendment application (CK); (2) one year after applying sandy soil amendment (T1); (3) two years after applying sandy soil amendment(T2); (4) three years after applying sandy soil amendment(T3); (5)four years after applying sandy soil amendment(T4); (6) five years after applying sandy soil amendment (T5). T refers to treatment, and the number refers to the year after application of the sandy soil amendment. Comparing with CK, sandy soil amendments improved the soil water storage, soil urease, invertase, and catalase activity in different growth stages and soil layers, the order of soil water storage in all treatments roughly performed: T3 > T5 > T4 > T2 > T1 > CK. the order of soil urease, invertase, and catalase activity in all treatments roughly performed: T5 > T3 > T4 > T2 > T1 > CK. Soil application of sandy soil amendment significantly (p≤⃒0.05) increased the grain yield and biomass yield by 22.75%-41.42% and 29.92%-45.45% respectively, and maize yield gradually increased with the years go by in the following five years. Sandy soil amendment used in poor sandy soil had a positive effect on soil water storage, soil enzymatic activities and maize yield, after five years applied sandy soil amendment (T5) showed the best effects among all the treatments, and deserves further research.

  6. Assessment of amendments for the immobilization of Cu in soils containing EDDS leachates.

    PubMed

    Yang, Li; Jiang, Longfei; Wang, Guiping; Chen, Yahua; Shen, Zhenguo; Luo, Chunling

    2015-11-01

    In this study, the effectiveness of six soil amendments (ferrihydrite, manganese dioxide, gibbsite, calcium carbonate, biochar, and organic fertilizer) was investigated to assess the feasibility of minimizing possible environmental contaminant leaching during S,S-ethylenediaminedisuccinic acid (EDDS)-enhanced phytoextraction process based on 0.01-M CaCl2 extraction. Results showed that the application of EDDS could significantly increase Cu concentrations in the leaching solution. Compared with control, incorporation of six amendments (excluding organic fertilizer) significantly decreased CaCl2-extractable Cu concentrations in both soils. When EDDS-containing solutions leached from the soil columns (mimicking the upper soil layers) were added to soils with different amendments (mimicking the subsoil), CaCl2-extractable Cu in the soils amended with ferrihydrite, manganese dioxide, gibbsite, and calcium carbonate was significantly lower than that in the control soil (no amendments) and remained relatively constant during the first 14 days. Incorporation of biochar or organic fertilizer had no positive effect on the immobilization of Cu in EDDS leachates in soils. After 14 days, CaCl2-extractable Cu concentration decreased rapidly in soils incorporated with various amendments. Integrating soil washing with biodegradable chelating agents or chelant-enhanced phytoextraction and immobilization of heavy metals in subsoil could be used to rapidly reduce the concentration of bioavailable metal fractions in the upper soil layers and minimize environmental risks of secondary pollution. PMID:26077318

  7. Soil microbial biomass and mineralizable carbon as a function of crop rotation and soil acidity amendment in a no-tillage system in Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical climate and weathered soil conditions create significant challenges for increasing soil organic matter content. However, crop management strategies could affect short-term dynamics of active fractions of soil organic matter. Thus, our aim was to evaluate the microbial biomass and mineraliza...

  8. Fuzzy indicator approach: development of impact factor of soil amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendments have been shown to be useful for improving soil condition, but it is often difficult to make management decisions as to their usefulness. Utilization of Fuzzy Set Theory is a promising method for decision support associated with utilization of soil amendments. In this article a tool ...

  9. Soil amendments yield persisting changes in the microbial communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil microbial communities are sensitive to carbon amendments and largely control the decomposition and accumulation of soil organic matter. In this study, we evaluated whether the type of carbon amendment applied to wheat-cropped or fallow soil imparted lasting effects on the microbial community w...

  10. Long-Term Effects of Lime, Phosphorus and Iron Amended Orchard Soils on In Vitro, Water and Nitric Acid Extractable Lead

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lead arsenate was used in orchards from about 1900 to 1960. Consequently, orchard soils are contaminated with lead. Extraction methods such as water, nitric acid and in vitro have been used to determine soluble lead in soils contaminated by lead paint and leaded gasoline. The solubility of Pb in ...

  11. Co phytoavailability for tomato in amended calcareous soils.

    PubMed

    Perez-Espinosa, A; Moral, R; Moreno-Caselles, J; Cortés, A; Perez-Murcia, M D; Gómez, I

    2005-04-01

    A plot study was conducted to assess changes in Co phytoavailability for a tomato cultivar grown on an agricultural soil (a Calcic Petrocalcid) amended with sewage sludge, under controlled conditions in South-eastern Spain. The experiment consisted of three main treatment blocks: (A) without organic fertilisation, (B) with addition of 60 tha(-1) and (C) 120 tha(-1) of sewage sludge. For each block (A, B, and C), four levels of Co (0, 50, 100 and 200 mgkg(-1)) were added, as CoCl2. Diethylenetriaminepentaacetic acid, DTPA (0.005 M plus triethanolamine), ammonium acetate (1 N at pH 7), and water extractable fractions of the soils were analysed for all the plots. The time dependent Co accumulation in different parts (roots, stems, leaves, and fruits) of the tomato plants was studied. Soil Co seemed to be mainly in non-available forms, according to the low concentrations found in the water and ammonium acetate extracts, compared to DTPA. The gradient of Co accumulation in tomato plants was root > leaf > stem + branches > fruit, with a concentration in the edible parts ranging between 4 and 25 mg kg(-1). The organic amendment enhanced the plant extraction of Co, this effect being more significant with time. Plant extraction efficiency decreased with increasing Co concentration in the soils. Co in fruit showed the best correlation with all the Co extraction pools in the soil. PMID:15588767

  12. Impact of coal combustion product amendments on soil quality. 1: Mobilization of soil organic nitrogen

    SciTech Connect

    Stuczynski, T.I. |; McCarty, G.W.; Wright, R.J.

    1998-12-01

    There is growing interest in the use of coal combustion products (fly ash and bed ash) at agronomic rates, based on the liming requirements of agricultural soils, and at higher rates in technologies for reclamation of degraded lands. There is concern, however, that excessive or other improper use may have a negative impact on soil quality and the environment. To determine the influence of potentially excessive rates of coal combustion products on the fate of soil quality and the environment. To determine the influence of potentially excessive rates coal combustion products on the fate of soil organic N and impacts on soil quality, the authors studied the effects of fly ash and bed ash applied at rates of 0, 20, 40, and 80 g kg{sup {minus}1} soil on the content of organic N in soils incubated for 10, 25, or 60 days. Studies comparing the influence of these products on the organic N content of the soil showed that although applications of fly ash had little influence on the fate of this N, application of bed ash caused substantial decreases in the total N content of water-extracted soil through the mobilization of organic N. Measurements of the changes in acid hydrolyzable N components of organic matter in soils treated with high rates of bed ash showed that within the first 10 days of incubation, losses of N in the forms of amino sugars, amino acids, and hydrolyzable NH{sub 4}{sup +} could account largely for losses of total N in bed ash-amended soils. Decreases in the amino acid content of soil organic matter accounted for most of these losses, and such decreases were directly related to increases in soil pH caused by the bed ash amendment.

  13. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils.

    PubMed

    Dindar, Efsun; Şağban, Fatma Olcay Topaç; Başkaya, Hüseyin Savaş

    2015-07-01

    Soil enzymatic activities are commonly used as biomarkers of soil quality. Several organic and inorganic compounds found in municipal wastewater sludges can possibly be used as fertilizers. Monitoring and evaluating the quality of sludge amended soils with enzyme activities accepted as a beneficial practice with respect to sustainable soil management. In the present study, variation of some enzyme activities (Alkaline phosphatase, dehydrogenase, urease and beta-glucosidase activities) in soils amended with municipal wastewater sludge at different application rates (50, 100 and 200 t ha(-1) dry sludge) was evaluated. Air dried sludge samples were applied to soil pots and sludge-soil mixtures were incubated during a period of three months at 28 degrees C. The results of the study showed that municipal wastewater sludge amendment apparently increased urease, dehydrogenase, alkaline phosphatase and P-glucosidase activities in soil by 48-70%, 14-47%, 33-66% and 9-14%, respectively. The maximum activity was generally observed in sludge amended soil with dose of 200 t ha(-1). Urease activity appeared to be a better indicator of soil enhancement with wastewater sludge, as its activity was more strongly increased by sludge amendment. Accordingly, urease activity is suggested to be soil quality indicator best suited for measuring existing conditions and potential changes in sludge-amended soil.

  14. Leachate water quality of soils amended with different swine manure-based amendments.

    PubMed

    Ro, K S; Novak, J M; Johnson, M G; Szogi, A A; Libra, J A; Spokas, K A; Bae, S

    2016-01-01

    In the face of the rising level of manure production from concentrated animal feeding operations (CAFOs), management options are being sought that can provide nutrient recycling for plant growth and improved soil conditions with minimal environmental impacts. Alternatives to direct manure application are composting and thermochemical conversion which can destroy pathogens and improve handling and storage. The effect of four forms of swine manure-based soil amendments (raw, compost, hydrochar, and pyrochar) on soil fertility and leachate water quality characteristics of a sandy soil were investigated in soil incubation experiments. All four amendments significantly increased soil carbon, cation exchange capacity and available nutrient contents of the soil. However, hydrochar amended soil leached lower amounts of N, P, and K compared to the other amendments including the control. On the other hand, pyrochar amended soil leached higher concentrations of P and K. Subsequent tests on the hydrochar for K and N adsorption isotherms and surface analysis via XPS suggested that these nutrients were not sorbed directly to the hydrochar surface. Although it is still not clear how these nutrients were retained in the soil amended with hydrochar, it suggests a great potential for hydrochar as an alternative manure management option as the hydrochar can be soil applied while minimizing potential environmental issues from the leaching of high nutrient concentrations to water bodies.

  15. ADSORPTION OF CADMIUM ON BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    A considerable controversy exists over the biosolid phase (organic or inorganic) responsible for the reduction in phytoavailable Cd in soils amended with biosolids as compared to soils amended with inorganic salts. To test the importance of these two phases, 2 biosolids, 15 bioso...

  16. Acid rain and soil.

    PubMed

    vanLoon, G W

    1984-08-01

    A summary of important chemical properties of soil is given and the way in which acid rain may affect these properties is discussed. Acid rain may suppress microbiological decomposition and nitrification processes, thus influencing the nutrient status of soils. It has also been found that soil organic matter is less soluble in more acid solutions. Changed nutrient availability patterns are predicted in a low pH environment and enhanced leaching of essential elements from the soil exchange complex has been observed. Increased solubility of potentially toxic elements such as aluminium may also occur from soils which have been exposed to acidified rainfall.

  17. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    PubMed

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils. PMID:24875876

  18. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: II. Biological and ecotoxicological evaluation.

    PubMed

    Pardo, T; Clemente, R; Alvarenga, P; Bernal, M P

    2014-07-01

    The feasibility of two organic materials (pig slurry and compost) in combination with hydrated lime for the remediation of a highly acidic trace elements (TEs) contaminated mine soil was assessed in a mesocosm experiment. The effects of the amendments on soil biochemical and ecotoxicological properties were evaluated and related with the main physicochemical characteristics of soil and soil solution. The original soil showed impaired basic ecological functions due to the high availability of TEs, its acidic pH and high salinity. The three amendments slightly reduced the direct and indirect soil toxicity to plants, invertebrates and microorganisms as a consequence of the TEs' mobility decrease in topsoil, reducing therefore the soil associated risks. The organic amendments, especially compost, thanks to the supply of essential nutrients, were able to improve soil health, as they stimulated plant growth and significantly increased enzyme activities related with the key nutrients in soil. Therefore, the use of compost or pig slurry, in combination with hydrated lime, decreased soil ecotoxicity and seems to be a suitable management strategy for the remediation of highly acidic TEs contaminated soils.

  19. Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil.

    PubMed

    Abad-Valle, P; Álvarez-Ayuso, E; Murciego, A

    2015-05-01

    The effectiveness of ferrihydrite as amendment to restore the soil habitat functioning of a soil polluted with As by mining activities was evaluated. Its influence on As mobility and phytoavailability was also assessed. Soil treated with increasing amendment doses (0, 1, 2, and 5 %) were analyzed for soil microbiological parameters such as basal soil respiration and dehydrogenase, β-glucosidase, urease, acid and alkaline phosphatase, and arylsulfatase activities. Batch leaching tests and plant growth experiments using ryegrass and alfalfa plants were performed. The treatment with ferrihydrite was effective to reduce As mobility and plant As uptake, translocation, and accumulation. Likewise, the soil microbiological status was generally improved as derived from basal soil respiration and dehydrogenase and acid and alkaline phosphatase activities, which showed increases up to 85, 45, 11, and 47 %, respectively, at a ferrihydrite addition rate of 5 %. PMID:25430010

  20. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    PubMed

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-<2). To simulate worst-case sorption, a sandy soil (1.7% organic matter) was amended with 1.5% biochar (fresh or composted) to determine sorption/desorption isotherms of the test compounds. One herbicide (imazamox) and three herbicide metabolites (methyl-desphenyl-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited.

  1. The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).

    PubMed

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Roosmini, Dwina

    2015-01-01

    Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine (134)Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in (134)Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the (134)Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in (134)Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the (134)Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil.

  2. The EDTA Amendment in Phytoextraction of (134)Cs From Soil by Indian Mustard (Brassica juncea).

    PubMed

    Tjahaja, Poppy Intan; Sukmabuana, Putu; Roosmini, Dwina

    2015-01-01

    Soil contamination with radiocaesium is a significant problem at any countries when a nuclear accident occurred. Recently, phytoextraction technique is developed to remediate the contaminated environment. However, the application is limited by the availability of the contaminant for root uptake. Therefore, a green house trial experiment of soil amendment with ethylene diamine tetraacetic acid (EDTA) has been conducted to examine (134)Cs availability for root uptake. Two groups of Indian mustard (Brassica juncea) were cultivated in (134)Cs contaminated soil. The soil in the first group was treated with EDTA amendment, while the other was not. Plant growth was observed gravimetrically and the (134)Cs concentration in soil as well as plants were determined using gamma spectrometry. The plant uptake capacity was determined as transfer factor (Fv), and the Fv values of 0.22 ± 0.0786 and 0.12 ± 0.039 were obtained for the soil treated with and without EDTA amendment, respectively. The phytoextraction efficiency of the plant cultivated in (134)Cs contaminated soil both with and without EDTA amendment was low. The EDTA amendment to the soil seems to enhance the (134)Cs availability for root uptake of Indian mustard and can still be considered to assist the field phytoremediation of contaminated soil. PMID:26208541

  3. Speciation of lead in contaminated soil under the influence of plants and phosphate amendment type

    NASA Astrophysics Data System (ADS)

    Diyab, C.; Juillot, F.; Dumat, C.; Morin, G.; Benedetti, M.; Mariotti, A.

    2003-05-01

    The toxicity of an element and its behaviour depend on its chemical form (speciation) and concentration. The objective of our work is to study the speciation of Pb under the influence of phosphate amendments (solide, soluble) and type of plants: peas, tomato (pH variation, organic acid complexes formation) in a polluted soil near one of Europe's largest lead contaminated area in the north of France. Chemical and physical methods were used to determine the speciation of lead in rhizospheric soil (chemical extraction, μFX, EXAFS, SEM.). The formation of lead phosphate complexe was confirmed in rhizospheric soil of both plants. Quantity and chemical structure of phosphate lead complexe formed in soil, varied with the type of plante and phosphate amendement added. Analysis of organic acids secreted by the two plantes were performed to understand the effect of organic acids on the speciation of lead in the rhizospheric soil.

  4. Application of organic amendments to restore degraded soil: effects on soil microbial properties.

    PubMed

    Carlson, Jennifer; Saxena, Jyotisna; Basta, Nicholas; Hundal, Lakhwinder; Busalacchi, Dawn; Dick, Richard P

    2015-03-01

    Topsoil removal, compaction, and other practices in urban and industrial landscapes can degrade soil and soil ecosystem services. There is growing interest to remediate these for recreational and residential purposes, and urban waste materials offers potential to improve degraded soils. Therefore, the objective of this study was to compare the effects of urban waste products on microbial properties of a degraded industrial soil. The soil amendments were vegetative yard waste compost (VC), biosolids (BioS), and a designer mix (DM) containing BioS, biochar (BC), and drinking water treatment residual (WTR). The experiment had a completely randomized design with following treatments initiated in 2009: control soil, VC, BioS-1 (202 Mg ha(-1)), BioS-2 (403 Mg ha(-1)), and DM (202 Mg BioS ha(-1) plus BC and WTR). Soils (0-15-cm depth) were sampled in 2009, 2010, and 2011 and analyzed for enzyme activities (arylsulfatase, β-glucosaminidase, β-glucosidase, acid phosphatase, fluorescein diacetate, and urease) and soil microbial community structure using phospholipid fatty acid analysis (PLFA). In general, all organic amendments increased enzyme activities in 2009 with BioS treatments having the highest activity. However, this was followed by a decline in enzyme activities by 2011 that were still significantly higher than control. The fungal PLFA biomarkers were highest in the BioS treatments, whereas the control soil had the highest levels of the PLFA stress markers (P < 0.10). In conclusion, one-time addition of VC or BioS was most effective on enzyme activities; the BioS treatment significantly increased fungal biomass over the other treatments; addition of BioS to soils decreased microbial stress levels; and microbial measures showed no statistical differences between BioS and VC treatments after 3 years of treatment. PMID:25673270

  5. Soil biochar amendments: type and dose effects

    NASA Astrophysics Data System (ADS)

    Ojeda, G.; Domene, X.; Mattana, S.; Sousa, J. P.; Ortiz, O.; Andres, P.; Alcañiz, J. M.

    2012-04-01

    Biochar is an organic material produced via the pyrolysis of C-based biomass, which is increasingly being recognized by scientists and policy makers for its potential role in carbon sequestration, reducing greenhouse gas emissions, waste mitigation, and as a soil amendment. Recent studies indicated that biochar improves soil fertility through its positive influence on physical-chemical properties, since not only improves water retention, aggregation and permeability, but its high charge density can also hold large amounts of nutrients, increasing crop production. However, it was observed that combustion temperature could affects the degree of aromaticity and the size of aromatic sheets, which in turns determine short-term mineralization rates. To reconcile the different decompasibility observations of biochar, it has sugested that physical protection and interactions with soil minerals play a significant part in biochar stability. In this context, it has initiated one pilot studies which aims to assess the effects of biochar application on physical and chemical properties of agricultural soil under Mediterranean conditions, such as changes in aggregate formation, intra-aggregate carbon sequestration and chemistry of soil water. In the present study, different clases of biochar produced from fast, slow and gasification pyrolisis of vegetal (pine, poplar) and dried sludge biomass, were applied at 1% of biochar-C to mesocosmos of an agricultural soil. Preliminary, it must be pointed out that slow and gasification pyrolisis changes the proportion of particles < 2 mm in diameter, from 10% (original materials) to almost 100%. In contrast, slow pyrolisis not modifies significantly biochar granulometry. As a consequence, bulk density of poplar and pine splinters decreases after fast pyrolisis. Regarding to organic carbon contents of biochar, all biochars obtained from plant biomass presented percentagens of total organic carbon (TOC) between 70 - 90%, while biochar

  6. Biochar Soil Amendment Effects on Arsenic Availability to Mountain Brome ().

    PubMed

    Strawn, Daniel G; Rigby, April C; Baker, Leslie L; Coleman, Mark D; Koch, Iris

    2015-07-01

    Biochar is a renewable energy byproduct that shows promise for remediating contaminated mine sites. A common contaminant at mine sites is arsenic (As). In this study, the effects of biochar amendments to a mine-contaminated soil on As concentrations in mountain brome ( Nees ex Steud.) were investigated. In the biochar-amended soil, mountain brome had greater root biomass and decreased root and shoot As concentrations. X-ray absorption near-edge structure spectroscopy results showed that arsenate [As(V)] is the predominant species in both the nonamended and biochar-amended soils. Soil extraction tests that measure phosphate and arsenate availability to plants failed to accurately predict plant tissue As concentrations, suggesting the arsenate bioavailability behavior in the soils is distinct from phosphate. Results from this study indicate that biochar will be a beneficial amendment to As-contaminated mine sites for remediation. PMID:26437113

  7. Phosphorus leaching from biosolids-amended sandy soils.

    PubMed

    Elliott, H A; O'Connor, G A; Brinton, S

    2002-01-01

    Increasing emphasis on phosphorus (P)-based nutrient management underscores the need to understand P behavior in soils amended with biosolids and manures. Laboratory and greenhouse column studies characterized P forms and leachability of eight biosolids products, chicken manure (CM), and commercial fertilizer (triple superphosphate, TSP). Bahiagrass (Paspalum notatum Flugge) was grown for 4 mo on two acid, P-deficient Florida sands, representing both moderate (Candler series: hyperthermic, uncoated Typic Quartzipsamments) and very low (Immokalee series: sandy, siliceous, hyperthermic Arenic Alaquods) P-sorbing capacities. Amendments were applied at 56 and 224 kg P(T) ha(-1), simulating P-based and N-based nutrient loadings, respectively. Column leachate P was dominantly inorganic and lower for biosolids P sources than TSP. For Candler soil, only TSP at the high P rate exhibited P leaching statistically greater (alpha = 0.05) than control (soil-only) columns. For the high P rate and low P-sorbing Immokalee soil, TSP and CM leached 21 and 3.0% of applied P, respectively. Leachate P for six biosolids was <1.0% of applied P and not statistically different from controls. Largo biosolids, generated from a biological P removal process, exhibited significantly greater leachate P in both cake and pelletized forms (11 and 2.5% of applied P, respectively) than other biosolids. Biosolids P leaching was correlated to the phosphorus saturation index (PSI = [Pox]/[Al(ox) + Fe(ox)]) based on oxalate extraction of the pre-applied biosolids. For hiosolids with PSI < or = approximately 1.1, no appreciable leaching occurred. Only Largo cake (PSI = 1.4) and pellets (PSI = 1.3) exhibited P leaching losses statistically greater than controls. The biosolids PSI appears useful for identifying biosolids with potential to enrich drainage P when applied to low P-sorbing soils. PMID:11931462

  8. Soil degradation and amendment effects on soil properties, microbial communities, and plant growth

    NASA Astrophysics Data System (ADS)

    Gebhardt, M.; Fehmi, J. S.; Rasmussen, C.; Gallery, R. E.

    2015-12-01

    Human activities that disrupt soil properties are fundamentally changing ecosystems. Soil degradation, caused by anthropogenic disturbance can decrease microbial abundance and activity, leading to changes in nutrient availability, soil organic matter, and plant establishment. The addition of amendments to disturbed soils have the potential ameliorate these negative consequences. We studied the effects of soil degradation, via an autoclave heat shock method, and the addition of amendments (biochar and woodchips) on microbial activity, soil carbon and nitrogen availability, microbial biomass carbon and nitrogen content, and plant growth of ten plant species native to the semi-arid southwestern US. Relative to non-degraded soils, microbial activity, measured via extracellular enzyme assays, was significantly lower for all seven substrates assayed. These soils also had significantly lower amounts of carbon assimilated into microbial biomass but no change in microbial biomass nitrogen. Soil degradation had no effect on plant biomass. Amendments caused changes in microbial activity: biochar-amended soils had significant increases in potential activity with five of the seven substrates measured; woodchip amended soils had significant increases with two. Soil carbon increased with both amendments but this was not reflected in a significant change in microbial biomass carbon. Biochar-amended soils had increases in soil nitrogen availability but neither amendment caused changes in microbial biomass nitrogen. Biochar amendments had no significant effect on above- or belowground plant biomass while woodchips significantly decreased aboveground plant biomass. Results show that soil degradation decreases microbial activity and changes nutrient dynamics, but these are not reflected in changes in plant growth. Amendments provide nutrient sources and change soil pore space, which cause microbial activities to fluctuate and may, in the case of woodchips, increase plant drought

  9. Biodegradation of phthalate esters in compost-amended soil.

    PubMed

    Chang, B V; Lu, Y S; Yuan, S Y; Tsao, T M; Wang, M K

    2009-02-01

    In this study, we investigated the biodegradation of the phthalate acid esters (PAEs) di-n-butyl phthalate (DBP) and di-(2-ethyl hexyl) phthalate (DEHP) in compost and compost-amended soil. DBP (50 mg kg(-1)) and DEHP (50 mg kg(-1)) were added to the two types of compost (straw and animal manure) and subsequently added to the soil; they were tested as a single compound and in combination. Optimal PAE degradation in soil was at pH 7 and 30 degrees C. The degradation of PAE was enhanced when DBP and DEHP were simultaneously present in the soil. The addition of either of the two types of compost individually also improved the rate of PAE degradation. Compost samples were separated into fractions with various particle size ranges, which spanned from 0.1-0.45 to 500-2000 microm. We observed that the compost fractions with smaller particle sizes demonstrated higher PAE degradation rates. When the different compost fractions were added to soil, however, compost particle size had no significant effect on the rate of PAE degradation.

  10. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms.

    PubMed

    Uchimiya, Minori; Klasson, K Thomas; Wartelle, Lynda H; Lima, Isabel M

    2011-03-01

    Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of heavy metal contaminants from soil components. In this study, copper sorption-desorption isotherms were obtained for clay-rich, alkaline San Joaquin soil with significant heavy metal sorption capacity, and eroded, acidic Norfolk sandy loam soil having low capacity to retain copper. Acidic pecan shell-derived activated carbon and basic broiler litter biochar were employed in desorption experiments designed to address both leaching by rainfall and toxicity characteristics. For desorption in synthetic rain water, broiler litter biochar amendment diminished sorption-desorption hysteresis. In acetate buffer (pH 4.9), significant copper leaching was observed, unless acidic activated carbon (pH(pzc)=3.07) was present. Trends observed in soluble phosphorus and zinc concentrations for sorption and desorption equilibria suggested acid dissolution of particulate phases that can result in a concurrent release of copper and other sorbed elements. In contrast, sulfur and potassium became depleted as a result of supernatant replacements only when amended carbon (broiler litter biochar) or soil (San Joaquin) contained appreciable amounts. A positive correlation was observed between the equilibrium aluminum concentration and initial copper concentration in soils amended with acidic activated carbon but not basic biochar, suggesting the importance of cation exchange mechanism, while dissolution of aluminum oxides cannot be ruled out.

  11. Effect of biochar amendments on microbial transport through soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incorporation of biochar into soils had been shown to improve soil fertility, enhance soil sequestration of carbon and decrease the mobility of agrochemicals and heavy metals. Our series of column experiments have shown that in addition to these benefits, biochar amendments can limit bacterial t...

  12. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste

    NASA Astrophysics Data System (ADS)

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  13. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils. PMID:23911783

  14. Behavior of MCPA in four intensive cropping soils amended with fresh, composted, and aged olive mill waste.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Sánchez-Llerena, Javier; Becerra, Daniel

    2013-09-01

    An evaluation was made of the impact of olive mill waste and its organic matter transformation on the sorption, desorption, leaching, and degradation of the herbicide MCPA when the waste was applied to four Mediterranean soils. The soils were amended in the laboratory with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW treatments, respectively). It was found that the greater the amount of OW applied to the soils, but especially the greater its organic matter maturity, the greater the adsorption of MCPA. Compared with unamended soils, at the 5% rate of application the adsorption capacity increased by between 9.8% and 40%, 148% and 224%, and by 258% for the OW, COW, and AOW amended soils, respectively. The hysteresis coefficients were significantly lower in the OW-amended soils than in AOW or COW-amended soils, indicating that the adsorbed MCPA could be easily desorbed in OW-amended soils if the amendment is not aged or composted. While the OW addition greatly extended the persistence of MCPA, the application of COW enhanced MCPA degradation in all the soils, as corresponded to the increased soil microbial activity indicated by the higher levels of soil dehydrogenase activity. Fresh OW amendment significantly increased the amount of MCPA leached (from 13.7% in the most alkaline soil to 36.7% in the most acidic, at the 5% rate of application), favored by the higher levels of water soluble organic carbon content. However, leaching losses of the herbicide were reduced by up to 39.9% and 55.3% in the COW- and AOW-amended soils at the 5% loading rate, respectively. The use of OW with a high degree of organic matter maturity may be regarded as a potentially useful management practice to reduce MCPA leaching in soils with low organic matter content. The application of fresh OW, however, could well increase the risk of groundwater contamination by this herbicide, especially in acidic soils.

  15. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil.

    PubMed

    Mukherjee, A; Lal, R; Zimmerman, A R

    2014-07-15

    Short and long-term impacts of biochar on soil properties under field conditions are poorly understood. In addition, there is a lack of field reports of the impacts of biochar on soil physical properties, gaseous emissions and C stability, particularly in comparison with other amendments. Thus, three amendments - biochar produced from oak at 650°C, humic acid (HA) and water treatment residual - (WTR) were added to a scalped silty-loam soil @ 0.5% (w/w) in triplicated plots under soybean. Over the 4-month active growing season, all amendments significantly increased soil pH, but the effect of biochar was the greatest. Biochar significantly increased soil-C by 7%, increased sub-nanopore surface area by 15% and reduced soil bulk density by 13% compared to control. However, only WTR amendment significantly increased soil nanopore surface area by 23% relative to the control. While total cumulative CH4 and CO2 emissions were not significantly affected by any amendment, cumulative N2O emission was significantly decreased in the biochar-amended soil (by 92%) compared to control over the growing period. Considering both the total gas emissions and the C removed from the atmosphere as crop growth and C added to the soil, WTR and HA resulted in net soil C losses and biochar as a soil C gain. However, all amendments reduced the global warming potential (GWP) of the soil and biochar addition even produced a net negative GWP effect. The short observation period, low application rate and high intra-treatment variation resulted in fewer significant effects of the amendments on the physicochemical properties of the soils than one might expect indicating further possible experimentation altering these variables. However, there was clear evidence of amendment-soil interaction processes affecting both soil properties and gaseous emissions, particularly for biochar, that might lead to greater changes with additional field emplacement time.

  16. Major element, trace element, nutrient, and radionuclide mobility in a mining by-product-amended soil.

    PubMed

    Douglas, G; Adeney, J; Johnston, K; Wendling, L; Coleman, S

    2012-01-01

    This study investigates the use of a mineral processing by-product, neutralized used acid (NUA), primarily composed of gypsum and Fe-oxyhydroxide, as a soil amendment. A 1489-d turf farm field trial assessed nutrient, trace element, and radionuclide mobility of a soil amended with ∼5% by mass to a depth of 15 cm of NUA. Average PO-P fluxes collected as subsoil leachates were 0.7 and 26.6 kg ha yr for NUA-amended and control sites, respectively, equating to a 97% reduction in PO-P loss after 434 kg P ha was applied. Total nitrogen fluxes in NUA-amended soil leachates were similarly reduced by 82%. Incorporation of NUA conferred major changes in leachate geochemistry with a diverse suite of trace elements depleted within NUA-amended leachates. Gypsum dissolution from NUA resulted in an increase from under- to oversaturation of the soil leachates for a range of Fe- and Ca-minerals including calcite and ferrihydrite, many of which have a well-documented ability to assimilate PO-P and trace elements. Isotopic analysis indicated little Pb addition from NUA. Both Sr and Nd isotope results revealed that NUA and added fertilizer became an important source of Ca to leachate and turf biomass. The NUA-amended soils retained a range of U-Th series radionuclides, with little evidence of transfer to soil leachate or turf biomass. Calculated radioactivity dose rates indicate only a small increment due to NUA amendment. With increased nutrient, trace element, and solute retention, and increased productivity, a range of potential agronomic benefits may be conferred by NUA amendment of soils, in addition to the potential to limit offsite nutrient loss and eutrophication. PMID:23128739

  17. Bacterial Mobilization of Nutrients From Biochar-Amended Soils.

    PubMed

    Schmalenberger, A; Fox, A

    2016-01-01

    Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur. PMID:26917243

  18. Phosphorus forms in biosolids-amended soils and losses in runoff: effects of wastewater treatment process.

    PubMed

    Penn, Chad J; Sims, J Thomas

    2002-01-01

    Continuous addition of municipal biosolids to soils based on plant nitrogen (N) requirements can cause buildup of soil phosphorus (P) in excess of crop requirements; runoff from these soils can potentially contribute to nonpoint P pollution of surface waters. However, because biosolids are often produced using lime and/or metal salts, the potential for biosolids P to cause runoff P losses can vary with wastewater treatment plant (WWTP) process. This study was conducted to determine the effect of wastewater treatment process on the forms and amounts of P in biosolids, biosolids-amended soils, and in runoff from biosolids-amended soils. We amended two soil types with eight biosolids and a poultry litter (PL) at equal rates of total P (200 kg ha(-1); unamended soils were used as controls. All biosolids and amended soils were analyzed for various types of extractable P, inorganic P fractions, and the degree of P saturation (acid ammonium oxalate method). Amended soils were placed under a simulated rainfall and all runoff was collected and analyzed for dissolved reactive phosphorus (DRP), iron-oxide-coated filter paper strip-extractable phosphorus (FeO-P), and total phosphorus (EPA3050 P). Results showed that biosolids produced with a biological nutrient removal (BNR) process caused the highest increases in extractable soil P and runoff DRP. Alternatively, biosolids produced with iron only consistently had the lowest extractable P and caused the lowest increases in extractable soil P and runoff DRP when added to soils. Differences in soil and biosolids extractable P levels as well as P runoff losses were related to the inorganic P forms of the biosolids.

  19. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.

    PubMed

    Huang, Hai; Jia, Yan; Sun, Guo-Xin; Zhu, Yong-Guan

    2012-02-21

    Arsenic (As) methylation and volatilization in soil can be increased after organic matter (OM) amendment, though the factors influencing this are poorly understood. Herein we investigate how amended OM influences As speciation as well as how it alters microbial processes in soil and soil solution during As volatilization. Microcosm experiments were conducted on predried and fresh As contaminated paddy soils to investigate microbial mediated As speciation and volatilization under different OM amendment conditions. These experiments indicated that the microbes attached to OM did not significantly influence As volatilization. The arsine flux from the treatment amended with 10% clover (clover-amended treatment, CT) and dried distillers grain (DDG) (DDG-amended treatment, DT2) were significantly higher than the control. Trimethylarsine (TMAs) was the dominant species in arsine derived from CT, whereas the primary arsine species from DT2 was TMAs and arsine (AsH(3)), followed by monomethylarsine (MeAsH(2)). The predominant As species in the soil solutions of CT and DT2 were dimethylarsinic acid (DMAA) and As(V), respectively. OM addition increased the activities of arsenite-oxidizing bacteria (harboring aroA-like genes), though they did not increase or even decrease the abundance of arsenite oxidizers. In contrast, the abundance of arsenate reducers (carrying the arsC gene) was increased by OM amendment; however, significant enhancement of activity of arsenate reducers was observed only in CT. Our results demonstrate that OM addition significantly increased As methylation and volatilization from the investigated paddy soil. The physiologically active bacteria capable of oxidization, reduction, and methylation of As coexisted and mediated the As speciation in soil and soil solution. PMID:22295880

  20. Populations of Pratylenchus penetrans Relative to Decomposing Nitrogenous Soil Amendments

    PubMed Central

    Walker, J. T.

    1971-01-01

    Populations of Pratylenchus penetrans decreased in soil following addition of 70 and 700 ppm N in the form of nitrate, nitrite, organic nitrogen, or ammonium compounds. Nitrate was less effective than other nitrogen carriers. Population reduction is principally attributed to ammonification during decomposition. This hypothesis is supported by chromatographic analyses of soil atmospheres, survival of nematodes in pure CO₂ and N₂, inverse relationship of CO₂, content in amended soils to nematode populations, and direct relationship of NH₃-N content of amended soils to nematode populations. PMID:19322339

  1. Cesium and strontium sorption behavior in amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Hofmann, Diana; Burauel, Peter; Vereecken, Harry; Berns, Anne E.

    2014-05-01

    Biogas digestates and biochar are emerging soil amendments. Biochar is a byproduct of pyrolysis process which is thermal decomposition of biomass to produce syngas and bio-oil. The use of biochar for soil amendment is being promoted for higher crop yields and carbon sequestration. Currently, the numbers of biogas plants in Germany are increasing to meet the new energy scenarios. The sustainability of biogas industry requires proper disposal options for digestate. Biogas digestates being rich in nutrients are beneficial to enhance agricultural productions. Contrary to the agronomical benefits of these organic amendments, their use can influence the mobility and bioavailability of soil contaminants due to nutrients competition and high organic matter content. So far, the impact of such amendments on highly problematic contaminants like radionuclides is not truly accounted for. In the present study, sorption-desorption behavior of cesium and strontium was investigated in three soils of different origin and texture. Two agricultural soils, a loamy sand and a silty soil, were amended with biochar and digestate in separate experiments, with field application rates of 25 Mg/ha and 34 Mg/ha, respectively. For comparison a third soil, a forest soil, was incubated without any amendment. The amendments were mixed into the top 20 cm of the field soils, resulting in final concentrations of 8-9 g biochar/Kg soil and 11-12 g digestate/Kg soil. The soils were incubated for about six months at room temperature. Sorption-desorption experiments were performed with CsCl and SrCl2 after pre-equilibrating the soils with CaCl2 solutions. The amendments with field application rates did not have a significant effect on the relevant soil parameters responsible for the sorption behavior of the two radionuclides. Comparatively, the soil type lead to distinctive differences in sorption-desorption dynamics of the two radionuclides. Cesium showed a higher affinity for silty soil followed by

  2. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated. PMID:27230149

  3. Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils.

    PubMed

    Bopp, Charlotte; Christl, Iso; Schulin, Rainer; Evangelou, Michael W H

    2016-09-01

    Soils contaminated by trace elements (TEs) pose a high risk to their surrounding areas as TEs can spread by wind and water erosion or leaching. A possible option to reduce TE transfer from these sites is phytostabilisation. It is a long-term and cost-effective rehabilitation strategy which aims at immobilising TEs within the soil by vegetation cover and amendment application. One possible amendment is biochar. It is charred organic matter which has been shown to immobilise metals due to its high surface area and alkaline pH. Doubts have been expressed about the longevity of this immobilising effect as it could dissipate once the carbonates in the biochar have dissolved. Therefore, in a pot experiment, we determined plant metal uptake by ryegrass (Lolium perenne) from three TE-contaminated soils treated with two biochars, which differed only in their pH (acidic, 2.80; alkaline, 9.33) and carbonate (0.17 and 7.3 %) content. Root biomass was increased by the application of the alkaline biochar due to the decrease in TE toxicity. Zinc and Cu bioavailability and plant uptake were equally reduced by both biochars, showing that surface area plays an important role in metal immobilisation. Biochar could serve as a long-term amendment for TE immobilisation even after its alkalinity effect has dissipated.

  4. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. PMID:25912633

  5. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand.

  6. Organic amendments' dissolved organic carbon influences bioavailability of agricultural soil DOC

    NASA Astrophysics Data System (ADS)

    Straathof, Angela L.; Chincarini, Riccardo; Hoffland, Ellis; Comans, Rob N. J.

    2013-04-01

    Agricultural soils benefit from additions of organic amendments because they improve soil structure, are a source of plant nutrients, and increase concentrations of soil organic carbon (SOC). The latter fuels microbial processes important for plant growth, including nutrient mineralization and the suppression of plant diseases. However, these amendment additions range in quality and quantity of C and little is known about how their properties interact with native soil C and affect turnover. The dissolved pool of SOC (DOC) may be the most important C source for these processes as it is more biologically available and thus relatively easily turned over by the soil microbial biomass. Using a rapid-batch DOC fractionation procedure, we studied the composition of different organic amendments' DOC pools and measured how their additions change the quantity and turnover of soil DOC. Fractions isolated and quantified with this procedure include humic and fulvic acids, hydrophobic neutral and hydrophilic compounds. We hypothesized that these range from biologically recalcitrant to readily available, respectively. Amendments analysed included composts of different source materials and maturation stages collected from two different compost facilities in the Netherlands. Both total DOC concentrations and proportions of the aforementioned fractions ranged highly between composts. Composts cured for >10 days had a lower proportion of hydrophilic C compounds, suggesting that these are the most bioavailable and released as CO2 via microbial activity during maturation. To measure the effects of compost DOC on soil DOC, we extracted the former and added it to a sandy soil in an incubation experiment. The amendment increased soil total DOC, CO2 production from the soil, and the pools of humic and fulvic acids as a proportion of total DOC. Turnover of C from the incubated soil was measured by substrate-induced CO2 production (an indicator of microbial activity) from a 96-well

  7. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions. PMID:26437107

  8. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions.

