Science.gov

Sample records for acid soils due

  1. The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition

    NASA Astrophysics Data System (ADS)

    Mulder, Jan; Stein, Alfred

    1994-01-01

    Despite the ecological and pedogenic importance of Al, its solubility control in acidic forest soils is poorly understood. Here we discuss the solubility of Al and its development with time in three acid brown forest soils in The Netherlands, which are under extreme acidification from atmospheric deposition. All soil solutions (to a 60 cm depth) were undersaturated with respect to synthetic gibbsite (Al(OH) 3; log K = 9.12 at 8°C), with the highest degree of undersaturation occurring in the surface soil. In about one third of the individual soil layers a significant positive correlation existed between the activity of Al 3+ and H +, but this relationship was far less than cubic. Kinetically constrained dissolution of Al is unlikely to explain the disequilibrium with respect to gibbsite, because undersaturation was highest through summer when water residence times were longest and temperatures greatest. Time series analysis of six year data sets for several soil layers revealed a significant annual decline in soil solution pH and Al solubility (defined as log Al + 3 pH) despite a constant concentration of strong acid anions. The annual decline of both pH and Al solubility was greatest in the surface soil and was positively correlated with the relative depletion of reactive organically bound soil Al. The results support our earlier hypothesis that in strongly acidified forest soils complexation by solid phase organics controls the solubility of Al even in mineral soil layers, relatively low in organic C. The data lend no support to the current widespread and often uncritical use of gibbsite as a model for the Al solubility in highly acidic forest soils (pH < 4.5) of the temperate zone.

  2. Assessing biogeographic patterns in the changes in soil invertebrate biodiversity due to acidic deposition

    SciTech Connect

    Sugg, P.M.; Kuperman, R.G.; Loucks, O.L. |

    1995-09-01

    We are studying the response of soil faunal communities to a gradient in acidic deposition across midwestern hardwood forests. We have documented a pattern of population decrease and species loss for soil invertebrates along the acidification gradient. We now ask the following question: When confronted with apparent diversity changes along a region-wide pollution gradient, how can one assess the possibility of natural biogeographic gradients accounting for the pattern? As a first approximation, we use published range maps from taxonomic monographs to determine the percent of the regional fauna with ranges encompassing each site. For staphylinid beetles, range data show no sign of a biogeographic gradient. Yet for soil staphylinids, a large decrease is seen in alpha diversity (as species richness) from low to high acid dose sites (from 20 species to 8). Staphylinid species turnover is greatest in the transition from low to intermediate dose sites.

  3. Evaluation of accelerated H/sup +/ applications in predicting soil chemical and microbial changes due to acid rain

    SciTech Connect

    Killham, K.; Firestone, M.K.

    1982-01-01

    A comparison was made between three acidified, simulated rain treatments which have been used to assess the impact of acid rain on soil chemical and microbial processes. There were significant differences in effects on chemical and microbial characteristics of soil exposed to the three treatments due to differences in the rate of H/sup +/ ion application, even though the total quantity of protons supplied was the same in each case. An input of 30 cm of simulated rain of pH 3.0 over 6 months increased microbial activity and caused only slight changes in soil pH and soil nitrogen status. Treatments in which the rate of H/sup +/ input was accelerated by increasing solution volume, or acidity, inhibited microbial activity and caused soil chemical changes in excess of those produced by the more gradual yet equivalent H/sup +/ loading. We conclude that the effects of short-term, accelerated acid treatments cannot be used to realistically forecast long-term impacts of acid rain. The results of such experiments may be useful in identifying processes or parameters for studies of longer duration.

  4. SOIL REACTION AND ACIDIC DEPOSITION

    EPA Science Inventory

    This chapter discusses the major chemical processes by which acidic deposition interacts with soils. he focus is on forest soils, as the effects of acidic deposition on soils used for production of food and fiber are generally small compared to effects of agricultural practices s...

  5. Designer, acidic biochar influences calcareous soil characteristics.

    PubMed

    Ippolito, J A; Ducey, T F; Cantrell, K B; Novak, J M; Lentz, R D

    2016-01-01

    In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils. PMID:26077798

  6. Acidic volatiles and the Mars Soil

    NASA Astrophysics Data System (ADS)

    Banin, A.; Han, F. X.; Kan, I.; Cicelsky, A.

    1997-06-01

    Large portions of Mars' surface are covered with deposits of fine, homogeneous, weathered dusty-soil material. Nanophase iron oxides, silicate mineraloids, and salts prevail in the soil. The mode of formation of this somewhat peculiar type of soil is still far from being clear. One scenario suggests that weathering took place during early epochs when Mars may have been ``warm and wet.'' The properties of the soil are not easily reconciled with this scenario. We propose another possible scenario that attributes, in part, the peculiar nature of the Martian dust and soil to a relatively ``young'' weathering product formed during the last few hundreds of millions of years in a process that involves acidic volatiles. We tested this hypothesis in an experimental study of the first step of acidolytic weathering of a partly palagonitized volcanic tephra of hawaiitic lava origin, using sulfuric, hydrochloric and nitric acids and their mixtures. The tephra effectively ``neutralize'' the added acidity. The protonic acidity added to the tephra attacks the primary minerals, releasing Fe, Al, and Mg, which control the pH, acting as Lewis-acid species of varying acid strengths. The full amount of acidity added to the tephra is stored in it, but only a very small fraction is preserved as the original protonic acidity. The majority of the added sulfate and chloride were present as salts and easily solubilized minerals. Well-crystallized sulfate salt minerals of aluminum and calcium were detected by powder X ray diffractometry, whereas secondary magnesium and iron minerals were not detected, due probably to lack of crystallinity. The presence of gypsum (CaSO4.2H2O) and alunogen (Al2(SO4)3.17H2O) is probably responsible for the observed increased hygroscopicity of the acidified tephra and their tendency to form hardened crusts. We suggest that if this mechanism is of importance on Mars, then the chemically weathered component of the Martian soil consists of a salt-rich mineral

  7. Acidic deposition and soil processes

    SciTech Connect

    Newton, R.M.; April, R.H.

    1985-08-01

    The results of the Integrated Lake-Watershed Acidification Study (ILWAS) show that the sensitivity of a watershed to surface water acidification is determined by the flow paths of water through the terrestrial system. If the water infiltrates through the soils into the groundwater system, acid neutralization occurs through weathering reactions involving minerals in the soils and till. Runoff and shallow interflow result in acid surface waters. Flow paths are determined in the ILWAS watersheds by the thickness of the glacial till. Complete neutralization can occur even in areas underlain by sensitive bedrock if the flow path through the mineral horizons is long enough. This appears to hold even in areas outside of the Adirondacks. 11 references, 5 figures.

  8. Designer, acidic biochar influences calcareous soil characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 degrees celsius) and steam activation to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0, 1, 2, and 10 percent (by weight) to an eroded Portneuf soil (coarse-silty,...

  9. Influences of soil acidity on Streptomyces populations inhabiting forest soils.

    PubMed Central

    Hagedorn, C

    1976-01-01

    The Streptomyces populations inhabiting five acidic forest soils were examined. It was found that lowering the pH of a medium selective for streptomycetes (starch-casein agar) to the pH of the particular soil horizon being plated influenced both the total numbers and types of streptomycetes that were isolated from the soils examined in this study. On the acidified medium both the numbers of streptomycetes and the percentage of total bacteria on the plates represented by streptomycetes increased (as compared with the same medium with a pH of 7.2). These differences were greatest on the isolations from the most acid soils. The largest concentrations of streptomycetes were found in the surface horizon (0 to 15 cm) and the litter layer immediately over the surface mineral horizon. Acidity tolerance tests demonstrated that random samplings of isolates contained acidophilic, neutrophilic, and acidoduric strains, with the largest numbers of acidophiles being found on the acidified media from the most acid soils. There were no differences between overall utilization of selected carbohydrates among the isolates taken from either the neutral or acidic media, although a larger proportion of the acid media isolates produced acid from the carbohydrates. Evidence is presented which indicates that different types of streptomycetes were isolated on the acid media, and possible reasons for the presence of these acid-tolerant populations are discussed. PMID:10835

  10. Acid soils of western Serbia and their further acidification

    NASA Astrophysics Data System (ADS)

    Mrvic, Vesna

    2010-05-01

    Acid soils cause many unfavorable soil characteristics from the plant nutrition point of view. Because of increased soil acidity the violation of buffering soil properties due to leaching of Ca and Mg ions is taking place that also can cause soil physical degradation via peptization of colloids. Together with increasing of soil acidity the content of mobile Al increases that can be toxic for plants. Easily available nutritive elements transforms into hardly avaialble froms. The process of deactivation is especially expressed for phosphorous that under such conditions forms non-soluble compounds with sesqui-oxides. From the other hand the higher solubility of some microelements (Zn and B) can cause their accelerated leaching from root zone and therefore, result in their deficiency for plant nutrition. Dangerous and toxic matters transforms into easly-available forms for plants, especially, Cd and Ni under the lower soil pH. The studied soil occupies 36675 hectare in the municipality of Krupan in Serbia, and are characterized with very unfavorable chemical properties: 26% of the territory belongs to the cathegory of very acidic, and 44 % belongs to the cathegory of acidic. The results showed that the soil of the territory of Krupan is limited for agricultural land use due to their high acidity. Beside the statement of negative soil properties determined by acidity, there is a necessity for determination of soil sensitivity for acidification processes toward soil protection from ecological aspect and its prevention from further acidification. Based on such data and categorization of soils it is possible to undertake proper measures for soil protection and melioration of the most endangered soil cover, where the economic aspect of these measures is very important. One of the methods of soil classification based on sensitivity for acidification classification the determination of soil categories is based on the values of soil CEC and pH in water. By combination of these

  11. Geochemistry of Hydrofluoric Acid in Kaolinitic Soils

    SciTech Connect

    DENHAM, MILES

    2004-05-11

    This document explores the geochemical reactions likely to occur when hydrofluoric acid is spilled on Savannah River Site (SRS) soil. In particular, we evaluate the potential of environmental damage from a one-time release of concentrated hydrofluoric acid into a trench. According to interviews with personnel involved, sometime between 1955 and 1960 drums of 50-60 per cent hydrofluoric acid were disposed in a trench in the Central Shops area. The method of disposal suggests that most of the acid would have been released at the time of burial. No evidence of drum disposal or acidic pH values was found. Therefore, the Soil and Groundwater Closure Projects group requested that we evaluate potential risk by examining the major geochemical interactions expected between hydrofluoric acid and soil. The geochemical calculations in this report were done with The Geochemist's Workbench (Registered). This program uses an extended Debye-Huckel method for calculating activity coefficients. The conclusions of this report are accurate, but some of the intermediate steps may have higher uncertainty. Hydrofluoric acid disposed in a trench in the area would have reacted with soil kaolinite to neutralize the pH to a value of about 4.2. Based on conservative assumptions, this would have occurred within the top 500 cm of soil. This analysis considers only the reaction of the acid with kaolinite. Other processes such as dilution, dispersion, and clogging of permeability would contribute to neutralization of the acid within a shorter distance. When the acid solution reached the water table, dilution would have driven the solution to saturation with gibbsite. A resulting layer enriched in aluminum may be the only remnant of the acid disposal identifiable today. However, any such layer would be difficult to identify because of the normally high aluminum concentrations in the soil. Subtle textural evidence of shallow soil dissolution may be present, but 40 years of rainfall infiltration may

  12. Transformation of diphenylarsinic acid in agricultural soils.

    PubMed

    Maejima, Yuji; Arao, Tomohito; Baba, Koji

    2011-01-01

    We investigated the transformation and fate of diphenylarsinic acid (DPAA) during incubation in two types of soils (Entisol and Andisol) under aerobic and anaerobic conditions. Under anaerobic conditions only, DPAA was transformed into methyldiphenylarsine oxide by methylation. Under both aerobic and anaerobic conditions, DPAA was degraded to phenylarsonic acid by dephenylation, and phenylarsonic acid was subsequently methylated to form methylphenylarsinic acid and dimethylphenylarsine oxide. The degradation of DPAA in the Andisol was less extensive than in the Entisol. In autoclaved soil under anaerobic conditions, DPAA underwent little degradation during the 24-wk incubation. In unautoclaved soils, the concentration of DPAA in soil clearly decreased after 24 wk of incubation, indicating that DPAA degradation was driven by microbial activity. PMID:21488495

  13. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Martikainen, Pertti J.

    2015-04-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). The emissions of HONO from soils have been recently reported in few studies. Soil HONO emissions are regarded as missing sources of HONO when considering the chemical reactions in the atmosphere. The soil-derived HONO has been connected to soil nitrite (NO2-) and also directly to the activity of ammonia oxidizing bacteria, which has been studied with one pure culture. Our hypothesis was that boreal acidic soils with high nitrification activity could be also sources of HONO and the emissions of HONO are connected with nitrification. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle and also NO and N2O emissions. Natural peatlands and boreal coniferous forests on mineral soils had the lowest HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low availability of nitrite in these soils is the likely reason also for their low HONO production rates. We also studied the origin of HONO in one peat soil with acetylene and other nitrification inhibitors and we found that HONO production is not closely connected to ammonium oxidation (nitrification). Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus there is another source behind HONO emission from these soils than ammonium oxidation. It is still an open question if this process is microbial or chemical origin.

  14. HONO (nitrous acid) emissions from acidic northern soils

    NASA Astrophysics Data System (ADS)

    Maljanen, Marja; Yli-Pirilä, Pasi; Joutsensaari, Jorma; Sulassaari, Sirkka; Martikainen, Pertti J.

    2014-05-01

    The photolysis of HONO (nitrous acid) is an important source of OH radical, the key oxidizing agent in the atmosphere, contributing also to removal of atmospheric methane (CH4), the second most important greenhouse gas after carbon dioxide (CO2). There are missing sources of HONO when considering the chemical reactions in the atmosphere. Soil could be such a missing source. Emissions of HONO from soils studied in laboratory incubations have been recently reported. The soil-derived HONO has been connected to soil nitrite (NO2-) and a study with an ammonium oxidizing bacterium has shown that HONO could be produced in ammonium oxidation. Our hypothesis was that boreal acidic soils with high nitrification activity could be important sources of HONO. We selected a range of dominant northern acidic soils and showed in microcosm experiments that soils which have the highest nitrous oxide (N2O) and nitric oxide (NO) emissions (drained peatlands) also have the highest HONO production rates. The emissions of HONO are thus linked to nitrogen cycle processes. In contrast to drained peatlands, natural peatlands with high water table and boreal coniferous forests on mineral soils with low nitrification capacity had low HONO emissions. It is known that in natural peatlands with high water table and in boreal coniferous forest soils, low nitrification activity (microbial production of nitrite and nitrate) limits their N2O production. Low nitrification rate and low availability of nitrite in these soils are the likely reasons for their low HONO production rates. We studied the origin of HONO in one drained peat soil by inhibiting nitrification with acetylene. Acetylene blocked NO emissions but did not affect HONO or N2O emissions, thus ammonium oxidation is not the direct mechanism for the HONO emission in this soil. It is still an open question if HONO originates directly from some microbial process like ammonium oxidation or chemically from nitrite produced in microbial processes.

  15. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  16. Acid soil and acid rain, 2nd edition

    SciTech Connect

    Kennedy, I.R.

    1992-01-01

    This book examines the basic chemical processes involved in acidification in order to better assess their long-term effects on the status of soils, the health of plants and other living species that depend on them. It also discusses acidity, pH and protons their significance in bioenergetics and the consequent role of autotrophic organisms in acidifying ecosystems. This edition incorporates and integrates recent findings that render more explanations of the causes of the environmental impacts of acidity, especially in forests and lakes. Also explores current research into acid rain and soil in order to devise appropriate measures for their amelioration.

  17. Ocular acid burn due to 20% concentrated salicylic acid.

    PubMed

    Shazly, Tarek A

    2011-03-01

    This is a case report of severe conjunctival and corneal epithelial defects resulting from accidental exposure to salicylic acid that was mistakenly used instead of artificial tears (eye drops). The patient was treated with tobramycin 0.3%-dexamethasone 1% 3 times a day, cyclopentolate 1% twice a day, and artificial tears 6 times a day and underwent daily examinations until the corneal and conjunctival epithelial defects resolved. The corneal and conjunctival epithelial defects slowly resolved over 14 days. Visual acuity improved to its preinjury level of 20/40 in the affected eye. No residual corneal scarring was evident. Slowly resolving corneal and conjunctival epithelial defects can occur from direct contact with salicylic acid; therefore, this medication should be packaged and labeled differently from eye drops. PMID:20954793

  18. Survival of Rhizobium in Acid Soils

    PubMed Central

    Lowendorf, Henry S.; Baya, Ana Maria; Alexander, Martin

    1981-01-01

    A Rhizobium strain nodulating cowpeas did not decline in abundance after it was added to sterile soils at pH 6.9 and 4.4, and the numbers fell slowly in nonsterile soils at pH 5.5 and 4.1. A strain of R. phaseoli grew when added to sterile soils at pH 6.7 and 6.9; it maintained large, stable populations in soils of pH 4.4, 5.5, and 6.0, but the numbers fell markedly and then reached a stable population size in sterile soils at pH 4.3 and 4.4. The abundance of R. phaseoli added to nonsterile soils with pH values of 4.3 to 6.7 decreased similarly with time regardless of soil acidity, and the final numbers were less than in the comparable sterile soils. The minimum pH values for the growth of strains of R. meliloti in liquid media ranged from 5.3 to 5.9. Two R. meliloti strains, which differed in acid tolerance for growth in culture, did not differ in numbers or decline when added to sterile soils at pH 4.8, 5.2, and 6.3. The population size of these two strains was reduced after they were introduced into nonsterile soils at pH 4.8, 5.4, and 6.4, and the number of survivors was related to the soil pH. The R. meliloti strain that was more acid sensitive in culture declined more readily in sterile soil at pH 4.6 than did the less sensitive strain, and only the former strain was eliminated from nonsterile soil at pH 4.8; however, the less sensitive strain also survived better in limed soil. The cell density of the two R. meliloti strains was increased in pH 6.4 soil in the presence of growing alfalfa. The decline and elimination of the tolerant, but not the sensitive, strain was delayed in soil at pH 4.6 by roots of growing alfalfa. PMID:16345909

  19. Dermatitis due to larvae of a soil nematode, Pelodera strongyloides.

    PubMed

    Ginsburg, B; Beaver, P C; Wilson, E R; Whitley, R J

    1984-07-01

    A 6-month-old infant girl was seen because of failure to thrive and hyperpigmented papulonodules on the lower abdomen and thighs. Results of skin biopsy demonstrated dauer larvae of a soil nematode, Pelodera strongyloides, in the dermis. This is the second documented episode of human dermatitis due to this nematode, which more often invades the skin of dogs, cattle, horses, and sheep. PMID:6542207

  20. Changes in soil CO2 efflux of organic calcaric soils due to disturbance by wind

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Katzensteiner, K.

    2012-04-01

    Disturbances such as windthrow or insect infestations are supposed to have a significant influence on the soil carbon balance of affected forests. Increasing soil temperatures and changes in the soil moisture regime, caused by the removed tree layer, are expected to change soil CO2 efflux, also known as soil respiration. Beside an anticipated stimulation of the carbon mineralization, the main part of root allocated CO2 is offset due to the blown down trees. On mountain forest sites of the Northern Limestone Alps, where highly active organic soils above calcareous parent material are characteristic (Folic Histosols and Rendzic Leptosols), an increase of the mineralization rate of carbon may contribute to enormous humus losses. Serious site degradation can be the consequence, especially on south exposed slopes where extreme climatic conditions occur. The present study tries to give insights to disturbance induced changes in temporal and spatial behaviour of soil respiration for a montane mountain forest located in the Northern Limestone Alps of Upper Austria. Soil respiration, soil temperature and volumetric water content were measured on two windthrow areas (blow down dates were 2007 and 2009 respectively) as well as in an adjacent mature mixed forest during the vegetation periods of 2010 and 2011. Soil respiration in both years was mainly driven by soil temperature, which explained up to 90 % of the concerning temporal variation. Volumetric water content had a significant influence as additional temporal driver. After removing the temperature trend, significant differences in basal soil respiration rates were found for the disturbance area and the forest stand. Inter seasonal declines in soil respiration were ascertained for the mature stand as well as for the recent windthrow. Particular decreases are related to drought stress in summer 2011 and a proceeded decomposition of labile soil carbon components at the windthrow site. An interaction between soil type and

  1. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage.

    PubMed

    Franco, André L C; Bartz, Marie L C; Cherubin, Maurício R; Baretta, Dilmar; Cerri, Carlos E P; Feigl, Brigitte J; Wall, Diana H; Davies, Christian A; Cerri, Carlos C

    2016-09-01

    Land use changes (LUC) from pasture to sugarcane (Saccharum spp.) crop are expected to add 6.4Mha of new sugarcane land by 2021 in the Brazilian Cerrado and Atlantic Forest biomes. We assessed the effects of these LUC on the abundance and community structure of animals that inhabit soils belowground through a field survey using chronosequences of land uses comprising native vegetation, pasture, and sugarcane along a 1000-km-long transect across these two major tropical biomes in Brazil. Macrofauna community composition differed among land uses. While most groups were associated with samples taken in native vegetation, high abundance of termites and earthworms appeared associated with pasture soils. Linear mixed effects analysis showed that LUC affected total abundance (X(2)(1)=6.79, p=0.03) and taxa richness (X(2)(1)=6.08, p=0.04) of soil macrofauna. Abundance increased from 411±70individualsm(-2) in native vegetation to 1111±202individualsm(-2) in pasture, but decreased sharply to 106±24individualsm(-2) in sugarcane soils. Diversity decreased 24% from native vegetation to pasture, and 39% from pasture to sugarcane. Thus, a reduction of ~90% in soil macrofauna abundance, besides a loss of ~40% in the diversity of macrofauna groups, can be expected when sugarcane crops replace pasture in Brazilian tropical soils. In general, higher abundances of major macrofauna groups (ants, coleopterans, earthworms, and termites) were associated with higher acidity and low contents of macronutrients and organic matter in soil. This study draws attention for a significant biodiversity loss belowground due to tropical LUC in sugarcane expansion areas. Given that many groups of soil macrofauna are recognized as key mediators of ecosystem processes such as soil aggregation, nutrients cycling and soil carbon storage, our results warrant further efforts to understand the impacts of altering belowground biodiversity and composition on soil functioning and agriculture performance

  2. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  3. Transcriptional profile of maize roots under acid soil growth

    PubMed Central

    2010-01-01

    Background Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted

  4. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  5. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  6. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to water... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R ×...

  7. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    PubMed

    Cao, Xiaochuang; Ma, Qingxu; Zhong, Chu; Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  8. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China

    PubMed Central

    Yang, Xin; Zhu, Lianfeng; Zhang, Junhua; Jin, Qianyu; Wu, Lianghuan

    2016-01-01

    Amino acids are important sources of soil organic nitrogen (N), which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3−-N + NH4+-N). On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine) did not vary appreciably with elevation (p>0.10). The compositional similarity of many

  9. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream-flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid-forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Streamwater pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by calcium, magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southeast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site.

  10. Natural acidity of waters in podzolized soils and potential impacts from acid precipitation

    SciTech Connect

    Stednick, J.D.; Johnson, D.W.

    1982-01-01

    Nutrient movements through sites in southeast Alaska and Washington were documented to determine net changes in chemical composition of precipitation water as it passed through a forest soil and became stream flow. These sites were not subject to acid precipitation (rainfall pH 5.8 to 7.2), yet soil water was acidified to 4.2 by natural organic acid forming processes in the podzol soils. Organic acids precipitated in the subsoils, allowing a pH increase. Stream water pH ranged from 6.5 to 7.2 indicating a natural buffering capacity that may exceed any additional acid input from acid rain. Precipitation composition was dominated by magnesium, sodium, and chloride due to the proximity of the ocean at the southeast Alaska site. Anionic constituents of the precipitation were dominated by bicarbonate at the Washington site. Soil podzolization processes concurrently increased solution color and iron concentrations in the litter and surface horizons leachates. The anion flux through the soil profile was dominated by chloride and sulfate at the southwast Alaska site, whereas at the Washington site anion flux appeared to be dominated by organic acids. Electroneutrality calculations indicated a cation deficit for the southeast Alaska site. 10 references, 2 tables.

  11. Barren Acidic Soil Assessment using Seismic Refraction Survey

    NASA Astrophysics Data System (ADS)

    Tajudin, S. A. A.; Abidin, M. H. Z.; Madun, A.; Zawawi, M. H.

    2016-07-01

    Seismic refraction method is one of the geophysics subsurface exploration techniques used to determine subsurface profile characteristics. From past experience, seismic refraction method is commonly used to detect soil layers, overburden, bedrock, etc. However, the application of this method on barren geomaterials remains limited due to several reasons. Hence, this study was performed to evaluate the subsurface profile characteristics of barren acidic soil located in Ayer Hitam, Batu Pahat, Johor using seismic refraction survey. The seismic refraction survey was conducted using ABEM Terraloc MK 8 (seismograph), a sledge hammer weighing 7 kg (source) and 24 units of 10 Hz geophones (receiver). Seismic data processing was performed using OPTIM software which consists of SeisOpt@picker (picking the first arrival and seismic configureuration data input) and SeisOpt@2D (generating 2D image of barren acidic soil based on seismic velocity (primary velocity, Vp) distribution). It was found that the barren acidic soil profile consists of three layers representing residual soil (Vp= 200-400 m/s) at 0-2 m, highly to completely weathered soil (Vp= 500-1800 m/s) at 3-8 m and shale (Vp= 2100-6200 m/s) at 9-20 m depth. Furthermore, result verification was successfully done through the correlation of seismic refraction data based on physical mapping and the geological map of the study area. Finally, it was found that the seismic refraction survey was applicable for subsurface profiling of barren acidic soil as it was very efficient in terms of time, cost, large data coverage and sustainable.

  12. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... information about RUSLE see the U.S. Department of Agriculture Handbook 703, “Predicting Soil Erosion by...

  13. 7 CFR 610.12 - Equations for predicting soil loss due to water erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ASSISTANCE Soil Erosion Prediction Equations § 610.12 Equations for predicting soil loss due to water erosion. (a) The equation for predicting soil loss due to erosion for both the USLE and the RUSLE is A = R × K... information about RUSLE see the U.S. Department of Agriculture Handbook 703, “Predicting Soil Erosion by...

  14. Amino acid composition of humic substances in tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, R. S.; Beznosikov, V. A.

    2015-06-01

    Peripheral amino acid fragments of humic and fulvic acid molecules from tundra soils have been identified and quantified. A significant weight fraction of amino acids has been found in humic acid preparations, which exceeds their content in fulvic acids. Features of the amino acid composition of humic substances along the soil profile and depending on the degree of hydromorphism and the proportions of different (neutral, basic, acidic, cyclic) groups in amino acids have been revealed. The molar ratio between the hydroxy and heterocyclic amino acids reflects the degree of humification of the soil.

  15. Modeling the contribution of soil fauna to litter decomposition influenced by acidic deposition

    SciTech Connect

    Cai, B.; Loucks, O.L; Kuperman, R. Argonne National Lab., IL )

    1993-06-01

    The effect of acidic deposition on soil pH and therefore on soil invertebrates and litter decomposition is being investigated in oak-hickory forests across a three-state, midwest, pollution gradient. The role of soil invertebrates has been assessed previously through the use of feeding, assimilation and respiratory rates. These energetic parameters depend strongly on the form of the allometric equations which have been improved here by incorporating uncertainties in body and population size. Results show that changes in reproduction and turnover dynamics of soil invertebrates (particularly of earthworms) due to acid-induced changes in soil pH explains observed patterns in litter depth.

  16. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Equations for predicting soil loss due to wind erosion... Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The equation for predicting soil loss due to wind in the Wind Erosion Equation (WEQ) is E = f(IKCLV)....

  17. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Equations for predicting soil loss due to wind erosion... Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a) The equation for predicting soil loss due to wind in the Wind Erosion Equation (WEQ) is E = f(IKCLV)....

  18. Acid soil infertility effects on peanut yields and yield components

    SciTech Connect

    Blamey, F.P.C.

    1983-01-01

    The interpretation of soil amelioration experiments with peanuts is made difficult by the unpredictibility of the crop and by the many factors altered when ameliorating acid soils. The present study was conducted to investigate the effects of lime and gypsum applications on peanut kernel yield via the three first order yield components, pods per ha, kernels per pod, and kernel mass. On an acid medium sandy loam soil (typic Plinthustult), liming resulted in a highly significant kernel yield increase of 117% whereas gypsum applications were of no significant benefit. As indicated by path coefficient analysis, an increase in the number of pods per ha was markedly more important in increasing yield than an increase in either the number of kernels per pod or kernel mass. Furthermore, exch. Al was found to be particularly detrimental to pod number. It was postulated that poor peanut yields resulting from acid soil infertility were mainly due to the depressive effect of exch. Al on pod number. Exch. Ca appeared to play a secondary role by ameliorating the adverse effects of exch. Al.

  19. Bromine accumulation in acidic black colluvial soils

    NASA Astrophysics Data System (ADS)

    Cortizas, Antonio Martínez; Vázquez, Cruz Ferro; Kaal, Joeri; Biester, Harald; Casais, Manuela Costa; Rodríguez, Teresa Taboada; Lado, Luis Rodríguez

    2016-02-01

    Recent investigations showed that bromine is incorporated to soil organic matter (SOM), its content increasing with humification. But few research was done on its long-term accumulation and the role played by pedogenetic processes, as those involved in organic matter stabilization. We investigated bromine content and distribution in four deep, acidic, organic-rich, Holocene soils from an oceanic area of Western Europe. Bromine concentrations (93-778 μg g-1) in the silt + clay (<50 μm) fraction were on average 3-times higher than those (17-250 μg g-1) in the fine earth (<2 mm), the former containing almost all bromine (90 ± 5%). Inventories were between 148 and 314 g m-2, indicating a rather large variability in a small area, and total estimated retention was low (6-16%). The degree of SOM bromination, expressed as the Br/C molar ratio, varied between 0.03 and 1.20 mmol Br/mol C. The ratio was highly correlated (n = 23, r2 0.88, p < 0.01) with the age of the SOM for the last ∼12 ka. Partial least squares modeling indicates that bromine concentration depends on the amount of organic matter stabilized as aluminium-OM associations, and to a lesser extent on soil acidity (pH) and iron-OM associations. Thus, at scales of thousands of years, bromine accumulation in acidic soils is linked to the pool of metal-clay-stabilized organic matter.

  20. Differential Soil Acidity Tolerance of Tropical Legume Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In tropical regions, soil acidity and low soil fertility are the most important yield limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also ameliorating soil fertility. Information is limit...

  1. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a)...

  2. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a)...

  3. 7 CFR 610.13 - Equations for predicting soil loss due to wind erosion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Equations for predicting soil loss due to wind erosion... RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Soil Erosion Prediction Equations § 610.13 Equations for predicting soil loss due to wind erosion. (a)...

  4. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  5. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  6. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    PubMed

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment. PMID:12365502

  7. Effects of acid rain on soil humic compounds.

    PubMed

    Calace, N; Fiorentini, F; Petronio, B M; Pietroletti, M

    2001-06-21

    The modifications induced by acid rain on the solubility, molecular configuration and molecular weight distribution of humic (HA) and fulvic (FA) acids were studied. A natural soil was subjected to simulated acid rain until a soil pH of 4 was obtained; HA and FA acids were then extracted and characterised. The results obtained were compared both with those of natural soil and with those of a soil subjected to acid rain. Elute analysis indicates the continuous release of soluble organic compounds as a consequence of acid rain simulation, although no relationship was found with the process of soil acidification. The yields of HA and FA show that HA values are the same while FA amount is higher in the natural soil; in acid soils their water solubility increases. The molecular weight distribution shows that HA consist of a mixture of compounds of different molecular weights; they are molecules for the most part larger than 100 kDa and their distribution is not changed by soil acidification. FA can be considered to form a much more homogeneous system; in natural soil, the molecules are larger than 50 kDa, while in acidified soil they are for the most part smaller than 3 kDa. PMID:18968306

  8. Effects Due to Rhizospheric Soil Application of an Antagonistic Bacterial Endophyte on Native Bacterial Community and Its Survival in Soil: A Case Study with Pseudomonas aeruginosa from Banana.

    PubMed

    Thomas, Pious; Sekhar, Aparna C

    2016-01-01

    Effective translation of research findings from laboratory to agricultural fields is essential for the success of biocontrol or growth promotion trials employing beneficial microorganisms. The rhizosphere is to be viewed holistically as a dynamic ecological niche comprising of diverse microorganisms including competitors and noxious antagonists to the bio-inoculant. This study was undertaken to assess the effects due to the soil application of an endophytic bacterium with multiple pathogen antagonistic potential on native bacterial community and its sustenance in agricultural soil. Pseudomonas aeruginosa was employed as a model system considering its frequent isolation as an endophyte, wide antagonistic effects reported against different phytopathogens and soil pests, and that the species is a known human pathogen which makes its usage in agriculture precarious. Employing the strain 'GNS.13.2a' from banana, its survival in field soil and the effects upon soil inoculation were investigated by monitoring total culturable bacterial fraction as the representative indicator of soil microbial community. Serial dilution plating of uninoculated control versus P. aeruginosa inoculated soil from banana rhizosphere indicated a significant reduction in native bacterial cfu soon after inoculation compared with control soil as assessed on cetrimide- nalidixic acid selective medium against nutrient agar. Sampling on day-4 showed a significant reduction in P. aeruginosa cfu in inoculated soil and a continuous dip thereafter registering >99% reduction within 1 week while the native bacterial population resurged with cfu restoration on par with control. This was validated in contained trials with banana plants. Conversely, P. aeruginosa showed static cfu or proliferation in axenic-soil. Lateral introduction of soil microbiome in P. aeruginosa established soil under axenic conditions or its co-incubation with soil microbiota in suspension indicated significant adverse effects by

  9. Effects Due to Rhizospheric Soil Application of an Antagonistic Bacterial Endophyte on Native Bacterial Community and Its Survival in Soil: A Case Study with Pseudomonas aeruginosa from Banana

    PubMed Central

    Thomas, Pious; Sekhar, Aparna C.

    2016-01-01

    Effective translation of research findings from laboratory to agricultural fields is essential for the success of biocontrol or growth promotion trials employing beneficial microorganisms. The rhizosphere is to be viewed holistically as a dynamic ecological niche comprising of diverse microorganisms including competitors and noxious antagonists to the bio-inoculant. This study was undertaken to assess the effects due to the soil application of an endophytic bacterium with multiple pathogen antagonistic potential on native bacterial community and its sustenance in agricultural soil. Pseudomonas aeruginosa was employed as a model system considering its frequent isolation as an endophyte, wide antagonistic effects reported against different phytopathogens and soil pests, and that the species is a known human pathogen which makes its usage in agriculture precarious. Employing the strain ‘GNS.13.2a’ from banana, its survival in field soil and the effects upon soil inoculation were investigated by monitoring total culturable bacterial fraction as the representative indicator of soil microbial community. Serial dilution plating of uninoculated control versus P. aeruginosa inoculated soil from banana rhizosphere indicated a significant reduction in native bacterial cfu soon after inoculation compared with control soil as assessed on cetrimide- nalidixic acid selective medium against nutrient agar. Sampling on day-4 showed a significant reduction in P. aeruginosa cfu in inoculated soil and a continuous dip thereafter registering >99% reduction within 1 week while the native bacterial population resurged with cfu restoration on par with control. This was validated in contained trials with banana plants. Conversely, P. aeruginosa showed static cfu or proliferation in axenic-soil. Lateral introduction of soil microbiome in P. aeruginosa established soil under axenic conditions or its co-incubation with soil microbiota in suspension indicated significant adverse effects by

  10. Soil Crust Changes due to Wetting and Drying Analyzed by Non-Invasive Images

    NASA Astrophysics Data System (ADS)

    Piresa, Luiz F.

    2010-08-01

    In this work a γ-ray computed tomography (CT) scanner was used to evaluate soil crust changes due to wetting and drying (W-D) cycles. Changes in soil porous system (SPS) due to W-D cycles of samples with crust have important practical consequences, because they can affect the soil water retention curve (SWRC) representativeness. CT data allowed detailed analyses of the soil bulk density (db) for thick layers, which cannot be achieved by traditional methods commonly used in soil physics. It was also possible to observe a decrease in db in the crust region. These results show that important changes can occur in SPS during SWRC evaluations.

  11. The availability and mobility of arsenic and antimony in an acid sulfate soil pasture system.

    PubMed

    Tighe, Matthew; Lockwood, Peter V; Ashley, Paul M; Murison, Robert D; Wilson, Susan C

    2013-10-01

    The Macleay floodplain on the north coast of New South Wales, Australia, has surface soil concentrations of up to 40 mg kg(-1) arsenic (As) and antimony (Sb), due to historical mining practices in the upper catchment. The floodplain also contains areas of active and potential acid sulfate soils (ASS). Some of these areas are purposely re-flooded to halt oxidation processes, but the effect of this management on the metalloid mobility and phytoavailability of the metalloids present is unknown. This study investigated the changes to soil solution As and Sb, associations of metalloids with soil solid phases, and uptake into two common pasture species following 20 weeks of flooding in a controlled environment. The effect of an ASS subsoil was also investigated. The soil solution concentration and availability of the metalloids was in some instances higher in the floodplain soils than would generally be expected in soils with comparable contamination. There appeared to be few changes to soil solution concentrations or phase associations with flooding in this short term study, due to the high acid buffering and poise of the investigated soils. A strong relationship was found between the relative uptake of Sb into pastures and the oxalate extractable Fe in the soil, which was taken as a proxy for non-crystalline iron (Fe) hydroxides. This relationship was dependent on flooding and was absent for As. Further targeted investigations into metalloid speciation kinetics and the stability of soil solid phases with flooding management are recommended. PMID:23792257

  12. Differential soil acidity tolerance of dry bean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil acidity is a major yield limiting factors for bean production in the tropical regions. Using soil acidity tolerant genotypes is an important strategy in improving bean yields and reducing cost of production. A greenhouse experiment was conducted with the objective of evaluating 20 dry bean geno...

  13. Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil properties can change as a result of soil disturbances, erosion, or deposition. One process that can significantly change surface soil properties is soil armouring, which is the selective removal of finer particles by rill or interrill erosion, leaving an armoured layer of coarser parti...

  14. Effect of acid rain on the soil environment: a review

    SciTech Connect

    Rechcigl, J.E.; Sparks, D.L.

    1985-01-01

    This paper reviews the literature on acid rain, with emphasis on soils and leaching of soil elements. Several questions still exist concerning the effects of atmospheric acid deposition on soils: (1) does acid rain enhance mobilization of harmful heavy metals in soils which could leach into the groundwater; (2) does acid rain accelerate the kinetics of weathering of primary minerals and of secondary clay minerals in soils which would release large quantities of Al, Fe, and Si into the groundwater making it unfit for human consumption; and (3) do the beneficial effects of acid deposition outweigh the negative effects or vice versa. Literature pertaining to these questions is addressed in this review. 63 references.

  15. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids.

    PubMed

    Vargas, Carmen; Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Moliner, Ana

    2016-07-01

    Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils. PMID:27030238

  16. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    PubMed

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity. PMID:22980909

  17. Acidity field of soils as ion-exchange systems and the diagnostics of genetic soil horizons

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2014-12-01

    For the comprehensive description of the acidity of a two-phase ion-exchange system, we should analyze two curves of the ionite titration by a strong base in water and salt solutions and find the quantitative relationships between the corresponding pH characteristics. An idea of the three-dimensional field of acidity of ion-exchange systems (the phase space of the soil acidity characteristics) and its three two-dimensional projections is suggested. For soils, three interrelated characteristics—the pH values of the salt and water extracts and the degree of base saturation—can serve as spatial coordinates for the acidity field. Representation of factual data in this field makes it possible to compare and analyze the acidity characteristics of different soils and soil horizons and to determine their specific features. Differentiation of the field into separate volumes allows one to present the data in a discrete form. We have studied the distribution patterns of the groups of soil horizons from Leningrad oblast and other regions of northwestern Russia in the acidity field. The studied samples are grouped in different partially overlapping areas of the projections of the acidity field. The results of this grouping attest to the correctness of the modern classification of Russian soils. A notion of the characteristic soil area in the acidity field is suggested; it can be applied to all the soils with a leaching soil water regime.

  18. Analysis of soil-structure interaction due to ambient vibration

    SciTech Connect

    Tabatabaie, M., Sommer, S.C.

    1998-03-27

    This paper presents the results of a study to evaluate the effects of soil-structure interaction (SSI) on the ambient vibration response of the switchyard/target area (S/TA) buildings at the National Ignition Facility (NIF) presently under construction at the Lawrence Livermore National Laboratory (LLNL) in Livermore, California. This laser facility houses optical and other special equipment whose alignment stability is sensitive to vibrations caused by ambient vibrations or other vibrating sources. In evaluating the deformations and displacements of the S/TA structures, the contribution of the SSI to the overall system flexibility can be very significant. The present study examines the results of fixed-base and SSI analyses of these massive stiff structures to develop an understanding of the potential contribution of SSI to the overall system displacements and deformations. A simple procedure using a set of factors is recommended for scaling the results of fixed-base analyses to approximately account for SSI effects.

  19. Mathematical modeling of acid deposition due to radiation fog

    SciTech Connect

    Pandis, S.N.; Seinfeld, J.H. )

    1989-09-20

    A Lagrangian model has been developed to study acidic deposition due to radiation fog. The model couples submodels describing the development and dissipation of radiation fog, the gas-phase chemistry and transfer, and the aqueous-phase chemistry. The model is applied to a radiation fog episode in Bakersfield in the San Joaquin Valley of California over the period January 4--5 1985. Model predictions for temperature profile, fog development, liquid water content, gas-phase concentrations of SO{sub 2}, HNO{sub 3}, and NH{sub 3}, {ital p}H, aqueous-phase concentrations of OS{sup 2{minus}}{sub 4}, NH{sup +}{sub 4}, and NO{sup {minus}}{sub 3}, and finally deposition rates of the above ions are compared with the observed values. The deposition rates of the major ions are predicted to increase significantly during the fog episode, the most notable being the increase of sulfate deposition. Pathways for sulfate production that are of secondary importance in a cloud environment may become signficant in a fog. Expressing the mean droplet settling velocity as a function of liquid water content is found to be quite influential in the model's predictions. {copyright} American Geophysical Union 1989

  20. Acidic precipitation-induced chemical changes in subalpine fir forest organic soil layers

    SciTech Connect

    Hanson, D.W.

    1980-01-01

    The effects of acid precipitation and heavy metal deposition on the surface organic layer of conifer forest soils of New England and Canada were studied. Trends in concentrations of elements across the regional precipitation pH gradient were analyzed. Leaching of Mn, and Ca from subalpine fir forest soil litter increased as precipitation acidity increased. The order of relative susceptibility to increased leaching due to increased precipitation acidity is Mn > Ca > Mg greater than or equal to K greater than or equal to Zn. Sodium and Cd possibly show leaching patterns similar to those of Mg, K, and Zn. Iron and Pb concentrations increased as precipitation acidity increased. The Fe and Pb concentration gradients are partially caused by relative enrichment of Fe and Pb in litter as more mobile cations and compounds are leached. Relative enrichment was greatest at sites receiving precipitation of greater acidity. A large part of the Pb concentration gradient in litter is due to an atmospheric Pb deposition gradient which parallels the regional precipitation-pH gradient. The order of relative accumulation is Pb > Fe. Lead concentrations were highest in soil L and F layers, indicating that Pb accumulation is a recent, continuing phenomenon. Soil litter showed a pH gradient across the sampling transect. Litter generally increased in acidity as precipitation acidity increased. Increased soil litter acidity and increased cation leaching are related; both are caused by acidic precipitation. Cluster analysis of soil litter chemistry data ordered the mountain sites, with one exception, according to their position along the regional precipitation-pH gradient. This implies that precipitation-pH, and associated heavy metal deposition, control soil litter chemistry in subalpine fir forests. 113 references. (MDF)

  1. Modeling the influence of organic acids on soil weathering

    USGS Publications Warehouse

    Lawrence, Corey R.; Harden, Jennifer W.; Maher, Kate

    2014-01-01

    Biological inputs and organic matter cycling have long been regarded as important factors in the physical and chemical development of soils. In particular, the extent to which low molecular weight organic acids, such as oxalate, influence geochemical reactions has been widely studied. Although the effects of organic acids are diverse, there is strong evidence that organic acids accelerate the dissolution of some minerals. However, the influence of organic acids at the field-scale and over the timescales of soil development has not been evaluated in detail. In this study, a reactive-transport model of soil chemical weathering and pedogenic development was used to quantify the extent to which organic acid cycling controls mineral dissolution rates and long-term patterns of chemical weathering. Specifically, oxalic acid was added to simulations of soil development to investigate a well-studied chronosequence of soils near Santa Cruz, CA. The model formulation includes organic acid input, transport, decomposition, organic-metal aqueous complexation and mineral surface complexation in various combinations. Results suggest that although organic acid reactions accelerate mineral dissolution rates near the soil surface, the net response is an overall decrease in chemical weathering. Model results demonstrate the importance of organic acid input concentrations, fluid flow, decomposition and secondary mineral precipitation rates on the evolution of mineral weathering fronts. In particular, model soil profile evolution is sensitive to kaolinite precipitation and oxalate decomposition rates. The soil profile-scale modeling presented here provides insights into the influence of organic carbon cycling on soil weathering and pedogenesis and supports the need for further field-scale measurements of the flux and speciation of reactive organic compounds.

  2. ROLE OF SOIL ORGANIC ACIDS IN MINERAL WEATHERING PROCESSES

    EPA Science Inventory

    The soluble organic acids in soils consist largely of complex mixtures of polymeric compounds referred to collectively as fluvic and humic acids. These compounds are relatively refactory, and are broken down only slowly by bacteria. ow-molecular-mass acids (e.g., acetic, oxalic, ...

  3. Effect of carbonaceous soil amendments on potential mobility of weak acid herbicides in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of carbonaceous amendments in soil has been proposed to decrease potential offsite transport of weak acid herbicides and metabolites by increasing their sorption to soil. The effects of organic olive mill waste, biochars from different feed stocks, and humic acid bound to clay on sorption of MCP...

  4. Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey

    NASA Astrophysics Data System (ADS)

    Assad, E. D.; Pinto, H. S.; Martins, S. C.; Groppo, J. D.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Camargo, P. B.; Martinelli, L. A.

    2013-10-01

    In this paper we calculated soil carbon stocks in Brazil studying 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58 to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10, 30 and 60 cm soil depth were equal to approximately 29, 64, and 92 Mg ha-1, respectively. In the paired sites, carbon losses of 7.5 Mg ha-1 and 11.6 Mg ha-1 in CPS systems were observed at 10 cm and 30 cm soil depths, respectively. In pasture soils, carbon losses were similar and equal to 7.5 Mg ha-1 and 11.0 Mg ha-1 at 10 cm and 30 cm soil depths, respectively. Differences at 60 cm soil depth were not significantly different between land uses. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to -25.4‰ and -24.0‰, increasing to -19.6‰ and -17.7‰ in CPS, and to -18.9‰, and -18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha-1, with an average δ13C value of -19.67‰. Key controllers of soil carbon stock in pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha-1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and plot-level paired study sites in estimating soil carbon stocks

  5. Changes in soil quality due to converting Pinus to Eucalyptus plantations and subsequent successive Eucalyptus planting in southern China

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Zheng, H.; Chen, F. L.; Ouyang, Z. Y.; Wang, Y.; Wu, Y. F.; Lan, J.; Fu, M.; Xiang, X. W.