  9. Cadmium sorption and mobility in sludge-amended soil

    SciTech Connect

    Cline, G.R.; O'Connor, G.A.

    1984-09-01

    Cadmium sorption was examined in three soils that were unamended, freshly amended, or preconditioned with gamma-irradiated sewage sludge. Metal sorption in the same soils treated with a CaCl/sub 2/-extract of the sludge was also studied. Cadmium sorption was greatest in the unamended soils, less in soils preconditioned with sludge, and least in the freshly amended soils and sludge-extract-treated soils. The authors attempted to explain the treatment effects on the basis of reduced free metal ion activity, but the explanations were not adequate. Despite the reduction in metal retention effected by various treatments, cadmium mobility was very limited. Short- or long-term leaching studies showed cadmium movement to be limited to 1 or 2 m below the zone of sludge (/sup 109/Cd) incorporation. Cadmium mobility is expected to be very limited in calcareous soils, regardless of sludge treatments. 24 references, 1 figure, 5 tables.

  10. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    PubMed

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  11. Biochar soil amendment for environmental and agronomic benefits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Char(coal), and a broader term black carbon (that includes soot) has long been recognized as a normal environmental (including soil) constituent resulting from fire and industrial activities. Biochar soil amendment has received global interests as a tool for carbon sequestration in conjunction with...

  12. Environmental fate of the herbicide MCPA in agricultural soils amended with fresh and aged de-oiled two-phase olive mill waste.

    PubMed

    Peña, David; López-Piñeiro, Antonio; Albarrán, Ángel; Becerra, Daniel; Sánchez-Llerena, Javier

    2015-09-01

    Olive oil agrifood industry generates large amounts of waste whose recycling as organic amendment represents an alternative to their disposal. The impact of de-oiled two-phase olive mill waste (DW) on the fate of 4-chloro-2-methylphenoxyacetic acid (MCPA) in Mediterranean agricultural soils was evaluated. Furthermore, the effect of the transformation of organic matter from this waste under field conditions was assessed. Four Mediterranean agricultural soils were selected and amended in laboratory with fresh DW and field-aged DW (DW and ADW treatments, respectively). Adsorption capacity increased by factors between 1.18 and 3.59, for the DW-amended soils, and by factor of 4.93, for ADW-amended soil, with respect to unamended soils, when 5% amendment was applied. The DW amendment had inhibitory effect on dehydrogenase activity and slowed herbicide dissipation, whereas the opposite effect was observed in ADW treatments. In the field-amended soil, the amount of MCPA leached was significantly reduced from 56.9% for unamended soil to 15.9% at the 5% rate. However, leaching losses of MCPA increased in the laboratory-amended soils, because of their high water-soluble organic carbon values which could enhance MCPA mobility, especially in the acidic soils. Therefore, the application of DW as organic amendment in Mediterranean agricultural soils could be an important management strategy to reduce MCPA leaching, especially if the organic matter had been previously transformed by ageing processes.

  13. Barley seedling growth in soils amended with fly ash or agricultural lime followed by acidification

    SciTech Connect

    Renken, R.R.; McCallister, D.L.; Tarkalson, D.D.; Hergert, G.W.; Marx, D.B.

    2006-05-15

    Calcium-rich coal combustion fly ash can be used as an amendment to neutralize soil acidity because of its oxides and carbonate content, but its aluminum content could inhibit plant growth if soil pH values fall below optimal agronomic levels. This study measured root and shoot growth of an acid-sensitive barley (Hordeum vulgare L. 'Kearney') grown in the greenhouse on three naturally acid soils. The soils were either untreated or amended with various liming materials (dry fly ash, wet fly ash, and agricultural lime) at application rates of 0, .5, 1, and 1.5 times the recommended lime requirement, then treated with dilute acid solutions to simulate management-induced acidification. Plant growth indexes were measured at 30 days after planting. Root mass per plant and root length per plant were greater for the limed treatments than in the acidified check. Root growth in the limed treatments did not differ from root growth in the original nonacidified soils. Top mass per plant in all limed soils was either larger than or not different from that in the original nonacidified soils. Based on top mass per plant, no liming material or application rate was clearly superior. Both fly ash and agricultural lime reduced the impact of subsequent acidification on young barley plants. Detrimental effects of aluminum release on plant growth were not observed. Calcium-rich fly ash at agronomic rates is an acceptable acid-neutralizing material with no apparent negative effects.

  14. Chloropicrin Emission Reduction by Soil Amendment with Biochar

    PubMed Central

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP’s bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g-1. There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  15. Chloropicrin Emission Reduction by Soil Amendment with Biochar.

    PubMed

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP's bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g(-1). There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  16. Chloropicrin Emission Reduction by Soil Amendment with Biochar.

    PubMed

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP's bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g(-1). There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  17. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  18. Biochemical parameters and bacterial species richness in soils contaminated by sludge-borne metals and remediated with inorganic soil amendments.

    PubMed

    Mench, Michel; Renella, Giancarlo; Gelsomino, Antonio; Landi, Loretta; Nannipieri, Paolo

    2006-11-01

    The effectiveness of two amendments for the in situ remediation of a Cd- and Ni-contaminated soil in the Louis Fargue long-term field experiment was assessed. In April 1995, one replicate plot (S1) was amended with 5% w/w of beringite (B), a coal fly ash (treatment S1+B), and a second plot with 1% w/w zerovalent-Fe iron grit (SS) (treatment S1+SS), with the aim of increasing metal sorption and attenuating metal impacts. Long-term responses of daily respiration rates, microbial biomass, bacterial species richness and the activities of key soil enzymes (acid and alkaline phosphatase, arylsulfatase, beta-glucosidase, urease and protease activities) were studied in relation to soil metal extractability. Seven years after initial amendments, the labile fractions of Cd and Ni in both the S1+B and S1+SS soils were reduced to various extents depending on the metal and fractions considered. The soil microbial biomass and respiration rate were not affected by metal contamination and amendments in the S1+B and S1+SS soils, whereas the activity of different soil enzymes was restored. The SS treatment was more effective in reducing labile pools of Cd and Ni and led to a greater recovery of soil enzyme activities than the B treatment. Bacterial species richness in the S1 soil did not alter with either treatment. It was concluded that monitoring of the composition and activity of the soil microbial community is important in evaluating the effectiveness of soil remediation practices.

  19. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments.

    PubMed

    Mele, Elena; Donner, Erica; Juhasz, Albert L; Brunetti, Gianluca; Smith, Euan; Betts, Aaron R; Castaldi, Paola; Deiana, Salvatore; Scheckel, Kirk G; Lombi, Enzo

    2015-11-17

    This study aimed to assess and compare the in vitro and in vivo bioaccessibility/bioavailability of As and Pb in a mining contaminated soil (As, 2267 mg kg(-1); Pb, 1126 mg kg(-1)), after the addition of conventional (phosphoric acid), opportunistic [water treatment residues (WTRs)], and engineered [nano- and microscale zero valent iron (ZVI)] amendments. Phosphoric acid was the only amendment that could significantly decrease Pb bioaccessibility with respect to untreated soil (41 and 47% in the gastric phase and 2.1 and 8.1% in the intestinal phases, respectively), giving treatment effect ratios (TERs, the bioaccessibility in the amended soil divided by the bioaccessibility in the untreated soil) of 0.25 and 0.87 in the gastric and intestinal phase, respectively. The in vivo bioavailability of Pb decreased in the phosphate treatment relative to the untreated soil (6 and 24%, respectively), and also in the Fe WTR 2% (12%) and nZVI-2 (13%) treatments. The ZVI amendments caused a decrease in As bioaccessibility, with the greatest decrease in the nZVI2-treated soil (TERs of 0.59 and 0.64 in the gastric and intestinal phases, respectively). Arsenic X-ray absorption near-edge spectroscopy analysis indicated that most of the As in the untreated soil was present as As(V) associated with Fe mineral phases, whereas in the treated soil, the proportion of arsenosiderite increased. Arsenite was present only as a minor species (3-5%) in the treated soils, with the exception of an nZVI treatment [∼14% of As(III)], suggesting a partial reduction of As(V) to As(III) caused by nZVI oxidation.

  20. In Situ Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments.

    PubMed

    Mele, Elena; Donner, Erica; Juhasz, Albert L; Brunetti, Gianluca; Smith, Euan; Betts, Aaron R; Castaldi, Paola; Deiana, Salvatore; Scheckel, Kirk G; Lombi, Enzo

    2015-11-17

    This study aimed to assess and compare the in vitro and in vivo bioaccessibility/bioavailability of As and Pb in a mining contaminated soil (As, 2267 mg kg(-1); Pb, 1126 mg kg(-1)), after the addition of conventional (phosphoric acid), opportunistic [water treatment residues (WTRs)], and engineered [nano- and microscale zero valent iron (ZVI)] amendments. Phosphoric acid was the only amendment that could significantly decrease Pb bioaccessibility with respect to untreated soil (41 and 47% in the gastric phase and 2.1 and 8.1% in the intestinal phases, respectively), giving treatment effect ratios (TERs, the bioaccessibility in the amended soil divided by the bioaccessibility in the untreated soil) of 0.25 and 0.87 in the gastric and intestinal phase, respectively. The in vivo bioavailability of Pb decreased in the phosphate treatment relative to the untreated soil (6 and 24%, respectively), and also in the Fe WTR 2% (12%) and nZVI-2 (13%) treatments. The ZVI amendments caused a decrease in As bioaccessibility, with the greatest decrease in the nZVI2-treated soil (TERs of 0.59 and 0.64 in the gastric and intestinal phases, respectively). Arsenic X-ray absorption near-edge spectroscopy analysis indicated that most of the As in the untreated soil was present as As(V) associated with Fe mineral phases, whereas in the treated soil, the proportion of arsenosiderite increased. Arsenite was present only as a minor species (3-5%) in the treated soils, with the exception of an nZVI treatment [∼14% of As(III)], suggesting a partial reduction of As(V) to As(III) caused by nZVI oxidation. PMID:26457447

  1. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations.

    PubMed

    Goecke, Paul; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2011-07-01

    The Puchuncaví valley, central Chile, has been exposed to aerial emissions from a copper smelter. Nowadays, soils in the surroundings are sparsely-vegetated, acidic, and metal-contaminated, and their remediation is needed to reduce environmental risks. We assessed effectiveness of lime, fly ash, compost, and iron grit as amendments to immobilize Cu in soils and promote plant growth. Amended soils were cultivated with Lolium perenne for 60 days under controlled conditions. Total dissolved Cu and Cu2+ activity in the soil solution, ryegrass biomass, and Cu accumulation in plant tissues were measured. Addition of lime and fly ash decreased Cu concentrations and Cu2+ activity in the soil solution, increased plant biomass, and reduced shoot Cu concentration below 22 mg kg(-1) (the phytotoxicity threshold for the species). The most effective amendment with respect to the shoot biomass yield was a combination of lime and compost. Water content of the substrate and the K accumulation were positively correlated with the compost application rate. Compost combined with iron grit decreased dissolved Cu concentrations during the period of highest solubility, i.e., during the first 60 days after the compost application. However, iron grit incorporation into soils amended with lime and compost decreased the shoot biomass of ryegrass. PMID:21972502

  2. [Study the restoration technology of concentrated application-natural diffusion about amendments of acidified soil of hilly woodland].

    PubMed

    Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong

    2013-01-01

    Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest.

  3. [Study the restoration technology of concentrated application-natural diffusion about amendments of acidified soil of hilly woodland].

    PubMed

    Fang, Xiong; Liu, Ju-Xiu; Yin, Guang-Cai; Zhao, Liang; Liu, Shi-Zhong; Chu, Guo-Wei; Li, Yi-Yong

    2013-01-01

    Through concentrated application of lime, sewage sludge and lime + sewage sludge on the sloping top of the hilly woodlands, the restoration effects of the three soil amendments on the acidified soil of hilly woodland were studied. The results showed that: (1) Joint application of sewage sludge + lime can significantly (P < 0.05) decrease soil acidity, promote the rapid increase in soil organic matter and nitrogen content, increase soil cation exchange capacity, and effectively improve acidified soil. (2) Through natural diffusion mechanisms of surface and subsurface runoff, a large area of acidified soil of hilly woodlands can be restored by concentrated application of soil amendments on the sloping top of the hilly woodlands. (3) It is conducive to solve the pollution problems of the urban sewage sludge by using municipal sewage sludge to restore acidified soil, but only for the restoration of acidified soil of timber forest. PMID:23487954

  4. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties.

  5. Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology.

    PubMed

    Gómez, Isidoro; Rodríguez-Morgado, Bruno; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2014-05-30

    We performed a laboratory study on the effect of oxyfluorfen at a rate of 4lha(-1) on biological properties of a soil amended with four organic wastes (two biostimulants/biofertilizers, obtained from rice bran, RB1 and RB2; municipal solid waste, MSW; and sheep manure, SM). Soil was mixed with SM at a rate of 1%, MSW at a rate of 0.52%, RB1 at a rate of 0.39% and RB2 at a rate of 0.30%, in order to apply the same amount of organic matter to the soil. The enzymatic activities and microbial community in the soil were determined during the incubation times. The application of RB1 and RB2 to soil without oxyfluorfen increased the enzymatic activities and biodiversity, peaking at day 10 of the incubation period. This stimulation was higher in the soil amended with RB2 than in that amended with RB1. In SM and CF-amended soils, the stimulation of enzymatic activities and soil biodiversity increased during the experiment. The application of herbicide in organic-amended soils decreased the inhibition of soil enzymatic activities and soil biodiversity. Possibly the low molecular weight protein content easily assimilated by soil microorganisms and the higher fat content in the biostimulants/biofertilizers are responsible for the lower inhibition of these soil biological properties. PMID:24742665

  6. Microbial response to salinity stress in a tropical sandy soil amended with native shrub residues or inorganic fertilizer.

    PubMed

    Sall, Saïdou Nourou; Ndour, Ndèye Yacine Badiane; Diédhiou-Sall, Siré; Dick, Richard; Chotte, Jean-Luc

    2015-09-15

    Soil degradation and salinization caused by inappropriate cultivation practices and high levels of saltwater intrusion are having an adverse effect on agriculture in Central Senegal. The residues of Piliostigma reticulatum, a local shrub that coexists with crops, were recently shown to increase particulate organic matter and improve soil quality and may be a promising means of alleviating the effects of salinization. This study compared the effects of inorganic fertilizer and P. reticulatum residues on microbial properties and the ability of soil to withstand salinity stress. We hypothesized that soils amended with P. reticulatum would be less affected by salinity stress than soils amended with inorganic fertilizer and control soil. Salinity stress was applied to soil from a field site that had been cultivated for 5 years under a millet/peanut crop rotation when microbial biomass, phospholipid fatty acid (PLFA) community profile, catabolic diversity, microbial activities were determined. Microbial biomass, nitrification potential and dehydrogenase activity were higher by 20%, 56% and 69% respectively in soil with the organic amendment. With salinity stress, the structure and activities of the microbial community were significantly affected. Although the biomass of actinobacteria community increased with salinity stress, there was a substantial reduction in microbial activity in all soils. The soil organically amended was, however, less affected by salinity stress than the control or inorganic fertilizer treatment. This suggests that amendment using P. reticulatum residues may improve the ability of soils to respond to saline conditions.

  7. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    PubMed Central

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  8. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59. PMID:24912231

  9. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59.

  10. The feasibility of planting on stabilized sludge-amended soil

    SciTech Connect

    Chu, C.W.; Poon, C.S.

    1999-05-01

    The feasibility of growing plants on stabilized anaerobically-digested sludge from a local secondary sewage treatment plant (STP) and stabilized chemically-modified sludge from a pilot chemically-assisted primary treatment plant were studied. Apropyron elongatum (tall wheat grass) was used in this research study. A sandy soil obtained locally was amended by the addition of the lime/pulverized fuel ash (PFA) stabilized sewage sludge at the rates of 0, 25, 50, 100, and 200 g/kg. The total shoot yield of the grass harvested from the amended soil was significantly higher than that of the natural soil. The optimum application rates that achieved the highest yield for digested sludge and chemically-modified sludge-amended soils were 50 g/kg and 25 g/kg, respectively. Applying the stabilized digested sludge to the soil reduced Zn, Cr, and P but increased Cu, Cd, N, and K concentrations in the root tissues of the grass. The Ni, Cr, B, and K concentrations in the shoot were increased with the addition of stabilized digested sludge amended soil. For the chemically-modified sludge samples, the concentrations of the metal conaminants as well as the nutrient levels of the crops (both in the shoot and root tissues) grown in the stabilized amended soil were increased as compared to the control. However, all the trace metal concentrations in the crop were below stipulated toxicity levels. The experimental results indicate that it is feasible to plant on a mixture of natural soil and stabilized sewage sludge provided the dosage applied is carefully controlled.

  11. Fenhexamid adsorption behavior on soil amended with wine lees.

    PubMed

    Pinna, Maria Vittoria; Budroni, Marilena; Farris, Giovanni Antonio; Pusino, Alba

    2008-11-26

    The adsorption of fenhexamid (FEN) [N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide] on vineyard soil amended with wine lees (WL) produced by vinery was studied. The adsorption extent depends on WL fraction. The addition of the centrifuged solid lees (SWL) increases the FEN adsorption on soil. Most likely, the organic insoluble fraction formed mainly by dead fermentation yeasts is responsible for the observed increase. The adsorption measured on some deactivated yeasts of wine fermentation shows that Saccharomyces cerevisiae are the most active in FEN retention. On the other hand, the soil amendment with whole WL decreases considerably the fungicide adsorption. This opposite effect may be the result of FEN hydrophobic bonds with the dissolved organic matter of lees that keeps fungicide in solution. This hypothesis is substantiated by the increased FEN solubility in the supernatant of centrifuged wine lees (LWL). The results of soil column mobility confirm that the elution with LWL increases the mobility of FEN in soil.

  12. Efficacy of 1,3-Dichloropropene in Soil Amended with Compost and Unamended Soil

    PubMed Central

    Riegel, C.; Nelson, S. D.; Dickson, D. W.; Allen, L. H.; Peterson, L. G.

    2001-01-01

    1,3-Dichloropropene (1,3-D) is a likely alternative soil fumigant for methyl bromide. The objective was to determine root-knot nematode, Meloidogyne incognita, survival in microplots after exposure to 1,3-D for various periods of time in soil that have previously been amended with compost. The treatments were 1,3-D applied broadcast at 112 liters/ha and untreated controls in both compost-amended and unamended soil. Soil samples were collected from each microplot at 6, 24, 48, 72, and 96 hours after fumigation at three depths (0-15, 15-30, and 30-45 cm). One week after fumigation, six tomato seedlings were transplanted into each microplot and root galling was recorded 6 weeks later. Plants grown in fumigated compost-amended soil had more galls than plants from fumigated unamended soil at P ≤ 0.1. Gall indices from roots in fumigated soil amended with compost were not different from nonfumigated controls. Based on soil bioassays, the number of galls decreased with increasing time after fumigation in both compost-amended and unamended soil at 0-to-15 and 15-to-30 cm depths, but not at 30 to 45 cm deep. Higher soil water content due to the elevated levels of organic matter in the soil at these depths may have interfered with 1,3-D movement, thus reducing its efficacy. PMID:19265889

  13. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties.

  14. Effects of organic amendments and mulches on soil microbial communities in quarry restoration under semiarid climate

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Pastorelli, Roberta; Miralles Mellado, Isabel; Fabiani, Arturo; Bastida López, Felipe; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2015-04-01

    Mining activities generate loss of the quality of the environment and landscape specially in arid and semiarid Mediterranean regions. A precondition for ecosystem reclamation in such highly disturbed mining areas is the development of functional soils with appropriate levels of organic matter. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, 9 plots 15 x 5 m were prepared to test organic amendments (compost from solid urban residues-DOW-, sludge from urban water treatment-SS-, control-NA-) and different mulches (fine gravel-GM-, wood chips-WM-, control-NM-) with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot, 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. After 5 years from the start of the experiment, we evaluated how microbial community composition responded to the organic amendments and mulches. Microbial community composition of both bacteria and fungi was determined by phospholipid fatty acid (PLFA) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The results of the two-way ANOVA showed that PLFAs were significantly affected by organic amendments but not by the mulches or interaction of both factors. Experimental plots with DOW showed significantly higher level of fungal PLFAs than those with SS and NA, even higher than the reference undisturbed soil. However, any plot with organic amendments did not reach the content of bacterial PLFAs of the reference soils. The bacterial diversity (evaluated by diversity indices calculated from DGGE profiles) was greater in soil samples taken under NA and GM. Comparing these indices in fungal DGGE, we found greater values for soil samples taken under DOW and without mulches. Results from UPGMA analysis showed significant differences in the structure of soil bacterial communities from the different treatments

  15. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances.

    PubMed

    Hattab, N; Soubrand, M; Guégan, R; Motelica-Heino, M; Bourrat, X; Faure, O; Bouchardon, J L

    2014-09-01

    The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability. PMID:24854499

  16. Application of mesotrione at different doses in an amended soil: Dissipation and effect on the soil microbial biomass and activity.

    PubMed

    Pose-Juan, Eva; Sánchez-Martín, María Jesús; Herrero-Hernández, Eliseo; Rodríguez-Cruz, María Sonia

    2015-12-01

    The aim of this work was to estimate the dissipation of mesotrione applied at three doses (2, 10 and 50 mg kg(-1) dw) in an unamended agricultural soil, and this same soil amended with two organic residues (green compost (C) and sewage sludge (SS)). The effects of herbicide and organic residue on the abundance and activity of soil microbial communities were also assessed by determining soil microbial parameters such as biomass, dehydrogenase activity (DHA), and respiration. Lower dissipation rates were observed for a higher herbicide dose. The highest half-life (DT50) values were observed in the SS-amended soil for the three herbicide doses applied. Biomass values increased in the amended soils compared to the unamended one in all the cases studied, and increased over the incubation period in the SS-amended soil. DHA mean values significantly decreased in the SS-amended soil, and increased in the C-amended soil compared to the unamended ones, under all conditions. At time 0 days, respiration values were significantly higher in SS-amended soils (untreated and treated with mesotrione) than in the unamended and C-amended soils. The effect of mesotrione on soil biomass, DHA and respiration was different depending on incubation time and soil amendment and herbicide dose applied. The results support the need to consider the possible non-target effects of pesticides and organic amendments simultaneously applied on soil microbial communities to prevent negative impacts on soil quality. PMID:26188530

  17. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    EPA Science Inventory

    Purpose: Biochars are a soil amendment produced from lignocellulosic and manure feedstocks. Not all biochars are viable soil amendments because of differences in their physical and chemical properties. Biochar could deliver more effective service as a soil amendment if its chemis...

  18. SPECTROSCOPIC SPECIATION AND QUANTIFICATION OF LEAD IN PHOSPHATE AMENDED SOILS

    EPA Science Inventory

    The immobilization of Pb in contaminated soils as pyromorphite [Pb5(PO4)3CI, OH, F] through the addition of various phosphate amendments has gained much attention in the remediation community. However, it is difficult to fully determine the specia...

  19. Modeling nitric oxide emissions from biosolid amended soils

    NASA Astrophysics Data System (ADS)

    Roelle, Paul A.; Aneja, Viney P.; Mathur, Rohit; Vukovich, Jeff; Peirce, Jeffrey

    Utilizing a state-of-the-art mobile laboratory in conjunction with a dynamic flow-through chamber system, nitric oxide concentrations [NO] were measured and NO fluxes were calculated during the summer, winter and spring of 1999/2000. The field site where these measurements were conducted was an agricultural soil amended with biosolids from a municipal wastewater treatment facility. These NO flux values were then used to assess the impact of including biosolid amended soils as a land-use class in an air quality model. The average NO flux from this biosolid amended soil was found to be exponentially dependent on soil temperature [NO Flux ( ng N m-2 s-1)=1.07 exp(0.14 T soil) ; R2=0.81—NO Flux=71.3 ng N m -2 s-1 at 30°C]. Comparing this relationship to results of the widely applied biogenic emissions inventory system (BEIS2) model revealed that for this field site, if the BEIS2 model was used, the NO emissions would have been underestimated by a factor of 26. Using this newly developed NO flux algorithm, combined with North Carolina Division of Water Quality statistics on how many biosolid amended acres are permitted per county, county-based NO inventories from these biosolid amended soils were calculated. Results from this study indicate that county-level biogenic NO emissions can increase by as much as 18% when biosolid amended soils are included as a land-use class. The multiscale air quality simulation platform (MAQSIP) was then used to determine differences in ozone (O 3) and odd-reactive nitrogen compounds (NO y) between models run with and without the biosolid amended acreages included in the inventory. Results showed that during the daytime, when atmospheric mixing heights are typically at their greatest, any increase in O 3 or NO y concentrations predicted by the model were small (<3%). In some locations during late evening/early morning hours, ozone was found to be consumed by as much as 11%.

  20. Metal and nanoparticle occurrence in biosolid-amended soils.

    PubMed

    Yang, Yu; Wang, Yifei; Westerhoff, Paul; Hristovski, Kiril; Jin, Virginia L; Johnson, Mari-Vaughn V; Arnold, Jeffrey G

    2014-07-01

    Metals can accumulate in soils amended with biosolids in which metals have been concentrated during wastewater treatment. The goal of this study is to inspect agricultural sites with long-term biosolid application for a suite of regulated and unregulated metals, including some potentially present as commonly used engineered nanomaterials (ENMs). Sampling occurred in fields at a municipal and a privately operated biosolid recycling facilities in Texas. Depth profiles of various metals were developed for control soils without biosolid amendment and soils with different rates of biosolid application (6.6 to 74 dry tons per hectare per year) over 5 to 25 years. Regulated metals of known toxicity, including chromium, copper, cadmium, lead, and zinc, had higher concentrations in the upper layer of biosolid-amended soils (top 0-30 cm or 0-15 cm) than in control soils. The depth profiles of unregulated metals (antimony, hafnium, molybdenum, niobium, gold, silver, tantalum, tin, tungsten, and zirconium) indicate higher concentrations in the 0-30 cm soil increment than in the 70-100 cm soil increment, indicating low vertical mobility after entering the soils. Titanium-containing particles between 50 nm and 250 nm in diameter were identified in soil by transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDX) analysis. In conjunction with other studies, this research shows the potential for nanomaterials used in society that enter the sewer system to be removed at municipal biological wastewater treatment plants and accumulate in agricultural fields. The metal concentrations observed herein could be used as representative exposure levels for eco-toxicological studies in these soils. PMID:24742554

  1. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-08-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.

  2. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    PubMed Central

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-01-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495

  3. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability.

    PubMed

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-01-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495

  4. Addition of organic amendments contributes to C sequestration in trace element contaminated soils.

    NASA Astrophysics Data System (ADS)

    del Mar Montiel Rozas, María; Panettier, Marco; Madejón Rodríguez, Paula; Madejón Rodríguez, Engracia

    2015-04-01

    Nowadays, the study of global C cycle and the different natural sinks of C have become especially important in a climate change context. Fluxes of C have been modified by anthropogenic activities and, presently, the global objective is the decrease of net CO2 emission. For this purpose, many studies are being conducted at local level for evaluate different C sequestration strategies. These techniques must be, in addition to safe in the long term, environmentally friendly. Restoration of contaminated and degraded areas is considered as a strategy for SOC sequestration. Our study has been carried out in the Guadiamar Green Corridor (Seville, Spain) affected by the Aznalcóllar mining accident. This accident occurred 16 years ago, due to the failure of the tailing dam which contained 4-5 million m3 of toxic tailings (slurry and acid water).The affected soils had a layer of toxic sludge containing heavy metals as As, Cd, Cu, Pb and Zn. Restoration techniques began to be applied just after the accident, including the removal of the toxic sludge and a variable layer of topsoil (10-30 cm) from the surface. In a second phase, in a specific area (experimental area) of the Green Corridor the addition of organic amendments (Biosolid compost (BC) and Leonardite (LE), a low grade coal rich in humic acids) was carried out to increase pH, organic matter and fertility in a soil which lost its richest layer during the clean-up operation. In our experimental area, half of the plots (A) received amendments for four years (2002, 2003, 2006 and 2007) whereas the other half (B) received amendments only for two years (2002-2003). To compare, plots without amendments were also established. Net balance of C was carried out using values of Water Soluble Carbon (WSC) and Total Organic Carbon (TOC) for three years (2012, 2013 and 2015). To eliminate artificial changes carried out in the plots, amendment addition and withdrawal of biomass were taken into account to calculate balance of kg TOC

  5. Changes in toxicity and bioavailability of lead in contaminated soils to the earthworm Eisenia fetida (Savigny 1826) after bone meal amendments to the soil.

    PubMed

    Davies, Nicola A; Hodson, Mark E; Black, Stuart

    2002-12-01

    soil for bone meal-amended soil. Significant mortalities occurred at Pb concentrations of 2,000 microg/g of soil in the bone meal-free soil and 5,000 microg/g of soil in the bone meal-amended soil. Earthworm Pb body load was lower in the bone meal-treated soil than in the bone meal-free soil up to a Pb concentration of 5,000 microg/g of soil. Earthworm Pb body load was approximately 100 microg/g of worm in surviving earthworms in both experiments when significant mortality occurred. Water and diethylenetriamine pentaacetic acid-extractable soil Pb showed good correlations with earthworm Pb body load. These extractions could be used as estimates for Pb bioavailability.

  6. Biodegradation of triclosan in biosolids-amended soils.

    PubMed

    Waria, Manmeet; O'Connor, George A; Toor, Gurpal S

    2011-11-01

    Land application of biosolids can constitute an important source of triclosan (TCS) input to soils, with uncertain effects. Several studies have investigated the degradation potential of TCS in biosolids-amended soils, but the results vary widely. We conducted a laboratory degradation study by mixing biosolids spiked with [¹⁴C]-TCS (final concentration = 40 mg/kg) with Immokalee fine sand and Ashkum silty clay loam soils at an agronomic application rate (22 Mg/ha). Biosolids-amended soils were aerobically incubated in biotic and inhibited conditions for 18 weeks. Subsamples removed at 0, 2, 4, 6, 9, 12, 15, and 18 weeks were sequentially extracted with an operationally defined extraction scheme to determine labile and nonlabile TCS fractions. Over the 18-week incubation, the proportion of [¹⁴C] in the nonlabile fraction increased and the labile fraction decreased, suggesting decreasing availability to biota. Partitioning of TCS into labile and nonlabile fractions depended on soil characteristics. Less than 0.5% of [¹⁴C]-TCS was mineralized to carbon dioxide (¹⁴CO₂) in both soils and all treatments. A degradation metabolite, methyl triclosan (Me-TCS), was identified in both soils only in the biotic treatment, and increased in concentration over time. Even under biotic conditions, biosolids-borne TCS is persistent, with a primary degradation (TCS to Me-TCS) half-life of 78 d in the silty clay loam and 421 d in the fine sand. A half-life of approximately 100 d would be a conservative first approximation of TCS half-life in biosolids-amended soils for risk estimation.

  7. Use of a multi-layer column device for study on leachability of nitrate in sludge-amended soils.

    PubMed

    Luo, Yongming; Qiao, Xianliang; Song, Jing; Christie, Peter; Wong, Minghung

    2003-09-01

    This paper described a multi-layer column device constructed with six cylindrical polythene tubes with installation of Rhizon soil moisture samplers (Rhizon SMS). The feasibility of using the column device to collect soil solution and percolate and to monitor leachability of nitrate in two sludge-amended soils was evaluated under glasshouse conditions. The soil moisture sampler in the device was demonstrated to be a non-destructive, simultaneous, sequential, convenient and rapid sampling tool for multiple-site porewater extraction. The device provided an in situ monitoring technique for leachability of nitrate in a soil profile following application of the anaerobically digested sewage sludge. The monitored results showed that surface soil amendment of the sewage sludge increased markedly the concentration of nitrate in the soil solutions at depths of 10-30 cm in a neutral paddy soil and at 30-50 cm in an acid red paddy soil. This amendment also largely increased nitrate in the percolates of the acid red soil. The movement and distribution patterns of nitrate in the profile were related to soil types, profile depths and experimental periods. Land application of sewage sludge may pose a risk in groundwater contamination of nitrate.

  8. Extractability of zinc, cadmium, and nickel in soils amended with EDTA

    SciTech Connect

    Li, Zhenbin; Shuman, L.M.

    1996-04-01

    Synthetic chelating agents are produced in large quantities for use in many industrial applications. Certain chelates, such as ethylenediaminetetraacetic acid (EDTA), are persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd, and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd, and Ni were added to a portion of eight Georgia topsoil samples at rates of 75.9, 1.62, and 4.30 mg kg{sup -1}, respectively. Both natural and metal-amended soils were treated with Na{sub 2-}EDTA at rates of 0, 1.0, and 2.0 g kg{sup -1}. After 5 months of incubation, soil samples were extracted with Mehlich-1, DTPA (diethylenetriamine-pentaacetic acid) and 1 M Mg(NO{sub 3}){sub 2}, the latter of which extracts the exchangeable form of metals. Results showed that Zn and Ni in Mehlich-1 and DTPA extractions increased with increasing rates of EDTA. The increase for Cd was not as great as for Zn or Ni. Similar changes were found for the Mg(NO{sub 3}){sub 2} extraction. As a percentage of total metal concentration, the Mehlich-1 and DTPA extractable Zn was greater than Ni in the natural soils, and the order for the metal-amended soils was Cd > Zn > Ni. The results also suggested that EDTA significantly elevated the extractability of Zn and Ni in both natural and metal-amended soils. The order of mobility based on extractability was: Cd > Zn > Ni for metals added to soils, but when EDTA was present, added Ni was more extractable than Zn or Cd. 36 refs., 5 tabs.

  9. Evolution of plant colonization in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose Alberto; Faz, Ángel; Kabas, Sebla; Zornoza, Raúl; Martínez-Martínez, Silvia

    2014-05-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on plant cover establishment, as a consequence of metal immobilization and the improvement of soil properties. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Identification of plant species and biodiversity was determined on each plot, after 2, 4, 6 and 8 months of amendment addition. The results showed that, in those plots without application of microorganism, 8 months after applications the number of species and individuals of each

  10. Atrazine leaching from biochar-amended soils.

    PubMed

    Delwiche, Kyle B; Lehmann, Johannes; Walter, M Todd

    2014-01-01

    The herbicide atrazine is used extensively throughout the United States, and is a widespread groundwater and surface water contaminant. Biochar has been shown to strongly sorb organic compounds and could be used to reduce atrazine leaching. We used lab and field experiments to determine biochar impacts on atrazine leaching under increasingly heterogeneous soil conditions. Application of pine chip biochar (commercially pyrolyzed between 300 and 550 °C) reduced cumulative atrazine leaching by 52% in homogenized (packed) soil columns (p=0.0298). Biochar additions in undisturbed soil columns did not significantly (p>0.05) reduce atrazine leaching. Mean peak groundwater atrazine concentrations were 53% lower in a field experiment after additions of 10 t ha(-1) acidified biochar (p=0.0056) relative to no biochar additions. Equivalent peat applications by dry mass had no effect on atrazine leaching. Plots receiving a peat-biochar mixture showed no reduction, suggesting that the peat organic matter may compete with atrazine for biochar sorption sites. Several individual measurement values outside the 99% confidence interval in perched groundwater concentrations indicate that macropore structure could contribute to rare, large leaching events that are not effectively reduced by biochar. We conclude that biochar application has the potential to decrease peak atrazine leaching, but heterogeneous soil conditions, especially preferential flow paths, may reduce this impact. Long-term atrazine leaching reductions are also uncertain. PMID:24129000

  11. Atrazine leaching from biochar-amended soils.

    PubMed

    Delwiche, Kyle B; Lehmann, Johannes; Walter, M Todd

    2014-01-01

    The herbicide atrazine is used extensively throughout the United States, and is a widespread groundwater and surface water contaminant. Biochar has been shown to strongly sorb organic compounds and could be used to reduce atrazine leaching. We used lab and field experiments to determine biochar impacts on atrazine leaching under increasingly heterogeneous soil conditions. Application of pine chip biochar (commercially pyrolyzed between 300 and 550 °C) reduced cumulative atrazine leaching by 52% in homogenized (packed) soil columns (p=0.0298). Biochar additions in undisturbed soil columns did not significantly (p>0.05) reduce atrazine leaching. Mean peak groundwater atrazine concentrations were 53% lower in a field experiment after additions of 10 t ha(-1) acidified biochar (p=0.0056) relative to no biochar additions. Equivalent peat applications by dry mass had no effect on atrazine leaching. Plots receiving a peat-biochar mixture showed no reduction, suggesting that the peat organic matter may compete with atrazine for biochar sorption sites. Several individual measurement values outside the 99% confidence interval in perched groundwater concentrations indicate that macropore structure could contribute to rare, large leaching events that are not effectively reduced by biochar. We conclude that biochar application has the potential to decrease peak atrazine leaching, but heterogeneous soil conditions, especially preferential flow paths, may reduce this impact. Long-term atrazine leaching reductions are also uncertain.

  12. Biochar: A soil amendment worth considering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a fine-grained, carbon enriched product created when biomass (e.g. wood waste, manures) is burned at relatively low temperatures (less than 1300oF) and under an anoxic (lack of oxygen) atmosphere. The benefits of biochar addition to soils have long since been recognized. Amazonian dark ...

  13. Effect of organic waste amendments on zinc adsorption by two soils

    SciTech Connect

    Shuman, L.M. . Georgia Experiment station)

    1999-03-01

    Two soils (fine and coarse textured) were amended with five organic wastes or humic acid. One adsorption experiment was carried out at 1 mmol L[sup [minus]1] Zn and at pH levels from 4 to 8. A second experiment was at pH 6 and 0 to 4 mmol/L[sup [minus]1] Zn. The greatest variation in Zn adsorption among organic treatments came at pH 6, with a lesser range for the fine textured soil (pH 5--6) and a wider range for the sandy soil (pH 5--7). Adsorption followed a two-site Langmuir model, and maxima were higher for the finer textured soil compared with the sandy soil. Adsorption maxima were not changed by the organic wastes for the fine textured soil, but all were increased over the controls for the sandy soil. Zinc adsorption for poultry litter was lower than the control for the sandy soil. Industrial sewage sludge and humic acid increased Zn adsorption more than did commercial compost, spent mushroom compost, and cotton litter. It was concluded that organic materials have more influence on Zn adsorption for sandy soils than for fine textured soils and that most materials will increase Zn adsorption, whereas those with high soluble C can decrease Zn adsorption.

  14. SORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLIDS AND CADMIUM SALT AMENDED SOILS

    EPA Science Inventory

    Biosolids and Cd salt-amended soils were collected from a long-term field experiment established in 1976. Cadmium sorption experiments were conducted on different fractions of soils amended with biosolids, Cd salt, and unamended soils (control). The organic carbon (OC) of soils ...

  15. Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil.

    PubMed

    Li, Xiaojing; Wang, Xin; Ren, Zhiyong Jason; Zhang, Yueyong; Li, Nan; Zhou, Qixing

    2015-12-01

    Bioelectrochemical system is an emerging technology for the remediation of soils contaminated by petroleum hydrocarbons. However, performance of such systems can be limited by the inefficient mass transport in soil. Here we report a new method of sand amendment, which significantly increases both oxygen and proton transports, resulting to increased soil porosity (from 44.5% to 51.3%), decreased Ohmic resistance (by 46%), and increased charge output (from 2.5 to 3.5Cg(-1)soil). The degradation rates of petroleum hydrocarbons increased by up to 268% in 135d. The degradation of n-alkanes and polycyclic aromatic hydrocarbons with high molecular weight was accelerated, and denaturing gradient gel electrophoresis showed that the microbial community close to the air-cathode was substantially stimulated by the induced current, especially the hydrocarbon degrading bacteria Alcanivorax. The bioelectrochemical stimulation imposed a selective pressure on the microbial community of anodes, including that far from the cathode. These results suggested that sand amendment can be an effective approach for soil conditioning that will enhances the bioelectrochemical removal of hydrocarbons in contaminated soils.

  16. Dissipation of fragrance materials in sludge-amended soils.

    PubMed

    DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T

    2004-01-01

    A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.

  17. Vanadium bioavailability in soils amended with blast furnace slag.

    PubMed

    Larsson, Maja A; Baken, Stijn; Smolders, Erik; Cubadda, Francesco; Gustafsson, Jon Petter

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg(-1)) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  18. Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils

    USGS Publications Warehouse

    Arai, Y.; Livi, K.J.T.; Sparks, D.L.