    2014-09-01

    Plants play a key role in maintaining soil quality, but long-term changes in soil quality due to plant species change and successive planting are rarely reported. Using the space-for-time substitution method, adjacent plantations of Pinus and 1st, 2nd, 3rd and 4th generations of Eucalyptus in Guangxi, China were used to study changes in soil quality caused by converting Pinus to Eucalyptus and successive Eucalyptus planting. Soil chemical and biological properties were measured and a soil quality index (SQI) was calculated. Soil organic carbon, total nitrogen, alkaline hydrolytic nitrogen, microbial biomass carbon, microbial biomass nitrogen, cellobiosidase, phenol oxidase, peroxidase and acid phosphatase activities significantly decreased in the 1st and 2nd generations of Eucalyptus plantations after conversion from Pinus to Eucalyptus but gradually recovered in the 3rd and 4th generations. Soil total and available potassium were significantly lower, but total phosphorus was significantly higher in Eucalyptus plantations compared to the Pinus plantation. As an integrated indicator, SQI was highest in the Pinus plantation (0.92), but decreased to 0.24 and 0.13 in the 1st and 2nd generations of Eucalyptus plantations, respectively. However, it recovered to 0.36 and 0.38 in the 3rd and 4th generations, respectively. Changing tree species, reclamation and fertilization may have contributed to the "U" shaped change observed in soil quality during conversion of Pinus to Eucalyptus and successive Eucalyptus planting. Litter retention, keeping understory coverage, and reducing soil disturbance during logging and subsequent establishment of the next rotation should be considered to help improving soil quality during plantation management.

  6. Effects of Fe oxide on N transformations in subtropical acid soils

    PubMed Central

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-01-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3−-N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3−-N immobilization rate increased 8 fold. NO3−-N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3−-N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3−-N immobilization caused by high Fe oxide content rather than a low pH. PMID:25722059

  7. Effects of Fe oxide on N transformations in subtropical acid soils.

    PubMed

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L

    2015-01-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3(-)-N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a (15)N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3(-)-N immobilization rate increased 8 fold. NO3(-)-N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3(-)-N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3(-)-N immobilization caused by high Fe oxide content rather than a low pH. PMID:25722059

  8. Acidic sandy soil improvement with biochar - A microcosm study.

    PubMed

    Molnár, Mónika; Vaszita, Emese; Farkas, Éva; Ujaczki, Éva; Fekete-Kertész, Ildikó; Tolner, Mária; Klebercz, Orsolya; Kirchkeszner, Csaba; Gruiz, Katalin; Uzinger, Nikolett; Feigl, Viktória

    2016-09-01

    Biochar produced from a wide range of organic materials by pyrolysis has been reported as a means to improve soil physical properties, fertility and crop productivity. However, there is a lack of studies on the complex effects of biochar both on the degraded sandy soil physico-chemical properties and the soil biota as well as on toxicity, particularly in combined application with fertilizer and compost. A 7-week microcosm experiment was conducted to improve the quality of an acidic sandy soil combining variations in biochar types and amounts, compost and fertilizer application rates. The applied biochars were produced from different feedstocks such as grain husks, paper fibre sludge and wood screenings. The main purpose of the microcosm experiment was to assess the efficiency and applicability of different biochars as soil amendment prior to field trials and to choose the most efficient biochar to improve the fertility, biological activity and physical properties of acidic sandy soils. We complemented the methodology with ecotoxicity assessment to evaluate the possible risks to the soil as habitat for microbes, plants and animals. There was clear evidence of biochar-soil interactions positively affecting both the physico-chemical properties of the tested acidic sandy soil and the soil biota. Our results suggest that the grain husk and the paper fibre sludge biochars applied to the tested soil at 1% and 0.5 w/w% rate mixed with compost, respectively can supply a more liveable habitat for plants and soil living animals than the acidic sandy soil without treatment. PMID:26850860

  9. Changes in soil carbon stocks in Brazil due to land use: paired site comparisons and a regional pasture soil survey

    NASA Astrophysics Data System (ADS)

    Assad, E. D.; Pinto, H. S.; Martins, S. C.; Groppo, J. D.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Camargo, P. B.; Martinelli, L. A.

    2013-03-01

    In this paper we calculated soil carbon stocks in Brazil using 17 paired sites where soil stocks were determined in native vegetation, pastures and crop-livestock systems (CPS), and in other regional samplings encompassing more than 100 pasture soils, from 6.58° S to 31.53° S, involving three major Brazilian biomes: Cerrado, Atlantic Forest, and the Pampa. The average native vegetation soil carbon stocks at 10 and 30 cm soil depth were equal to approximately 33 and 65 Mg ha-1, respectively. In the paired sites, carbon losses of 7.5 Mg ha-1 and 11.9 Mg ha-1 in CPS systems were observed at 10 cm and 30 cm soil depth averages, respectively. In pasture soils, carbon losses were similar and equal to 8.3 Mg ha-1 and 12.2 Mg ha-1 at 10 cm and 30 cm soil depths, respectively. The average soil δ13C under native vegetation at 10 and 30 cm depth were equal to -25.4‰ and -24.0‰, increasing to -19.6 ‰ and -17.7‰ in CPS, and to -18.9‰, and -18.3‰ in pasture soils, respectively; indicating an increasing contribution of C4 carbon in these agrosystems. In the regional survey of pasture soils, the soil carbon stock at 30 cm was equal to approximately 51 Mg ha-1, with an average δ13C value of -19.6‰. Key controllers of soil carbon stock at pasture sites were sand content and mean annual temperature. Collectively, both could explain approximately half of the variance of soil carbon stocks. When pasture soil carbon stocks were compared with the average soil carbon stocks of native vegetation estimated for Brazilian biomes and soil types by Bernoux et al. (2002) there was a carbon gain of 6.7 Mg ha-1, which is equivalent to a carbon gain of 15% compared to the carbon soil stock of the native vegetation. The findings of this study are consistent with differences found between regional comparisons like our pasture sites and local paired study sites in estimating soil carbon stocks changes due to land use changes.

  10. Chemical evaluation of soil-solution in acid forest soils

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and

  11. Mobility and speciation of Cd, Cu, and Zn in two acidic soils affected by simulated acid rain.

    PubMed

    Guo, Zhao-hui; Liao, Bo-han; Huang, Chang-yong

    2005-01-01

    Through a batch experiment, the mobility and speciation of heavy metals (Cd, Cu, Zn) in two acidic forest soils from Hunan Province were studied. The results showed that the release and potential active speciation of Cd, Cu, and Zn in the tested contaminated red soil (CRS) and yellow red soil (CYRS) increased significantly with pH decreasing and ion concentrations increasing of simulated acid rain, and these effects were mainly decided by the pH value of simulated acid rain. Cd had the highest potential risk on the environment compared with Cu and Zn. Cd existed mainly in exchangeable form in residual CRS and CYRS, Cu in organically bound and Mn-oxide occluded forms, and Zn in mineral forms due to the high background values. PMID:16295916

  12. Influence of humic acid applications on soil physicochemical properties

    NASA Astrophysics Data System (ADS)

    Gümüş, İ.; Şeker, C.

    2015-09-01

    Soil structure is often said to be the key to soil productivity since a fertile soil, with desirable soil structure and adequate moisture supply, constitutes a productive soil. Soil structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root penetration and crop yield. The objective of this work is to study, humic acid (HA) application on some physical and chemical properties in weak structured soils investigated. The approach involved establishing a plot experiment in the laboratory conditions. Different rates of HA (control, 0.5, 1, 2 and 4 %) were applied to soil at three incubation periods (21, 42 and 62 days). At the end of the each incubation period, the changes in physicochemical properties were measured. Generally, HA addition increased EC values at the all incubation periods. HA applications decreased soil modulus of rupture. Application of HA at the rate of 4 % was significantly increased soil organic carbon contents. HA applications at the rate of 4 % significantly increased both mean soil total nitrogen content and aggregate stability after at three incubation periods (p < 0.05). Therefore, HA was potential to improve structure of soil in short term.

  13. Acid rains`s dirty business: Stealing minerals from soil

    SciTech Connect

    Kaiser, J.

    1996-04-12

    This article describes the hidden environmental effects of acid rain - leaching of base mineral ions from the soil, often changing soil chemistry dramatically. The primary information comes from Ecosystem studies at Hubbard Brook of Likens and Buso. The article also discusses both other opinions and possible solutions.

  14. ACID RAIN AND SOIL MICROBIAL ACTIVITY: EFFECTS AND THEIR MECHANISMS

    EPA Science Inventory

    In the investigation, our aim was to determine if acid rain affects soil microbial activity and to identify possible mechanisms of observed effects. A Sierran forest soil (pH 6.4) planted with Ponderosa pine seedlings was exposed to simulated rain (pH 2.0, 3.0, 4.0 and 5.6) with ...

  15. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) reduces the concentrations and/or leachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. he objective of the project was to determine the effectiveness and commercial viabili...

  16. Irreversible soil degradation due to soil salinity and sodicity, and the role of reduced hydraulic conductivity feedback

    NASA Astrophysics Data System (ADS)

    Mau, Y.; Porporato, A. M.

    2015-12-01

    Soil sodicity is characterized by a high relative amount of sodium cations in the soil, usually measured by the sodium adsorption ratio (SAR) or by the exchangeable sodium percentage (ESP). It negatively affects the soil's physical properties, causing slaking, swelling, and dispersion of clay, which lead to decreased hydraulic conductivity and infiltration rate. Soil sodicity is especially problematic in arid and semi-arid regions, where low-quality waters, such as treated wastewater or sodic/saline groundwater, are often used to meet agricultural demands. The dynamics of sodicity in the soil is intertwined with that of salinity, i.e., the total concentration of salt in the soil, and the soil water balance. We present a model for the coupled dynamics of relative soil water content s, salinity C, and sodicity ESP and investigate the effects of irrigation with water of good and bad quality on the soil. We explicitly account for the major feedback on the soil moisture dynamics due to decreased saturated hydraulic conductivity at low values of C and for high values of ESP, and show that it leads to a bifurcation of steady-state solutions along a control parameter axis (irrigation rate, SAR of irrigation water, etc). We study theoretically such bifurcations, which are related to a runaway sodification process, and determine the conditions in which there is an irreversible soil degradation and the time scales associated with it. Finally, we discuss different soil remediation strategies based on the optimal control theory applied to the proposed system for the coupled water, salinity and sodicy dynamics.

  17. Can Tomato Inoculation with Trichoderma Compensate Yield and Soil Health Deficiency due to Soil Salinity?

    NASA Astrophysics Data System (ADS)

    Wagner, Karl; Apostolakis, Antonios; Daliakopoulos, Ioannis; Tsanis, Ioannis

    2016-04-01

    Soil salinity is a major soil degradation threat, especially for arid coastal environments where it hinders agricultural production and soil health. Protected horticultural crops in the Mediterranean region, typically under deficit irrigation and intensive cultivation practices, have to cope with increasing irrigation water and soil salinization. This study quantifies the beneficial effects of the Trichoderma harzianum (TH) on the sustainable production of Solanum lycopersicum (tomato), a major greenhouse crop of the RECARE project Case Study in Greece, the semi-arid coastal Timpaki basin in south-central Crete. 20 vigorous 20-day-old Solanum lycopersicum L. cv Elpida seedlings are treated with TH fungi (T) or without (N) and transplanted into 35 L pots under greenhouse conditions. Use of local planting soil with initial Electrical Conductivity (ECe) 1.8 dS m‑1 and local cultivation practices aim to simulate the prevailing conditions at the Case Study. In order to simulate seawater intrusion affected irrigation, plants are drip irrigated with two NaCl treatments: slightly (S) saline (ECw = 1.1 dS m‑1) and moderately (M) saline water (ECw = 3.5 dS m‑1), resulting to very high and excessively high ECe, respectively. Preliminary analysis of below and aboveground biomass, soil quality, salinity, and biodiversity indicators, suggest that TH pre-inoculation of tomato plants at both S and M treatments improve yield, soil biodiversity and overall soil health.

  18. Soil Bacteria Take Up D-Amino Acids, Protect Plants

    NASA Astrophysics Data System (ADS)

    Sun, H. J.; Zhang, G.

    2011-12-01

    Recently, many groups reported D-amino acid uptake by plant roots, raising the question of whether soil D-amino acids represent a source of nitrogen or a source of toxicity. The discussion needs to be placed in the context of competition with rhizosphere bacteria. To provide this context, we followed the concentrations of D- and L-enantiomers of alanine, glutamic acid, aspartic acid, and leucine after they were added to soils in the laboratory. In all cases, the uptake of L-enantiomer began immediately and proceeded rapidly until exhausted. In contrast, the uptake of D-enantiomer required induction: an initial period of inactivity followed by rapid consumption comparable in rate to L-enantiomer. The induced nature of the D activity was confirmed by the addition of rifampicin, an mRNA synthesis inhibitor. Preventing the synthesis of new enzymes abolished soil flora's ability to consume D-amino acids, but not L-amino acids. These results suggest that inducible special racemase enzymes, which can convert D-amino acids back to their native L-forms, are widespread among soil microorganisms. This finding does not rule out the possibility that some plants may out-compete microorganisms and be able to access D-amino acids. It does suggest, however, that rhizosphere bacteria can shield plants from the toxic effect of D-amino acids.

  19. Prolonged acid rain facilitates soil organic carbon accumulation in a mature forest in Southern China.

    PubMed

    Wu, Jianping; Liang, Guohua; Hui, Dafeng; Deng, Qi; Xiong, Xin; Qiu, Qingyan; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2016-02-15

    With the continuing increase in anthropogenic activities, acid rain remains a serious environmental threat, especially in the fast developing areas such as southern China. To detect how prolonged deposition of acid rain would influence soil organic carbon accumulation in mature subtropical forests, we conducted a field experiment with simulated acid rain (SAR) treatments in a monsoon evergreen broadleaf forest at Dinghushan National Nature Reserve in southern China. Four levels of SAR treatments were set by irrigating plants with water of different pH values: CK (the control, local lake water, pH ≈ 4.5), T1 (water pH=4.0), T2 (water pH=3.5), and T3 (water pH=3.0). Results showed reduced pH measurements in the topsoil exposed to simulated acid rains due to soil acidification. Soil respiration, soil microbial biomass and litter decomposition rates were significantly decreased by the SAR treatments. As a result, T3 treatment significantly increased the total organic carbon by 24.5% in the topsoil compared to the control. Furthermore, surface soil became more stable as more recalcitrant organic matter was generated under the SAR treatments. Our results suggest that prolonged acid rain exposure may have the potential to facilitate soil organic carbon accumulation in the subtropical forest in southern China. PMID:26657252

  20. Experimental evidence of lateral flow in unsaturated homogeneous isotropic sloping soil due to rainfall

    NASA Astrophysics Data System (ADS)

    Sinai, G.; Dirksen, C.

    2006-12-01

    This paper describes laboratory experimental evidence for lateral flow in the top layer of unsaturated sloping soil due to rainfall. Water was applied uniformly on horizontal and V-shaped surfaces of fine sand, at rates about 100 times smaller than the saturated hydraulic conductivity. Flow regimes near the surface and in the soil bulk were studied by using dyes. Streamlines and streak lines and wetting fronts were visually studied and photographed through a vertical glass wall. Near wetting fronts the flow direction was always perpendicular to the fronts owing to dominant matrix potential gradients. Thus, during early wetting of dry sloping sand, the flow direction is directed upslope. Far above a wetting front the flow was vertical due to the dominance of gravity. Downslope flow was observed during decreasing rainfall and dry periods. The lateral movement was largest near the soil surface and decayed with soil depth. Unstable downslope lateral flow close to the soil surface was attributed to non-Darcian flow due to variable temporal and spatial raindrop distributions. The experiments verify the theory that predicts unsaturated downslope lateral flow in sloping soil due to rainfall dynamics only, without apparent soil texture difference or anisotropy. This phenomenon could have significant implications for hillside hydrology, desert agriculture, irrigation management, etc., as well as for the basic mechanisms of surface runoff and erosion.

  1. Acid-base buffering of soils in transitional and transitional-accumulative positions of undisturbed southern-taiga landscapes

    NASA Astrophysics Data System (ADS)

    Rusakova, E. S.; Ishkova, I. V.; Tolpeshta, I. I.; Sokolova, T. A.

    2012-05-01

    The method of continuous potentiometric titration (CPT) of soil water suspensions was used to evaluate the acid-base buffering of samples from the major genetic horizons of podzolic soils on a slope and soddy gley soils on the adjacent floodplain of a rivulet. In the soils of the slope, the buffering to acid upon titration from the pH of the initial titration point (ITP) to pH 3 in all the horizons was 1.5-2.0 times lower than that in the podzolic soils of the leveled interfluve, which could be due to the active leaching of exchangeable bases and oxalate-soluble aluminum and iron compounds with the later soil flows. In the soddy gley soils, the buffering to acid in the mineral horizons was 2-10 times higher than that in the podzolic soils. A direct dependence of the soil buffering to acid on the total content of exchangeable bases and on the content of oxalate-soluble aluminum compounds was found. A direct dependence of the buffering to basic upon titration from the ITP to pH 10 on the contents of the oxalate-soluble aluminum and organic matter was observed in the mineral horizons of all the studied soils. The soil treatment with Tamm's reagent resulted in the decrease of the buffering to acid in the soddy gley soils of the floodplain, as well as in the decrease of the buffering to basic in the soils on the slopes and in the soddy gley soils. It was also found that the redistribution of the mobile aluminum compounds between the eluvial, transitional, and transitional-accumulative positions in the undisturbed southern taiga landscapes leads to significant spatial differentiation of the acid-base buffering of the mineral soil horizons with a considerable increase in the buffer capacity of the soils within the transitional-accumulative terrain positions.

  2. EFFECTS OF ACID PRECIPITATION ON SOIL LEACHATE QUALITY: COMPUTER CALCULATIONS

    EPA Science Inventory

    The multipurpose computer program GEOCHEM was employed to calculate the equilibrium speciation in twenty-three examples of acid precipitation from New Hampshire, New York, and Maine, and in the same number of mixtures of acid precipitation with minerals characteristic of soils in...

  3. Impact of acid effluent from Kawah Ijen crater lake on irrigated agricultural soils: Soil chemical processes and plant uptake

    NASA Astrophysics Data System (ADS)

    van Rotterdam-Los, A. M. D.; Heikens, A.; Vriend, S. P.; van Bergen, M. J.; van Gaans, P. F. M.

    2008-12-01

    Volcanogenic contamination of irrigation water, caused by effluent from the hyperacid Ijen crater lake, has severely affected the properties of agricultural soils in East Java, Indonesia. From a comparison of acidified topsoil with subsoil and with top- and subsoil in a reference area, we identified processes responsible for changes in soil and soil solution chemistry induced by acid irrigation water, with emphasis on the nutrients Ca, Mg, Fe, and Mn, and on Al, which may become phytotoxic under acid conditions in soils. Compositional data for bulk soil composition and selective extractions with 1 M KCl and 0.2 M acid ammonium oxalate are used in a mass balance approach to specify element fluxes, including uptake by rice plants. The results show that input via irrigation water has produced an increase in the total aluminum content in the affected topsoil, which is of the same order of magnitude as the increase in labile Al. High bioavailability of Al, as reflected by concentrations in KCl extracts, is consistent with elevated concentrations observed in rice plants. In contrast, and despite the high input via irrigation water, Ca and Mg concentrations have decreased in all measured soil fractions through dissolution of amorphous phases and minerals, and through competition of Al for adsorption sites on the exchange complex and plant roots. Strong leaching is also evident for Fe and especially Mn. In terms of the overall mass balance of the topsoil, plant uptake of Al, Ca, Fe, Mg and Mn is negligible. If the use of acid irrigation would be stopped and the soil pH were to increase to values above 4.5, the observed phytotoxicity of Al will be halted. However, crops may then become fully dependent on the input from irrigation water or fertilizer for essential elements, due to the previous removal from the topsoil through leaching.

  4. Response of soil respiration to acid rain in forests of different maturity in southern China.

    PubMed

    Liang, Guohua; Liu, Xingzhao; Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  5. Response of Soil Respiration to Acid Rain in Forests of Different Maturity in Southern China

    PubMed Central

    Chen, Xiaomei; Qiu, Qingyan; Zhang, Deqiang; Chu, Guowei; Liu, Juxiu; Liu, Shizhong; Zhou, Guoyi

    2013-01-01

    The response of soil respiration to acid rain in forests, especially in forests of different maturity, is poorly understood in southern China despite the fact that acid rain has become a serious environmental threat in this region in recent years. Here, we investigated this issue in three subtropical forests of different maturity [i.e. a young pine forest (PF), a transitional mixed conifer and broadleaf forest (MF) and an old-growth broadleaved forest (BF)] in southern China. Soil respiration was measured over two years under four simulated acid rain (SAR) treatments (CK, the local lake water, pH 4.5; T1, water pH 4.0; T2, water pH 3.5; and T3, water pH 3.0). Results indicated that SAR did not significantly affect soil respiration in the PF, whereas it significantly reduced soil respiration in the MF and the BF. The depressed effects on both forests occurred mostly in the warm-wet seasons and were correlated with a decrease in soil microbial activity and in fine root biomass caused by soil acidification under SAR. The sensitivity of the response of soil respiration to SAR showed an increasing trend with the progressive maturity of the three forests, which may result from their differences in acid buffering ability in soil and in litter layer. These results indicated that the depressed effect of acid rain on soil respiration in southern China may be more pronounced in the future in light of the projected change in forest maturity. However, due to the nature of this field study with chronosequence design and the related pseudoreplication for forest types, this inference should be read with caution. Further studies are needed to draw rigorous conclusions regarding the response differences among forests of different maturity using replicated forest types. PMID:23626790

  6. Terrestrial Arctic Amplification Due to Changes in the Eurasian Soil Thermal Regime

    NASA Astrophysics Data System (ADS)

    Frauenfeld, O. W.; Chen, L.; Zhang, T.

    2012-12-01

    The Arctic amplification phenomenon suggests that due to feedbacks largely involving sea ice, increases in surface air temperature in response to greenhouse gas forcing are most pronounced in the Arctic. As the Arctic warms in response to climate change, the summer melt season lengthens and intensifies, leading to less sea ice at the end of summer. Absorption of solar radiation during summer in expanding open water areas increases the heat content of the ocean, delaying ice formation and promoting increased upward heat fluxes. Loss of sea ice thus provides a positive feedback that exacerbates the warming observed in the Arctic. The underlying premise of our study is that much like Arctic amplification due to the loss of sea ice, changes in the amount and distribution of frozen ground in Northern Hemisphere land areas represent a terrestrial analog to Arctic amplification. In response to climate warming we are observing increases in soil temperatures, deepening of the active layer, and talik formation in permafrost regions. This leads to delayed freeze-up of soils, decreased freeze depths in seasonally frozen ground regions, and earlier spring thaw. These changes in the soil thermal regime result in more and more heat storage in soils during the warm season, amplifying the frozen ground changes in high latitudes. The increased heat storage in the soil thermal regime results in a seasonal redistribution of energy, which leads to a substantially increased heat flux from the soil to the atmosphere during the cold season. It is this heat flux that represents our hypothesized feedback. We use monthly historical soil temperature observations at 423 station locations in the Eurasian high latitudes combined with soil properties based on the Harmonized World Soil Database to provide estimates of this soil heat flux. We calculate the temperature gradient based on soil temperature and, for a generalized assessment, first use a constant, estimated thermal conductivity for

  7. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  8. Changes of soil pore system due to soil macrofauna: an experimental approach to study the contribution of different taxa

    NASA Astrophysics Data System (ADS)

    Gargiulo, Laura; Buscemi, Gilda; Mele, Giacomo; Terribile, Fabio

    2015-04-01

    Soil fauna contributes to the ecosystem functioning, for example, by means of its direct influence on soil structure which modifies the physical environment of the microbial community. Changes in habitat structure due to soil fauna activities can influence resource availability, species' abundances, and community composition of soil microorganisms. X-ray tomography has been increasingly used to obtain precise and non-destructive analysis mostly of the macroporosity resulting from earthworm activity in repacked soil cores. However also other macrofauna species contribute in different manner and extent to the modification of soil pore system, and then to the soil functioning, by means of their burrows and bioturbation activity. In this work we have developed an experimental approach based on the use of repacked soil mesocosms specifically constructed for the purpose of distinguish separately the contribution to soil structure changes of different organisms naturally present in field or inoculated in laboratory. Six different orders of macrofauna were studied and after four weeks of fauna activity the cores were imaged using a medical X-ray tomograph. Three-dimensional image processing was used in order to obtain 3D reconstructions and preliminary analysis of the identified biopores. In addition to the earthworms (Haplotaxida, genus Lombricus), among the studied taxa, Embioptera showed the most intense burrowing activity, while Coleoptera larvae (sp. Elater sanguineus) and Julida (class Diplopoda) produced the thickest pore network in our mesocosms. The used experimental approach showed a promising potential to provide new useful information about the widely differentiated contribution of many types of macrofauna to the modification of soil pore system.

  9. Sorption and leaching potential of acidic herbicides in Brazilian soils.

    PubMed

    Spadotto, Claudio A; Hornsby, Arthur G; Gomes, Marco A F

    2005-01-01

    Leaching of acidic herbicides (2,4-D, flumetsulam, and sulfentrazone) in soils was estimated by comparing the original and modified AF (Attenuation Factor) models for multi-layered soils (AFi). The original AFi model was modified to include the concept of pH-dependence for Kd (sorption coefficient) based on pesticide dissociation and changes in the accessibility of soil organic functional groups able to interact with the pesticide. The original and modified models, considering soil and herbicide properties, were applied to assess the leaching potential of selected herbicides in three Brazilian soils. The pH-dependent Kd values estimated for all three herbicides were observed to be always higher than pH-independent Kd values calculated using average Koc data, and therefore the original AFi model overestimated the overall leaching potential for the soils studied. PMID:15656159

  10. Determination of fumaric acid, maleic acid, and phthalic acid in groundwater and soil

    SciTech Connect

    Dietz, E.A.; Singley, K.F. . Technology Center)

    1994-01-01

    When present at > 1 [mu]g/mL, each title compound was determined in groundwater by ion-exclusion chromatography after sample acidification and filtration. For groundwater with one or all analyte concentrations of < 1 [mu]g/mL, the acid anions were first concentrated from a 100-mL sample using a quaternary amine anion-exchange cartridge. The acids were recovered by eluting the cartridge with 1 mL of N H[sub 2]SO[sub 4] and 2-mL deionized water washes; this solution then was examined by anion-exclusion chromatography. Analytes were monitored with a UV detector operated at 200 nm. The analysis procedures for groundwater were validated with solutions which were fortified with from 50 ng/mL to 200 [mu]g/mL of each analyte; recoveries ranged from 90 to 110%. The soil method was validated using fortified samples which contained each acid at concentrations of from 5 to 160 [mu]g/g. Recovery values were between 81 and 120%. For samples exhibiting minimal detector response from compounds other than the acids of interest, 100-[mu]L injection volumes provided an estimated detection limit of 1 [mu]g/g for soil and 10 ng/mL for groundwater.

  11. Soil solution response to experimentally reduced acid deposition in a forest ecosystem

    SciTech Connect

    Alewell, C.; Matzner, E.; Bredemeier, M.; Blanch, K.

    1997-05-01

    In order to measure and predict reversibility of soil solution acidification under experimentally reduced acid input, a manipulation study with artificial {open_quote}preindustrial{close_quote} throughfall was established. A roof was installed underneath the canopy in a Norway Spruce stand of the German Soiling area. Water failing onto the roof was adjusted to clean rain concentrations before redistribution. Soil solutions were collected with suction cup lysimeters at various depths and were analyzed for major ions. The response of soil solution chemistry in the upper soil (10 cm depth) to a reduction of N, SO{sub 4}, and H input was rapid. While NO{sub 3} concentration in deeper soil layers reached input levels after 2 yr of treatment, SO{sub 4} concentration in the seepage water at 1 m depth remained high relative to the reduced input due to a release of formerly stored S from the soil. Aluminum concentration followed a similar pattern as the SO{sub 4} concentrations. The ion concentrations in soil leachate were predicted reasonably well using the MAGIC model with the measured SO{sub 4} sorption isotherms and the throughfall fluxes as model input Although the parameters of the Langmuir isotherm had no significant influence to the prediction of SO{sub 4} concentration in the upper soil layer, they were crucial for the prediction of SO{sub 4} dynamics in deeper soil layers. The model predicted that the reversibility of soil acidification at the Soiling area is delayed for decades due to the release of soil SO{sub 4}. 38 refs., 5 figs., 4 tabs.

  12. Amelioration of acidic soil using various renewable waste resources.

    PubMed

    Moon, Deok Hyun; Chang, Yoon-Young; Ok, Yong Sik; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun

    2014-01-01

    In this study, improvement of acidic soil with respect to soil pH and exchangeable cations was attempted for sample with an initial pH of approximately 5. Acidic soil was amended with various waste resources in the range of 1 to 5 wt.% including waste oyster shells (WOS), calcined oyster shells (COS), Class C fly ash (FA), and cement kiln dust (CKD) to improve soil pH and exchangeable cations. Upon treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, a maize growth experiment was conducted with selected-treated samples to evaluate the effectiveness of treatment. The treatment results indicate that in order to increase the soil pH to a value of 7, 1 wt.% of WOS, 3 wt.% of FA, and 1 wt.% of CKD are required. In the case of COS, 1 wt.% was more than enough to increase the soil pH value to 7 because of COS's strong alkalinity. Moreover, the soil pH increases after a curing period of 7 days and remains virtually unchanged thereafter up to 1 month of curing. Upon treatment, the summation of cations (Ca, Mg, K, and Na) significantly increased. The growth of maize is superior in the treated samples rather than the untreated one, indicating that the amelioration of acidic soil is beneficial to plant growth, since soil pH was improved and nutrients were replenished. PMID:24078235

  13. Effect of selected soil conditioners on soil properties, erosion, runoff, and rye growth in nonfertile acid soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction operations result in highly disturbed soil, vulnerable to erosion and excess runoff and sediment loads. Limited information exists about effects of erosion mitigation practices on soil and runoff properties in low fertility acidic sites. The current study evaluates the use of polyacry...

  14. Declines in Soil pH due to Anthropogenic Nitrogen Inputs Alter Buffering and Exchange Reactions in Tropical Forest Soils

    NASA Astrophysics Data System (ADS)

    Lohse, K. A.

    2003-12-01

    Anthropogenic nitrogen (N) inputs may alter tropical soil buffering and exchange reactions that have important implications for nutrient cycling, forest productivity, and downstream ecosystems. In contrast to relatively young temperate soils that are typically buffered from N inputs by base cation reactions, aluminum reactions may serve to buffer highly weathered tropical soils and result in immediate increases in aluminum mobility and toxicity. Increased nitrate losses due to chronic N inputs may also deplete residual base cations in already weathered base cation-poor soils, further acidify soils, and thereby reduce nitrate mobility through pH-dependent anion exchange reactions. To test these hypotheses, I determined soil pH and cation and anion exchange capacity (CEC and AEC) and measured base cation and aluminum soil solution losses following first-time and long-term experimental N additions from two Hawaiian tropical forest soils, a 300 year old Andisol and a 4.1 million year old Oxisol. I found that elevated base cation losses accompanied increased nitrate losses after first time N additions to the young Andisol whereas immediate and large aluminum losses were associated with increased nitrate losses from the Oxisol. In the long-term, base cation and aluminum losses increased in proportion to nitrate losses. Long-term N additions at both sites resulted in significant declines in soil pH, decreased CEC and increased AEC. These results suggest that even chronic N inputs resulting in small but elevated nitrate losses may deplete residual base cations, increase mobility and toxicity of aluminum, and potentially lead to declines in forest productivity and acidification of downstream ecosystems. These findings also suggest that AEC may provide a long-term mechanism to delay nitrate losses in tropical forests with significant variable charge that are experiencing chronic anthropogenic N inputs.

  15. Sugarcane yields and soil chemical properties due to mill mud application to a sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mill mud is a potentially beneficial by-product from the sugar milling process. An experiment was conducted to assess sugarcane yield and nutrient movement into subs after mill mud application in sandy soil. Treatments consisted of fertilizer (low fertilizer (LF) and adequate fertilizer (AF)), and m...

  16. Assessment of natural and calcined starfish for the amelioration of acidic soil.

    PubMed

    Moon, Deok Hyun; Yang, Jae E; Cheong, Kyung Hoon; Koutsospyros, Agamemnon; Park, Jeong-Hun; Lim, Kyoung Jae; Kim, Sung Chul; Kim, Rog-Young; Ok, Yong Sik

    2014-01-01

    Quality improvement of acidic soil (with an initial pH of approximately 4.5) with respect to soil pH, exchangeable cations, organic matter content, and maize growth was attempted using natural (NSF) and calcined starfish (CSF). Acidic soil was amended with NSF and CSF in the range of 1 to 10 wt.% to improve soil pH, organic matter content, and exchangeable cations. Following the treatment, the soil pH was monitored for periods up to 3 months. The exchangeable cations were measured after 1 month of curing. After a curing period of 1 month, the maize growth experiment was performed with selected treated samples to evaluate the effectiveness of the treatment. The results show that 1 wt.% of NSF and CSF (700 and 900 °C) were required to increase the soil pH to a value higher than 7. In the case of CSF (900 °C), 1 wt.% was sufficient to increase the soil pH value to 9 due to the strong alkalinity in the treatment. No significant changes in soil pHs were observed after 7 days of curing and up to 3 months of curing. Upon treatment, the cation exchange capacity values significantly increased as compared to the untreated samples. The organic content of the samples increased upon NSF treatment, but it remains virtually unchanged upon CSF treatment. Maize growth was greater in the treated samples rather than the untreated samples, except for the samples treated with 1 and 3 wt.% CSF (900 °C), where maize growth was limited due to strong alkalinity. This indicates that the amelioration of acidic soil using natural and calcined starfish is beneficial for plant growth as long as the application rate does not produce alkaline conditions outside the optimal pH range for maize growth. PMID:24756689

  17. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape.

    PubMed

    Xu, Hui-Juan; Wang, Xiao-Hui; Li, Hu; Yao, Huai-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-08-19

    Biochar has been suggested to improve acidic soils and to mitigate greenhouse gas emissions. However, little has been done on the role of biochar in ameliorating acidified soils induced by overuse of nitrogen fertilizers. In this study, we designed a pot trial with an acidic soil (pH 4.48) in a greenhouse to study the interconnections between microbial community, soil chemical property changes, and N2O emissions after biochar application. The results showed that biochar increased plant growth, soil pH, total carbon, total nitrogen, C/N ratio, and soil cation exchange capacity. The results of high-throughput sequencing showed that biochar application increased α-diversity significantly and changed the relative abundances of some microbes that are related with carbon and nitrogen cycling at the family level. Biochar amendment stimulated both nitrification and denitrification processes, while reducing N2O emissions overall. Results of redundancy analysis indicated biochar could shift the soil microbial community by changing soil chemical properties, which modulate N-cycling processes and soil N2O emissions. The significantly increased nosZ transcription suggests that biochar decreased soil N2O emissions by enhancing its further reduction to N2. PMID:25054835

  18. Changes in hydraulic soil conductivity in the walls of zoogenic macropores due to the soil compaction

    NASA Astrophysics Data System (ADS)

    Pelíšek, Igor

    2015-04-01

    This study focuses on assessement of the hydric functions and effectiveness of the preferential zoogenic routes (preferentially lumbricid burrows), with primary focus on the hydric functions and parameters of individual vertical tubular macropores and on the analysis of selected possible detailed effects on these functions. The effect of earthworms (Lumbricidae) on the physical soil properties is notable. During burrowing, earthworms press the material in the vicinity of the hollowed burrows. Several variants of the relationship between the macropores and the soil compaction, permeability and erodibility were verified. Both measurements in the field and laboratory tests of intact collected samples and engineered samples were performed. With regard to preferential focus on the hydraulic processes in gravity macropores, to the limits of the instrumentation and the size of individual earthworms in agricultural soils in the Czech Republic, we assessed the processes in the macropores with diameter of ca 5 mm or larger. In some cases, saturated hydraulic conductivity of zoogenic macropore walls was reduced in order of tens of percent compared with hydraulic conductivity of soil matrix, and the increase of bulk density of soil in the macropore vicinity achieved 25%. The effect of repeated rise and water level stagnation (repeated macropore washing during multiple wetting cycles) was tested. Investigation of water erosion of macropores was limited by adjustable flow, vessel capacity and pump capacity of the accurate continuous infiltrometer. Investigation of the water inlet from above gave more data on the washed-off material in the selected time intervals. Analysis of water rise from below and macropore sealing provided one cumulative data for each testing period.

  19. Studies of the compositions of humic acids from Amazonian Dark Earth soils.

    PubMed

    Novotny, Etelvino H; deAzevedo, Eduardo R; Bonagamba, Tito J; Cunha, Tony J F; Madari, Beáta E; de M Benites, Vinícius; Hayes, Michael H B

    2007-01-15

    The compositions of humic acids (HAs) isolated from cultivated and forested "Terra Preta de Indio" or Amazonian Dark Earth soils (anthropogenic soils) were compared with those from adjacent non-anthropogenic soils (control soils) using elemental and thermogravimetric analyses, and a variety of solid-state nuclear magnetic resonance techniques. The thermogravimetric index, which indicates the molecular thermal resistance, was greater for the anthropogenic soils than for the control soils suggesting polycyclic aromatic components in the former. The cultivated anthropogenic soils were more enriched in C and depleted in H than the anthropogenic soils under forest, as the result of the selective degradation of aliphatic structures and the possible enrichment of H-deficient condensed aromatic structures. The combination of variable amplitude cross-polarization (VACP) and chemical shift anisotropy with total suppression of spinning sidebands experiments with composite pi pulses could be used to quantify the aromaticity of the HAs from the anthropogenic soils. From principal component analysis, using the VACP spectra, it was possible to separate the different constituents of the HAs, such as the carboxylated aromatic structures, from the anthropogenic soils and plant derived compounds. The data show that the HAs from anthropogenic soils have high contents of aryl and ionisable oxygenated functional groups, and the major functionalities from adjacent control soils are oxygenated functional groups from labile structures (carbohydrates, peptides, and with evidence for lignin structures). The anthropogenic soils HAs can be considered to be more recalcitrant, and with more stable reactive functional groups which may, in part, explain their more sustainable fertility due to the organic matter contribution to the soil cation exchange capacity. PMID:17310698

  20. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala jr, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies. PMID:23011303

  1. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control

    PubMed Central

    James, Richard A.; Weligama, Chandrakumara; Verbyla, Klara; Ryan, Peter R.; Rebetzke, Gregory J.; Rattey, Allan; Richardson, Alan E.; Delhaize, Emmanuel

    2016-01-01

    Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil. Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al3+. Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al3+ was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding. PMID:26873980

  2. Rhizosheaths on wheat grown in acid soils: phosphorus acquisition efficiency and genetic control.

    PubMed

    James, Richard A; Weligama, Chandrakumara; Verbyla, Klara; Ryan, Peter R; Rebetzke, Gregory J; Rattey, Allan; Richardson, Alan E; Delhaize, Emmanuel

    2016-06-01

    Rhizosheaths comprise soil bound to roots, and in wheat (Triticum aestivum L.) rhizosheath size correlates with root hair length. The aims of this study were to determine the effect that a large rhizosheath has on the phosphorus (P) acquisition by wheat and to investigate the genetic control of rhizosheath size in wheat grown on acid soil.Near-isogenic wheat lines differing in rhizosheath size were evaluated on two acid soils. The soils were fertilized with mineral nutrients and included treatments with either low or high P. The same soils were treated with CaCO3 to raise the pH and detoxify Al(3+) Genotypic differences in rhizosheath size were apparent only when soil pH was low and Al(3+) was present. On acid soils, a large rhizosheath increased shoot biomass compared with a small rhizosheath regardless of P supply. At low P supply, increased shoot biomass could be attributed to a greater uptake of soil P, but at high P supply the increased biomass was due to some other factor. Generation means analysis indicated that rhizosheath size on acid soil was controlled by multiple, additive loci. Subsequently, a quantitative trait loci (QTL) analysis of an F6 population of recombinant inbred lines identified five major loci contributing to the phenotype together accounting for over 60% of the total genetic variance. One locus on chromosome 1D accounted for 34% of the genotypic variation. Genetic control of rhizosheath size appears to be relatively simple and markers based on the QTL provide valuable tools for marker assisted breeding. PMID:26873980

  3. Solute Diffusivity of Repacked Volcanic Ash Soil: Effect of Changes in Pore Size Distribution due to Soil Compaction

    NASA Astrophysics Data System (ADS)

    Perera, M. S.; Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2007-12-01

    -water retention point at pF 3 was observed to be the separation between the inter- and intra-aggregate pore space regions, where the inter- aggregate pore space was completely drained. Thus at pF close to 3, the difference of Ds/Do among three bulk densities becomes smaller, probably due to high possibility to ensure continuous water pathways among intra-aggregate pores caused by inter-connection of aggregate. Although volcanic ash soils are distributed across around 0.84% of the earth's land surface, only a limited number of studies about solute diffusion for Andisols are available as compared to numerous studies on water permeability (liquid-phase convection parameter). Therefore, this study contributes to a valuable data set of solute diffusion coefficient for volcanic ash soils.

  4. Soil water samplers in ion balance studies on acidic forest soils

    SciTech Connect

    Rasmussen, L.; Joergensen, P.; Kruse, S.

    1986-04-01

    During the last years an increasing consciousness has appeared of the injurious effects of acid rain on the forest ecosystems both in Europe and North America. At several localities ion balance studies have been implemented in order to evaluate the impact of the atmospheric deposition of acidic substances and heavy metals on the forest ecosystem. In many localities the leaching of material to the ground water or output from the ecosystem has to be determined by means of tensiometer measurements and soil water sampling. Many different soil water samplers are available on the market and they show useful applicability under the given circumstances. But in many cases soil water samples taken with different equipment give incommensurable results leading to differing explanations of the effects of acid precipitation on elements and their cycling in the ecosystem. The purpose of the present study is twofold. Firstly, the sorption characteristics of different types of soil water samplers are examined under acidic soil conditions both by installation in the field and by laboratory experiments. Secondly, a new method is introduced for current and constant soil water sampling under varying soil suctions in the unsaturated zone.

  5. A reexamination of amino acids in lunar soil

    NASA Technical Reports Server (NTRS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-01-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  6. A reexamination of amino acids in lunar soil

    NASA Astrophysics Data System (ADS)

    Brinton, K. L. F.; Bada, J. L.; Arnold, J. R.

    1993-03-01

    Amino acids in lunar soils provide an important indicator of the level of prebiotic organic compounds on the moon. The results provide insight into the chemistry of amino acid precursors, and furthermore, given the flux of carbonaceous material to the moon, we can evaluate the survival of organics upon impact. The amino acid contents of both hydrolyzed and unhydrolyzed hot-water extracts of Apollo 17 lunar soil were determined using ophthaldialdehyde/N-acetyl cysteine (OPA/NAC) derivatization followed by HPLC analysis. Previous studies of lunar amino acids were inconclusive, as the technique used (derivatization with ninhydrin followed by HPLC analysis) was unable to discriminate between cosmogenic amino acids and terrestrial contaminants. Cosmogenic amino acids are racemic, and many of the amino acids found in carbonaceous meteorites such as Murchison, i.e., alpha-amino-i-butyric acid (aib), are extremely rare on Earth. The ninhydrin method does not distinguish amino acid enantiomers, nor does it detect alpha-alkyl amino acids such as aib, whereas the OPA/NAC technique does both.

  7. Nitrate formation in acid forest soils from the Adirondacks

    SciTech Connect

    Klein, T.M.; Kreitinger, J.P.; Alexander, M.

    1983-01-01

    Nitrate formation in three forest soils from the Adirondacks region of New York was studied in the laboratory. The organic and surface mineral layers of the soils has pH values ranging from 3.6 to 4.1. Nitrate was formed when the soils were treated with artificial rain at pH 3.5, 4.1, or 5.6. Compared to simulated rain at pH 5.6, simulated rain at pH 3.5 enhanced nitrate formation in one soil and inhibited it in two other soils. The rate of nitrate accumulation was about 10 times higher in the organic horizon than in the mineral horizon, and nitrate formation was not enhanced by ammonium additions. Nitrate formation in soil suspensions was dependent on the amount of soil in the suspension, and none was formed if little soil was present. Ammonium did not enhance nitrate production in the suspensions. It is suggested that nitrate formation in these acid soils is not limited by the ammonium supply. 19 references, 2 figures, 2 tables.

  8. Nitrogen saturation, soil acidification, and ecological effects in a subtropical pine forest on acid soil in southwest China

    NASA Astrophysics Data System (ADS)

    Huang, Yongmei; Kang, Ronghua; Mulder, Jan; Zhang, Ting; Duan, Lei

    2015-11-01

    Elevated anthropogenic nitrogen (N) deposition has caused nitrate (NO3-) leaching, an indication of N saturation, in several temperate and boreal forests across the Northern Hemisphere. So far, the occurrence of N saturation in subtropical forests and its effects on the chemistry of the typically highly weathered soils, forest growth, and biodiversity have received little attention. Here we investigated N saturation and the effects of chronically high N inputs on soil and vegetation in a typical, subtropical Masson pine (Pinus massoniana) forest at Tieshanping, southwest China. Seven years of N flux data obtained in ambient conditions and in response to field manipulation, including a doubling of N input either as ammonium nitrate (NH4NO3) or as sodium nitrate (NaNO3) solution, resulted in a unique set of N balance data. Our data showed extreme N saturation with near-quantitative leaching of NO3-, by far the dominant form of dissolved inorganic N in soil water. Even after 7 years, NH4+, added as NH4NO3, was nearly fully converted to NO3-, thus giving rise to a major acid input into the soil. Despite the large acid input, the decrease in soil pH was insignificant, due to pH buffering caused by Al3+ mobilization and enhanced SO42- adsorption. In response to the NH4NO3-induced increase in soil acidification and N availability, ground vegetation showed significant reduction of abundance and diversity, while Masson pine growth further declined. By contrast, addition of NaNO3 did not cause soil acidification. The comparison of NH4NO3 treatment and NaNO3 treatment indicated that pine growth decline was mainly attributed to acidification-induced nutrient imbalance, while the loss in abundance of major ground species was the combining effect of N saturation and acidification. Therefore, N emission control is of primary importance to curb further acidification and eutrophication of forest soils in much of subtropical south China.

  9. Mid-Infrared Spectroscopic Properties of Humic Acid and Fulvic Acid-Soil Mixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The detection of humic materials in soils is essential in order to determine organic matter (SOM) stability and C sequestration on agricultural land. Mid-Infrared (MidIR) spectroscopy has been used to characterize SOM quality [1], study extracted soil humic acids [2], develop calibrations for quanti...