    2005-01-01

    Eutrophication caused by dissolved P from poultry litter (PL)-amended agricultural soils has been a serious environmental concern in the Delaware-Maryland-Virginia Peninsula (Delmarva), USA. To evaluate state and federal nutrient management strategies for reducing the environmental impact of soluble P from long-term PL-amended Delaware (DE) soils, we investigated (i) inorganic P speciation; (ii) P adsorption capacity; and (iii) the extent of P desorption. Although the electron microprobe (EMP) analyses showed a strong correlation between P and Al/Fe, crystalline Al/Fe-P precipitates were not detected by x-ray diffraction (XRD). Instead, the inorganic P fractionation analyses showed high levels of oxalate extractable P, Al, and Fe fractions (615-858, 1215-1478, and 337-752 mg kg-1, respectively), which were susceptible to slow release during the long-term (30-d) P desorption experiments at a moderately acidic soil pHwater. The labile P in the short-term (24-h) desorption studies was significantly associated with oxalate and F extractable Fe and Al, respectively. This was evident in an 80% reduction maximum in total desorbable P from NH4 oxalate/F pretreated soils. In the adsorption experiments, P was strongly retained in soils at near targeted pH of lime (???6.0), but P adsorption gradually decreased with decreasing pH near the soil pHwater (???5.0). The overall findings suggest that P losses from the can be suppressed by an increase in the P retention capacity of soils via (i) an increase in the number of lime applications to maintain soil pHwater at near targeted pH values, and/or (ii) alum/iron sulfate amendments to provide additional Al- and Fe-based adsorbents. ?? Soil Science Society of America.

  19. Effects of Organic Amendments and Tillage on Soil Microorganisms and Microfauna

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of organic amendment and tillage on the soil food web at two depths in a field experiment was investigated. Over a three-year period, field plots received seasonal organic amendments, and the amendments were either incorporated into the soil (tilled) or not (no-till) as part of a tomato:...

  20. Char BC amendments for soil and sediment amelioration: BC quantification and field pilot trials

    NASA Astrophysics Data System (ADS)

    Cornelissen, G.; Braendli, R. C.; Eek, E.; Henriksen, T.; Hartnik, T.; Breedveld, G. D.

    2008-12-01

    Background Activated char BC binds organic contaminants and possibly mercury so strongly that their bioaccumulation and transport to other environmental compartments are reduced. The advantages of black carbon amendment over many other remediation methods include i) it can be used as an in situ risk reduction method, ii) the price is low, and iii) it overcomes significant controversies associated with disposal of dredged and excavated materials. In this study BC amendment is used in pilot trials in the field for soil and sediment amelioration. Quantification of amended char BC Two methods for char BC quantification were tested: i) chemothermal oxidation (CTO) at a range of temperatures and ii) wet chemical oxidation with a potassium dichromate/sulfuric acid solution. The amount of BC amended to three soils was accurately determined by CTO at 375°C. For two sediments, much of the BC disappeared during combustion at 375°C, which could probably be explained by catalytic effects caused by sediment constituents such as metals, mineral oxides and salts. Attempts to avoid these effects through rinsing with acid before combustion did not result in higher char BC recoveries. CTO at lower temperatures (325-350°C) was a feasible alternative for one of the sediments. Wet oxidation with potassium dichromate/sulfuric acid proved to effectively function for BC quantification in sediments, since almost complete BC recovery (81-92 %) was observed for both sediments, while the amount of organic carbon remaining was low (5-16 %). Field pilots Earlier, we showed the effectiveness of BC amendment in the laboratory. In the laboratory it was shown that BC amendments (2 %) reduced freely dissolved porewater concentrations (factor of 10-50) and bioaccumulation (factor of 5). This presentation will describe 50 × 50 m pilot field trials in Norway (2007-2008): Trondheim Harbor (sediment) and Drammen (soil). The presentation will focus on physical monitoring (distribution of BC in the

  1. Soil amendment with olive mill wastes: impact on groundwater.

    PubMed

    Caputo, Maria Clementina; De Girolamo, Anna Maria; Volpe, Angela

    2013-12-15

    Two sets of soil lysimeters were amended with solid and liquid olive mill wastes and the composition of leachate was analysed. Five treatments were carried out using: olive mill wastewater (OMW) at two different rates (80 and 320 m(3)/ha); OMW pre-treated by catalytical digestion with MnO2; compost obtained by exhausted olive pomace; freshwater as the control. Electric conductivity, pH, potassium, total polyphenols and nitrates were monitored in the leachate as indexes of potential groundwater contamination. The study demonstrated that the impact of all the selected amendments on groundwater was the minimum. OMW was safely applied to soil even at four times the rate allowed by the Italian law, and pre-treatment by catalytical digestion was not necessary to further reduce the impact on groundwater. The application of olive pomace compost was equally safe.

  2. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil.

    PubMed

    Shen, Xin; Huang, Dao-You; Ren, Xue-Fei; Zhu, Han-Hua; Wang, Shuai; Xu, Chao; He, Yan-Bing; Luo, Zun-Chang; Zhu, Qi-Hong

    2016-03-01

    Crop straw biochar incorporation may be a sustainable method of amending soil, but feedstock-related Cd and Pb content is a major concern. We investigated the effects of heavy metal-rich (RC) and -free biochar (FC) on the phytoavailability of Cd and Pb in two acidic metalliferous soils. Biochar significantly increased soil pH and improved plant growth. Pb in soil and plant tissues significantly decreased after biochar application, and a similar pattern was observed for Cd after FC application. RC significantly increased NH4NO3-extractable Cd in both lightly contaminated (YBS) and heavily contaminated soils (RS). The Cd content of plants grown on YBS increased, whereas it decreased on RS. The Cd and Pb input-output balance suggested that RC application to YBS might induce a soil Cd accumulation risk. Therefore, identifying heavy metal contamination in biochar is crucial before it is used as a soil amendment.

  3. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil.

    PubMed

    Shen, Xin; Huang, Dao-You; Ren, Xue-Fei; Zhu, Han-Hua; Wang, Shuai; Xu, Chao; He, Yan-Bing; Luo, Zun-Chang; Zhu, Qi-Hong

    2016-03-01

    Crop straw biochar incorporation may be a sustainable method of amending soil, but feedstock-related Cd and Pb content is a major concern. We investigated the effects of heavy metal-rich (RC) and -free biochar (FC) on the phytoavailability of Cd and Pb in two acidic metalliferous soils. Biochar significantly increased soil pH and improved plant growth. Pb in soil and plant tissues significantly decreased after biochar application, and a similar pattern was observed for Cd after FC application. RC significantly increased NH4NO3-extractable Cd in both lightly contaminated (YBS) and heavily contaminated soils (RS). The Cd content of plants grown on YBS increased, whereas it decreased on RS. The Cd and Pb input-output balance suggested that RC application to YBS might induce a soil Cd accumulation risk. Therefore, identifying heavy metal contamination in biochar is crucial before it is used as a soil amendment. PMID:26720720

  4. Rhizosphere Environment and Labile Phosphorus Release from Organic Waste-Amended Soils.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.

    2015-04-01

    Crop residues and biofertilizers are primary sources of nutrients for organic crop production. However, soils treated with large amounts of nutrient-enriched manure have elevated phosphorus (P) levels in regions of intensive animal agriculture. Surpluses occurred in these amended soils, resulting in large pools of exchangeable inorganic P (Pi) and enzyme-labile organic P (Po) that averaging 30.9 and 68.2 mg kg-1, respectively. Organic acids produced during crop residue decomposition can promote the complexation of counter-ions and decouple and release unbound Pi from metal and alkali metal phosphates. Animal manure and cover crop residues also contain large amounts of soluble organic matter, and likely generate similar ligands. However, a high degree of heterogeneity in P spatial distribution in such amended fields, arising from variances in substrate physical forms ranging from slurries to dried solids, composition, and diverse application methods and equipment. Distinct clusters of Pi and Po were observed, where accumulation of the latter forms was associated with high soil microbial biomass C and reduced phosphomonoesterases' activity. Accurate estimates of plant requirements and lability of soil P pools, and real-time plant and soil P sensing systems are critical considerations to optimally manage manure-derived nutrients in crop production systems. An in situ X-ray fluorescence-based approach to sensing canopy and soil XRFS-P was developed to improve the yield-soil P relationship for optimal nutrient recommendations in addition to allowing in-the-field verification of foliar P status.

  5. Phosphorus mitigation during springtime runoff by amendments applied to grassed soil.

    PubMed

    Uusi-Kämppä, J; Turtola, E; Närvänen, A; Jauhiainen, L; Uusitalo, R

    2012-01-01

    Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones.

  6. Phosphorus mitigation during springtime runoff by amendments applied to grassed soil.

    PubMed

    Uusi-Kämppä, J; Turtola, E; Närvänen, A; Jauhiainen, L; Uusitalo, R

    2012-01-01

    Permanent grass vegetation on sloping soils is an option to protect fields from erosion, but decaying grass may liberate considerable amounts of dissolved reactive P (DRP) in springtime runoff. We studied the effects of freezing and thawing of grassed soil on surface runoff P concentrations by indoor rainfall simulations and tested whether the peak P concentrations could be reduced by amending the soil with P-binding materials containing Ca or Fe. Forty grass-vegetated soil blocks (surface area 0.045 m, depth 0.07 m) were retrieved from two permanent buffer zones on a clay and loam soil in southwest Finland. Four replicates were amended with either: (i) gypsum from phosphoric acid processing (CaSO × 2HO, 6 t ha), (ii) chalk powder (CaCO, 3.3 t ha), (iii) Fe-gypsum (6 t ha) from TiO processing, or (iv) granulated ferric sulfate (Fe[SO], 0.7 t ha), with four replicates serving as untreated controls. Rainfall (3.3 h × 5 mm h) was applied on presaturated samples set at a slope of 5% and the surface runoff was analyzed for DRP, total dissolved P (TDP), total P (TP), and suspended solids. Rainfall simulation was repeated twice after the samples were frozen. Freezing and thawing of the samples increased the surface runoff DRP concentration of the control treatment from 0.19 to 0.46 mg L, up to 2.6-3.7 mg L, with DRP being the main P form in surface runoff. Compared with the controls, surface runoff from soils amended with Fe compounds had 57 to 80% and 47 to 72% lower concentrations of DRP and TP, respectively, but the gypsum and chalk powder did not affect the P concentrations. Thus, amendments containing Fe might be an option to improve DRP retention in, e.g., buffer zones. PMID:22370404

  7. Phytase supplemented poultry diets affect soluble phosphorus and nitrogen in manure and manure-amended soil.

    PubMed

    Pillai, Usha P P; Manoharan, Veeragathipillai; Lisle, Allan; Li, Xiuhua; Bryden, Wayne

    2009-01-01

    Understanding P and N dynamics in manure-amended soil is essential for estimating the environmental impact of manure utilization in land applications. A laboratory incubation study was conducted to assess, (i) the effect of feeding a standard Australian commercial diet, and diets modified with phytase supplementation and reduced nonphytase phosphorus (NPP), on the concentrations of P and N (total and soluble) in the manure derived from layer hens (Gallus domesticus L.), and (ii) the change in water-soluble phoshorus (P(WSP)) and mineral N (NH(4)-N and NO(3)-N) when used as a soil amendment, applied at rates equivalent to 200 kg ha(-1) (200N) and 400 kg ha(-1) (400N). Phytase supplementation increased %P(WSP) by 8 to 12% in the manures, regardless of the levels of NPP in the diets, and in the manure-amended soils by 27 to 30% at the 200N application rate, and up to 54% at the 400N rate. Phytase significantly (P < 0.05) reduced total nitrogen (TN) content (by 12-31%) of the manures but generally produced greater nitrate accumulation in the manure-amended soils. Net nitrification, which commenced 4 wk after incubation, was accompanied by a simultaneous decrease in soil pH (by one pH unit) and a concomitant decline in %P(WSP). The decline in %P(WSP) was primarily attributed to P retention by the soil as it became more acidic. This study suggests that phytase addition not only reduces manure total N content, and increases water-soluble P, but its effects on manure total phosphorus (TP) and 2 mol L(-1) KCl extractable mineral N is influenced by the NPP level in the diet.

  8. Anaerobic soil disinfestation and Brassica seed meal amendment alter soil microbiology and system resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica seed meal amendments and anaerobic soil disinfestation control a spectrum of soil-borne plant pathogens via a diversity of mechanisms. Transformations in microbial community structure and function in certain instances were determinants of disease control and enhanced plant performance. Fo...

  9. Impact of FGD gypsum soil amendment applications on soil and environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper will discuss the utilization of FGD gypsum in agriculture for improving soil quality and other environmental benefits. Gypsum (CaSO4 .2H2O) has been used as an agricultural soil amendment for over 250 years. It is a soluble source of calcium and sulfur- for crops and has been shown to i...

  10. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  11. Potential for Carbon Sequestration using Organic Amendments on Rangeland Soils

    NASA Astrophysics Data System (ADS)

    Ryals, R.; Silver, W. L.

    2009-12-01

    Managed rangelands represent a geographically large land-use footprint and thus have considerable potential to sequester carbon (C) in soil through changes in management practices. Organic amendments are frequently added to agricultural and rangeland soils in an effort to improve fertility and yield, yet little is known about their impact on greenhouse gas dynamics and soil biogeochemical dynamics, especially in rangeland soils. This research aims to explore the effects of organic amendments on soil chemical and physical properties, plant inputs, and soil C and N dynamics in managed rangeland ecosystems. Our research uses field manipulations at two Mediterranean grassland ecosystems replicated within and across bioclimatic zones: the Sierra Foothills Research and Extension Center (SFREC) in Browns Valley, CA and the Nicasio Native Grass Ranch in Nicasio, CA. Both sites are dominated by annual grasses and are moderately grazed by cattle. Three replicate blocks at each site contain 60m x 25m treatment plots (organic amendments and control) with 5m buffer strips. Organic amendments were applied at a level of 14 MgC/ha (equivalent to a 1.27cm surface dressing) at the beginning of the wet season (December 2008). During the wet season (October through June), carbon dioxide (CO2) flux was measured weekly using a LI-8100, while fluxes of methane (CH4) and nitrous oxide (N2O) were measured biweekly using static flux chambers. During the dry season (June through September), fluxes were measured biweekly and monthly, respectively. Soil organic C (SOC) and nitrogen (N) were measured prior to treatment and seven months following treatment at 0-10, 10-30, 30-50, and 50-100 cm depths. Soil moisture and temperature were measured continuously. Changes in oxidative and hydrolytic extracellular enzyme activities are also being explored. After the first year of management, both sites responded similarly to treatments in both trend and magnitude. For example, at SFREC, total soil

  12. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth.

    PubMed

    Castaldi, Paola; Santona, Laura; Melis, Pietro

    2005-07-01

    The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.

  13. Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments.

    PubMed

    Prieto, C; Lozano, J C; Blanco Rodríguez, P; Tomé, F Vera

    2013-04-15

    The effect of three chelating agents (citrate, EDTA, and EDDS) on the solubilization of radium from a granitic soil was studied systematically, considering different soil pH values, chelating agent concentrations, and leaching times. For all the chelating agents tested, the amount of radium leached proved to be strongly dependent on the pH of the substrate: only for acidic conditions did the amount of radium released increase significantly relative to the controls. Under the best conditions, the radium released from the amended soil was greater by factors of 20 in the case of citrate, 18 for EDTA, and 14 for EDDS. The greatest improvement in the release of radium was obtained for the citrate amendment at the highest concentration tested (50 mmol kg(-1)). A slightly lower amount of radium was leached with EDTA at 5 mmol kg(-1) soil, but the solubilization over time was very different from that observed with citrate or EDDS. With EDTA, a maximum in radium leaching was reached on the first day after amendment, while with citrate, the maximum was attained on the fourth day. With EDDS, radium leaching increased slightly but steadily with time (until the sixth day), but the net effect for the period tested was the lowest of the three reagents.

  14. Net transformation of phosphorus forms applied as inorganic and organic amendments to a calcareous soil

    NASA Astrophysics Data System (ADS)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    The forms of phosphorus (P) in animal manure composts are different from that of synthetic P fertilizers, and this could affect how soil P chemistry will be altered when they are used as P amendments. The objective of this study was to analyze the net changes in the nature and dynamics of plant available P forms applied either as inorganic P (KH2PO4) or turkey litter compost (TLC) in calcareous soil with and without plant growth. Forms of TLC-P were characterized by x-ray diffraction and solution 31P NMR spectroscopy techniques. The amounts of various P forms in soils were measured by a sequential fractionation method after 4, 8, 12 and 16 weeks incubation. Brushite (Ca-P) and newberyite (Mg-P) were the major forms of inorganic P, and phosphate monoester was the major form of organic P present in TLC. The addition of inorganic P fertilizer increased the labile/moderately labile P, whereas the compost increased the moderately labile P extractable with weak acid (pH 4.2). Even though the amount of the labile P fraction in the compost-treated soil was smaller than that in the fertilizer-treated soils, ryegrass growth and plant P uptake were greater. The net transformation of the labile/moderately labile P was slower in the compost-treated soil without plant growth, however it was faster with plant growth. This study showed that P applied either as an inorganic or an organic amendment was recovered in different P fractions in a calcareous soil, and therefore it is expected that the P source would affect soil P chemistry. A weak acid extractable inorganic P fraction should be considered as plant available P especially in the compost-treated soil, that is converted into plant available P through direct and/or indirect root-induced acidification in the rhizosphere.

  15. Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cemented subsurface layers restrict root growth in many southeastern USA Coastal Plain soils. Though cementation is usually reduced by tillage, soil amendments can offer a more permanent solution if they develop aggregation. To increase aggregation, we amended 450 g of a Norfolk soil blend of 90% E ...

  16. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality.

    PubMed

    Asensio, Verónica; Covelo, Emma F; Kandeler, Ellen

    2013-07-01

    Mine soils at the depleted copper mine in Touro (Northwest Spain) are physico-chemically degraded and polluted by chromium and copper. To increase the quality of these soils, some areas at this mine have been vegetated with eucalyptus or pines, amended with sludges, or received both treatments. Four sites were selected at the Touro mine tailing in order to evaluate the effect of these different reclamation treatments on the biological soil quality: (1) Control (untreated), (2) Forest (vegetated), (3) Sludge (amended with sludges) and (4) Forest+Sludge (vegetated and amended). The new approach of the present work is that we evaluated the effect of planting trees or/and amending with sludges on the biological soil quality of mine sites polluted by metals under field conditions. The addition of sludges to mine sites recovered the biological quality of the soil, while vegetating with trees did not increase microbial biomass and function to the level of unpolluted sites. Moreover, amending with sludges increased the efficiency of the soil's microbial community to metabolize C and N, which was indicated by the decrease of the specific enzyme activities and the increase in the ratio Cmic:Nmic (shift towards predominance of fungi instead of bacteria). However, the high Cu and Cr concentrations still have negative influence on the microorganisms in all the treated soils. For the future remediation of mine soils, we recommend periodically adding sludge and planting native legume species.

  17. Dynamics and characterization of soil organic matter in mine soils sixteen years after amendment with native soil, sawdust, and sludge

    SciTech Connect

    Bendfeldt, E.S.; Burger, J.A.; Daniels, W.L.; Feldhake, C.M.

    1999-07-01

    Soil organic matter (SOM) is an important indicator of soil quality and site productivity. Organic amendments may be a means for ameliorating mine soils and other soils that have been depleted of organic matter. In 1982, a mined site was amended with seven different surface treatments: a control, 30 cm of native soil, 112 Mg/ha sawdust, and municipal sewage sludge (SS) at rates of 22, 56, 112, and 224 Mg/ha. Four replicates of each treatment were installed as a randomized complete block design. Each replicate was subsequently split according to vegetation type: pitch x loblolly pine hybrid (Pinus rigda x taeda) trees and Kentucky-31 tall fescue (Festuca arundinacea Schreb.). Soil analyses of composite samples indicated that organic amendments initially improved C and N status of the mine soils, but after 16 years their levels converged to that of the control treatment. Tree volume and biomass were used as indices of the effects of organic matter content 16 years after initial amendment. Individual tree volumes of the sawdust and 22, 56, 112 Mg/ha. SS treatments retained 18 to 26% more volume than the control. Overall, forage production was the same among treatments. Organic amendments improved initial soil fertility for crop establishment, but it appears that they will have little or no long-lasting effect on plant productivity.

  18. Some adverse effects of soil amendment with organic Materials-The case of soils polluted by copper industry phytostabilized with red fescue.

    PubMed

    Cuske, Mateusz; Karczewska, Anna; Gałka, Bernard; Dradrach, Agnieszka

    2016-08-01

    The study was aimed to examine the effects of soil amendment with organic waste materials on the growth of red fescue and the uptake of Cu and Zn by this grass, in view of its potential usage for phytostabilization of Cu-polluted soils. Five soils, containing 301-5180 mg/kg Cu, were collected from the surroundings of copper smelter Legnica, and amended with lignite (LG) and limed sewage sludge (SS). Plant growth and the concentrations of Cu and Zn in the shoots and roots of grass were measured in a pot experiment and related to the results of Pytotoxkit and Microtox® tests performed on soil solution. The effects of soil amendment with LG and SS differed greatly, and depended on soil properties. In some cases, the application of alkaline SS resulted in dramatic increase of Cu phytotoxicity and its enhanced uptake by plants, while application of LG to slightly acidic soil caused increased accumulation of Zn in plants, particularly in their roots. The study confirmed good suitability of red fescue for phytostabilization of Cu-contaminated soils except for those extremely polluted. Organic amendments to be used for metal immobilization should be thoroughly examined prior to application. PMID:26853183

  19. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols.

    PubMed

    Yu, Huili; Si, Peng; Shao, Wei; Qiao, Xiansheng; Yang, Xiaojing; Gao, Dengtao; Wang, Zhiqiang

    2016-08-01

    Changes in microbial community structure are widely known to occur after soil amendment with low-molecular-weight organic compounds; however, there is little information on concurrent changes in soil microbial functional diversity and enzyme activities, especially following sorbitol and mannitol amendment. Soil microbial functional diversity and enzyme activities can be impacted by sorbitol and mannitol, which in turn can alter soil fertility and quality. The objective of this study was to investigate the effects of sorbitol and mannitol addition on microbial functional diversity and enzyme activities. The results demonstrated that sorbitol and mannitol addition altered the soil microbial community structure and improved enzyme activities. Specifically, the addition of sorbitol enhanced the community-level physiological profile (CLPP) compared with the control, whereas the CLPP was significantly inhibited by the addition of mannitol. The results of a varimax rotated component matrix demonstrated that carbohydrates, polymers, and carboxylic acids affected the soil microbial functional structure. Additionally, we found that enzyme activities were affected by both the concentration and type of inputs. In the presence of high concentrations of sorbitol, the urease, catalase, alkaline phosphatase, β-glucosidase, and N-acetyl-β-d-glucosaminidase activities were significantly increased, while invertase activity was decreased. Similarly, this increase in invertase, catalase, and alkaline phosphatase and N-acetyl-β-d-glucosaminidase activities was especially evident after mannitol addition, and urease activity was only slightly affected. In contrast, β-glucosidase activity was suppressed at the highest concentration. These results indicate that microbial community diversity and enzyme activities are significantly affected by soil amendment with sorbitol and mannitol. PMID:27005019

  20. EVALUATION OF A SOIL AMENDMENT PROCESS DEMONSTRATION FOR REDUCING THE BIOAVAILABILITY OF LEAD

    EPA Science Inventory

    The USEPA evaluated an in situ application of a soil amendment process at a residential site that was contaminated with lead. The goal of the evaluation was to determine if the soil amendment process resulted in lower concentrations of bioavailable lead in the contaminated soils...

  1. Use of oily waste organics as amendment to soils

    SciTech Connect

    Mendoza, R.E.; Taboada, M.A.; Rodriguez, D.; Caso, O.; Portal, R.

    1995-12-31

    The effect of oily waste organics (OWO) from petroleum wells used as amendment in soils of Tierra del Fuego (Argentina) was studied. The soil in Tierra del Fuego is dominated by a xeric heath community of very little forage value for sheep. In a pot experiment, applying OWO as a band 2 cm below the soil surface decreased water evaporation, increased the soil temperature by 15%, and decreased the growth of orchard grass (Dactylis glomerata) by 29% with respect to the control. In another pot experiment, OWO was mixed with soil, fertilized with N and P, and incubated for 0, 18, 39, and 75 days at 4 and 30 C. Incubation increased the population of nitrifier bacteria in soil only when OWO was applied at 0 or 10%; at 20% nitrifier bacteria were depressed. Fertilization increased the growth of orchard grass and overcame any depressive effect of OWO on shoot yield. In a third experiment, the percentage of germination of orchard seeds was not affected by adding up to 40% of OWO, although the addition of OWO depressed root elongation rate. In a field experiment, adding OWO between rows of potato plants increased soil water content and total potato yield.

  2. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.

    PubMed

    Torri, Silvana; Lavado, Raúl

    2009-07-30

    The aim of the present study was to investigate the relationship between Lolium perenne L. uptake of Cd, Cu, Pb, and Zn in sludge amended soils and soil availability of these elements assessed by soil sequential extraction. A greenhouse experiment was set with three representative soils of the Pampas Region, Argentina, amended with sewage sludge and sewage sludge enriched with its own incinerated ash. After the stabilization period of 60 days, half of the pots were sampled for soil analysis; the rest of the pots were sown with L. perenne and harvested 8, 12, 16 and 20 weeks after sowing, by cutting just above the soil surface. Cadmium and Pb concentrations in aerial tissues of L. perenne were below detection limits, in good agreement with the soil fractionation study. Copper and Zn concentration in the first harvest were significantly higher in the coarse textured soil compared to the fine textured soil, in contrast with soil chemical speciation. In the third harvest, there was a positive correlation between Cu and Zn concentration in aerial biomass and soil fractions usually considered of low availability. We conclude that the most available fractions obtained by soil sequential extraction did not provide the best indicator of Cu and Zn availability to L. perenne.

  3. Amendment application in a multi-contaminated mine soil: effects on soil enzymatic activities and ecotoxicological characteristics.

    PubMed

    Manzano, Rebeca; Esteban, Elvira; Peñalosa, Jesús M; Alvarenga, Paula

    2014-03-01

    Several amendments were tested on soils obtained from an arsenopyrite mine, further planted with Arrhenatherum elatius and Festuca curvifolia, in order to assess their ability to improve soil's ecotoxicological characteristics. The properties used to assess the effects were: soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase, urease, protease and cellulase), terrestrial bioassays (Eisenia fetida mortality and avoidance behaviour), and aquatic bioassays using a soil leachate (Daphnia magna immobilisation and Vibrio fischeri bioluminescence inhibition). The treatment with FeSO4 1 % w/w was able to reduce extractable As in soil, but increased the extractable Cu, Mn and Zn concentrations, as a consequence of the decrease in soil pH, in relation to the unamended soil, from 5.0 to 3.4, respectively. As a consequence, this treatment had a detrimental effect in some of the soil enzymatic activities (e.g. dehydrogenase, acid phosphatase, urease and cellulase), did not allow plant growth, induced E. fetida mortality in the highest concentration tested (100 % w/w), and its soil leachate was very toxic towards D. magna and V. fischeri. The combined application of FeSO4 1 % w/w with other treatments (e.g. CaCO3 1 % w/w and paper mill 1 % w/w) allowed a decrease in extractable As and metals, and a soil pH value closer to neutrality. As a consequence, dehydrogenase activity, plant growth and some of the bioassays identified those as better soil treatments to this type of multi-contaminated soil.

  4. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils. PMID:27234831

  5. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R; Li, Y; Baligar, V C

    2016-09-01

    Elevated plant-available cadmium (Cd) in soils results in contamination to cacao (Theobroma cacao L) beans. Effectiveness of vermicompost and zeolite in reducing available Cd in three cacao-growing soils was studied under laboratory conditions. Sorption-desorption experiments were conducted in soils and amendments. Cadmium was added at 0 or 5 mg kg(-1) (spiked), then, amendments were incorporated at 0, 0.5, or 2 %. Amended soils were incubated at room temperature for 28 days. Plant-available Cd was determined using 0.01 M CaCl2 (WSE) and Mehlich 3 (M3) extraction procedures in subsamples taken from individual bags at six time intervals. Soils and amendments displayed different sorption characteristics and a better fit was attained with Freundlich model (R (2) > 0.82). Amendments were ineffective in reducing extractable Cd in non-spiked soils. In Cd-spiked soils, vermicompost at 2 % significantly reduced WSE-Cd (P < 0.01) from 3.36, 0.54, and 0.38 mg kg(-1) to values lower that instrument's detection in all the three soils and significantly diminished M3-extractable Cd (P < 0.05) from 4.62 to 4.11 mg kg(-1) in only one soil. Vermicompost at 0.5 % significantly decreased WSE-Cd (P < 0.01) from 3.04 and 0.31 to 1.69 and 0.20 mg kg(-1), respectively, in two soils with low sorption capacity for Cd. In contrast, zeolite failed to reduce WSE- or M3-extractable Cd in all studied soils. A negative correlation occurred between soil pH and WSE-Cd (r > -0.89, P < 0.01). The decrease in WSE-Cd appears to be associated with the increase in pH of the vermicompost-amended soils.

  6. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    USGS Publications Warehouse

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  7. Acidic sandy soil improvement with biochar - A microcosm study.

    PubMed

    Molnár, Mónika; Vaszita, Emese; Farkas, Éva; Ujaczki, Éva; Fekete-Kertész, Ildikó; Tolner, Mária; Klebercz, Orsolya; Kirchkeszner, Csaba; Gruiz, Katalin; Uzinger, Nikolett; Feigl, Viktória

    2016-09-01

    Biochar produced from a wide range of organic materials by pyrolysis has been reported as a means to improve soil physical properties, fertility and crop productivity. However, there is a lack of studies on the complex effects of biochar both on the degraded sandy soil physico-chemical properties and the soil biota as well as on toxicity, particularly in combined application with fertilizer and compost. A 7-week microcosm experiment was conducted to improve the quality of an acidic sandy soil combining variations in biochar types and amounts, compost and fertilizer application rates. The applied biochars were produced from different feedstocks such as grain husks, paper fibre sludge and wood screenings. The main purpose of the microcosm experiment was to assess the efficiency and applicability of different biochars as soil amendment prior to field trials and to choose the most efficient biochar to improve the fertility, biological activity and physical properties of acidic sandy soils. We complemented the methodology with ecotoxicity assessment to evaluate the possible risks to the soil as habitat for microbes, plants and animals. There was clear evidence of biochar-soil interactions positively affecting both the physico-chemical properties of the tested acidic sandy soil and the soil biota. Our results suggest that the grain husk and the paper fibre sludge biochars applied to the tested soil at 1% and 0.5 w/w% rate mixed with compost, respectively can supply a more liveable habitat for plants and soil living animals than the acidic sandy soil without treatment.

  8. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.

    PubMed

    Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

    2014-09-15

    The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among

  9. Genetically biodiverse potato cultivars grown on a suitable agricultural soil under compost amendment or mineral fertilization: yield, quality, genetic and epigenetic variations, soil properties.

    PubMed

    Cicatelli, Angela; Baldantoni, Daniela; Iovieno, Paola; Carotenuto, Maurizio; Alfani, Anna; De Feis, Italia; Castiglione, Stefano

    2014-09-15

    The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among

  10. Influence of soil amendments made from digestate on soil physics and the growth of spring wheat

    NASA Astrophysics Data System (ADS)

    Dietrich, Nils; Knoop, Christine; Raab, Thomas; Krümmelbein, Julia

    2016-04-01

    Every year 13 million tons of organic wastes accumulate in Germany. These wastes are a potential alternative for the production of energy in biogas plants, especially because the financial subventions for the cultivation of renewable resources for energy production were omitted in 2014. The production of energy from biomass and organic wastes in biogas plants results in the accumulation of digestate and therefore causes the need for a sustainable strategy of the utilization of these residues. Within the scope of the BMBF-funded project 'VeNGA - Investigations for recovery and nutrient use as well as soil and plant-related effects of digestate from waste fermentation' the application of processed digestate as soil amendments is examined. Therefore we tested four different mechanical treatment processes (rolled pellets, pressed pellets, shredded compost and sieved compost) to produce soil amendments from digestate with regard to their impact on soil physics, soil chemistry and the interactions between plants and soil. Pot experiments with soil amendments were performed in the greenhouse experiment with spring wheat and in field trials with millet, mustard and forage rye. After the first year of the experiment, preliminary results indicate a positive effect of the sieved compost and the rolled pellets on biomass yield of spring wheat as compared to the other variations. First results from the Investigation on soil physics show that rolled pellets have a positive effect on the soil properties by influencing size and distribution of pores resulting in an increased water holding capacity. Further ongoing enhancements of the physical and chemical properties of the soil amendments indicate promising results regarding the ecological effects by increased root growth of spring wheat.

  11. Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar.

    PubMed

    El-Naggar, Ahmed H; Usman, Adel R A; Al-Omran, Abdulrasoul; Ok, Yong Sik; Ahmad, Mahtab; Al-Wabel, Mohammad I

    2015-11-01

    Many studies have reported the positive effect of biochar on soil carbon sequestration and soil fertility improvement in acidic soils. However, biochar may have different impacts on calcareous sandy soils. A 90-day incubation experiment was conducted to quantify the effects of woody waste biochar (10 g kg(-1)) on CO2-C emissions, K2SO4-extractable C and macro-(N, P and K) and micro-(Fe, Mn, Zn and Cu) nutrient availability in the presence or absence of poultry manure (5 g kg(-1) soil). The following six treatments were applied: (1) conocarpus (Conocarpus erectus L.) waste (CW), (2) conocarpus biochar (BC), (3) poultry manure (PM), (4) PM+CW, (5) PM+BC and (6) untreated soil (CK). Poultry manure increased CO2-C emissions and K2SO4-extractable C, and the highest increases in CO2-C emission rate and cumulative CO2-C and K2SO4-extractable C were observed for the PM+CW treatment. On the contrary, treatments with BC halted the CO2-C emission rate, indicating that the contribution of BC to CO2-C emissions is negligible compared with the soils amended with CW and PM. Furthermore, the combined addition of PM+BC increased available N, P and K compared with the PM or BC treatments. Overall, the incorporation of biochar into calcareous soils might have benefits in carbon sequestration and soil fertility improvement. PMID:26037818

  12. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil.

    PubMed

    Kuśmierz, Marcin; Oleszczuk, Patryk; Kraska, Piotr; Pałys, Edward; Andruszczak, Sylwia

    2016-03-01

    In the present study the persistence of polycyclic aromatic hydrocarbons (PAHs) applied with biochar to acidic soil (loamy sand) was studied in two and half year field experiment. An experiment was carried out in three experimental plots (15 m(2) each). The biochar was introduced in the following doses: soil without fertilization - control (C-BC00), soil with 30 t ha(-1) (B-BC30) and soil with 45 t ha(-1) (A-BC45) of biochar. Biochar addition to soils resulted in an increase in the PAHs content from 0.239 μg g(-1) in control soil to 0.526 μg g(-1) and 1.310 μg g(-1) in 30 and 45 t ha(-1) biochar-amended soil respectively. However during the experimental period the PAHs content decreased to a level characteristic for the control soil. The highest losses of PAHs were observed during the first 105 days of the experiment. Three and four rings PAHs were the most susceptible for degradation and leaching. Migration of PAHs from 0-10 cm to 10-20 cm soil horizon was also observed.

  13. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies. PMID:24875879

  14. Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk.

    PubMed

    Pardo, T; Bernal, M P; Clemente, R

    2014-07-01

    A mesocosm experiment, in columns, was conducted in a growth chamber to assess the viability of two organic materials (pig slurry and compost; in combination with hydrated lime) for the remediation of a highly acidic and trace elements (TEs) contaminated mine soil and the reduction of its associated leaching risks. Their influence on the evolution throughout the soil depth of the physicochemical properties (including TEs mobility) of the soil and soil solution (in situ periodic collection) and on Lolium perenne growth and foliar TEs accumulation was evaluated. Soluble and extractable concentrations of the different TEs were considerably high, although the organic amendments (with lime) and lime addition successfully decreased TEs mobility in the top soil layer, as a consequence of a rise in pH and changes in the redox conditions. Compost and pig slurry increased the soluble organic-C and dissolved N, K and P of the soil, producing a certain downwards displacement of N and K. The organic amendments allowed the growth of L. perenne in the soil, thus indicating improvement of soil conditions, but elevated TEs availability in the soil led to toxicity symptoms and abnormally high TEs concentrations in the plants. An evaluation of the functioning and ecotoxicological risks of the remediated soils is reported in part II: this allows verification of the viability of the amendments for remediation strategies.

  15. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils.

    PubMed

    Thangarajan, Ramya; Bolan, Nanthi S; Naidu, Ravi; Surapaneni, Aravind

    2015-06-01

    The effects of temperature (18, 24, and 37 °C) and form of nitrogen (N) input from various sources (organic-green waste compost, biosolids, and chicken manure; inorganic-urea) on N transformation in three different Australian soils with varying pH (4.30, 7.09, and 9.15) were examined. Ammonification rate (ammonium concentration) increased with increase in temperature in all soil types. The effect of temperature on nitrification rate (nitrate concentration) followed 24 > 37 > 18 °C. Nitrification rate was higher in neutral and alkaline soils than acidic soil. Mineral N (bioavailable N) concentration was high in urea treatments than in organic N source treatments in all soil types. Acidic soil lacked nitrification activity resulting in low nitrate (NO3) buildup in urea treatment, whereas a significant NO3 buildup was noticed in green waste compost treatment. In neutral and alkaline soils, the nitrification activity was low at 37 °C in urea treatment but with a significant NO3 buildup in organic amendment added soils. Addition of organic N sources supplied ammonia oxidizing bacteria thereby triggering nitrification in the soils (even at 37 °C). This study posits the following implications: (1) inorganic fertilizer accumulate high NO3 content in soils in a short period of incubation, thereby becoming a potential source of NO3 leaching; (2) organic N sources can serve as possible source of nitrifying bacteria, thereby increasing bioavailable N (NO3) in soils regardless of the soil properties and temperature.

  16. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils.

    PubMed

    Thangarajan, Ramya; Bolan, Nanthi S; Naidu, Ravi; Surapaneni, Aravind

    2015-06-01

    The effects of temperature (18, 24, and 37 °C) and form of nitrogen (N) input from various sources (organic-green waste compost, biosolids, and chicken manure; inorganic-urea) on N transformation in three different Australian soils with varying pH (4.30, 7.09, and 9.15) were examined. Ammonification rate (ammonium concentration) increased with increase in temperature in all soil types. The effect of temperature on nitrification rate (nitrate concentration) followed 24 > 37 > 18 °C. Nitrification rate was higher in neutral and alkaline soils than acidic soil. Mineral N (bioavailable N) concentration was high in urea treatments than in organic N source treatments in all soil types. Acidic soil lacked nitrification activity resulting in low nitrate (NO3) buildup in urea treatment, whereas a significant NO3 buildup was noticed in green waste compost treatment. In neutral and alkaline soils, the nitrification activity was low at 37 °C in urea treatment but with a significant NO3 buildup in organic amendment added soils. Addition of organic N sources supplied ammonia oxidizing bacteria thereby triggering nitrification in the soils (even at 37 °C). This study posits the following implications: (1) inorganic fertilizer accumulate high NO3 content in soils in a short period of incubation, thereby becoming a potential source of NO3 leaching; (2) organic N sources can serve as possible source of nitrifying bacteria, thereby increasing bioavailable N (NO3) in soils regardless of the soil properties and temperature. PMID:24114384

  17. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  18. Does thermal carbonization (Biochar) of organic material increase more merits for their amendments of sandy soil?

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Xu, G.; Sun, J. N.; Shao, H. B.

    2014-02-01

    Organic materials (e.g. furfural residue) are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5-0.8 (soil pH: 8.3-8.6), while 5% biochar decreased by 0.25-0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4-6 times in comparison to 2-5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.