  10. Mid-Infrared Spectroscopic Properties of Humic Acid and Fulvic Acid-Soil Mixtures.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The detection of humic materials in soils is essential in order to determine organic matter (SOM) stability and C sequestration on agricultural land. Mid-Infrared (MidIR) spectroscopy has been used to characterize SOM quality [1], study extracted soil humic acids [2], develop calibrations for quanti...

  11. N{sub 2}O production pathways in the subtropical acid forest soils in China

    SciTech Connect

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-07-15

    To date, N{sub 2}O production pathways are poorly understood in the humid subtropical and tropical forest soils. A {sup 15}N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N{sub 2}O production in four subtropical acid forest soils (pH<4.5) in China. The results showed that denitrification was the main source of N{sub 2}O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N{sub 2}O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N{sub 2}O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N{sub 2}O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N{sub 2}O product ratios from nitrification. The ratio of N{sub 2}O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: {yields} We studied N{sub 2}O production pathways in subtropical acid forest soil under aerobic conditions. {yields} Denitrification was the main source of N{sub 2}O production in subtropical acid forest soils. {yields} Heterotrophic nitrification accounted for 27.3%-41.8% of N{sub 2}O production. {yields} While, contribution of autotrophic nitrification to N{sub 2}O production was little. {yields} Ratios of N{sub 2}O-N emission from nitrification were higher than those in most previous references.

  12. Effects of poultry manure on soil biochemical properties in phthalic acid esters contaminated soil.

    PubMed

    Gao, Jun; Qin, Xiaojian; Ren, Xuqin; Zhou, Haifeng

    2015-12-01

    This study aimed to evaluate the effects of poultry manure (PM) on soil biological properties in DBP- and DEHP-contaminated soils. An indoor incubation experiment was conducted. Soil microbial biomass C (Cmic), soil enzymatic activities, and microbial phospholipid fatty acid (PLFA) concentrations were measured during incubation period. The results indicated that except alkaline phosphatase activity, DBP and DEHP had negative effects on Cmic, dehydrogenase, urease, protease activities, and contents of total PLFA. However, 5 % PM treatment alleviated the negative effects of PAEs on the above biochemical parameters. In DBP-contaminated soil, 5 % PM amendment even resulted in dehydroenase activity and Cmic content increasing by 17.8 and 11.8 % on the day 15 of incubation, respectively. During the incubation periods, the total PLFA contents decreased maximumly by 17.2 and 11.6 % in DBP- and DEHP-contaminated soils without PM amendments, respectively. Compared with those in uncontaminated soil, the total PLFA contents increased slightly and the value of bacPLFA/fugalPLFA increased significantly in PAE-contaminated soils with 5 % PM amendment. Nevertheless, in both contaminated soils, the effects of 5 % PM amendment on the biochemical parameters were not observed with 10 % PM amendment. In 10 % PM-amended soils, DBP and DEHP had little effect on Cmic, soil enzymatic activities, and microbial community composition. At the end of incubation, the effects of PAEs on these parameters disappeared, irrespective of PM amendment. The application of PM ameliorated the negative effect of PAEs on soil biological environment. However, further work is needed to study the effect of PM on soil microbial gene expression in order to explain the change mechanisms of soil biological properties. PMID:26298343

  13. Acid-activated biochar increased sulfamethazine retention in soils.

    PubMed

    Vithanage, Meththika; Rajapaksha, Anushka Upamali; Zhang, Ming; Thiele-Bruhn, Sören; Lee, Sang Soo; Ok, Yong Sik

    2015-02-01

    Sulfamethazine (SMZ) is an ionizable and highly mobile antibiotic which is frequently found in soil and water environments. We investigated the sorption of SMZ onto soils amended with biochars (BCs) at varying pH and contact time. Invasive plants were pyrolyzed at 700 °C and were further activated with 30 % sulfuric (SBBC) and oxalic (OBBC) acids. The sorption rate of SMZ onto SBBC and OBBC was pronouncedly pH dependent and was decreased significantly when the values of soil pH increased from 3 to 5. Modeled effective sorption coefficients (K D,eff) values indicated excellent sorption on SBBC-treated loamy sand and sandy loam soils for 229 and 183 L/kg, respectively. On the other hand, the low sorption values were determined for OBBC- and BBC700-treated loamy sand and sandy loam soils. Kinetic modeling demonstrated that the pseudo second order model was the best followed by intra-particle diffusion and the Elovich model, indicating that multiple processes govern SMZ sorption. These findings were also supported by sorption edge experiments based on BC characteristics. Chemisorption onto protonated and ligand containing functional groups of the BC surface, and diffusion in macro-, meso-, and micro-pores of the acid-activated BCs are the proposed mechanisms of SMZ retention in soils. Calculated and experimental q e (amount adsorbed per kg of the adsorbent at equilibrium) values were well fitted to the pseudo second order model, and the predicted maximum equilibrium concentration of SBBC for loamy sand soils was 182 mg/kg. Overall, SBBC represents a suitable soil amendment because of its high sorption rate of SMZ in soils. PMID:25172460

  14. Modeling Long-Term Soil Losses on Agricultural Fields Due to Ephemeral Gully Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is now recognized worldwide that soil erosion on agricultural fields due to ephemeral gullies may be greater than those losses attributed to sheet and rill erosion processes. Yet it is not known whether the common practice of repairing or obliterating these gullies during annual tillage activitie...

  15. Heterotrophic Nitrification in an Acid Forest Soil and by an Acid-Tolerant Fungus

    PubMed Central

    Stroo, Hans F.; Klein, Theodore M.; Alexander, Martin

    1986-01-01

    Nitrate was formed from ammonium at pH 3.2 to 6.1 in suspensions of a naturally acid forest soil; the maximum rates of formation occurred at ca. pH 4 to 5. Nitrate was also formed from soil nitrogen in suspensions incubated at 50°C. Autotrophic nitrifying bacteria could not be isolated from this soil. Enrichment cultures produced nitrate in a medium with β-alanine if much soil was added to the medium, and nitrite but not nitrate was formed in the presence of small amounts of soil. Nitrification by these enrichments was abolished by eucaryotic but not procaryotic inhibitors. A strain of Absidia cylindrospora isolated from this soil was found to produce nitrate and nitrite in a medium with β-alanine at pH values ranging from 4.0 to 4.8. Nitrate production by A. cylindrospora required the presence of sterile soil. Free and bound hydroxylamine, hydroxamic acids, and primary aliphatic nitro compounds did not accumulate during the conversion of β-alanine to nitrite by the fungus. The organism also formed nitrite from ammonium in a medium containing acetate. We suggest that nitrification in this soil is a heterotrophic process catalyzed by acid-tolerant fungi and not by autotrophs or heterotrophs in nonacid microsites. PMID:16347210

  16. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  17. Limitations in the use of commercial humic acids in water and soil research

    USGS Publications Warehouse

    Malcolm, R.L.; MacCarthy, P.

    1986-01-01

    Seven samples of commercial "humic acids", purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning 13C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the 13C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  18. Limitations in the use of commercial humic acids in water and soil research

    SciTech Connect

    Malcolm, R.L.; MacCarthy, P.

    1986-09-01

    Seven samples of commercial humic acids, purchased from five different suppliers, were studied, and their characteristics were compared with humic and fulvic acids isolated from streams, soils, peat, leonardite, and a dopplerite sample. Cross-polarization and magic-angle spinning /sup 13/C NMR spectroscopy clearly shows pronounced differences between the commercial materials and all other samples. Elemental and infrared spectroscopic data do not show such clear-cut differences but can be used as supportive evidence, with the /sup 13/C NMR data, to substantiate the above distinctions. As a result of these differences and due to the general lack of information relating to the source, method of isolation, or other pretreatment of the commercial materials, these commercial products are not considered to be appropriate for use as analogues of true soil and water humic substances, in experiments designed to evaluate the nature and reactivity of humic substances in natural waters and soils.

  19. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site

    NASA Astrophysics Data System (ADS)

    Kanmani, S.; Gandhimathi, R.

    2013-03-01

    The concentration of heavy metals was studied in the soil samples collected around the municipal solid waste (MSW) open dumpsite, Ariyamangalam, Tiruchirappalli, Tamilnadu to understand the heavy metal contamination due to leachate migration from an open dumping site. The dump site receives approximately 400-470 tonnes of municipal solid waste. Solid waste characterization was carried out for the fresh and old municipal solid waste to know the basic composition of solid waste which is dumped in the dumping site. The heavy metal concentration in the municipal solid waste fine fraction and soil samples were analyzed. The heavy metal concentration in the collected soil sample was found in the following order: Mn > Pb > Cu > Cd. The presence of heavy metals in soil sample indicates that there is appreciable contamination of the soil by leachate migration from an open dumping site. However, these pollutants species will continuously migrated and attenuated through the soil strata and after certain period of time they might contaminate the groundwater system if there is no action to be taken to prevent this phenomenon.

  20. Evolution of hydrological pathways in engineered hillslopes due to soil and vegetation development

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Ireson, Andrew M.; McDonnell, Jeffrey J.; Barbour, S. Lee

    2015-04-01

    The structure and hydraulic properties of soils and bedrock within a hillslope combined with the timing and rates of water availability control the partitioning of precipitation into vertical and lateral flowpaths. In natural hillslope sites, heterogeneity in both soil texture and structure are the result of long-term landscape evolution processes and consequently can be assumed to be static relative to the timescale of rainfall-runoff processes. However; engineered hillslopes, constructed commonly as reclamation covers overlying mine waste, have been observed to undergo rapid changes in hydraulic properties over relatively short timescales (i.e. 3-5 years) as a result of weathering (e.g. freeze-thaw and wet-dry cycles) and vegetation growth (e.g. increasing rooting depth and density). Rainfall-runoff responses on such hillslopes would therefore not only be expected to reflect seasonal dynamics, but also the evolution of the system from a relatively homogeneous initial condition to a system with increasing heterogeneity of soil texture and structure. We present results of a combined field and modeling study of three prototype soil covers on a saline-sodic shale overburden dump at the Syncrude Canada Ltd. Mildred Lake mine, north of Fort McMurray, Canada. Since their construction in 1999, soil properties, hydrological response to atmospheric and vegetative demands, and vegetation properties have been extensively monitored. The three covers have undergone substantial evolution due to freeze-thaw processes and aggrading vegetation. In this work, we quantify hydrological processes in the reclamation covers, focusing on inter- and intra-annual patterns. To this purpose we analyzed the long-term hydrometric data with field sampling of the distribution of salts and the stable isotopes of water within soil water and subsurface flow in the base of the cover. We use a 2D Hydrus model to explore the co-evolution of soil and vegetation and quantify its effect on flow

  1. Soil nitrous acid emissions as a major source of atmospheric reactive nitrogen

    NASA Astrophysics Data System (ADS)

    Ermel, M.; Oswald, R.; Behrendt, T.; Wu, D.; Su, H.; Cheng, Y.; Breuninger, C.; Moravek, A.; Mougin, E.; Delon, C.; Loubet, B.; Pommerening-Röser, A.; Sörgel, M.; Poeschl, U.; Hoffmann, T.; Andreae, M. O.; Meixner, F. X.; Trebs, I.

    2013-12-01

    Nitrous acid (HONO) is known to be a major source of hydroxyl radicals (OH) in the planetary boundary layer. OH is the major oxidant of the atmosphere and strongly affects its oxidation capacity. However, soil was found to release HONO, which is in equilibrium with soil nitrite (NO2-). These emissions are thought to depend on soil pH and NO2- content and were suggested to be an important contributor to the missing source of atmospheric HONO and OH radicals. The role of total soil-derived HONO in the biogeochemical and atmospheric nitrogen cycles, however, has remained unknown. We investigated a wide range of different soils in laboratory experiments, and found that HONO emissions from soils with high nutrient content and neutral pH can be of the same magnitude as nitric oxide (NO) emissions. Consequently, the co-emission of HONO with NO could substantially enhance the source of atmospheric reactive nitrogen in remote regions, with extensive arable areas. Observed temperature dependencies and obtained activation energies indicate that the HONO emissions are mainly due to microbial nitrification processes. Laboratory sterilization and inhibition experiments with soil samples yield further new insights into underlying processes of soil HONO emissions.

  2. Robust analysis of underivatized free amino acids in soil by hydrophilic interaction liquid chromatography coupled with electrospray tandem mass spectrometry.

    PubMed

    Gao, Jiajia; Helmus, Rick; Cerli, Chiara; Jansen, Boris; Wang, Xiang; Kalbitz, Karsten

    2016-06-01

    Amino acids are an important and highly dynamic fraction of organic N in soils and their determination in soil without derivatization is challenging due to the difficulties in separation and detection of trace amounts of these polar analytes. In the present work, we developed an analytical method to quantify 20 free amino acids in aqueous soil extracts without derivatization. The method employed hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) technique combined with a cation exchange solid phase extraction (SPE). Four stable isotope labelled amino acids were used as internal standards to improve the method performance. Good separation of 20 underivatized amino acids was achieved within 12min. The limit of detection (LODs) and limit of quantification (LOQs) were in the range of 13-384ngg(-1) and 43-1267ngg(-1) (dry soil basis), respectively. The results showed that overall recoveries with high precision were obtained for the extracted free amino acids from ten different soils. The overall recoveries of 18 amino acids were similar for the ten soils used, which differed substantially in organic C content and in other properties as soil texture and pH. For most of the amino acids, the average recoveries from soil extracts were between 74% and 117%, with the exception of Met (31%), Pro (52%) and Arg (68%). Variability was within acceptable limits (relative standard deviations were between 4% and 13%), with the exception of Met (relative standard deviation=90%) and Arg (relative standard deviation=53%). Thus the proposed method with high throughout and high analyte specificity shows great promise for consistent analysis of free amino acids extracted from soils and offers new horizons for the analysis of amino acids in terrestrial and aquatic ecosystem. PMID:27157424

  3. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Silveira, M. A. G.; Medina, N. H.; Moreira, R. H.; Bellini, B. S.; Aguiar, V. A. P.

    2010-08-01

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sa~o Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sa~o Paulo, and soil from Sa~o Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  4. Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil

    SciTech Connect

    Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.; Medina, N. H.; Aguiar, V. A. P.

    2010-08-04

    We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.

  5. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    SciTech Connect

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  6. Changes in water quality following tidal inundation of coastal lowland acid sulfate soil landscapes

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Bush, Richard T.; Sullivan, Leigh A.; Burton, Edward D.; Smith, Douglas; Martens, Michelle A.; McElnea, Angus E.; Ahern, R., , Col; Powell, Bernard; Stephens, Luisa P.; Wilbraham, Steve T.; van Heel, Simon

    2009-01-01

    This study examines the remediation of surface water quality in a severely degraded coastal acid sulfate soil landscape. The remediation strategy consisted of partial restoration of marine tidal exchange within estuarine creeks and incremental tidal inundation of acidified soils, plus strategic liming of drainage waters. Time-series water quality and climatic data collected over 5 years were analysed to assess changes in water quality due to this remediation strategy. A time-weighted rainfall function (TWR) was generated from daily rainfall data to integrate the effects of antecedent rainfall on shallow groundwater levels in a way that was relevant to acid export dynamics. Significant increases in mean pH were evident over time at multiple monitoring sites. Regression analysis at multiple sites revealed a temporal progression of change in significant relationships between mean daily electrical conductivity (EC) vs. mean daily pH, and TWR vs. mean daily pH. These data demonstrate a substantial decrease over time in the magnitude of creek acidification per given quantity of antecedent rainfall. Data also show considerable increase in soil pH (2-3 units) in formerly acidified areas subject to tidal inundation. This coincides with a decrease in soil pe, indicating stronger reducing conditions. These observations suggest a fundamental shift has occurred in sediment geochemistry in favour of proton-consuming reductive processes. Combined, these data highlight the potential effectiveness of marine tidal inundation as a landscape-scale acid sulfate soil remediation strategy.

  7. Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

    PubMed Central

    2011-01-01

    Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin. PMID:21871058

  8. Soil sorption of acidic pesticides: modeling pH effects.

    PubMed

    Spadotto, Claudio A; Hornsby, Arthur G

    2003-01-01

    A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model. PMID:12809295

  9. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  10. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity on acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world’s potentially arable soils are acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to ...

  11. Increasing organic carbon stocks in Swedish agricultural soils due to unexpected socio-economic drivers

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Bolinder, Martin A.; Eriksson, Jan O.; Lundblad, Mattias; Kätterer, Thomas

    2015-04-01

    Management changes can induce significant alterations of soil organic carbon (SOC) stocks. Including trends in SOC within a certain land-use category can thus strongly influence the annual national inventory reports for greenhouse gas emissions. In 2013, the European Union has therefore decided that all member states shall report the evolvement of SOC within agricultural soils to increase the incentives to mitigate climate change by improving the management of those soils. Here, we present the country and county-wise SOC trends in Swedish agricultural mineral soils on the basis of three soil inventories conducted between 1988 and 2013. In the past two decades, the average topsoil (0-20 cm) SOC content of the whole country increased from 2.48% to 2.67% representing a relative change of 7.7% or 0.38% yr-1. This is in contrast to trends observed in neighboring countries such as Norway and Finland. We attributed this positive SOC trend to the increasing cultivation of leys throughout the country. Indeed, the below-ground carbon input of perennial grasses is up to fourfold as compared to cereals, which leads to a significant soil carbon sequestration potential under cropping systems with ley. The increase in ley proportion was significantly correlated to the increase in horse population in each county (R2=0.71), which has more than doubled in the past three decades. Due to subsidies introduced in the early 1990s, the area as long-term set-aside land (mostly old leys) also contributed to an increase in leys. This discloses the strong impact of rather local socio-economic trends on soil carbon storage, which also need to be considered in larger-scale model applications. This database is used in the continuous validation process of the Swedish national system for reporting changes in SOC stocks.

  12. Adsorption of glyphosate and aminomethylphosphonic acid in soils

    NASA Astrophysics Data System (ADS)

    Rampazzo, N.; Rampazzo Todorovic, G.; Mentler, A.; Blum, W. E. H.

    2013-03-01

    The results showed that glyphosate is initially adsorbed mostly in the upper 2 cm. It is than transported and adsorbed after few days in deeper soil horizons with concomitant increasing content of its metabolite aminomethylphosphonic acid. Moreover, Fe-oxides seem to be a key parameter for glyphosate and aminomethylphosphonic adsorption in soils. This study confirmed previous studies: the analysis showed lower contents of dithionite-soluble and Fe-oxides for the Chernozem, with consequently lower adsorption of glyphosate and aminomethylphosphonic as compared with the Cambisol and the Stagnosol.

  13. Estimating deformation due to soil liquefaction in Urayasu city, Japan using permanent scatterers

    NASA Astrophysics Data System (ADS)

    ElGharbawi, Tamer; Tamura, Masayuki

    2015-11-01

    In Japan, several cities endured severe damage due to soil liquefaction phenomenon, which was developed in association with the massive shaking of the 2011 Tohoku earthquake. Measuring soil liquefaction deformations was not an easy task, mainly because of the total loss of signal coherence in the affected regions. In this paper, we present our approach to estimate the deformations associated with soil liquefaction using interferometric synthetic aperture radar techniques. We use a stack of coseismic interferograms to identify the reliable pixels in the damaged areas using permanent scatterers technique. Then, we estimate and remove the preseismic mean velocity and DEM error components. Finally, we identify the liquefaction deformation component using least squares inversion and spatial phase filtering. We test the performance of the proposed approach using synthetic data, simulating the effects of soil liquefaction. The simulation results show a RMSE of the liquefaction deformation of 5.23 mm. After that, we estimate the deformation associated with soil liquefaction in Urayasu city, Japan, using ALOS-PALSAR data. The proposed approach allows a prompt estimation of the liquefaction deformation by utilizing the SAR images archives with only one postseismic SAR image.

  14. Organic amendments increase soil solution phosphate concentrations in an acid soil: A controlled environment study

    SciTech Connect

    Schefe, C.R.; Patti, A.F.; Clune, T.S.; Jackson, R.

    2008-04-15

    Soil acidification affects at least 4 million hectares of agricultural land in Victoria, Australia. Low soil pH can inhibit plant growth through increased soluble aluminum (Al) concentrations and decreased available phosphorus (P). The addition of organic amendments may increase P availability through competition for P binding sites, solubilization of poorly soluble P pools, and increased solution pH. The effect of two organic amendments (lignite and compost) on P solubility in an acid soil was determined through controlled environment (incubation) studies. Three days after the addition of lignite and compost, both treatments increased orthophosphate and total P measured in soil solution, with the compost treatments having the greatest positive effect. Increased incubation time (26 days) increased soil solution P concentrations in both untreated and amended soils, with the greatest effect seen in total P concentrations. The measured differences in solution P concentrations between the lignite- and compost-amended treatments were likely caused by differences in solution chemistry, predominantly solution pH and cation dynamics. Soil amendment with lignite or compost also increased microbial activity in the incubation systems, as measured by carbon dioxide respiration. Based on the results presented, it is proposed that the measured increase in soil solution P with amendment addition was likely caused by both chemical and biological processes, including biotic and abiotic P solubilization reactions, and the formation of soluble organic-metal complexes.

  15. Acid sulfate soils are an environmental hazard in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  16. Changes in soil chemistry following wood and grass biochar amendments to an acidic agricultural production soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of biochars produced by biomass gasification for remediation of acidic production soils and plant growth in general is not as well known compared to effects from biochars resulting from pyrolysis. Recent characterization of biochar produced from gasification of Kentucky bluegrass (Poa pr...

  17. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid

    PubMed Central

    Donaldson, Melissa A.; Bish, David L.; Raff, Jonathan D.

    2014-01-01

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  18. Soil surface acidity plays a determining role in the atmospheric-terrestrial exchange of nitrous acid.

    PubMed

    Donaldson, Melissa A; Bish, David L; Raff, Jonathan D

    2014-12-30

    Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day. PMID:25512517

  19. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  20. Simple method of isolating humic acids from organic soils

    NASA Astrophysics Data System (ADS)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  1. Soil peroxidase-mediated chlorination of fulvic acid

    NASA Astrophysics Data System (ADS)

    Asplund, Gunilla; Borén, Hans; Carlsson, Uno; Grimvall, Anders

    Humic matter has recently been shown to contain considerable quantities of naturally produced organohalogens. The present study investigated the possibility of a non-specific, enzymatically mediated halogenation of organic matter in soil. The results showed that, in the presence of chloride and hydrogen peroxide, the enzyme chloroperoxidase (CPO) from the fungus Caldariomyces fumago catalyzes chlorination of fulvic acid. At pH 2.5 - 6.0, the chlorine to fulvic acid ratio in the tested sample was elevated from 12 mg/g to approximately 40-50 mg/g. It was also shown that this reaction can take place at chloride and hydrogen peroxide concentrations found in the environment. An extract from spruce forest soil was shown to have a measurable chlorinating capacity. The activity of an extract of 0.5 kg soil corresponded to approximately 0.3 enzyme units, measured as CPO activity. Enzymatically mediated halogenation of humic substances may be one of the mechanisms explaining the widespread occurrence of adsorbable organic halogens (AOX) in soil and water.

  2. Acid precipitation and ionic movements in Adironack forest soils

    SciTech Connect

    Mollitor, A.V.; Raynal, D.J.

    1982-01-01

    To examine potential effects of acid precipitation on forest soils in a hardwood and in a coniferous stand in the central Adirondacks of New York State, solution chemistry was studied in five strata of these ecosystems. Bulk precipitation, throughfall, and soil leachates were sampled and analyzed for pH, NO/sub 3/, SO/sub 4/, K, Ca, Mg, and Na. A subset of the samples were analyzed for Al. Organic anion concentrations were estimated from ionic charge balances. Concentrations of NO/sub 3/, H, and K in B horizon leachates were not significantly different than precipitation concentrations, while concentrations of SO/sub 4/, Ca, Mg, and Na in water leaving the sola were significantly greater than precipitation concentrations. Patterns of movement for most ions were similar for both study sites, but concentrations were generally greater in the conifer system. Cation leaching from the hardwood site appears about equally influenced by SO/sub 4/ and organic anion leaching. Sulfate and organic anion concentrations were greater in the conifer site but organic anion leaching dominated. Sulfate appears highly mobile in these soils. Chronic leaching by H/sub 2/SO/sub 4/ combined with internally generated organic acids may represent a threat to the nutrient status of many Adirondack forest soils.

  3. Effect of Aggregates Compaction in Soil Hydraulic Properties, due to Root Growth

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Tyler, S. W.; Berli, M.

    2009-12-01

    The rhizosphere is critical for soil-root interactions, however, physical processes within the soil around roots and implications of these processes, such as plant water and nutrient uptake, continue to raise questions. Soil compaction, due to root growth, results in favorable physical conditions in the rhizosphere to foster plant growth by providing aeration under wet conditions and improving water storage and flow toward the roots under dry conditions. In unsaturated conditions, the air transfer occurs through the macropores, while the water transfer occurs through the aggregates; providing the plant with these two vital elements, continuously. At the aggregate-scale, compaction gives connectivity within the aggregates. As the contact area between the aggregates increases, more water may be transfer to the plant. As result, the hydraulic conductivity of the rhizosphere may be higher than that at initial conditions (i.e., before compaction). This idea is important, as usually compaction is associated with decreasing water conductivity. This study focuses on understanding the role of roots to modify the soil, and in particular, their impact on rhizosphere hydraulic properties at the aggregate-scale. Using HYDRUS 3D, an aggregate system was modeled. It was found that the saturated hydraulic conductivity of the system increased following an S-shape as contact area increased due to compaction. This result differs from previous studies that assumed a quadratic relation. In addition, it was found that the compaction of big pores within the aggregates will be more beneficial for water extraction purposes, than the change in pore-size distribution within the aggregates due to compaction.

  4. EVALUATION OF RADIONUCLIDE ACCUMULATION IN SOIL DUE TO LONG-TERM IRRIGATION

    SciTech Connect

    De Wesley Wu

    2006-04-16

    Radionuclide accumulation in soil due to long-term irrigation is an important part of the model for predicting radiation dose in a long period of time. The model usually assumes an equilibrium condition in soil with a constant irrigation rate, so that radionuclide concentration in soil does not change with time and can be analytically solved. This method is currently being used for the dose assessment in the Yucca Mountain project, which requires evaluating radiation dose for a period of 10,000 years. There are several issues associated with the method: (1) time required for the equilibrium condition, (2) validity of constant irrigation rate, (3) agricultural land use for a long period of time, and (4) variation of a radionuclide concentration in water. These issues are evaluated using a numerical method with a simple model built in the GoldSim software. Some key radionuclides, Tc-99, Np-237, Pu-239, and Am-241 are selected as representative radionuclides. The results indicate that the equilibrium model is acceptable except for a radionuclide that requires long time to accumulate in soil and that its concentration in water changes dramatically with time (i.e. a sharp peak). Then the calculated dose for that radionuclide could be overestimated using the current equilibrium method.

  5. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    PubMed Central

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aCb/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  6. Reclamation of acid sulfate soils using lime-stabilized biosolids.

    PubMed

    Orndorff, Zenah W; Daniels, W Lee; Fanning, Delvin S

    2008-01-01

    Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed. PMID:18574176

  7. Solubilization of manganese and trace metals in soils affected by acid mine runoff.

    PubMed

    Green, C H; Heil, D M; Cardon, G E; Butters, G L; Kelly, E F

    2003-01-01

    Manganese solubility has become a primary concern in the soils and water supplies in the Alamosa River basin, Colorado due to both crop toxicity problems and concentrations that exceed water quality standards. Some of the land in this region has received inputs of acid and trace metals as a result of irrigation with water affected by acid mine drainage and naturally occurring acid mineral seeps. The release of Mn, Zn, Ni, and Cu following saturation with water was studied in four soils from the Alamosa River basin. Redox potentials decreased to values adequate for dissolution of Mn oxides within 24 h following saturation. Soluble Mn concentrations were increased to levels exceeding water quality standards within 84 h. Soluble concentrations of Zn and Ni correlated positively with Mn following reduction for all four soils studied. The correlation between Cu and Mn was significant for only one of the soils studied. The soluble concentrations of Zn and Ni were greater than predicted based on the content of each of these metals in the Mn oxide fraction only. Increases in total electrolyte concentration during reduction indicate that this may be the result of displacement of exchangeable metals by Mn following reductive dissolution of Mn oxides. PMID:12931888

  8. Investigation of VOC Transport in Soil Vapors due to Wind Effects using Models and Measurement

    NASA Astrophysics Data System (ADS)

    Pennell, K. G.; Roghani, M.; Shirazi, E.; Willett, E.

    2014-12-01

    For the past several years, vapor intrusion of volatile organic compounds (VOCs) that emanate from hazardous waste sites has been gaining attention due to adverse health effects and regulatory action. Most studies of VOC vapor intrusion suggest that diffusion is the dominant contaminant transport mechanism, while advection is only considered important near contaminant entry points (i.e. building cracks). This conceptual framework is accurate when above-ground surface features do not promote air flow into (or out of) the ground surface. Recent research related to air flow in the atmospheric boundary layer (ABL) due to wind effects around buildings suggests a need for better understanding how advective transport processes can impact contaminant profiles and vapor intrusion exposure risks. In this study, a numerical model using COMSOL Multiphysics was developed to account for parameters affecting the transport of VOCs from the subsurface into buildings by considering wind effects in the ABL. Model simulations are compared to preliminary laboratory and field data to evaluate the relative importance of wind induced pressure gradients, soil permeability, soil porosity, and soil effective diffusivity on vapor intrusion entry rates. The major goal of this research is to develop an improved conceptual understanding of the vapor intrusion process so that remediation efforts can be better designed and implemented.

  9. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  10. Fast changes in seasonal forest communities due to soil moisture increase after damming.

    PubMed

    do Vale, Vagner Santiago; Schiavini, Ivan; Araújo, Glein Monteiro; Gusson, André Eduardo; Lopes, Sérgio de Faria; de Oliveira, Ana Paula; do Prado-Júnior, Jamir Afonso; Arantes, Carolina de Silvério; Dias-Neto, Olavo Custodio

    2013-12-01

    Local changes caused by dams can have drastic consequences for ecosystems, not only because they change the water regime but also the modification on lakeshore areas. Thus, this work aimed to determine the changes in soil moisture after damming, to understand the consequences of this modification on the arboreal community of dry forests, some of the most endangered systems on the planet. We studied these changes in soil moisture and the arboreal community in three dry forests in the Araguari River Basin, after two dams construction in 2005 and 2006, and the potential effects on these forests. For this, plots of 20 m x 10 m were distributed close to the impoundment margin and perpendicular to the dam margin in two deciduous dry forests and one semi-deciduous dry forest located in Southeastern Brazil, totaling 3.6 ha sampled. Besides, soil analysis were undertaken before and after impoundment at three different depths (0-10, 20-30 and 40-50 cm). A tree (minimum DBH of 4.77 cm) community inventory was made before (TO) and at two (T2) and four (T4) years after damming. Annual dynamic rates of all communities were calculated, and statistical tests were used to determine changes in soil moisture and tree communities. The analyses confirmed soil moisture increases in all forests, especially during the dry season and at sites closer to the reservoir; besides, an increase in basal area due to the fast growth of many trees was observed. The highest turnover occurred in the first two years after impoundment, mainly due to the higher tree mortality especially of those closer to the dam margin. All forests showed reductions in dynamic rates for subsequent years (T2-T4), indicating that these forests tended to stabilize after a strong initial impact. The modifications were more extensive in the deciduous forests, probably because the dry period resulted more rigorous in these forests when compared to semideciduous forest. The new shorelines created by damming increased soil

  11. Reactive transport controls on sandy acid sulfate soils and impacts on shallow groundwater quality

    NASA Astrophysics Data System (ADS)

    Salmon, S. Ursula; Rate, Andrew W.; Rengel, Zed; Appleyard, Steven; Prommer, Henning; Hinz, Christoph

    2014-06-01

    Disturbance or drainage of potential acid sulfate soils (PASS) can result in the release of acidity and degradation of infrastructure, water resources, and the environment. Soil processes affecting shallow groundwater quality have been investigated using a numerical code that integrates (bio)geochemical processes with water, solute, and gas transport. The patterns of severe and persistent acidification (pH < 4) in the sandy, carbonate-depleted podzols of a coastal plain could be reproduced without calibration, based on oxidation of microcrystalline pyrite after groundwater level decrease and/or residual groundwater acidity, due to slow vertical solute transport rates. The rate of acidification was limited by gas phase diffusion of oxygen and hence was sensitive to soil water retention properties and in some cases also to oxygen consumption by organic matter mineralization. Despite diffusion limitation, the rate of oxidation in sandy soils was rapid once pyrite-bearing horizons were exposed, even to a depth of 7.5 m. Groundwater level movement was thus identified as an important control on acidification, as well as the initial pyrite content. Increase in the rate of Fe(II) oxidation lead to slightly lower pH and greater accumulation of Fe(III) phases, but had little effect on the overall amount of pyrite oxidized. Aluminosilicate (kaolinite) dissolution had a small pH-buffering effect but lead to the release of Al and associated acidity. Simulated dewatering scenarios highlighted the potential of the model for risk assessment of (bio)geochemical impacts on soil and groundwater over a range of temporal and spatial scales.

  12. [Influences of humic acids on the dissimilatory iron reduction of red soil in anaerobic condition].

    PubMed

    Xu, Li-na; Li, Zhong-pei; Che, Yu-ping

    2009-01-01

    Iron oxide is abundant in red soil. Reduction and oxidation of iron oxide are important biogeochemical processes. In this paper, we reported the effects of humic acid on dissimilatory iron reduction (DISSIR) in red soil by adding glucose or humic acid (HA), under an anaerobic condition. Results indicated that DISSIR is weak for the red soil with a low content of organic matter, Glucose that act as electron donators promoted the process of DISSIR in red soil. HA added to soil solely didn't accelerate the DISSIR since it couldn't provide electron donators to microbe. However, adding of both glucose and HA promoted the DISSIR at the beginning of the incubation but then inhibited the process, which maybe caused by the effects of precipitation and adsorption of red soil. Concentrations of HA strongly affected the DISSIR, HA at low concentrations(0.20 and 0.02 g/kg) had weak effects, while HA at a high concentration (2.00 g/kg) promoted the process at the beginning and then inhibited it. HA extracted from different materials had distinct effects on the DISSIR. HA from Weathering coal of Datong in Shanxi Province (HAs), lignite of Gongxian in Henan Province (HAh) and Dianchi Lake sediment in Kunming of Yunnan Province (HAk) all promoted the DISSIR at the beginning of the incubation. However, at the end of incubation, HAk with a low aromaticity still promoted the process, while HAs and HAh with a higher aromaticity weakened the DISSIR. This may be due to the increase in adsorption of soil with the aromaticity of HA. PMID:19353884

  13. Enzymatically- and Ultraviolet-labile Phosphorus in Humic Acid Fractions From Rice Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which can improve nutrient availability and impact other important chemical, biological, and physical properties of soils. We investigated the lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four rice soils as...

  14. Analysis of Phosphorus in Soil Humic Acid Fractions by Enzymatic Hydrolysis and Ultraviolet Irradiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic acid is an important soil component which influences chemical, biological, and physical soil properties. In this study, we investigated lability of phosphorus (P) in the mobile humic acid (MHA) and calcium humate (CaHA) fractions of four soils by orthophosphate-releasing enzymatic hydrolysis a...

  15. Do soil Fe transformation and secretion of low-molecular-weight organic acids affect the availability of Cd to rice?

    PubMed

    Chen, Xue; Yang, Yazhou; Liu, Danqing; Zhang, Chunhua; Ge, Ying

    2015-12-01

    The bioavailability of cadmium (Cd) to rice may be complicated by chemical and biological factors in the rhizosphere. The aim of this work is to investigate how soil iron (Fe) redox transformations and low-molecular-weight organic acid (LMWOA) exudation from root affect Cd accumulation in rice. Two soils (a paddy soil and a saline soil) with different physicochemical properties were used in this study. Soil redox conditions were changed by flooding and addition of organic matter (OM). Two days after the soil treatments, rice seedlings were transplanted in a vermiculite-soil system and grown for 10 days. We measured pH and Eh, LMWOA, Fe and Cd contents in rice, and their fractions in the soils and vermiculite. Cadmium accumulation in rice declined in both soils upon the flooding and OM treatment. Iron dissolution in the paddy soil and its deposition in the rhizosphere significantly increased upon the OM addition, but the concentration of Fe plaque on the rice root significantly declined. Conversely, although Fe transformed into less active fractions in the saline soil, Fe accumulation on the surface and in the tissue of root was considerably enhanced. The secretion of LMWOA was remarkably induced when the OM was amended in the saline soil, but the same effect was not observed in the paddy soil. Reduction of Cd uptake by rice could be attributed to different factors in the two soils. For the paddy soil, the lowered Cd bioavailability was likely due to the competition of Fe and Cd for the binding sites on the vermiculite surface. For the saline soil, however, rice responded to the low Fe mobility through more LMWOA exudation and Fe plaque formation, and their increases could explain the decrease of rice Cd. PMID:26260840

  16. Relationships between soil properties and community structure of soil macroinvertebrates in oak-history forests along an acidic deposition gradient

    SciTech Connect

    Kuperman, R.G.

    1996-02-01

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggest that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.

  17. Buffer capacities of podzolic and peat gleyic podzolic soils to sulfuric and nitric acids

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. B.; Alekseeva, S. A.; Shashkova, G. V.; Dronova, T. Ya.; Sokolova, T. A.

    2007-04-01

    Soil samples from the main genetic horizons of pale podzolic and peat gleyic podzolic soils from the Central Forest Reserve were subjected to a continuous potentiometric titration by sulfuric and nitric acids. The sulfate sorption capacity was determined in soil mineral horizons. The buffer capacity of mineral horizons of both soils to sulfuric acid was found to be higher than that to the nitric acid. This is explained by the sorption of sulfates via the mechanism of ligand exchange with the release of hydroxyl groups from the surfaces of Fe and Al hydroxide particles and edge faces of clay crystallites. The buffer capacity of organic horizons of the pale podzolic soil to sulfuric acid proved to be higher than that to nitric acid; in organic horizons of the peat gleyic podzolic soil, the buffer capacity to sulfuric acid was lower than that to nitric acid. The reasons for this phenomenon have yet to be investigated.

  18. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

  19. Soil degradation in semi-arid grasslands due to intensive grazing in Northern China

    NASA Astrophysics Data System (ADS)

    Wiesmeier, M.; Steffens, M.; Kölbl, A.; Kögel-Knabner, I.

    2012-04-01

    organic matter input, destruction of soil aggregates due to enhanced animal trampling associated with mineralization of formerly protected SOM and enhanced soil erosion. The analysis of the spatial distribution of SOM showed a small-scale homogenization of SOM at grazed sites compared with a heterogeneous pattern at ungrazed sites. Apparently, heterogeneously distributed grass tussocks, which act as "islands of fertility" in undisturbed steppe ecosystems, are removed by heavy grazing that in turn deteriorates the accumulation of SOM. We conclude that semi-arid grasslands of Northern China are very susceptible to intensive grazing, which led to a considerable depletion and a spatial homogenization of SOM. Further intensification of the grazing management or an extension into undisturbed boundary areas of the steppe should be prevented.

  20. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident.

    PubMed

    Yasunari, Teppei J; Stohl, Andreas; Hayano, Ryugo S; Burkhart, John F; Eckhardt, Sabine; Yasunari, Tetsuzo

    2011-12-01

    The largest concern on the cesium-137 ((137)Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 ((137)Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of (137)Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of (137)Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of (137)Cs in the environment is poorly constrained. Here, we estimate total (137)Cs deposition by integrating daily observations of (137)Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that (137)Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km(-2), respectively. Total (137)Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130-150 °E and 30-46 °N) and, (ii) the Japan Islands, were estimated to be approximately 6.7 and 1.3 PBq, [corrected] respectively.We hope our (137)Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan. PMID:22084074

  1. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident

    PubMed Central

    Yasunari, Teppei J.; Stohl, Andreas; Hayano, Ryugo S.; Burkhart, John F.; Eckhardt, Sabine; Yasunari, Tetsuzo

    2011-01-01

    The largest concern on the cesium-137 (137Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 (137Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of 137Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of 137Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of 137Cs in the environment is poorly constrained. Here, we estimate total 137Cs deposition by integrating daily observations of 137Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that 137Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km-2, respectively. Total 137Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130–150 °E and 30–46 °N) and, (ii) the Japan Islands, were estimated to be more than 5.6 and 1.0 PBq, respectively. We hope our 137Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan. PMID:22084074

  2. [Effects of simulated acid rain on decomposition of soil organic carbon and crop straw].

    PubMed

    Zhu, Xue-Zhu; Huang, Yao; Yang, Xin-Zhong

    2009-02-01

    To evaluate the effects of acid rain on the organic carbon decomposition in different acidity soils, a 40-day incubation test was conducted with the paddy soils of pH 5.48, 6.70 and 8.18. The soils were amended with 0 and 15 g x kg(-1) of rice straw, adjusted to the moisture content of 400 g x kg(-1) air-dried soil by using simulated rain of pH 6.0, 4.5, and 3.0, and incubated at 20 degrees C. The results showed that straw, acid rain, and soil co-affected the CO2 emission from soil system. The amendment of straw increased the soil CO2 emission rate significantly. Acid rain had no significant effects on soil organic carbon decomposition, but significantly affected the straw decomposition in soil. When treated with pH 3.0 acid rain, the amount of decomposed straw over 40-day incubation in acid (pH 5.48) and alkaline (pH 8.18) soils was 8% higher, while that in neutral soil (pH 6.70) was 15% lower, compared to the treatment of pH 6.0 rain. In the treatment of pH 3.0 acid rain, the decomposition rate of soil organic C in acid (pH 5.48) soil was 43% and 50% (P < 0.05) higher than that in neutral (pH 6.70) and alkaline (pH 8.18) soils, while the decomposition rate of straw in neutral soil was 17% and 16% (P < 0.05) lower than that in acid and alkaline soils, respectively. PMID:19459394

  3. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  4. A Simulation of the Interaction of Acid Rain with Soil Minerals

    ERIC Educational Resources Information Center

    Schilling, Amber L.; Hess, Kenneth R.; Leber, Phyllis A.; Yoder, Claude H.

    2004-01-01

    The atmospheric issue of acid rains is subjected to a five-part laboratory experiment by concentrating on the chemistry of the infiltration process of acid rainwater through soils. This procedure of quantitative scrutiny helps students realize the efficacy of soil minerals in the consumption of surplus acidity in rainwater.

  5. Acidification of soil-water in low base-saturated sand soils of the superior uplands under acid and normal precipitation.

    PubMed

    Harris, A R

    1989-04-01

    now being analyzed for the 1986 treatment year. In leachate collected from the upper horizons of the soil colums, there was a significant difference in pH, alkalinity, nitrate, and sulfate concentrations between the pH 5.4 and pH 4.2 precipitation treatments. This difference, however, disappears at the bottom of the columns. This could be partly due to exchange reactions in the B horizon. The pH and alkalinities are higher in bottom leachate. Chloride and nitrate also increased significantly due mainly to concentrating effects. Even with a pickup of sulfate in the B horizon, sulfate adsorption decreased bottom leachate concentrations well below surface values.Alkalinity, pH, and sulfate concentration in the leachate decreased over the treatment season. Nitrate concentration increased by 4- to 5-fold over the season. Leachate from the bottom of the soil columns is becoming more acidic with time with negative alkalinities appearing more frequently in columns with soils of lower base saturation. There were some significant alkalinity differences due to humus treatments; however, these were not consistent between pH treatments, and need further study. This research will eventually answer whether soil processes can be important to the acidification of lakes in poor, sandy, outwash plains of the Superior Uplands, and whether a reduction in acid sulfate deposition will reverse the percolate alkalinity from negative to positive. PMID:24249061

  6. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  7. Toxic effects of two acid sulfate soils from the Dabaoshan Mine on Corymbia citriodora var.variegata and Daphnia carinata.

    PubMed

    Liu, Y; Lin, C; Ma, Y; Lu, W; Wu, Y; Huang, S; Zhu, L; Li, J; Chen, A

    2009-07-30

    Acidic, metal-stressed conditions encountered in the acid sulfate soils significantly inhibited the growth of Corymbia citriodora var.variegata, possibly due to the reduced rate of photosynthesis and plant root activity. However, the plant's self-protection mechanism to counteract stress-induced cellular damage by reactive oxygen species still functioned well even at a soil pH as low as 2.81. This may explain the high tolerance of this plant species to the extremely acidic environments. The observed phytotoxicity symptoms were not accompanied by elevated concentrations of heavy metals in the plant tissues, suggesting that heavy metal levels in plant tissue alone are not valid indications of phytotoxicity to the tested plant species. Leachates from the acid sulfate soils had strong toxicity to Daphnia carinata. Median lethal dilution factor (LDF50) was much higher for the leachate from the highly acidic acid sulfate soils (ASS) than that from the mildly acidic ASS. Although the concentration of various metals markedly decreased with increasing number of leaching cycle, leachate toxicity to Daphnia carinata did not decrease accordingly. This suggests that levels of heavy metals and Al in the leachate are not good indicators of the mine water biotoxicity. PMID:19157696

  8. Quantification of Plume-Soil Interaction and Excavation Due to the Sky Crane Descent Stage

    NASA Technical Reports Server (NTRS)

    Vizcaino, Jeffrey; Mehta, Manish

    2015-01-01

    data obtained from MSL's navigation camera (NAVCAM) pairs on Sols 002, 003, and 016 were used to virtually recreate local surface topography and features around the rover by means of stereoscopic depth mapping. Images taken simultaneously by the left and right navigation cameras located on the rover's mast assembly spaced 42 centimeters were used to generate a three dimensional depth map from flat, two dimensional images of the same feature at slightly different angles. Image calibration with physical hardware on the rover and known terrain features were used to provide scaling information that accurately sizes features and regions of interest within the images. Digital terrain mapping analysis performed in this work describe the crater geometry (shape, radius, and depth), eroded volume, volumetric erosion rate, and estimated mass erosion rate of the Hepburn, Sleepy Dragon, Burnside, and Goulburn craters. Crater depths ranged from five to ten centimeters deep influencing an area as wide as two meters in some cases. The craters formed were highly asymmetrical and generally oblong primarily due to the underlying bedrock formations underneath the surface. Comparison with ground tests performed at the NASA AMES Planetary Aeolian Laboratory (PAL) by Mehta showed good agreement with volumetric erosion rates and crater sizes of large particle soil simulants, providing validation to Earth based ground tests of Martian regolith.

  9. Soil acidity status in the vicinity of the Severonikel copper-nickel industrial complex, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kashulina, G. M.; Kubrak, A. N.; Korobeinikova, N. M.

    2015-04-01

    The physicochemical properties of soils exposed to emissions from the Severonikel industrial complex (one of the largest sources of SO2 and heavy metals in northern Europe) for 70 years were studied. The results showed that even after the long-term impact of heavy SO2 emissions, the , the content of exchangeable bases, and the base saturation remained at the medium and high levels inherent to undisturbed soils of the region studied. An exclusion was the illuvial horizon of the podzols, where a relative reduction of the (at the level of low values of the natural variation) was revealed. At the same time, the hydrolytic acidity and cation exchange capacity in most samples of podzols, peat eutrophic, and mountain soils in the zone exposed to emissions (local zone) were also reduced. This fact is explained by indirect effects of the emissions: the gradual decrease in the organic matter content in the soils due to the destruction of the vegetation, the absence of fresh plant falloff, the development of erosion, and the disturbance of the hydrological regime of the soils and landscapes.

  10. Extraction of amino acids from soils and sediments with superheated water

    NASA Technical Reports Server (NTRS)

    Cheng, C. N.; Ponnamperuma, C.

    1974-01-01

    A method of extraction for amino acids from soils and sediments involving superheated water has been investigated. About 75-97 per cent of the amino acids contained in four soils of a soil profile from Illinois were extracted by this method. Deep penetration of water into soil aggregates and partial hydrolysis of peptide bonds during this extraction by water at high temperature are likely mechanisms responsible for the release of amino acids from samples. This extraction method does not require subsequent desalting treatments when analyses are carried out with an ion-exchange amino acid analyzer.

  11. Application of modified attapulgite in phthalate acid ester-contaminated soil: Effects on phthalate acid ester dissipation and the composition of soil microbial community.

    PubMed

    Gao, Jun; Shi, Yi-Ying; Zhou, Hai-Feng; Ren, Xu-Qin; Ji, Huai

    2016-08-01

    The effects of modified attapulgite (MA) on the dissipations of the plasticizers di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in soil, as well as on the composition of soil microbial community, were studied. DBP, DEHP (50 mg kg(-1) in soil, respectively), and MA (1, 5, and 10 % in soil) were mixed thoroughly with soil and incubated for 60 days. DBP- and DEHP-contaminated soils without MA were used as the controls. Both of DBP and DEHP residues in bulk soils and four soil fractions were measured at five incubation times 1, 7, 15, 30, and 60 days, and their dissipation kinetic equations were analyzed. The microbial phospholipid fatty acid (PLFA) concentrations were also measured at the end of experiment. Our results showed that the effect of modified attapulgite on DBP dissipation was related to its dosage in soil. The DEHP dissipation was both inhibited by MA at the 5 and 10 % rates in soils. The application of MA changed the content percentages but did not change the concentration order of phthalate acid esters (PAEs) in soil particle-size fractions. The total microbial PLFA content was significantly increased by 5 and 10 % MA in the contaminated soils. Meanwhile, the gram-negative (GN)/gram-positive (GP) ratios increased when MA was applied at the dosages of 5 and 10 % in DBP and 10 % in DEHP-contaminated soils. Principal component analysis (PCA) indicated that the change of bacteria PLFA, especially the GN bacterial PLFA, depended on the dosages of MA added into soil. The application of MA into soil has a positive effect on reducing the eco-toxicity of PAEs in soil based on the analysis of the soil microbial PLFA. PMID:27094276

  12. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli.

    PubMed

    Crane, John K; Broome, Jacqueline E; Lis, Agnieszka

    2016-04-01

    In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli(EPEC) and Shiga-toxigenic E. coli(STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage. PMID:26787720

  13. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil

    NASA Astrophysics Data System (ADS)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-08-01

    In this paper, soil carbon, nitrogen and phosphorus concentrations and stocks were investigated in agricultural and natural areas in 17 plot-level paired sites and in a regional survey encompassing more than 100 pasture soils In the paired sites, elemental soil concentrations and stocks were determined in native vegetation (forests and savannas), pastures and crop-livestock systems (CPSs). Nutrient stocks were calculated for the soil depth intervals 0-10, 0-30, and 0-60 cm for the paired sites and 0-10, and 0-30 cm for the pasture regional survey by sum stocks obtained in each sampling intervals (0-5, 5-10, 10-20, 20-30, 30-40, 40-60 cm). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in native vegetation soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the native vegetation than in the pasture and CPS soils, and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the native vegetation to the pasture to the CPS soils. In the plot-level paired sites, the soil nitrogen stocks were lower in all depth intervals in pasture and in the CPS soils when compared with the native vegetation soils. On the other hand, the soil phosphorus stocks were higher in all depth intervals in agricultural soils when compared with the native vegetation soils. For the regional pasture survey, soil nitrogen and phosphorus stocks were lower in all soil intervals in pasture soils than in native vegetation soils. The nitrogen loss with cultivation observed here is in line with other studies and it seems to be a combination of decreasing organic matter inputs, in cases where crops replaced native forests, with an increase in soil organic matter decomposition that leads to a decrease in the long

  14. Analysis of the indices of acidity in the soil profile and their relationship with pedogenesis

    NASA Astrophysics Data System (ADS)

    Kokotov, Yu. A.; Sukhacheva, E. Yu.; Aparin, B. F.

    2016-01-01

    A new notion—an acidic trace of pedogenesis in the field of soil acidity—is suggested. This notion implies a three-dimensional representation of the distribution of soil acidity in the soil profile and can be graphically shown in three two-dimensional projections that can be combined on a common V-diagram. Such V-diagrams are individual for each particular soil profile. At the same time, they have some common phenomenology in their shapes and in the position in the acidity field. A tendency for the S-shaped form of acidic trace is manifested by a sharp decrease in pH upon the reduction of base saturation at the high and low values of this index and by small changes in pH at the moderate values of base saturation in the area of acid buffering of the soil profile. This phenomenon is related to the weak acidity and polyfunctionality of the soils as ionite systems. An acidic trace can be subdivided into several characteristic parts related to different pedogenetic processes in their interaction. Its position in the field of acidity is largely determined by the acidity of parent material. Acidic traces of different types of soils in the northwestern Russia are discussed. It is argued that V-diagrams should be analyzed together with other soil characteristics.

  15. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals.

    PubMed

    Park, Soyoung; Kim, Ki Seob; Kim, Jeong-Tae; Kang, Daeseok; Sung, Kijune

    2011-01-01

    The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, E arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11-C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals. PMID:22432335

  16. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability.

    PubMed

    Soler-Rovira, Pedro; Madejón, Engracia; Madejón, Paula; Plaza, César

    2010-05-01

    The purposes of this study were to determine the Cu(II) binding behavior of humic acids (HAs) isolated from biosolid compost (BI), leonardite (LE), a metal-contaminated soil, and the soil remediated with either BI or LE in relation to their structural properties, and to explore the role exerted by the HA fractions in controlling soil Cu(II) bioavailability. Potentiometric titrations at pH 5 and ionic strength 0.1M and the Langmuir model were used to obtain the Cu(II) complexing capacity of the HAs examined and the conditional stability constant of the Cu(II)-HA complexes. The Cu(II) complexing capacity increased as the content of acidic ligands, especially COOH groups, aromaticity, and humification degree increased, following the order BI-HAsoil HAssoil HAsoil HAsdue to an increased chelating effect. Compared to LE, amendment with BI was slightly more effective in decreasing soil CaCl(2)-extractable Cu content. The results obtained suggested that the pH of the soil-amendment system is the most important chemical property governing Cu(II) solubility and bioavailability in metal-contaminated soils remediated with BI and LE, although soil organic matter and the HA fraction may also be important factors. In particular, binding sites formed by N-, S-, and O-containing acidic functional moieties in HAs may play an important role in the Cu(II) behavior. PMID:20303567

  17. Settlement of breakwater on submarine soil due to wave-induced liquefaction

    SciTech Connect

    Oka, F.; Yashima, A.; Miura, S.; Ohmaki, S.; Kamata, A.

    1995-12-31

    The stability and deformation of the seabed in response to ocean wave loading is an important consideration in the design of offshore structures such as breakwaters, anchors, platforms, and pipelines. In this study, the instability of the sandy seabed due to the wave-induced liquefaction is investigated based on intensive field observations and computational studies. A large settlement of the breakwater on loosely deposited sand bed was observed at a small fishery port in Hokkaido, Japan. To determine the appropriate countermeasure against this large settlement, intensive field observations and computational studies were carried out. It was found that the earthquake-type liquefaction phenomenon of the foundation sandy soil brought a significant settlement of the breakwater.

  18. Simultaneous extraction and derivatization of 2-chlorovinylarsonous acid from soils using supercritical and pressurized fluids.

    PubMed

    Chaudot, X; Tambuté, A; Caude, M

    2000-08-01

    Supercritical carbon dioxide and pressurized fluids are compared for the extraction with in situ derivatization of 2-chlorovinylarsonous acid (CVAA) from a series of seven spiked soils. Samples are allowed to age (up to 42 days) and periodically extracted. Sample ageing leads to a recovery decrease due to the development of strong interactions between CVAA and matrix active sites, as time elapses. A similar behavior is observed when usual ultrasonic extraction is performed. Supercritical fluid extraction (SFE) with in situ derivatization leads to the highest recovery. Moreover, SFE allows a solvent consumption reduction. A limit of detection of 0.2 microg/g is reached with the SFE method. PMID:10949499

  19. Effects of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils

    SciTech Connect

    Chang, F.H.; Alexander, M.

    1984-09-01

    Soil samples from three watersheds of New York State were treated with simulated rain at pH 3.5, 4.1, and 5.6 daily for 14 d, at 12 3-d intervals in three separate tests, or at 22 7-d intervals. Except for one system of treating the three forest soils, simulated acid rain reduced the amount of organic matter leached from samples of soil from which more than 0.05% of the organic carbon was leached during the exposure period. In the soil samples representing the exceptions, acid rain enhanced the leaching of organic matter. Samples from the organic layer of the treated samples of acid soil were taken at two equal depths, and the rates of organic matter decomposition in the two layers were studied. As compared with simulated rain at pH 5.6, simulated acid rain reduced the decomposition of organic matter in the three soils at both depths in three of the five tests and at both depths of two of the soils in the fourth test. In some instances, organic matter decomposition was enhanced by the simulated acid rain. Except for the sample of soil at the highest initial pH, carbon mineralization was inhibited in soils and treatments in which simulated acid rain reduced the amount of organic carbon leached, and it was stimulated in soils and treatments in which the quantity of organic carbon leached was increased by the simulated acid rain. 12 references, 3 figures, 8 tables.

  20. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS II: OPTIMIZATION OF CHROMATOGRAPHY AND EXTRACTION

    EPA Science Inventory

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorinated octanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary p...

  1. Valuation of damages to recreational trout fishing in the Upper Northeast due to acidic deposition

    SciTech Connect

    Englin, J.E.; Cameron, T.A.; Mendelsohn, R.E.; Parsons, G.A.; Shankle, S.A.

    1991-04-01

    This report documents methods used to estimate economic models of changes in recreational fishing due to the acidic deposition. The analysis was conducted by Pacific Northwest Laboratory (PNL) and its subcontractors for the US Environmental Protection Agency (EPA) and the US Department of Energy (DOE) in support of the National Acidic Precipitation Assessment Program (NAPAP). The primary data needed to estimate these models were collected in the 1989 Aquatic Based Recreation Survey (ABRS), which was jointly funded by the DOE and the EPA's Office of Policy Planning and Evaluation. 11 refs., 5 figs., 15 tabs.

  2. Correlations between different acidity forms in amorphous loamy soils of the tundra and taiga zones

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Sokolova, T. A.

    2013-05-01

    Pair correlation coefficients ( r) between the acidity parameters for the main genetic horizons of soddy-podzolic soils (SPSs), typical podzolic soils (TPSs), gley-podzolic soils (GPSs), and tundra surfacegley soils (TSGSs) have been calculated on the basis of a previously developed database. A significant direct linear correlation has been revealed between the pHwater and pHKCl values in the organic and eluvial horizons of each soil, but the degree of correlation decreased when going from the less acidic SPSs to the more acidic soils of other taxons. This could be related to the fact that, under strongly acid conditions, extra Al3+ was dissolved in the KCl solutions from complex compounds in the organic horizons and from Al hydroxide interlayers in the soil chlorites. No significant linear correlation has been found between the exchangeable acidity ( H exch) and the activity of the [H]+ ions in the KCl extract ( a(H+)KCl) calculated per unit of mass in the organic horizons of the SPSs, but it has been revealed in the organic horizons of the other soils because of the presence of the strongest organic acids in their KCl extracts. The high r values between the H exch and a(H+)KCl in all the soils of the taiga zones have been related to the common source and composition of the acidic components. The correlation between the exchangeable and total ( H tot) acidities in the organic horizons of the podzolic soils has been characterized by high r values because of the common source of the acidity: H+ and probably Al3+ ions located on the functional groups of organic acids. High r values between the H exch and a(H+)KCl have been observed in the mineral horizons of all the soils, because the Al3+ hydroxo complexes occurring on the surface and in the interlayer spaces of the clay minerals were sources of both acidity forms.

  3. Selecting Rhizobium meliloti for inoculation of alfalfa planted in acid soils

    SciTech Connect

    Lowendorf, H.S.; Alexander, M.

    1983-01-01

    The study was conducted to obtain Rhizobium meliloti strains suitable for use with alfalfa grown in acid soils. Thirteen strains of R. meliloti were examined for their ability to grow in acidified culture media and seven of these were characterized for the ability to surive in acid and limed nonsterile soils or grow in the presence of the host legume, Medicago sativa L. The pH values of the most acid, defined medium that permitted growth of the bacteria from a small inoculum ranged from pH 5.3 to 6.0. For R. meliloti 411SE1 and GH1-1SE1, the minimum pH that allowed for growth, the critical pH, was not a dependable indicator of survival in a more acid medium. Strains of R. meliloti with relatively low critical pH values survived better in a limed soil but not in acid soils than strains with higher critical pH values. Three strains of R. meliloti previously identified as good inoculants for alfalfa in acid soils did not consistently survive beter than other strains in a planted or unplanted acid soil of pH 5.3. However, the plants increase the population densities of these three strains more than other strains. These results suggest that R. meliloti strains suitable for inoculation of alfalfa in acid soils may be selected not by simple saprophytic properties but by their stimulation by the host legume in acid soils.

  4. Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization.

    PubMed

    Unno, Yusuke; Shinano, Takuro

    2013-01-01

    While phytic acid is a major form of organic phosphate in many soils, plant utilization of phytic acid is normally limited; however, culture trials of Lotus japonicus using experimental field soil that had been managed without phosphate fertilizer for over 90 years showed significant usage of phytic acid applied to soil for growth and flowering and differences in the degree of growth, even in the same culture pot. To understand the key metabolic processes involved in soil phytic acid utilization, we analyzed rhizosphere soil microbial communities using molecular ecological approaches. Although molecular fingerprint analysis revealed changes in the rhizosphere soil microbial communities from bulk soil microbial community, no clear relationship between the microbiome composition and flowering status that might be related to phytic acid utilization of L. japonicus could be determined. However, metagenomic analysis revealed changes in the relative abundance of the classes Bacteroidetes, Betaproteobacteria, Chlorobi, Dehalococcoidetes and Methanobacteria, which include strains that potentially promote plant growth and phytic acid utilization, and some gene clusters relating to phytic acid utilization, such as alkaline phosphatase and citrate synthase, with the phytic acid utilization status of the plant. This study highlights phylogenetic and metabolic features of the microbial community of the L. japonicus rhizosphere and provides a basic understanding of how rhizosphere microbial communities affect the phytic acid status in soil. PMID:23257911

  5. Effects of surfactants on low-molecular-weight organic acids to wash soil zinc.

    PubMed

    Chen, Yue; Zhang, Shirong; Xu, Xiaoxun; Yao, Ping; Li, Ting; Wang, Guiyin; Gong, Guoshu; Li, Yun; Deng, Ouping

    2016-03-01

    Soil washing is an effective approach to the removal of heavy metals from contaminated soil. In this study, the effects of the surfactants sodium dodecyl sulfate, Triton X-100, and non-ionic polyacrylamide (NPAM) on oxalic acid, tartaric acid, and citric acid used to remove zinc from contaminated soils were investigated. The Zn removal efficiencies of all washing solutions showed a logarithmic increase with acid concentrations from 0.5 to 10.0 g/L, while they decreased as pH increased from 4 to 9. Increasing the reaction time enhanced the effects of surfactants on Zn removal efficiencies by the acids during washing and significantly (P < 0.05) improved the removal under some mixed cases. Oxalic acid suffered antagonistic effects from the three surfactants and seriously damaged soil nutrients during the removal of soil Zn. Notably, the three surfactants caused synergistic effects on tartaric and citric acid during washing, with NPAM leading to an increase in Zn removal by 5.0 g/L citric acid of 10.60 % (P < 0.05) within 2 h. NPAM also alleviated the loss of cation exchange capacity of washed soils and obviously improved soil nitrogen concentrations. Overall, combining citric acid with NPAM offers a promising approach to the removal of zinc from contaminated soil. PMID:26527338

  6. Using Innovative Statistical Analyses to Assess Soil Degradation due to Land Use Change

    NASA Astrophysics Data System (ADS)

    Khaledian, Yones; Kiani, Farshad; Ebrahimi, Soheila; Brevik, Eric C.; Aitkenhead-Peterson, Jacqueline

    2016-04-01

    Soil erosion and overall loss of soil fertility is a serious issue for loess soils of the Golestan province, northern Iran. The assessment of soil degradation at large watershed scales is urgently required. This research investigated the role of land use change and its effect on soil degradation in cultivated, pasture and urban lands, when compared to native forest in terms of declines in soil fertility. Some novel statistical methods including partial least squares (PLS), principal component regression (PCR), and ordinary least squares regression (OLS) were used to predict soil cation-exchange capacity (CEC) using soil characteristics. PCA identified five primary components of soil quality. The PLS model was used to predict soil CEC from the soil characteristics including bulk density (BD), electrical conductivity (EC), pH, calcium carbonate equivalent (CCE), soil particle density (DS), mean weight diameter (MWD), soil porosity (F), organic carbon (OC), Labile carbon (LC), mineral carbon, saturation percentage (SP), soil particle size (clay, silt and sand), exchangeable cations (Ca2+, Mg2+, K+, Na+), and soil microbial respiration (SMR) collected in the Ziarat watershed. In order to evaluate the best fit, two other methods, PCR and OLS, were also examined. An exponential semivariogram using PLS predictions revealed stronger spatial dependence among CEC [r2 = 0.80, and RMSE= 1.99] than the other methods, PCR [r2 = 0.84, and RMSE= 2.45] and OLS [r2 = 0.84, and RMSE= 2.45]. Therefore, the PLS method provided the best model for the data. In stepwise regression analysis, MWD and LC were selected as influential variables in all soils, whereas the other influential parameters were different in various land uses. This study quantified reductions in numerous soil quality parameters resulting from extensive land-use changes and urbanization in the Ziarat watershed in Northern Iran.

  7. Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil

    NASA Astrophysics Data System (ADS)

    Hrapovic, L.; Rowe, R. K.

    2002-10-01

    Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8)×10 8 and (0.1-1)×10 8 cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).

  8. Biogenic arsenic volatilisation from an acidic wetland soil

    NASA Astrophysics Data System (ADS)

    Ilgen, Gunter; Huang, Jen-How; Lu, Shipeng; Tian, Liyan; Alewell, Christine

    2014-05-01

    Biogenic arsenic (As) volatilisation was budgeted at 26000 t yr-1as the largest input of the global As release into the atmosphere, thereby playing an important role in the biogeochemical cycle of As in the surface environment. In order to quantify As volatilisation from wetland soils and to elucidate the geochemical and microbiological factors governing As volatilisation, a series of incubations with an acidic wetland soil collected in NE-Bavaria in Germany were performed at 15oC for 4 months with addition of NaN3, arsenite (As(III)), FeCl3, NaSO4 and NaOAc with N2 and air in the headspace. Speciation of gaseous As in the headspace using GC-ICP-MS/ ESI-MS coupling showed the predominance of either arsine (AsH3) or trimethylarsine ((CH3)3As) in all treatments during the time course of incubation. Monomethylarsine ((CH3)AsH2) and dimethylarsine ((CH3)2AsH) could be only detected in trace amounts. Arsenic speciation in porewater with HPLC-ICP-MS revealed the predominance of As(III) and methylated As was never detectable. Arsenic volatilisation summed to 2.3 ng As (88% as AsH3) in the control incubations, which accounted for ~0.25 % of the total As storage in the wetland soil. Treatments with 10 mM NaN3 resulted in emission of only 0.03 ng As. In contrast, addition of 10 mM NaOAc stimulated microbial activities in wetland soils and subsequently rose As volatilisation to 8.5 ng As. It could be therefore concluded that As volatilisation from the wetland soils was mainly biological. Spiking 67 μM As(III) increased 10 times of As volatilisation and the proportion of methylated arsines increased to 66%, which is supposed to be caused by the largely enhanced As availability in porewater for microbes (480 ppb, ~65 times higher than those in the controls). Adding 10 mM FeCl3 stimulated microbial Fe(III) reducing activities but suppressed other microbial activities by lowering soil pH from 5 to 3.6, decreasing consequently As volatilisation to 0.3 ng As. The much lower redox

  9. Irreversibility of 2,4-Dichlorophenoxyacetic Acid Sorption onto a Volcanic Ash Soil

    NASA Astrophysics Data System (ADS)

    Mon, E.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2008-12-01

    Pesticide sorption and desorption in soils are key processes governing fate and transport of pesticides in the soil environment. The irreversibility (or hysteresis) in the processes of pesticide sorption and desorption needs to be known to accurately predict behavior of pesticides in soil systems. 2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used pesticide in agriculture fields. However, only few studies of 2,4-D adsorption onto Andosols (volcanic ash soils) have been published, and the knowledge of 2,4-D desorption onto Andosols is very limited. In this study, a volcanic ash soil sampled from a pasture site in Nishi-Tokyo, Japan was used as a sorbent in order to investigate the irreversibility of 2,4-D sorption. For comparison, a pure clay mineral (kaolinite) obtained from Clay Science Society of Japan (CSSJ) was also used. 2,4-D solutions with three concentrations (0.011, 0.022 and 0.045 mmol/L) were prepared in artificial rain water (ARW= 0.085mM NaCl + 0.015mM CaCl2) to simulate field conditions. To prepare the sample solutions, the solid mass/liquid volume ratio of 1:10 was used for both sorbents (volcanic ash soil and kaolinite). The experiments were conducted in triplicate using a batch method under different pH conditions to examine the effect of pH. Desorption was measured during a equilibration procedure: After removal of 7 mL of supernatant in the sorption step, 7 mL of ARW excluding 2,4-D was added to the sample solution after which, it was equilibrated and centrifuged. The procedure was performed sequentially three or four times to obtain a desorption isotherm. Sorption and desorption generally followed Freundlich isotherms. The results showed markedly effects of pH on 2,4-D sorption and desorption in both the soil and kaolinite, with the percentage of sorption increasing with decreasing pH whereas the percentage of desorption decreased. There was a larger adsorption-desorption hysteresis in the volcanic ash soil as compared to kaolinite

  10. Changes in Temperature and Fate of Soil Organic Matter in an Andisol due to Soil Surface Burning

    NASA Astrophysics Data System (ADS)

    Obuchi, Atsuko; Nishimura, Taku; Mizoguchi, Masaru; Imoto, Hiromi; Miyazaki, Tsuyoshi

    This is a print of a camera-ready Japanese manuscript for the Transactions of JSIDRE. This will provide an example and directions for the layout and font size/style to be used. Please refer to this when preparing the headings, figures/table and text of your manuscript. The manuscript should be submitted on A4 size. Changes in temperature, soil moisture, and carbon and nitrogen contents were measured in Andisol under soil surface burning. Soil samples were packed into an unglazed cylinder of 15 cm inner diameter and 30 cm high. Charcoal was burned for 6 hours on the surface of the soil column. During the burning soil surface temperature rose to between 600-700°C. In initially wet soil, rise in soil temperature was retarded for a while at around 95-100°C. On the other hand, in initially dry Toyoura sand showed more rapid temperature increase without retardation. The temperature retardation in the wet soil could be caused by consumption of latent heat by vaporization of soil water. Rate of proceeding of the 100°C front was proportional to square root of the burning time. This indicates that higher the initial volumetric water content, shallower the depth affected by burning. Soil samples suffered temperature above 500°C still had total carbon and nitrogen contents of over 20 and 1 g kg-1, respectively, whereas the soil that was heated up to over 500°C by muffle furnace contained less than 0.4 and 0.1 g kg-1 of the carbon and nitrogen.

  11. Modulation of headcut soil erosion in rills due to upstream sediment loads

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Headcut erosion can severely accelerate soil loss in upland concentrated flows and lead to significant soil degradation in agricultural areas. Previous experimental work has demonstrated that actively migrating headcuts display systematic morphodynamic behavior, and impinging jet theory can provide...

  12. A three-phase soil model for simulating stress wave propagation due to blast loading

    NASA Astrophysics Data System (ADS)

    Wang, Zhongqi; Hao, Hong; Lu, Yong

    2004-01-01

    A three-phase soil model is proposed to simulate stress wave propagation in soil mass to blast loading. The soil is modelled as a three-phase mass that includes the solid particles, water and air. It is considered as a structure that the solid particles form a skeleton and their voids are filled with water and air. The equation of state (EOS) of the soil is derived. The elastic-plastic theory is adopted to model the constitutive relation of the soil skeleton. The damage of the soil skeleton is also modelled. The Drucker-Prager strength model including the strain rate effect is used to describe the strength of the soil skeleton. The model is implemented into a hydrocode Autodyn. The recorded results obtained by explosion tests in soil are used to validate the proposed model. Copyright

  13. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  14. Effect of soil acidity factors on yields and foliar composition of tropical root crops

    SciTech Connect

    Abruna-Rodriguez, F.; Vicente-Chandler, J.I. Rivera, E.; Rodriguez, J.

    1982-09-01

    Tropical root crops, a major source of food for subsistence farmers, varied in their sensitivity to soil acidity factors. Tolerance to soil acidity is an important characteristic of crops for the humid tropics where soils are often very acid and lime-scarce and expensive. Experiments on two Ultisols and an Oxisol showed that three tropical root crops differed markedly in sensitivity to soil acicity factors. Yams (Dioscorea alata L.) were very sensitive to soil acidity with yields on a Ultisol decreasing from 70% of maximum when Al saturation of the effective cation exchange capacity of the soil was 10 to 25% of maximum when Al saturation was 40%. On the other hand, cassava (Manihot esculenta Crantz) was very tolerant to high levels of soil acidity, yielding about 85% of maximum with 60% Al saturation. Taniers (Xanthosoma sp.) were intermediate between yams and cassava in their tolerance to soil acidity yielding about 60% of maximum with 50% Al saturation of the soil. Foliar composition of cassava was not affected by soil acidity levels and that of yams and taniers was also unaffected except for Ca content which decreased with decreasing soil pH and increasing Al saturation.Response of these tropical root crops to soil acidity components was far more striking on Ultisols than on the Oxisol. For yams, soils should be limed to about pH 5.5 with essentially no exhangeable Al/sup 3 +/ present whereas high yields of taniers can be obtained at about pH 4.8 with 20% exchangeable Al/sup 3 +/ and of cassava at pH as low as 4.5 with 60% exchangeable Al/sup 3 +/.

  15. Effects of simulated acid rain on glucose mineralization and some physicochemical properties of forest soils

    SciTech Connect

    Strayer, R.F.; Alexander, M.

    1981-10-01

    To study the effects of acid rain, samples of forest soils were exposed to a continuous application of 100 cm of simulated acid rain (pH 3.2-4.1) at 5 cm/hour, or to intermittent 1-hour applications of 5 cm of simulated acid rain three times per week for 7 weeks. The major effects of the simulated acid rain were localized at the top of the soil and included lower pH values and glucose mineralization rates, and higher exchangeable Al and total and exchange acidity. The acidity penetrated further in the more acid soils. The mineralization of /sup 14/C-glucose was measured at concentrations of 1.5-54 ..mu..g glucose/g of soil. Glucose mineralization in the test soils (pH values of 4.4-7.1) was inhibited by the continuous exposure to simulated acid rain at pH 3.2 but not a pH 4.1. The extent of inhibition depended on the soil and the initial glucose concentration. Exposure of one soil to 7 weeks of intermittent applications of simulated acid rain at pH 3.2 reduced the mineralization rate at the three glucose concentrations tested. These data suggest that acid rain may have a significant impact on microbial activity.

  16. Omaha Soil Mixing Study: Redistribution of Lead in Remediated Residential Soils Due to Excavation or Homeowner Disturbance.

    EPA Science Inventory

    Urban soils within the Omaha Lead Superfund Site have been contaminated with lead (Pb) from atmospheric deposition of particulate materials from lead smelting and recycling activities. In May of 2009 the Final Record of Decision stated that any residential soil exceeding the pre...

  17. EFFECT OF SOIL PROCESSES ON THE ACIDIFICATION OF WATER BY ACID DEPOSITION

    EPA Science Inventory

    The mechanism whereby acid deposition can cause acidification of surface waters via equilibrium processes in soil solution was investigated using chemical equilibrium models. These models show that for soils with low to moderately low exchangeable bases the soil solution pH is on...

  18. Soil-calcium depletion linked to acid rain and forest growth in the eastern United States

    USGS Publications Warehouse

    Lawrence, Gregory B.; Huntington, T.G.

    1999-01-01

    Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.

  19. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb. PMID:27548978

  20. EFFECT OF SIMULATED ACID RAIN ON NITRIFICATION AND NITROGEN MINERALIZATION IN FOREST SOILS

    EPA Science Inventory

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100cm of simulated acid rain (pH3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2...

  1. Organic amendment effects on the transformation and fractionation of aluminum in acidic sandy soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was attempted to evaluate the transformation of aluminum (Al) in an acidic sandy soil amended with composts (yard waste, yard + municipal waste, GreenEdge®, and synthetic humic acid), based on soil Al fractionation by single and sequential extraction. The compost amendment significantly i...

  2. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Yang, Zhi-Hui; Chai, Li-Yuan; Li, Jin-Tian

    2016-08-15

    Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pH<3 and high acidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pH<3) polymetallic pyritic mine waste heap in southern China exhibiting high acidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils. PMID:27100018

  3. Response analysis of buried pipelines crossing fault due to overlying soil rupture

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Cui, Chengchen; Li, Xiaojun

    2010-02-01

    A 3-D soil-pipe nonlinear finite element model with contact element is suggested and the influences of the rupture mode, thickness and rigidity of overlying soil on the response of buried pipeline are analyzed. The numerical results show that the soil rupture mode determines the location of the large deformation or failure of the pipeline, and the plastic deformation of the pipeline occurs at the zone where the plastic deformation or rupture of the overlying soil appears. When the fault dip angle on bedrock is near 90°, two plastic deformation sections of the pipeline appear with the development of overlying soil rupture. And the thicker the overlying soil is, the longer the plastic deformation length of the pipeline is and the less its strain is. The plastic deformation length of the pipeline decreases while its maximum strain increases with the rigidity of overlying soil increasing.

  4. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  5. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  6. Changes in soil carbon, nitrogen and phosphorus due to land-use changes in Brazil

    NASA Astrophysics Data System (ADS)

    Groppo, J. D.; Lins, S. R. M.; Camargo, P. B.; Assad, E. D.; Pinto, H. S.; Martins, S. C.; Salgado, P. R.; Evangelista, B.; Vasconcellos, E.; Sano, E. E.; Pavão, E.; Luna, R.; Martinelli, L. A.

    2015-02-01

    In this paper soil carbon, nitrogen and phosphorus concentrations and related elemental ratios, as well as and nitrogen and phosphorus stocks were investigated in 17 paired sites and in a regional survey encompassing more than 100 pasture soils in the Cerrado, Atlantic Forest, and Pampa, the three important biomes of Brazil. In the paired sites, elemental soil concentrations and stocks were determined in native vegetation, pastures and crop-livestock systems (CPS). Overall, there were significant differences in soil element concentrations and ratios between different land uses, especially in the surface soil layers. Carbon and nitrogen contents were lower, while phosphorus contents were higher in the pasture and CPS soils than in forest soils. Additionally, soil stoichiometry has changed with changes in land use. The soil C : N ratio was lower in the forest than in the pasture and CPS soils; and the carbon and nitrogen to available phosphorus ratio (PME) decreased from the forest to the pasture to the CPS soils. The average native vegetation soil nitrogen stocks at 0-10, 0-30 and 0-60 cm soil depth layers were equal to approximately 2.3, 5.2, 7.3 Mg ha-1, respectively. In the paired sites, nitrogen loss in the CPS systems and pasture soils were similar and equal to 0.6, 1.3 and 1.5 Mg ha-1 at 0-10, 0-30 and 0-60 cm soil depths, respectively. In the regional pasture soil survey, nitrogen soil stocks at 0-10 and 0-30 soil layers were equal to 1.6 and 3.9 Mg ha-1, respectively, and lower than the stocks found in the native vegetation of paired sites. On the other hand, the soil phosphorus stocks were higher in the CPS and pasture of the paired sites than in the soil of the original vegetation. The original vegetation soil phosphorus stocks were equal to 11, 22, and 43 kg ha-1 in the three soil depths, respectively. The soil phosphorus stocks increased in the CPS systems to 30, 50, and 63 kg ha-1, respectively, and in the pasture pair sites to 22, 47, and 68 kg ha-1

  7. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil.

    PubMed

    Wu, L H; Luo, Y M; Christie, P; Wong, M H

    2003-02-01

    A pot experiment was conducted to study the effects of EDTA and low molecular weight organic acids (LMWOA) on the pH, total organic carbon (TOC) and heavy metals in the soil solution in the rhizosphere of Brassica juncea grown in a paddy soil contaminated with Cu, Zn, Pb and Cd. The results show that EDTA and LMWOA have no effect on the soil solution pH. EDTA addition significantly increased the TOC concentrations in the soil solution. The TOC concentrations in treatments with EDTA were significantly higher than those in treatments with LMWOA. Adding 3 mmol kg(-1) EDTA to the soil markedly increased the total concentrations of Cu, Zn, Pb and Cd in the soil solution. Compared to EDTA, LMWOA had a very small effect on the metal concentrations. Total concentrations in the soil solution followed the sequence: EDTA > citric acid (CA) approximately oxalic acid (OA) approximately malic acid (MA) for Cu and Pb; EDTA > MA > CA approximately OA for Zn; and EDTA > MA > CA > OA for Cd. The labile concentrations of Cu, Zn, Pb and Cd showed similar trends to the total concentrations. PMID:12688497

  8. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    NASA Astrophysics Data System (ADS)

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  9. Influence of fulvic acid on bacteriophage adsorption and complexation in soil.

    PubMed Central

    Bixby, R L; O'Brien, D J

    1979-01-01

    The effect of fulvic acid, the major fraction of natural soluble organic matter, on the adsorption of MS2 bacteriophage to soil was investigated in controlled laboratory experiments. Batch experiments together with scanning electron microscopy-energy-dispersive X-ray analysis showed that fulvic acid complexed phage, which prevented its adsorption to soil. Phage strongly adsorbed to soil in the absence of fulvic acid. Phage which was complexed with fulvic acid was not irreversibly inactivated and could become viable under proper conditions, illustrating the importance of assay and elution procedures in the recovery of virus from aqueous solutions. PMID:396884

  10. General model for N2O and N2 gas emissions from soils due to dentrification

    NASA Astrophysics Data System (ADS)

    Del Grosso, S. J.; Parton, W. J.; Mosier, A. R.; Ojima, D. S.; Kulmala, A. E.; Phongpan, S.

    2000-12-01

    Observations of N gas loss from incubations of intact and disturbed soil cores were used to model N2O and N2 emissions from soil as a result of denitrification. The model assumes that denitrification rates are controlled by the availability in soil of NO3 (e- acceptor), labile C compounds (e- donor), and O2 (competing e- acceptor). Heterotrophic soil respiration is used as a proxy for labile C availability while O2 availability is a function of soil physical properties that influence gas diffusivity, soil WFPS, and O2 demand. The potential for O2 demand, as indicated by respiration rates, to contribute to soil anoxia varies inversely with a soil gas diffusivity coefficient which is regulated by soil porosity and pore size distribution. Model inputs include soil heterotrophic respiration rate, texture, NO3 concentration, and WFPS. The model selects the minimum of the NO3 and CO2 functions to establish a maximum potential denitrification rate for particular levels of e- acceptor and C substrate and accounts for limitation of O2 availability to estimate daily N2+N2O flux rates. The ratio of soil NO3 concentration to CO2 emission was found to reliably (r2=0.5) model the ratio of N2 to N2O gases emitted from the intact cores after accounting for differences in gas diffusivity among the soils. The output of the ratio function is combined with the estimate of total N gas flux rate to infer N2O emission. The model performed well when comparing observed and simulated values of N2O flux rates with the data used for model building (r2=0.50) and when comparing observed and simulated N2O+N2 gas emission rates from irrigated field soils used for model testing (r2=0.47).

  11. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils

    SciTech Connect

    Strayer, R.F.; Lin, C.J.; Alexander, M.

    1981-01-01

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100cm of simulated acid rain (pH3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2 cm of simulated acid rain twice weekly for 19 weeks. The upper 1.0- to 1.5-cm portions of soil from treated columns were used to determine the changes in inorganic N levels in the soil. Nitrification of added ammonium (NH4(+)) was inhibited following continuous exposure of soil to simulated acid rain of pH 4.1-3.2. The extent of the inhibition was directly related to the acidity of the simulated rain solutions. The production of inorganic N in the absence of added NH(+) was either stimulated or unaffected following continuous treatment of soils with pH 3.2 simulated acid rain. The addition of nitrapyrine, an inhibitor of autotrophic nitrification, caused a decrease in nitrification in water-treated soil but had little effect on nitrification in soil treated with pH 3.2 simulated acid rain.

  12. Metal ion complexation properties of fulvic acids extracted from composted sewage sludge as compared to a soil fulvic acid.

    PubMed

    Esteves da Silva, Joaquim C G; Oliveira, César J S

    2002-07-01

    Complexation properties of an anthropogenic fulvic acid (FA) extracted from a composted sewage sludge (csFA) for Cu(II), Pb(II) and Cd(II) were studied at pH=6 and at a concentration of 25 mg L(-1). For the case of Cu(II), a particular analysis of the complexation phenomena was done at pH values of 3, 4, 5 and 6 and at aqueous FA concentrations of 25, 50 and 100 mg L(-1) by synchronous excitation molecular fluorescence spectroscopy (SyF). Potentiometric titrimetry with Cu(II), Pb(II), Cd(II) and H+ ion-selective electrodes and acid-base conductimetric titrations were used to obtain experimental information about the acid properties and complexation phenomena. A comparison of the results obtained for csFA with a natural soil FA (sFA) was made. Differences have been detected in the structural composition of the two samples and in the structure of the binding sites. In the csFA, binding site structures containing nitrogen probably play an important role in the complexation, besides oxygen containing structures. Complexation by sFA is mainly due to carboxylic and phenolic structures. Nevertheless, this work shows that csFA have macroscopic complexation properties (magnitude of the conditional stability constant and binding sites concentration) somewhat similar to the natural sFA samples. PMID:12188141

  13. Control of acidity development on solid sulfur due to bacterial action.

    PubMed

    Crescenzi, Francesco; Crisari, Antonella; Dangeli, Edoardo; Nardella, Alessandro

    2006-11-01

    The global production of sulfur, which is currently obtained almost exclusively as an involuntary byproduct of the oil and gas industry, is exceeding the market demand so that long term storage or even definitive disposal of elemental sulfur is often needed to handle production surplus. The storage of large quantities of elemental sulfur calls for solidifying liquid sulfur in huge blocks, hundred meters wide on each side and as high as 20 meters. Sulfur, in presence of water and air, can be oxidized to sulfuric acid by a ubiquitous microorganism: Thiobacillus. On large blocks, this natural phenomenon may lead to soil and water acidification. Research projects have addressed suppression of Thiobacilli activity to prevent acidification, but no industrial applications have been reported. This work describes the inhibition of sulfur biological oxidation attainable by exposing sulfur to a high ionic strength environment. The bacteriostatic action is produced by contacting sulfur with a solution of an inorganic salt, such as sodium chloride, having an ionic strength similar to sea water. Possible ways to exploit the inhibitory effect to prevent the generation of acidity from sulfur storage blocks are suggested. PMID:17144310

  14. Crossing the pedogenetic threshold: Apparent phosphorus limitation by soil microorganisms in unglaciated acidic eastern hardwood forests

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Smemo, K. A.; Burke, D. J.

    2010-12-01

    The availability of soil phosphorus (P) can significantly influence microbial community composition and the ecosystem-level processes they mediate. However, the threshold at which soil microorganisms become functionally P-limited is unclear because of soil acidity effect on P availability. We reason that acidic temperate hardwood forest ecosystems are, in fact, functionally P-limited, but compensation occur via soil microbial production of phosphatase enzymes. We tested this hypothesis in glaciated and unglaciated mature mixed-mesophytic forests in eastern Ohio where both soil pH and P availability had been experientially manipulated. We measured the activity of two P acquiring soil enzymes, phosphomonoesterase (PMono) and phosphodiesterase (PDi), to understand how soil acidity and available P influence microbial function. Our experimental treatments elevated ambient soil pH from below 4.5 to around 5.5 and increased readily available phosphate from 3 to ~25 mg P/kg on glaciated soils and from 0.5 to ~5 mg P/kg on unglaciated soils. The P treatment decreased the activity of PDi by 82% relative to the control on unglaciated soils, but we observed no P treatment effect on glaciated soils. A similar result was observed for PMono. Soil pH, alone, did not significantly influence enzyme activities. Results suggest that soil microorganisms are more likely to be P-limited in older unglaciated soils. However, dramatically higher phosphatase activity in response to very low P availability suggests that an underlying ecosystem P limitation can be ameliorated by soil microbial community dynamics. This mechanism may be more important for older, unglaciated soils that have already crossed a pedogenic threshold where P availability influences ecosystem and microbial function.

  15. Simultaneous inhibition of carbon and nitrogen mineralization in a forest soil by simulated acid precipitation

    SciTech Connect

    Klein, T.M.; Novick, N.J.; Kreitinger, J.P.; Alexander, M.

    1984-06-01

    One method to simulate the long-term exposure of soil to acid rain involves the addition of single doses of concentrated acid. The inhibition of carbon mineralization accompanied by a stimulation of nitrogen mineralization may result from this severe, unnatural treatment. The present study was designed to determine whether the inhibition of carbon mineralization and the accompanying enhanced nitrogen mineralization would occur when soils are treated with more dilute acid for long periods of time, as takes place in nature.

  16. [Case of dyspnea due to toilet cleaner containing nitric acid for household use].

    PubMed

    Yanagawa, Youichi; Matsukawa, Takehisa; Yokoyama, Kazuhito; Hirano, Yohei; Ri, Tetsunari; Aihara, Koichiro; Iba, Toshiaki; Tanaka, Hiroshi

    2013-09-01

    A 40-year-old male tried to clean a urinal at his home storing 900 mL of a toilet cleaner containing 9.8% nitric acid to remove calcium deposit, and clean the toilet floor for twenty minutes. Immediately after using the cleaner, he experienced eye irritation. He washed out the toilet cleaner. However, he thereafter experienced dyspnea, a compressive sensation in his chest, and chest and back pain about 40 minutes after the cleaning the toilet. He monitored his symptoms overnight and found them to gradually improve. However, the symptoms still remained the next morning and therefore he came to our department on foot. He had no particular past or family history. On arrival, his physiological findings and chest computed tomography scan were negative for any abnormalities. His arterial blood gas analysis revealed a mild abnormality of oxygenation. Observation without any drugs revealed that a complete remission of his symptoms occurred after approximately 4 weeks. Based on the results of the experiments, contact with the mucosal membrane and nitric acid gas produced by any accidentally coexisting metals or contact with moisture, including nitric acid produced by a reaction between CaCO3 and cleaner, may have been the mechanism of occurrence for the symptoms observed in this case. This is the first reported case of nitric acid poisoning due to the use of a toilet cleanser intended for household use. PMID:24224389

  17. Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration.

    PubMed

    Shi, Lin; Xu, Peizhi; Xie, Kaizhi; Tang, Shuanhu; Li, Yongli

    2011-09-15

    A modified flue gas desulphurization residue (MFGDR) was prepared and its effects on sorghum growth and acidic soil amelioration were evaluated in this paper. The MFGDR was prepared by calcining a mixture of dry/semi-dry flue gas desulphurization (FGD) residue from a coal-fired power plant, sorted potash feldspar and/or limestone powder. The available nutrients from the MFGDR were determined with 4.91 wt% K(+), 1.15 wt% Mg(2+), 22.4 wt% Ca(2+), 7.01 wt% Si(4+) and 2.07 wt% SO(4)(2-)-S in 0.1 mol L(-1) citric acid solution. Its pH value was held at 9.60 displaying slightly alkaline. The results of sorghum pot growth in both red and crimson acidic soil for 30 days indicated that adding the MFGDR at a dosage of 2 g kg(-1) in total soil weight would increase the growth rate of biomass by 24.3-149% (wet weight basis) and 47.3-157% (dry weight), the stem length and thickness increase by 5.75-22.1% and 4.76-30.9% in contrast with CK treatment for two test cuttings, respectively. The effect on sorghum growth was attributed to the increase of available nutrients, the enhancement of soil pH value and the reduction of aluminum toxicity in acidic soil due to the addition of the MFGDR. The experimental results also suggested that the MFGDR could be effectively used to ameliorate the acidic soil which is widely distributed throughout the southern China. PMID:21763070

  18. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions.

    PubMed

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  19. Sustainable Soil Washing: Shredded Card Filtration of Potentially Toxic Elements after Leaching from Soil Using Organic Acid Solutions

    PubMed Central

    Ash, Christopher; Drábek, Ondřej; Tejnecký, Václav; Jehlička, Jan; Michon, Ninon; Borůvka, Luboš

    2016-01-01

    Shredded card (SC) was assessed for use as a sorbent of potentially toxic elements (PTE) carried from contaminated soil in various leachates (oxalic acid, formic acid, CaCl2, water). We further assessed SC for retention of PTE, using acidified water (pH 3.4). Vertical columns and a peristaltic pump were used to leach PTE from soils (O and A/B horizons) before passing through SC. Sorption onto SC was studied by comparing leachates, and by monitoring total PTE contents on SC before and after leaching. SC buffers against acidic soil conditions that promote metals solubility; considerable increases in solution pH (+4.49) were observed. Greatest differences in solution PTE content after leaching with/without SC occurred for Pb. In oxalic acid, As, Cd, Pb showed a high level of sorption (25, 15, and 58x more of the respective PTE in leachates without SC). In formic acid, Pb sorption was highly efficient (219x more Pb in leachate without SC). In water, only Pb showed high sorption (191x more Pb in leachate without SC). In desorption experiments, release of PTE from SC varied according to the source of PTE (organic/mineral soil), and type of solvent used. Arsenic was the PTE most readily leached in desorption experiments. Low As sorption from water was followed by fast release (70% As released from SC). A high rate of Cd sorption from organic acid solutions was followed by strong retention (~12% Cd desorption). SC also retained Pb after sorption from water, with subsequent losses of ≤8.5% of total bound Pb. The proposed use of this material is for the filtration of PTE from extract solution following soil washing. Low-molecular-mass organic acids offer a less destructive, biodegradable alternative to strong inorganic acids for soil washing. PMID:26900684

  20. Effects of simulated acid rain on microbial characteristics in a lateritic red soil.

    PubMed

    Xu, Hua-qin; Zhang, Jia-en; Ouyang, Ying; Lin, Ling; Quan, Guo-ming; Zhao, Ben-liang; Yu, Jia-yu

    2015-11-01

    A laboratory experiment was performed to examine the impact of simulated acid rain (SAR) on nutrient leaching, microbial biomass, and microbial activities in a lateritic red soil in South China. The soil column leaching experiment was conducted over a 60-day period with the following six SAR pH treatments (levels): 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 and one control treatment (pH = 7). Compared with the control treatment, the concentrations of soil organic matter, total nitrogen, total phosphorus, total potassium, soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN), and average well color density (AWCD) in the Ecoplates were all significantly decreased by leaching with SAR at different pH levels. The decrease in MBC and MBN indicated that acid rain reduced the soil microbial population, while the decrease in AWCD revealed that acid rain had a negative effect on soil bacterial metabolic function. Soil basal respiration increased gradually from pH 4.0 to 7.0 but decreased dramatically from pH 2.5 to 3.0. The decrease in soil nutrient was the major reason for the change of soil microbial functions. A principal component analysis showed that the major carbon sources used by the bacteria were carbohydrates and carboxylic acids. PMID:26201661

  1. Early changes due to sorghum biofuel cropping systems in soil microbial communities and metabolic functioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biofuel production cropping systems should address not only energy yields but also the impacts on soil attributes are important for long-term sustainability. In this study, forage sorghum (Sorghum bicolor L. Moench) cropping systems were initiated on a low organic matter soil (< 0.9%)...