  19. Sulfamethazine uptake by plants from manure-amended soil.

    PubMed

    Dolliver, Holly; Kumar, Kuldip; Gupta, Satish

    2007-01-01

    Animal manure is applied to agricultural land as a means to provide crop nutrients. However, animal manure often contains antibiotics as a result of extensive therapeutic and subtherapeutic use in livestock production. The objective of this study was to evaluate plant uptake of a sulfonamide-class antibiotic, sulfamethazine, in corn (Zea mays L.), lettuce (Lactuca sativa L.), and potato (Solanum tuberosum L.) grown in a manure-amended soil. The treatments were 0, 50, and 100 microg sulfamethazine mL(-1) manure applied at a rate of 56 000 L ha(-1). Results from the 45-d greenhouse experiment showed that sulfamethazine was taken up by all three crops, with concentrations in plant tissue ranging from 0.1 to 1.2 mg kg(-1) dry weight. Sulfamethazine concentrations in plant tissue increased with corresponding increase of sulfamethazine in manure. Highest plant tissue concentrations were found in corn and lettuce, followed by potato. Total accumulation of sulfamethazine in plant tissue after 45 d of growth was less than 0.1% of the amount applied to soil in manure. These results raise potential human health concerns of consuming low levels of antibiotics from produce grown on manure-amended soils.

  20. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil

    SciTech Connect

    Evanylo, G.K.; Abaye, A.O.; Dundas, C.; Zipper, C.E.; Lemus, R.; Sukkariyah, B.; Rockett, J.

    2005-10-01

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha{sup -1} (dry weight). The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall fescue, and crownvetch) shared the physiological and reproductive characteristics of low fertility requirements, drought and moisture tolerance, and propagation by rhizome and/or stolons. Of these five species, two (tall fescue and sericea lespedeza) are or have been seeded commonly on Appalachian coal surface mines, and often dominate abandoned pasture sites. Despite the high rates of heavy metal-bearing biosolids applied to the soil, plant uptake of Cd, Cu, Ni, and Zn were well within critical concentrations more than a decade after establishment of the vegetation.

  1. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.

    PubMed

    Cabrera, A; Cox, L; Spokas, K; Hermosín, M C; Cornejo, J; Koskinen, W C

    2014-02-01

    The many advantageous properties of biochar have led to the recent interest in the use of this carbonaceous material as a soil amendment. However, there are limited studies dealing with the effect of biochar on the behavior of pesticides applied to crops. The objective of this work was to determine the effect of various biochars on the sorption-desorption of the herbicides aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinacarboxylic acid) and bentazone (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide) and the fungicide pyraclostrobin (methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethil]-N-methoxycarbanilate) to a silt loam soil. Aminocyclopyrachlor and bentazone were almost completely sorbed by the soils amended with the biochars produced from wood pellets. However, lower sorption of the herbicides was observed in the soils amended with the biochar made from macadamia nut shells as compared to the unamended soil, which was attributed to the competition between dissolved organic carbon (DOC) from the biochar and the herbicides for sorption sites. Our results showed that pyraclostrobin is highly sorbed to soil, and the addition of biochars to soil did not further increase its sorption. Thus, addition of biochars to increase the retention of low mobility pesticides in soil appears to not be necessary. On the other hand, biochars with high surface areas and low DOC contents can increase the sorption of highly mobile pesticides in soil.

  2. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.

    PubMed

    Cabrera, A; Cox, L; Spokas, K; Hermosín, M C; Cornejo, J; Koskinen, W C

    2014-02-01

    The many advantageous properties of biochar have led to the recent interest in the use of this carbonaceous material as a soil amendment. However, there are limited studies dealing with the effect of biochar on the behavior of pesticides applied to crops. The objective of this work was to determine the effect of various biochars on the sorption-desorption of the herbicides aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl-4-pyrimidinacarboxylic acid) and bentazone (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide) and the fungicide pyraclostrobin (methyl 2-[1-(4-chlorophenyl) pyrazol-3-yloxymethil]-N-methoxycarbanilate) to a silt loam soil. Aminocyclopyrachlor and bentazone were almost completely sorbed by the soils amended with the biochars produced from wood pellets. However, lower sorption of the herbicides was observed in the soils amended with the biochar made from macadamia nut shells as compared to the unamended soil, which was attributed to the competition between dissolved organic carbon (DOC) from the biochar and the herbicides for sorption sites. Our results showed that pyraclostrobin is highly sorbed to soil, and the addition of biochars to soil did not further increase its sorption. Thus, addition of biochars to increase the retention of low mobility pesticides in soil appears to not be necessary. On the other hand, biochars with high surface areas and low DOC contents can increase the sorption of highly mobile pesticides in soil. PMID:24144943

  3. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    PubMed

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  4. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    PubMed

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  5. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.

    PubMed

    Peng, Hong-Yun; Yang, Xiao-E; Jiang, Li-Ying; He, Zhen-Li

    2005-01-01

    Pot and field experiments were conducted to evaluate bioavailability of Cu in contaminated paddy soil (PS) and phytoremediation potential by Elsholtzia splendens as affected by soil amendments. The results from pot experiment showed that organic manure (M) applied to the PS not only remarkably raised the H2O exchangeable Cu, which were mainly due to the increased exchangeable and organic fractions of Cu in the PS by M, but also stimulated plant growth and Cu accumulation in E. splendens. At M application rate of 5.0%, shoot Cu concentration in the plant increased by four times grown on the PS, so as to the elevated shoot Cu accumulation by three times as compared to the control. In the field trial, soil amendments by M and furnace slag (F), and soil preparations like soil capping (S) and soil discing (D) were performed in the PS. Soil capping and discing considerably declined total Cu in the PS. Application of M solely or together with F enhanced plant growth and increased H2O exchangeable Cu levels in the soil. The increased extractability of Cu in the rhizosphere of E. splendens was noted, which may have mainly attributed to the rhizospheric acidification and chelation by dissolved organic matter (DOM), thus resulting in elevating Cu uptake and accumulation by E. splendens. Amendments with organic manure plus furnace slag (MF) to the PS caused the highest exactable Cu with saturated H2O in the rhizospheric soil of E. splendens after they were grown for 170 days in the PS, thus achieving 1.74 kg Cu ha(-1) removal from the contaminated soil by the whole plant of E. splendens at one season, which is higher than those of the other soil treatments. The results indicated that application of organic manure at a proper rate could enhance Cu bioavailability and increase effectiveness of Cu phytoextraction from the contaminated soil by the metal-tolerant and accumulating plant species (E. splendens). PMID:15792303

  6. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pH<6) showed a clearer biochar-induced immobilization of copper with biochar than neutral or alkaline soils. The analyses of leachate waters of microlysimeter experiments showed that the biochar effects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally

  7. Meloidogyne incognita Infested Soil Amended With Chicken Litter

    PubMed Central

    Riegel, C.; Fernandez, F. A.; Noe, J. P.

    1996-01-01

    The effects of chicken litter on Meloidogyne incognita in cotton, Gossypium hirsutum cv. DPL50 were determined in field microplots. Litters (manure and pine-shaving bedding) from a research facility and a commercial broiler house were used. Treatments consisted of 0.25%, 0.5%, and 1% litter by dry weight of soil for each kind of litter. Three control treatments consisted of soil not amended with litter, with and without nematodes, and one treatment to which mineral fertilizer was added at a nitrogen rate equivalent to that of the 0.5% litter rate, with nematodes. Microplots were inoculated at planting with 900 eggs/100 cm³ soil in 1993 and 1,000 eggs/100 cm³ soil in 1994. At 92 and 184 days after planting, nematode population densities decreased linearly with increasing rates of litter. Nematode numbers at midseason were larger in plots treated with mineral fertilizer than in plots treated with a rate of litter equivalent to the 0.5% rate. Fungal and bacterial population densities fluctuated throughout the growing season. Bacterial numbers had a positive linear relationship, with increasing rates of litter only in October 1993; however, significant positive relationships were observed throughout the 1994 growing season. In 1994, nematode population density at 92 days after planting decreased linearly with increasing bacterial numbers 30 days after planting. No other significant relationships between nematode densities and microbial densities were observed. Fungi and bacteria isolated from the litter and litter-amended soil were identified. Fungal genera isolated included Acremonium, Aspergillus, Eurotium, Paecilomyces, Petriella, and Scopulariopsis, whereas bacteria genera included Arthrobacter, Bacillus, and Pseudomonus. PMID:19277155

  8. Aerosol emissions from biochar-amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Sharratt, B. S.; Li, J. J.; Olshvevski, S.; Meng, Z.; Zhang, J.

    2015-12-01

    Agricultural production is a major contributor to anthropogenic greenhouse gas emissions and associated global warming. In this regard, novel carbon sequestration strategies such as large-scale biochar application may provide sustainable pathways to increase the terrestrial storage of carbon in agricultural areas. Biochar has a long residence time in the soil and hence understanding the soil properties affected by biochar addition needs to be investigated to identify the tradeoffs and synergies of large-scale biochar application. Even though several studies have investigated the impacts of biochar application on a variety of soil properties, very few studies have investigated the impacts on soil erosion, in particular wind (aeolian) erosion and subsequent particulate emissions. Using a combination of wind tunnel studies and laboratory experiments, we investigated the dust emission potential of biochar-amended agricultural soils. We amended biochar (unsieved or sieved to appropriate particle size; application rates ranging from 1 - 5 % of the soil by weight) to three soil types (sand, sandy loam, and silt loam) and estimated the changes in threshold shear velocity for wind erosion and dust emission potential in comparison to control soils. Our experiments demonstrate that emissions of fine biochar particles may result from two mechanisms (a) very fine biochar particles (suspension size) that are entrained into the air stream when the wind velocity exceeds the threshold, and (b) production of fine biochar particles originating from the abrasion by quartz grains. The results indicate that biochar application significantly increased particulate emissions and more interestingly, the rate of increase was found to be higher in the intermediate range of biochar application. As fine biochar particles effectively adsorb/trap contaminants and pathogens from the soil, the preferential erosion of fine biochar particles by wind may lead to concentration of contaminants in the

  9. SITE EVALUATION OF SOIL AMENDMENT TECHNOLOGIES AT THE CROOKSVILLE/ROSEVILLE POTTERY AREA OF CONCERN - STAR ORGANICS SOIL RESCUE CAPSULE

    EPA Science Inventory

    This report briefly summarizes Star Organics treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical testing methods.

  10. Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study.

    PubMed

    Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim

    2012-07-01

    Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.

  11. In Situ Remediation and Ecosystem Restoration on Toxic Mine and Smelter Contaminated Soils Using Soil Amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At many locations, dispersal of mine wastes or smelter emissions caused extensive contamination of soils with Zn, Cd, Pb, Ni, or Cu and associated elements. When contaminated soils are acidic (from pyrite in ores, or SO2 emissions, or native acidic soils), highly phytoavailable Zn or Ni caused seve...

  12. INFLUENCE OF AN ORGANIC WASTE USED AS SOIL AMENDMENT ON TRIAZINE HERBICIDE SORPTION AND AVAILABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we have studied the influence of an organic waste generated in the olive oil mill process, used as soil amendment, on atrazine and terbuthylazine sorption and availability in soil. The soils studied were two sandy soils with different origin, Spain and Minnesota and the effect of soil a...

  13. Influence of organic amendments on soil quality potential indicators in an urban horticultural system.

    PubMed

    González, Mirta; Gomez, Elena; Comese, Romina; Quesada, Mariano; Conti, Marta

    2010-11-01

    The short-term response of some soil physical, chemical and biological properties, and the growth of beet, to the application of vermicompost-compost mix and/or bone meal at different doses in an organic system was evaluated in the present work. Fractions of soil organic matter after amendment application were also evaluated. Though no differences were found in oxidizable carbon, the particulate organic carbon was incremented in treatments with the application of vermicompost-compost mix (VC) and the combination of compost and bone meal (VC-BM). When analyzing the fulvic, humic and humin fractions, the highest fulvic acids were found in vermi-compost and bone meal mix, at the higher dose (VC2-BM2). In general, the addition of compost and/or bone meal stimulated microbial respiration. The treatments produced a slight but significant increase in electrical conductivity, thought it was still far from limits that involve risk of salinization. An increment in extractable P was found in all the treatments with amendment application with the exception of bone meal applied at the lower dose (1kgm(-2)). The cation exchange capacity showed a significant increment in VC2-BM2. A single application of VC at dose of 2kgm(-2) was enough to significantly reduce bulk density. An increment in kg dry matter m(-2) of beet was observed in all the treatments, but it only was significant in VC2-BM2. However, the highest N and P concentration was found in beet aerial tissues from the treatments with the higher dose of the compost-vermicompost mix (VC2 and VC2-BM2). Particulate organic carbon, fulvic acid fraction, C from respiration, and bulk density were the soil properties that showed a positive change after amendment application. Treatment combining vermicompost-compost and bone meal (VC2-BM2) seemed to be the best option to achieve an improvement both in soil and crop production and quality.

  14. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    PubMed

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-01

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication. PMID:26726779

  15. Biochar Amendment to the Soil Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.

    PubMed

    Shen, Guoqing; Ashworth, Daniel J; Gan, Jay; Yates, Scott R

    2016-02-01

    During soil fumigation, it is ideal to mitigate soil fumigant emissions, ensure pest control efficacy, and speed up the recovery of the soil microorganism population established postapplication. However, no current fumigant emission reduction strategy can meet all these requirements. In the present study, replicated soil columns were used to study the effect of biochar derived from rice husk (BR) and green waste (BG) applied to the soil surface on 1,3-dichloropropene (1,3-D) and chloropicrin (CP) emissions and soil gas distribution, and on microorganism population re-establishment. Relative to fumigated bare soil (no emission reduction strategy), high-density polyethylene (HDPE), and ammonium thiosulfate (ATS) treatments, BR gave dramatic emission reductions for both fumigants with no obvious emission peak, whereas BG was very effective only for 1,3-D. With BR application, the concentration of fumigant in the soil gas was higher than in the bare soil and ATS treatment. After the soil column experiment, mixing the BR with the fumigated soil resulted in higher soil respiration rates than were observed for HDPE and ATS treatments. Therefore, biochar amendment to the soil surface may be an effective strategy for fumigant emission reduction and the recovery of soil microorganism populations established postapplication.

  16. Antibiotic resistance genes in manure-amended soil and vegetables at harvest.

    PubMed

    Wang, Feng-Hua; Qiao, Min; Chen, Zheng; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-12-15

    Lettuce and endive, which can be eaten raw, were planted on the manure-amended soil in order to explore the influence of plants on the abundance of antibiotic resistance genes (ARGs) in bulk soil and rhizosphere soil, and the occurrence of ARGs on harvested vegetables. Twelve ARGs and one integrase gene (intI1) were detected in all soil samples. Five ARGs (sulI, tetG, tetC, tetA, and tetM) showed lower abundance in the soil with plants than those without. ARGs and intI1 gene were also detected on harvested vegetables grown in manure-amended soil, including endophytes and phyllosphere microorganisms. The results demonstrated that planting had an effect on the distribution of ARGs in manure-amended soil, and ARGs were detected on harvested vegetables after growing in manure-amended soil, which had potential threat to human health.

  17. SITE Technology Capsule. Demonstration of Rocky Mountain Remediation Services Soil Amendment

    EPA Science Inventory

    This report briefly summarizes the Rocky Mountain Remediation Services treatment technology demonstration of a soil amendment process for lead contaminated soil at Roseville, OH. The evaluation included leaching, bioavailability, geotechnical, and geochemical methods.

  18. EFFECTS OF BIOSOLIDS ON SORPTION AND DESORPTION BEHAVIOR OF CADMIUM IN BIOSOLIDS-AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  19. EFFECT OF BIOSOLIDS ON PHYTOAVAILABILITY OF CD IN LONG-TERM AMENDED SOILS

    EPA Science Inventory

    Cadmium sorption and desorption experiments were conducted on different fractions of soils amended with different biosolids with varying chemical properties and unamended soil (control). Biosolids addition increased the slope of the Cd sorption isotherms compared to the control s...

  20. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge.

    PubMed

    Jamali, Muhammad K; Kazi, Tasneem G; Arain, Muhammad B; Afridi, Hassan I; Jalbani, Nusrat; Kandhro, Ghulam A; Shah, Abdul Q; Baig, Jameel A

    2009-05-30

    The concentrations of heavy metals (HMs) in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate them from the soil dressed with sewage sludge. A study to comprehend the mobility and transport of HMs from soil and soil amended with untreated sewage sludge to different newly breaded varieties of wheat (Anmol, TJ-83, Abadgar and Mehran-89) in Pakistan. A pot-culture experiment was conducted to study the transfer of HMs to wheat grains, grown in soil (control) and soil amended with sewage sludge (test samples). The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and soil amended with domestic sewage sludge (SDWS) and wheat grains were analysed by flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer, prior to microwave-assisted wet acid digestion method. The edible part of wheat plants (grains) from test samples presented high concentration of all HMs understudy (mgkg(-1)). Significant correlations were found between metals in exchangeable fractions of soil and SDWS, with total metals in control and test samples of wheat grains. The bio-concentration factors of all HMs were high in grains of two wheat varieties, TJ-83 and Mehran-89, as compared to other varieties, Anmol and Abadgar grown in the same agricultural plots.

  1. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization.

  2. Biochar amendment to soil changes dissolved organic matter content and composition.

    PubMed

    Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E

    2016-01-01

    Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity.

  3. Biochar amendment to soil changes dissolved organic matter content and composition.

    PubMed

    Smebye, Andreas; Alling, Vanja; Vogt, Rolf D; Gadmar, Tone C; Mulder, Jan; Cornelissen, Gerard; Hale, Sarah E

    2016-01-01

    Amendments of biochar, a product of pyrolysis of biomass, have been shown to increase fertility of acidic soils by enhancing soil properties such as pH, cation-exchange-capacity and water-holding-capacity. These parameters are important in the context of natural organic matter contained in soils, of which dissolved organic matter (DOM) is the mobile and most bioavailable fraction. The effect of biochar on the content and composition of DOM in soils has received little research attention. This study focuses on the effects of amendments of two different biochars to an acidic acrisol and a pH-neutral brown soil. A batch experiment showed that mixing biochar with the acrisols at a 10 wt.% dose increased the pH from 4.9 to 8.7, and this resulted in a 15-fold increase in the dissolved organic carbon concentration (from 4.5 to 69 mg L(-1)). The pH-increase followed the same trend as the release of DOM in the experiment, causing higher DOM solubility and desorption of DOM from mineral sites. The binding to biochar of several well-characterised reference DOM materials was also investigated and results showed a higher sorption of aliphatic DOM to biochar than aromatic DOM, with DOM-water partitioning coefficients (Kd-values) ranging from 0.2 to 590 L kg(-1). A size exclusion occurring in biochar's micropores, could result in a higher sorption of smaller aliphatic DOM molecules than larger aromatic ones. These findings indicate that biochar could increase the leaching of DOM from soil, as well as change the DOM composition towards molecules with a larger size and higher aromaticity. PMID:25980657

  4. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    NASA Astrophysics Data System (ADS)

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-10-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  5. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.

    PubMed

    Bastida, F; Selevsek, N; Torres, I F; Hernández, T; García, C

    2015-10-27

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures.

  6. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes

    PubMed Central

    Bastida, F.; Selevsek, N.; Torres, I. F.; Hernández, T.; García, C.

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  7. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.

    PubMed

    Bastida, F; Selevsek, N; Torres, I F; Hernández, T; García, C

    2015-01-01

    A hot topic in recent decades, the application of organic amendments to arid-degraded soils has been shown to benefit microbially-mediated processes. However, despite the importance of soils for global sustainability, a gap has not been addressed yet in soil science: is there any connection between ecosystem-community processes, cellular functionality, and microbial lifestyles (i.e. oligotrophy-copiotrophy) in restored soils? Together with classical ecosystem indicators (fatty-acids, extracellular-enzyme activities, basal respiration), state-of-the-art metaproteomics was applied to fill this gap in a model-restoration experiment initiated 10-years ago by the addition of sewage-sludge and compost. Organic amendment strongly impacted ecosystem processes. Furthermore, the type of material used induced differences in the cellular functionalities through variations in the percentages of proteins involved in translation, transcription, energy production and C-fixation. We conclude that the long-term impact of organic restoration goes beyond ecosystem processes and affects cellular functionalities and phyla-lifestyles coupled with differences in microbial-community structures. PMID:26503516

  8. Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings.

    PubMed

    Rodríguez, Luis; Gómez, Rocío; Sánchez, Virtudes; Alonso-Azcárate, Jacinto

    2016-04-01

    The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named 'sugar foam', SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p < 0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21-100, 25-100 and 2-100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71%) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer. PMID:25772873

  9. Effect of various amendments on heavy mineral oil bioremediation and soil microbial activity.

    PubMed

    Lee, Sang-Hwan; Oh, Bang-Il; Kim, Jeong-gyu

    2008-05-01

    To examine the effects of amendments on the degradation of heavy mineral oil, we conducted a pilot-scale experiment in the field for 105 days. During the experiment, soil samples were collected and analyzed periodically to determine the amount of residual hydrocarbons and evaluate the effects of the amendments on microbial activity. After 105 days, the initial level of contamination (7490+/-480 mg hydrocarbon kg(-1) soil) was reduced by 18-40% in amended soils, whereas it was only reduced by 9% in nonamended soil. Heavy mineral oil degradation was much faster and more complete in compost-amended soil than in hay-, sawdust-, and mineral nutrient-amended soils. The enhanced degradation of heavy mineral oil in compost-amended soil may be a result of the significantly higher microbial activity in this soil. Among the studied microbial parameters, soil dehydrogenase, lipase, and urease activities were strongly and negatively correlated with heavy mineral oil biodegradation (P<0.01) in compost-amended soil.

  10. Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil

    SciTech Connect

    Roslev, P.; Madsen, P.L.; Thyme, J.B.; Henriksen, K.

    1998-12-01

    The metabolism of phthalic acid (PA) and di-(2-ethylhexyl) (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [{sup 14}C]PA and [{sup 14}C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [{sup 14}C]DEHP to {sup 14}CO{sub 2} increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of {sup 14}C-labelled phospholipid ester-linked fatty acids ({sup 14}C-PLFAs).

  11. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochars contain an assemblage of organic and inorganic compounds; they can be used as an amendment for carbon sequestration and soil quality improvement. Not all biochars are viable soil amendments, however, because of differences in their chemical composition. In this study, we demonstrate how bio...

  12. 76 FR 29238 - Methyl Bromide; Cancellation Order for Registration Amendments To Terminate Certain Soil Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... provided, EPA received no comments in response to the February 9, 2011, Federal Register notice (76 FR 7200... AGENCY Methyl Bromide; Cancellation Order for Registration Amendments To Terminate Certain Soil Uses... for the amendments to terminate soil uses, voluntarily requested by the registrants and accepted...

  13. Potential effects of vinasse as a soil amendment to control runoff and soil loss

    NASA Astrophysics Data System (ADS)

    Hazbavi, Z.; Sadeghi, S. H. R.

    2016-02-01

    Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. Therefore, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m2 experimental plots at 20 % slope and rainfall intensity of 72 mm h-1 with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 L m-2 of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P > 0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 mL and 46 g for the study plot at a 1 L m-2 level of vinasse application.

  14. Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils.

    PubMed

    Bustamante, M A; Said-Pullicino, D; Paredes, C; Cecilia, J A; Moral, R

    2010-10-01

    The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11-20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems.

  15. Influences of winery-distillery waste compost stability and soil type on soil carbon dynamics in amended soils.

    PubMed

    Bustamante, M A; Said-Pullicino, D; Paredes, C; Cecilia, J A; Moral, R

    2010-10-01

    The application of organic materials to replenish soil organic matter and improve soil structure and fertility has become a common agronomic practice. This research deals with the effects of soil amendment with winery and distillery waste composts on organic carbon (C) mineralisation in two arable soils. A sandy-loam and clay-loam soil were treated and incubated with a number organic materials obtained from the co-composting of different proportions of grape stalk, grape marc, exhausted grape marc and vinasse, with sewage sludge or animal manure. Moreover, the effect of compost stability on C mineralisation dynamics was studied by applying organic materials from different stages of the composting process. The results obtained showed that the addition of exogenous organic matter stimulated microbial growth, enhanced soil respiration and increased water-extractable C contents in both soils, particularly in the days immediately following amendment. The initial composition of the different organic materials used, especially for the mature samples, and the texture of the receiving soil did not influence significantly the C mineralisation final values, with around 11-20% of the added organic C being mineralised over the first 140 days. However, the contribution of organic amendment to the labile organic C pool, maximum rates of soil respiration, as well as the extent of initial disturbance of the soil microbiota were all found to be related to the degree of organic matter stability. Moreover, irrespective of the type and stability of the organic amendment, the mineralogical composition of the receiving soil was found to significantly influence its resilience in such systems. PMID:20382012

  16. Characterization of Biochars Produced from Cornstovers for Soil Amendment

    SciTech Connect

    Lee, Dr. James W; Kidder, Michelle; Evans, Barbara; Buchanan III, A C; Garten Jr, Charles T; Paik, Sok W; Brown, Dr. Robert C.

    2010-01-01

    Through cation exchange capacity assay, nitrogen adsorption-desorption surface area measurements, scanning electron microscopic imaging, infrared spectra and elemental analyses, we characterized biochar materials produced from cornstover under two different pyrolysis conditions, fast pyrolysis at 450 C and gasification at 700 C. Our experimental results showed that the cation exchange capacity (CEC) of the fastpyrolytic char is about twice as high as that of the gasification char as well as that of a standard soil sample. The CEC values correlate well with the increase in the ratios of the oxygen atoms to the carbon atoms (O:C ratios) in the biochar materials. The higher O:C ratio was consistent with the presence of more hydroxyl, carboxylate, and carbonyl groups in the fast pyrolysis char. These results show how control of biomass pyrolysis conditions can improve biochar properties for soil amendment and carbon sequestration. Since the CEC of the fast-pyrolytic cornstover char can be about double that of a standard soil sample, this type of biochar products would be suitable for improvement of soil properties such as CEC, and at the same time, can serve as a carbon sequestration agent.

  17. Biodegradation of phenanthrene and pyrene in compost-amended soil.

    PubMed

    Yuan, Shaw Y; Su, Lai M; Chang, Bea V

    2009-06-01

    This study investigated the biodegradation of the polycyclic aromatic hydrocarbons (PAHs) phenanthrene and pyrene in compost and compost-amended soil. The degradation rates of the two PAHs were phenanthrene>pyrene. The degradation of PAH was enhanced when the two PAHs were present simultaneously in the soil. The addition of either of the two types of compost (straw and animal manure) individually enhanced PAH degradation. Compost samples were separated into fractions with various particle size ranges, which spanned 2-50 microm, 50-105 microm, 105-500 microm, and 500-2000 microm. We observed that the compost fractions with smaller particle sizes demonstrated higher PAH degradation rates. However, when the different compost fractions were added to soil, compost particle size had no significant effect on the rate of PAH degradation. Of the micro-organisms isolated from the soil-compost mixtures, strains S1, S2, and S8, which were identified as Arthrobacter nicotianae, Pseudomonas fluorescens, and Bordetella Petrii, respectively, demonstrated the best degradation ability.

  18. Soil quality, crop productivity and soil organic matter (SOM) priming in biochar and wood ash amended soils

    NASA Astrophysics Data System (ADS)

    Reed, Eleanor Swain; Chadwick, David; Hill, Paul; Jones, Davey

    2016-04-01

    The application of energy production by-products as soil amendments to agricultural land is rapidly growing in popularity, however the increasing body of literature on primarily biochar but also wood ash have yielded contrary evidence of the range of these soil amendments function sensitivity in soil. This study aims to assess the efficacy of two by-products; biochar and wood ash to provide nutrients to grassland as well as the potential to improve overall soil quality. The study of soil amendments at field scale are scarce, and the agronomic benefits of biochar and wood ash in temperate soils remain unclear. We used replicated field plots with three soil treatments (biochar, wood ash and control) to measure the soil and crop properties over twelve months, including PLFA analysis to quantify the total soil microbial biomass and community structure. After a soil residency of one year, there were no significant differences in soil EC, total N, dissolved organic N (DON), dissolved organic C (DOC), NO3-N and NH4-N concentrations, between biochar amended, wood ash amended and un-amended soil. In contrast, the application of biochar had a significant effect on soil moisture, pH, PO4-P concentrations, soil organic carbon (SOC) and total organic carbon (TOC), whilst the wood ash amendment resulted in an increase in soil pH only. There were no significant treatment effects on the growth performance or nutrient uptake of the grass. In a parallel laboratory incubation study, the effects of biochar and wood ash on soil C priming was explored, in which soil with 14C-labelled native SOC was amended with either biochar or wood ash at the same rate as the field trial. The rates of 14CO2 (primed C) production was measured with a liquid scintillation counter over a 50 day period. The 14CO2 that evolved during decomposition likely originated from conversions in the (microbial) biomass. The results indicated that biochar application did not prime for the loss of native SOC (i.e. there

  19. Phosphorus Speciation in Manure and Manure-Amended Soils Using XANES Spectroscopy

    SciTech Connect

    Sato,S.; Solomon, D.; Hyland, C.; Ketterings, Q.; Lehmann, J.

    2005-01-01

    Previous studies suggested an increase in the proportion of calcium phosphates (CaP) of the total phosphorus (P) pool in soils with a long-term poultry manure application history versus those with no or limited application histories. To understand and predict long-term P accumulation and release dynamics in these highly amended soils, it is important to understand what specific P species are being formed. We assessed forms of CaP formed in poultry manure and originally acidic soil in response to different lengths of mostly poultry manure applications using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Phosphorus K-edge XANES spectra of poultry manure showed no evidences of crystalline P minerals but dominance of soluble CaP species and free and weakly bound phosphates (aqueous phosphate and phosphate adsorbed on soil minerals). Phosphate in an unamended neighboring forest soil (pH 4.3) was mainly associated with iron (Fe) compounds such as strengite and Fe-oxides. Soils with a short-term manure history contained both Fe-associated phosphates and soluble CaP species such as dibasic calcium phosphate (DCP) and amorphous calcium phosphate (ACP). Long-term manure application resulted in a dominance of CaP forms confirming our earlier results obtained with sequential extractions, and a transformation from soluble to more stable CaP species such as {beta}-tricalcium calcium phosphate (TCP). Even after long-term manure application (>25 yr and total P in soil up to 13 307 mg kg{sup -1}), however, none of the manure-amended soils showed the presence of crystalline CaP. With a reduction or elimination of poultry manure application to naturally acidic soils, the pH of the soil is likely to decrease, thereby increasing the solubility of Ca-bonded inorganic P minerals. Maintaining a high pH is therefore an important strategy to minimize P leaching in these soils.

  20. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments.

    PubMed

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B

    2013-06-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron.

  1. Extractability and Bioavailability of Pb and As in Historically Contaminated Orchard Soil: Effects of Compost Amendments

    PubMed Central

    Fleming, Margaret; Yiping, Tai; Ping, Zhuang; McBride, Murray B.

    2015-01-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. PMID:23474982

  2. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.

    PubMed

    Scheckel, Kirk G; Diamond, Gary L; Burgess, Michele F; Klotzbach, Julie M; Maddaloni, Mark; Miller, Bradley W; Partridge, Charles R; Serda, Sophia M

    2013-01-01

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils conducted in humans and animal models. Practical implementation issues, such as criteria and methods for evaluating efficacy, and potential effects of phosphate on mobility and bioavailability of co-contaminants in soil are also discussed.

  3. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology.

    PubMed

    Tejada, Manuel; Gómez, Isidoro; Del Toro, Marina

    2011-10-01

    The sorption capacity of both an organic municipal solid waste by-product (MSW) and a cow manure (CM) in a soil polluted with chlorpyrifos, as well as its effect on soil microbial activity, and weight, reproductive parameters and glutathione-S-transferase activity of two earthworm species (Eisenia fetida and Lumbricus terrestris) were studied. Chlorpyrifos was added at the recommended application rate (5 L ha(-1); 768 mg chlorpyrifos kg(-1)) and treated with MSW at a rate of 10% and CM at a rate of 5.8% in order to apply the same amount of organic matter to the soil. An unamended polluted soil was used as control. Earthworm cocoon number, average weight of cocoon, and number of juveniles per cocoon were measured after 30 days of incubation, whereas soil enzymatic activities, earthworm weight, and glutathione-S-transferase activity of earthworms were measured after 3, 45 and 90 days. Soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms decreased in polluted soil. The inhibition percentage of soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms was lower in MSW-amended soil than for CM-amended soil. The toxic effect of chlorpyrifos on E. fetida was lowest compared to L. terrestris. This suggested that the addition of organic wastes with higher humic than fulvic acid concentration is more beneficial for remediation of soils polluted with chlorpyrifos.

  4. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology.

    PubMed

    Tejada, Manuel; Gómez, Isidoro; Del Toro, Marina

    2011-10-01

    The sorption capacity of both an organic municipal solid waste by-product (MSW) and a cow manure (CM) in a soil polluted with chlorpyrifos, as well as its effect on soil microbial activity, and weight, reproductive parameters and glutathione-S-transferase activity of two earthworm species (Eisenia fetida and Lumbricus terrestris) were studied. Chlorpyrifos was added at the recommended application rate (5 L ha(-1); 768 mg chlorpyrifos kg(-1)) and treated with MSW at a rate of 10% and CM at a rate of 5.8% in order to apply the same amount of organic matter to the soil. An unamended polluted soil was used as control. Earthworm cocoon number, average weight of cocoon, and number of juveniles per cocoon were measured after 30 days of incubation, whereas soil enzymatic activities, earthworm weight, and glutathione-S-transferase activity of earthworms were measured after 3, 45 and 90 days. Soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms decreased in polluted soil. The inhibition percentage of soil enzymatic activities, reproductive and glutathione-S-transferase activity in both worms was lower in MSW-amended soil than for CM-amended soil. The toxic effect of chlorpyrifos on E. fetida was lowest compared to L. terrestris. This suggested that the addition of organic wastes with higher humic than fulvic acid concentration is more beneficial for remediation of soils polluted with chlorpyrifos. PMID:21813178

  5. Accumulation of heavy metals in a long-term poultry waste-amended soil

    SciTech Connect

    Han, F.X.; Kingery, W.L.; Selim, H.M.; Gerard, P.D.

    2000-03-01

    Various metals are added to poultry diets to facilitate weight increase and disease prevention. The large amounts of poultry waste produced annually are dispersed intensively over relatively small areas of land, resulting in accumulations that pose potential environmental risks to the surface and groundwater. The focus of this study was to assess the distribution of heavy metals among various solid-phase fractions in soil profiles from a 25-year poultry waste-amended soil. Copper and Zn accumulated close to the soil surface where the total amounts of Cu and Zn in waste-amended soils were significantly higher than in nonamended soils. The total metal concentrations in amended soils were not critically high. Copper in the amended soil was present mostly in the organic matter (OM) fraction (46.9%), whereas Zn was found in the easily reducible oxide (ERO) fraction (47.3%). This suggests that the Cu and Zn in this long-term amended soil are potentially bioavailable and mobile. The authors observed the mobility of Zn through much of the soil profile of the long-term waste-amended soil. Zinc in this soil profile was found primarily in forms of the residual (RES) and crystalline iron oxide bound (CryFe) fractions, followed by the organic matter-bound and exchangeable (EXC) fractions.

  6. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes.

    PubMed

    Bulluck, L R; Ristaino, J B

    2002-02-01

    ABSTRACT Soil fertility amendments, including composted cotton-gin trash, swine manure, a rye-vetch green manure, or synthetic fertilizers, were applied to subplots and tillage on bare soil; or tillage followed by surface mulch with wheat straw were applied to main plots to determine the effect on the incidence of southern blight caused by Sclerotium rolfsii, yield of processing tomato, and soil microbial communities. The amendment-tillage interaction was significant in 1997 and disease incidence was 67% in tilled bare soil receiving synthetic fertilizers; whereas disease incidence was 3, 12, and 16% in surface-mulched plots amended with a composted cotton-gin trash, swine manure, or a rye-vetch green manure. The amendment effect was significant in 1998, and disease incidence was 61% in plots receiving synthetic fertilizer and was 23, 44, and 53% in plots receiving cotton-gin trash, swine manure, or rye-vetch green manure, respectively. In 1997, yields were highest in tilled surface-mulched plots amended with synthetic fertilizers, cotton-gin trash, or swine manure, respectively. In 1998, yields were low in all plots and there were no significant differences in yield due to treatment. Propagule densities of antagonistic soil fungi in the genus Trichoderma were highest in soils amended with composted cotton-gin trash or swine manure in both years. Propagule densities of fluorescent pseudomonads in soil were higher in plots amended with organic amendments than with synthetic fertilizers in both years. Propagules densities of enteric bacteria were elevated in soils amended with raw swine manure biosolids in both years. Our research indicates that some organic amendments, such as cotton-gin trash, reduced the incidence of southern blight in processing tomato and also enhanced populations of beneficial soil microbes. PMID:18943092

  7. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes.

    PubMed

    Bulluck, L R; Ristaino, J B

    2002-02-01

    ABSTRACT Soil fertility amendments, including composted cotton-gin trash, swine manure, a rye-vetch green manure, or synthetic fertilizers, were applied to subplots and tillage on bare soil; or tillage followed by surface mulch with wheat straw were applied to main plots to determine the effect on the incidence of southern blight caused by Sclerotium rolfsii, yield of processing tomato, and soil microbial communities. The amendment-tillage interaction was significant in 1997 and disease incidence was 67% in tilled bare soil receiving synthetic fertilizers; whereas disease incidence was 3, 12, and 16% in surface-mulched plots amended with a composted cotton-gin trash, swine manure, or a rye-vetch green manure. The amendment effect was significant in 1998, and disease incidence was 61% in plots receiving synthetic fertilizer and was 23, 44, and 53% in plots receiving cotton-gin trash, swine manure, or rye-vetch green manure, respectively. In 1997, yields were highest in tilled surface-mulched plots amended with synthetic fertilizers, cotton-gin trash, or swine manure, respectively. In 1998, yields were low in all plots and there were no significant differences in yield due to treatment. Propagule densities of antagonistic soil fungi in the genus Trichoderma were highest in soils amended with composted cotton-gin trash or swine manure in both years. Propagule densities of fluorescent pseudomonads in soil were higher in plots amended with organic amendments than with synthetic fertilizers in both years. Propagules densities of enteric bacteria were elevated in soils amended with raw swine manure biosolids in both years. Our research indicates that some organic amendments, such as cotton-gin trash, reduced the incidence of southern blight in processing tomato and also enhanced populations of beneficial soil microbes.

  8. Evaluation of antibiotic mobility in soil associated with swine-slurry soil amendment under cropping conditions.

    PubMed

    Domínguez, C; Flores, C; Caixach, J; Mita, L; Piña, B; Comas, J; Bayona, J M

    2014-11-01

    Interest in identifying pools of antibacterial-resistance genes has grown over the last decade, with veterinary antibiotics (VAs) receiving particular attention. In this paper, a mesoscale study aimed at evaluating the vertical transport of common VAs-namely, fluoroquinolones, tetracyclines, sulfonamides, and lincosamides in agricultural soil subjected to drip irrigation-was performed under greenhouse conditions. Accordingly, leachates of cropped and uncropped soil, amended with swine-slurry leading to 19-38 μg kg(-1) (dry mass) antibiotics in the soil, were analyzed over the course of the productive cycle of a lettuce (42 days) with three sampling campaigns (N = 24). High lincomycin (LCM) concentrations (30-39 μg L(-1)) were detected in the leachates collected from the swine-slurry-amended soil. The highest LCM mass recovered in the leachates (30.1 ± 1.63 %) was obtained from cropped experimental units. In addition, the LCM leaching constant and its leaching potential as obtained from the first-order model were higher in the leachates from the cropped experimental units. Lower concentrations of sulfadimethoxine were also detected in leachates and in soil. Enrofloxacin and oxytetracycline occurred only in soil, which is consistent with high soil interaction.

  9. Hardwood tree growth on amended mine soils in west virginia.

    PubMed

    Wilson-Kokes, Lindsay; Delong, Curtis; Thomas, Calene; Emerson, Paul; O'Dell, Keith; Skousen, Jeff

    2013-09-01

    Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was

  10. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (a...

  11. ADSORPTION OF CADMIUM ONTO DIFFERENT FRACTIONS OF BIOSOLID-AMENDED SOILS

    EPA Science Inventory

    We hypothesized not only organic but also inorganic fraction in biosolids controls the metal availability in soil systems. To test this hypothesis we conducted Cd adsorption experiments on different fractions of biosolids, biosolid amended soils, and unamended soils. Soils were c...