  2. Early Changes Due to Sorghum Biofuel Cropping Systems in Soil Microbial Communities and Metabolic Functioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biofuel production cropping systems needs to address not only energy yields but also the impacts on soil attributes important for long-term sustainability. In this study, forage sorghum (Sorghum bicolor L. Moench) cropping systems were initiated on a low organic matter soil (<0.9%) wi...

  3. An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Sengupta, D.

    2006-11-01

    Combustion of coals in thermal power plants is one of the major sources of environmental pollution due to generation of huge amounts of ashes, which are disposed off in large ponds in the vicinity of the thermal power plants. This problem is of particular significance in India, which utilizes coals of very high ash content (˜55 wt%). Since the thermal power plants and the ash ponds are located in densely populated areas, there is potential chance for contamination of soil and groundwater of the surrounding areas from the toxic trace elements in the ash. An attempt has been made to study the extent of soil contamination around one of the largest thermal power plants of India located at Kolaghat, West Bengal India. Chemical analysis of the top soils and the soils collected from the different depth profiles surrounding the ash ponds, show that the top soils are enriched in the trace elements Mo, As, Cr, Mn, Cu, Ni, Co, Pb, Be, V, Zn, which show maximum enrichment (2-5) in the top soils collected from all the soil profiles. These elements are also enriched in the pond ash. Since there are no other sources of industrial effluents, it can be said that the enrichment of the trace elements (Mn, Co, Mo, Cr, Cu, Pb, Zn, As, Ni, Be, V) is attributed to their input from ash from the disposal pond. The study has been further strengthened by log-normal distribution pattern of the elements.

  4. Alleviating aluminium toxicity on an acid sulphate soils in Peninsular Malaysia with application of calcium silicate

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2015-10-01

    A study was conducted to alleviate Al toxicity of an acid sulphate soils collected from paddy cultivation area in Kedah, Peninsular Malaysia. For this purpose, the collected acid sulphate soils were treated with calcium silicate. The treated soils were incubated for 120 days in submerged condition in a glasshouse. Subsamples were collected every 30 days throughout the incubation period. Soil pH and exchangeable Al showed positive effect; soil pH increased from 2.9 to 3.5, meanwhile exchangeable Al was reduced from 4.26 to 0.82 cmolc kg-1, which was well below the critical Al toxicity level for rice growth of 2 cmolc kg-1. It was noted that the dissolution of calcium silicate (CaSiO3) supplied substantial amount of Ca2+ and H4SiO42- ions into the soil, noted with increment in Si (silicate) content from 21.21 to 40 mg kg-1 at day 30 and reduction of exchangeable Al at day 90 from 4.26 to below 2 cmolc kg-1. During the first 60 days of incubation, Si content was positively correlated with soil pH, while the exchangeable Al was negatively correlated with Si content. It is believed that the silicate anions released by calcium silicate were active in neutralizing H+ ions that governs the high acidity (pH 2.90) of the acid sulphate soils. This scenario shows positive effect of calcium silicate to reduce soil acidity, therefore creates a favourable soil condition for good rice growth during its vegetative phase (30 days). Thus, application of calcium silicate to alleviate Al toxicity of acid sulphate soils for rice cultivation is a good soil amendment.

  5. Fatality due to acute systemic fluoride poisoning following a hydrofluoric acid skin burn.

    PubMed

    Tepperman, P B

    1980-10-01

    Reports indicate that death due to hydrofluoric acid exposure is usually the result of inhalation of vapor causing pulmonary edema and fluoride poisoning. Absorption via the skin route of fluoride ion sufficient to cause serious systemic problems and even death has rarely been reported. A fatality resulting from a severe facial burn, which produced acute systemic fluoride poisoning with profound hypocalcemia and hypomagnesemia, is presented. The importance of proper personal protective equipment as well as the immediate initiation of first aid and appropriate medical measures, including the monitoring and replacement of serum calcium and magnesium, are emphasized. PMID:7431138

  6. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils

    SciTech Connect

    Strayer, R.F.; Lin, C.J.; Alexander, M.

    1981-10-01

    To determine the possible microbiological changes in soil resulting from acid rain, columns containing samples of forest soils were leached with either a continuous application of 100 cm of simulated acid rain (pH 3.2-4.1) at 5 cm/hour or an intermittent 1.5-hour application of 1.2 cm of simulated acid rain twice weekly for 19 weeks. The upper 1.0- to 1.5-cm portions of soil from treated columns were used to determine the changes in inorganic N levels in the soil. Nitrification of added ammonium (NH/sub 4//sup +/) was inhibited following continuous exposure of soil to simulated acid rain of pH 4.1-3.2. The extent of the inhibition was directly related to the acidity of the simulated rain solutions. The production of inorganic N in the absence of added NH/sub 4//sup +/ was either stimulated or unaffected following continuous treatment of soils with pH 3.2 simulated acid rain. The addition of nitrapyrin (2-chloro-6-(trichloromethyl)pyridine), an inhibitor of autotrophic nitrification, caused a decrease in nitrification in water-treated soil but had little effect on nitrification in soil treated with pH 3.2 simulated acid rain. Intermittent applications of simulated acid rain (pH 3.5-4.1) for 19 weeks partially inhibited nitrate (NO/sub 3//sup -/) production in soil amended with NH/sub 4//sup +/ following the exposure period, but NO/sub 3//sup -/ production in unamended soil was either unaffected or stimulated.

  7. Iron isotopes in a soil chronosequence: evidence of fractionation due to biological lifting of iron

    NASA Astrophysics Data System (ADS)

    Schulz, M. S.; Bullen, T. D.; White, A. F.; Fitzpatrick, J.

    2009-12-01

    The evolution of iron distribution with landform exposure time was studied in a marine terrace chronosequence northwest of Santa Cruz, California. The abundance of soil Fe increases with terrace age on the five terraces studied (65 to 226 Ka). Mass change calculations for Fe, indicate that not only is iron concentrated near the surface but, it is also depleted at depths >1.5m. The surficial Fe concentration cannot be fully accounted for by weathering and compaction of the soil profile or by the addition of iron content through eolian deposition to the soils. The terrace regoliths were generally unsaturated and aerobic, thus lateral movement of large amounts of dissolved reduced iron is unlikely. We propose that plant roots and symbiotic fungi (mycorrhizae) have transported iron from deep within the regolith to the shallow soil through the process of biolifting. Iron is a plant micronutrient; and unlike other mineral nutrients, it is relatively insoluble in aerobic soil solutions. Once Fe is released from decaying organic matter, the Fe-oxides are incorporated into the shallow soil. The Fe content of the current grassland vegetation was measured and yearly biomass Fe uptake calculated. The yearly cycling of plant-utilized Fe in above ground biomass multiplied by the age of the terrace is roughly equivalent to the shallow iron content of these soils. It has been shown that plants which use the strategy I Fe uptake process fractionate light Fe (Guelke and Von Blankenburg, ES&T, p1896; 2007). To test the biolifting hypothesis, Fe isotope ratios were determined for bulk soil samples from several soil depths of terraces 1 through 3 and terrace 5. The shallow soils generally have increasingly lighter δ56/54Fe with terrace age. The δ 56/54Fe values at 10cm soil depth are: 0.546, 0.628 0.381 and 0.182. The deep soil samples (>3 m) have a relatively constant isotopic composition ranging from 0.595 to 0.678 δ 56/54Fe. The deep sample ratios are between the values of the

  8. The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils

    NASA Astrophysics Data System (ADS)

    Lapinskas, E. B.

    2007-04-01

    The distribution and symbiotic efficiency of nodule bacteria Rhizobium leguminosarum_bv. trifolii F., Sinorhizobium meliloti D., Rhizobium galegae L., and Rhizobium leguminosarum bv. viciae F. in Lithuanian soils as dependent on the soil acidity were studied in the long-term field, pot, and laboratory experiments. The critical and optimal pH values controlling the distribution of rhizobia and the symbiotic nitrogen fixation were determined for every bacterial species. The relationship was found between the soil pH and the nitrogen-fixing capacity of rhizobia. A positive effect of liming of acid soils in combination with inoculation of legumes on the efficiency of symbiotic nitrogen fixation was demonstrated.

  9. Bioaccumulation of perfluoroalkyl acids by earthworms (Eisenia fetida) exposed to contaminated soils.

    PubMed

    Rich, Courtney D; Blaine, Andrea C; Hundal, Lakhwinder; Higgins, Christopher P

    2015-01-20

    The presence of perfluoroalkyl acids (PFAAs) in biosolids-amended and aqueous film-forming foam (AFFF)-impacted soils results in two potential pathways for movement of these environmental contaminants into terrestrial foodwebs. Uptake of PFAAs by earthworms (Eisenia fetida) exposed to unspiked soils with varying levels of PFAAs (a control soil, an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and two AFFF-impacted soils) was measured. Standard 28 day exposure experiments were conducted in each soil, and measurements taken at additional time points in the municipal soil were used to model the kinetics of uptake. Uptake and elimination rates and modeling suggested that steady state bioaccumulation was reached within 28 days of exposure for all PFAAs. The highest concentrations in the earthworms were for perfluorooctane sulfonate (PFOS) in the AFFF-impacted Soil A (2160 ng/g) and perfluorododecanoate (PFDoA) in the industrially impacted soil (737 ng/g). Wet-weight (ww) and organic carbon (OC)-based biota soil accumulation factors (BSAFs) for the earthworms were calculated after 28 days of exposure for all five soils. The highest BSAF in the industrially impacted soil was for PFDoA (0.42 goc/gww,worm). Bioaccumulation factors (BAFs, dry-weight-basis, dw) were also calculated at 28 days for each of the soils. With the exception of the control soil and perfluorodecanoate (PFDA) in the industrially impacted soil, all BAF values were above unity, with the highest being for perfluorohexanesulfonate (PFHxS) in the AFFF-impacted Soil A (139 gdw,soil/gdw,worm). BSAFs and BAFs increased with increasing chain length for the perfluorocarboxylates (PFCAs) and decreased with increasing chain length for the perfluoroalkyl sulfonates (PFSAs). The results indicate that PFAA bioaccumulation into earthworms depends on soil concentrations, soil characteristics, analyte, and duration of exposure, and that accumulation into earthworms may be a potential

  10. Persistent episodic acidification of streams linked to acid rain effects on soil

    USGS Publications Warehouse

    Lawrence, G.B.

    2002-01-01

    Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indicates that episodic acidification of streams in upland regions in the northeastern United States persists, and is likely to be much more widespread than chronic acidification. Depletion of exchangeable Ca in the mineral soil has decreased the neutralization capacity of soils and increased the role of the surface organic horizon in the neutralization of acidic soil water during episodes. Increased accumulation of N and S in the forest floor from decades of acidic deposition will delay the recovery of soil base status, and therefore, the elimination of acidic episodes, which is anticipated from decreasing emissions.

  11. Persistent episodic acidification of streams linked to acid rain effects on soil

    NASA Astrophysics Data System (ADS)

    Lawrence, G. B.

    Episodic acidification of streams, identified in the late 1980s as one of the most significant environmental problems caused by acidic deposition, had not been evaluated since the early 1990s despite decreasing levels of acidic deposition over the past decade. This analysis indicates that episodic acidification of streams in upland regions in the northeastern United States persists, and is likely to be much more widespread than chronic acidification. Depletion of exchangeable Ca in the mineral soil has decreased the neutralization capacity of soils and increased the role of the surface organic horizon in the neutralization of acidic soil water during episodes. Increased accumulation of N and S in the forest floor from decades of acidic deposition will delay the recovery of soil base status, and therefore, the elimination of acidic episodes, which is anticipated from decreasing emissions.

  12. ANALYSIS OF PERFLUORINATED CARBOXYLIC ACIDS IN SOILS: DETECTION AND QUANTITATION ISSUES AT LOW CONCENTRATIONS

    EPA Science Inventory

    Methods were developed for the extraction from soil, identification, confirmation and quantitation by LC/MS/MS of trace levels of perfluorinated octanoic acid (PFOA), perfluorinated nonanoic acid (PFNA) and perfluorinated decanoic acid (PFDA). Whereas PFOA, PFNA and PFDA all can...

  13. Evidence that the reactivity of the martian soil is due to superoxide ions

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.

    2000-01-01

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  14. Scaling up preferential flow in unsaturated undulating terrain due to anisotropic soil hydraulic conductivity and other potential mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preferential flow occurs over a range of spatial scales, where flow along certain paths may be much greater than the mean flow rate and orders of magnitude greater than along the lowest flow paths. At hillslope scales, fine-scaling soil layers may be oriented with the ground surface slope due to dep...

  15. Soil organic carbon stocks and fluxes due to land use conversions at the European scale

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Campling, P.

    2012-04-01

    European soils store around 73 to 79 billion tonnes of carbon, which is about 50 times the total CO2-equivalent emissions of the 27 Member States of the European Union in 2009 (4.6 billion tones; EEA, 2010). More than twice as much carbon is held in soils as compared to the storage in vegetation or the atmosphere. Soil organic carbon (SOC) stocks are dynamic and changes in land use, land management and climate may result in instant losses, whereas gains accumulate more slowly over several decades. The soil organic carbon cycle is based on continually supplying carbon in the form of organic matter as a food source for microorganisms, the loss of some carbon as carbon dioxide, and the assimilation of stable carbon in the soil. The organic carbon stocks and fluxes to and from the soil across the EU were quantified for agriculture, forestry and peatlands under different land use change and management scenarios taking into account climate change and using a coupled regional balance and multi-compartment soil organic matter model (Roth-C). Abolishing permanent grassland restrictions would have a negative effect on SOC stocks, which at the EU level can be quantified in a loss 30% higher than in the case of maintaining the current permanent grassland restrictions. Promoting the afforestation of 10% and 25% former set-aside land in the EU-15 would reduce the loss of SOC stock by 2030 by 19% and 65% respectively compared to conversions to arable land. An increase of the current afforestation rates by 2% would result in a 10% increase in carbon stock levels by 2030. The combined effect of the land use conversions to and from agricultural land use demonstrate an EU-27 average -9.7 tonnes/ha SOC stock loss for the worst option and a +5.0 tonnes/ha SOC stock gain for C-Rich option. Larger variations between Member States than between scenario options stem from regional differences in bio-geography, soil types and climatic regimes. The amount of stable or humified organic carbon

  16. RHIZOSPHERE MICROBIOLOGY OF CHLORINATED ETHENE CONTAMINATED SOILS: EFFECTS ON PHOSPHOLIPID FATTY ACID CONTENT

    SciTech Connect

    Brigmon, R. L.; Stanhopc, A.; Franck, M. M.; McKinsey, P. C.; Berry, C. J.

    2005-05-26

    Microbial degradation of chlorinated ethenes (CE) in rhizosphere soils was investigated at seepline areas impacted by CE plumes. Successful bioremediation of CE in rhizosphere soils is dependent on microbial activity, soil types, plant species, and groundwater CE concentrations. Seepline soils were exposed to trichloroethylene (TCE) and perchloroethylene (PCE) in the 10-50 ppb range. Greenhouse soils were exposed to 2-10 ppm TCE. Plants at the seepline were poplar and pine while the greenhouse contained sweet gum, willow, pine, and poplar. Phospholipid fatty acid (PLFA) analyses were performed to assess the microbial activity in rhizosphere soils. Biomass content was lowest in the nonvegetated control soil and highest in the Sweet Gum soil. Bacterial rhizhosphere densities, as measured by PLFA, were similar in different vegetated soils while fungi biomass was highly variable. The PLFA soil profiles showed diverse microbial communities primarily composed of Gram-negative bacteria. Adaptation of the microbial community to CE was determined by the ratio of {omega}7t/{omega}7c fatty acids. Ratios (16:1{omega}7v16:1{omega}7c and 18:l{omega}7t/18:1{omega}7c) greater than 0.1 were demonstrated in soils exposed to higher CE concentrations (10-50 ppm), indicating an adaptation to CE resulting in decreased membrane permeability. Ratios of cyclopropyl fatty acids showed that the vegetated control soil sample contained the fastest microbial turnover rate and least amount of environmental stress. PLFA results provide evidence that sulfate reducing bacteria (SRB) are active in these soils. Microcosm studies with these soils showed CE dechlorinating activity was occurring. This study demonstrates microbial adaptation to environmental contamination and supports the application of natural soil rhizosphere activity as a remedial strategy.

  17. Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Peng, Qi-An; Lin, Shan; Mo, Yongliang; Wu, Lei; Hu, Ronggui; Zhou, Wei

    2016-04-01

    Soil acidification is a major problem for sustainable agriculture since it limits productivity of several crops. Liming is usually adopted to ameliorate soil acidity that can trigger soil processes such as nitrification, denitrification, and loss of nitrogen (N) as nitrous oxide (N2O) emissions. The loss of N following liming of acidic soils can be controlled by nitrification inhibitors (such as dicyandiamide). However, effects of nitrification inhibitors following liming of acidic soils are not well understood so far. Here, we conducted a laboratory study using an acidic soil to examine the effects of dolomite and dicyandiamide (DCD) application on N2O emissions. Three levels of DCD (0, 10, and 20 mg kg(-1); DCD0, DCD10, and DCD20, respectively) were applied to the acidic soil under two levels of dolomite (0 and 1 g kg(-1)) which were further treated with two levels of N fertilizer (0 and 200 mg N kg(-1)). Results showed that N2O emissions were highest at low soil pH levels in fertilizer-treated soil without application of DCD and dolomite. Application of DCD and dolomite significantly (P ≤ 0.001) reduced N2O emissions through decreasing rates of NH4 (+)-N oxidation and increasing soil pH, respectively. Total N2O emissions were reduced by 44 and 13 % in DCD20 and dolomite alone treatments, respectively, while DCD20 + dolomite reduced N2O emissions by 54 % when compared with DCD0 treatment. The present study suggests that application of DCD and dolomite to acidic soils can mitigate N2O emissions. PMID:26620858

  18. Reactive airways dysfunction syndrome in housewives due to a bleach-hydrochloric acid mixture.

    PubMed

    Gorguner, Metin; Aslan, Sahin; Inandi, Tacettin; Cakir, Zeynep

    2004-02-01

    The sudden onset of asthmalike symptoms and persistence of airway reactivity following an acute exposure to an irritant gas or vapor has been termed reactive airways dysfunction syndrome (RADS). A mixture of sodium hypochlorite (bleach, 40%) and hydrochloric acid (18%) is commonly used as a household cleaning solution in our region. From this mixture, chlorine gas is produced, which can cause airway damage and ensuing RADS. Here we describe findings of patients with RADS due to this cleaning mixture, and determine factors associated with a favorable outcome. Data were collected retrospectively on 55 symptomatic patients presenting to our emergency department after inhalation exposure to a mixture of bleach and hydrochloric acid. Symptoms, past medical and smoking history, details of the exposure, initial peak expiratory flow rate (PEFR) and oxygenation, and acute reversibility of airways obstruction were documented. All patients met previously defined criteria for the diagnosis of RADS, but did not undergo methacholine challenge testing and bronchoalveolar lavage or histopathologic study. Fifty patients were followed over the course of 3 mo. The majority of exposures (64%) occurred in the bathroom or kitchen. Only 21 of 55 (38%) patients showed an improvement in PEFR of 15% or greater following two beta(2)-agonist inhalation treatments. In follow-up, 48 patients (87%) improved clinically and functionally (FEV(1)). Seven patients (13%) deteriorated, with ARDS developing in two, one of whom died from respiratory failure. Advanced age, initial low PEFR, exposure in a small enclosed area, use immediately after mixing, and prolonged short- and long-term exposures were associated with a poorer prognosis. This descriptive study is the largest case series in the literature of RADS developing after exposure to a bleach-hydrochloric acid mixture. The optimum acute treatment and long-term outcomes for patients with RADS due to this combination still need to be determined

  19. Detecting crop yield reduction due to irrigation-induced soil salinization in South-West Russia

    NASA Astrophysics Data System (ADS)

    Argaman, E.; Beets, W.; Croes, J.; Keesstra, S.; Verzandvoort, S.; Zeiliguer, A.

    2012-04-01

    The South-European part of the Russian Federation has experienced serious land degradation in the form of soil salinization since the 1960s. This land degradation was caused by intensive, large-scale irrigation on reclaimed land in combination with the salt-rich nature of the substrate. Alkaline soil salinity is believed to be an important factor decreasing crop yield in this area. A large research effort has been directed to the effects of soil salinity on crops, there is a need for simple, easily determinable indicators of crop health and soil salinity in irrigated systems, that can help to detect crop water stress in an early stage. The objectives of this research were to study the effects of soil salinity and vegetation water stress on the performance of alfalfa crop yield and physiological crop properties, and to study the possibility to measure soil salinity and alkalinity and the crop water stress index at plot level using a thermal gun and a regular digital camera. The study area was located in Saratov District, in the South-West part of Russia. Variables on the surface energy balance, crop properties, soil properties and visible reflectance were measured on plots with alfalfa cultures in two fields with and without signs of alkaline soil salinity, and with and without irrigation in July 2009. The research showed no clear adverse effects of soil salinity and soil alkalinity on crop yield and physiological crop properties. Soil salinity, as reflected by the electric conductivity, positively affected the root biomass of alfalfa in the range of 0.15 to 1.52 dS/m . This was a result of EC levels being below the documented threshold to negatively affect Alfalfa, as would be the case in truly saline soils. The soil pH also showed a positive correlation with root biomass within the range of pH 6.2 and 8.5 . From the literature these pH values are generally believed to be too high to exhibit a positive relationship with root biomass. No relationship was found

  20. Salt and N leaching and soil accumulation due to cover cropping practices

    NASA Astrophysics Data System (ADS)

    Gabriel, J. L.; Quemada, M.

    2012-04-01

    Nitrate leaching beyond the root zone can increase water contamination hazards and decrease crop available N. Cover crops used in spite of fallow are an alternative to reduce nitrate contamination in the vadose zone, because reducing drainage and soil mineral N accumulation. Cover crops can improve important characteristics in irrigated land as water retention capacity or soil aggregate stability. However, increasing evapotranspiration and consequent drainage below the root system reduction, could lead to soil salt accumulation. Salinity affects more than 80 million ha of arable land in many areas of the world, and one of the principal causes for yield reduction and even land degradation in the Mediterranean region. Few studies dealt with both problems at the same time. Therefore, it is necessary a long-term evaluation of the potential effect on soil salinity and nitrate leaching, in order to ensure that potential disadvantages that could originate from soil salt accumulation are compensated with all advantages of cover cropping. A study of the soil salinity and nitrate leaching was conducted during 4 years in a semiarid irrigated agricultural area of Central Spain. Three treatments were studied during the intercropping period of maize (Zea mays L.): barley (Hordeum vulgare L.), vetch (Vicia villosa L.) and fallow. Cover crops were killed in March allowing seeding of maize of the entire trial in April, and all treatments were irrigated and fertilised following the same procedure. Before sowing, and after harvesting maize and cover crops, soil salt and nitrate accumulation was determined along the soil profile. Soil analysis was conducted at six depths every 0.20 m in each plot in samples from four 0 to 1.2-m depth holes dug. The electrical conductivity of the saturated paste extract and soil mineral nitrogen was measured in each soil sample. A numerical model based on the Richards water balance equation was applied in order to calculate drainage at 1.2 m depth

  1. Non-steady State Soil Organic Carbon Storage in Undisturbed Watersheds Due to Diffusive Sediment Transport

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Amundson, R.; Heimsath, A. M.; Dietrich, W. E.

    2003-12-01

    Most soil C models assume that plant C inputs are matched by C loss through heterotrophic respiration. While these models are applicable for level terrain, on soil mantled uplands in hilly to mountainous regions, persistent soil mass transport represents a potentially large, but unstudied, flux of soil C. In this research we quantify the soil C erosional fluxes and non-steady state soil C storage within two undisturbed grass-covered hillslopes in Coastal California: Tennessee Valley (TV) (coastal Marin County) and Black Diamond (BD) (interior Contra Costa County). At both sites, previous geomorphic studies have quantified both the sediment transport processes (TV= gopher driven sediment transport; BD= abiotic soil shrink/swell) and their rates. Hillslope patterns of soil C storage were examined in relation to slope position with a hillslope sediment transport model. The average C erosion rates from convex slopes are between 1.4 and 2.7 g C m -2 yr-1 at TV and approximately 8 g C m-2 yr-1 at BD. The C erosional flux is locally as high as 14% of above ground net primary productivity (NPP) at TV and 8% at BD. The convex slopes are net C sinks because NPP likely exceeds respiration by a value equaling the size of C erosion. Eroded soils ultimately accumulate in depositional settings which have residence times on the order of 13kyrs at TV and 5.3kyrs at BD. At TV hollow, 15-24 kg C m-2 of soil C has accumulated at a long-term rate of 1.6-1.9 g C m-2 yr-1 . The present rates of C accumulation were calculated to be 0.3 g C m-2 yr-1 at TV and 0.6 g C m-2 yr-1 at BD. During the hollow infilling, the depositional C inputs have been greater than C accumulation rates, meaning that much of the incoming eroded C is ultimately oxidized to CO2. At both sites, a fraction of the eroded C is exported from the watershed (C of 0.1-0.5 g C m-2 yr-1 at TV and 2 g C m-2 yr-1 at BD). When all hillslope components are integrated, these watersheds are continuous atmospheric C sinks at rates

  2. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    DiDonato, Nicole; Chen, Hongmei; Waggoner, Derek; Hatcher, Patrick G.

    2016-04-01

    Soil humic acids are the base soluble/acid insoluble organic components of soil organic matter. Most of what we know about humic acids comes from studies of their bulk molecular properties or analysis of individual fractions after extraction from soils. This work attempts to better define humic acids and explain similarities and differences for several soils varying in degrees of humification using advanced molecular level techniques. Our investigation using electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) and nuclear magnetic resonance spectroscopy (NMR) has given new insight into the distinctive molecular characteristics of humic acids which suggest a possible pathway for their formation. Humic acids from various ecosystems, climate regions and soil textural classes are distinguished by the presence of three predominant molecular components: lignin-like molecules, carboxyl-containing aliphatic molecules and condensed aromatic molecules that bear similarity to black carbon. Results show that humification may be linked to the relative abundance of these three types of molecules as well as the relative abundance of carboxyl groups in each molecular type. This work also demonstrates evidence for lignin as the primary source of soil organic matter, particularly condensed aromatic molecules often categorized as black carbon and is the first report of the non-pyrogenic source for these compounds in soils. We also suggest that much of the carboxyl-containing aliphatic molecules are sourced from lignin.

  3. Effects of organic acids on cadmium and copper sorption and desorption by two calcareous soils.

    PubMed

    Najafi, Sarvenaz; Jalali, Mohsen

    2015-09-01

    Low molecular weight organic acids (LMWOAs) present in soil alter equilibrium pH of soil, and consequently, affect heavy metal sorption and desorption on soil constitutes. This study was conducted to investigate the effects of different concentrations (0.1, 1, 2.5, 5, 10, 30, 40, 50, 70, and 100 mM) of citric, malic, and oxalic acids on sorption and desorption of cadmium (Cd) and copper (Cu) in two calcareous soils. Increasing the concentrations of three LMWOAs decreased the equilibrium pH of soil solutions. The results indicated that increase in organic acids concentrations generally reduced Cd and Cu sorption in soils. Increase concentrations of LMWOAs generally promoted Cd and Cu desorption from soils. A valley-like curve was observed for desorption of Cu after the citric acid concentration increment in soil 2. Increasing the concentrations of three LMWOAs caused a marked decrease in Kd(sorp) values of Cd and Cu in soils. In general, citric acid was the most effective organic acid in reducing sorption and increasing desorption of both metals, and oxalic acid had the minimal impact. The results indicated that LMWOAs had a greater impact on Cu sorption and desorption than Cd, which can be attributed to higher stability constants of organic acids complexes with Cu compared to Cd. It can be concluded that by selecting suitable type and concentration of LMWOAs, mobility, and hence, bioavailability of heavy metals can be changed. So, environmental implications concerning heavy metals mobility might be derived from these findings. PMID:26298186

  4. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    NASA Astrophysics Data System (ADS)

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  5. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids.

    PubMed

    Katsumi, Naoya; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, (13)C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. PMID:26398447

  6. Environmental distribution and associated human health risk due to trace elements and organic compounds in soil in Jiangxi province, China.

    PubMed

    Teng, Yanguo; Li, Jiao; Wu, Jin; Lu, Sijin; Wang, Yeyao; Chen, Haiyang

    2015-12-01

    The government of China launched its first national soil quality and pollution survey (NSQPS) during April 2006 to December 2013. Data gathered in several earlier soil surveys were rarely used to understand the status of pollution. In this study, the dataset collected at the provincial level was analyzed for the first time. Concentrations, distribution, diversity, and human health risks of trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Se, V and Zn) and organic pollutants (benzene hexachloride (BHCs), dichlorodiphenyltrichloroethanes (DDTs), phthalic acid esters (PAEs), polycyclic aromatic hydrocarbon (PAHs), polychlorinated biphenyls (PCBs), and petroleum hydrocarbons (PHCs)) in surface soil samples collected across Jiangxi province,China were presented. The results showed that, the proportion of contaminants with concentrations higher than their corresponding regulatory reference value ranged from 0.12% to 17%. It is worth note that, the local residents are exposed to moderate non-carcinogenic and carcinogenic risks at some sites. The comprehensive analysis of soil pollutants provide baseline information for establishing a long-term soil environmental monitoring program in Jiangxi province, China. PMID:26363984

  7. Air-pollution emission control in China: impacts on soil acidification recovery and constraints due to drought.

    PubMed

    Duan, Lei; Liu, Jing; Xin, Yan; Larssen, Thorjørn

    2013-10-01

    The Chinese government has established compulsory targets to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions by 8% and 10%, respectively, during 2010-2015. In this study, the effect of the policy was evaluated by predicting the recovery of acidified forest soil in Chongqing, an area severely impacted by acid rain in southwest China. Since precipitation has decreased significantly in this area in recent years, the impact of drought on soil acidification was also considered. A dynamic acidification model, MAGIC, was used to predict future trends in soil chemistry under different scenarios for deposition reduction as well as drought. We found that the current regulation of SO2 emission abatement did not significantly increase soil water pH values, the Ca2+ to Al3+ molar ratio (Ca/Al), or soil base saturation to the level of 2000 before 2050. NOx emission control would have less of an effect on acidification recovery, while emission reduction of particulate matter could offset the benefits of SO2 reduction by greatly decreasing the deposition of base cations, particularly Ca(2+). Continuous droughts in the future might also delay acidification recovery. Therefore, more stringent SO2 emission control should be implemented to facilitate the recovery of seriously acidified areas in China. PMID:23891996

  8. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. PMID:27336313

  9. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities

    PubMed Central

    Hong, Pei-Ying; Yannarell, Anthony C.; Dai, Qinghua; Ekizoglu, Melike

    2013-01-01

    This study aimed to determine if biotic contaminants originating from pig production farms are disseminated into soil and groundwater microbial communities. A spatial and temporal sampling of soil and groundwater in proximity to pig production farms was conducted, and quantitative PCR (Q-PCR) was utilized to determine the abundances of tetracycline resistance genes (i.e., tetQ and tetZ) and integrase genes (i.e., intI1 and intI2). We observed that the abundances of tetZ, tetQ, intI1, and intI2 in the soils increased at least 6-fold after manure application, and their abundances remained elevated above the background for up to 16 months. Q-PCR further determined total abundances of up to 5.88 × 109 copies/ng DNA for tetZ, tetQ, intI1, and intI2 in some of the groundwater wells that were situated next to the manure lagoon and in the facility well used to supply water for one of the farms. We further utilized 16S rRNA-based pyrosequencing to assess the microbial communities, and our comparative analyses suggest that most of the soil samples collected before and after manure application did not change significantly, sharing a high Bray-Curtis similarity of 78.5%. In contrast, an increase in Bacteroidetes and sulfur-oxidizing bacterial populations was observed in the groundwaters collected from lagoon-associated groundwater wells. Genera associated with opportunistic human and animal pathogens, such as Acinetobacter, Arcobacter, Yersinia, and Coxiella, were detected in some of the manure-treated soils and affected groundwater wells. Feces-associated bacteria such as Streptococcus, Erysipelothrix, and Bacteroides were detected in the manure, soil, and groundwater ecosystems, suggesting a perturbation of the soil and groundwater environments by invader species from pig production activities. PMID:23396341

  10. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.

    PubMed

    Onireti, Olaronke O; Lin, Chuxia

    2016-03-01

    A batch experiment was conducted to investigate the mobilization of soil-borne arsenic by three common low-molecular-weight organic acids with a focus on dosage and time effects. The results show that oxalic acid behaved differently from citric acid and malic acid in terms of mobilizing As that was bound to iron compounds. At an equivalent molar concentration, reactions between oxalic acid and soil-borne Fe were kinetically more favourable, as compared to those between either citric acid or malic acid and the soil-borne Fe. It was found that reductive dissolution of soil-borne Fe played a more important role in liberating As, as compared to non-reductive reactions. Prior to the 7th day of the experiment, As mobility increased with increasing dose of oxalic acid while there was no significant difference (P > 0.05) in mobilized As among the treatments with different doses of citric acid or malic acid. The dosage effect on soil-borne As mobilization in the citric acid and malic acid treatments became clear only after the 7th day of the experiment. Soluble Ca present in the soils could cause re-immobilization of As by competing with solution-borne Fe for available organic ligands to form practically insoluble organic compounds of calcium (i.e. calcium oxalate). This resulted in transformation of highly soluble organic complexes of iron (i.e. iron oxalate complexes) into slightly soluble organic compounds of iron (i.e. iron oxalate) or free ferric ion, which then reacted with the solution-borne arsenate ions to form practically insoluble iron arsenates in the latter part of the experiment. PMID:26774299

  11. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    PubMed

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  12. Understanding the effect low molecular weight organic acids on the desorption and availability of soil phosphorus

    NASA Astrophysics Data System (ADS)

    Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney; George, Timothy; Shand, Charles; Lumsdon, David; Cooper, Pat; Wendler, Renate; Brown, Lawrie; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2016-04-01

    The mobility and resupply of inorganic phosphorus (P) from the soil solid phase after equilibration with increasing doses of citric acid (CA) and oxalic acid (OA) were studied in 2 soils with contrasting P status. The combined methods of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the DGT-induced fluxes in sediments model (DIFS) were used as tools to evaluate the changes in solid-to-solution interchange kinetics. A significant effect of CA and OA in soil solution P was observed only for doses over 1 mMol kg-1. Curiously, low organic acid doses (0.5-1 mMol kg-1) were associated with a steep increase in microbial biomass P, which was not seen for doses over 2 mMol kg-1. The trivalent CA was able to promote a higher increase in soil solution P than the bivalent OA for both soils. Organic phosphorus was only significantly mobilized by organic acids in the low P soil, possibly because in the high P soil these P forms were less labile than inorganic P. Both CA and OA promoted a decrease in the adsorbed-to-solution distribution coefficient, desorption rate constants and an increase in the response time of solution P equilibration. The extent of this effect was shown to be both soil specific and organic acid specific. Since both organic acids negatively affected the kinetics of P interchange between the soil matrix and the soil solution, their net effect on P bioavailability is expected to be much lower than the observed increase in solution concentration.

  13. Physical and analytical modeling of upland soil erosion due to headcut migration

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2002-12-01

    On hillslopes and agricultural fields, discrete areas of intense, localized soil erosion commonly take place in the form of migrating headcuts. These erosional features significantly increase soil loss and landscape degradation, yet the unsteady, transient, and migratory habits of headcuts complicate their phenomenological and erosional characterization. Here a unique experimental facility was constructed to examine actively migrating headcuts typical of upland concentrated flows. Essential components of the facility include a deep soil cavity with external drainage, rainfall simulator, overland flow, and a video recording technique for data collection. These experiments provided unrivalled insight into steady state soil erosion processes, self-similarity of migrating headcuts, and integral time and length scales for headcut development. Several examples of migrating headcuts and their salient characteristics will be shown using the video recordings, including the effects of flow rate, bed slope, and initial step height on headcut dimensions, turbulent flow structure within the scour hole, and the distribution of bed pressure along the headcut face. It will be shown that erosion processes are controlled by the characteristics of the overfall nappe and wall jets within the plunge pool and that modified jet impingement theory can be successfully applied to a migrating headcut. These experiments provided the insight as well as the conceptual framework for a complete analytical solution for predicting headcut migration rate, equilibrium scour depth, and total sediment flux in upland concentrated flows. Without such experiments, the formative processes of headcut erosion in soils would remain speculative at best.

  14. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. PMID:20382410

  15. Composition of exchangeable bases and acidity in soils of the Crimean Mountains

    NASA Astrophysics Data System (ADS)

    Kostenko, I. V.

    2015-08-01

    Acid forest and mountainous meadow soils of the Crimean Mountains were studied. The amount of hydrogen and aluminum ions extracted from these soils depended on the pH of extracting agents. The maximum values of the soil acidity were obtained upon the extraction with a strongly alkaline solution of sodium acetate in 0.05 N NaOH. The application of this extractant made it possible to determine the total exchange acidity, the total amount of extractable aluminum, and the total cation exchange capacity of the soils after the extraction of all the acidic components from them. The values of these characteristics were significantly higher than the values of the potential acidity and cation exchange capacity obtained by the routine analytical methods. Hydrogen predominated among the acidic components of the exchange acidity in the humus horizons, whereas aluminum predominated among them in the underlying mineral horizons. Hydrothermic conditions and the character of vegetation and parent materials were the major factors affecting the relationships between bases and acidic components in the soil adsorption complex.

  16. P Limitation and Microbial Biogeochemistry in Acidic Forest Soils of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Burke, D. J.; Elliot, H. L.; Kluber, L. A.; Carrino-Kyker, S. R.

    2010-12-01

    In forest ecosystems with acidic soils, such as many hardwood forests of the Northeastern United States, net primary productivity should be limited by phosphorus (P) because P is biologically less available at pH < 5 and nitrogen (N) has become more abundant in response to anthropogenic inputs. However, previous studies have failed to demonstrate widespread P limitation in temperate forests that have naturally acidic soil or are exposed to chronic acid deposition; such findings are contrary to biogeochemical expectations. We hypothesize that many eastern forests possess an underlying P limitation not realized at the ecosystem level. Instead, shifts in the composition, structure and function of soil microbial communities compensate by acquiring more P from organic sources and P limitation is therefore not manifested at the aboveground (plant) level. To test this hypothesis, we manipulated soil pH and P availability in 72 20 x 40 m mature hardwood forest plots across northeastern (glaciated) and southeastern (unglaciated) Ohio beginning in late summer 2009. Ten months after treatment initiation, soil pH has increased from 4.5 to 5.5 and soil P has increased from 3 to ~25 mg P/kg soil on glaciated soils and from 0.5 to ~5 mg P/kg soil on unglaciated soils. To quantify treatment responses, we measured the activity of soil extracellular enzymes associated with liberation of P, N, and C from organic matter, as well as pools of N and N cycling processes. We saw no significant effects of our treatments on pools of available ammonium or nitrate, nor did we see effects on net N mineralization and net nitrification rates. However, glaciated soils had significantly greater nitrate pools and higher N cycling rates than older unglaciated soils. Nitrogen and C cycling enzymes in treatment plots were not significantly different than control plots, but N-acetylglucosaminidase activity (N acquisition) was significantly greater in the unglaciated soils and β-glucosidase and

  17. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    EPA Science Inventory

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  18. Forms and Lability of Phosphorus in Humic Acid Fractions of Hord Silt Loam Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) has long been known to be present in soil humic fractions, but little is known about specific P forms in humic fractions, or their lability. We extracted the mobile humic acid (MHA) and recalcitrant calcium humate (CaHA) fractions from a Nebraska Hord silt loam soil under continuous c...

  19. Effect of tannic acid on the transcriptome of the soil bacterium Pseudomonas protegens Pf-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-produced organic compounds that are found in soils, are able to sequester iron, and have antimicrobial properties. We studied the effect of tannic acid on the molecular physiology of the soil-inhabiting biocontrol bacterium Pseudomonas protegens Pf-5 (formerly Pseudomonas fluoresce...

  20. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    EPA Science Inventory

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  1. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  2. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  3. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest potential for expanding the world’s agricultural frontier lies in the savanna regions of the tropics, which are dominated by Oxisols. Soil acidity and low native fertility, however, are major constraints for crop production on tropical Oxisols. Soil acidification is an ongoing natural p...

  4. Chicken manure biochar as liming agent and nutrient source for acid Appalachian soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid and highly weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity in order to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 deg C and 700 deg C with and without subsequent steam-activation, were e...

  5. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. PMID:27061366

  6. Interactions between variable-charge soils and acidic solutions containing fluoride: an investigation using repetitive extractions.

    PubMed

    Zhu, Mao-Xu; Jiang, Xin; Ji, Guo-Liang

    2004-08-01

    The reaction between two variable-charge soils and acidic solutions containing F was investigated with a repetitive extraction method. When added F concentration was 10(-4) mol/L, F did not markedly enhance solution pH in the whole prolonged extractions, in comparison with F-free acidic solution extractions. Most of the added F was adsorbed on soil surfaces and Al-F complexes were the dominant F species in solution. With increasing extractions, the fraction of Al-F slightly increased, arising from dissolution and/or desorption of Al. In comparison with F-free acidic solution extractions, F-induced Al dissolution did not significantly increase Al release, probably because of the modest reactivity of metal-F surface complexes at terminal sites at low F loading. The gradual decrease in Al release in the following extractions was due to the gradual depletion of readily reactive Al-containing mineral phases. In contrast to the low F loading, at an F concentration of 10(-3) mol/L, the pH was enhanced dramatically in the initial extraction and a high pH was maintained in the following extractions. In the initial extraction, the increase in negative surface charges and solution pH seemingly depressed proton-induced Al dissolution and enhanced readsorption of some positively charged Al-F complexes, resulting in low amounts of Al and F in solution. In the following several extractions, F-induced Al dissolution and desorption of Al-F complexes substantially enhanced the amounts of Al and F, and the fraction of Al-F complexes in solution. Several interconnected mechanisms such as ligand exchange, the release of OH(-) ions from soluble hydroxylated Al groups, desorption of Al as Al-F complexes, and F-induced breakdown of soil minerals were responsible for the alteration in pH, Al release, and the fraction of Al-F complexes in the later extractions. A molecular-level interpretation is needed in order to address the different impacts of varying F concentration levels on soil

  7. Effects of nitrogen fertilization on the acidity and salinity of greenhouse soils.

    PubMed

    Han, Jiangpei; Shi, Jiachun; Zeng, Lingzao; Xu, Jianming; Wu, Laosheng

    2015-02-01

    A greenhouse pot experiment was conducted to study the effects of conventional nitrogen fertilization on soil acidity and salinity. Three N rates (urea; N0, 0 kg N ha(-1); N1, 600 kg N ha(-1); and N2, 1,200 kg N ha(-1)) were applied in five soils with different greenhouse cultivation years to evaluate soil acidification and salinization rate induced by nitrogen fertilizer in lettuce production. Both soil acidity and salinity increased significantly as N input increased after one season, with pH decrease ranging from 0.45 to 1.06 units and electrolytic conductivity increase from 0.24 to 0.68 mS cm(-1). An estimated 0.92 mol H(+) was produced for 1 mol (NO2 (-) + NO3 (-))-N accumulation in soil. The proton loading from nitrification was 14.3-27.3 and 12.1-58.2 kmol H(+) ha(-1) in the center of Shandong Province under N1 and N2 rate, respectively. However, the proton loading from the uptake of excess bases by lettuces was only 0.3-4.5 % of that from nitrification. Moreover, the release of protons induced the direct release of base cations and accelerated soil salinization. The increase of soil acidity and salinity was attributed to the nitrification of excess N fertilizer. Compared to the proton loading by lettuce, nitrification contributed more to soil acidification in greenhouse soils. PMID:25226832

  8. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  9. Invasion of a semi-arid shrubland by annual grasses increases autotrophic and heterotrophic soil respiration rates due to altered soil moisture and temperature patterns

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Hale, I.; Lipson, D.

    2010-12-01

    Shrub <-> grassland conversions are a globally occurring phenomenon altering habitat structure, quality and nutrient cycling. Grasses and shrubs differ in their above and belowground biomass allocation, root architecture, phenology, litter quality and quantity. Conversion affects soil microbial communities, soil moisture and temperature and carbon (C) allocation patterns. However, the effect of conversion on C storage is regionally variable and there is no consistent direction of change. In Southern California invasion by annual grasses is a major threat to native shrub communities and it has been proposed that grass invasion increases NPP and ecosystem C storage (Wolkovich et al, 2009). In order to better understand how this shrub <-> grassland conversion changes ecosystem C storage it is important to understand the partitioning of soil respiration into autotrophic and heterotrophic components. Respiration was measured in plots under shrubs and grasses from February when it was cold and wet to July when it was hot and dry, capturing seasonal transitions in temperature and water availability. Roots were excluded under shrubs and grasses with root exclusion cores to quantify heterotrophic respiration. Using total soil respiration (Rt) = autotrophic respiration (root) (Ra)+ heterotrophic respiration (microbial) (Rh) the components contributing to total soil respiration can be evaluated. Respiration, soil moisture and temperature were measured daily at four hour intervals using Licor 8100 automated chamber measurements. Throughout the measurement period, Rt under grasses exceeded Rt under shrubs. Higher Rt levels under grasses were mainly due to higher Ra in grasses rather than changes in Rh. On average grass Ra was almost double shrub Ra. Higher grass respiration levels are partially explained by differences in soil moisture and temperature between shrubs and grasses. Respiration rates responded similarly to seasonal transitions regardless of treatment although Ra

  10. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  11. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil.