  12. Response of Plant Parasitic and Free Living Soil Nematodes to Composted Animal Manure Soil Amendments

    PubMed Central

    Renčo, M.; Kováčik, P.

    2012-01-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control. PMID:23482503

  13. Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments.

    PubMed

    Renčo, M; Kováčik, P

    2012-12-01

    In an outside pot experiment, dry pig manure processed on pine sawdust litter and fermented for seven days by house fly larvae (fermented manure), and pine sawdust applied alone, and in combination with a spring application of inorganic nitrogen fertilizer were used to determine their effects on plant parasitic and free-living soil nematodes on sugar beets (cv. Antek). Non amended soil was used as a control. All treatments with fermented pig manure and sawdust with nitrogen fertilizer decreased number of plant parasitic nematodes and also root-fungal feeding nematodes compared to the untreated control. Sawdust applied alone had no effect on plant parasitic and root-fungal feeding nematode suppression. Free-living nematodes which were mainly bacteriovores and fungivores were significantly more abundant in soil amended with fermented pig manure, while the sawdust had no effect on these nematodes. The effect of all tested treatments on omnivores-predators was rather random, and in general, the number of these nematodes decreased after soil amendment applications compared to the untreated control.

  14. Heavy metals fractionation and organic matter mineralisation in contaminated calcareous soil amended with organic materials.

    PubMed

    Clemente, Rafael; Escolar, Angeles; Bernal, M Pilar

    2006-10-01

    Degradation of organic matter (OM) from organic amendments used in the remediation of metal contaminated soils leads to changes in soil chemical properties shortly after their addition, which may affect the soil metal distribution. The effects of two differing organic amendments on OM mineralisation and fractionation of heavy metals in a contaminated soil were investigated in an incubation experiment. The treatments were: control unamended soil, soil amended with fresh cow manure, and soil amended with a compost having a high maturity degree. The soil used was characteristic of the mining area at La Unión (Murcia, Spain) with 28% CaCO(3) and sandy-loam texture (pH 7.7; 2602 mg kg(-1)Zn; 1572 mg kg(-1)Pb). Manure and compost C-mineralisation after 56 days (24% and 3.8%, respectively) were below values reported previously for uncontaminated soils. Both amendments favoured Zn and Pb fixation, particularly the manure. Mn solubility increased at the beginning of the experiment due to a pH effect, and only Cu solubility increased through organic matter chelation in both amended soils.

  15. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  16. Practical survey on antibiotic-resistant bacterial communities in livestock manure and manure-amended soil.

    PubMed

    Yang, Qingxiang; Wang, Ruifei; Ren, Siwei; Szoboszlay, Marton; Moe, Luke A

    2016-01-01

    Through livestock manure fertilization, antibiotics, antibiotic-resistant bacteria and genes are transferred to agricultural soils, resulting in a high prevalence of antibiotic-resistant bacteria in the soil. It is not clear, however, whether a correlation exists between resistant bacterial populations in manure and manure-amended soil. In this work, we demonstrate that the prevalence of cephalexin-, amoxicillin-, kanamycin- and gentamicin-resistant bacteria as well as bacteria simultaneously resistant to all four antibiotics was much higher in manure-amended soils than in manure-free soil. 454-pyrosequencing indicated that the ARB and multiple antibiotic-resistant bacteria (MARB) in swine or chicken manure and manure-amended soil were mainly distributed among Sphingobacterium, Myroides, Enterococcus, Comamonas and unclassified Flavobacteriaceae. The genus Sphingobacterium was highly prevalent among ARB from swine manure and manure-amended soil, and was also the most dominant genus among MARB from chicken manure and manure-amended soil. Other dominant genera among ARB or MARB populations in manure samples, including Myroides, Enterococcus and Comamonas, could not be detected or were detected at very low relative abundance in manure-amended soil. The present study suggests the possibility of transfer of ARBs from livestock manures to soils and persistence of ARB in these environments. PMID:26513264

  17. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils.

    PubMed

    Jones, Sarah; Bardos, R Paul; Kidd, Petra S; Mench, Michel; de Leij, Frans; Hutchings, Tony; Cundy, Andrew; Joyce, Chris; Soja, Gerhard; Friesl-Hanl, Wolfgang; Herzig, Rolf; Menger, Pierre

    2016-04-15

    Contamination of soil with trace elements, such as Cu, is an important risk management issue. A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil from a site formerly used for wood preservation. To assess Cu mobility, amended soils were analysed using leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. The results suggest joint biochar and compost amendment reduces Cu mobility and can support biomass production on Cu-contaminated soils. PMID:26850677

  18. Biochar Amendment for Reducing Leachability of Nitro Explosives and Metals from Contaminated Soils and Mine Tailings.

    PubMed

    Oh, Seok-Young; Yoon, Hyun-Su

    2016-05-01

    The mobility and bioavailability of nitro explosives (2,4-dinitrotoluene [DNT], 2,4,6-trinitrotoluene [TNT], and hexahydro-1,3,5-trinitro-1,3,5-triazine [RDX]) in biochar-amended soils and toxic metals (As, Cd, Cu, Pb, and Zn) in biochar-amended mine tailings were investigated via various types of leaching procedures in laboratory-scale batch experiments. The results from the toxicity characteristic leaching procedure (TCLP) and hydroxypropyl-β-cyclodextrin (HPCD) extraction showed that approximately 55 to 95% of the explosives were released from the contaminated soils and would thus be considered as mobile. With the addition of biochar, the extracted concentrations of explosives were reduced to less than 10% of the initial concentrations after 10 d. According to the results from a Korean waste leaching method, the TCLP method, and diethylenetriaminepentaacetic acid (DTPA) extraction, adding biochar to mine tailings reduced the extractability and bioavailability of metals. The chemical forms of the metals, types of extractants, pH, and curing period strongly affected the extractability of metals from mine tailings. The results suggest that biochar is a promising immobilizer of explosives and metals in contaminated soils and mine tailings under limited conditions. PMID:27136167

  19. Sorption, leaching and persistence of metribuzin in Mediterranean soils amended with olive mill waste of different degrees of organic matter maturity.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Becerra, Daniel; Sánchez-Llerena, Javier

    2013-06-15

    Metribuzin is a widely used herbicide, and worldwide is one of the most important contaminants in ground and surface waters. The aim of this study was to evaluate the impact amendment with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW, respectively) had on the behaviour of this herbicide in four typical Mediterranean soils. A batch equilibration method was used to determine metribuzin adsorption-desorption. Leaching experiments were studied in hand-packed soil columns. Half-lives were calculated with incubation studies. Soil dehydrogenase activity (DHA) was also monitored. Metribuzin adsorption in the soils increased not only with increasing amounts of amendment, but especially with increasing degree of organic matter humification. Compared to unamended soils, the adsorption capacity increased by between 81% and 216%, 135% and 193%, and by 363% for the OW, COW, and AOW amended soils, respectively, at a 5% rate of application. The addition of COW enhanced metribuzin degradation in all the soils. In contrast, OW addition increased metribuzin persistence, attributable mainly to the inhibitory effect of this amendment on microbial activity, especially in the acidic soils. The AOW-amended soils, which had the smallest labile fraction of soil organic matter and greatest degree of humification, showed the shortest herbicide persistence. The OW and COW amendments significantly reduced the amount of metribuzin leached. This was especially so in the latter case because of the higher sorption capacity and the faster degradation of the pesticide. The use of OW as organic amendment, especially when it has a high degree of organic matter humification, may be a useful management practice for reducing the risk of groundwater contamination by metribuzin in soils with low organic matter content.

  20. Sorption, leaching and persistence of metribuzin in Mediterranean soils amended with olive mill waste of different degrees of organic matter maturity.

    PubMed

    López-Piñeiro, Antonio; Peña, David; Albarrán, Angel; Becerra, Daniel; Sánchez-Llerena, Javier

    2013-06-15

    Metribuzin is a widely used herbicide, and worldwide is one of the most important contaminants in ground and surface waters. The aim of this study was to evaluate the impact amendment with fresh, composted, and field-aged olive mill waste (OW, COW, and AOW, respectively) had on the behaviour of this herbicide in four typical Mediterranean soils. A batch equilibration method was used to determine metribuzin adsorption-desorption. Leaching experiments were studied in hand-packed soil columns. Half-lives were calculated with incubation studies. Soil dehydrogenase activity (DHA) was also monitored. Metribuzin adsorption in the soils increased not only with increasing amounts of amendment, but especially with increasing degree of organic matter humification. Compared to unamended soils, the adsorption capacity increased by between 81% and 216%, 135% and 193%, and by 363% for the OW, COW, and AOW amended soils, respectively, at a 5% rate of application. The addition of COW enhanced metribuzin degradation in all the soils. In contrast, OW addition increased metribuzin persistence, attributable mainly to the inhibitory effect of this amendment on microbial activity, especially in the acidic soils. The AOW-amended soils, which had the smallest labile fraction of soil organic matter and greatest degree of humification, showed the shortest herbicide persistence. The OW and COW amendments significantly reduced the amount of metribuzin leached. This was especially so in the latter case because of the higher sorption capacity and the faster degradation of the pesticide. The use of OW as organic amendment, especially when it has a high degree of organic matter humification, may be a useful management practice for reducing the risk of groundwater contamination by metribuzin in soils with low organic matter content. PMID:23562950

  1. Effect of Crotalaria juncea Amendment on Nematode Communities in Soil with Different Agricultural Histories

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2003-01-01

    Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay. PMID:19262764

  2. Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils.

    PubMed

    Imache, Ahde El; Dousset, Sylvie; Satrallah, Ahmed; Dahchour, Abdelmalek

    2012-01-01

    The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks. PMID:22375587

  3. Effects of sewage sludge amendments on pesticide sorption and leaching through undisturbed Mediterranean soils.

    PubMed

    Imache, Ahde El; Dousset, Sylvie; Satrallah, Ahmed; Dahchour, Abdelmalek

    2012-01-01

    The Gharb region in Morocco is an important agricultural zone where soils receive pesticide treatments and organic amendments to increase yields. The groundwater aquifer in the Gharb region is relatively shallow and thus vulnerable. The objective of this work was to study the influence of organic amendments on diuron, cyhalofop-butyl and procymidone leaching through undisturbed soil columns. Two soils were sampled from the Gharb region, a Dehs (sandy soil) and a R'mel (loamy clay soil). Following elution (124.5 mm), the amount of pesticide residues in the leachates of the sandy soil (0.06-0.21 %) was lower than in those of the loamy clay soil (0.20-0.36 %), which was probably due to preferential flow through the loamy clay soil. The amount of procymidone leached through the amended soil columns was greater than the control for the sandy soil only. The organic amendments did not significantly influence diuron and cyhalofop-butyl leaching in either of the soils. The application of organic amendments affected the amounts of dissolved organic matter (DOM) eluted and thus pesticide leaching as a function of soil-type. Nevertheless, in some case, the formation of pesticide-DOM complexes appeared to promote pesticide leaching, thus increasing groundwater contamination risks.

  4. Effect of soil organic amendments on the behavior of bentazone and tricyclazole.

    PubMed

    García-Jaramillo, M; Cox, L; Cornejo, J; Hermosín, M C

    2014-01-01

    The effect of soil amendment with different organic residues from olive oil production on the sorption and leaching of two pesticides used in rice crops (bentazone and tricyclazole) was compared in order to understand their behavior and to improve soil properties by recycling an abundant agricultural residue in Andalucía (S. Spain). A residue from olive oil production (AJ), the organic compost derived from this organic waste (CA) and a biochar (BA) made from CA were used. A soil devoted to rice cultivation, IFAPA (I), was amended at 2% (w/w) of each amendment individually (I+AJ, I+CA and I+BA). In order to evaluate the effect of dissolved organic matter (DOM) from these amendments on bentazone and tricyclazole behavior, the DOM from the amendments was extracted, quantified and characterized by fluorescence spectroscopy and FT-IR. The affinity of DOM for soil surfaces was evaluated with (I) soil and two other soils of different physicochemical properties, ARCO (A) and GUAD (G). These studies revealed differences in DOM quantity, quality and affinity for the used soils among amendments which can explain the different sorption behavior observed for tricyclazole in the amended soils. Leaching assays under saturated/unsaturated conditions revealed a slight delay of bentazone in I+CA and I+BA soils when compared to I+AJ, that can be related to the higher DOM content and much lower specific surface area of AJ. In contrast, tricyclazole was not detected in any of the leachates during the leaching assay. Extraction of tricyclazole residues from soil columns showed that the fungicide did not move below 5cm in the higher sorptive systems (I+CA, I+BA). The sorption of DOM from amendments on soil during the transport process can decrease the mobility of the fungicide by changing the physicochemical properties of the soil surface whose behavior may be dominated by the adsorbed DOM.

  5. Organoclays as soil amendments to increase the efficacy and reduce the environmental impact of the herbicide fluometuron in agricultural soils.

    PubMed

    Gámiz, Beatriz; Celis, Rafael; Hermosín, María C; Cornejo, Juan

    2010-07-14

    The use of pesticides in agriculture has become a source of pollution of soil and water in the last decades. Extensive pesticide transport losses due to leaching and runoff produce nonpoint source contamination of soils and water. One of the soil processes that reduce pesticide transport losses is adsorption by soil particles; therefore, enhancement of pesticide retention by soil can be used as a strategy to attenuate the environmental impact of pesticides. In this work, organoclays were prepared by treating Wyoming montmorillonite (SWy-2) and Arizona montmorillonite (SAz-1) with different organic cations and were assayed as soil amendments to enhance the retention and reduce the leaching losses of the herbicide fluometuron [N,N-dimethyl-N'-[3-(trifluoromethyl)phenyl] urea] in soils. Two agricultural soils from Southern Spain were selected for being high-risk scenarios of ground and surface water contamination. First, a batch adsorption study was conducted to identify organoclays with high affinity for fluometuron. Among the different organoclays assayed, spermine-treated Wyoming montmorillonite (SW-SPERM) displayed high and reversible adsorption of fluometuron and was selected as an amendment for subsequent persistence, leaching, and herbicidal activity experiments of fluometuron with unamended and amended soils. Amendment of the soils with SW-SPERM at rates of 1%, 2%, and 5% greatly enhanced fluometuron retention by the soils and retarded fluometuron leaching through soil columns. Incubation experiments revealed that the persistence of the herbicide in the amended soils was similar to that in unamended soils and that most of the herbicide was ultimately available for degradation. Bioassays demonstrated that the reduced leaching losses of fluometuron in soils amended with SW-SPERM may result in increased herbicide efficacy if heavy rainfall events occur shortly after herbicide application.

  6. Evaluation of pulverized trommel fines for use as a soil amendment.

    PubMed

    Walker, Paul M; Kelley, Tim R; Smiciklas, Ken D

    2008-11-01

    Pulverized trommel fines collected from the City of Chicago's municipal solid waste were applied as a soil amendment over a 2-year period to evaluate: (1) their effects on soil quality by measuring soil elemental concentrations, pH, organic matter and cation exchange capacity; (2) their potential for pathogen transfer. A secondary objective was to examine crop growth, yield and productivity. Total and fecal coliform, Enterococci, Escherichia coli, Staphylococci and Salmonella were below minimum detection limits in trommel fines. Trommel fines contained 894.5+/-171.4 mg/kg Pb, and when applied at a rate equivalent to 9.95 mt/ha dry wt, resulted in a soil Pb concentration increase of 18.80 mg/kg, thereby limiting lifetime trommel fine application to 15.9 years before reaching the 300 ppm IEPA (USEPA) regulatory limit. Trommel fines were subjected to a shake extraction procedure and resulting leachate Pb samples were 88.7% below the IEPA (USEPA) regulatory limit (5 mg/l). For the first year, corn yield was significantly higher on soil amended with trommel fines than soil amended with inorganic nitrogen fertilizer. During the second year, soybean yield was significantly lower on soil amended with trommel fines than on soil amended with inorganic fertilizer due to lower plant population. Results of this study suggest that trommel fines can be land applied as a soil amendment if best management practices are followed.

  7. Soil amendement by green supplement : Dry cowdung powder

    NASA Astrophysics Data System (ADS)

    Barot, N.; Bagla, H.

    2009-04-01

    Soil is a heavenly resource, a living, breathing and ever changing dynamic ecosystem. Retrogression and degradation of soil system is the result of continuous encroachment done by global anthropogenic activities. Mother earth's monition has increased the local concern to explore solution for the healthy sustainability of soil. At this hour of need it is crucial to regain the health of soil by utilizing eco-friendly solution and the promising one is Dry Cow Dung powder. Cow Dung is bio- organic, complex, polymorphic fecal matter of the bovine species, enriched with ‘Humic acid' (HA), ‘Fulvic Acid' etc. The HA in Cow Dung has been extracted using Neutralization Reaction and its presence is confirmed by comparing it with FTIR spectra of Std HA (IHSS). Property of metal ion adsorption of Standard and Extracted HA has been confirmed using ‘Tracer Technique'. Cow Dung is renewable, easy and freely available with least contaminants as the process of Humification takes place during drying stage hence speciation of any type is not required due to its Biological matrix. Any pre or post conditioning of cow dung powder is not required reducing undesired chemical sink in milieu. It will surely contribute in closing the natural nutrient cycle and increase the fertility as well as carbon pool of soil due to abundance of useful microflora. If compared to present day usage of synthetic and semi- synthetic products, employing Dry Cow Dung powder as agrarian booster will be surely a Green solution! It's rightly said that "The nation which destroys its soil, destroys itself!", hence we need to pursue instant remedies to mitigate our self destruction because healthy soil is the only life line for Survival!

  8. Soil Amendement by green supplement: dry cowdung powder

    NASA Astrophysics Data System (ADS)

    Barot, N. S.; Bagla, H.

    2009-04-01

    Soil is a heavenly resource, a living, breathing and ever changing dynamic ecosystem. Retrogression and degradation of soil system is the result of continuous encroachment done by global anthropogenic activities. Mother earth's monition has increased the local concern to explore solution for the healthy sustainability of soil. At this hour of need it is crucial to regain the health of soil by utilizing eco-friendly solution and the promising one is Dry Cow Dung powder. Cow Dung is bio- organic, complex, polymorphic fecal matter of the bovine species, enriched with ‘Humic acid' (HA), ‘Fulvic Acid' etc. The HA in Cow Dung has been extracted using Neutralization Reaction and its presence is confirmed by comparing it with FTIR spectra of Std HA (IHSS). Property of metal ion adsorption of Standard and Extracted HA has been confirmed using ‘Tracer Technique'. Cow Dung is renewable, easy and freely available with least contaminants as the process of Humification takes place during drying stage hence speciation of any type is not required due to its Biological matrix. Any pre or post conditioning of cow dung powder is not required reducing undesired chemical sink in milieu. It will surely contribute in closing the natural nutrient cycle and increase the fertility as well as carbon pool of soil due to abundance of useful microflora. If compared to present day usage of synthetic and semi- synthetic products, employing Dry Cow Dung powder as agrarian booster will be surely a Green solution! It's rightly said that "The nation which destroys its soil, destroys itself!", hence we need to pursue instant remedies to mitigate our self destruction because healthy soil is the only life line for Survival!

  9. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials. PMID:25898984

  10. Effects of biochar amendment on geotechnical properties of landfill cover soil.

    PubMed

    Reddy, Krishna R; Yaghoubi, Poupak; Yukselen-Aksoy, Yeliz

    2015-06-01

    Biochar is a carbon-rich product obtained when plant-based biomass is heated in a closed container with little or no available oxygen. Biochar-amended soil has the potential to serve as a landfill cover material that can oxidise methane emissions for two reasons: biochar amendment can increase the methane retention time and also enhance the biological activity that can promote the methanotrophic oxidation of methane. Hydraulic conductivity, compressibility and shear strength are the most important geotechnical properties that are required for the design of effective and stable landfill cover systems, but no studies have been reported on these properties for biochar-amended landfill cover soils. This article presents physicochemical and geotechnical properties of a biochar, a landfill cover soil and biochar-amended soils. Specifically, the effects of amending 5%, 10% and 20% biochar (of different particle sizes as produced, size-20 and size-40) to soil on its physicochemical properties, such as moisture content, organic content, specific gravity and pH, as well as geotechnical properties, such as hydraulic conductivity, compressibility and shear strength, were determined from laboratory testing. Soil or biochar samples were prepared by mixing them with 20% deionised water based on dry weight. Samples of soil amended with 5%, 10% and 20% biochar (w/w) as-is or of different select sizes, were also prepared at 20% initial moisture content. The results show that the hydraulic conductivity of the soil increases, compressibility of the soil decreases and shear strength of the soil increases with an increase in the biochar amendment, and with a decrease in biochar particle size. Overall, the study revealed that biochar-amended soils can possess excellent geotechnical properties to serve as stable landfill cover materials.

  11. Rapid transport and transformation of phosphorus species during the leaching of poultry manure amended soil

    NASA Astrophysics Data System (ADS)

    Giles, Courtney; Cade-Menun, Barbara; Liu, Corey; Hill, Jane

    2015-04-01

    The loss of phosphorus (P) from soils due to leaching is a major concern in heavily fertilized agricultural regions. The mobility and transformation of P species will depend on the source of manure fertilizer, leaching regime, and the extent of soil P saturation within the soil profile. We investigate spatial and temporal changes in the distribution of P species within a poultry manure-amended soil at two depths (0-5, 10-15 cm) as well as leachate P fractions during 10 weeks of leaching. Leachate P was primarily composed of dissolved fractions (soluble reactive P; dissolved unreactive P) and reached a maximum in the fourth week of leaching. In soils, the degree of P saturation (80%) and water extractable P (9 mg kg-1) were also greatest in week 4. 31P NMR spectra of the 0-5 cm depth indicate that surface soils were most similar to the poultry manure in week 4. During peak leaching, the proportion of orthophosphate (OrthoP) at the soil surface (0-5 cm; 80%) was greater than that from the lowest depth (10-15 cm; 72%), which contained relatively larger proportions of monoester-(17%) and diester-P classes (10%). Poultry manure likely contributed to the mobile pool of P species, including OrthoP, myo-inositol hexakisphosphate (myo-IHP), and nucleic acids. The appearance of neo- and D-chiro-IHP, as well as phospholipid signals during the leaching period indicate possible short-term (<10 week) contributions of organic P to the generation and leaching of OrthoP, under P-saturated conditions. Further work is needed to determine how fertilization and leaching will affect the mobility and transformation of P species across a wider range of soil types. Keywords: Phytate, organic phosphorus, degree of phosphorus saturation, soil, leachate, poultry manure

  12. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil.

    PubMed

    Lin, Dasong; Zhou, Qixing

    2009-07-01

    The effects of chemical amendments including zeolite, compost and mesoporous molecular sieves (MCM-41) on the extractability and speciation of heavy metals (Cd, Pb and Cu) in a contaminated soil were investigated. Results showed that the application of soil amendments decreased Cd, Pb and Cu uptake by the shoots of pakchoi, up to 44.2-53.2%, 30.2-42.7% and 16.9-22.1%, respectively, compared with the control. Among the three amendments, zeolite and MCM-41 were more efficient in reducing Cd and Cu uptake, while compost was more efficient in reducing Pb uptake by the plants. The growth of pakchoi was improved in amended soils due to the action of chemical amendments.

  13. Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata

    PubMed Central

    Bañuelos, Gary S.; Arroyo, Irvin S.; Dangi, Sadikshya R.; Zambrano, Maria C.

    2016-01-01

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Considering the use of adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops. In this multi-year micro-plot study, we investigate growing carrots and broccoli in soils that had been previously amended with Se-enriched Stanleya pinnata Pursh (Britton) three and 4 years prior to planting one and two, respectively. Results showed that total and extractable Se concentrations in soils (0–30 cm) were 1.65 mg kg-1 and 88 μg L-1, and 0.92 mg kg-1 and 48.6 μg L-1 at the beginning of the growing season for planting one and two, respectively. After each respective growing season, total Se concentrations in the broccoli florets and carrots ranged from 6.99 to 7.83 mg kg-1 and 3.15 to 6.25 mg kg-1 in planting one and two, respectively. In broccoli and carrot plant tissues, SeMet (selenomethionine) was the predominant selenoamino acid identified in Se aqueous extracts. In postharvest soils from planting one, phospholipid fatty acid (PLFA) analyses showed that amending the soil with S. pinnata exerted no effect on the microbial biomass, AMF (arbuscular mycorrhizal fungi), actinomycetes and Gram-positive and bacterial PLFA at both 0–5 and 0–30 cm, respectively, 3 years later. Successfully producing Se-enriched broccoli and carrots 3 and 4 years later after amending soil with Se-enriched S. pinnata clearly demonstrates its potential source as an organic Se enriched fertilizer for Se-deficient regions.

  14. Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata

    PubMed Central

    Bañuelos, Gary S.; Arroyo, Irvin S.; Dangi, Sadikshya R.; Zambrano, Maria C.

    2016-01-01

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Considering the use of adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops. In this multi-year micro-plot study, we investigate growing carrots and broccoli in soils that had been previously amended with Se-enriched Stanleya pinnata Pursh (Britton) three and 4 years prior to planting one and two, respectively. Results showed that total and extractable Se concentrations in soils (0–30 cm) were 1.65 mg kg-1 and 88 μg L-1, and 0.92 mg kg-1 and 48.6 μg L-1 at the beginning of the growing season for planting one and two, respectively. After each respective growing season, total Se concentrations in the broccoli florets and carrots ranged from 6.99 to 7.83 mg kg-1 and 3.15 to 6.25 mg kg-1 in planting one and two, respectively. In broccoli and carrot plant tissues, SeMet (selenomethionine) was the predominant selenoamino acid identified in Se aqueous extracts. In postharvest soils from planting one, phospholipid fatty acid (PLFA) analyses showed that amending the soil with S. pinnata exerted no effect on the microbial biomass, AMF (arbuscular mycorrhizal fungi), actinomycetes and Gram-positive and bacterial PLFA at both 0–5 and 0–30 cm, respectively, 3 years later. Successfully producing Se-enriched broccoli and carrots 3 and 4 years later after amending soil with Se-enriched S. pinnata clearly demonstrates its potential source as an organic Se enriched fertilizer for Se-deficient regions. PMID:27602038

  15. Continued Selenium Biofortification of Carrots and Broccoli Grown in Soils Once Amended with Se-enriched S. pinnata.

    PubMed

    Bañuelos, Gary S; Arroyo, Irvin S; Dangi, Sadikshya R; Zambrano, Maria C

    2016-01-01

    Selenium (Se) biofortification has been practiced in Se-deficient regions throughout the world primarily by adding inorganic sources of Se to the soil. Considering the use of adding organic sources of Se could be useful as an alternative Se amendment for the production of Se-biofortified food crops. In this multi-year micro-plot study, we investigate growing carrots and broccoli in soils that had been previously amended with Se-enriched Stanleya pinnata Pursh (Britton) three and 4 years prior to planting one and two, respectively. Results showed that total and extractable Se concentrations in soils (0-30 cm) were 1.65 mg kg(-1) and 88 μg L(-1), and 0.92 mg kg(-1) and 48.6 μg L(-1) at the beginning of the growing season for planting one and two, respectively. After each respective growing season, total Se concentrations in the broccoli florets and carrots ranged from 6.99 to 7.83 mg kg(-1) and 3.15 to 6.25 mg kg(-1) in planting one and two, respectively. In broccoli and carrot plant tissues, SeMet (selenomethionine) was the predominant selenoamino acid identified in Se aqueous extracts. In postharvest soils from planting one, phospholipid fatty acid (PLFA) analyses showed that amending the soil with S. pinnata exerted no effect on the microbial biomass, AMF (arbuscular mycorrhizal fungi), actinomycetes and Gram-positive and bacterial PLFA at both 0-5 and 0-30 cm, respectively, 3 years later. Successfully producing Se-enriched broccoli and carrots 3 and 4 years later after amending soil with Se-enriched S. pinnata clearly demonstrates its potential source as an organic Se enriched fertilizer for Se-deficient regions. PMID:27602038

  16. Global Warming Potential from early phase decomposition of soil organic matter amendments

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2015-12-01

    Organic matter amendments to soil are widely used as a method of enhancing nutrient availability for crops or grassland. Amendments such as composted manure or greenwaste also have the co-benefits of potentially increasing soil carbon (C) stocks (DeLonge et al., 2013) and diverting organic waste from landfills or manure lagoons. However, application of organic matter amendments can also stimulate emissions of greenhouse gases (GHGs). In this study we determined how the chemical quality of organic matter amendments affected soil C and N content and GHG emissions during early stage decomposition. California grassland soils were amended with six different amendments of varying C and N content including three composts and three feedstocks (goat and horse bedding and cattle manure). Amendments and soils were incubated in the laboratory for 7 weeks; GHG fluxes were measured weekly. The three feedstocks emitted significantly more GHGs than the composted materials. With the exception of cow manure, N content of the amendment was linearly correlated with global warming potential emitted (R2= 0.66, P <0.0001). C:N ratios were not a significant predictor of GHG emissions. Cow manure stimulated a net loss of C (or C equivalents) in the mineral soil, as expected. However, greenwaste compost also surprisingly resulted in net C losses, while goat bedding, horse bedding, and the other compost were either C neutral or a slight net C sink at the end of the incubation. Ongoing analyses are examining the fate of the C incorporated from the amendment to the soil as occluded or free light fraction, as well as N mineralization rates. Our data suggest that N content of organic matter amendments is a good predictor of initial GHG emissions. The study also indicates that composting greenwaste with N-rich bedding and manure can result in lower GHG emissions and C sequestration compared to the individual uncomposted components.

  17. Biochar soil amendment: Impact of soil types on heavy metal sorption-desorption behaviors and repeated nutrient leaching

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on soil types, properties of chars especially pH and leachable organic/inorganic components can have varying impacts when used as a soil amendment. We have investigated sorption-desorption behaviors of metal contaminant of concern in shooting ranges and urban soils (Cu), nutrient supply (...

  18. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.

    PubMed

    Araujo, Ademir Sérgio Ferreira; Miranda, Ana Roberta Lima; Oliveira, Mara Lucia Jacinto; Santos, Vilma Maria; Nunes, Luís Alfredo Pinheiro Leal; Melo, Wanderley José

    2015-01-01

    Composting has been recognised an alternative method to tannery sludge recycling and afterwards to be used in agriculture. As the tannery sludge contains salts and chromium, the application of composted tannery sludge (CTS) should be performed carefully to minimise negative effects on soil microbial properties. Therefore, this study evaluated the effects of 5-year repeated CTS amendment on soil microbial biomass (SMB) and enzyme activities in a tropical soil. CTS was applied during 5 years at 0, 2.5, 5, 10 and 20 Mg ha(-1), and at the fifth year, the microbial biomass C (MBC) and N (MBN), basal and substrate-induced respiration (SIR), metabolic quotient (qCO₂) and dehydrogenase (DHA) and fluorescein diacetate (FDA) hydrolysis were determined in the soil samples. Soil MBC and MBN showed the highest values with the amendment of 5 Mg ha(-1) CTS. Soil respiration increased with the increase in CTS rates, while SIR showed the highest values with the amendment of 0, 2.5 and 5 Mg ha(-1) CTS. DHA activity showed the highest values with the amendment up to 2.5 Mg ha(-1), while FDA hydrolysis increased up to the rate of 5 Mg ha(-1) CTS. The results show that after 5 years of permanent amendment of CTS, soils amended with 2.5 Mg ha(-1) have SMB and enzymatic activities similar to those in unamended soil.

  19. Impacts of wastewater sludge amendments in restoring nitrogen cycle in p-nitrophenol contaminated soil.

    PubMed

    Sagban, F Olcay Topac

    2011-01-01

    The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30-45 days, indicating the effectiveness of sludge as a useful soil amendment.

  20. Biodegradation kinetics of linear alkylbenzene sulfonate in sludge-amended agricultural soils.

    PubMed

    Ward, T E; Larson, R J

    1989-02-01

    The kinetics of ultimate biodegradation (mineralization to CO2) of linear alkylbenzene sulfonate (LAS) were studied in sludge-amended agricultural soils for a series of pure chain length LAS homologs containing 10 to 14 carbon atoms in the alkyl chain. Degradation rates were measured by following the production of 14CO2 from uniformly 14C-ring-labeled material. In general, degradation of LAS was rapid in soil over a broad concentration range (0.1 to 10 times the expected environmental concentration) and demonstrated little variation among different homologs. Half-lives for mineralization of the benzene ring ranged from 18 to 26 days and were not significantly different for any homolog over the range of alkyl chain lengths tested. Half-lives measured for LAS degradation in these studies were comparable to values reported in the literature and also to values obtained for naturally occurring materials (stearic acid, cellulose) typically present in soil environments. On the basis of the results of the present studies and those of other investigators, it is concluded that soil environments exposed to LAS in sewage sludges contain microbial communities which can actively metabolize this material. Rates of biodegradation of the benzene ring, the final step in the LAS biodegradation pathway prior to complete mineralization, are also sufficient to prevent LAS from accumulating in soil environments.

  1. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    PubMed

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  2. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions. PMID:25303664

  3. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions.

  4. Suitability of marginal biomass-derived biochars for soil amendment.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-03-15

    The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser.

  5. Suitability of marginal biomass-derived biochars for soil amendment.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-03-15

    The term "marginal biomass" is used here to describe materials of little or no economic value, e.g. plants grown on contaminated land, food waste or demolition wood. In this study 10 marginal biomass-derived feedstocks were converted into 19 biochars at different highest treatment temperatures (HTT) using a continuous screw-pyrolysis unit. The aim was to investigate suitability of the resulting biochars for land application, judged on the basis of potentially toxic element (PTE) concentration, nutrient content and basic biochar properties (pH, EC, ash, fixed carbon). It was shown that under typical biochar production conditions the percentage content of several PTEs (As, Al, Zn) and nutrients (Ca, Mg) were reduced to some extent, but also that biochar can be contaminated by Cr and Ni during the pyrolysis process due to erosion of stainless steel reactor parts (average+82.8% Cr, +226.0% Ni). This can occur to such an extent that the resulting biochar is rendered unsuitable for soil application (maximum addition +22.5 mg Cr kg(-1) biochar and +44.4 mg Ni kg(-1) biochar). Biomass grown on land heavily contaminated with PTEs yielded biochars with PTE concentrations above recommended threshold values for soil amendments. Cd and Zn were of particular concern, exceeding the lowest threshold values by 31-fold and 7-fold respectively, despite some losses into the gas phase. However, thermal conversion of plants from less severely contaminated soils, demolition wood and food waste anaerobic digestate (AD) into biochar proved to be promising for land application. In particular, food waste AD biochar contained very high nutrient concentrations, making it interesting for use as fertiliser. PMID:26789369

  6. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study

    PubMed Central

    Lu, Weiwei; Ding, Weixin; Zhang, Junhua; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    This study examined the effect of nitrogen (N) on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant) straw in absence (BC0) and presence (BCN) of N and monitored for dynamics of carbon dioxide (CO2) flux, phospholipid fatty acids (PLFAs) profile and dissolved organic carbon (DOC) content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05), and the proportions of decomposed biochar carbon (C) were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05) higher than DOC in biochar (1.75%) and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05) increased the proportion of gram-positive (G+) bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G−) bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil. PMID:26192282

  7. Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived Biochar in a Sandy Loam Soil: A Short-Term Study.

    PubMed

    Lu, Weiwei; Ding, Weixin; Zhang, Junhua; Zhang, Huanjun; Luo, Jiafa; Bolan, Nanthi

    2015-01-01

    This study examined the effect of nitrogen (N) on biochar stability in relation to soil microbial community as well as biochar labile components using δ13C stable isotope technology. A sandy loam soil under a long-term rotation of C3 crops was amended with biochar produced from maize (a C4 plant) straw in absence (BC0) and presence (BCN) of N and monitored for dynamics of carbon dioxide (CO2) flux, phospholipid fatty acids (PLFAs) profile and dissolved organic carbon (DOC) content. N amendment significantly increased the decomposition of biochar during the first 5 days of incubation (P < 0.05), and the proportions of decomposed biochar carbon (C) were 2.30% and 3.28% in BC0 and BCN treatments, respectively, during 30 days of incubation. The magnitude of decomposed biochar C was significantly (P < 0.05) higher than DOC in biochar (1.75%) and part of relatively recalcitrant biochar C was mineralized in both treatments. N amendment increased soil PLFAs concentration at the beginning of incubation, indicating that microorganisms were N-limited in test soil. Furthermore, N amendment significantly (P < 0.05) increased the proportion of gram-positive (G+) bacteria and decreased that of fungi, while no noticeable changes were observed for gram-negative (G-) bacteria and actinobacteria at the early stage of incubation. Our results indicated that N amendment promoted more efficiently the proliferation of G+ bacteria and accelerated the decomposition of relatively recalcitrant biochar C, which in turn reduced the stability of maize straw-derived biochar in test soil.

  8. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term. PMID:25315931

  9. Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars.

    PubMed

    Kloss, Stefanie; Zehetner, Franz; Buecker, Jannis; Oburger, Eva; Wenzel, Walter W; Enders, Akio; Lehmann, Johannes; Soja, Gerhard

    2015-03-01

    Various biochar (BC) types have been investigated as soil amendment; however, information on their effects on trace element (TE) biogeochemistry in the soil-water-plant system is still scarce. In the present study, we determined aqua-regia (AR) and water-extractable TEs of four BC types (woodchips (WC), wheat straw (WS), vineyard pruning (VP), pyrolyzed at 525 °C, of which VP was also pyrolyzed at 400 °C) and studied their effects on TE concentrations in leachates and mustard (Sinapis alba L.) tissue in a greenhouse pot experiment. We used an acidic, sandy agricultural soil and a BC application rate of 3% (w/w). Our results show that contents and extractability of TEs in the BCs and effectuated changes of TE biogeochemistry in the soil-water-plant system strongly varied among the different BC types. High AR-digestable Cu was found in VP and high B contents in WC. WS had the highest impact on TEs in leachates showing increased concentrations of As, Cd, Mo, and Se, whereas WC application resulted in enhanced leaching of B. All BC types increased Mo and decreased Cu concentrations in the plant tissue; however, they showed diverging effects on Cu in the leachates with decreased concentrations for WC and WS, but increased concentrations for both VPs. Our results demonstrate that BCs may release TEs into the soil-water-plant system. A BC-induced liming effect in acidic soils may lead to decreased plant uptake of cationic TEs, including Pb and Cd, but may enhance the mobility of anionic TEs like Mo and As. We also found that BCs with high salt contents (e.g., straw-based BCs) may lead to increased mobility of both anionic and cationic TEs in the short term.

  10. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays.

    PubMed

    Visioli, Giovanna; Conti, Federica D; Menta, Cristina; Bandiera, Marianna; Malcevschi, Alessio; Jones, Davey L; Vamerali, Teofilo

    2016-03-01

    Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).

  11. Carbon flux from plants to soil microbes is highly sensitive to nitrogen addition and biochar amendment

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Solaiman, Z. M.; Kilburn, M. R.; Clode, P. L.; Fuchslueger, L.; Koranda, M.; Murphy, D. V.