    PubMed

    do Nascimento, Clístenes Williams A; Amarasiriwardena, Dula; Xing, Baoshan

    2006-03-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. PMID:16125291

  12. Estimates of critical acid loads and exceedances for forest soils across the conterminous United States.

    PubMed

    McNulty, Steven G; Cohen, Erika C; Moore Myers, Jennifer A; Sullivan, Timothy J; Li, Harbin

    2007-10-01

    Concern regarding the impacts of continued nitrogen and sulfur deposition on ecosystem health has prompted the development of critical acid load assessments for forest soils. A critical acid load is a quantitative estimate of exposure to one or more pollutants at or above which harmful acidification-related effects on sensitive elements of the environment occur. A pollutant load in excess of a critical acid load is termed exceedance. This study combined a simple mass balance equation with national-scale databases to estimate critical acid load and exceedance for forest soils at a 1-km(2) spatial resolution across the conterminous US. This study estimated that about 15% of US forest soils are in exceedance of their critical acid load by more than 250eqha(-1)yr(-1), including much of New England and West Virginia. Very few areas of exceedance were predicted in the western US. PMID:17629382

  13. Nitrous oxide emissions from soil due to urine deposition by grazing cattle in Brazil

    NASA Astrophysics Data System (ADS)

    Barneze, A. S.; Mazzetto, A. M.; Zani, C. F.; Misselbrook, T.; Cerri, C. C.

    2014-08-01

    Urine deposition to the soil can result in nitrous oxide emissions through the microbial processes of nitrification and denitrification. The objective of this experiment was to estimate N2O emissions from urine depositions to grassland during summer in Southeast Brazil. A field experiment was conducted in which N2O emissions were measured from known volumes of urine applied to the soil, using the static chamber method. Measurements continued for one month after application. Application of urine to soil increased N2O fluxes compared to those from the control site. There were two significant N2O emission peaks for the urine treatment at around the 3rd and 13th days after application, the first in response to the urine application and the second most likely in response to a rainfall event. The N2O emissions accounted for 0.2% of the applied urine N. These represent the first data relating to emissions from urine depositions by grazing cattle in Brazil. Further measurements across a range of soil and weather conditions in Brazil are required to develop national and regional specific emission factors for inventory development.

  14. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.

    PubMed

    Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie

    2015-10-01

    At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration. PMID:26322369

  15. A mechanistic detachment rate model to predict soil erodibility due to fluvial and seepage forces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The erosion rate of cohesive soils is typically computed using an excess shear stress model based on the applied fluvial shear stress. However, no mechanistic approaches are available for incorporating additional forces such as localized groundwater seepage forces into the excess shear stress model...

  16. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    PubMed

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  17. Increased nitrogen leaching following soil freezing is due to decreased root uptake in a northern hardwood forest.

    PubMed

    Campbell, John L; Socci, Anne M; Templer, Pamela H

    2014-08-01

    The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen losses from soil during the following growing season. Decreased nitrogen retention is thought to be due to reduced root uptake, but has not yet been measured directly. We conducted a 2-year snow-removal experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to determine the effects of soil freezing on root uptake and leaching of inorganic nitrogen simultaneously. Snow removal significantly increased the depth of maximal soil frost by 37.2 and 39.5 cm in the first and second winters, respectively (P < 0.001 in 2008/2009 and 2009/2010). As a consequence of soil freezing, root uptake of ammonium declined significantly during the first and second growing seasons after snow removal (P = 0.023 for 2009 and P = 0.005 for 2010). These observed reductions in root nitrogen uptake coincided with significant increases in soil solution concentrations of ammonium in the Oa horizon (P = 0.001 for 2009 and 2010) and nitrate in the B horizon (P < 0.001 and P = 0.003 for 2009 and 2010, respectively). The excess flux of dissolved inorganic nitrogen from the Oa horizon that was attributable to soil freezing was 7.0 and 2.8 kg N ha(-1) in 2009 and 2010, respectively. The excess flux of dissolved inorganic nitrogen from the B horizon was lower, amounting to 1.7 and 0.7 kg N ha(-1) in 2009 and 2010, respectively. Results of this study provide direct evidence that soil freezing reduces root nitrogen uptake, demonstrating that the effects of winter climate change on root function has significant consequences for nitrogen retention and loss in forest ecosystems. PMID:24574104

  18. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  19. Influence of organic acids on the transport of heavy metals in soil.

    PubMed

    Schwab, A P; Zhu, D S; Banks, M K

    2008-06-01

    Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable. PMID:18482743

  20. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors

    PubMed Central

    Kougias, Panagiotis G.; Treu, Laura; Campanaro, Stefano; Zhu, Xinyu; Angelidaki, Irini

    2016-01-01

    The process stability of biogas plants is often deteriorated by the accumulation of Long Chain Fatty Acids (LCFA). The microbial community shifts due to LCFA disturbances have been poorly understood as the molecular techniques used were not able to identify the genome characteristics of uncultured microorganisms, and additionally, the presence of limited number of reference genomes in public databases prevented the comprehension of specific functional roles characterizing these microorganisms. The present study is the first research which deciphers by means of high throughput shotgun sequencing the dynamics of the microbial community during an inhibitory shock load induced by single pulses of unsaturated LCFA at two different concentrations (i.e. 2 g/L-reactor and 3 g/L-reactor). The metagenomic analysis showed that only the microbes associated with LCFA degradation could encode proteins related to “chemotaxis” and “flagellar assembly”, which promoted the ability to move towards the LCFA sources so as to degrade them. Moreover, the syntrophic interactions found between Syntrophomonas sp. together with Methanosarcina sp. were possibly assigned to the menaquinone-electron transfer. Finally, it was proven that a previously exposed to LCFA inoculum is more efficient in the degradation process of LCFA due to the specialization of the microbial consortium. PMID:27353502

  1. Dynamic functional characterization and phylogenetic changes due to Long Chain Fatty Acids pulses in biogas reactors.

    PubMed

    Kougias, Panagiotis G; Treu, Laura; Campanaro, Stefano; Zhu, Xinyu; Angelidaki, Irini

    2016-01-01

    The process stability of biogas plants is often deteriorated by the accumulation of Long Chain Fatty Acids (LCFA). The microbial community shifts due to LCFA disturbances have been poorly understood as the molecular techniques used were not able to identify the genome characteristics of uncultured microorganisms, and additionally, the presence of limited number of reference genomes in public databases prevented the comprehension of specific functional roles characterizing these microorganisms. The present study is the first research which deciphers by means of high throughput shotgun sequencing the dynamics of the microbial community during an inhibitory shock load induced by single pulses of unsaturated LCFA at two different concentrations (i.e. 2 g/L-reactor and 3 g/L-reactor). The metagenomic analysis showed that only the microbes associated with LCFA degradation could encode proteins related to "chemotaxis" and "flagellar assembly", which promoted the ability to move towards the LCFA sources so as to degrade them. Moreover, the syntrophic interactions found between Syntrophomonas sp. together with Methanosarcina sp. were possibly assigned to the menaquinone-electron transfer. Finally, it was proven that a previously exposed to LCFA inoculum is more efficient in the degradation process of LCFA due to the specialization of the microbial consortium. PMID:27353502

  2. Extractive and oxidative removal of copper bound to humic acid in soil.

    PubMed

    Hwang, Bo-Ram; Kim, Eun-Jung; Yang, Jung-Seok; Baek, Kitae

    2015-04-01

    Copper (Cu) is often found strongly bound to natural organic matter (NOM) in soil through the formation of strong Cu-NOM complexes. Therefore, in order to successfully remediate Cu-contaminated soils, effective removal of Cu bound to soil organic matter should be considered. In this study, we investigated soil washing methods for Cu removal from a synthetic Cu-contaminated model silica soil coated with humic acid (HA) and from field contaminated soil. Various reagents were studied to extract Cu bound to NOM, which included oxidant (H2O2), base (NaOH), and chelating agents (citric acid and ethylenediaminetetraacetic acid (EDTA)). Among the wash reagents, EDTA extracted Cu most effectively since EDTA formed very strong complexes with Cu, and Cu-HA complexes were transformed into Cu-EDTA complexes. NaOH extracted slightly less Cu compared to EDTA. HA was effectively extracted from the model soil under strongly alkaline conditions with NaOH, which seemed to concurrently release Cu bound to HA. However, chemical oxidation with H2O2 was not effective at destroying Cu-HA complexes. Fourier transform infrared spectroscopy and elemental analysis revealed that chelating agents such as citrate and EDTA were adsorbed onto the model soil via possible complexation between HA and extraction agents. The extraction of Cu from a field contaminated soil sample was effective with chelating agents, while oxidative removal with H2O2 and extractive removal with NaOH separated negligible amounts of Cu from the soil. Based on these results, Cu bound to organic matter in soil could be effectively removed by chelating agents, although remnant agents may remain in the soil. PMID:25388560

  3. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    PubMed Central

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885

  4. Chicken manure biochar as liming and nutrient source for acid Appalachian soil.

    PubMed

    Hass, Amir; Gonzalez, Javier M; Lima, Isabel M; Godwin, Harry W; Halvorson, Jonathan J; Boyer, Douglas G

    2012-01-01

    Acid weathered soils often require lime and fertilizer application to overcome nutrient deficiencies and metal toxicity to increase soil productivity. Slow-pyrolysis chicken manure biochars, produced at 350 and 700°C with and without subsequent steam activation, were evaluated in an incubation study as soil amendments for a representative acid and highly weathered soil from Appalachia. Biochars were mixed at 5, 10, 20, and 40 g kg into a Gilpin soil (fine-loamy, mixed, active, mesic Typic Hapludult) and incubated in a climate-controlled chamber for 8 wk, along with a nonamended control and soil amended with agronomic dolomitic lime (AgLime). At the end of the incubation, soil pH, nutrient availability (by Mehlich-3 and ammonium bicarbonate diethylene triamine pentaacetic acid [AB-DTPA] extractions), and soil leachate composition were evaluated. Biochar effect on soil pH was process- and rate-dependent. Biochar increased soil pH from 4.8 to 6.6 at the high application rate (40 g kg), but was less effective than AgLime. Biochar produced at 350°C without activation had the least effect on soil pH. Biochar increased soil Mehlich-3 extractable micro- and macronutrients. On the basis of unit element applied, increase in pyrolysis temperature and biochar activation decreased availability of K, P, and S compared to nonactivated biochar produced at 350°C. Activated biochars reduced AB-DTPA extractable Al and Cd more than AgLime. Biochar did not increase NO in leachate, but increased dissolved organic carbon, total N and P, PO, SO, and K at high application rate (40 g kg). Risks of elevated levels of dissolved P may limit chicken manure biochar application rate. Applied at low rates, these biochars provide added nutritional value with low adverse impact on leachate composition. PMID:22751051

  5. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  6. Reduction of potatos due to hydric soil erosion using space technology

    NASA Astrophysics Data System (ADS)

    Guyot, E. C.; Ríos, V. H.; Zelaya, D. K.; Soria, F.; Ríos, E.; Padilla, P.

    The potato's crop is in the fourth ranking of economic importance in the agricultural Gross Income of Tucuman. The geographical location of its production area makes essential the handling of the hydric soil erosion problems. The purpose of this work is to improve potato crop irrigation management using space information combined with farm practice. The field measurements were carried out using Wide Area Differential Global Position Systems FUGRO OMNISTAR, total station, and double frequency Global Position Systems. The crop irrigation was pursued through scheduling irrigation's software whose input comes from satellites of the Matutinal Constellation (LandSat 7, SACC and TERRA). The preliminary results allowed reprograming the irrigation practices for the new crop's campaign in order to decrease hydric soil erosion.

  7. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters

    SciTech Connect

    Drosos, M.; Jerzykiewicz, M.; Deligiannakis, Y.

    2009-04-15

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. {sup 13}C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation < 3 (equiv kg{sup -1}) while lignite HAs showed a higher charge variation > 3.5 (equiv kg{sup -1}).

  8. H-binding groups in lignite vs. soil humic acids: NICA-Donnan and spectroscopic parameters.

    PubMed

    Drosos, Marios; Jerzykiewicz, Maria; Deligiannakis, Yiannis

    2009-04-01

    A comparative study has been carried out for two sets of humic acids isolated from lignites and soils. H-binding data were analyzed using the NICA-Donnan model, for three Greek lignite humic acids (HA) plus IHSS Leonardite reference HA, and five Greek soil HAs plus a commercial peat HA. (13)C-CP-MAS NMR and H-binding data provide quantitative estimates for functional groups, showing that lignite HAs of diverse origin have strikingly homogeneous properties, while the H-binding structural units of soil HAs are characterized by a large degree of variability. Consistent differences between soil HA vs. lignite HA are revealed at the level of functional groups' concentrations. In the pH range 4 to 10, soil HA showed a charge variation <3 [equiv kg(-1)] while lignite HAs showed a higher charge variation >3.5 [equiv kg(-1)]. PMID:19144349

  9. Sediments deposition due to soil erosion in the watershed region of Mangla dam.

    PubMed

    Butt, Mohsin Jamil; Mahmood, Rashed; Waqas, Ahmad

    2011-10-01

    Soil erosion is the most important reason of sedimentation load of water reservoirs in the world. In Pakistan, Mangla dam is one of the most important water reservoirs used for the production of electricity and for the supply of water for irrigation purposes. However, the capacity of Mangla dam reservoir has reduced by more than 20% since its construction. This study highlights the impact of rainfall on soil erosion and consequently on sedimentation deposition in Mangla dam reservoir. Sedimentation, annual rainfall, and normal rainfall data of 39 years were used in this study. Shuttle Radar Topographic Mission data were used to calculate the total drainage area of the Mangla watershed region. The sedimentation data of Mangla reservoir from 1967 to 2005 were retrieved from Water and Power Development Authority in Pakistan. The meteorological observatories in the Mangla watershed region are identified. Annual rainfall data from 1967 to 2005 for the meteorological observatories in the Mangla watershed regions were retrieved from Pakistan Meteorological Department (PMD). In addition, normal rainfall data for the years 1949 to 1978 and for the years 1979 to 2008 were also retrieved from PMD. The impact of annual rainfall is observed on sedimentation load in Mangla dam. The correlation coefficient between annual rainfall and sedimentation load is 0.94. This study shows that with an increase in rainfall, the soil erosion of the area increases which subsequently is responsible for the increase in the rate of sedimentation load in Mangla dam. This study further demonstrates that better soil management can reduce the sedimentation load in the Mangla reservoir. PMID:21225339

  10. Global pattern of soil carbon losses due to the conversion of forests to agricultural land.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Gale, William; Li, Linhai

    2014-01-01

    Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks. PMID:24513580

  11. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community.

    PubMed

    Wu, Xiaofen; Sten, Pekka; Engblom, Sten; Nowak, Pawel; Österholm, Peter; Dopson, Mark

    2015-09-01

    Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity. PMID:25933291

  12. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  13. Localized application of soil organic matter shifts distribution of cluster roots of white lupin in the soil profile due to localized release of phosphorus

    PubMed Central

    Li, Hai-Gang; Shen, Jian-Bo; Zhang, Fu-Suo; Lambers, Hans

    2010-01-01

    Background and Aims Phosphorus (P) is a major factor controlling cluster-root formation. Cluster-root proliferation tends to concentrate in organic matter (OM)-rich surface-soil layers, but the nature of this response of cluster-root formation to OM is not clear. Cluster-root proliferation in response to localized application of OM was characterized in Lupinus albus (white lupin) grown in stratified soil columns to test if the stimulating effect of OM on cluster-root formation was due to (a) P release from breakdown of OM; (b) a decrease in soil density; or (c) effects of micro-organisms other than releasing P from OM. Methods Lupin plants were grown in three-layer stratified soil columns where P was applied at 0 or 330 mg P kg−1 to create a P-deficient or P-sufficient background, and OM, phytate mixed with OM, or perlite was applied to the top or middle layers with or without sterilization. Key Results Non-sterile OM stimulated cluster-root proliferation and root length, and this effect became greater when phytate was supplied in the presence of OM. Both sterile OM and perlite significantly decreased cluster-root formation in the localized layers. The OM position did not change the proportion of total cluster roots to total roots in dry biomass among no-P treatments, but more cluster roots were concentrated in the OM layers with a decreased proportion in other places. Conclusions Localized application of non-sterile OM or phytate plus OM stimulated cluster-root proliferation of L. albus in the localized layers. This effect is predominantly accounted for by P release from breakdown of OM or phytate, but not due to a change in soil density associated with OM. No evidence was found for effects of micro-organisms in OM other than those responsible for P release. PMID:20150198

  14. Enhanced Mineralization of [U-14C]2,4-Dichlorophenoxyacetic Acid in Soil from the Rhizosphere of Trifolium pratense

    PubMed Central

    Shaw, Liz J.; Burns, Richard G.

    2004-01-01

    Enhanced biodegradation in the rhizosphere has been reported for many organic xenobiotic compounds, although the mechanisms are not fully understood. The purpose of this study was to discover whether rhizosphere-enhanced biodegradation is due to selective enrichment of degraders through growth on compounds produced by rhizodeposition. We monitored the mineralization of [U-14C]2,4-dichlorophenoxyacetic acid (2,4-D) in rhizosphere soil with no history of herbicide application collected over a period of 0 to 116 days after sowing of Lolium perenne and Trifolium pratense. The relationships between the mineralization kinetics, the number of 2,4-D degraders, and the diversity of genes encoding 2,4-D/α-ketoglutarate dioxygenase (tfdA) were investigated. The rhizosphere effect on [14C]2,4-D mineralization (50 μg g−1) was shown to be plant species and plant age specific. In comparison with nonplanted soil, there were significant (P < 0.05) reductions in the lag phase and enhancements of the maximum mineralization rate for 25- and 60-day T. pratense soil but not for 116-day T. pratense rhizosphere soil or for L. perenne rhizosphere soil of any age. Numbers of 2,4-D degraders in planted and nonplanted soil were low (most probable number, <100 g−1) and were not related to plant species or age. Single-strand conformational polymorphism analysis showed that plant species had no impact on the diversity of α-Proteobacteria tfdA-like genes, although an impact of 2,4-D application was recorded. Our results indicate that enhanced mineralization in T. pratense rhizosphere soil is not due to enrichment of 2,4-D-degrading microorganisms by rhizodeposits. We suggest an alternative mechanism in which one or more components of the rhizodeposits induce the 2,4-D pathway. PMID:15294813

  15. Interactions of aluminum with forest soils and vegetation: Implications for acid deposition

    SciTech Connect

    Maynard, A.A.

    1989-01-01

    Recent evidence suggests that an important ecological consequence of acidic deposition is increased aluminum mobilization. There is concern that increased aluminum activity may produce toxic effects in forested ecosystems. My studies were concerned with the behavior of pedogenic and added aluminum in soils derived from chemically different parent material. Soil aluminum was related to the aluminum content of the vegetation found growing in the soils. In addition, aluminum levels of forest litter was compared to levels determined 40 years ago. Field, greenhouse, and laboratory investigations were conducted in which the effects of aluminum concentration on germination and early growth was determined. Soils were then used in greenhouse and laboratory studies to establish patterns of soil and plant aluminum behavior with implications to acid deposition. Results show that the amount of aluminum extracted was related to the pH value of the extracting solution and to the chemical characteristics of the soil. Some acid rain solutions extracted measurable amounts of aluminum from selected primary minerals. Germination and early growth of Pinus radiata was controlled by levels of aluminum in the soil or in solution. Field studies indicated that most forest species were sensitive to rising levels of aluminum in the soil. In general, ferns and fern allies were less sensitive to very high levels of aluminum in the soil, continuing to grow when more advanced dicots have disappeared. Aluminum tissue levels of all species were related to the concentration of aluminum in the soil as was the reappearance of species. Aluminum levels in leaf litter have risen at least 50% in the last 40 years. These values were consistent over 3 years. The implications to acid deposition were discussed.

  16. Polycyclic aromatic hydrocarbon removal from contaminated soils using fatty acid methyl esters.

    PubMed

    Gong, Zongqiang; Wang, Xiaoguang; Tu, Ying; Wu, Jinbao; Sun, Yifei; Li, Peng

    2010-03-01

    In this study, solubilization of PAHs from a manufactured gas plant (MGP) soil and two artificially spiked soils using fatty acid methyl esters (FAME) was investigated. PAH removals from both the MGP and the spiked soils by FAME, methanol, soybean oil, hydroxypropyl-beta-cyclodextrin, Triton X-100, and Tween 80 were compared. The effect of FAME:MGP soil ratios on PAH removals was also investigated. Results showed that the FAME mixture synthesized by our lab was more efficient than the cyclodextrin and the two surfactants used for PAH removal from the spiked soils with individual PAH concentrations of 200 and 400 mg kg(-1). However, the difference among three PAH removals by the FAME, soybean oil and methanol was not quite pronounced. The FAME synthesized and market biodiesel exhibited better performance for PAH removals (46% and 35% of total PAH) from the weathered contaminated MGP soil when compared with the other agents (0-31%). Individual PAH removals from the weathered MGP soil were much lower than those from the spiked soils. The percentages of total PAH removals from the MGP soil were 59%, 46%, and 51% for the FAME:MGP soil ratios of 1:2, 1:1, and 2:1, respectively. These results showed that the FAME could be a more attractive alternative to conventional surfactants in ex situ washing of PAH-contaminated soils. PMID:20149410

  17. Adsorption and degradation of the weak acid mesotrione in soil and environmental fate implications.

    PubMed

    Dyson, J S; Beulke, S; Brown, C D; Lane, M C G

    2002-01-01

    The ability of soils to adsorb and degrade pesticides strongly influences their environmental fate. This paper examines the adsorption and degradation of a weak acid, a new herbicide mesotrione 12-[4-(methylsulfonyl)-2-nitrobenzoyl]-1,3-cyclohexanedione], in 15 different soils from Europe and the USA. Experiments were conducted to understand the influence of soil properties, covering a wide range of soil textures, soil pH values (4.4 to 7.5), and organic carbon contents (0.6 to 3.35%). Mesotrione adsorption (Kd values ranged from 0.13 to 5.0 L/kg) was primarily related to soil pH, and to a lesser extent by percent organic carbon (%OC). As soil pH rose. mesotrione Kd values got smaller as mesotrione dissociated from the molecular to anionic form. Mesotrione degradation (half-lives ranged from 4.5 to 32 d) was also related to soil pH, getting shorter as soil pH rose. Simple regression of mesotrione adsorption against soil pH and %OC and against degradation provided a close fit to the data. The correlation between mesotrione adsorption and degradation means that Kd and half-life values are only relevant for use in environmental fate assessment if these values are "paired" for the same soil pH and %OC. The implications were as illustrated for leaching, raising important issues about combining pesticide adsorption and degradation behavior in environmental fate assessments. PMID:11931453

  18. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.

    PubMed

    Jang, Min; Hwang, Jung Sung; Choi, Sang Il

    2007-01-01

    Sequential washing techniques using single or dual agents [sodium hydroxide (NaOH) and hydrochloric acid (HCl) solutions] were applied to arsenic-contaminated soils in an abandoned iron-ore mine area. We investigated the best remediation strategies to maximize arsenic removal efficiency for both soils and arsenic-containing washing solution through conducting a series of batch experiments. Based on the results of a sequential extraction procedure, most arsenic prevails in Fe-As precipitates or coprecipitates, and iron exists mostly in the crystalline forms of iron oxide. Soil washing by use of a single agent was not effective in remediating arsenic-contaminated soils because arsenic extractions determined by the Korean standard test (KST) methods for washed soils were not lower than 6mg kg(-1) in all experimental conditions. The results of X-ray diffraction (XRD) indicated that iron-ore fines produced mobile colloids through coagulation and flocculation in water contacting the soils, containing dissolved arsenic and fine particles of ferric arsenate-coprecipitated silicate. The first washing step using 0.2M HCl was mostly effective in increasing the cationic hydrolysis of amorphous ferrihydrite, inducing high removal of arsenic. Thus, the removal step of arsenic-containing flocs can lower arsenic extractions (KST methods) of washed soils. Among several washing trials, alternative sequential washing using 0.2M HCl followed by 1M HCl (second step) and 1M NaOH solution (third step) showed reliable and lower values of arsenic extractions (KST methods) of washed soils. This washing method can satisfy the arsenic regulation of washed soil for reuse or safe disposal application. The kinetic data of washing tests revealed that dissolved arsenic was easily readsorbed into remaining soils at a low pH. This result might have occurred due to dominant species of positively charged crystalline iron oxides characterized through the sequential extraction procedure. However

  19. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  20. Plant uptake and soil retention of phthalic acid applied to Norfolk sandy loam

    SciTech Connect

    Dorney, J.R.; Weber, J.B.; Overcash, M.R.; Strek, H.J.

    1985-01-01

    Plant uptake and soil retention of /sup 14/C carboxyl-labeled phthalic acid were studied at application rates of 0.6, 6.0, 60.0, and 600.0 ppm (soil dry weight) to Norfolk sandy loam (Typic Paleudult, fine loamy, kaolinitic, thermic). Height and dry weight of corn (Zea mays L. Pioneer 3368A) (21 day), tall fescue (Festuca arundinacea Schreb. Kentucky 31) (45 day) immature soybean (Glycine max (L.) Merr. Altoona) (21 day) plant, mature soybean plant, and mature wheat (Triticum aestivum L. Butte) straw were not affected by phthalic acid applied to soil. In addition, soybean seed and wheat seed dry weight were unaffected. Immature wheat (40 day) height decreased at the 600 ppm rate. Plant uptake of phthalic acid ranged from 0 to 23 ppm and was significantly above background for all plants and plant materials except soybean pods. Fescue and immature plants exhibited the highest concentration of phthalic acid while mature wheat plants and wheat seeds exhibited the least. Most of the phthalic acid volatilized or was decomposed from the soil by the end of the study; an average of only 5.7% of the originally applied chemical was recovered in both soil or plants. An average of 0.02% of the originally applied phthalic acid leached out of the treated zone. Considering the low toxicity of phthalic acid and its relatively rapid disappearance from soil, it is unlikely to become a health hazard from contaminated plants. However, plant uptake of other toxic organics could potentially become a hazard on soils treated with sludge containing significant quantities of these substances.

  1. What can legacy datasets tell us about soil quality trends? Soil acidity in Victoria

    NASA Astrophysics Data System (ADS)

    Marchant, B. P.; Crawford, D. M.; Robinson, N. J.

    2015-07-01

    Purpose-built soil monitoring networks have been established in many countries to identify where soil functionality is threatened and to target remediation initiatives. An alternative to purpose-built soil monitoring networks is to use legacy soils information. Such information yields almost instant assessments of soil change but the results should be interpreted with caution since the information was not collected with monitoring in mind. We assess the threat of soil acidification in Victoria using two legacy datasets: (i) the Victorian Soils Information System (VSIS) which is a repository of the results of soil analyses conducted for scientific purposes since the 1950s and (ii) a database of 75 000 routine soil test results requested by farmers between 1973 and 1993. We find that the VSIS measurements are clustered in space and time and are therefore suitable for local rather than broad-scale assessments of soil change. The farmers’ results have better spatial and temporal coverage and space-time models can be used to quantify the spatial and temporal trends in the pH measurements. However, careful validation of these findings is required since we do not completely understand how the measured paddocks were selected and we cannot be certain that sampling or laboratory protocols have not changed with time.

  2. Early indications of soil recovery from acidic deposition in U.S. red spruce forests

    USGS Publications Warehouse

    Lawrence, Gregory B.; Shortle, Walter C.; David, Mark B.; Smith, Kevin T.; Warby, Richard A.F.; Lapenis, Andrei G.

    2012-01-01

    Forty to fifty percent decreases in acidic deposition through the 1980s and 1990s led to partial recovery of acidified surface waters in the northeastern United States; however, the limited number of studies that have assessed soil change found increased soil acidification during this period. From existing data, it's not clear whether soils continued to worsen in the 1990s or if recovery had begun. To evaluate possible changes in soils through the 1990s, soils in six red spruce (Picea rubens Sarg.) stands in New York, Vermont, New Hampshire, and Maine, first sampled in 1992 to 1993, were resampled in 2003 to 2004. The Oa-horizon pH increased (P 42−, which decreased the mobility of Al throughout the upper soil profile. Results indicate a nascent recovery driven largely by vegetation processes.

  3. Simulated long-term changes in river discharge and soil moisture due to global warming

    USGS Publications Warehouse

    Manabe, S.; Milly, P.C.D.; Wetherald, R.

    2004-01-01

    By use of a coupled ocean atmosphere-land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the "IS92a" scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob' increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.

  4. d-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria

    PubMed Central

    Radkov, Atanas D; McNeill, Katlyn; Uda, Koji; Moe, Luke A

    2016-01-01

    Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes. PMID:27169790

  5. D-Amino Acid Catabolism Is Common Among Soil-Dwelling Bacteria.

    PubMed

    Radkov, Atanas D; McNeill, Katlyn; Uda, Koji; Moe, Luke A

    2016-06-25

    Soil and rhizosphere environments were examined in order to determine the identity and relative abundance of bacteria that catabolize d- and l-amino acids as the sole source of carbon and nitrogen. All substrates were readily catabolized by bacteria from both environments, with most d-amino acids giving similar CFU counts to their l-amino acid counterparts. CFU count ratios between l- and d-amino acids typically ranged between 2 and 1. Isolates were phylogenetically typed in order to determine the identity of d-amino acid catabolizers. Actinobacteria, specifically the Arthrobacter genus, were abundant along with members of the α- and β-Proteobacteria classes. PMID:27169790

  6. Reversal of the surface charge asymmetry in purple membrane due to single amino acid substitutions.

    PubMed Central

    Hsu, K C; Rayfield, G W; Needleman, R

    1996-01-01

    Twenty-seven mutant bacteriorhodopsin's were screened to determine the PKa for reversal of the permanent electric dipole moment. The photoelectric response of an aqueous purple-membrane suspension was used to determine the direction of the purple-membrane dipole moment as a function of pH. The pK(a) for the dipole reversal of wild-type bacteriorhodopsin is 4.5. Six of the 27 mutant bacteriorhodopsin's were found to have a pK(a) for dipole reversal larger than that of wild-type bacteriorhodopsin. Two of these mutants, L93T and L93W, involve a neutral amino acid substitution in the interior of the protein. The direction of the purple-membrane permanent electric dipole moment is determined by the purple-membrane surface charge asymmetry. We conclude that these two substitutions, which do not involve charge replacement, alter the pK(a) for the reversal of the purple-membrane surface charge asymmetry. We suggest that these changes to the pK(a) are due to altered protein folding at the surface of the purple-membrane induced by single-site substitutions in the protein interior. PMID:9172760

  7. Emission control for precursors causing acid rain (V): Improvement of acid soil with the bio-briquette combustion ash.

    PubMed

    Dong, Xu-Hui; Sakamoto, Kazuhiko; Wang, Wei; Gao, Shi-Dong; Isobe, Yugo

    2004-01-01

    The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3-5 t/cm2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity (ANC). The pH, EC, effective nutrient elements (Ca, Mg, K, P and N), heavy metal elements (Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0-10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%-8% of the bio-briquette combustion ash to the tested soil. PMID:15559796

  8. Manganese Toxicity in Sugarcane Plantlets Grown on Acidic Soils of Southern China

    PubMed Central

    Huang, Yu Lan; Yang, Shu; Long, Guang Xia; Zhao, Zun Kang; Li, Xiao Feng; Gu, Ming Hua

    2016-01-01

    Ratoon sugarcane plantlets in southern China have suffered a serious chlorosis problem in recent years. To reveal the causes of chlorosis, plant nutrition in chlorotic sugarcane plantlets and the role of manganese (Mn) in this condition were investigated. The study results showed that the pH of soils growing chlorotic plantlets ranged from 3.74 to 4.84. The symptoms of chlorosis were similar to those of iron (Fe) deficiency while the chlorotic and non-chlorotic plantlets contained similar amount of Fe. Chlorotic plantlets had 6.4-times more Mn in their leaf tissues compared to the control plants. There was a significantly positive correlation between Mn concentration in the leaves and the exchangeable Mn concentration in the soils. Moreover, leaf Mn concentration was related to both seasonal changes in leaf chlorophyll concentration and to the occurrence of chlorosis. Basal stalks of mature sugarcanes contained up to 564.36 mg·kg-1 DW Mn. Excess Mn in the parent stalks resulted in a depress of chlorophyll concentration in the leaves of sugarcanes as indicated by lower chlorophyll concentration in the leaves of plantlets emerged from basal stalks. Ratoon sugarcane plantlets were susceptible to chlorosis due to high Mn accumulation in their leaves (456.90–1626.95 mg·kg-1 DW), while in planted canes chlorosis did not occur because of low Mn accumulation (94.64–313.41mg·kg-1 DW). On the other hand, active Fe content in chlorotic plantlets (3.39 mg kg-1 FW) was only equivalent to 28.2% of the concentration found in the control. These results indicate that chlorosis in ratoon sugarcane plantlets results from excessive Mn accumulated in parent stalks of planted cane sugarcanes grown on excessive Mn acidic soils, while active Fe deficiency in plantlets may play a secondary role in the chlorosis. PMID:27023702

  9. Understanding the mechanism behind the nitrous acid (HONO) emissions from the northern soils

    NASA Astrophysics Data System (ADS)

    Bhattarai, Hem Raj; Siljanen, Henri MP; Biasi, Christina; Maljanen, Marja

    2016-04-01

    The interest of the flux of nitrous acid (HONO) from soils has recently increased. HONO is an important source of the oxidant OH- radical in the troposphere and thus results a reduction of the greenhouse gas methane (CH4) in the atmosphere. Soils have been recently found to be potential sources of HONO as these emissions are linked to other nitrogen cycle processes, especially presence of nitrite in soils. Ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) have been suggested as possible yet substantial sources of HONO. Along with soil pH, other physical properties such as C:N, nitrogen availability, soil moisture and temperature may effect HONO emissions. Our preliminary results demonstrate that drained acidic peatlands with a low C:N produces higher NO, N2O and HONO emissions compared to those in pristine peatlands and upland forest soils. This study will identify the hotspots and the process involved in HONO emissions in northern ecosystems. Along with HONO, we will examine the emissions of NO and N2O to quantify the related N-gases emitted. These results will add a new piece of information in our knowledge of the nitrogen cycle. Soil samples will be collected from several boreal and arctic sites in Finland, Sweden and Russia. In the laboratory, soil samples will be manipulated based on previously described soil physical properties. This will be followed by labelling experiment coupled with selective nitrification inhibitor experiment in the soils. Our first hypothesis is that northern ecosystems are sources of HONO. Second, is that the soil properties (C:N ratio, moisture, N-availability, pH) regulate the magnitude of HONO emissions from northern soils. Third is that the first step of nitrification (ammonium oxidation) is the main pathway to produce HONO. This study will show that the northern ecosystems could be sources of HONO and therefore increasing the oxidizing capacity of the lower atmosphere.

  10. Ecosystem-specific selection of microbial ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Saiful Alam, M.; Ren, G.; Lu, L.; Zheng, Y.; Peng, X.; Jia, Z.

    2013-01-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the availability of ammonia substrate and the supply of oxygen. The interactions and evolutions of AOA and AOB communities along ecological gradients of substrate availability in complex environment have been much debated, but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB in response to long-term field fertilization and flooding management in an acid soil. Real-time quantitative PCR of amoA genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils, while slight decline of AOB populations was observed. DGGE fingerprints of amoA genes further revealed remarkable changes in community compositions of AOA in paddy soil when compared to upland soil. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, while the marine group 1.1a lineage predominated AOA communities in paddy soils. Irrespective of upland and paddy soils, long-term field fertilizations led to higher abundance of amoA genes of AOA and AOB than control treatment that received no fertilization, whereas archaeal amoA gene abundances outnumbered their bacterial counterpart in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster 3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatments. The results of this study suggest that the marine group 1.1a AOA could be better adapted to low-oxygen environment than AOA ecotypes of the soil group 1.1b lineage, and implicate that long-term flooding as the dominant selective force driving the community diversification of AOA populations in the acid soil tested.

  11. Rhizosphere bacterial carbon turnover is higher in nucleic acids than membrane lipids: implications for understanding soil carbon cycling

    PubMed Central

    Malik, Ashish A.; Dannert, Helena; Griffiths, Robert I.; Thomson, Bruce C.; Gleixner, Gerd

    2015-01-01

    Using a pulse chase 13CO2 plant labeling experiment we compared the flow of plant carbon into macromolecular fractions of rhizosphere soil microorganisms. Time dependent 13C dilution patterns in microbial cellular fractions were used to calculate their turnover time. The turnover times of microbial biomolecules were found to vary: microbial RNA (19 h) and DNA (30 h) turned over fastest followed by chloroform fumigation extraction-derived soluble cell lysis products (14 days), while phospholipid fatty acids (PLFAs) had the slowest turnover (42 days). PLFA/NLFA 13C analyses suggest that both mutualistic arbuscular mycorrhizal and saprophytic fungi are dominant in initial plant carbon uptake. In contrast, high initial 13C enrichment in RNA hints at bacterial importance in initial C uptake due to the dominance of bacterial derived RNA in total extracts of soil RNA. To explain this discrepancy, we observed low renewal rate of bacterial lipids, which may therefore bias lipid fatty acid based interpretations of the role of bacteria in soil microbial food webs. Based on our findings, we question current assumptions regarding plant-microbe carbon flux and suggest that the rhizosphere bacterial contribution to plant assimilate uptake could be higher. This highlights the need for more detailed quantitative investigations with nucleic acid biomarkers to further validate these findings. PMID:25914679

  12. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation

    NASA Astrophysics Data System (ADS)

    Miralles, Diego G.; Teuling, Adriaan J.; van Heerwaarden, Chiel C.; Vilà-Guerau de Arellano, Jordi

    2014-05-01

    The recent European mega-heatwaves of 2003 and 2010 broke temperature records across Europe. Although events of this magnitude were unprecedented from a historical perspective, they are expected to become common by the end of the century. However, our understanding of extreme heatwave events is limited and their representation in climate models remains imperfect. Here we investigate the physical processes underlying recent mega-heatwaves using satellite and balloon measurements of land and atmospheric conditions from the summers of 2003 in France and 2010 in Russia, in combination with a soil-water-atmosphere model. We find that, in both events, persistent atmospheric pressure patterns induced land-atmosphere feedbacks that led to extreme temperatures. During daytime, heat was supplied by large-scale horizontal advection, warming of an increasingly desiccated land surface and enhanced entrainment of warm air into the atmospheric boundary layer. Overnight, the heat generated during the day was preserved in an anomalous kilometres-deep atmospheric layer located several hundred metres above the surface, available to re-enter the atmospheric boundary layer during the next diurnal cycle. This resulted in a progressive accumulation of heat over several days, which enhanced soil desiccation and led to further escalation in air temperatures. Our findings suggest that the extreme temperatures in mega-heatwaves can be explained by the combined multi-day memory of the land surface and the atmospheric boundary layer.

  13. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  14. Red spruce germination and growth in soil-mediated regeneration microcosms under acid precipitation

    SciTech Connect

    Ho, M.

    1992-01-01

    In the past three decades, atmospheric pollution has caused substantial problems for the environment as well as for many biological processes. The objective of this study focuses on red spruce (Picea ruben Sarg.) regeneration potential and chemical change within the soil-water-plant continuum following simulated acid rain treatments. Inceptisols from three forests at 1735, 1920, and 2015 m at Mt. Mitchell, North Carolina had lower pH, bulk density, and higher organic matter, and base cations as altitude increased. Red spruce seeds were collected from two nearby standing trees at the 1735 m site. A strip-split-split plot experiment was constructed using soils from the two lower elevations, which support natural red spruce stands. Besides a control (pH 5.6, NO[sub 3]:SO[sub 4] ratio 0.10), eight treatments corresponding to two pHs (3.5 and 4.2) with four NO[sub 3]:SO[sub 4] ratios (0.20, 0.33, 0.40, and 0.67) each were used. Seedling emergence and growth, chemistry of soil. Soil leachate, and plant tissue were analyzed to test soil differences and treatment effects of acidity, nitrate, and sulfate. Temporal patterns of germination respond more to soil than to rain chemistry, but significant interactions were found. Besides higher survival, faster germinating seedlings in the 1735 m soil also produced more complex root system and more biomass. Lower root-to-shoot ratios at more acidic treatments suggest a negative effect of acidity on root growth. Canonical discriminant analysis revealed that factors controlling overall soil chemistry were dominated by soil origin, then by rain pH.

  15. Suppression of Fusarium solani f. sp. phaseoli on Bean by Aluminum in Acid Soils.

    PubMed

    Furuya, H; Takahashi, T; Matsumoto, T

    1999-01-01

    ABSTRACT The severity of bean root rot caused by Fusarium solani f. sp. phaseoli in vitro was studied with regard to exchangeable soil aluminum for 25 soil samples collected from northeastern Honshyu island, Japan. Of these, 24 were Andosols, typically acidic and of volcanic ash origin. Disease severity was assessed based on the number of lesions produced by the pathogen on a 6-cm section of bean stem buried and incubated for 8 days at 25 degrees C in artificially infested soil samples. The number of lesions differed considerably among soil samples. In all soils in which disease incidence was very low, macroconidial germination was strongly inhibited. The inhibition was observed in all soil samples with exchangeable aluminum contents of at least 0.4 meq/100 g of soil, although it is unclear if this concentration is the lowest limit for inhibition. When soil pH was 5.6 or lower, higher amounts of exchangeable aluminum were detected from soils in which the major clay mineralogy was chloritized 2:1 minerals, while no or limited amounts of aluminum were detected from soils in which the major clay mineralogy was allophane/imogolite. Macroconidial germination and disease incidence are thus closely related to clay mineralogy, which regulates the behavior of exchangeable aluminum. PMID:18944802

  16. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  17. Lanthanides in humic acids of soils, paleosols and cultural horizons (Southern Urals, Russia)

    NASA Astrophysics Data System (ADS)

    Dergacheva, Maria; Nekrasova, Olga

    2013-04-01

    In recent years, commercial interest in this element group increases. As consequence, their content may increase in environment, including soil and soil components. This requires quantitative estimations of rare metal accumulation by soils and their humic acids. The latter began to be actively used as fertilizers and it is alarming, because information about rare element participation (including lanthanides) in metabolism of live organisms is inconsistent. There was investigated lanthanide content in humic acids extracted from humus horizons of different objects of archaeological site Steppe 7 (Southern Urals, Russia). Humic acids were extracted from modern background soils and paleosols and cultural horizons of the Bronze Age as well. According to archaeological data burial of paleosols under a barrow and formation of the cultural layer (CL) took place 3600 and 3300-3200 years BP, respectively. The area of the site is located in the forest-steppe landscape, far from industrial plants. Lanthanides in soils are immobile elements, and such number of objects will allow to receive information about their content changing over time and to have more detailed basis for the future monitoring of this territory as well. Humic acids were precipitated from 0,1 n NaOH extraction after preliminary decalcification. Cleaning of humic acid preparations by 6N HCl or HF+HCl was not carried out. Determination of La, Ce, Sm, Eu, Tb, Yb and Lu was performed by multi-element neutron-activation analysis. According to carried out diagnostics and reconstruction of natural conditions of all object formation, all objects correspond to steppe type landscape with a different level of humidity. Analysis of received data has shown that cerium is presented in humic acid preparations in the largest quantities among lanthanides (on average 4,0-6,6 mg/kg of preparation mass). The average content of samarium, europium, ytterbium and lutetium in the humic acids in the order of magnitude ranges from 0

  18. Hydrological processes behind annual and decadal-scale variations in the water quality of runoff in Finnish catchments with acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Toivonen, Janne; Österholm, Peter; Fröjdö, Sören

    2013-04-01

    SummaryIn this study we assess long- and short term temporal variations in the impact of acid sulfate (a.s.) soils on river water quality. We demonstrate how such variations depend on changes in hydrological conditions driven by land use, meteorological variations and potential changes in climate with important implications on mitigation strategies, water ecology and utilization of water resources. Quality of river water discharging into the Larsmo-Öja Lake in Midwestern Finland was studied by using long term water data collected during 1963-2009. Acid sulfate soils are extremely acidic soils (pH < 4) that are known to discharge very large amounts of acidity and metals into recipient water courses, and this was also evident in the study area where extreme acidic events have occurred frequently. Looking at the whole study period, there was an abrupt and consistent decline in pH in the late 1960s and early 1970s in the main river (Esse River) that coincided with extensive drainage works that dropped the ground water level, enabling oxidation of sulfidic soils and transport of acidity to the rivers. Since then, there is a trend of decreasing acidic events and rising pH values, probably due to a continuous depletion of the acidic pool in the existing a.s. soils. In the short run, water quality varied greatly due to varying hydrological conditions between seasons and years. Generally, the impact from a.s. soils was highest during high runoff in autumn and spring, and therefore, neutralization of acidity in discharge water by liming would at such occasions be very demanding. The relationship between the runoff and water quality was, however, somewhat different during different seasons. As expected, dry summers (low ground water levels) were found to increase the impact from a.s. soils in the subsequent autumn, but only if runoff was high. Towards the end of the study period winters tended to become warmer with higher runoff and spring floods tended to occur earlier

  19. Chemical stabilization of cadmium in acidic soil using alkaline agronomic and industrial by-products.

    PubMed

    Chang, Yao-Tsung; Hsi, Hsing-Cheng; Hseu, Zeng-Yei; Jheng, Shao-Liang

    2013-01-01

    In situ immobilization of heavy metals using reactive or stabilizing materials is a promising solution for soil remediation. Therefore, four agronomic and industrial by-products [wood biochar (WB), crushed oyster shell (OS), blast furnace slag (BFS), and fluidized-bed crystallized calcium (FBCC)] and CaCO3 were added to acidic soil (Cd = 8.71 mg kg(-1)) at the rates of 1%, 2%, and 4% and incubated for 90 d. Chinese cabbage (Brassica chinensis L.) was then planted in the soil to test the Cd uptake. The elevation in soil pH caused by adding the by-products produced a negative charge on the soil surface, which enhanced Cd adsorption. Consequently, the diethylenetriamine pentaacetic acid (DTPA)-extractable Cd content decreased significantly (P < 0.05) in the incubated soil. These results from the sequential extraction procedure indicated that Cd converted from the exchangeable fraction to the carbonate or Fe-Mn oxide fraction. The long-term effectiveness of Cd immobilization caused by applying the 4 by-products was much greater than that caused by applying CaCO3. Plant shoot biomass clearly increased because of the by-product soil amendment. Cd concentration in the shoots was < 10.0 mg kg(-1) following by-product application, as compared to 24 mg kg(-1) for plants growing in unamended soil. PMID:23947715

  20. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals. PMID:27179243

  1. Desorption of copper and cadmium from soils enhanced by organic acids.

    PubMed

    Yuan, Songhu; Xi, Zhimin; Jiang, Yi; Wan, Jinzhong; Wu, Chan; Zheng, Zhonghua; Lu, Xiaohua

    2007-07-01

    The adsorption/desorption behavior of copper and cadmium on soils was investigated in this study. The adsorption isotherm of copper and cadmium conformed to Langmuir equation better than Freundlich equation. The effect of ionic strength, pH, and organic acid, including ethylenediamine tetraacetic disodium acid salt (EDTA), citric acid, oxalic acid and tartaric acid, on the desorption of copper and cadmium was studied. The desorption of copper and cadmium increased with the increase of ionic strength, while the desorption decreased with the rise of pH. The desorption of copper and cadmium enhanced by organic acids was influenced by pH. EDTA showed excellent enhancement on the desorption of both copper and cadmium; citric acid demonstrated great enhancement on the desorption of copper but negligible enhancement on the desorption of cadmium; oxalic acid enhanced the desorption of copper only at pH around 6.4 and enhanced the desorption of cadmium in the pH range from 6.4 to 10.7; tartaric acid slightly enhanced the desorption of copper but negligibly enhanced the desorption of cadmium. The desorption mechanism in the presence of organic acids were explained as the competition of complexation, adsorption and precipitation. The net effect determined the desorption efficiency. This study provided guidance for the selection of organic acids to enhance the electrokinetic (EK) remediation of copper and cadmium from contaminated soils. PMID:17349675

  2. [Changes in the amount of free amino acids in infections due to Gram-negative agents].

    PubMed

    Ivanov, V; Doĭcheva, E

    1979-01-01

    Changes of free amino acid content in blood plasma from sheep and hens infected with S. abortus ovis and P. multocida or treated with purified lipopolysaccharides (endotoxins) of the respective agent, were studied. It was established that the infection reduced total free amino acid content by about 46% in sheep and by 36% in hens. The reduction in total free amino acid content did not affect to the same extent each individual amino acid. Treatment of sheep and hens only with purified lipopolysaccharides of respectively S. abortus ovis and P. multocida resulted also in reduced total free amino acid content equal to 33% in sheep and about 59% in hens. The reduced content of total free amino acids in this case also did not concern equally the individual amino acids. However, in all cases observed, when a given amino acid was reduced during the infection period the same reduction was evident following endotoxin treatment only. The conclusion is drawn that disturbances in cell metabolism arising under the influence of endotoxins let free by the respective agent are the main cause for the reduction both of total free amino acid content and of the individual free amino acid content. PMID:543093

  3. Carbon stabilization and microbial growth in acidic mine soils after addition of different amendments for soil reclamation

    NASA Astrophysics Data System (ADS)

    Zornoza, Raúl; Acosta, Jose; Ángeles Muñoz, María; Martínez-Martínez, Silvia; Faz, Ángel; Bååth, Erland

    2016-04-01

    The extreme soil conditions in metalliferous mine soils have a negative influence on soil biological activity and therefore on soil carbon estabilization. Therefore, amendments are used to increase organic carbon content and activate microbial communities. In order to elucidate some of the factors controlling soil organic carbon stabilization in reclaimed acidic mine soils and its interrelationship with microbial growth and community structure, we performed an incubation experiment with four amendments: pig slurry (PS), pig manure (PM) and biochar (BC), applied with and without marble waste (MW; CaCO3). Results showed that PM and BC (alone or together with MW) contributed to an important increment in recalcitrant organic C, C/N ratio and aggregate stability. Bacterial and fungal growths were highly dependent on pH and labile organic C. PS supported the highest microbial growth; applied alone it stimulated fungal growth, and applied with MW it stimulated bacterial growth. BC promoted the lowest microbial growth, especially for fungi, with no significant increase in fungal biomass. MW+BC increased bacterial growth up to values similar to PM and MW+PM, suggesting that part of the biochar was degraded, at least in short-term mainly by bacteria rather than fungi. PM, MW+PS and MW+PM supported the highest microbial biomass and a similar community structure, related with the presence of high organic C and high pH, with immobilization of metals and increased soil quality. BC contributed to improved soil structure, increased recalcitrant organic C, and decreased metal mobility, with low stimulation of microbial growth.

  4. Impacts of simulated acid rain on recalcitrance of two different soils.

    PubMed

    Dai, Zhongmin; Liu, Xingmei; Wu, Jianjun; Xu, Jianming

    2013-06-01

    Laboratory experiments were conducted to estimate the impacts of simulated acid rain (SAR) on recalcitrance in a Plinthudult and a Paleudalfs soil in south China, which were a variable and a permanent charge soil, respectively. Simulated acid rains were prepared at pH 2.0, 3.5, 5.0, and 6.0, by additions of different volumes of H2SO4 plus HNO3 at a ratio of 6 to 1. The leaching period was designed to represent 5 years of local annual rainfall (1,200 mm) with a 33 % surface runoff loss. Both soils underwent both acidification stages of (1) cation exchange and (2) mineral weathering at SAR pH 2.0, whereas only cation exchange occurred above SAR pH 3.5, i.e., weathering did not commence. The cation exchange stage was more easily changed into that of mineral weathering in the Plinthudult than in the Paleudalfs soil, and there were some K(+) and Mg(2+) ions released on the stages of mineral weathering in the Paleudalfs soil. During the leaching, the release of exchangeable base cations followed the order Ca(2+) >K(+) >Mg(2+) >Na(+) for the Plinthudult and Ca(2+) >Mg(2+) >Na(+) >K(+) for the Paleudalfs soil. The SARs above pH 3.5 did not decrease soil pH or pH buffering capacity, while the SAR at pH 2.0 decreased soil pH and the buffering capacity significantly. We conclude that acid rain, which always has a pH from 3.5 to 5.6, only makes a small contribution to the acidification of agricultural soils of south China in the short term of 5 years. Also, Paleudalfs soils are more resistant to acid rain than Plinthudult soils. The different abilities to prevent leaching by acid rain depend upon the parent materials, types of clay minerals, and soil development degrees. PMID:23247514

  5. Acid deposition and the acidification of soils and waters

    SciTech Connect

    Reuss, J.O.; Johnson, D.W.

    1985-01-01

    A conceptual model of acid deposition is presented consistent with established physicochemical principles and the bulk of available information. The authors seek to provide insight into probable long-term effects of acid deposition; a testable hypotheses; plus design and interpretation of the research. (PSB)

  6. Improved Detection of Polygalacturonase Activity due to Mucor piriformis with a Modified Dinitrosalicylic Acid Reagent.

    PubMed

    Wang, G; Michailides, T J; Bostock, R M

    1997-02-01

    ABSTRACT An assay for determination of galacturonic acid with 3,5-dinitrosalicylic acid was developed that substantially extends the linear range of detection compared to a previously published method with this reagent. In the improved assay, galacturonic acid was detected with a reagent containing 44 mM 3,5-dinitrosalicylic acid, 4 mM sodium sulfite, and 375 mM sodium hydroxide. The absorbance of the solution after reaction with galacturonic acid was determined at 575 nm and was linear at concentrations of galacturonic acid up to 50 mumol, with a lower limit of detection at ~400 nmol. The assay with the improved reagent could be performed in wavelength ranges from 550 to 575 nm, with higher sensitivity at the shorter wavelengths. The new reagent was used in routine assays of polygalacturonase activity in culture filtrates of the important postharvest fungal pathogen Mucor piriformis. PMID:18945136

  7. Influence of soil tillage and erosion on the dispersion of glyphosate and aminomethylphosphonic acid in agricultural soils

    NASA Astrophysics Data System (ADS)

    Todorovic, Gorana Rampazzo; Rampazzo, Nicola; Mentler, Axel; Blum, Winfried E. H.; Eder, Alexander; Strauss, Peter

    2014-03-01

    Erosion processes can strongly influence the dissipation of glyphosate and aminomethylphosphonic acid applied with Roundup Max® in agricultural soils; in addition, the soil structure state shortly before erosive precipitations fall can be a key parameter for the distribution of glyphosate and its metabolite. Field rain simulation experiments showed that severe erosion processes immediately after application of Roundup Max® can lead to serious unexpected glyphosate loss even in soils with a high presumed adsorption like the Cambisols, if their structure is unfavourable. In one of the no-tillage-plot of the Cambisol, up to 47% of the applied glyphosate amount was dissipated with surface run-off. Moreover, at the Chernozem site with high erosion risk and lower adsorption potential, glyphosate could be found in collected percolation water transported far outside the 2x2 m experimental plots. Traces of glyphosate were found also outside the treated agricultural fields.

  8. Using spin labels to study molecular processes in soils: Covalent binding of aromatic amines to humic acids of soils

    NASA Astrophysics Data System (ADS)

    Aleksandrova, O. N.; Kholodov, V. A.; Perminova, I. V.

    2015-08-01

    Interactions of aliphatic and aromatic amines with soil and humic acids isolated from it are studied by means of spin labels and electron paramagnetic resonance (EPR) spectroscopy. Nitroxyl radicals containing amino groups are used as spin labels. It is found experimentally that aromatic amines are instantaneously converted to the bound state. It is shown that the microareas of their incorporation are characterized by a significant delay in the reduction of the nitroxyl fragment of spin-label molecules, indicating the formation of condensed structures typical of an oxidative binding mechanism. It is concluded that aliphatic amines do not bind to humic acids. It is noted that the studied process allows elucidating the formation of bound xenobiotic residues in soils.

  9. Contribution of ants in modifying of soil acidity and particle size distribution

    NASA Astrophysics Data System (ADS)

    Morgun, Alexandra; Golichenkov, Maxim

    2015-04-01

    Being a natural body, formed by the influence of biota on the upper layers of the Earth's crust, the soil is the most striking example of biogenic-abiogenic interactions in the biosphere. Invertebrates (especially ants that build soil nests) are important agents that change soil properties in well developed terrestrial ecosystems. Impact of soil microorganisms on soil properties is particularly described in numerous literature and concerns mainly chemical properties and general indicators of soil biological activity. Influence of ants (as representatives of the soil mesofauna) mostly appears as mechanical movement of soil particles and aggregates, and chemical effects caused by concentration of organic matter within the ant's nest. The aim of this research was to evaluate the effect of ants on physical and chemical soil attributes such as particle size distribution and soil acidity. The samples were taken from aerial parts of Lasius niger nests, selected on different elements of the relief (summit position, slope, terrace and floodplain) in the Arkhangelsk region (north of the European part of Russia) and compared with the specimens of the upper horizons of the reference soils. Particle size distribution was determined by laser diffraction method using laser diffraction particle size analyzer «Analysette 22 comfort» (FRITSCH, Germany). The acidity (pH) was determined by potentiometry in water suspension. Particle size distribution of the samples from the nests is more variable as compared to the control samples. For example, the content of 5-10 μm fraction ranges from 9% to 12% in reference soils, while in the anthill samples the variation is from 8% to 15%. Similarly, for 50-250 μm fraction - it ranges from 15% to 18% in reference soils, whereas in anthills - from 6% to 29%. The results of particle size analysis showed that the reference sample on the terrace has silty loam texture and nests soil L. niger are medium loam. The reference soil on the slope is

  10. Acid Loading of Soils by Magmatic CO2 at Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    McGee, K. A.; Gerlach, T. M.; Doukas, M. P.

    2003-12-01

    Areas of tree kill appeared in the early 1990's after a shallow intrusion of magma under the south flank of Mammoth Mountain, California. Subsequent field measurements have revealed high concentrations of soil CO2 in these areas, the locations of which are controlled by faults and fractures that serve as conduits for magmatic CO2 streaming to the surface from depth. Detailed surveys at the largest of these tree-kill areas, Horseshoe Lake, about 14 ha in size, have consistently shown soil CO2 concentrations that range up to 90% or greater in the shallow soil layers. Continuous soil CO2 monitoring stations established in 1995 at Horseshoe Lake reveal a pattern of both short-term and seasonal variations in magmatic CO2. Because the pressure of CO2 is externally fixed by CO2 streaming to the surface, carbonic acid activity is constrained by open-system buffering of magmatic CO2. Eight years of intensive soil CO2 monitoring have documented a consistent pattern whereby pH values as low as 4 can be achieved in the soil solution during spring melting of the winter snow pack. Coupled with the seasonal drop in pH, aluminum, which can also be toxic to forest ecosystems, is released from soils in those areas with the highest CO2 concentrations. After more than a decade of exposure to elevated levels of CO2 and repeated cycles of acid loading, along with nearly complete tree and vegetation mortality and the release of Al3+, the soils at Horseshoe Lake and the other areas of tree kill may not recover their ability to sustain any significant level of forest production for several years, even if the CO2 degassing should stop immediately. The level of in-situ acid loading by magmatic CO2 in the tree kill areas around Mammoth Mountain rivals that of the better known process of rain-out of acid gases from volcanic plumes in the troposphere.

  11. Effect of Tannic Acid on the Transcriptome of the Soil Bacterium Pseudomonas protegens Pf-5

    PubMed Central

    Lim, Chee Kent; Penesyan, Anahit; Hassan, Karl A.

    2013-01-01

    Tannins are a diverse group of plant-produced, polyphenolic compounds with metal-chelating and antimicrobial properties that are prevalent in many soils. Using transcriptomics, we determined that tannic acid, a form of hydrolysable tannin, broadly affects the expression of genes involved in iron and zinc homeostases, sulfur metabolism, biofilm formation, motility, and secondary metabolite biosynthesis in the soil- and rhizosphere-inhabiting bacterium Pseudomonas protegens Pf-5. PMID:23435890

  12. Characterization of humic acids from antarctic soils by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Chukov, S. N.; Abakumov, E. V.; Tomashunas, V. M.

    2015-11-01

    The elemental composition and structural features of humic acids (HAs) from Antarctic soils (King George Island, Larsemann Hills, Lindsay Island) have been studied. It has been found that their elemental composition and molecular structure are intermediate between those of the HAs and fulvic acids (FAs) of Eurasian soils (from the average values). The degree of hydrophilicity of the studied HAs is comparable to that of FAs. The low content of aromatic moieties in the HAs is related to the absence or very low proportions of phenyl propane fragments in the sources of humus formation. It has been shown that the HAs from Antarctic soils compose a separate group of humic acids whose specific features are related to hard climatic conditions and specific features of humus formation sources.

  13. Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid.

    PubMed

    Su, Xiaojuan; Zhu, Jun; Fu, Qingling; Zuo, Jichao; Liu, Yonghong; Hu, Hongqing

    2015-02-01

    Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP+OA, and the TCLP-Pb was <5 mg/L for the red soil at P:Pb molar ratio 4.0. Water-soluble Pb could not be detected and the TCLP-Pb was <5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APR was most effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pb molar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability. PMID:25662240

  14. Carbon and nitrogen mineralization in vineyard acid soils amended with a bentonitic winery waste

    NASA Astrophysics Data System (ADS)

    Fernández-Calviño, David; Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2015-04-01

    Carbon mineralization and nitrogen ammonification processes were determined in different vineyard soils. The measurements were performed in samples non-amended and amended with different bentonitic winery waste concentrations. Carbon mineralization was measured as CO2 released by the soil under laboratory conditions, whereas NH4+ was determined after its extraction with KCl 2M. The time evolution of both, carbon mineralization and nitrogen ammonification, was followed during 42 days. The released CO2 was low in the analyzed vineyard soils, and hence the metabolic activity in these soils was low. The addition of the bentonitic winery waste to the studied soils increased highly the carbon mineralization (2-5 fold), showing that the organic matter added together the bentonitic waste to the soil have low stability. In both cases, amended and non-amended samples, the maximum carbon mineralization was measured during the first days (2-4 days), decreasing as the incubation time increased. The NH4+ results showed an important effect of bentonitic winery waste on the ammonification behavior in the studied soils. In the non-amended samples the ammonification was no detected in none of the soils, whereas in the amended soils important NH4+ concentrations were detected. In these cases, the ammonification was fast, reaching the maximum values of NH4 between 7 and 14 days after the bentonitic waste additions. Also, the percentages of ammonification respect to the total nitrogen in the soil were high, showing that the nitrogen provided by the bentonitic waste to the soil is non-stable. The fast carbon mineralization found in the soils amended with bentonitic winery wastes shows low possibilities of the use of this waste for the increasing the organic carbon pools in the soil.On the other hand, the use of this waste as N-fertilizer can be possible. However, due its fast ammonification, the waste should be added to the soils during active plant growth periods.

  15. Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio

    2016-04-01

    Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015

  16. A conceptual framework: redefining forest soil's critical acid loads under a changing climate.

    PubMed

    McNulty, Steven G; Boggs, Johnny L

    2010-06-01

    Federal agencies of several nations have or are currently developing guidelines for critical forest soil acid loads. These guidelines are used to establish regulations designed to maintain atmospheric acid inputs below levels shown to damage forests and streams. Traditionally, when the critical soil acid load exceeds the amount of acid that the ecosystem can absorb, it is believed to potentially impair forest health. The excess over the critical soil acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical soil acid load applies to exposure of the soil to a single, long-term pollutant (i.e., acidic deposition). However, ecosystems can be simultaneously under multiple ecosystem stresses and a single critical soil acid load level may not accurately reflect ecosystem health risk when subjected to multiple, episodic environmental stress. For example, the Appalachian Mountains of western North Carolina receive some of the highest rates of acidic deposition in the eastern United States, but these levels are considered to be below the critical acid load (CAL) that would cause forest damage. However, the area experienced a moderate three-year drought from 1999 to 2002, and in 2001 red spruce (Picea rubens Sarg.) trees in the area began to die in large numbers. The initial survey indicated that the affected trees were killed by the southern pine beetle (Dendroctonus frontalis Zimm.). This insect is not normally successful at colonizing these tree species because the trees produce large amounts of oleoresin that exclude the boring beetles. Subsequent investigations revealed that long-term acid deposition may have altered red spruce forest structure and function. There is some evidence that elevated acid deposition (particularly nitrogen) reduced tree water uptake potential, oleoresin production, and caused the trees to become more susceptible to insect colonization during the drought period

  17. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    PubMed

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health. PMID:27329475

  18. Effect of simulated acid rain on nitrate and ammonium production in soils from three ecosystems of Camels Hump Mountain, Vermont

    SciTech Connect

    Like, D.E.; Klein, R.M.

    1985-11-01

    The authors removed intact soil columns from the Harwood (550 to 790 m), Transition (790 to 1050 m), and Conifer (1050 to 1160 m) ecological zones of Camels Hump Mountain, Vermont, treated them with simulated acid rain (pH 4.0) or nonacidic (pH 5.6) rain, and examined the percolates for ammonium and nitrate ions. Nitrification in soils from all three ecosystems was unaffected by acidic treatments, but mineralization was stimulated by acidic treatment of soil from the Transition Zone. Irrespective of treatment, Conifer Zone soils released less nitrate than did either Transition or Hardwood Zone soils. Soil columns from the Hardwood Zone were treated with acidic or nonacidic simulated rainfall supplemented with nitrate, ammonium, or both N sources. NO3-N in percolates increased when acidic simulated rain was supplemented with ammonium ion or both ammonium and nitrate ions. Efflux of NH4-N was unaffected by supplementing precipitation with either ammonium or nitrate ions.

  19. Effects of ammonium application rate on uptake of soil adsorbed amino acids by rice*

    PubMed Central

    Cao, Xiao-chuang; Ma, Qing-xu; Wu, Liang-huan; Zhu, Lian-feng; Jin, Qian-yu

    2016-01-01

    In recent years, excessive use of chemical nitrogen (N) fertilizers has resulted in the accumulation of excess ammonium (NH4 +) in many agricultural soils. Though rice is known as an NH4 +-tolerant species and can directly absorb soil intact amino acids, we still know considerably less about the role of high exogenous NH4 + content on rice uptake of soil amino acids. This experiment examined the effects of the exogenous NH4 + concentration on rice uptake of soil adsorbed glycine in two different soils under sterile culture. Our data showed that the sorption capacity of glycine was closely related to soils’ physical and chemical properties, such as organic matter and cation exchange capacity. Rice biomass was significantly inhibited by the exogenous NH4 + content at different glycine adsorption concentrations. A three-way analysis of variance demonstrated that rice glycine uptake and glycine nutritional contribution were not related to its sorption capacity, but significantly related to its glycine:NH4 + concentration ratio. After 21-d sterile cultivation, the rice uptake of adsorbed glycine accounted for 8.8%‒22.6% of rice total N uptake, which indicates that soil adsorbed amino acids theoretically can serve as an important N source for plant growth in spite of a high NH4 + application rate. However, further studies are needed to investigate the extent to which this bioavailability is realized in the field using the 13C, 15N double labeling technology.

  20. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea

    PubMed Central

    Lu, Lu; Han, Wenyan; Zhang, Jinbo; Wu, Yucheng; Wang, Baozhan; Lin, Xiangui; Zhu, Jianguo; Cai, Zucong; Jia, Zhongjun

    2012-01-01

    The hydrolysis of urea as a source of ammonia has been proposed as a mechanism for the nitrification of ammonia-oxidizing bacteria (AOB) in acidic soil. The growth of Nitrososphaera viennensis on urea suggests that the ureolysis of ammonia-oxidizing archaea (AOA) might occur in natural environments. In this study, 15N isotope tracing indicates that ammonia oxidation occurred upon the addition of urea at a concentration similar to the in situ ammonium content of tea orchard soil (pH 3.75) and forest soil (pH 5.4) and was inhibited by acetylene. Nitrification activity was significantly stimulated by urea fertilization and coupled well with abundance changes in archaeal amoA genes in acidic soils. Pyrosequencing of 16S rRNA genes at whole microbial community level demonstrates the active growth of AOA in urea-amended soils. Molecular fingerprinting further shows that changes in denaturing gradient gel electrophoresis fingerprint patterns of archaeal amoA genes are paralleled by nitrification activity changes. However, bacterial amoA and 16S rRNA genes of AOB were not detected. The results strongly suggest that archaeal ammonia oxidation is supported by hydrolysis of urea and that AOA, from the marine Group 1.1a-associated lineage, dominate nitrification in two acidic soils tested. PMID:22592820

  1. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil.

    PubMed

    Cui, Hongbiao; Fan, Yuchao; Yang, John; Xu, Lei; Zhou, Jing; Zhu, Zhenqiu

    2016-10-01

    Phytoremediation is a potential cost-effective technology for remediating heavy metal-contaminated soils. In this study, we evaluated the biomass and accumulation of copper (Cu) and cadmium (Cd) of plant species grown in a contaminated acidic soil treated with limestone. Five species produced biomass in the order: Pennisetum sinese > Elsholtzia splendens > Vetiveria zizanioides > Setaria pumila > Sedum plumbizincicola. Over one growing season, the best accumulators for Cu and Cd were Pennisetum sinese and Sedum plumbizincicola, respectively. Overall, Pennisetum sinese was the best species for Cu and Cd removal when biomass was considered. However, Elsholtzia splendens soil had the highest enzyme activities and microbial populations, while the biological properties in Pennisetum sinese soil were moderately enhanced. Results would provide valuable insights for phytoremediation of metal-contaminated soils. PMID:27434253

  2. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    PubMed

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2016-02-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. PMID:26681519

  3. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    PubMed Central

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V.; van Eeuwijk, Fred A.; Magalhaes, Jurandir Vieira

    2015-01-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. PMID:26681519

  4. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems.

    PubMed

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250-2000 μm) and fine sand (53-250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553

  5. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems

    PubMed Central

    Tan, Wenbing; Zhang, Yuan; He, Xiaosong; Xi, Beidou; Gao, Rutai; Mao, Xuhui; Huang, Caihong; Zhang, Hui; Li, Dan; Liang, Qiong; Cui, Dongyu; Alshawabkeh, Akram N.

    2016-01-01

    The use of wastewater irrigation for food crops can lead to presence of bioavailable phthalic acid esters (PAEs) in soils, which increase the potential for human exposure and adverse carcinogenic and non-cancer health effects. This study presents the first investigation of the occurrence and distribution of PAEs in a maize-wheat double-cropping system in a wastewater-irrigated area in the North China Plain. PAE levels in maize and wheat were found to be mainly attributed to PAE stores in soil coarse (250–2000 μm) and fine sand (53–250 μm) fractions. Soil particle-size fractions with higher bioavailability (i.e., coarse and fine sands) showed greater influence on PAE congener bioconcentration factors compared to PAE molecular structures for both maize and wheat tissues. More PAEs were allocated to maize and wheat grains with increased soil PAE storages from wastewater irrigation. Additional findings showed that levels of both non-cancer and carcinogenic risk for PAE congeners in wheat were higher than those in maize, suggesting that wheat food security should be prioritized. In conclusion, increased soil PAE concentrations specifically in maize and wheat grains indicate that wastewater irrigation can pose a contamination threat to food resources. PMID:27555553

  6. Humic Acid-Oxidizing, Nitrate-Reducing Bacteria in Agricultural Soils

    PubMed Central

    Van Trump, J. Ian; Wrighton, Kelly C.; Thrash, J. Cameron; Weber, Karrie A.; Andersen, Gary L.; Coates, John D.

    2011-01-01

    ABSTRACT This study demonstrates the prevalence, phylogenetic diversity, and physiology of nitrate-reducing microorganisms capable of utilizing reduced humic acids (HA) as electron donors in agricultural soils. Most probable number (MPN) enumeration of agricultural soils revealed large populations (104 to 106 cells g−1 soil) of microorganisms capable of reducing nitrate while oxidizing the reduced HA analog 2,6-anthrahydroquinone disulfonate (AH2DS) to its corresponding quinone. Nitrate-dependent HA-oxidizing organisms isolated from agricultural soils were phylogenetically diverse and included members of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Advective up-flow columns inoculated with corn plot soil and amended with reduced HA and nitrate supported both HA oxidation and enhanced nitrate reduction relative to no-donor or oxidized HA controls. The additional electron donating capacity of reduced HA could reasonably be attributed to the oxidation of reduced functional groups. Subsequent 16S rRNA gene-based high-density oligonucleotide microarray (PhyloChip) indicated that reduced HA columns supported the development of a bacterial community enriched with members of the Acidobacteria, Firmicutes, and Betaproteobacteria relative to the no-donor control and initial inoculum. This study identifies a previously unrecognized role for HA in stimulating denitrification processes in saturated soil systems. Furthermore, this study indicates that reduced humic acids impact soil geochemistry and the indigenous bacterial community composition. PMID:21750120

  7. Comparison of Copper Sorption on Lignite and on Soils of Different Types and Their Humic Acids

    SciTech Connect

    Pekar, M.; Klucakova, M.

    2008-10-15

    We compared the sorption of copper on South Moravian lignite with that on several soils from Slovakia, using batch adsorption at a laboratory temperature of 25{sup o}C followed by a two-step desorption procedure. The results confirmed that lignite has a copper-sorption capacity and copper-binding strength that is comparable to or better than that of the Slovakian soils that we investigated. We compared these results with previously obtained data for sorption on humic acids (HA) isolated from lignite and soils. Although soil constituents other than HA, such as fulvic acids and mineral particles, also control metal sorption, HA bind copper at higher capacity and with greater strength than do the whole matrices of the soils we tested, and lignite showed a greater binding strength for copper than any of these soils. Our results thus far indicate that natural lignite mined in the Czech Republic, or lignite-derived HA, are potential agents for in situ soil remediation.

  8. Organic Carbon Stabilization of Soils Formed on Acidic and Calcareous Bedrocks in Neotropical Alpine Grassland, Peru

    NASA Astrophysics Data System (ADS)

    Yang, Songyu; Cammeraat, Erik; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2016-04-01

    Increasing evidence shows that Neotropical alpine ecosystems are vulnerable to global change. Since soils in the alpine grasslands of the Peruvian Andean region have large soil organic carbon (SOC) stocks, profound understanding of soil organic matter (OM) stabilization mechanisms will improve the prediction of the feedback between SOC stocks and global change. It is well documented that poor-crystalline minerals and organo-metallic complexes significantly contribute to the OM stabilization in volcanic ash soils, including those in the Andean region. However, limited research has focused on non-ash soils that also express significant SOC accumulation. A pilot study of Peruvian Andean grassland soils suggests that lithology is a prominent factor for such carbon accumulation. As a consequence of contrasting mineral composition and pedogenic processes in soils formed on different non-volcanic parent materials, differences in OM stabilization mechanisms may be profound and consequently may respond differently to global change. Therefore, our study aims at a further understanding of carbon stocks and OM stabilization mechanisms in soils formed on contrasting bedrocks in the Peruvian Andes. The main objective is to identify and compare the roles that organo-mineral associations and aggregations play in OM stabilization, by a combination of selective extraction methods and fractionations based on density, particle size and aggregates size. Soil samples were collected from igneous acidic and calcareous sedimentary bedrocks in alpine grassland near Cajamarca, Peru (7.17°S, 78.63°W), at around 3700m altitude. Samples were taken from 3 plots per bedrock type by sampling distinguishable horizons until the C horizons were reached. Outcomes confirmed that both types of soil accumulate large amounts of carbon: 405.3±41.7 t/ha of calcareous bedrock soil and 226.0±5.6 t/ha of acidic bedrock soil respectively. In addition, extremely high carbon contents exceeding 90g carbon per

  9. Sorption of {sup 60}Co, {sup 85}Sr, {sup 137}Cs, {sup 237}Np and {sup 241}Am on soil under coexistence of humic acid: Effects of molecular size of humic acid

    SciTech Connect

    Tanaka, Tadao; Senoo, Muneaki

    1995-12-31

    Sorption experiments have been performed by a batch method, to study the effects of humic acid of different molecular size on the complexing stability with {sup 60}Co, {sup 85}Sr, {sup 137}Cs, {sup 237}Np and {sup 241}Am, and on the sorption behavior of these radionuclides on a sandy soil. Equilibrium constants K in the sorption of {sup 137}Cs and {sup 237}Np onto the soil were not changed at different concentrations of humic acid since {sup 137}Cs and {sup 237}Np do not interact with humic acid, while those of {sup 60}Co and {sup 241}Am decreased with increasing humic acid concentration due to forming humic complexes. However, the K of {sup 85}Sr was not changed at different humic acid concentrations, despite {sup 85}Sr interacts with humic acid. This contradiction was probably caused from that a main binding of {sup 85}Sr with humic acid is not based on coordination bond but electrostatic force, due to relatively high concentration of non-radioactive strontium. The theoretical sorption model taking account of the interaction of {sup 60}Co and {sup 241}Am with humic acid could well reproduce the values of K for each radionuclide at different concentrations of humic acid. Concentration profiles of the radionuclides in each size fraction of the solution before and after the sorption experiments were examined by ultrafiltration technique. The reduction of concentration of {sup 60}Co in the fraction less than 300,000 of cutoff molecular weight (MW) and that of concentration of {sup 241}Am in the fraction larger than 100,000MW, respectively, by the sorption onto the soil decreased with increasing humic acid concentration. This decrease resulted in the decrease in the K of {sup 60}Co and {sup 241}Am with increasing humic acid concentration.

  10. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.

    PubMed

    Ali, M A; Louche, J; Legname, E; Duchemin, M; Plassard, C

    2009-12-01

    Young seedlings of maritime pine (Pinus pinaster Soland in Aït.) were grown in rhizoboxes using intact spodosol soil samples from the southwest of France, in Landes of Gascogne, presenting a large variation of phosphorus (P) availability. Soils were collected from a 93-year-old unfertilized stand and a 13-year-old P. pinaster stand with regular annual fertilization of either only P or P and nitrogen (N). After 6 months of culture in controlled conditions, different morphotypes of ectomycorrhiza (ECM) were used for the measurements of acid phosphatase activity and molecular identification of fungal species using amplification of the ITS region. Total biomass, N and P contents were measured in roots and shoots of plants. Bicarbonate- and NaOH-available inorganic P (Pi), organic P (Po) and ergosterol concentrations were measured in bulk and rhizosphere soil. The results showed that bulk soil from the 93-year-old forest stand presented the highest Po levels, but relatively higher bicarbonate-extractable Pi levels compared to 13-year-old unfertilized stand. Fertilizers significantly increased the concentrations of inorganic P fractions in bulk soil. Ergosterol contents in rhizosphere soil were increased by fertilizer application. The dominant fungal species was Rhizopogon luteolus forming 66.6% of analysed ECM tips. Acid phosphatase activity was highly variable and varied inversely with bicarbonate-extractable Pi levels in the rhizosphere soil. Total P or total N in plants was linearly correlated with total plant biomass, but the slope was steep only between total P and biomass in fertilized soil samples. In spite of high phosphatase activity in ECM tips, P availability remained a limiting nutrient in soil samples from unfertilized stands. Nevertheless young P. pinaster seedlings showed a high plasticity for biomass production at low P availability in soils. PMID:19840995

  11. The effectiveness of surface liming in ameliorating the phytotoxic effects of soil contaminated by copper acid leach pad solution in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    Golos, Peter

    2016-04-01

    collected at >10 cm depth than the control. Mean soil pH at 0-10 cm was higher (>7.2) at all sites treated with lime compared to uncontaminated soil (5.5). At depths greater than 10 cm soil pH was <4.6. Soil copper was >16 mg/kg in all contaminated soil samples compared to 0.5 mg/kg in control. High seedling mortality in contaminated site is attributed to low soil pH and elevated soil copper levels which inhibited plant root growth and hence access to soil water. While surface liming of soil increased soil pH ameliorating the effect of elevated soil copper, this was only effective in the top 10 cm due to low solubility of hydrated lime. To improve seedling survival lime will need to be incorporated into the contaminated soil profile to allow plants to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context. To improve the success of vegetation restoration of sites contaminated with acidic copper solution, lime needs to be incorporated into the contaminated soil profile to allow plant roots to access soil water at depth. This study highlights the importance of the need to assess the phytotoxic effects of soil contamination and the effectiveness of amelioration treatments and with proper reference to its ecological context.

  12. Freshwater benthic algal population and community changes due to acidity and aluminum-acid mixtures in artificial streams

    SciTech Connect

    Genter, R.B.; Amyot, D.J. )

    1994-03-01

    Communities of freshwater benthic algae were exposed to water acidified daily to pH 4.8 along and in mixtures with 50, 100, or 500 [mu]g L[sup [minus]1] Al. Daily acidification to nominal pH 4.8 in acidified treatments exposed algae to a range of pHs that led to a variety of Al species of different toxicity. Calcium concentrations in stream were higher in acidified and Al treatments on day 1, and dissolved Al in stream water was higher in the highest Al treatment on days 1, 7, and 28; otherwise acid and Al treatments did not significantly alter Al and Ca in the exposure water. Calcium bioaccumulation by periphyton was lower in acidified and Al treatments on all sampling days. Concentrations of Mg in water and periphyton did not differ between treatments. The artificial stream system generated alkalinity to buffer acidified water; the amount of generated alkalinity returned to approximately the same levels for the first week, but the amount of alkalinity generated during the second week appeared to decline, and acid-only and acid-Al mixtures diverged in their ability to generate alkalinity during the third and fourth weeks. Aluminum in acidified water inhibited abundance of diatoms and green and blue-green algae more than the effects of acid stress alone. The green filamentous alga Mougeotia showed a slight increase in abundance in the acid-only treatment. The middle-Al treatment generated more alkalinity and had higher abundance of some algal taxa on days 14 and 28, even though measured Al concentrations in water and periphyton fell between low- and high-Al-treatment levels. Community-level tests, combining a taxonomic analysis of algal population abundance with chemical analysis of water and bioaccumulation, provide valuable insight to assess anthropogenic stress.

  13. Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers

    NASA Astrophysics Data System (ADS)

    Poeplau, C.; Bolinder, M. A.; Eriksson, J.; Lundblad, M.; Kätterer, T.

    2015-03-01

    Soil organic carbon (SOC) plays a crucial role in the global carbon cycle as a potential sink or source. Land management influences SOC storage, so the European Parliament decided in 2013 that changes in carbon stocks within a certain land use type, including arable land, must be reported by all member countries in their national inventory reports for greenhouse gas emissions. Here we show the temporal dynamics of SOC during the past two decades in Swedish agricultural soils, based on soil inventories conducted in 1988-1997 (Inventory I), 2001-2007 (Inventory II) and from 2010 onwards (Inventory III), and link SOC changes with trends in agricultural management. From Inventory I to Inventory II, SOC increased in 16 out of 21 Swedish counties, while from Inventory I to Inventory III it increased in 18 out of 21 counties. Mean topsoil (0-20 cm) SOC concentration for the entire country increased from 2.48 to 2.67% C (a relative increase of 7.7%, or 0.38% yr-1) over the whole period. We attributed this to a substantial increase in ley as a proportion of total agricultural area in all counties. The horse population in Sweden has more than doubled since 1981 and was identified as the main driver for this management change (R2 = 0.72). Due to subsidies introduced in the early 1990s, the area of long-term set-aside (mostly old leys) also contributed to the increase in area of ley. The carbon sink function of Swedish agricultural soils demonstrated in this study differs from trends found in neighbouring countries. This indicates that country-specific or local socio-economic drivers for land management must be accounted for in larger-scale predictions.

  14. Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers

    NASA Astrophysics Data System (ADS)

    Poeplau, C.; Bolinder, M. A.; Eriksson, J.; Lundblad, M.; Kätterer, T.

    2015-06-01

    Soil organic carbon (SOC) plays a crucial role in the global carbon cycle as a potential sink or source. Land management influences SOC storage, so the European Parliament decided in 2013 that changes in carbon stocks within a certain land use type, including arable land, must be reported by all member countries in their national inventory reports for greenhouse gas emissions. Here we show the temporal dynamics of SOC during the past 2 decades in Swedish agricultural soils, based on soil inventories conducted in 1988-1997 (Inventory I), 2001-2007 (Inventory II) and from 2010 onwards (Inventory III), and link SOC changes with trends in agricultural management. From Inventory I to Inventory II, SOC increased in 16 out of 21 Swedish counties, while from Inventory I to Inventory III it increased in 18 out of 21 counties. Mean topsoil (0-20 cm) SOC concentration for the entire country increased from 2.48 to 2.67% C (a relative increase of 7.7%, or 0.38% yr-1) over the whole period. We attributed this to a substantial increase in ley as a proportion of total agricultural area in all counties. The horse population in Sweden has more than doubled since 1981 and was identified as the main driver for this management change (R2 = 0.72). Due to subsidies introduced in the early 1990s, the area of long-term set-aside (mostly old leys) also contributed to the increase in area of ley. The carbon sink function of Swedish agricultural soils demonstrated in this study differs from trends found in neighbouring countries. This indicates that country-specific or local socio-economic drivers for land management must be accounted for in larger-scale predictions.

  15. Fractionation of Fe isotopes by soil microbes and organic acids

    USGS Publications Warehouse

    Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

    2001-01-01

    Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

  16. Uranium partitioning under acidic conditions in a sandy soil aquifer

    SciTech Connect

    Johnson, W.H. |; Serkiz, S.M.; Johnson, L.M.

    1995-07-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K{sub d} model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data.

  17. Climate Change Impacts on Forest Soils Critical Acid Loads and Exceedances at a National Scale

    NASA Astrophysics Data System (ADS)

    McNulty, S. G.; Cohen, E.; Moore Myers, J.; Sun, G.; Caldwell, P.

    2011-12-01

    The Federal agencies of the United States (US) are currently developing guidelines for forest soil critical acid loads across the US. A critical acid load is defined as the amount of acid deposition (usually expressed on a annual basis) that an ecosystem can absorb. Traditionally, an ecosystem is considered to be at risk for health impairment when the critical acid load exceeds a level known to impair forest health. The excess over the critical acid load is termed the exceedance, and the larger the exceedance, the greater the risk of ecosystem damage. This definition of critical acid load applies to a single, long-term pollutant exposure. These guidelines are often used to establish regulations designed to maintain acidic deposition (e.g., nitrogen and sulfur) inputs below the level shown to exceed an ecosystem's critical acid load. The traditional definition for a critical acid load generally assume that the ecosystem is in a steady state condition (i.e. no major changes in the factors that regulate the ecosystems ability to absorb acids. Unfortunately, climate change is altering weather patterns and, thus, impacting the factors that regulate critical acid load limits. This paper explores which factors associated with establishing forest soil critical acid load limits will most likely be influenced by climate change, and how these changes might impact forest soil critical acid load limits across the US. Base cation weathering could increase with global warming, along with nitrogen uptake as a function of increased forest growth across New England. A moderate 20% increase in base cation weathering and nitrogen uptake would result in at least a 25% decrease in the amount of forest soil area that exceeded the critical acid load limit and at least a 50% decrease in the amount of high exceedance area across the US. While these results are encouraging, they do not account for other negative potential forest health risks associated with climate change such as elevated

  18. Long-term changes in soil erosion due to forest fires. A rainfall simulation approach in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Keesstra, Saskia; Pereira, Paulo; Matrix-Solera, Jorge; Giménez-Morera, Antonio; Úbeda, Xavier; Francos, Marcos; Alcañiz, Meritxell; Jordán, Antonio

    2016-04-01

    Soils are affected by the impacts of wildfires (Dlapa et al., 2013; Pereira et al., 2014; Tsibart et al., 2014; Dlapa et al., 2015, Hedo et al., 2015; Tessler et al., 2015). Soil erosion rates are highly affected by forest fires due to the removal of the above ground vegetation, the heat impact on the soil, the reduction of the organic matter, the ash cover, and the changes introduced by the rainfall on the soil surface (Lasanta and Cerdà, 2005; Mataix-Solera et al., 2011; Novara et al., 2011; Novara et al., 2013; Keesstra et al., 2014; Hedo et al., 2015; Pereira, 2015). Most of the research carried out on forest fire affected land paid attention to the "window of disturbance", which is the period that the soil losses are higher than before the forest fire and that last for few years (Cerdà, 1998a; Cerdà 1998b, Pérez-Cabello et al., 2011; Bodí et al., 2011; Bodí et al., 2012; Pereira et al., 2013: Pereira et al., 2015). However, the spatial and temporal variability of soil erosion is very high as a result of the uneven temporal and spatial distribution of the rainfall (Novara et al., 2011; Bisantino et al., 2015; Gessesse et al., 2015; Ochoa et al., 2015), and the window of disturbance cannot be easily found under natural rainfall. In order to understand the evolution of soil erosion after forest fires it is necessary to monitor fire affected sites over a long period of time, which will enable the assessment of the period affected by the window of disturbance (see Cerdà and Doerr, 2005). However, it is also possible to do measurements and experiments in areas with a different fire history. This will give us information about the temporal changes in soil erosion after forest fire. To reduce the spatial variability of rainfall we can use simulated rainfall that can be applied at multiple site with the same rainfall intensity and duration. For this purpose rainfall simulation can be of great help, in the laboratory (Moreno et al., 2014; Sadegui et al., 2015

  19. Leaching of Glyphosate and Aminomethylphosphonic Acid through Silty Clay Soil Columns under Outdoor Conditions.

    PubMed

    Napoli, Marco; Cecchi, Stefano; Zanchi, Camillo A; Orlandini, Simone

    2015-09-01

    Glyphosate [-(phosphono-methyl)-glycine] is the main herbicide used in the Chianti vineyards. Considering the pollution risk of the water table and that the vineyard tile drain may deliver this pollutant into nearby streams, the objective of the present study was to estimate the leaching losses of glyphosate under natural rainfall conditions in a silty clay soil in the Chianti area. The leaching of glyphosate and its metabolite (aminomethylphosphonic acid [AMPA]) through soils was studied in 1-m-deep soil columns under outdoor conditions over a 3-yr period. Glyphosate was detected in the leachates for up to 26 d after treatments at concentrations ranging between 0.5 and 13.5 μg L. The final peak (0.28 μg L) appeared in the leachates approximately 319 d after the first annual treatment. Aminomethylphosphonic acid first appeared (21.3 μg L) in the soil leachate 6.8 d after the first annual treatment. Aminomethylphosphonic acid detection frequency and measured concentration in the leachates were more than that observed for the glyphosate. Aminomethylphosphonic acid was detected in 20% of the soil leachates at concentrations ranging from 1 to 24.9 μg L. No extractable glyphosate was detected in the soil profile. However, the AMPA content in the lowest layer ranged from 13.4 to 21.1 mg kg, and on the surface layer, it ranged from 86.7 to 94 mg kg. Overall, these results indicate that both glyphosate and AMPA leaching through a 1-m soil column may be potential groundwater contaminants. PMID:26436283

  20. Amino acid treatment enhances protein recovery from sediment and soils for metaproteomic studies

    SciTech Connect

    Nicora, Carrie D.; Anderson, Brian J.; Callister, Stephen J.; Norbeck, Angela D.; Purvine, Samuel O.; Jansson, Janet K.; Mason, Olivia U.; David, Maude; Jurelevicius, Diogo D.; Smith, Richard D.; Lipton, Mary S.

    2013-10-01

    Characterization of geomicrobial protein expression provides information necessary to better understand the unique biological pathways that occur within soil microbial communities and the role they play in regulating atmospheric CO2 levels and the Earth’s climate. A significant challenge in studying soil microbial proteins is their initial dissociation from the complex mixture of particles found in natural soil. Due to bias of the most robust cells, the removal of intact bacterial cells limits the characterization of the complete representation of a microbial community. However, in-situ lysis of bacterial cells leads to the expulsion of proteins to the soil surface, which can lead to potentially high levels of adsorption due to the physicochemical properties of both the protein and the soil. We investigated various compounds for their ability to block protein adsorption soil sites prior to in-situ lysis of bacterial cells, as well as their compatibility with both tryptic digestion and mass spectrometric analysis. The treatments were tested by adding lysed Escherichia coli proteins to representative treated and untreated soil samples. The results show that it is possible to significantly increase protein identifications through blockage of binding sites on a variety of soil textures; use of an optimized desorption buffer further increases the number of identifications.

  1. Isolation of fluorescent constituents from soil humic and fulvic acids by hydrophilic interaction chromatography

    NASA Astrophysics Data System (ADS)

    Aoyama, Masakazu

    2014-05-01

    Humic acids (HAs) and fulvic acids (FAs) are the most abundant components of soil organic matter and exhibit fluorescence. Our previous studies using high performance size-exclusion chromatography (HPSEC) and polyacrylamide gel electrophoresis demonstrated that the fluorescence of soil HAs was mainly due to the minor constituents with relatively small molecular sizes. In order to clarify the nature of the fluorescence of soil organic matter, it is necessary to isolate the fluorescent constituents from HAs and FAs. I succeeded in isolating the fluorescent constituents from soil HAs and FAs by using hydrophilic interaction chromatography (HILIC). When HILIC of soil HAs and FAs was carried out under isocratic conditions using a SeQuant ZIC-HILIC column and acetonitrile-water as a mobile phase, the complete separation of fluorescent and non-fluorescent peaks was achieved at the acetonitrile concentration of 90%. Another fluorescent peak was eluted with decreasing concentration of acetonitrile from 90% to 50%. The use of a TSKgel Amide-80 column gave the same results. The best resolution was obtained when HILIC was performed under gradient conditions from 90% to 50% acetonitrile using the ZIC-HILIC and Amide-80 columns linked in series. For both HAs and FAs, a sharp non-fluorescent peak (peak A) followed by a sharp fluorescent peak (peak B) and a broad fluorescent peak (peak C) were eluted under the above optimum operating conditions. The intensity of peak A relative to that of peak B was significantly less in the FAs than in the HAs. The fluorescent peaks (peaks B and C) of the FAs showed considerable UV absorption, whereas those of the HAs did little UV absorption. When the fluorescence emission spectra (excitation at 280 nm) were measured for the fluorescent peaks, two emission peaks were located at 460 and 520 nm for the HAs, while for the FAs, a broad emission peak at 400-450 nm with a small shoulder at around 500 nm was observed. The peaks were collected

  2. Search for amino acids in Apollo returned lunar soil.

    PubMed

    Gehrke, C W; Zumwalt, R W; Kuo, K; Ponnamperuma, C; Shimoyama, A

    1975-10-01

    The lunar samples from Apollo flights 11 through 17 provided the students of chemical evolution with an opportunity of examining extraterrestrial materials for evidence of early prebiological chemistry in the solar system. Our search was directed to water-extractable compounds with emphasis on amino acids. Gas chromatography, ion-exchange chromatography and gas chromatography combined with mass spectrometry were used for the analysis. It is our conclusion that amino acids are not present in the lunar regolith above the background levels of our investigations. PMID:1208102

  3. Soil-based cycling and differential uptake of amino acids by three species of strawberry (Fragaria spp.) plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence is growing that amino acids can be an important source of plant N in nutrient limited natural ecosystems, but relatively little is known about the effect of agricultural management on soil amino acid pools and turnover. In order to determine the relative effects of soil type and management ...