    2012-04-01

    The release of carbon through plant roots to the soil has been recognized as a governing factor for soil microbial community composition and decomposition processes, constituting an important control for ecosystem biogeochemical cycles. Moreover, there is increasing awareness that the flux of recently assimilated carbon from plants to the soil may regulate ecosystem response to environmental change, as the rate of the plant-soil carbon transfer will likely be affected by increased plant C assimilation caused by increasing atmospheric CO2 levels. What has received less attention so far is how sensitive the plant-soil C transfer would be to possible regulations coming from belowground, such as soil N addition or microbial community changes resulting from anthropogenic inputs such as biochar amendments. In this study we investigated the size, rate and sensitivity of the transfer of recently assimilated plant C through the root-soil-mycorrhiza-microbial continuum. Wheat plants associated with arbuscular mycorrhizal fungi were grown in split-boxes which were filled either with soil or a soil-biochar mixture. Each split-box consisted of two compartments separated by a membrane which was penetrable for mycorrhizal hyphae but not for roots. Wheat plants were only grown in one compartment while the other compartment served as an extended soil volume which was only accessible by mycorrhizal hyphae associated with the plant roots. After plants were grown for four weeks we used a double-labeling approach with 13C and 15N in order to investigate interactions between C and N flows in the plant-soil-microorganism system. Plants were subjected to an enriched 13CO2 atmosphere for 8 hours during which 15NH4 was added to a subset of split-boxes to either the root-containing or the root-free compartment. Both, 13C and 15N fluxes through the plant-soil continuum were monitored over 24 hours by stable isotope methods (13C phospho-lipid fatty acids by GC-IRMS, 15N/13C in bulk plant

  12. Acidic sandy soil improvement with biochar - A microcosm study.

    PubMed

    Molnár, Mónika; Vaszita, Emese; Farkas, Éva; Ujaczki, Éva; Fekete-Kertész, Ildikó; Tolner, Mária; Klebercz, Orsolya; Kirchkeszner, Csaba; Gruiz, Katalin; Uzinger, Nikolett; Feigl, Viktória

    2016-09-01

    Biochar produced from a wide range of organic materials by pyrolysis has been reported as a means to improve soil physical properties, fertility and crop productivity. However, there is a lack of studies on the complex effects of biochar both on the degraded sandy soil physico-chemical properties and the soil biota as well as on toxicity, particularly in combined application with fertilizer and compost. A 7-week microcosm experiment was conducted to improve the quality of an acidic sandy soil combining variations in biochar types and amounts, compost and fertilizer application rates. The applied biochars were produced from different feedstocks such as grain husks, paper fibre sludge and wood screenings. The main purpose of the microcosm experiment was to assess the efficiency and applicability of different biochars as soil amendment prior to field trials and to choose the most efficient biochar to improve the fertility, biological activity and physical properties of acidic sandy soils. We complemented the methodology with ecotoxicity assessment to evaluate the possible risks to the soil as habitat for microbes, plants and animals. There was clear evidence of biochar-soil interactions positively affecting both the physico-chemical properties of the tested acidic sandy soil and the soil biota. Our results suggest that the grain husk and the paper fibre sludge biochars applied to the tested soil at 1% and 0.5 w/w% rate mixed with compost, respectively can supply a more liveable habitat for plants and soil living animals than the acidic sandy soil without treatment. PMID:26850860

  13. Vegetation establishment on soil-amended weathered fly ash

    SciTech Connect

    Semalulu, O.; Barnhisel, R.I.; Witt, S.

    1998-12-31

    A field study was conducted with the following objectives in mind: (1) to study the effect of soil addition to weathered fly ash on the establishment and survival of different grasses and legumes, (2) to identify suitable grasses and/or legume species for vegetation of fly ash, (3) to study the fertilizer N and P requirements for successful vegetation establishment on fly ash and ash-soil mixtures, (4) to examine the nutrient composition of the plant species tested, and (5) to study the plant availability of P from fly ash and ash-soil mixtures. Three rooting media were used: weathered fly ash, and 33% or 50% soil blended with the ash. Four experiments were established on each of these media to evaluate warm season grasses in pure stands, warm season grasses inter-seeded with legumes, cool season grasses, and cool season grasses inter-seeded with legumes. Soil used in this study was more acidic than the fly ash. Only the results from characterization of the rooting media, ground cover, and yield will be presented here.

  14. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.

    PubMed

    Song, X Y; Spaccini, R; Pan, G; Piccolo, A

    2013-08-01

    The hydrophobic components of soil organic matter (SOM) are reckoned to play an important role in the stabilization of soil organic carbon (SOC). The contribution of hydrophobic substances to SOC sequestration was evaluated in four different paddy soils in the South of China, following a 6-month incubation experiment with maize straw amendments. Soil samples included: a well developed paddy soil (TP) derived from clayey lacustrine deposits in the Tai Lake plain of Jiangsu; an acid clayey paddy soil (RP) derived from red earth in the rolling red soil area of Jiangxi; a weakly developed neutral paddy soil (PP) formed on Jurassic purple shale from Chongq; and a calcic Fluvisol (MS) derived from riverine sediments from a wetland along the Yangtze valley of Anhui, China. The SOC molecular composition after 30 and 180 days of incubation, was determined by off-line thermochemolysis followed by gas chromatography-mass spectrometry analysis. Lignin, lipids and carbohydrates were the predominant thermochemolysis products released from the treated soils. A selective preservation of hydrophobic OM, including lignin and lipids, was shown in maize amended soils with prolonged incubation. The decomposition of lignin and lipids was significantly slower in the TP and RP soils characterized by a larger content of extractable iron oxyhydrates (Fed) and lower pH. The overall increase in hydrophobic substances in maize incubated samples was correlated, positively, with total content of clay and Fed, and, negatively, with soil pH. Moreover, yields of both lignin and lipid components showed a significant relationship with SOC increase after incubation. These findings showed that the larger the lipid and lignin content of SOM, the greater was the stability of SOC, thereby suggesting that OM hydrophobic components may have an essential role in controlling the processes of OC sequestration in paddy soils of South China.

  15. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of a biochar made from switchgrass on four soil enzymes (ß- glucosidase, ß-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Inconsistent results from enzyme assays of char-amended soils s...

  16. Metolachlor sorption and degradation in soil amended with fresh and aged biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes, and in turn, pesticide availability and biodegradation. Availability is affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time...

  17. EVALUATION OF EXTRACTION AND SPECTROSCOPIC METHODS FOR PB SPECIATION IN AN AMENDED SOIL

    EPA Science Inventory

    Immobilization of pyromorphite (Pbs(PO4hCI) via P amendments to Pb contaminated soils is proving to be a viable method of remediation. However, the issue of ascertaining the amount of soil Pb converted to pyromorphite is difficult in heterogeneous soil systems. Previous attempts ...

  18. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  19. Phosphorus Amendment Efficacy for In Situ Remediation of Soil Lead Depends on the Bioaccessible Method

    EPA Science Inventory

    A validated method is needed to measure reductions of in vitro bioaccessible (IVBA) Pb in urban soil remediated with amendments. This study evaluated the effect of in vitro extraction solution pH and glycine buffer on bioaccesible Pb in P-treated soils. Two Pb-contaminated soils...

  20. Organic amendments for risk mitigation of organochlorine pesticide residues in old orchard soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Performance of compost and biochar amendments for in situ risk mitigation of aged DDT, DDE and dieldrin residues in an old orchard soil was examined. The change in bioavailability of pesticide residues relative to an unamended control soil was assessed using Lumbricus terrestris in 4-L soil microcos...

  1. Marble waste and pig manure amendments decrease metal availability, increase soil quality and facilitate vegetation development in bare mine soils

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Faz, Ángel; Martínez-Martínez, Silvia; Acosta, José A.; Gómez, M. Dolores; Ángeles Muñoz, M.

    2013-04-01

    In order to bring out a functional and sustainable land use in a highly contaminated mine tailing, firstly environmental risks have to be reduced or eliminated by suitable reclamation activities. Tailing ponds pose environmental hazards, such as acidity and toxic metals reaching to waters through wind and water erosions and leaching. As a consequence, soils have no vegetation and low soil organic matter and nutrients. Various physicochemical and biochemical properties, together with exchangeable metals were measured before, 6 months and 12 months after the application of marble waste and pigs manure as reclamation strategy in a tailing pond from SE Spain to reduce hazards for environment and human health. Three months after the last addition of amendments, eight different native shrub species where planted for phytostabilization. Results showed the pH increased up to neutrality. Aggregates stability, organic carbon, total nitrogen, cation exchange capacity, bioavailable phosphorus and potassium, microbial biomass and microbial activity increased with the application of the amendments, while exchangeable metals drastically decreased (~90%). After one year of plantation, only 20% planted species died, with a high growth of survivals reaching flowering and fructification. This study confirms the high effectiveness of initial applications of marble wastes together with pig manure and plantation of shrub species to initialize the recovery of the ecosystem in bare mine soils under Mediterranean semiarid conditions. Key Words: pig manure, marble waste, heavy metals, mine soil. Acknowledgements This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439). J.A. Acosta acknowledges a "Saavedra Fajardo" contract from Comunidad Autónoma de Murcia (Spain)

  2. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.

    PubMed

    Subedi, Raghunath; Taupe, Natalie; Pelissetti, Simone; Petruzzelli, Laura; Bertora, Chiara; Leahy, James J; Grignani, Carlo

    2016-01-15

    Manure-derived biochars can offer a potential option for the stabilization of manure, while mitigating climate change through carbon sequestration and the attenuation of nitrous oxide emission. A laboratory incubation study was conducted to assess the effects of four different manure-derived biochars produced from different feedstocks (poultry litter and swine manure) at different temperatures (400 or 600 °C). A commonly available standard wood chip biochar, produced at a greater temperature (1000 °C), and non-amended treatments were used as references. Two different soils (sandy and silt-loam) were amended with 2% (w/w) biochar on a dry soil weight basis (corresponding to 20 Mg ha(-1)), with the soil moisture being adjusted to 75% saturation level. After a pre-incubation period (21 days), 170 kg N ha(-1) of NH4NO3 fertilizer was added. Measurements of CO2, N2O, CH4 emissions and soil N mineralisation were carried out on different days during the 85 days of incubation. The net C mineralization and N2O emissions from both soils amended with poultry litter biochar at 400 °C were significantly greater than the other biochar treatments. Nitrate availability was greater in both soils in which the manure-derived biochar was used instead of the standard biochar. All of the biochars increased the pH of the silt-loam, sub-acid soil, but failed to improve the cation exchange capacities (CEC) in either soil. Total C and N, P, K and Mg (except Ca) were significantly increased in the manure-derived biochar amended soils, compared to the Control, and were positively correlated to the biochar nutrient contents. This study indicates that the soil application of biochar engenders effects that can vary considerably according to the biochar properties, as determined on the basis of the feedstock types and process conditions. Low-temperature biochar production from manure represents a possible way of producing a soil amendment that can stabilize C while supplying a

  3. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    Biochar is organic matter that has been pyrolized under low oxygen conditions for use as a soil amendment. Currently biochar is viewed as a way to improve soil quality (e.g., increased nutrient and water holding capacity) and increase in soil carbon (C) sequestration. The use of biochar in soil is not new, yet little is known about the underlying mechanisms that control the interactions between biochar and soil following amendment. In the past, the effects of biochar addition on crop yields, soil properties and greenhouse gas (GHG) fluxes in both in-situ and controlled experiments have produced inconsistent results. These discrepancies may be uncovered in part by chemical and physical characterization of the biochar prior to amendment and identification of soil- and biochar-specific interactions. Furthermore, a more holistic consideration of the system may demonstrate the virtues of biochar amendment beyond the typical considerations of yield and gas flux. We expect that as the differences between the physical and chemical properties of the biochar and the soil increase, the impact on the soil quality metrics will also increase. For this study, we used a waste product (i.e., anaerobic digester sludge) biochar with 81.5% C, pH of 10.44, pH-independent charge for anion exchange capacity (AEC) and a pH-dependent charge for cation exchange capacity (CEC), 4.14% moisture content and 25.75 cmol¬c /kg exchangeable base cations. This biochar was incorporated into both a low and a high fertility Hawaiian field soil to quantitate biochar effects on crop yield, soil pH, CEC, AEC, hot and cold water extractable C and nitrogen, bulk density, phosphorus, soil microbial ecology, and GHG flux in varying soil conditions. Compared to the higher fertility soil, we hypothesized that the low fertility soil would demonstrate a greater increase in soil quality, including higher pH, CEC and water holding capacity. Two crop management practices were included with each soil: traditional

  4. Sorption and desorption of cadmium by different fractions of biosolids-amended soils.

    PubMed

    Hettiarachchi, Ganga M; Ryan, James A; Chaney, Rufus L; La Fleur, Cherie M

    2003-01-01

    To evaluate the importance of both the inorganic and organic fractions in biosolids on Cd chemistry, a series of Cd sorption and desorption batch experiments (at pH 5.5) were conducted on different fractions of soils from a long-term field experimental site. The slope of the Cd sorption isotherm increased with rate of biosolids and was different for the different biosolids. Removal of organic carbon (OC) reduced the slope of the Cd sorption isotherm but did not account for the observed differences between biosolids-amended soils and a control soil, indicating that the increased adsorption associated with biosolids application was not limited to the increased OC from the addition of biosolids. Removal of both OC and Fe/Mn further reduced the slopes of Cd sorption isotherms and the sorption isotherm of the biosolids-amended soil was the same as that of the control, indicating both OC and Fe/Mn fractions added by the biosolids were important to the increased sorption observed for the biosolids-amended soil samples. Desorption experiments failed to remove from 60 to 90% of the sorbed Cd. This "apparent hysteresis" was higher for biosolids-amended soil than the control soil. Removal of both OC and Fe/Mn fractions was more effective in removing the observed differences between the biosolids-amended soil and the control than either alone. Results show that Cd added to biosolids-amended soil behaves differently than Cd added to soils without biosolids and support the hypothesis that the addition of Fe and Mn in the biosolids increased the retention of Cd in biosolids-amended soils.

  5. Evaluation of composted sewage sludge (CSS) as a soil amendment for Bermudagrass growth.

    PubMed

    Roudsari, O Nouri; Pishdar, H

    2007-05-01

    In order to evaluate the growth of Bermudagrass (Cynodon dactylon L.) in soils amended with 5-100% composted sewage sludge (CSS) and the impacts of CSS amendment on soil physical and chemical properties an experiment was conducted. Soils amended with < or = 20% CSS did not significantly affect the seedling emergence, while the contents of chlorophyll, nitrogen, phosphorous and potassium of Bermudagrass grown in such soils were greatly improved. Bulk density, water retention and nutrient contents of the soil were also improved with the amendment of CSS, but high CSS contents introduced excessive amounts of heavy metals and soluble salts. Results show that Cu, Zn and Pb accumulated slightly (up to approximately 2.3 times) in clippings of Bermudagrass grown in CSS-amended soils compared to those grown in the base and reference soils, while no significant Cd absorption in shoots of Bermudagrass occurred. The detrimental effects on seedling emergence and turfgrass growth observed on substrates with high (> or = 40%) CSS contents were mainly attributed to the presence of high soluble salt concentrations. The findings suggest that addition of CSS at 10-20% levels can greatly improve the soil nutrient supply for turfgrass growth without significantly affecting heavy metal and soluble salt contents of the soil.

  6. Short-term effects of different organic amendments on soil chemical, biochemical and biological indicators

    NASA Astrophysics Data System (ADS)

    Mondelli, Donato; Aly, Adel; Yirga Dagnachew, Ababu; Piscitelli, Lea; Dumontet, Stefano; Miano, Teodoro

    2014-05-01

    The limited availability of animal manure and the high cost of good quality compost lead to difficult soil quality management under organic agriculture. Therefore, it is important to find out alternative organic soil amendments and more flexible strategies that are able to sustain crop productivity and maintain and enhance soil quality. A three years study was carried out in the experimental fields of the Mediterranean Agronomic Institute of Bari located in Valenzano, Italy. The main objective of this research is to investigate the effects of different fertility management strategies on soil quality in order to estimate the role of innovative matrices for their use in organic farming. The experiment consists of seven treatments applied to a common crop rotation. The treatments include alternative organic amendments (1- olive mill wastewater OMW, 2- residues of mushroom cultivation MUS, 3- coffee chaff COF), common soil amendments (4- compost COM, 5- faba bean intercropping LEG, 6- cow manure - MAN) and as a reference treatment (7- mineral fertilizer COV). The soil quality was assessed before and after the application of the treatments, through biological (microbial biomass carbon and nitrogen, soil respiration and metabolic quotient), biochemical (soil enzymatic activities: β-glucosidase, alkaline phospatase, urease, fluorescein diacetate (FDA) hydrolysis), and chemical (pH, soil organic carbon, soil organic matter, total nitrogen, available phosphorous, exchangeable potassium, dissolved organic carbon and total dissolved nitrogen) indicators. Based on the results obtained after the second year, all treatments were able to improve various soil chemical parameters as compared to mineral fertilizer. The incorporation of COF and OMW seemed to be more effective in improving soil total N and exchangeable K, while MAN significantly increased available P. All the amendments enhance dissolved organic C, soil respiration, microbial biomass and metabolic quotient as

  7. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice.

    PubMed

    Tan, Xiaofei; Liu, Yunguo; Gu, Yanling; Zeng, Guangming; Hu, Xinjiang; Wang, Xin; Hu, Xi; Guo, Yiming; Zeng, Xiaoxia; Sun, Zhichao

    2015-09-01

    The amendment effects of biochar on total microbial activity was measured by fluorescein diacetate (FDA) hydrolytic activity, and phytotoxicity in Pb(II)-contaminated soils was examined by the application of 4 different biochars to soil, with rice as a test plant. The FDA hydrolytic activities of biochar-amended soils were much higher than that of the control. The survival rate of rice in lead-contaminated biochar-amended soils showed significant improvement over the control, especially for bamboo biochar-amended soil (93.3%). In addition, rice grown in lead-contaminated control sediment displayed lower biomass production than that in biochar-amended soil. The immobilization of Pb(II) and the positive effects of biochar amendment on soil microorganisms may account for these effects. The results suggest that biochar may have an excellent ability to mitigate the toxic effects of Pb(II) on soil microorganisms and rice.

  8. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil.

    PubMed

    Al Chami, Ziad; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-07-01

    The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg kg(-1)). In this study, the effect of compost at 20 t ha(-1) (C20) and at 60 t ha(-1) (C60), manure at 10 t ha(-1) (M10) and at 30 t ha(-1) (M30), and chemical fertilizers (NPK) on Zn fate in a soil-plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.

  9. Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil.

    PubMed

    Al Chami, Ziad; Cavoski, Ivana; Mondelli, Donato; Miano, Teodoro

    2013-07-01

    The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg kg(-1)). In this study, the effect of compost at 20 t ha(-1) (C20) and at 60 t ha(-1) (C60), manure at 10 t ha(-1) (M10) and at 30 t ha(-1) (M30), and chemical fertilizers (NPK) on Zn fate in a soil-plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments. PMID:23292226

  10. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie

    2014-07-01

    Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar.

  11. Phosphorus release from dairy manure, the manure-derived biochar, and their amended soil: effects of phosphorus nature and soil property.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Xu, Xiaoyun; Harris, Willie

    2014-07-01

    Land application of animal manure often risks excessive phosphorus (P) release into the surrounding water. The aim of this study was to convert the dairy manure into biochar, followed by their application into soil, and then to investigate P release from the manure and its derived biochar as well as from the manure- and biochar-amended soil. The results showed that P release was reduced when the manure was converted into biochar due to formation of less-soluble whitlockite [(Ca, Mg)(PO)]. The cumulative P released from biochar over 240 h was 0.26 g kg, a 76% reduction of that from the manure (1.07 g kg). The kinetic release of P from the manure was determined by the fast desorption process and was better fitted to Elovich equation, whereas P release from biochar was initially controlled by the diffusion process and then by slow but steady dissolution of (Ca,Mg)(PO), following the parabolic diffusion and linear models, respectively. When the manure or biochar was incorporated into the soil, P release in the CaCl and simulated acid rain water extraction from biochar-amended soil was consistently lower than that from the manure-amended soil during 210-d incubation. The lower P release in the biochar-amended soil was determined by stable P form (Ca, Mg)(PO) in the biochar itself, but less from the soil property effect. Results indicated that initial high P release from manure can be mitigated by converting the manure into biochar. PMID:25603098

  12. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    PubMed

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  13. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  14. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth.

  15. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils.

    PubMed

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r=0.957**, P<0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation (DT(50)) in soils greatly extended when the rate of added charcoal increased from 0 to 50 g kg(-1) (for Paddy soil, DT(50) values increased from 54.6 to 71.4 days; for Alfisol, DT(50) from 16.0 to 136 days; and for Vertisol, DT(50) from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  16. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils

    NASA Astrophysics Data System (ADS)

    Si, Youbin; Wang, Midao; Tian, Chao; Zhou, Jing; Zhou, Dongmei

    2011-04-01

    The effects of charcoal amendment on adsorption, leaching and degradation of the herbicide isoproturon in soils were studied under laboratory conditions. The adsorption data all fitted well with the Freundlich empirical equation. It was found that the adsorption of isoproturon in soils increased with the rate of charcoal amended (correlation coefficient r = 0.957 **, P < 0.01). The amount of isoproturon in leachate decreased with the increase of the amount of charcoal addition to soil column, while the retention of isoproturon in soils increased with an increase in the charcoal content of soil samples. Biodegradation was still the most significant mechanism for isoproturon dissipation from soil. Charcoal amendment greatly reduced the biodegradation of isoproturon in soils. The half-lives of isoproturon degradation ( DT50) in soils greatly extended when the rate of added charcoal inceased from 0 to 50 g kg - 1 (for Paddy soil, DT50 values increased from 54.6 to 71.4 days; for Alfisol, DT50 from 16.0 to 136 days; and for Vertisol, DT50 from 15.2 to 107 days). The degradation rate of isoproturon in soils was significantly negatively correlated with the amount of added charcoal. This research suggests that charcoal amendment may be an effective management practice for reducing pesticide leaching and enhancing its persistence in soils.

  17. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  18. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis. PMID:26606935

  19. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils.

    PubMed

    Yu, Xiang-Yang; Mu, Chang-Li; Gu, Cheng; Liu, Cun; Liu, Xian-Jin

    2011-11-01

    Pyrolysis of vegetative biomass into biochar and application of the more stable form of carbon to soil have been shown to be effective in reducing the emission of greenhouse gases, improving soil fertility, and sequestering soil contaminants. However, there is still lack of information about the impact of biochar amendment in agricultural soils on the sorption and environmental fate of pesticides. In this study, we investigated the sorption and dissipation of a neonicotinoid insecticide acetamiprid in three typical Chinese agricultural soils, which were amended by a red gum wood (Eucalyptus spp.) derived biochar. Our results showed that the amendment of biochar (0.5% (w/w)) to the soils could significantly increase the sorption of acetamiprid, but the magnitudes of enhancement were varied. Contributions of 0.5% newly-added biochar to the overall sorption of acetamiprid were 52.3%, 27.4% and 11.6% for red soil, paddy soil and black soil, respectively. The dissipation of acetamiprid in soils amended with biochar was retarded compared to that in soils without biochar amendment. Similar to the sorption experiment, in soil with higher content of organic matter, the retardation of biochar on the dissipation of acetamiprid was lower than that with lower content of organic matter. The different effects of biochar in agricultural soils may attribute to the interaction of soil components with biochar, which would block the pore or compete for binding site of biochar. Aging effect of biochar application in agricultural soils and field experiments need to be further investigated. PMID:21862101

  20. Organic phosphorus fractions in organically amended paddy soils in continuously and intermittently flooded conditions.

    PubMed

    Yang, Changming; Yang, Linzhang; Jianhua, Lee

    2006-01-01

    Soil organic phosphorus (SOP) can greatly contribute to plant-available P and P nutrition. The study was conducted to determine the effects of organic amendments on organic P fractions and microbiological activities in paddy soils. Samples were collected at the Changshu Agro-ecological Experiment Station in Tahu Lake Basin, China, from an experiment that has been performed from 1999 to 2004, on a paddy soil (Gleysols). Treatments consisted of swine manure (SM), wheat straw (WS), swine manure plus wheat straw (SM + WS), and a control (chemical fertilization alone). Organic amendments markedly increased soil total organic phosphorus (TOP) and total organic carbon (TOC), especially in continuously flooded conditions. Based on the fractionation of SOP, organic amendments significantly increased soil labile organic phosphorus (LOP), moderately labile organic phosphorus (MLOP), and moderately stable organic phosphorus (MSOP) compared with the control. For SM and SM + WS treatments, LOP in continuously flooded soils decreased by 30.1 and 36.4%, respectively, compared to intermittently flooded soils. In organically amended soils, continuous flooding showed significantly lower microbial biomass phosphorus (MBP) and alkaline phosphatase activities (APA) than intermittent flooding. In intermittently flooded conditions, incorporating organic amendments into soil resulted in greater P uptake and biomass yield of rice than the control. In the intermittently flooded soils, APA (P < 0.05) and MBP (P < 0.01) were significantly and positively related to TOP, LOP, MLOP, and MSOP, whereas in continuously flooded soils, there was a significant (P < 0.05) negative relationship between MBP, TOP, and MSOP. Based on soil organic P fractions and soil enzymatic and microbiological activities, continuous flooding applied to paddy soils should be avoided, especially when swine manure is incorporated into paddy soil. PMID:16738400

  1. Dissipation of fungicides in a vineyard soil amended with different spent mushroom substrates.

    PubMed

    Marín-Benito, Jesús M; Andrades, M Soledad; Sánchez-Martín, María J; Rodríguez-Cruz, M Sonia

    2012-07-18

    The degradation kinetics and formation of metabolites for fungicides of different chemical classes (iprovalicarb, metalaxyl, penconazole, and pyrimethanil) and determination of bound residues for metalaxyl and penconazole were studied in both an unamended vineyard soil and in the same soil amended with two spent mushroom substrates (composted (C-SMS1) and fresh (F-SMS2)). The degradation kinetics was fitted to single first-order or first-order multicompartment patterns. Degradation rates decreased in C-SMS1-amended soils for all fungicides as compared to unamended soil, but in F-SMS2-amended soils, they decreased only for iprovalicarb and penconazole. The DT(50) values were higher by up to 1.8 (metalaxyl), 3.8 (pyrimethanil), 4.1 (iprovalicarb), and >1000 (penconazole) times in the soil plus C-SMS1 compared to those for soil plus F-SMS2 or unamended soil. The dissipation mechanism recorded the highest mineralization in the unamended soil for (14)C-metalaxyl and (14)C-penconazole, with the highest formation of nonextractable residues in the F-SMS2-amended soil for (14)C-metalaxyl. The results are consistent with (1) the chemical characteristics of each SMS (total and soluble organic carbon) controlling sorption and the bioavailability of fungicides and (2) the microbial activity of SMS-amended soils, which affects fungicide biodegradation. The findings of this work highlight the potential of SMS amendments with different characteristics to decrease or increase the degradation rate of a fungicide in a vineyard soil. PMID:22715816

  2. [Effects of specific microbial biocides on N transformation in soil with glucose amendment].

    PubMed

    Wang, Ge; He, Hongbo; Zhang, Xudong; Li, Jiandong; Han, Lin; Wang, Jingkuan

    2006-05-01

    In an incubation test of soil with glucose amendment, two kinds of nitrogenous fertilizer and three kinds of specific microbial biocides were applied, and the contents of soil NH(4+)-N, NO3(-)-N, glucosamine and muramic acid were measured to differentiate the relative contribution and timing characteristics of soil microbes in nitrogen immobilization. The results showed that penicillin and streptomycin decreased the transformation rate of NH(4+)-N markedly, with more significant effects than actidione. The amount ratio of glucosamine to muramic acid after applying penicillin and streptomycin rapidly increased first, and tended to equilibrium then. With the application of actidione, the transformation rate of NO3(-)-N decreased continuously, and the synthesis of glucosamine was inhibited, while penicillin and streptomycin had no significant effects on them. At the early stage of incubation, bacteria could rapidly immobilize both NH(4+)-N and NO3(-)-N, with NH(4+)-N preferred, while at the later stage of incubation, fungi were the dominant contributor to nitrogen transformation, and had much stronger ability of utilizing NO3(-)-N than bacteria. PMID:16883809

  3. Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.).

    PubMed

    Saifullah; Ghafoor, A; Zia, M H; Murtaza, G; Waraich, Ejaz Ahmad; Bibi, Sadia; Srivastava, P

    2010-09-01

    Phytoextraction has received increasing attention as a promising, cost-effective alternative to conventional engineering-based remediation methods for metal contaminated soils. In order to enhance the phytoremediative ability of green plants chelating agents are commonly used. Our study aims to evaluate whether, citric acid (CA) or elemental sulfur (S) should be used as an alternative to the ethylene diamine tetraacetic acid (EDTA)for chemically enhanced phytoextraction. Results showed that EDTA was more efficient than CA and S in solubilizing lead (Pb) from the soil. The application of EDTA and S increased the shoot biomass of wheat. However, application of CA at higher rates (30 mmol kg(-1)) resulted in significantly lower wheat biomass. Photosynthesis and transpiration rates increased with EDTA and S application, whereas these parameters were decreased with the application of CA. Elemental sulfur was ineffective for enhancing the concentration of Pb in wheat shoots. Although CA did not increase the Pb solubility measured at the end of experiment, however, it was more effective than EDTA in enhancing the concentration of Pb in the shoots of Triticum aestivum L. It was assumed that increase in Mn concentration to toxic levels in soil with CA addition might have resulted in unusual Pb concentration in wheat plants. The results of the present study suggest that under the conditions used in this experiment, CA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat compared to either EDTA or S.

  4. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.

    PubMed

    Yan, Xiulan; Zhang, Min; Liao, Xiaoyong; Tu, Shuxin

    2012-06-01

    Increasing availability of soil arsenic is of significance for accelerating phytoremediation efficiency of As-polluted sites. The effects of seven amendments, i.e., citrate, oxalate, EDTA, sodium polyacrylate (SPA), phosphate rock (PR), single superphosphate (SSP), and compost on fractionation and phytoavailability of soil As were investigated in lab culture experiment. The results showed that the addition of PR, SPA, EDTA or compost to soils significantly increased the concentration of NaHCO(3)-extractable As over a 120 d incubation period compared with the control (amendment-free) soil. Then, the four amendments were selected to add to As-contaminated soil growing Pteris vittata. It was concluded that As accumulation by the fern increased significantly under the treatments of PR and SPA by 25% and 31%, respectively. For As fractionation in soil, SPA increased Fe-As significantly by 51% and PR increased Ca-As significantly by 18%, while both the two amendments reduced occluded-As by 16% and 19%, respectively. Adding PR and SPA in soil increased the activities of urease and neutral phosphatase resulting from the improvement the fertility and physical structure of the soil, which benefits plant growth and As absorption of P. vittata. The results of the research revealed that both PR and SPA were effective amendments for improving phytoremediation of As-contaminated sites by P. vittata. PMID:22463947

  5. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L.

    PubMed

    Yan, Xiulan; Zhang, Min; Liao, Xiaoyong; Tu, Shuxin

    2012-06-01

    Increasing availability of soil arsenic is of significance for accelerating phytoremediation efficiency of As-polluted sites. The effects of seven amendments, i.e., citrate, oxalate, EDTA, sodium polyacrylate (SPA), phosphate rock (PR), single superphosphate (SSP), and compost on fractionation and phytoavailability of soil As were investigated in lab culture experiment. The results showed that the addition of PR, SPA, EDTA or compost to soils significantly increased the concentration of NaHCO(3)-extractable As over a 120 d incubation period compared with the control (amendment-free) soil. Then, the four amendments were selected to add to As-contaminated soil growing Pteris vittata. It was concluded that As accumulation by the fern increased significantly under the treatments of PR and SPA by 25% and 31%, respectively. For As fractionation in soil, SPA increased Fe-As significantly by 51% and PR increased Ca-As significantly by 18%, while both the two amendments reduced occluded-As by 16% and 19%, respectively. Adding PR and SPA in soil increased the activities of urease and neutral phosphatase resulting from the improvement the fertility and physical structure of the soil, which benefits plant growth and As absorption of P. vittata. The results of the research revealed that both PR and SPA were effective amendments for improving phytoremediation of As-contaminated sites by P. vittata.

  6. Biodegradation of Used Motor Oil in Soil Using Organic Waste Amendments

    PubMed Central

    Abioye, O. P.; Agamuthu, P.; Abdul Aziz, A. R.

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day−1) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day−1) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  7. Biodegradation of used motor oil in soil using organic waste amendments.

    PubMed

    Abioye, O P; Agamuthu, P; Abdul Aziz, A R

    2012-01-01

    Soil and surface water contamination by used lubricating oil is a common occurrence in most developing countries. This has been shown to have harmful effects on the environment and human beings at large. Bioremediation can be an alternative green technology for remediation of such hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 15% (w/w) used lubricating oil and amended with 10% brewery spent grain (BSG), banana skin (BS), and spent mushroom compost (SMC) was studied for a period of 84 days, under laboratory condition. At the end of 84 days, the highest percentage of oil biodegradation (92%) was recorded in soil contaminated with 5% used lubricating oil and amended with BSG, while only 55% of oil biodegradation was recorded in soil contaminated with 15% used lubricating oil and amended with BSG. Results of first-order kinetic model to determine the rate of biodegradation of used lubricating oil revealed that soil amended with BSG recorded the highest rate of oil biodegradation (0.4361 day(-1)) in 5% oil pollution, while BS amended soil recorded the highest rate of oil biodegradation (0.0556 day(-1)) in 15% oil pollution. The results of this study demonstrated the potential of BSG as a good substrate for enhanced remediation of hydrocarbon contaminated soil at low pollution concentration. PMID:22919502

  8. Utilization of vinasses as soil amendment: consequences and perspectives.

    PubMed

    Moran-Salazar, R G; Sanchez-Lizarraga, A L; Rodriguez-Campos, J; Davila-Vazquez, G; Marino-Marmolejo, E N; Dendooven, L; Contreras-Ramos, S M

    2016-01-01

    Vinasses are a residual liquid generated after the production of beverages, such as mezcal and tequila, from agave (Agave L.), sugarcane (Saccharum officinarum L.) or sugar beet (Beta vulgaris L.). These effluents have specific characteristics such as an acidic pH (from 3.9 to 5.1), a high chemical oxygen demand (50,000-95,000 mg L(-1)) and biological oxygen demand content (18,900-78,300 mg L(-1)), a high total solids content (79,000 and 37,500 mg L(-1)), high total volatile solids 79,000 and 82,222 mg L(-1), and K(+) (10-345 g L(-1)) content. Vinasses are most commonly discarded onto soil. Irrigation of soil with vinasses, however, may induce physical, chemical and biochemical changes and affect crop yields. Emission of greenhouse gases (GHG), such as carbon dioxide, nitrous oxide and methane, might increase from soils irrigated with vinasses. An estimation of GHG emission from soil irrigated with vinasses is given and discussed in this review.

  9. Utilization of vinasses as soil amendment: consequences and perspectives.

    PubMed

    Moran-Salazar, R G; Sanchez-Lizarraga, A L; Rodriguez-Campos, J; Davila-Vazquez, G; Marino-Marmolejo, E N; Dendooven, L; Contreras-Ramos, S M

    2016-01-01

    Vinasses are a residual liquid generated after the production of beverages, such as mezcal and tequila, from agave (Agave L.), sugarcane (Saccharum officinarum L.) or sugar beet (Beta vulgaris L.). These effluents have specific characteristics such as an acidic pH (from 3.9 to 5.1), a high chemical oxygen demand (50,000-95,000 mg L(-1)) and biological oxygen demand content (18,900-78,300 mg L(-1)), a high total solids content (79,000 and 37,500 mg L(-1)), high total volatile solids 79,000 and 82,222 mg L(-1), and K(+) (10-345 g L(-1)) content. Vinasses are most commonly discarded onto soil. Irrigation of soil with vinasses, however, may induce physical, chemical and biochemical changes and affect crop yields. Emission of greenhouse gases (GHG), such as carbon dioxide, nitrous oxide and methane, might increase from soils irrigated with vinasses. An estimation of GHG emission from soil irrigated with vinasses is given and discussed in this review. PMID:27441131

  10. Impact of Organic Amendments with and Without Mineral Fertilizers on Soil Microbial Respiration

    NASA Astrophysics Data System (ADS)

    Gilani, S. S.; Bahmanyar, M. A.

    A field experiment was conducted to study the effects of Sewage Sludge (SS), Municipal Waste Compost (MWC) and Vermicompost (VC) with and without chemical fertilizer (Urea, 50 kg ha-1 + Potassium sulfate, 100 kg ha-1 + Triple super phosphate, 127.5 kg ha-1) on Soil Microbial Respiration (SMR) and Total Organic Carbon (TOC) in a soil cropped to soybean. Experiment was arranged in a complete block design with three replications. Organic amendments were added to soil at rate of 0 (control treatment), 20 and 40 Mg ha-1. Furthermore each level of organic fertilizers with ½ normal of chemical fertilizer was also enriched. Soil samples were taken after one year of fertilization. Results illustrated that application of organic amendments increased TOC and SMR and soybean yield compared to control and chemical fertilizer treatments. Sewage sludge amended soils showed higher SMR, TOC and soybean yield than that of other organic amendment treatments. An increasing trend was observed in all studied parameters, as rates of application increased. All parameters were greater in treatments receiving a combination of chemical fertilizers and organic amendments (enriched treatments) compared to soils receiving organic amendments alone. Results obtained by discriminate analysis indicated that rates of application were more effective to create discriminating among treatments. This study showed that TOC was significantly correlated with SMR. Significant correlation was also observed between SMR and soybean yield.

  11. Growth, yield and metal residues in Solanum melongena grown in fly ash amended soils.

    PubMed

    Gond, D P; Singh, Siddharth; Pal, Amit; Tewary, B K

    2013-05-01

    Fly ash from Chandrapura Thermal Power Station, Bokaro, Jharkhand (India) was used for amending soil at levels 0, 60, 120, 180 and 240 tons ha(-1) in which, brinjal (Solanum melongena) was grown and elemental residues of amended soil and plant parts were enumerated. Fly ash amendments caused significant improvement in soil quality, water holding capacity (52.64-65.76), pH (6.45-7.05), composition of photosynthetic pigment (chlorophyll a, chlorophyll b, total chlorophyll and carotenoid) and few growth parameters (fresh weight, root length, shoot length) of brinjal with the increase in fly ash amendments. Fruit (edible part) of plants grown in fly ash amended soils had metal residues (mg kg(-1)) like Cr (0.80-1.16), Co (0.34-1.46), Ni (0.85-1.00), Zn (24.41-32.33), Cu (10.61-15.49), and Mo (0.49-1.46) within the permissible limits. Results indicate that soil amended with fly ash at 180 tons ha(-1), not only improved the physical properties of the soil but also contributed to the better growth and yield of brinjal.

  12. Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters.

    PubMed

    Ayyasamy, Pudukadu Munusamy; Chun, Saho; Lee, Sanghoon

    2009-01-30

    Heavy metals in soil are considered a major environmental problem facing many countries around the world. Contamination of heavy metals occurs in soil due to both anthropogenic and natural causes. During the last two decades, extensive attention has been paid to the management and control of soil contamination. Decontamination of heavy metals in the soil has been a challenge for a long time. Microbial solubilization is one of promising process for remediation of heavy metals from contaminated sites. In this study, we attempted to treat soil contaminated with heavy metals using a facultative anaerobic bacterium Shewanella sp. (HN-41). The effect of carbon sources on the dissolution and conversion of heavy metals was first investigated using a defined medium containing 1 g of highly contaminated soil to select the most effective carbon source. Among three carbon sources, namely glucose, acetic acid and lactic acid, glucose at 10 mM was found to be the most effective. Therefore, glucose was used as a representative carbon source for the second part of the biological treatment in the defined medium, amended with humic acid (HA) and anthraquinone-2,6-disulfonate (ADQS), respectively. Among the heavy metals, iron and manganese exhibited the highest dissolution efficiency in the medium supplemented with glucose at 10mM. The rates of dissolution and removal of heavy metals were little bit higher in the medium amended with humic acid and ADQS. Per these results outlined above, a combined system of humic acid and ADQS incorporated with glucose was found to be effective for the removal of heavy metals from soil.

  13. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum.

    PubMed

    Hashimoto, Yohey; Yamaguchi, Noriko; Takaoka, Masaki; Shiota, Kenji

    2011-02-01

    Due to unregulated uses of lead pellets for hunting purposes in Japan, soils and sediments in some river basins and wetlands have become highly contaminated with Pb. Deterioration of natural vegetation has occurred sporadically in these areas, and therefore revegetation is needed for ecological restoration. The objectives of the present study were to assess the effects of surface applications of compost and gypsum amendments on Pb availability to a watercress plant (Nasturtium officinale W.T. Aiton) and molecular-scale speciation of Pb in soil solid phases. The compost and gypsum amendments significantly decreased dissolved Pb and Sb in pore water. The concentration of Pb in aboveground plant tissues was 190mg kg(-1) in the control soil and was reduced to <20mg kg(-1) in the compost and gypsum-amended soils. The concentration of Sb in plants grown in the control soil was 13mg kg(-1), whereas that in the soils receiving compost and gypsum decreased below detectable levels. Redox potential was higher in vegetated soils (ave. 349mV) than in the unvegetated soils (ave. 99mV) due to oxygen introduced by plant roots. Extended X-ray absorption fine structure (EXAFS) spectroscopy illustrated that Pb occurred as Pb sorbed on birnessite and/or ferrihydrite (Pb-Mn/Fe, ~60%) and Pb sorbed on organic matter (Pb-org, ~15%), and galena (PbS, ~10%) in the vegetated and unvegetated control soils. The compost amendment increased the proportion of Pb-org by 2-fold than in the control soils. The amended soils with plant growth decreased the proportion of Pb-Mn/Fe phases by half of that without plant growth. Galena and anglesite (PbSO(4)) were not detected in compost-amended soils and even in gypsum-amended soils since a significant soil reduction to anoxic levels did not occur in the entire soil. The present study indicated that, under flooded conditions, surface applications of compost and gypsum amendments reduced plant Pb uptake from the Pb contaminated soil.

  14. Reduced mobility of fomesafen through enhanced adsorption in biochar-amended soil.

    PubMed

    Khorram, Mahdi Safaei; Wang, Yun; Jin, Xiangxiang; Fang, Hua; Yu, Yunlong

    2015-06-01

    The residual soil material resulting from biomass thermochemical transformation during carbon separation, known as biochar, has been introduced as a soil amendment because of its numerous environmental benefits, including uses for contaminated land management. Adsorption and leaching of fomesafen in soils amended with 3 different rates of rice hull biochar (0.5%, 1%, and 2% w/w) under laboratory conditions were investigated, and studies were performed following a batch equilibration adsorption-desorption procedure and a column experiment for leaching. Adsorption-desorption data fit with the Freundlich equation well. The adsorption coefficient of fomesafen sharply increased from 0.59 to 0.99 to 8.02 to 22.23 when the amount of biochar amendment in the soil increased from 0% to 2% (w/w). In addition, a strong correlation was found between the amount of adsorbed fomesafen and the rate of amended biochar (r > 0.992, p < 0.01). Furthermore, biochar amendments reduced the desorption percentage of fomesafen in the soils. The outcomes of the leaching experiment also illustrated that the lowest fomesafen concentration in the leachate (21.4%) occurred in the soil amended with 2% (w/w) biochar. Moreover, the adsorption coefficients (K(f)(ads)) of the soil were positively correlated with the total amount of adsorbed fomesafen in the corresponding soil columns (r = 0.990, p < 0.01) and negatively correlated with the leachate percentage (r = 0.987, p < 0.05). The results of the present study suggest that biochar amendments in agricultural soils likely alter the fate of herbicides by decreasing their transport through enhanced adsorption.

  15. Chromium fractionation and plant availability in tannery-sludge amended soil

    NASA Astrophysics Data System (ADS)

    Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte

    2013-04-01

    soils with the highest sludge dose (20 g kg-1). Soils from the different treatments were potted (5 L) and planted with Trigonella foenum graecum seeds (1 plant per pot). Plants were harvested in the vegetative stage and processed for tissue analysis of Cr, Fe, Zn and Pb. A sequential extraction procedure was applied to the soil for getting insight into the operationally defined soil fractions that incorporate the tannery sludge derived Cr. In any of the treatments Cr was detectable in the exchangeable and easily reducible fractions. In control soils around 10% of soil Cr was in the moderately reducible fraction and the rest in the residual fraction. Contrastingly tannery sludge amended soils incorporated most Cr in the moderately reducible fraction extracted by acid oxalate. This distribution in relation to plant Cr concentrations will be discussed. Acknowledgement: Supported by the Spanish Government (project BFU2010-14873)

  16. Biochar and Mill Ash Use as Soil Amendments to Grow Sugarcane in Sandy Soils of South Florida

    NASA Astrophysics Data System (ADS)

    Alvarez-Campos, O.; Lang, T. A.; Bhadha, J. H.; McCray, M.; Gao, B.; Glaz, B.; Daroub, S. H.

    2015-12-01

    The use of agricultural and urban organic residues as amendments provides an option to improve sugarcane production in sandy soils located northwest of the Everglades Agricultural Area, while reducing waste. This study was conducted to determine the effect of mill ash and three biochars on sugarcane yield and sandy soil properties. Mill ash and biochars produced from hardwood yard waste (HY), barn shavings with horse manure (HM), and rice hulls (RH) were incorporated at 1% and 2% (by weight) to sandy soils in a lysimeter experiment. A control without amendment and an often-used commercial practice of mill ash applied at 6% (AS6) were also included. Results showed that RH2 and AS6 produced greater biomass and sucrose yield compared with the control. According to critical nutrient level analysis, RH and AS amendments also resulted in the highest silicon content, which had a positive correlation with increasing sugarcane yield. In addition, RH2 and AS6 increased total phosphorus, Mehlich-3 phosphorus, and cation exchange capacity (CEC) compared with the control. While CEC remained constant with AS2 and AS6 applications, CEC significantly increased over time with RH2. Moreover, higher amendment applications increased soil organic matter compared with the control and did not decrease over time, which suggests a positive influence for long term carbon sustainability and nutrient cycling in sandy soils. Overall, RH2 and AS6 have the most potential to be used as amendments in sandy soils of South Florida due to their positive effects on soil properties, which improved sugarcane yield. However, no negative consequences were found with the application of any other amendment in terms of sugarcane growth and soil quality. Future research should focus on the use of RH and AS amendments on long-term field-scale studies, and the economic feasibility of a single year application on plant and ratoon cane yields.

  17. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.

    PubMed

    Kidd, P S; Domínguez-Rodríguez, M J; Díez, J; Monterroso, C

    2007-01-01

    Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.

  18. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Hall, Kathleen E; Cox, Lucia; Koskinen, William C

    2016-04-27

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes and, in turn, the amount of pesticide readily availability for transport and biodegradation. Sorption-desorption processes are affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time, or aging. Changes in sorption-desorption of metolachlor with aging in soil amended with three macadamia nut shell biochars aged 0 (BCmac-fr), 1 year (BCmac-1yr), and 2 years (BCmac-2yr) and two wood biochars aged 0 (BCwood-fr) and 5 years (BCwood-5yr) were determined. Apparent sorption coefficient (Kd-app) values increased with incubation time to a greater extent in amended soil as compared to unamended soils; Kd-app increased by 1.2-fold for the unamended soil, 2.0-fold for BCwood-fr, 1.4-fold for BCwood-5yr, 2.4-fold for BCmac-fr, 2.5-fold for BCmac-1yr, and 1.9-fold for BCmac-4yr. The increase in calculated Kd-app value was the result of a 15% decrease in the metolachlor solution concentration extractable with CaCl2 solution with incubation time in soil as compared to a 50% decrease in amended soil with very little change in the sorbed concentration. Differences could possibly be due to diffusion to less accessible or stronger binding sites with time, a faster rate of degradation (in solution and on labile sites) than desorption, or a combination of the two in the amended soils. These data show that transport models would overpredict the depth of movement of metolachlor in soil if effects of aging or biochar amendments are not considered.

  19. Metolachlor Sorption and Degradation in Soil Amended with Fresh and Aged Biochars.

    PubMed

    Trigo, Carmen; Spokas, Kurt A; Hall, Kathleen E; Cox, Lucia; Koskinen, William C

    2016-04-27

    Addition of organic amendments such as biochar to soils can influence pesticide sorption-desorption processes and, in turn, the amount of pesticide readily availability for transport and biodegradation. Sorption-desorption processes are affected by both the physical and chemical properties of soils and pesticides, as well as soil-pesticide contact time, or aging. Changes in sorption-desorption of metolachlor with aging in soil amended with three macadamia nut shell biochars aged 0 (BCmac-fr), 1 year (BCmac-1yr), and 2 years (BCmac-2yr) and two wood biochars aged 0 (BCwood-fr) and 5 years (BCwood-5yr) were determined. Apparent sorption coefficient (Kd-app) values increased with incubation time to a greater extent in amended soil as compared to unamended soils; Kd-app increased by 1.2-fold for the unamended soil, 2.0-fold for BCwood-fr, 1.4-fold for BCwood-5yr, 2.4-fold for BCmac-fr, 2.5-fold for BCmac-1yr, and 1.9-fold for BCmac-4yr. The increase in calculated Kd-app value was the result of a 15% decrease in the metolachlor solution concentration extractable with CaCl2 solution with incubation time in soil as compared to a 50% decrease in amended soil with very little change in the sorbed concentration. Differences could possibly be due to diffusion to less accessible or stronger binding sites with time, a faster rate of degradation (in solution and on labile sites) than desorption, or a combination of the two in the amended soils. These data show that transport models would overpredict the depth of movement of metolachlor in soil if effects of aging or biochar amendments are not considered. PMID:27050383

  20. Soil solution chemistry of sewage-sludge incinerator ash and phosphate fertilizer amended soil

    SciTech Connect

    Bierman, P.M.; Rosen, C.J.; Bloom, P.R.; Nater, E.A.

    1995-03-01

    The chemical composition of the soil provides useful information on the feasibility of amending agricultural land with municipal and industrial waste, because the soil solution is the medium for most soil chemical reactions, the mobile phase in soils, and the medium for mineral adsorption by plant roots. The soil solutions studies in this research were from plots in a 4-yr field experiment conducted to evaluate the effects of the trace metals and P in sewage-sludge incinerator ash. Treatments compared ash with equivalent P rates from triple-superphosphate fertilizer and a control receiving no P application. Ash and phosphate fertilizer were applied annually at rates of 35, 70, and 140 kg citrate-soluble P ha{sup -1}. Cumulative ash applications during 4 yr amounted to 3.6, 7.2, and 14.4 Mg ash ha{sup -1}. Soil solutions were obtained by centrifugation-immiscible liquid displacement using a fluorocarbon displacing agent. Following chemical analysis, a chemical speciation model was used to determine possible solubility-controlling minerals for trace metals and P, and correlations between solution composition and plant uptake were analyzed. 37 refs., 5 tabs.

  1. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil.

    PubMed

    Wan, Qing; Yuan, Jin-Hua; Xu, Ren-Kou; Li, Xing-Hui

    2014-02-01

    The biochars were prepared from straws of canola, corn, soybean, and peanut at different temperatures of 300, 500, and 700 °C by means of oxygen-limited pyrolysis.Amelioration effects of these biochars on an acidic Ultisol were investigated with incubation experiments, and application rate of biochars was 10 g/kg. The incorporation of these biochars induced the increase in soil pH, soil exchangeable base cations, base saturation, and cation exchange capacity and the decrease in soil exchangeable acidity and exchangeable Al. The ameliorating effects of biochars on acidic soil increased with increase in their pyrolysis temperature. The contribution of oxygen-containing functional groups on the biochars to their ameliorating effects on the acidic soil decreased with the rise in pyrolysis temperature, while the contribution from carbonates in the biochars changed oppositely. The incorporation of the biochars led to the decrease in soil reactive Al extracted by 0.5mol/L CuCl2, and the content of reactive Al was decreased with the increase in pyrolysis temperature of incorporated biochars. The biochars generated at 300 °C increased soil organically complexed Al due to ample quantity of oxygen-containing functional groups such as carboxylic and phenolic groups on the biochars, while the biochars generated at 500 and 700 °C accelerated the transformation of soil exchangeable Al to hydroxyl-Al polymers due to hydrolysis of Al at higher pH. Therefore, the crop straw-derived biochars can be used as amendments for acidic soils and the biochars generated at relatively high temperature have great ameliorating effects on the soils. PMID:24078274

  2. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively.

  3. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  4. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  5. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue

  6. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    NASA Astrophysics Data System (ADS)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  7. Changes in dissolved organic carbon of soil amendments with aging: effect on pesticide adsorption behavior.

    PubMed

    Cox, Lucia; Fernandes, M Conceicao; Zsolnay, Adam; Hermosín, M Carmen; Cornejo, Juan

    2004-09-01

    The effect of aging in the soil of three organic amendments (OAs), one liquid (LF) and two solid ones (SF and AL), has been investigated and related to changes in soil adsorption of metalaxyl and tricyclazole. LF and AL have very high dissolved organic carbon (DOC) contents with low humification index values, whereas SF has a low DOC content but the highest amounts of highly humified material. All OAs increased the adsorption of tricyclazole, whereas adsorption of metalaxyl decreased in soils amended with LF and AL, due to competition with DOC for mineral adsorption sites. With aging, DOC from SF amended soils is not significantly affected and neither is adsorption behavior. On the contrary, the great reduction of DOC from LF and AL with aging has been shown to affect adsorption of metalaxyl and tricyclazole, and this effect is dependent on the pesticide, the nature of the DOC, and the type of soil, in particular its clay mineralogy.

  8. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils.

  9. Non-Traditional Legumes as Potential Soil Amendments for Nematode Control

    PubMed Central

    Morris, J. B.; Walker, J. T.

    2002-01-01

    Dried ground plant tissues from 20 leguminous species were mixed with Meloidogyne incognita-infested soil at 1, 2 or 2.5, and 5% (w/w) and incubated for 1 week at room temperature (21 to 27°C). Tomato ('Rutgers') seedlings were transplanted into infested soil to determine nematode viability. Most tissues reduced gall numbers below the non-amended controls. The tissue amendments that were most effective include: Canavalia ensiformis, Crotalaria retusa, Indigofera hirsuta, I. nummularifolia, I. spicata, I. suffruticosa, I. tinctoria, and Tephrosia adunca. Although certain tissues reduced the tomato dry weights, particularly at the higher amendment rates (5%), some tissues resulted in greater dry weights. These non-traditional legumes, known to contain bioactive phytochemicals, may offer considerable promise as soil amendments for control of plant-parasitic nematodes. Not only do these legumes reduce root-knot nematodes but some of them also enhance plant height and dry weight. PMID:19265956

  10. Soil characteristics of sediment-amended baldcypress (Taxodium distichum) swamps of coastal Louisiana

    USGS Publications Warehouse

    Jiang, Ming; Middleton, Beth A.

    2011-01-01

    Amendments of sediment from dredging activities have played an important role in raising the elevation of sinking coastal wetlands. This study compared the soil characteristics of sediment- amended coastal swamps in the Barataria Preserve unit of Jean Lafitte National Historical Park and Preserve with natural swamps along Bayou des Familles. The sandy sediment amendments used in the coastal forests had different soil texture and characteristics than the more organic soils of the natural swamps. Three years after the application of these sediments on the sediment-amended swamps, dewatering and compaction of the sediment had occurred but the sediment still had high salinity and bulk density, and low organic matter content. The two sediment-amended swamps differed from each other in that Site 1 had a higher elevation (mean = 25 cm higher) and drier soil than Site 2. The effects of sediment in coastal forested wetlands require separate consideration from studies of salt marshes, e.g., the weight of the sediment might damage tree roots, or the amendments might influence soil stability during storms in a different way. Generally, this study suggests that shallower depths of sediment are more likely to yield environments beneficial to these sinking baldcypress swamps in coastal Louisiana.

  11. The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea.

    PubMed

    Mendoza, Christina; Assadian, Naomi W; Lindemann, William

    2006-06-01

    The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH(3)) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH(3) emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.

  12. Crop response to localized organic amendment in soils with limiting physical properties

    NASA Astrophysics Data System (ADS)

    Lordan, Joan; Pascual, Miquel; Fonseca, Francisco; Villar, Josep Maria; Montilla, Victor; Papió, Josep; Rufat, Josep

    2013-04-01

    This 2-year study evaluated the use of rice husk as a localized organic amendment in a soil with limiting physical properties. The research was conducted in a commercial peach orchard planted in 2011 using a ridge planting system. Six soil and water management treatments were evaluated in 18 experimental units, which were set up in the field using a randomized complete block design. The treatments were compared both in terms of soil physical properties and crop response. Soil amendment with rice husk was the most effective technique. It improved soil conditions (soil infiltration and soil porosity), providing a better soil environment for root activity and thereby resulted in better crop performance. Concerning growth parameters, the amended treatment presented the highest overall values without negatively affecting crop water status. These techniques were suitable for mitigating the effects of soils with limiting physical conditions. Localized applications of amendments, as proposed in this work, imply an important reduction in application rates. It is important to consider an efficient use of by-products since there is a growing interest in industrial and agronomical exploitations.

  13. Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil.

    PubMed

    Sun, Junna; He, Fuhong; Zhang, Zhenhua; Shao, Hongbo; Xu, Gang

    2016-11-01

    This study assessed the effects of temperature and moisture on carbon mineralization (Cmin) in a saline soil system with biochar amendment. The dynamics of Cmin were monitored in a biochar-amended saline soil for 220days by incubation experiments under different conditions of temperature (15°C, 25°C and 35°C) and moisture (30%, 70% and 105% of the water-holding capacity). Results showed that as the incubation temperature rose, cumulative Cmin consistently increased in soil added with 0-4% biochar. The two-compartment model could well describe the dynamics of Cmin. The temperature rise increased the concentration of labile C in soil, but reduced the turnover time of labile and recalcitrant C pools and the value of temperature coefficient Q10. The response of Cmin to moisture was varying in soil amended with different levels of biochar. In the control treatment (soil alone), cumulative Cmin increased only when soil moisture was >105%. In the biochar treatments, however, 70% of water-holding capacity was optimal for Cmin, except for 2%-biochar treatment at 35°C. The findings highlight the necessity to consider the combined effects of soil moisture, temperature and the amount of biochar added for assessing Cmin in biochar-amended saline soils.

  14. Effect of organic amendment and plant roots on the solubility and mobilization of lead in soils at a shooting range.

    PubMed

    Levonmäki, M; Hartikainen, H; Kairesalo, T

    2006-01-01

    Lead (Pb) dissolving gradually from spent pellets constitutes a serious environmental risk in and near shooting ranges, and remediation measures are necessary to prevent its movement to deeper soil layers and ground water. In this study, the effectiveness of organic amendment and plant roots in stabilizing Pb was assessed in a microcosm experiment. Planted (Scots pine, Pinus sylvestris L.) and unplanted microcosms consisting of coarse-textured mineral soil covered with Pb-contaminated humic topsoil were coated with uncontaminated peat layers of 1 to 3 cm and incubated for 77 d. In a percolation test, the microcosms were washed with ultra pure water to simulate heavy rain so as to rinse water-soluble lead (Pbw) from the topsoil layer. Although Pbw remained below detection limits in the mineral soils in all test units, acid-soluble lead (Pba) increased. Peat amendment diminished Pba in the mineral soil layer, this effect being more pronounced in planted soils, indicating that Pb was taken up by the plants. The percolation test showed that the effect of Scots pine seedlings on Pb movement was minor when peat was added. A long-term dissolution test revealed that considerably more Pb was released from old pellets into soil extracts than from new ones, whereas only traces of Pb, if any, were dissolved in sterilized pure water.

  15. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.

    PubMed

    Meers, E; Ruttens, A; Hopgood, M J; Samson, D; Tack, F M G

    2005-02-01

    Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake.

  16. Use of commercial soil amendments in initial soils (II) - Impact on soil respiratory and carbon isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Nii-Annang, S.; Rodionov, A.; Dilly, O.; Bens, O.; Raab, T.; Hüttl, R. F.

    2009-04-01

    The search for viable re-cultivation techniques for the reclamation of large scale soil disturbances induced by mining of mineral resources has increasingly received attention in recent times. These techniques should favour plant growth under dry conditions and under nutrient-poor substrates; a problem in the lignite mining district in Lusatia, Germany. Substrates with basal respiration around 0.04 µg CO2 g-1 h-1, which is relatively low compared to mature soils, were amended with two nutrient rich commercial soil additives (CSA 1 and CSA 2). The CSA 1 is a synthetic-mineral mixture and CSA 2 an organo-mineral mixture. The amendment stimulated basal respiration based on both carbon dioxide evolution and oxygen uptake by 150 and 125 % for SCA 1 and CSA 2, respectively when 1 % of each additive was thoroughly mixed with substrate in a laboratory study. The stimulating effect was evident after glucose addition to CSA 2. The CSA 1 application in the field at lower rates still showed apparent stimulation of soil respiratory activities after one year. Similarly, the organo-mineral-mixture has prominent effects on basal respiration and substrate-induced respiration when glucose was added. We concluded that the commercial additives used as long-term amelioration techniques increased both nutrient preservation and, to some extent, soil microbial activity.

  17. Linear spectral unmixing to monitor crop growth in typical organic and inorganic amended arid soil

    NASA Astrophysics Data System (ADS)

    El Battay, A.; Mahmoudi, H.

    2016-06-01

    The soils of the GCC countries are dominantly sandy which is typical of arid regions such as the Arabian Peninsula. Such soils are low in nutrients and have a poor water holding capacity associated with a high infiltration rate. Soil amendments may rehabilitate these soils by restoring essential soil properties and hence enable site revegetation and revitalization for crop production, especially in a region where food security is a priority. In this study, two inorganic amendments; AustraHort and Zeoplant pellet, and one organic locally produced compost were tested as soil amendments at the experimental field of the International Center for Biosaline Agriculture in Dubai, UAE. The main objective is to assess the remote sensing ability to monitor crop growth, for instance Okra (Abelmoschus esculentus), having these amendments, as background with the soil. Three biomass spectral vegetation indices were used namely; NDVI, TDVI and SAVI. Pure spectral signatures of the soil and the three amendments were collected, using a field spectroradiometer, in addition to the spectral signatures of Okra in two growing stages (vegetative and flowering) in the field with a mixed F.O.V of the plant and amended soil during March and May 2015. The spectral signatures were all collected using the FieldSpec® HandHeld 2 (HH2) in the spectral range 325 nm - 1075 nm over 12 plots. A set of 4 plots were assigned for each of the three amendments as follow: three replicates of a 1.5 by 1.5 meter plot with 3kg/m2 of each amendment and 54 plants, one plot as control and all plots were given irrigation treatments at 100% based on ETc. Spectra collected over the plots were inversed in the range of 400-900 nm via a Linear Mixture Model using pure soil and amendments spectral signatures as reference. Field pictures were used to determine the vegetation fraction (in term of area of the F.O.V). Hence, the Okra spectral signatures were isolated for all plots with the three types of amendments. The

  18. Effects of winter cover crop, soil amendment, and variety on organic rice production and greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen supply and disease are two main challenges in organic rice production. Cover crop and soil amendment can be options to increase soil N while keeps rice health. The objective of this study was to test the effects of cover crop and soil amendment on the production of organic rice. Three popul...

  19. Effects of biosolids and FGD-gypsum amended soil on metal uptake by lettuce and Edamame soybean and nodules development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biosolids and flue gas desulfurization (FGD)-gypsum amended soils are a rich nutrient source for plant growth and could reduce soil contamination by synthetic fertilizers. According to previous studies, these soil amendments have also enhanced some rhizobacteria (Bradyrhizobium japonicum) in the rh...

  20. Differences in soil solution chemistry between soils amended with nanosized CuO or Cu reference materials: implications for nanotoxicity tests.

    PubMed

    McShane, Heather V A; Sunahara, Geoffrey I; Whalen, Joann K; Hendershot, William H

    2014-07-15

    Soil toxicity tests for metal oxide nanoparticles often include micrometer-sized oxide and metal salt treatments to distinguish between toxicity from nanometer-sized particles, non-nanometer-sized particles, and dissolved ions. Test result will be confounded if each chemical form has different effects on soil solution chemistry. We report on changes in soil solution chemistry over 56 days-the duration of some standard soil toxicity tests-in three soils amended with 500 mg/kg Cu as nanometer-sized CuO (nano), micrometer-sized CuO (micrometer), or Cu(NO3)2 (salt). In the CuO-amended soils, the log Cu2+ activity was initially low (minimum -9.48) and increased with time (maximum -5.20), whereas in the salt-amended soils it was initially high (maximum -4.80) and decreased with time (minimum -6.10). The Cu2+ activity in the nano-amended soils was higher than in the micrometer-amended soils for at least the first 11 days, and lower than in the salt-amended soils for at least 28 d. The pH, and dissolved Ca and Mg concentrations in the CuO-amended soils were similar, but the salt-amended soils had lower pH for at least 14 d, and higher Ca and Mg concentrations throughout the test. Soil pretreatments such as leaching and aging prior to toxicity tests are suggested.

  1. Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings.

    PubMed

    Edenborn, H M

    2004-04-01

    The ability of poly(lactic acid) (PLA) to serve as a long-term source of lactic acid for bacterial sulfate reduction activity in zinc smelter tailings was investigated. Solid PLA polymers mixed in water hydrolyzed abiotically to release lactic acid into solution over an extended period of time. The addition of both PLA and gypsum was required for indigenous bacteria to lower redox potential, raise pH, and stimulate sulfate reduction activity in highly oxidized smelter tailings after one year of treatment. Bioavailable cadmium, copper, lead and zinc were all lowered significantly in PLA/gypsum treated soil, but PLA amendments alone increased the bioavailability of lead, nickel and zinc. Similar PLA amendments may be useful in constructed wetlands and reactive barrier walls for the passive treatment of mine drainage, where enhanced rates of bacterial sulfate reduction are desirable.

  2. Potential adverse effects of applying phosphate amendments to immobilize soil contaminants.

    PubMed

    Majs, Frantisek

    2011-01-01

    Seven-day batch equilibrium experiments were conducted to measure the efficacy of four phosphate amendments (trisodium trimetaphosphate [TP3], dodecasodium phytate [Na-IP6], precipitated calcium phytate [Ca-IP6], and hydroxyapatite [HA]) for immobilizing Ni and U in organic-rich sediment. Using the eight-step modified Miller's sequential extraction procedure and the USEPA's Toxicity Characteristic Leaching Procedure, the effect of these amendments on the distribution of Ni and U was assessed. Relative to unamended controls, equilibrium aqueous-phase U concentrations were lower following HA and Ca-IP6 additions but higher following TP3 and Na-IP6 amendments, whereas aqueous Ni concentrations were not decreased only in the Na-IP6 amended treatment relative to the control. The poor rates of contaminant immobilization following TP3 and Na-IP6 amendments correlate with the dispersion of organic matter and organo-mineral colloids, which probably contain sorbed U and Ni. While all amendments shifted the U distribution toward more recalcitrant soil fractions, Ni was redistributed to more labile soil fractions. This study cautions that the addition of orthophosphates and organophosphates as contaminant immobilizing amendments may in fact have adverse effects, especially in high-organic soils. Particular attention is warranted at sites with mixed contaminants with varying geochemical behaviors.

  3. Potential adverse effects of applying phosphate amendments to immobilize soil contaminants.

    PubMed

    Majs, Frantisek

    2011-01-01

    Seven-day batch equilibrium experiments were conducted to measure the efficacy of four phosphate amendments (trisodium trimetaphosphate [TP3], dodecasodium phytate [Na-IP6], precipitated calcium phytate [Ca-IP6], and hydroxyapatite [HA]) for immobilizing Ni and U in organic-rich sediment. Using the eight-step modified Miller's sequential extraction procedure and the USEPA's Toxicity Characteristic Leaching Procedure, the effect of these amendments on the distribution of Ni and U was assessed. Relative to unamended controls, equilibrium aqueous-phase U concentrations were lower following HA and Ca-IP6 additions but higher following TP3 and Na-IP6 amendments, whereas aqueous Ni concentrations were not decreased only in the Na-IP6 amended treatment relative to the control. The poor rates of contaminant immobilization following TP3 and Na-IP6 amendments correlate with the dispersion of organic matter and organo-mineral colloids, which probably contain sorbed U and Ni. While all amendments shifted the U distribution toward more recalcitrant soil fractions, Ni was redistributed to more labile soil fractions. This study cautions that the addition of orthophosphates and organophosphates as contaminant immobilizing amendments may in fact have adverse effects, especially in high-organic soils. Particular attention is warranted at sites with mixed contaminants with varying geochemical behaviors. PMID:21712583

  4. Effect of Fertilizers and Neem Cake Amendment in Soil on Spore Germination of Arthrobotrys dactyloides

    PubMed Central

    Kumar, D.; Jaiswal, R. K.

    2005-01-01

    Application of fertilizers such as urea, diammonium phosphate (DAP) and muriate of potash in soil adversely affected the spore germination of Arthrobotrys dactyloides. Amendment of soil with urea at the concentrations of 1.0%, 0.5% and 0.1% completely inhibited spore germination and direct trap formation on the conidium, whereas muriate of potash delayed and reduced the spore germination even at the lowest concentration. DAP also inhibited spore germination at 1.0% concentration, while at lower concentration the percentage of spore germination was reduced. Application of neem cake at the concentration of 0.5% also inhibited spore germination after 24 h of amendment. The inhibitory effect of neem cake was reduced after 15 days of amendment, while after 30 days after amendment the inhibitory effect was completely lost and the spore germinated by direct trap as in unamended soil. Nematodes were not attracted to ungerminated spores after 24 h of amendment. After 15 days of amendment nematodes were attracted to agar blocks containing fewer germinated spores after 24 h of incubation but after 48 h of incubation large number of nematodes were attracted and trapped by the germinated spores with direct traps. After 30 days of amendment, larger number of nematodes were attracted and trapped by direct traps. PMID:24049500

  5. Arsenic bioaccessibility and speciation in the soils amended with organoarsenicals and drinking-water treatment residuals based on a long-term greenhouse study

    NASA Astrophysics Data System (ADS)

    Nagar, Rachana; Sarkar, Dibyendu; Makris, Konstantinos C.; Datta, Rupali

    2014-10-01

    SummaryAlthough organoarsenical pesticides are no longer applied to agricultural fields in the US, their widespread use until recently, toxicity, and potential transformation to inorganic arsenic has raised serious concern. Drinking-water treatment residuals (WTRs) have been proposed as a low-cost amendment for remediation of organoarsenical pesticide contaminated soils. A long-term greenhouse study was initiated to evaluate the effect WTR application on bioaccessibility, geochemical partitioning, and speciation of the Dimethylarsinic acid (DMA). Two soils (Immokalee and Orelia series) were spiked with DMA (1500 mg As kg-1) and amended with an Al- and Fe-based WTR at two rates (5% and 10% by wt.). Soil sampling was done immediately after spiking (time zero) and after 0.25, 0.5, 1, and 3 (time final) years of equilibration and subjected to bioaccessibility test and sequential extraction. Results showed that compared to the unamended (no WTR) control, As bioaccessibility in the WTR-amended soils significantly (p < 0.001) decreased by 40-70% in 3 years. The Fe-WTR was more effective than Al-WTR in decreasing soil As bioaccessibility. The in vitro and water-extracted samples were subjected to As speciation at time zero and time final. Results showed transformation of DMA into inorganic As, irrespective of WTR amendments. The Orelia soil showed significantly (p < 0.001) higher transformation than the Immokalee soil.

  6. Emission reduction of 1,3-dichloropropene by soil amendment with biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. Biochar as soil amendments has the potential of mitigating climate change effects. In addition, its high surface area and porosity enable it to adsorb or retain nutrients,...

  7. Accelerated metolachlor degradation in soil by zerovalent iron and compost amendments.

    PubMed

    Kim, Sung-Chul; Yang, Jae E; Ok, Yong Sik; Skousen, Jeff; Kim, Dong-Guk; Joo, Jin-Ho

    2010-04-01

    Soil incubation and germination tests were conducted to assess zerovalent iron (ZVI), organic compost, moisture and their combinations on metolachlor degradation in soil. The ZVI alone degraded 91% of metolachlor in soil within 40 days following bi-phasic kinetics. Organic amendment alone facilitated metolachlor degradation in soil up to 60% after 40 days depending on the amendment rate. However, the combination of ZVI with compost amendment at 30 ton ha(-1) and 30% moisture content accelerated metolachlor degradation to 90% after 3 days and 98% after 40 days. The half life (t (1/2)) of metolachlor degradation with ZVI, compost at 30 ton ha(-1), and 30% moisture was about 1 day, which was faster than ZVI treatment alone and 98% faster than controls. Germination and growth of lettuce (Lactuca sativa) and crabgrass (Digitaria sanguinalis L. Scop.) were severely inhibited in unamended metolachlor-contaminated soils but when these soils were amended with ZVI, germination and growth was comparable to controls (metolachlor free soil). Metolachlor degradation was greatest when ZVI, compost and moisture were used together, suggesting that these treatments will maximize in situ remediation of metolachlor-contaminated soils in the field.

  8. Importance of soil amendments: survival of bacterial pathogens in manure and compost used as organic fertizliers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological soil amendments (BSA’s) like manure and compost are frequently used as organic fertilizers to soils to improve its physical and chemical properties. However, BSAs have been known to be a reservoir for enteric bacterial pathogens like enterohemorrhagic E. coli, Salmonella spp, and Listeri...

  9. The mechanisms for 1,3-dichloropropene dissipation in biochar-amended soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar has the potential to reduce fumigant emissions to protect air quality; however, the mechanisms are not fully understood. The objective of this study was to determine effects of biochar properties, amendment rate, soil moisture, temperature, and soil type on degradation and adsorption charact...

  10. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    NASA Astrophysics Data System (ADS)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  11. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments.

    PubMed

    Padmavathiamma, Prabha K; Li, Loretta Y

    2010-07-01

    Studies were conducted to determine the best management practice for immobilisation of toxic Pb and Mn in soil and the interaction of these metal contaminants with the associated plants. The research protocol comprises addition of soil amendments to accelerate physico-chemically driven sorption processes and growth of appropriate plant species to reduce physiologically driven uptake of Pb and Mn. Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue) and Poa pratensis L (Kentucky blue grass) were tested in the presence of soil amendments (lime, phosphate and compost, both individually and in combination). The effectiveness of treatments in stabilizing metals was assessed on the basis of metal speciation in soil, partitioning of metals in plants, and metal uptake. Significant partitioning of Pb in immobile forms was noticed by the growth of P. pratensis and Mn by the growth of L. perenne. Lime application lowered plant Pb and Mn, while phosphate decreased plant Pb and increased plant Mn. Combined amendment addition resulted in a significant decrease in the exchangeable (mobile) metal fraction in soils growing Poa for Pb and in soils growing Lolium for Mn. EC(root) (ratio of root concentration to soil concentration) and EC(shoot) (ratio of shoot concentration to soil concentration) for Pb in Poa decreased by 72% and 60% with combined application of amendments, while the corresponding decreases for Mn in Lolium were 48% and 43%.

  12. Corn grain yield and soil properties after 10 years of broiler litter amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of broiler litter nutrients for crop production benefits crops, soils, and aids in disposing manure. Understanding corn (Zea mays L.) grain production and soil properties resulting from long-term poultry litter amendment helps establish a sustainable animal manure based corn production with low ...

  13. Greenhouse gas emission and groundwater pollution potentials of soils amended with different swine biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with various biochars using different biomass feedstocks and thermal processing conditions. Triplicate sets of small pots were designed; control soil consisting of Histi...

  14. Greenhouse gas emission and groundwater pollution potentials of soils amended with raw and carbonized swine solids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research is to study the greenhouse gas emission and groundwater pollution potentials of the soils amended with raw swine solids and swine biochars made from different thermochemical conditions. Triplicate sets of small pots were designed: 1) control soil with a 50/50 mixture o...

  15. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil.

    PubMed

    Herrero-Hernández, E; Marín-Benito, J M; Andrades, M S; Sánchez-Martín, M J; Rodríguez-Cruz, M S

    2015-11-01

    This study reports the effect that adding spent mushroom substrate (SMS) to a representative vineyard soil from La Rioja region (Spain) has on the behaviour of azoxystrobin in two different environmental scenarios. Field dissipation experiments were conducted on experimental plots amended at rates of 50 and 150 t ha(-1), and similar dissipation experiments were simultaneously conducted in the laboratory to identify differences under controlled conditions. Azoxystrobin dissipation followed biphasic kinetics in both scenarios, although the initial dissipation phase was much faster in the field than in the laboratory experiments, and the half-life (DT50) values obtained in the two experiments were 0.34-46.3 days and 89.2-148 days, respectively. Fungicide residues in the soil profile increased in the SMS amended soil and they were much higher in the top two layers (0-20 cm) than in deeper layers. The persistence of fungicide in the soil profile is consistent with changes in azoxystrobin adsorption by unamended and amended soils over time. Changes in the dehydrogenase activity (DHA) of soils under different treatments assayed in the field and in the laboratory indicated that SMS and the fungicide had a stimulatory effect on soil DHA. The results reveal that the laboratory studies usually reported in the literature to explain the fate of pesticides in amended soils are insufficient to explain azoxystrobin behaviour under real conditions. Field studies are necessary to set up efficient applications of SMS and fungicide, with a view to preventing the possible risk of water contamination.

  16. Amelioration of physical strength in waste foundry green sands for reuse as a soil amendment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As available landfill space and profit margins steadily decrease, it becomes more important for U.S. foundries to find ways of diverting 8-12 million tons of waste foundry sand (WFS) away from landfills each year. A major drawback to the reuse of some WFSs as a soil amendment is their high soil str...

  17. SORPTION AND DESORPTION OF CADMIUM BY DIFFERENT FRACTIONS OF BIOSOLIDS - AMENDED SOILS

    EPA Science Inventory

    Series of Cd sorption and desorption experiments were conducted on different fractions of soils amended with biosolids, Cd-salt, and unamended soils (control) to test the hypothesize that not only organic but also inorganic fraction in biosolids controls the metal availability in...

  18. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    EPA Science Inventory

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  19. Reversible and irreversible sorption of agrochemicals in biochar amended soils: synergistic effects of heavy metals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil amendment of biochar products from thermochemical waste-to-energy conversion (slow/fast pyrolysis and gasification) of biomass has received considerable interests for both contaminated and agricultural sites. Recalcitrant nature of biochar manifests in their decade-long effectiveness in soil a...

  20. Contaminant Immobilization and Nutrient Release by Biochar Soil Amendment: Roles of Natural Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contamination of soil interstitial waters by labile heavy metals such as CuII, CdII, and NiII is of worldwide concern. Carbonaceous materials such as char and activated carbon have received considerable attention in recent years as soil amendment for both sequestering heavy metal contaminants and r...

  1. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with

  2. Phosphorus release behaviors of poultry litter biochar as a soil amendment.

    PubMed

    Wang, Yue; Lin, Yingxin; Chiu, Pei C; Imhoff, Paul T; Guo, Mingxin

    2015-04-15

    Phosphorus (P) may be immobilized and consequently the runoff loss risks be reduced if poultry litter (PL) is converted into biochar prior to land application. Laboratory studies were conducted to examine the water extractability of P in PL biochar and its release kinetics in amended soils. Raw PL and its biochar produced through 400°C pyrolysis were extracted with deionized water under various programs and measured for water extractable P species and contents. The materials were further incubated with a sandy loam at 20 g kg(-1) soil and intermittently leached with water for 30 days. The P release kinetics were determined from the P recovery patterns in the water phase. Pyrolysis elevated the total P content from 13.7 g kg(-1) in raw PL to 27.1 g kg(-1) in PL biochar while reduced the water-soluble P level from 2.95 g kg(-1) in the former to 0.17 g kg(-1) in the latter. The thermal treatment transformed labile P in raw PL to putatively Mg/Ca phosphate minerals in biochar that were water-unextractable yet proton-releasable. Orthophosphate was the predominant form of water-soluble P in PL biochar, with condensed phosphate (e.g., pyrophosphate) as a minor form and organic phosphate in null. Release of P from PL biochar in both water and neutral soils was at a slower and steadier rate over a longer time period than from raw PL. Nevertheless, release of P from biochar was acid-driven and could be greatly promoted by the media acidity. Land application of PL biochar at soil pH-incorporated rates and frequency will potentially reduce P losses to runoffs and minimize the adverse impact of waste application on aquatic environments. PMID:25644841

  3. Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments.

    PubMed

    Clemente, Rafael; Walker, David J; Bernal, M Pilar

    2005-11-01

    Two crops of Brassica juncea (L.) Czern. were grown in a field experiment, at the site affected by the toxic spillage of acidic, metal-rich waste in Aznalcóllar (Seville, Spain), to study its metal accumulation and the feasibility of its use for metal phytoextraction. The effects of organic soil amendments (cow manure and mature compost) and lime on biomass production and plant survival were also assessed; plots without organic amendment and without lime were used as controls. Plots, with or without organic amendment, having pH < 5 were limed for the second crop. Soil acidification conditioned plant growth and metal accumulation. The addition of lime and the organic amendments achieved higher plant biomass production, although effects concerning metal bioavailability and accumulation were masked somewhat by pH variability with time and between and within plots. Tissue metal concentrations of B. juncea were elevated for Zn, Cu and Pb, especially in leaves of plants from plots with low pH values (maxima of 2029, 71 and 55 microg g(-1), respectively). The total uptake of heavy metals in the plants was relatively low, emphasising the problems faced when attempting to employ phytoextraction for clean-up of pluri-contaminated sites. PMID:15894412

  4. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.

    PubMed

    Gell, Kealan; van Groenigen, JanWillem; Cayuela, Maria Luz

    2011-02-28

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel, bioethanol and pyrolysis). The RPs were mixed into a sandy soil and the seedling root and shoot elongation of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and wheat (Triticum aestivum L.) were measured. Immediate phytotoxic effects were observed with biodiesel and bioethanol RPs (root elongation reduced to 14-60% for the three crops; P<0.05). However, phytotoxicity was no longer significant after seven days. Digestates had no phytotoxic effect whereas biochars ranged from beneficial to detrimental depending on the original feedstock and temperature of pyrolysis. Biochar amendment alleviated phytotoxicity of bioethanol by-products for wheat and radish. Phytotoxicity assessment is critical for successful soil amendment with bioenergy RPs. PMID:21256672

  5. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity.

    PubMed

    Gell, Kealan; van Groenigen, JanWillem; Cayuela, Maria Luz

    2011-02-28

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel, bioethanol and pyrolysis). The RPs were mixed into a sandy soil and the seedling root and shoot elongation of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), and wheat (Triticum aestivum L.) were measured. Immediate phytotoxic effects were observed with biodiesel and bioethanol RPs (root elongation reduced to 14-60% for the three crops; P<0.05). However, phytotoxicity was no longer significant after seven days. Digestates had no phytotoxic effect whereas biochars ranged from beneficial to detrimental depending on the original feedstock and temperature of pyrolysis. Biochar amendment alleviated phytotoxicity of bioethanol by-products for wheat and radish. Phytotoxicity assessment is critical for successful soil amendment with bioenergy RPs.

  6. Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments.

    PubMed

    Rubio-Bellido, Marina; Madrid, Fernando; Morillo, Esmeralda; Villaverde, Jaime

    2015-01-01

    Diuron desorption and mineralisation were studied on an amended and artificially contaminated soil. The amendments used comprised two different composted organic residues i.e., sewage sludge (SS) mixed with pruning wastes, and urban solid residues (USR), and two different solutions (with inorganic salts as the micronutrients and hydroxypropyl-β-cyclodextrin (HPBCD)). After applying micronutrients to activate the soil flora, 15.5% mineralisation could be reached after 150 days, indicating that the soil has a potential capacity to mineralise the herbicide through biostimulation-assisted attenuation. Diuron mineralisation was also improved when HPBCD solutions were applied. Indeed, the extent of herbicide mineralisation reached 29.7% with this application. Moreover, both the lag phase and the half-life time (DT50) were reduced to 33 and 1,778 days, respectively, relative to the application of just micronutrients (i.e., 39 and 6297 days, respectively). Organic amendments were also applied (i.e., USR and SS) on the contaminated soil: it was found that the diuron mineralisation rate was improved as the amendment concentration increased. The joint application of all treatments investigated at the best conditions tested was conducted to obtain the best diuron mineralisation results. The micronutrient amendment plus 4% USR or SS amendment plus HPBCD solution (10-fold diuron initially spiked) caused an extent of diuron mineralisation 33.2 or 46.5%, respectively. PMID:25310830

  7. Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments.

    PubMed

    Rubio-Bellido, Marina; Madrid, Fernando; Morillo, Esmeralda; Villaverde, Jaime

    2015-01-01

    Diuron desorption and mineralisation were studied on an amended and artificially contaminated soil. The amendments used comprised two different composted organic residues i.e., sewage sludge (SS) mixed with pruning wastes, and urban solid residues (USR), and two different solutions (with inorganic salts as the micronutrients and hydroxypropyl-β-cyclodextrin (HPBCD)). After applying micronutrients to activate the soil flora, 15.5% mineralisation could be reached after 150 days, indicating that the soil has a potential capacity to mineralise the herbicide through biostimulation-assisted attenuation. Diuron mineralisation was also improved when HPBCD solutions were applied. Indeed, the extent of herbicide mineralisation reached 29.7% with this application. Moreover, both the lag phase and the half-life time (DT50) were reduced to 33 and 1,778 days, respectively, relative to the application of just micronutrients (i.e., 39 and 6297 days, respectively). Organic amendments were also applied (i.e., USR and SS) on the contaminated soil: it was found that the diuron mineralisation rate was improved as the amendment concentration increased. The joint application of all treatments investigated at the best conditions tested was conducted to obtain the best diuron mineralisation results. The micronutrient amendment plus 4% USR or SS amendment plus HPBCD solution (10-fold diuron initially spiked) caused an extent of diuron mineralisation 33.2 or 46.5%, respectively.

  8. Molecular and functional assessment of bacterial community convergence in metal-amended soils.

    PubMed

    Anderson, J A H; Hooper, M J; Zak, J C; Cox, S B

    2009-07-01

    Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical. PMID:19030917

  9. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells.

    PubMed

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the "soil benefit" category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  10. Microbial Profiling of a Suppressiveness-Induced Agricultural Soil Amended with Composted Almond Shells

    PubMed Central

    Vida, Carmen; Bonilla, Nuria; de Vicente, Antonio; Cazorla, Francisco M.

    2016-01-01

    This study focused on the microbial profile present in an agricultural soil that becomes suppressive after the application of composted almond shells (AS) as organic amendments. For this purpose, we analyzed the functions and composition of the complex communities present in an experimental orchard of 40-year-old avocado trees, many of them historically amended with composted almond shells. The role of microbes in the suppression of Rosellinia necatrix, the causative agent of avocado white root rot, was determined after heat-treatment and complementation experiments with different types of soil. Bacterial and fungal profiles obtained from natural soil samples based on the 16S rRNA gene and ITS sequencing revealed slight differences among the amended (AS) and unamended (CT) soils. When the soil was under the influence of composted almond shells as organic amendments, an increase in Proteobacteria and Ascomycota groups was observed, as well as a reduction in Acidobacteria and Mortierellales. Complementary to these findings, functional analysis by GeoChip 4.6 confirmed these subtle differences, mainly present in the relative abundance of genes involved in the carbon cycle. Interestingly, a group of specific probes included in the “soil benefit” category was present only in AS-amended soils, corresponding to specific microorganisms previously described as potential biocontrol agents, such as Pseudomonas spp., Burkholderia spp., or Actinobacteria. Considering the results of both analyses, we determined that AS-amendments to the soil led to an increase in some orders of Gammaproteobacteria, Betaproteobacteria, and Dothideomycetes, as well as a reduction in the abundance of Xylariales fungi (where R. necatrix is allocated). The combination of microbial action and substrate properties of suppressiveness are discussed. PMID:26834725

  11. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.

    PubMed

    Hashimoto, Yohey; Taki, Tomohiro; Sato, Takeshi

    2009-04-01

    For immobilization technologies to be successful, the use of readily available and cost advantageous amendment is important when the remediation targets vast amounts of contaminated soils. The objectives of this study were to investigate whether the byproduct-synthesized hydroxyapatite can be used as an immobilizing amendment for dissolved Pb from a shooting range soil, and to model the kinetic data collected from dissolution experiments. A soil-solution kinetic experiment was conducted under fixed pH conditions as a function of time. A Pb-contaminated soil was reacted with various hydroxyapatite amendments to determine the dissolution rate and mineral products of soil Pb. Three types of amendments used were pure hydroxyapatite (HA), and poorly crystalline hydroxyapatites synthesized from gypsum waste (CHA), and synthesized from incinerated poultry litter (PHA). The dissolved Pb concentration decreased with the addition of amendments at pH 3-7. Both CHA and PHA were more effective than HA for attenuating Pb dissolution at pH 6 and above. According to the thermodynamic calculation at pH 6, the dissolved Pb concentration for CHA and PHA treatments was predicted to be 66% and 50% lower than that of HA treatment, respectively. A better Pb immobilization effect demonstrated by CHA and PHA resulted in their greater solubility at higher pH, which may promote the formation of chloropyromorphite precipitates. Dissolution kinetics of soil Pb was adequately explained by pseudo-first order and pseudo-second order equations in acid pH ranges. According to the ion exchange model, an adequate agreement between the experimental data and regression curves was shown in the initial 40 min of the reaction process, but the accuracy of model predictability decreased thereafter. According to kinetic models and dissolution phenomena, CHA and PHA amendments had better Pb sorption capacity with rapid kinetics than pure hydroxyapatite at weak acid to neutral pH.

  12. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil. PMID:26525530

  13. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil.

  14. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    PubMed

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers.

  15. Adsorption and transport of methane in landfill cover soil amended with waste-wood biochars.

    PubMed

    Sadasivam, Bala Yamini; Reddy, Krishna R

    2015-08-01

    The natural presence of methane oxidizing bacteria (MOB) in landfill soils can stimulate the bio-chemical oxidation of CH4 to CO2 and H2O under suitable environmental conditions. This mechanism can be enhanced by amending the landfill cover soil with organic materials such as biochars that are recalcitrant to biological degradation and are capable of adsorbing CH4 while facilitating the growth and activity of MOB within their porous structure. Several series of batch and small-scale column tests were conducted to quantify the CH4 sorption and transport properties of landfill cover soil amended with four types of waste hardwood biochars under different levels of amendment percentages (2, 5 and 10% by weight), exposed CH4 concentrations (0-1 kPa), moisture content (dry, 25% and 75% water holding capacity), and temperature (25, 35 and 45 °C). The linear forms of the pseudo second-order kinetic model and the Langmuir isotherm model were used to determine the kinetics and the maximum CH4 adsorption capacity of cover materials. The maximum CH4 sorption capacity of dry biochar-amended soils ranged from 1.03 × 10(-2) to 7.97 × 10(-2) mol kg(-1) and exhibited a ten-fold increase compared to that of soil with 1.9 × 10(-3) mol kg(-1). The isosteric heat of adsorption for soil was negative and ranged from -30 to -118 kJ/mol, while that of the biochar-amended soils was positive and ranged from 24 to 440 kJ/mol. The CH4 dispersion coefficients for biochar-amended soils obtained through predictive transport modeling indicated that amending the soil with biochar enhanced the methane transport rates by two orders of magnitude, thereby increasing their potential for enhanced exchange of gases within the cover system. Overall, the use of hardwood biochars as a cover soil amendment to reduce methane emissions from landfills appears to be a promising alternative to conventional soil covers. PMID:25935750

  16. Trade-offs between soil hydrology and plant disease effects after biochar amendment in sandy soil

    NASA Astrophysics Data System (ADS)

    Verheijen, Frank; Silva, Flavio; Amaro, Antonio; Pinto, Gloria; Mesquita, Raquel; Jesus, Claudia; Alves, Artur; Keizer, Jacob

    2015-04-01

    Biochar can affect multiple soil-based ecosystem services to varying extents, leading to trade-offs. Improvements in plant-available water have predominantly been found at high biochar application rates in sandy soils. Reductions in plant diseases after biochar application have been found in various horticultural plants, and trees such as maple and oak, mostly at relatively low biochar application rates. Serious damage to Eucalyptus globulus has been reported since 1999 when frequent and severe defoliation of young trees was observed, and eucalypts are the major tree species in commercial forestry plantations of Portugal, forming an important economic activity. Here we investigated simultaneous effects on plant available water and on disease suppression of eucalypt, in a completely randomised full factorial greenhouse pot experiment, using a range of woody feedstock biochar concentrations in sandy soil. Treatments included plant inoculation with the fungus Neofusicoccum kwambonambiense and cycles of acute drought stress. Preliminary results showed delayed wilting for plants treated with 3-6% biochar, but also increased stem lesion length. These results suggest a trade-off between effects on water availability and disease for Eucalyptus globulus plants in the selected sandy soil amended with this specific biochar, at the selected application rates.

  17. Impact of chemically amended pig slurry on greenhouse gas emissions, soil properties and leachate.

    PubMed

    O' Flynn, Cornelius J; Healy, Mark G; Lanigan, Gary J; Troy, Shane M; Somers, Cathal; Fenton, Owen

    2013-10-15

    The effectiveness of chemical amendment of pig slurry to ameliorate phosphorus (P) losses in runoff is well studied, but research mainly has concentrated only on the runoff pathway. The aims of this study were to investigate changes to leachate nutrient losses, soil properties and greenhouse gas (GHG) emissions due to the chemical amendment of pig slurry spread at 19 kg total phosphorus (TP), 90 kg total nitrogen (TN), and 180 kg total carbon (TC) ha(-1). The amendments examined were: (1) commercial grade liquid alum (8% Al2O3) applied at a rate of 0.88:1 [Al:TP], (2) commercial-grade liquid ferric chloride (38% FeCl3) applied at a rate of 0.89:1 [Fe:TP] and (3) commercial-grade liquid poly-aluminium chloride (PAC) (10% Al2O3) applied at a rate of 0.72:1 [Al:TP]. Columns filled with sieved soil were incubated for 8 mo at 10 °C and were leached with 160 mL (19 mm) distilled water wk(-1). All amendments reduced the Morgan's phosphorus and water extractable P content of the soil to that of the soil-only treatment, indicating that they have the ability to reduce P loss in leachate following slurry application. There were no significant differences between treatments for nitrogen (N) or carbon (C) in leachate or soil, indicating no deleterious impact on reactive N emissions or soil C cycling. Chemical amendment posed no significant change to GHG emissions from pig slurry, and in the cases of alum and PAC, reduced cumulative N2O and CO2 losses. Chemical amendment of land applied pig slurry can reduce P in runoff without any negative impact on nutrient leaching and GHG emissions. Future work must be conducted to ascertain if more significant reductions in GHG emissions are possible with chemical amendments.

  18. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.

    PubMed

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  19. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    NASA Astrophysics Data System (ADS)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-10-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm 2000-250 μm 250-53 μm and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

  20. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  1. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished.

  2. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished. PMID:24078235

  3. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment. PMID:12365502

  4. Adsorption-desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2013-02-01

    The effect of two fly ashes as soil amendment on the adsorption-desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K (f)) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils + fly ash mixtures than the metolachlor. The K (f) values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R > 0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific. PMID:22572800

  5. Adsorption-desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2013-02-01

    The effect of two fly ashes as soil amendment on the adsorption-desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K (f)) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils + fly ash mixtures than the metolachlor. The K (f) values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R > 0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.

  6. Trade-offs between soil-based functions in wetlands restored with soil amendments of differing lability.

    PubMed

    Ballantine, Katherine A; Lehmann, Johannes; Schneider, Rebecca L; Groffman, Peter M

    2015-01-01

    Soil amendments have been proposed as a means to speed the development of plant and soil processes that contribute to water quality, habitat, and biodiversity functions in restored wetlands. However, because natural wetlands often act as significant methane sources, it remains unknown if amendments will also stimulate emissions of this greenhouse gas from restored wetlands. In this study, we investigated the potential trade-offs of incorporating soil amendments into wetland restoration methodology. We used controlled field-scale manipulations in four recently restored depressional freshwater wetlands in western New York, USA to investigate the impact that soils amended with organic materials have on water-quality functions and methane production in the first three years of development. Results showed that amendments, topsoil in particular, were effective for stimulating the development of a suite of biological (microbial biomass increased by 106% and respiration by 26%) and physicochemical (cation exchange capacity increased by 10%) soil properties indicative of water-quality functions. Furthermore, increases in microbial biomass and activity lasted for a significantly longer period of time (years instead of days) than studies examining less recalcitrant amendments. However, amended plots also had 20% times higher potential net methane production than control plots three years after restoration. Wetlands restoration projects are implemented to achieve a variety of goals, commonly including habitat provision, biodiversity, and water-quality functions, but also carbon sequestration, flood abatement, cultural heritage and livelihood preservation, recreation, education, and others. Projects should strive to achieve their specific goals while also evaluating the potential tradeoffs between wetland functions.

  7. Trade-offs between soil-based functions in wetlands restored with soil amendments of differing lability.

    PubMed

    Ballantine, Katherine A; Lehmann, Johannes; Schneider, Rebecca L; Groffman, Peter M

    2015-01-01

    Soil amendments have been proposed as a means to speed the development of plant and soil processes that contribute to water quality, habitat, and biodiversity functions in restored wetlands. However, because natural wetlands often act as significant methane sources, it remains unknown if amendments will also stimulate emissions of this greenhouse gas from restored wetlands. In this study, we investigated the potential trade-offs of incorporating soil amendments into wetland restoration methodology. We used controlled field-scale manipulations in four recently restored depressional freshwater wetlands in western New York, USA to investigate the impact that soils amended with organic materials have on water-quality functions and methane production in the first three years of development. Results showed that amendments, topsoil in particular, were effective for stimulating the development of a suite of biological (microbial biomass increased by 106% and respiration by 26%) and physicochemical (cation exchange capacity increased by 10%) soil properties indicative of water-quality functions. Furthermore, increases in microbial biomass and activity lasted for a significantly longer period of time (years instead of days) than studies examining less recalcitrant amendments. However, amended plots also had 20% times higher potential net methane production than control plots three years after restoration. Wetlands restoration projects are implemented to achieve a variety of goals, commonly including habitat provision, biodiversity, and water-quality functions, but also carbon sequestration, flood abatement, cultural heritage and livelihood preservation, recreation, education, and others. Projects should strive to achieve their specific goals while also evaluating the potential tradeoffs between wetland functions. PMID:26255369

  8. Herbaceous vegetation productivity, persistence, and metals uptake on a biosolids-amended mine soil.

    PubMed

    Evanylo, G K; Abaye, A O; Dundas, C; Zipper, C E; Lemus, R; Sukkariyah, B; Rockett, J

    2005-01-01

    The selection of plant species is critical for the successful establishment and long-term maintenance of vegetation on reclaimed surface mined soils. A study was conducted to assess the capability of 16 forage grass and legume species in monocultures and mixes to establish and thrive on a reclaimed Appalachian surface mine amended with biosolids. The 0.15-ha coarse-textured, rocky, non-acid forming mined site was prepared for planting by grading to a 2% slope and amending sandstone overburden materials with a mixture of composted and dewatered, anaerobically digested biosolids at a rate of 368 Mg ha(-1) (dry weight). Tall fescue (Festuca arundinacea Schreb.), orchardgrass (Dactylis glomerata L.), switchgrass (Panicum virgatum L.), caucasian bluestem (Bothriochloa caucasia L.), reed canarygrass (Phalaris arundinacea L.), ladino clover (Trifolium repens L.), birdsfoot trefoil (Lotus corniculatus L.), crownvetch (Coronilla varia L.), alfalfa (Medicago sativa L.), common sericea lespedeza and AULotan sericea lespedeza (Lespedeza cuneata L.), tall fescue-ladino clover, tall fescue-alfalfa, orchardgrass-birdsfoot trefoil, switchgrass-AULotan, and an herbaceous species mix intended for planting on reforested sites consisting of foxtail millet [Setaria italica (L.) Beauv.], perennial ryegrass (Lolium perenne L.), redtop (Agrostis alba L.), kobe lespedeza (Kummerowia striata L.), appalow lespedeza (Lespedeza cuneata L.), and birdsfoot trefoil were established between spring 1990 and 1991. Vegetative biomass and/or persistence were assessed in 1996, 1997, 1998, 2000, 2001, and 2002. The high rate of biosolids applied provided favorable soil chemical properties but could not overcome physical property limitations due to shallow undeveloped soil perched atop a compacted soil layer at 25 cm depth. The plant species whose persistence and biomass production were the greatest after a decade or more of establishment (i.e., switchgrass, sericea lespedeza, reed canarygrass, tall

  9. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.

    PubMed

    Burgos, Pilar; Madejón, Engracia; Cabrera, Francisco

    2006-04-01

    Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and

  10. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.

    PubMed

    Burgos, Pilar; Madejón, Engracia; Cabrera, Francisco

    2006-04-01

    Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and

  11. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  12. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  13. Optimizing the combined application of amendments to allow plant growth in a multielement-contaminated soil.

    PubMed

    Sevilla-Perea, A; Romero-Puertas, M C; Mingorance, M D

    2016-04-01

    This study was aimed to 1) properly understand the dynamics of toxic elements (Al, Fe, Mn, Cu, Pb, Zn and As) in a sulphide-mine soil after combined application of compost from urban sewage sludge (SVC) and bottom ashes from biomass combustion (BA) and to 2) optimize the combination of both amendments for vegetation growth. Soil was amended following a D-optimal design and the mixtures (15 in total) were incubated during 30 d. At the end of the incubation, the effects of amendments on the assessed variables as well as the process modelling were evaluated by Response Surface Methodology (RSM). The process modelling confirmed that quadratic models were adequate to explain the behaviour of the assessed variables (R(2) ≥ 0.94 and Q(2) ≥ 0.75). Both amendments significantly increased pH and electrical conductivity, while reduced metal extractability. A different behaviour of As respect to metals was observed and high doses of BA sharply increased its extractability. The optimization process indicated that adequate conditions for vegetation growth would be reached adding the soil with 6.8% of SVC and 3.1% of BA (dry weight). After amendments application the germination and root elongation of three energy crops were significantly increased while lipid peroxidation was decreased. Therefore, the combined application of SVC and BA to a contaminated soil could improve soil conditions and might be expected to have an advantage during plant growth. Moreover, the RSM could be a powerful technique for the assessment of combined amendment effects on soil properties and their effective application in multielement-contaminated soils.

  14. Optimizing the combined application of amendments to allow plant growth in a multielement-contaminated soil.

    PubMed

    Sevilla-Perea, A; Romero-Puertas, M C; Mingorance, M D

    2016-04-01

    This study was aimed to 1) properly understand the dynamics of toxic elements (Al, Fe, Mn, Cu, Pb, Zn and As) in a sulphide-mine soil after combined application of compost from urban sewage sludge (SVC) and bottom ashes from biomass combustion (BA) and to 2) optimize the combination of both amendments for vegetation growth. Soil was amended following a D-optimal design and the mixtures (15 in total) were incubated during 30 d. At the end of the incubation, the effects of amendments on the assessed variables as well as the process modelling were evaluated by Response Surface Methodology (RSM). The process modelling confirmed that quadratic models were adequate to explain the behaviour of the assessed variables (R(2) ≥ 0.94 and Q(2) ≥ 0.75). Both amendments significantly increased pH and electrical conductivity, while reduced metal extractability. A different behaviour of As respect to metals was observed and high doses of BA sharply increased its extractability. The optimization process indicated that adequate conditions for vegetation growth would be reached adding the soil with 6.8% of SVC and 3.1% of BA (dry weight). After amendments application the germination and root elongation of three energy crops were significantly increased while lipid peroxidation was decreased. Therefore, the combined application of SVC and BA to a contaminated soil could improve soil conditions and might be expected to have an advantage during plant growth. Moreover, the RSM could be a powerful technique for the assessment of combined amendment effects on soil properties and their effective application in multielement-contaminated soils. PMID:26807942

  15. Potential bioavailability of lead, arsenic, and polycyclic aromatic hydrocarbons in compost-amended urban soils.

    PubMed

    Attanayake, Chammi P; Hettiarachchi, Ganga M; Martin, Sabine; Pierzynski, Gary M

    2015-05-01

    Urban soils may contain harmful concentrations of contaminants, such as lead (Pb), arsenic (As), and polycyclic aromatic hydrocarbons (PAHs), that can transfer from soil to humans via soil ingestion and consumption of food crops grown in such soils. The objective of this research was to assess the effectiveness of adding different compost types to reduce both direct (soil-human) and indirect (soil-plant-human) exposure of Pb, As, and PAHs to humans. A field experiment was conducted in 2011 and 2012 at an urban garden site with elevated concentrations of Pb (475 mg kg), As (95 mg kg), and PAHs (23-50 mg kg). Soil amendments were composted biosolids, noncomposted biosolids, mushroom compost, leaf compost, and a nonamended control. Collard greens, tomatoes, and carrots were then grown in the amended and nonamended soils and nonamended soils that received urea in 2011. At the beginning of the second season, N-P-K fertilizer was added to all plots. The potential for direct and indirect exposure was evaluated. Soil Pb bioaccessibility was 1 to 4.3%, and As bioaccessibility was 7.3 to 12.3%. Composted biosolids reduced the bioaccessibility of soil Pb by ∼17% compared with the control but temporarily increased the bioaccessibility of As by ∼ 69% compared with the control when soluble inorganic P concentration in soil was elevated by P fertilizer application in 2012. The bioaccessibility of soil Pb decreased by ∼38% in all treatments when soluble inorganic P concentration in soil was elevated by P fertilizer. Compost amendments reduced the concentrations of low molecular weight PAHs in soil. Regardless of the treatments, the concentrations of Pb, As, and PAHs measured in the vegetables were low or nondetectable, except for Pb in carrots. Consumption of vegetables grown at this site will cause insignificant transfer of Pb, As, and PAHs to humans. PMID:26024273

  16. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    PubMed

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. PMID:27100017

  17. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  18. Factors driving carbon mineralization priming effect in a soil amended with different types of biochar

    NASA Astrophysics Data System (ADS)

    Cely, P.; Tarquis, A. M.; Paz-Ferreiro, J.; Méndez, A.; Gascó, G.

    2014-03-01

    The effect of biochar on soil carbon mineralization priming effect depends on the characteristics of the raw materials, production method and pyrolysis conditions. The goal of the present study is to evaluate the impact of three different types of biochar on soil CO2 emissions and in different physicochemical properties. For this purpose, a sandy-loam soil was amended with the three biochars (BI, BII and BIII) at a rate of 8 wt % and soil CO2 emissions were measured for 45 days. BI is produced from a mixed wood sieving's from wood chip production, BII from a mixture of paper sludge and wheat husks and BIII from sewage sludge. Cumulative CO2 emissions of biochars, soil and amended soil were well fit to a simple first-order kinetic model with correlation coefficients (r2) greater than 0.97. Results shown a negative priming effect in the soil after addition of BI and a positive priming effect in the case of soil amended with BII and BIII. These results can be related with different biochar properties such as ash content, volatile matter, fixed carbon, organic carbon oxidised with dichromate, soluble carbon and metal and phenolic substances content in addition to surface biochar properties. Three biochars increased the values of soil field capacity and wilting point, while effects over pH and cation exchange capacity were not observed.

  19. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L.

    PubMed

    Rodríguez-Vila, Alfonso; Covelo, Emma F; Forján, Rubén; Asensio, Verónica

    2015-01-01

    A 3-month greenhouse experiment was carried out for evaluating the effect of an amendment mixture and mustards on the chemical characteristics of a mine soil and the metal uptake by plants. A settling pond soil was amended with increasing percentages of a technosol and biochar mixture and vegetated with Brassica juncea L. Adding amendments and planting mustards increased the soil pH from 2.83 to 6.18 and the TSC from u.l to 131 g kg(-1) and generally reduced the CaCl2-extractable metal concentrations in the soil. However, the amendments increased the pseudo-total soil concentration of Ni from 9.27 to 31.9 mg kg(-1), Pb from 27.9 to 91.6 mg kg(-1) and Zn from 46.5 to 577 mg kg(-1). The technosol and biochar mixture increased the shoot biomass from 0.74 to 2.95 g and generally reduced the metal concentrations in plants, meaning B. juncea as a potential candidate for phytostabilization of mine soils. PMID:25262389

  20. Phosphorus leaching from soils amended with thermally gasified piggery waste ash.

    PubMed

    Kuligowski, Ksawery; Poulsen, Tjalfe Gorm

    2009-09-01

    In regions with intensive livestock farming, thermal treatment for local energy extraction from the manure and export of the P rich ash as a fertilizer has gained interest. One of the main risks associated with P fertilizers is eutrophication of water bodies. In this study P and K mobility in ash from anaerobically digested, thermally gasified (GA) and incinerated (IA) piggery waste has been tested using water loads ranging from 0.1 to 200 ml g(-1). Leaching of P from soil columns amended with GA was investigated for one P application rate (205 kg P ha(-1) corresponding to 91 mg P kg(-1) soil dry matter) as a function of precipitation rate (9.5 and 2.5 mm h(-1)), soil type (Jyndevad agricultural soil and sand), amount of time elapsed between ash amendment and onset of precipitation (0 and 5 weeks) and compared to leaching from soils amended with a commercial fertilizer (Na(2)HPO(4)). Water soluble P in GA and IA constituted 0.04% and 0.8% of total ash P. Ash amended soil released much less P (0.35% of total P applied in sand) than Na(2)HPO(4) (97% and 12% of total P applied in Jyndevad and sand, respectively). PMID:19427189

  1. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.

    PubMed

    Sarkar, D; Quazi, S; Makris, K C; Datta, R; Khairom, A

    2007-10-01

    A laboratory incubation study was conducted to determine the effect of drinking-water treatment residuals (WTRs) on arsenic (As) bioaccessibility and phytoavailability in a poorly As-sorbing soil contaminated with arsenical pesticides and fertilized with triple super phosphate (TSP). The Immokalee soil (a sandy spodosol with minimal As-retention capacity) was amended with 2 WTRs (Al and Fe) at 5 application rates ranging between 0% and 5% wt/wt. Sodium arsenate and TSP were used to spike the soil with 90 mg As kg(-1) and 115 mg P kg(-1), respectively. Bioaccessible As was determined at time 0 (immediately after spiking), and at 6 and 12 months of equilibration using an in vitro gastrointestinal test, and As phytoavailability was measured with a 1-M KC1 extraction test. Arsenic phytoavailability decreased immediately after spiking (20% availability at 5% rate), but only after 6 months for the Al-WTR- and the Fe-WTR-amended soil, respectively. Arsenic bioaccessibility simulated for the stomach and intestine phases showed that the Fe-WTR was more effective than the Al-WTR in resisting the harsh acidic conditions of the human stomach, thus preventing As release. Both the phytoavailable As and the bioaccessible As were significantly correlated (p < 0.001) for soil spiked with either Al- or Fe-WTR. Both WTRs were able to decrease soil As bioaccessibility irrespective of the presence or absence of P, which was added as TSP. Results indicate the potential of WTRs in immobilizing As in contaminated soils fertilized with P, thereby minimizing soil As bioaccessibility and phytoavailability.

  2. Feather hydrolysate from Streptomyces sampsonii GS 1322: A potential low cost soil amendment.

    PubMed

    Jain, Richa; Jain, Aakanchha; Rawat, Neha; Nair, Meera; Gumashta, Raghvendra

    2016-06-01

    Process parameters for obtaining hydrolysate from hen feathers, i.e., initial pH (5.0-9.0) and incubation period (1-6 day), were set and studied, using Streptomyces sampsonii GS 1322 in submerged and solid state conditions. Under submerged conditions, complete hydrolysis of feathers was observed on fifth day [initial pH 8.0, 28 ± 2°C, shaking (150 rpm)] with release of soluble protein (2985 μg ml(-1)) and amino acids (2407 μg ml(-1)). Cell free hydrolysate showed hydrolysis of casein (18 mm), gelatin (26 mm), collagen (31 mm), hemoglobin (23 mm) and Tween 80 (35 mm) while 445 U keratinase activity. Total soluble protein reached 5 mg ml(-1) in solid state conditions. During Pot experimentation using barren agriculture soil the effect of feather hydrolysate on wheat crop were recorded. Significant increase (p<0.01) in wheat seed germination was observed in treated soils as compared to untreated. Treatment significantly increased plant height from 30 to 60 days and 30-90 days (p<0.001). Treated soil showed an increase in total microbial count, proteolytic activity, phosphate solubilizing bacteria and ammonifying bacteria, whereas pathogenic fungi load was reduced. S. sampsonii GS 1322 can be used for bio-processing of poultry wastes yielding feather hydrolysate rich in proteins and amino acids for development of low-cost organic amendment to accelerate wheat crop growth in barren agricultural land.

  3. Feather hydrolysate from Streptomyces sampsonii GS 1322: A potential low cost soil amendment.

    PubMed

    Jain, Richa; Jain, Aakanchha; Rawat, Neha; Nair, Meera; Gumashta, Raghvendra

    2016-06-01

    Process parameters for obtaining hydrolysate from hen feathers, i.e., initial pH (5.0-9.0) and incubation period (1-6 day), were set and studied, using Streptomyces sampsonii GS 1322 in submerged and solid state conditions. Under submerged conditions, complete hydrolysis of feathers was observed on fifth day [initial pH 8.0, 28 ± 2°C, shaking (150 rpm)] with release of soluble protein (2985 μg ml(-1)) and amino acids (2407 μg ml(-1)). Cell free hydrolysate showed hydrolysis of casein (18 mm), gelatin (26 mm), collagen (31 mm), hemoglobin (23 mm) and Tween 80 (35 mm) while 445 U keratinase activity. Total soluble protein reached 5 mg ml(-1) in solid state conditions. During Pot experimentation using barren agriculture soil the effect of feather hydrolysate on wheat crop were recorded. Significant increase (p<0.01) in wheat seed germination was observed in treated soils as compared to untreated. Treatment significantly increased plant height from 30 to 60 days and 30-90 days (p<0.001). Treated soil showed an increase in total microbial count, proteolytic activity, phosphate solubilizing bacteria and ammonifying bacteria, whereas pathogenic fungi load was reduced. S. sampsonii GS 1322 can be used for bio-processing of poultry wastes yielding feather hydrolysate rich in proteins and amino acids for development of low-cost organic amendment to accelerate wheat crop growth in barren agricultural land. PMID:26906933

  4. Soil solution chemistry of a fly ash-, poultry litter-, and sewage sludge-amended soil

    SciTech Connect

    Jackson, B.P.; Miller, W.P.

    2000-04-01

    Mixing coal fly ash (FA) with organic wastes to provide balanced soil amendments offers a potential viable use of this industrial by-product. When such materials are land-applied to supply nutrients for agronomic crops, trace element contaminant solubility must be evaluated. In this study, major and trace element soil solution concentrations arising from application of fly ash, organic wastes, and mixtures of the two were compared in a laboratory incubation. Two fly ashes, broiler poultry litter (PL), municipal sewage sludge (SS), and mixtures of FA with either PL or SS were mixed with a Cecil sandy loam (fine, kaolinitic, thermic Typic Kanhapludult) at rates of 32.3, 8.1, and 16.1 g kg{sup {minus}1} soil for FA, PL, and SS, respectively. Treatments were incubated at 22 C at 17% moisture content and soil solution was periodically extracted by centrifugation over 33 d. Initial soil solution concentrations of As, Mo, Se, and Cu were significantly greater in FA/OL treatments than the respective FA-only treatments. For Cu, increased solution concentrations were attributable to increased loading rates in FA/PL mixtures. Solution Cu concentrations were strongly correlated with dissolved C (R{sup 2} > 0.96) in all PL treatments. Significant interactive effects for solution Mo and Se concentrations were observed for the FA/PL and may have resulted from the increased pH and competing anion concentrations of these treatments. Solution As concentrations showed a significant interactive effect for one FA/PL mixture. For the individual treatments, As was more soluble in the Pl treatment than either FA treatment. Except for soluble Se from on FA/SS mixture, trace element solubility in the FA/SS mixtures was not significantly different than the respective FA-only treatment.

  5. Development of models for predicting carbon mineralization and associated phytotoxicity in compost-amended soil.

    PubMed

    Aslam, Danielle N; Vandergheynst, Jean S; Rumsey, Thomas R

    2008-12-01

    Phytotoxicity of compost-amended soil is related to carbon mineralization associated with compost decomposition. The objective of this research was to determine if compost carbon mineralization potential, estimated using compost respiration rate measurements, could be combined with carbon mineralization kinetic models to predict phytotoxicity of compost-amended soil. First-order, second-order, and Monod kinetic models that include compost carbon mineralization potential, compost amendment rate, incubation time, and temperature were developed and compared for their ability to predict carbon mineralization kinetics. Experiments utilized two soil types amended with 0%, 5%, and 50% (v/v) food waste and green waste composts, incubated at 20 degrees C, 25 degrees C, 30 degrees C, 35 degrees C, and 45 degrees C for model development and under a diurnal temperature cycle from 20 degrees C to 30 degrees C for model validation. For most cases, a first-order model had an equivalent or better fit to the data than the other models. Mineralizable carbon estimated using the first-order model was significantly correlated to the probability of phytotoxicity in compost-amended soil.

  6. Kinetics of di-(2-ethylhexyl)phthalate mineralization in sludge-amended soil

    SciTech Connect

    Madsen, P.L.; Thyme, J.B.; Henriksen, K.; Moeldrup, P.; Roslev, P. . Environmental Engineering Lab.)

    1999-08-01

    Sewage sludge is frequently used as a soil fertilizer although it may contain elevated concentrations of priority pollutants including di-(2-ethylhexyl)phthalate (DEHP). In the present study, the kinetics of microbial [[sup 14]C]DEHP mineralization was studied in laboratory microcosms with sewage sludge and agricultural soil. A biphasic model with two independent kinetic expressions was used to fit the mineralization data. The initial mineralization activity was described well by first-order kinetics, whereas mineralization in long-term incubations was described better by fractional power kinetics. The mineralization activity was much lower in the late phase presumably due to a decline in the bioavailability of DEHP caused by diffusion-limited desorption. The initial DEHP mineralization rate in sludge-amended soil varied between 3.7 and 20.3 ng of DEHP (g dw)[sup [minus]1]d[sup [minus]1] depending on incubation conditions. Aerobic DEHP mineralization was 4--5 times faster than anaerobic mineralization, DEHP mineralization in sludge-amended soil was much more temperature sensitive than was DEHP mineralization in soil without sludge. Indigenous microorganisms in the sewage sludge appeared to dominate DEHP degradation in sludge-amended soil. It was estimated that > 41% of the DEHP in sludge-amended soil will have escaped mineralization after 1 year. In the absence of oxygen, > 68% of the DEHP will not be mineralized within 1 year. Collectively, the data suggest that a significant fraction of the DEHP in sludge-amended soils may escape mineralization under in situ conditions.

  7. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.

    PubMed

    Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G

    2015-01-01

    This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean

  8. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost.

    PubMed

    Aranda, V; Macci, C; Peruzzi, E; Masciandaro, G

    2015-01-01

    This study evaluates soil fertility, biochemical activity and the soil's ability to stabilize organic matter after application of composted olive-mill pomace. This organic amendment was applied in two different olive groves in southern Spain having different soil typologies (carbonated and silicic). Olive grove soils after 17 years of organic management with application of olive-mill pomace co-compost were of higher quality than those with conventional management where no co-compost had been applied. The main chemical parameters studied (total organic carbon, total nitrogen, available phosphorus, exchangeable bases, cation exchange capacity, total extractable carbon (TEC), and humic-to-fulvic acids ratio), significantly increased in soils treated with the organic amendment. In particular, the more resistant pool of organic matter (TEC) enhanced by about six and eight fold in carbonated and silicic soils, respectively. Moreover, the amended silicic soils showed the most significant increases in enzyme activities linked to C and P cycles (β-glucosidase twenty-five fold higher and phosphatase seven fold higher). Organic management in both soils induced higher organic matter mineralization, as shown by the higher pyrrole/phenol index (increasing 40% and 150% in carbonated and silicic soils, respectively), and lower furfural/pyrrole index (decreasing 27% and 71% in carbonated and silicic soils, respectively). As a result of mineralization, organic matter incorporated was also more stable as suggested by the trend of the aliphatic/aromatic index (decreasing 36% and 30% in carbonated and silicic soils, respectively). Therefore, management system and soil type are key factors in increasing long-term C stability or sequestration in soils. Thus application of olive-oil extraction by-products to soils could lead to important mid-to -long-term agro-environmental benefits, and be a valuable alternative use for one of the most widespread polluting wastes in the Mediterranean

  9. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  10. Impact of Ca-amendments and soil management in physical properties linked to soil-water relationship in degraded Ultisols from South-Europe

    NASA Astrophysics Data System (ADS)

    Mariscal-Sancho, I.; Gonzalez-Fernandez, P.; León, P.; Gómez-Paccard, C.; Benito, M.; Espejo, R.

    2012-04-01

    Cañamerós raña formation in western Spain was cleared for cropping in 1940´s. Its highly weathered acidic soils (Ultisols) were deeply affected by tillage. The soil organic matter (SOM) content and specially the particulate organic matter (POM), a labile fraction, were drastically reduced, and most of their chemical and physical soil properties related to its quality were negatively affected. The extraction of Ca through the harvest and the release of Al retained in organic-Al complexes resulted in a lower Ca/Al ratio which increased the Al toxicity. These effects led to a drastic yield reduction and the abandon of many degraded fields after 20-70 years of unsustainable managements. On these degraded soils we studied the effect of different soil management strategies (no-till with wild pasture (WP) and no-till with an improved pasture (IP)), and amendment applications (sugar foam waste (SF), and SF + Phosphogypsum (PH) versus control (C)). One of the objectives of this work was to evaluate the efficiency of these practices to recover soil quality parameters, especially those related to soil-water relationship. A Split-plot experiment was established in a degraded field. We evaluated the changes in superficial infiltration, bulk density, and content of water-stable aggregates per 100 g of soil before the Ca-amendment</