  4. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  5. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  6. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  7. Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium.

    PubMed

    Wong, Jonathan W C; Wong, Winnie W Y; Wei, Zhenggui; Jagadeesan, Hema

    2004-05-25

    A greenhouse experiment was conducted to investigate the growth of Brassica juncea and Cd phytoextraction in a mimicked Cd contaminated acidic loamy soil amended with alkaline biosolids, prepared from sewage sludge and coal fly ash, in the presence and absence of EDTA at 2 mmol kg(-1). The acidic loamy soil was spiked with 0, 5, 20, 50 and 100 mg Cd kg(-1) in the form of CdCO(3) and then amended with 4% alkaline biosolids (w/w). Alkaline biosolids and 0.12% CaCO(3) amendments resulted in a higher biomass than unamended soil spiked with 20 mg kg(-1) Cd where plants did not survive and of the two amendments, alkaline biosolids amendment had higher plant dry weight yield and phytoextraction of Cd. Adding 2 mmol kg(-1) EDTA to alkaline biosolids amended soil significantly increased the solubility of Cd ions by 9- to 29-fold, but plant Cd accumulation decreased by a factor of 24-48%. The results indicate that alkaline biosolids amendment is an effective approach for assisting growth of B. juncea and phytoextraction of Cd from the contaminated acidic loamy soil, but further application of chelating agents did not enhance the phytoextraction efficiency of Cd. PMID:15081709

  8. Climate dependency of tree growth suppressed by acid deposition effects on soils in Northwest Russia

    USGS Publications Warehouse

    Lawrence, G.B.; Lapenis, A.G.; Berggren, D.; Aparin, B.F.; Smith, K.T.; Shortle, W.C.; Bailey, S.W.; Varlyguin, D.L.; Babikov, B.

    2005-01-01

    Increased tree growth in temperate and boreal forests has been proposed as a direct consequence of a warming climate. Acid deposition effects on nutrient availability may influence the climate dependency of tree growth, however. This study presents an analysis of archived soil samples that has enabled changes in soil chemistry to be tracked with patterns of tree growth through the 20th century. Soil samples collected in 1926, 1964, and 2001, near St. Petersburg, Russia, showed that acid deposition was likely to have decreased root-available concentrations of Ca (an essential element) and increased root-available concentrations of Al (an inhibitor of Ca uptake). These soil changes coincided with decreased diameter growth and a suppression of climate-tree growth relationships in Norway spruce. Expected increases in tree growth from climate warming may be limited by decreased soil fertility in regions of northern and eastern Europe, and eastern North America, where Ca availability has been reduced by acidic deposition. ?? 2005 American Chemical Society.

  9. The simultaneous quantitation of ten amino acids in soil extracts by mass fragmentography

    NASA Technical Reports Server (NTRS)

    Pereira, W. E.; Hoyano, Y.; Reynolds, W. E.; Summons, R. E.; Duffield, A. M.

    1972-01-01

    A specific and sensitive method for the identification and simultaneous quantitation by mass fragmentography of ten of the amino acids present in soil was developed. The technique uses a computer driven quadrupole mass spectrometer and a commercial preparation of deuterated amino acids is used as internal standards for purposes of quantitation. The results obtained are comparable with those from an amino acid analyzer. In the quadrupole mass spectrometer-computer system up to 25 pre-selected ions may be monitored sequentially. This allows a maximum of 12 different amino acids (one specific ion in each of the undeuterated and deuterated amino acid spectra) to be quantitated. The method is relatively rapid (analysis time of approximately one hour) and is capable of the quantitation of nanogram quantities of amino acids.

  10. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. PMID:20701974

  11. Use of Soil-Streamwater Relationships to Assess Regional Patterns of Recovery from Acidic Deposition Effects

    NASA Astrophysics Data System (ADS)

    Siemion, J.; Lawrence, G. B.; Murdoch, P. S.

    2012-12-01

    Declines of acidic deposition levels by as much as 50% since 1990 have led to partial recovery of surface waters in the Northeastern United States, but continued depletion of soil calcium through this same period suggests a disconnection between soil and surface water chemistry. To investigate the role of soil-surface water interactions in recovery from acidification, the first regional survey to directly relate soil chemistry to stream chemistry during high flow was implemented in the Catskill region of New York, where acidic deposition levels are among the highest in the East. More than 40% of streams sampled in the southwestern Catskill Mountains were determined to be acidified with inorganic monomeric aluminum concentrations that exceeded a threshold that is toxic to aquatic biota and more than 80% likely to exceed this threshold during the highest flows, but less than 10% were acidified in the northwestern portion of the region. Median Oa horizon soil base saturation ranged from 50-80% across the region, but median base saturation in the upper 10cm of the B horizon was less than 20% across the region and was only 2% in the southwestern area. Therefore, aluminum is likely to be interfering with calcium uptake in the mineral horizon by trees in half the watersheds where soils were collected. These results indicate stream chemistry over the Catskill region does not reflect the calcuim depletion of the B horizon that our sampling suggests is ubiquitous throughout the region.

  12. Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

    PubMed

    Jung, Jaejoon; Yeom, Jinki; Han, Jiwon; Kim, Jisun; Park, Woojun

    2012-06-01

    The abundance of genes related to the nitrogen biogeochemical cycle and the microbial community in forest soils (bacteria, archaea, fungi) were quantitatively analyzed via real-time PCR using 11 sets of specific primers amplifying nifH, bacterial amoA, archaeal amoA, narG, nirS, nirK, norB, nosZ, bacterial 16S rRNA gene, archaeal 16S rRNA gene, and the ITS sequence of fungi. Soils were sampled from Bukhan Mountain from September of 2010 to July of 2011 (7 times). Bacteria were the predominant microbial community in all samples. However, the abundance of archaeal amoA was greater than bacterial amoA throughout the year. The abundances of nifH, nirS, nirK, and norB genes changed in a similar pattern, while narG and nosZ appeared in sensitive to the environmental changes. Clone libraries of bacterial 16S rRNA genes were constructed from summer and winter soil samples and these revealed that Acidobacteria was the most predominant phylum in acidic forest soil environments in both samples. Although a specific correlation of environmental factor and gene abundance was not verified by principle component analysis, our data suggested that the combination of biological, physical, and chemical characteristics of forest soils created distinct conditions favoring the nitrogen biogeochemical cycle and that bacterial communities in undisturbed acidic forest soils were quite stable during seasonal change. PMID:22752898

  13. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  14. Simultaneous Removal of Lindane, Lead and Cadmium from Soils by Rhamnolipids Combined with Citric Acid

    PubMed Central

    Long, Tao; Ying, Rongrong; Ye, Mao; Zhang, Shengtian; Li, Qun; Zhou, Yan; Lin, Yusuo

    2015-01-01

    This study investigated the performance of rhamnolipids-citric acid mixed agents in simultaneous desorption of lindane and heavy metals from soils. The capacity of the mixed agents to solubilize lindane, lead and cadmium in aqueous solution was also explored. The results showed that the presence of citric acid greatly enhanced the solubilization of lindane and cadmium by rhamnolipids. A combined effect of the mixed agents on lindane and heavy metals removal from soils was observed. The maximum desorption ratios for lindane, cadmium and lead were 85.4%, 76.4% and 28.1%, respectively, for the mixed agents containing 1% rhamnolipidsand 0.1 mol/L citric acid. The results also suggest that the removal efficiencies of lead and cadmium were strongly related to their speciations in soils, and metals in the exchangeable and carbonate forms were easier to be removed. Our study suggests that the combining use of rhamnolipids and citric acid is a promising alternative to simultaneously remove organochlorine pesticides and heavy metals from soils. PMID:26087302

  15. COMPOSITIONAL AND FUNCTIONAL FEATURES OF HUMIC ACIDS FROM ORGANIC AMENDMENTS AND AMENDED SOILS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of organic amendments requires an adequate control of the chemical quality of their humic acid (HA)-like fractions and of the effects that these materials may have on the status, quality, chemistry and functions of native soil HAs. In this work, the compositional, functional and structural p...

  16. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    EPA Science Inventory

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  17. EFFECTS OF ACID PRECIPITATION ON MICROBIOLOGICAL AND CHEMICAL PARAMETERS IN SOILS: THE FLORIDA EXPERIENCE

    EPA Science Inventory

    The effects of acid precipitation on microbiological and chemical parameters in soils were investigated under field conditions. The study site consisted of three transects, each including three 75 sq. m. plots. One transect served as a control, the second one was irrigated with a...

  18. Soil moisture affects fatty acids and oil quality parameters in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought affects yield of peanut, but its effect on oleic and linoleic acids that influence its oil quality of peanut genotypes with different levels of drought resistance has not been clearly investigated. Therefore, the aims of this research were to determine whether soil water levels could affect...

  19. DEVELOPMENTS IN THE SUPERCRITICAL FLUID EXTRACTION OF CHLOROPHENOXY ACID HERBICIDES FROM SOIL SAMPLES

    EPA Science Inventory

    Extraction of chlorophenoxy acid herbicides from soil samples with supercritical carbon dioxide as extractant and tetrabutylammonium hydroxide and methyl iodide as derivatization agents was investigated. The extraction was carried out at 400 atm and 80 C for 15 min static, follow...

  20. Regional scale assessment of soil predictors of groundwater phosphate (P) levels in acidic sandy agricultural soils

    NASA Astrophysics Data System (ADS)

    Mabilde, Lisa

    2016-04-01

    Possible factors affecting the leaching of P to the groundwater in the Belgian sandy area are examined via regression analysis. The main objective is to investigate the dependency of phreatic groundwater phosphate concentrations (Flemish VMM monitoring net, monitoring period 2010-2013) on soil phosphate saturation degree (PSD) (1994-1997 mapping for Flemish Land Agency) (n = 1032). Additionally explored parameters include: depth distributions of Fe- and Al-oxides, sorbed P and phosphate sorption capacity (PSC) and soil pH. Interpolated data of these soil parameters in 3 depth layers (0-30, 30-60, 60-90 cm) were generated by ordinary kriging. Secondly, we assessed the significance of other edaphic factors potentially controlling the groundwater P: topsoil organic carbon content (OC %), soil clay content and fluctuation of the groundwater table. Overall, the mean PSD halved with each 30 cm depth layer (56 > 24 > 13 %) and was correlated to groundwater PO43‑ level. The statistical significance of the correlation with groundwater PO43‑ concentrations increased with depth layer. The poor correlation (R2 = 0.01) between PSD and groundwater phosphate concentration indicates that many factors, other than soil P status, control the transport of P from soil solution to the groundwater in Belgian sandy soils. A significant (P<0.01) positive non-linear relationship was found between groundwater PO43‑concentration and pHKCl in all three studied depth layers, again increasingly with depth. Within the pH range of the 30-60 cm layer (pHKCl 4.0-5.7) PO4‑ solubility should increase with pH. Elevated soil OC levels surprisingly co-occurred with low groundwater PO43‑ concentrations (r = -0.18, P<0.01, n = 191). Groundwater PO43‑ was furthermore significantly and positively correlated to clay % in both the 0-15 cm (r = 0.15, τ = 0.25, P<0.01, n = 1032) and 60-90 cm (r = 0.13, τ = 0.20, P<0.01, n = 1032) depth increments. These positive correlations were unexpected and

  1. SLOW-RELEASE N FERTILIZER TO CONTROL SOIL NITROUS OXIDE LOSSES DUE TO SPATIAL AND CLIMATIC DIFFERENCES IN SOIL WATER CONTENT AND DRAINAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils are a major source of nitrous oxide (N2O) which contributes to global warming and ozone depletion. The objectives of this research were to establish the relationship between soil N2O flux, temperature, soil NO3--N, and soil water content and to compare the performance and cost-eff...

  2. PHYSICAL DAMAGE FORMATION ON AUTOMOTIVE FINISHES DUE TO ACIDIC REAGENT EXPOSURE

    EPA Science Inventory

    Several types of automotive finishes with clear coatings were exposed to drops of acidic reagents at 54 degrees C. urface damage was examined using visual observations, reflection optical microscopy, SEM, EDS, and profilometry. eflection microscopy was the most useful technique f...

  3. Injury and death of various Salmonella serotypes due to acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid injury of Salmonella could prevent detection of Salmonella in feed and feed-type samples. A previous study showed that after incubation in commonly used pre-enrichment media, mixed feeds and feed ingredients reached a pH (4.0 to 5.0) capable of injuring or killing Salmonella. Approximately 10...

  4. Identification of a new sulfonic acid metabolite of metolachlor in soil

    USGS Publications Warehouse

    Aga, D.S.; Thurman, E.M.; Yockel, M.E.; Zimmerman, L.R.; Williams, T.D.

    1996-01-01

    An ethanesulfonic acid metabolite of metolachlor (metolachlor ESA) was identified in soil-sample extracts by negative-ion, fast-atom bombardment mass spectrometry (FAB-MS) and FAB tandem mass spectrometry (FAB-MS/MS). Production fragments from MS/MS analysis of the deprotonated molecular ion of metolachlor ESA in the soil extract can be reconciled with the structure of the synthesized standard. The elemental compositions of the (M - H)- ions of the metolachlor ESA standard and the soil-sample extracts were confirmed by high-resolution mass spectrometry. A dissipation study revealed that metolachlor ESA is formed in soil under field conditions corresponding to a decrease in the concentration of the parent herbicide, metolachlor. The identification of the sulfonated metabolite of metolachlor suggests that the glutathione conjugation pathway is a common detoxification pathway shared by chloroacetanilide herbicides.

  5. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils.

    PubMed

    Itoh, Kazuhito; Kinoshita, Masahiro; Morishita, Shigeyuki; Chida, Masateru; Suyama, Kousuke

    2013-04-01

    Sixty-nine fungal strains were isolated countrywide from 10 Vietnamese soils, in areas both with and without a history of exposure to Agent Orange, and their degrading activities on the phenoxy acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), as well as related compounds, were examined. Among taxonomically various fungi, 45, 12 and 4% of the isolates degraded phenoxyacetic acid (PA), 2,4-D and 2,4,5-T, respectively. While the PA-degrading fungi were distributed to all sites and among many genera, the 2,4-D-degraders were found only in order Eurotiales in class Eurotiomycetes. All of the 2,4,5-T-degrading fungal strains were phylogenetically close to Eupenicillium spp. and were isolated from southern Vietnam. As a degradation intermediate, the corresponding phenol compounds were detected in some strains. The degradation substrate spectrum for 26 compounds of Eupenicillium spp. strains including 2,4,5-T-degraders and -non-degraders seemed to be related to phylogenetic similarity and soil sampling location of the isolates. These results suggest that the heavily contaminated environments enhanced the adaptation of the phylogenetic group of Eupenicillium spp. toward to obtain the ability to degrade 2,4,5-T. PMID:23167922

  6. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1997-06-01

    Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria, plants, and plant-bacteria associations to remediate 2-chlorobenzoic acid (2CBA) contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated with 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginosa strain R75, a proven plant growth-promoting rhizobacterium, increased seed germination by 80% and disappearance of 2CBA by 20% relative to noninoculated plants. Inoculation of E. dauricus with a mixture of P. savastanoi strain CB35, a 2CBA-degrading bacterium, and P. aeruginosa strain R75 increased disappearance of 2CBA by 112% relative to noninoculated plants. No clear relationship between enhanced 2CBA disappearance and increased plant biomass was found. These results suggest that specific plant-microbial systems can be developed to enhance remediation of pollutants in soil.

  7. The role of natural purified humic acids in modifying mercury accessibility in water and soil

    SciTech Connect

    Cattani, I.; Zhang, H.; Beone, G.M.; Del Re, A.A.M.; Boccelli, R.; Trevisan, M.

    2009-03-15

    We investigated the influence of different humic acids (HAs, extracted from lignite, compost, and forest soil) on mercury mobility and availability both in a model solution and in soil samples from a mercury-polluted region. The technique of diffusive gradients in thin-films (DGT), which is capable of measuring: (i) free metal in solution: (ii) dissociated metal complexes previously mobilized by HA; (iii) mobilized metal-HA complexes that liberate metals by dissociation or by exchange reaction between the metal-HA complexes and the chelating groups on the resin-gel, was used in solutions and soils. The DGT measurements in solution, together with ultrafiltration, allowed estimation of the lability of Hg-HA complexes. Ultrafiltration results were also compared with predictions made by the windermere humic-aqueous model (WHAM). According to both these different approaches, Hg{sup 2+} resulted nearly 100% complexed by HAs, whereas results from ultrafiltration showed that 32 to 72% of the CH{sub 4}Hg{sup +} was bound to the HAs, with higher values for compost and lower values for forest and Aldrich HA. The DGT-measured mercury in soils was below 0.20 {mu}g L{sup -1}, irrespective of the extent of the contamination. Addition of HA increased the concentration of DGT-measured mercury in soil solution up to 100-fold in the contaminated soil and up to 30-fold in the control soil. The level of the increase also depended on the HA. The smallest increase (about 10 times) was found for lignite HA in both control and contaminated soils. The addition of forest HA gave the largest increases in DGT-measured mercury, in particular for the contaminated soil. Overall, the results demonstrated that DGT can be used for estimating the lability of mercury complexes in solution and for verifying enhanced mercury mobility when HA is added to contaminated soils.

  8. Losses of biota from American aquatic communities due to acid rain.

    PubMed

    Schindler, D W; Kasian, S E; Hesslein, R H

    1989-07-01

    Models based on chemical survey data and geochemical assumptions were calibrated for areas where rates of acidification are known, then used to predict the declines in alkalinity and pH of lakes in the eastern and midwestern U.S.A. These results were combined with known acid tolerances of different taxonomic groups to estimate the extent of damage caused by acid rain to biological assemblages.An average of over 50% of the species in some taxonomic groups have probably been eliminated from lakes in the Adirondacks, Poconos-Catskills and southern New England. Moderate damage to biotic communities was predicted for lakes in central New England, and north-central Wisconsin. Damage predicted in Maine, upper Michigan, northeastern Minnesota and the remainder of the upper Great Lakes region was slight. Crustaceans, molluscs, leeches and insects were among the most severely affected groups. Among fishes, species of minnows (Cyprindae) were depleted in the most heavily acidified regions, with some declines in salmonid and centrarchid species.Predicted damage to individual lakes in all areas was highly variable. In areas receiving highly acidic deposition, 100% of the species in acid-sensitive taxonomic groups were eliminated in some lakes, while damage to other lakes was predicted to be slight.Estimated damage varied from lake to lake within each subregion, based on chemical characteristics. The most heavily damaged lakes in the Adirondacks and Pocono-Catskills have probably lost all species of molluscs, leeches and crustaceans. On the other hand, lakes of the Midwest showed either slight increases or decreases in the richness of predicted biotic communities.The possible ranges of original sulfate concentrations in lakes and the proportion of sulfuric acid in precipitation that liberated base cations from catchments were confined to relatively narrow limits by the model. PMID:24249192

  9. Accumulation of poly (3-hydroxybutyric acid) by some soil Streptomyces.

    PubMed

    Manna, A; Banerjee, R; Paul, A K

    1999-09-01

    In a limited-scale survey, 55 soil streptomycetes were screened for the accumulation of poly (3-hydroxybutyrate) [PHB]. Only 18% of the isolates accumulated PHB ranging between 1.9-7.8% of the dry biomass. The promising isolate DBCC-719, identified as Streptomyces griseorubiginosus, accumulated PHB amounting to 9.5% of the mycelial dry mass in the early stationary phase when grown in chemically defined medium with 2% (wt/vol) glucose as the sole source of carbon. Nitrogen-limiting conditions were inhibitory to growth and PHB accumulation. The isolated polymer was highly soluble in chloroform, gave a sharp peak at 235 nm on digestion with concentrated H(2)SO(4), and had a characteristic infrared spectrum. PMID:10441729

  10. Titanium Mass-balance Analysis of Paso Robles Soils: Elemental Gains and Losses as Affected by Acid Alteration Fluids

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Ming, Douglas W.

    2010-01-01

    The Columbia Hills soils have been exposed to aqueous alteration in alkaline [1] as well as acid conditions [2,3]. The Paso Robles class soils are bright soils that possess the highest S concentration of any soil measured on Mars [2]. Ferric-sulfate detection by Moessbauer analysis indicated that acid solutions were involved in forming these soils [4]. These soils are proposed to have formed by alteration of nearby rock by volcanic hydrothermal or fumarolic activity. The Paso Robles soils consist of the original Paso Robles-disturbed-Pasadena (PR-dist), Paso Robles- PasoLight (PR-PL), Arad-Samra, Arad-Hula, Tyrone- Berker Island1 and Tyrone-MountDarwin [2 ,3. ]Chemical characteristics indicate that the PR-dist and PR-PL soils could be derived from acid weathering of local Wishstone rocks while the Samra and Hula soils are likely derived from local Algonquin-Iroquet rock [3]. The Paso Robles soils were exposed to acidic sulfur bearing fluids; however, little else is known about the chemistry of the alteration fluid and its effects on the alteration of the proposed parent materials. The objectives of this work are to conduct titanium normalized mass-balance analysis to1) assess elemental gains and losses from the parent materials in the formation of the Paso Robles soils and 2) utilize this information to indicate the chemical nature of the alteration fluids.

  11. Transfer of cadmium from a sandy acidic soil to man: A population study

    SciTech Connect

    Staessen, J.A.; Celis, H.G.; Fagard, R.H.; Lijnen, P.J.; Thijs, L.B.; Amery, A.K. ); Vyncke, G. ); Lauwerys, R.R.; Roels, H.A. ); Claeys, F. ); Dondeyne, F. ); Ide, G. ); Rondia, D.; Sartor, F. )

    1992-06-01

    This population study included 230 subjects (age range 20-83 years) who consumed vegetables grown in kitchen gardens on a sandy acidic soil (mean pH {approximately}6.3). The study investigated the association between the Cd (cadmium) levels in blood and urine and the Cd concentration in the soil (range 0.2-44 ppm). Seventy-six subjects were current smokers and 122 participants lived in a district with known Cd pollution. Urinary Cd in the 230 subjects averaged 8.7 nmole/24 hr, (range 1.3 to 47 nmole/24 hr) after age adjustment positively correlated with the Cd level in the soil; a twofold increase of the Cd concentration in the soil was accompanied by a 7% rise in urinary Cd in men and by a 4% rise in women. Blood Cd averaged 11.5 nmole/liter (range 1.8-41 nmole/liter) and was negatively associated with the Cd level in the soil. After adjustment for significant covariates (smoking and serum {gamma}-glutamyl transpeptidase in both sexes, and age and serum ferritin in women), a twofold increase in the Cd concentration in the soil was accompanied by a 6% decrease in blood Cd in men and by a 10% decrease in women. In conclusion, in a rural population, consuming vegetables grown on a sandy acidic soil, 2 to 4% of the variance of urinary Cd was directly related to the Cd level in the soil. The negative correlation with blood Cd, a measure of more recent exposure, was biased by the implementation of preventive measures in the polluted district.

  12. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  13. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  14. Stable carbon isotope ratio and composition of microbial fatty acids in tropical soils.

    PubMed

    Burke, Roger A; Molina, Marirosa; Cox, Julia E; Osher, Laurie J; Piccolo, Marisa C

    2003-01-01

    The soil microbial community plays a critical part in tropical ecosystem functioning through its role in the soil organic matter (SOM) cycle. This study evaluates the relative effects of soil type and land use on (i) soil microbial community structure and (ii) the contribution of SOM derived from the original forest vegetation to the functioning of pasture and sugarcane (Saccharum spp.) ecosystems. We used principal components analysis (PCA) of soil phospholipid fatty acid (PLFA) profiles to evaluate microbial community structure and PLFA stable carbon isotope ratios (delta13C) as indicators of the delta13C of microbial substrates. Soil type mainly determined the relative proportions of gram positive versus gram negative bacteria whereas land use primarily determined the relative proportion of fungi, protozoa, and actinomycetes versus other types of microorganisms. Comparison of a simple model to our PLFA delta13C data from land use chronosequences indicates that forest-derived SOM is actively cycled for appreciably longer times in sugarcane ecosystems developed on Andisols (mean turnover time = 50 yr) than in sugarcane ecosystems developed on an Oxisol (mean turnover time = 13 yr). Our analyses indicate that soil chronosequence PLFA delta13C measurements can be useful indicators of the contribution that SOM derived from the original vegetation makes to continued ecosystem function under the new land use. PMID:12549559

  15. Studies on radiation dose due to radioactive elements present in ground water and soil samples around Mysore city, India.

    PubMed

    Chandrashekara, M S; Veda, S M; Paramesh, L

    2012-04-01

    A systematic study of the ground water and soil samples collected from different locations around Mysore city (12(°)N and 76(°)E) has been carried out. (226)Ra activity concentration in water samples varies from 0.28 to 189 mBq l(-1) with a geometric mean (GM) of 4.75 mBq l(-1) and (222)Rn concentration in ground water varies from 4.25 to 435 Bq l(-1) with a GM of 25.9 Bq l(-1). The GM of inhalation and ingestion doses due to (222)Rn in water is 65.2 and 5.43, µSv y(-1), respectively. The measured GM gamma dose rate in air is 85.4 nGy h(-1) and absorbed dose rate estimated from the measured activity of radionuclides is 92.6 nGy h(-1). PMID:21764808

  16. Soil washing of chromium- and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent.

    PubMed

    Gitipour, Saeid; Ahmadi, Soheil; Madadian, Edris; Ardestani, Mojtaba

    2016-01-01

    In this research, the effect of soil washing in the removal of chromium- and cadmium-contaminated sludge samples collected from Pond 2 of the Tehran Oil Refinery was investigated. These metals are considered as hazardous substances for human health and the environment. The carcinogenicity of chromate dust has been established for a long time. Cadmium is also a potential environmental toxicant. This study was carried out by collecting sludge samples from different locations in Pond 2. Soil washing was conducted to treat the samples. Chemical agents, such as acetic acid, ethylenediaminetetra acetic acid (EDTA) and hydrochloric acid, were used as washing solutions to remove chromium and cadmium from sludge samples. The results of this study indicated that the highest removal efficiencies from the sludge samples were achieved using a 0.3 M HCl solution with 82.69% and 74.47% for chromium and cadmium, respectively. EDTA (0.1 M) in the best condition extracted 66.81% of cadmium and 72.52% of chromium from the sludges. The lowest efficiency values for the samples, however, were achieved using 3 M acetic acid with 41.7% and 46.96% removals for cadmium and chromium, respectively. The analysis of washed sludge indicated that the heavy metals removal decreased in the order of 3 M acetic acid < 0.1 M EDTA<0.3 M HCl, thus hydrochloric acid appears to offer a greater potential as a washing agent in remediating the sludge samples. PMID:26599728

  17. Chronic suppurative otitis media due to nontuberculous mycobacteria: A case of successful treatment with topical boric acid.

    PubMed

    Lefebvre, Marie-Astrid; Quach, Caroline; Daniel, Sam J

    2015-07-01

    Nontuberculous mycobacteria (NTM) are an increasingly recognized cause of chronic suppurative otitis media in children with tympanostomy tubes. Treatment of this condition is difficult and typically requires a combination of systemic antibiotics and surgical debridement. We present the first case of a 2-year-old male with chronic suppurative otitis media due to NTM who failed systemic antibiotic therapy and was successfully managed with topical boric acid powder. This report highlights the challenges involved in treating this infection, and introduces boric acid as a potentially valuable component of therapy. PMID:26026892

  18. Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-derived polyphenolic compounds that precipitate proteins, bind to metals and complex with other compounds and may be particularly important in soil ecosystems. Solutions of tannic acid, or other phenolic compounds, were added to soil samples to determine if they would affect recov...

  19. Acidic soil amendment with a magnesium-containing fluidized bed combustion by-product

    SciTech Connect

    Stehouwer, R.C.; Dick, W.A.; Sutton, P.

    1999-02-01

    Removal of SO{sub 2} from the emissions of coal-fired boilers produces by-products that often consist of CaSO{sub 4}, residual alkalinity, and coal ash. These by-products could be beneficial to acidic soils because of their alkalinity and the ability of gypsum (CaSO{sub 4}{center{underscore}dot}2H{sub 2}O) to reduce Al toxicity in acidic subsoils. A 3-yr field experiment was conducted to determine the liming efficacy of a fluidized bed combustion boiler by-product (FBC) that contained 129 g Mg kg{sup {minus}1} as CaMg(CO{sub 3}){sub 2} and MgO and its effects on surface and subsurface soil chemistry. The FBC was mixed in the surface 10 cm of two acidic soils (Wooster silt loam, an Oxyaquic Fragiudalf, and Coshocton silt loam, an Aquultic Hapludalf) at rates of 0, 0.5, 1, and 2 times each soil's lime requirement (LR). Soils were sampled in 10-cm increments to depths ranging from 20 to 110 cm, and corn (Zea mays L.) and alfalfa (Medicago sativa L.) were grown. Application of Mg-FBC increased alfalfa yields in all six site-years, whereas it had no effect on corn grain yield in five site-years and decreased grain yield in one site-year. Plant tissue concentrations of Mg, S, and Mo were increased by Mg-FBC, while most trace elements were either unaffected or decreased. Application of Mg-FBC at one or two times LR increased surface soil pH to near 7 within 1 wk. Although surface soil pH remained near 7 for 2 yr, there was minimal effect on subjacent soil pH. Application of Mg-FBC increased surface soil concentrations of Ca, Mg, and S, which promoted downward movement of Mg and SO{sub 4}. This had different effects on subsoil chemistry in the two soils: in the high-Ca-status Wooster subsoil, exchangeable Ca was decreased and exchangeable Al was increased, whereas in the high-Al-status Coshocton subsoil, exchangeable Al was decreased and exchangeable Mg was increased. The Mg-FBC was an effective liming material and, because of the presence of both Mg and SO{sub 4}, may be

  20. Modeling the neutralizing processes of acid precipitation in soils and glacial sediments of northern Ohio

    NASA Astrophysics Data System (ADS)

    Eckstein, Yoram; Hau, Joseph A.

    1992-02-01

    Most studies of the acidic deposition phenomena have been focused on processes occurring in the northeastern USA and Scandinavia. In these regions the soil cover is thin, the bedrock is acidic, and the terrain has very poor acid buffering capacity. Most of the US Midwest, including northern Ohio, has been ignored because the terrain is covered by glacial sediments with an abundance of carbonate minerals. Yet, for the last three decades the area has been experiencing acidic precipitation with a pH range of 3.5-4.5. the lowest in the USA. Samples of precipitation, soil water, and shallow ground water from Leroy Township in Lake County, Ohio, and from Wooster Township in Wayne County, Ohio, were analyzed and processed using WATEQ3 and PHREEQE computer models to quantify the effects of the acidic deposition. The two regions are characterized by very similar topographic, geological and hydrogeological conditions. Although the cation content of the precipitation in both regions is similar, the anion concentrations are much higher (sulfate by 70%, nitrate by 14% and chloride by 167%) in Leroy, located 50 km east-northeast and downwind of the Cleveland-Akron industrial complex, than in Wooster, located 80 km south-southwest and off-wind from the industrial complex. Computer modeling results indicate that buffering of acidic deposition in the surficial sediments and glacial tills of the two regions is dominated apparently by calcite dissolution, and dissolution and exchange of hydrogen for magnesium ions are the dominant neutralizing processes. However, reaction simulations also suggest that the buffering capacity of the Leroy soils and tills has been depleted to a much greater degree than in Wooster Township. In Leroy more acidic input is reacting with less buffering material to produce lower soil and groundwater pH. The depletion of carbonate and alumino-silicate minerals in the soils of Leroy Township is occurring at a rate that is 3-5 times faster than in the same type

  1. [Using kenaf (Hibiscus cannabinus) to reclaim multi-metal contaminated acidic soil].

    PubMed

    Yang, Yu-Xi; Lu, Huan-Liang; Zhan, Shu-Shun; Deng, Teng-hao-bo; Lin, Qing-Qi; Wang, Shi-Zhong; Yang, Xiu-Hong; Qiu, Rong-Liang

    2013-03-01

    A five-year field trial was conducted at the surrounding area of Dabao Mountain Mine to explore the feasibility and availability of using kenaf (Hibiscus cannabinus) , a fiber crop with strong heavy metals tolerance and potential economic value, to reclaim the multi-metal contaminated acidic farmland soil. Different amendments were applied prior to the kenaf planting to evaluate their effects on the soil properties and kenaf growth. After the amendments application, the kenaf could grow well on the heavy metals contaminated soil with the Pb, Zn, Cu, Cd, and As concentrations being 1600, 440, 640, 7. 6, and 850 mg . kg-1, respectively. Among the amendments, dolomite and fly ash had better effects than limestone and organic fertilizer. With the application of dolomite and fly ash, the aboveground dry mass production of kenaf reached 14-15 t . hm-2, which was similar to that on normal soils, and the heavy metal concentrations in the bast fiber and stem of kenaf decreased significantly, as compared with the control. The mass of the bast fiber accounted for 32% -38% of the shoot production, and the extractable heavy metal concentrations in the bast fiber could meet the standard of 'technical specifications of ecological textiles' in China, suggesting that the bast fiber had potential economic value. It was suggested that planting kenaf combining with dolomite/fly ash application could be an effective measure to reclaim the multi-metal contaminated acidic farmland soil. PMID:23755502

  2. Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations.

    PubMed

    Stopnisek, Nejc; Bodenhausen, Natacha; Frey, Beat; Fierer, Noah; Eberl, Leo; Weisskopf, Laure

    2014-06-01

    Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp. PMID:23945027

  3. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil.

    PubMed

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic>citric>acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric>oxalic>acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil. PMID:26849837

  4. Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil

    NASA Astrophysics Data System (ADS)

    Ash, Christopher; Tejnecký, Václav; Borůvka, Luboš; Drábek, Ondřej

    2016-04-01

    Low-molecular-mass organic acids (LMMOA) are of key importance for mobilisation and fate of metals in soil, by functioning as ligands that increase the amount of dissolved metal in solution or by dissociation of metal binding minerals. Column leaching experiments were performed on soil polluted with As and Pb, in order to determine the specificity of LMMOA related release for individual elements, at varying organic acid concentrations. Acetic, citric and oxalic acids were applied in 12 h leaching experiments over a concentration range (0.5-25 mM) to soil samples that represent organic and mineral horizons. The leaching of As followed the order: oxalic > citric > acetic acid in both soils. Arsenic leaching was attributed primarily to ligand-enhanced dissolution of mineral oxides followed by As released into solution, as shown by significant correlation between oxalic and citric acids and content of Al and Fe in leaching solutions. Results suggest that subsurface mineral soil layers are more vulnerable to As toxicity. Leaching of Pb from both soils followed the order: citric > oxalic > acetic acid. Mineral soil samples were shown to be more susceptible to leaching of Pb than samples characterised by a high content of organic matter. The leaching efficiency of citric acid was attributed to formation of stable complexes with Pb ions, which other acids are not capable of. Results obtained in the study are evidence that the extent of As and Pb leaching in contaminated surface and subsurface soil depends significantly on the types of carboxylic acid involved. The implications of the type of acid and the specific element that can be mobilised become increasingly significant where LMMOA concentrations are highest, such as in rhizosphere soil.

  5. Manifestation of Preferential Flow and Nitrate Transport in Central European Soils on Acid Crystalline Rocks

    NASA Astrophysics Data System (ADS)

    Dolezal, F.; Cislerova, M.; Vogel, T.; Zavadil, J.; Vacek, J.; Kvitek, T.; Prazak, P.; Nechvatal, M.; Bayer, T.

    2006-12-01

    Large areas of Central Europe are occupied by highlands and peneplains of medium altitudes, built by acid crystalline rocks. The soils overlying them are typically of medium textures. They are neither markedly water- repellent nor greatly swelling and shrinking. These landscapes are characterized by high vulnerability of water bodies, both surface and subsurface. The existing methodologies of vulnerability assessment regard the heavier among these soils as little vulnerable to diffuse pollution, while in reality they may be virtually equally vulnerable, because of the short-circuiting effect of preferential flow and transport. Our experiment site was Valeèov (49° 38' 40" N, 14° 30' 25" E, 461 m a.s.l.) in the Bohemo-Moravian highland, with average annual precipitation 660 mm and average annual air temperature 7.2 ° C. The field trials, starting from 2001, were focused on growing potato under different conditions. Soil moisture content was measured by Theta- probe capacitance sensors, soil water suction by Watermark sensors and tensiometers. Nitrate leaching was monitored by soil solution sampling with ceramic suction cups and zero-tension lysimeters. The hydraulic conductivity of the soil was measured on small cores and by suction and pressure infiltrometers. The following preferential flow manifestations are analyzed and quantified: a) the spatial variability of soil moisture content and suction after rainstorms, b) the spatial and temporal variability of soil's hydraulic conductivity and its dependence on soil moisture content, c) the spatial variability of percolation volumes in parallel lysimeters, d) the variability of nitrate concentrations in the lysimeter leachate, e) the apparent absence of correlation between leachate volumes and leachate concentrations in lysimeters, f) the lower mean and higher variance of leachate concentrations in lysimeters, in comparison with those in suction cups.

  6. Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation.

    PubMed

    Fu, Xiaoli; Yang, Fengting; Wang, Jianlei; Di, Yuebao; Dai, Xiaoqin; Zhang, Xinyu; Wang, Huimin

    2015-01-01

    Experiments with potted plants and removed understories have indicated that understory vegetation often affects the chemical and microbial properties of soil. In this study, we examined the mechanism and extent of the influence of understory vegetation on the chemical and microbial properties of soil in plantation forests. The relationships between the vegetational structure (diversity for different functional layers, aboveground biomass of understory vegetation, and species number) and soil properties (pH, microbial community structure, and levels of soil organic carbon, total nitrogen, and inorganic nitrogen) were analyzed across six reforestation types (three pure needleleaf forests, a needle-broadleaf mixed forest, a broadleaf forest, and a shrubland). Twenty-seven years after reforestation, soil pH significantly decreased by an average of 0.95 across reforestation types. Soil pH was positively correlated with the aboveground biomass of the understory. The levels of total, bacterial, and fungal phospholipid fatty acids, and the fungal:bacterial ratios were similar in the shrubland and the broadleaf forest. Both the aboveground biomass of the understory and the diversity of the tree layer positively influenced the fungal:bacterial ratio. Improving the aboveground biomass of the understory could alleviate soil acidification. An increase in the aboveground biomass of the understory, rather than in understory diversity, enhanced the functional traits of the soil microbial communities. The replacement of pure plantations with mixed-species stands, as well as the enhancement of understory recruitment, can improve the ecological functions of a plantation, as measured by the alleviation of soil acidification and increased fungal dominance. PMID:25261818

  7. Growth and survival of cowpea rhizobia in acid, aluminum-rich soils

    SciTech Connect

    Hartel, P.G.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether Al-sensitive cowpea Rhizobium survives in acid, Al-rich soils. The lower pH limit for growth of 20 strains in a defined liquid medium varied from pH 4.2 to less than pH 3.6. The mean lower limit for growth was pH 3.9. Several of the strains clumped in this medium at pH 4.5. Of 11 strains that were tested for tolerance to high levels of Al in a defined liquid medium at pH 4.5, nine tolerated 75 ..mu..M Al, and the other two were sensitive to levels above 15 ..mu..M. Three strains, one Al-tolerant, one Al-sensitive, and one Al-tolerant or Al-sensitive depending on the presence of vitamins in the medium, were selected for studies in Al-rich sterile and nonsterile soils. These rhizobia did not survive in soils of less than pH 4.7 sterilized by /sup 60/Co irradiation. When inoculated into sterile soil at pH 4.7, the consistently sensitive strain initially failed to proliferate and then grew slowly, but populations of the other two rhizobia increased rapidly. No consistent relationship was found between the Al tolerance of these three rhizobia and their growth and survival in four acid, Al-rich soils. The data suggest that Al is of minor importance to growth and survival of cowpea Rhizobium strains in acid soils. 16 references, 4 figures, 1 table.

  8. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    PubMed

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2. PMID:24727041

  9. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. PMID:24637445

  10. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction.

    PubMed

    Zhu, Meng; Tu, Chen; Hu, Xuefeng; Zhang, Haibo; Zhang, Lijuan; Wei, Jing; Li, Yuan; Luo, Yongming; Christie, Peter

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0-4weeks), 6.7-74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4-8weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of DPAA

  11. Effects of acid rain on mycorrhizal infection and N cycling in forest soils

    SciTech Connect

    Stroo, H.F.

    1986-01-01

    Increasing the acidity of simulated rain from pH 5.6 to 3.0 reduced the number of mycorrhizal roots on white pine seedlings by 20% after 16 weeks of exposure. Mycorrhizal infection of red oaks was 25% less at a rain pH of 3.5 than at pH 5.6. Simulated acid rain also caused increases in the N contents, net photosynthesis, and growth of seedlings, as well as decreases in root:shoot ratios and in the concentration of sucrose in the roots. To measure the effects of acid rain on N mineralization, nitrification, and total inorganic N, columns containing samples from the surface horizons of 12 forest soils were exposed to simulated rain at 3 times ambient deposition rates for 16 weeks. The effects on N mineralization varied between soils, with the greatest inhibitions being observed in soils with low organic matter contents. The apparent protection by organic matter was associated with an increase in short-term buffering capacity. The average amount of N mineralized after exposure was not significantly affected by rain pH. Similarly, nitrification was inhibited during exposure to simulated rain at pH 3.5, but was unaffected after exposure. Enrichments from an acid forest soil failed to show the presence of autotrophic nitrifiers, and the effects of temperature and selective inhibitors indicated that fungi were primarily responsible for nitrification in this soil. A fungus capable of heterotrophic nitrification at pH 4.0 was isolated and identified as Absidia cylindrospora Hagem.

  12. An autopsy case of death due to metabolic acidosis after citric acid ingestion.

    PubMed

    Ikeda, Tomoya; Usui, Akihito; Matsumura, Takashi; Aramaki, Tomomi; Hosoya, Tadashi; Igari, Yui; Ohuchi, Tsukasa; Hayashizaki, Yoshie; Usui, Kiyotaka; Funayama, Masato

    2015-11-01

    A man in his 40s was found unconscious on a sofa in a communal residence for people with various disabilities. He appeared to have drunk 800 ml of undiluted citric acid from a commercial plastic bottle. The instructions on the label of the beverage specified that the beverage be diluted 20- to 30-fold before consumption. The patient was admitted to an emergency hospital with severe metabolic acidosis (pH, 6.70; HCO3(-), 3.6 mEq/L) and a low ionized calcium level (0.73 mmol/L). Although ionized calcium and catecholamines were continuously administered intravenously to correct the acidosis, the state of acidemia and low blood pressure did not improve, and he died 20 h later. Citric acid concentrations in the patient's serum drawn shortly after treatment in the hospital and from the heart at autopsy were 80.6 mg/ml and 39.8 mg/dl, respectively (normal range: 1.3-2.6 mg/dl). Autopsy revealed black discoloration of the mucosal surface of the esophagus. Microscopically, degenerated epithelium and neutrophilic infiltration in the muscle layer were observed. In daily life, drinking a large amount of concentrated citric acid beverage is rare as a cause of lethal poisoning. However, persons with mental disorders such as dementia may mistakenly drink detergent or concentrated fluids, as in our case. Family members or facility staff in the home or nursing facility must bear in mind that they should not leave such bottles in places where they are easily accessible to mentally handicapped persons. PMID:26594004

  13. Graft Loss Due to Percutaneous Sclerotherapy of a Lymphocele Using Acetic Acid After Renal Transplantation

    SciTech Connect

    Adani, Gian Luigi Baccarani, Umberto; Bresadola, Vittorio; Lorenzin, Dario; Montanaro, Domenico; Risaliti, Andrea; Terrosu, Giovanni; Sponza, Massimo; Bresadola, Fabrizio

    2005-12-15

    Development of lymphoceles after renal transplantation is a well-described complication that occurs in up to 40% of recipients. The gold standard approach for the treatment of symptomatic cases is not well defined yet. Management options include simple aspiration, marsupialization by a laparotomy or laparoscopy, and percutaneous sclerotherapy using different chemical agents. Those approaches can be associated, and they depend on type, dimension, and localization of the lymphocele. Percutaneous sclerotherapy is considered to be less invasive than the surgical approach; it can be used safely and effectively, with low morbidity, in huge, rapidly accumulating lymphoceles. Moreover, this approach is highly successful, and the complication rate is acceptable; the major drawback is a recurrence rate close to 20%. We herewith report a renal transplant case in which the patient developed a symptomatic lymphocele that was initially treated by ultrasound-guided percutaneous sclerotherapy with ethanol and thereafter using acetic acid for early recurrence. A few hours after injection of acetic acid in the lymphatic cavity, the patient started to complain of acute pain localized to the renal graft and fever. An ultrasound of the abdomen revealed thrombosis of the renal vein and artery. The patient was immediately taken to the operating room, where the diagnosis of vascular thrombosis was confirmed and the graft was urgently explanted. In conclusion, we strongly suggest avoiding the use of acetic acid as a slerosating agent for the percutaneous treatment of post-renal transplant lymphocele because, based on our experience, it could be complicated by vascular thrombosis of the kidney, ending in graft loss.

  14. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  15. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China.

    PubMed

    Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang

    2015-05-01

    Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was <4.0. The effects of SAR on soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively. PMID:25893761

  16. Corrected fluorescence spectra of fulvic acids isolated from soil and water

    SciTech Connect

    Ewald, M.; Belin, C.; Berger, P.; Weber, J.H.

    1983-08-01

    The fluorescence of humic matter is a ubiquitous phenomenon that occurs for isolated soil and aquatic matter and for natural water samples. This property is used to compare humic substances, but uncorrected emission spectra can be especially misleading for spectra taken on different instruments. This paper details the corrections of emission fluorescence spectra of well-characterized fulvic acids isolated from soil and a fresh-water river. The corrections significantly modify the uncorrected spectra. This effect demonstrates the need for emission spectra corrections before comparing the fluorescence properties of diverse humic matter samples.

  17. Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review.

    PubMed

    Paszko, Tadeusz; Muszyński, Paweł; Materska, Małgorzata; Bojanowska, Monika; Kostecka, Małgorzata; Jackowska, Izabella

    2016-02-01

    The primary aim of the present review on phenoxyalkanoic acid herbicides-2-(2,4-dichlorophenoxy) acetic acid (2,4-D), 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), (2R)-2-(2,4-dichlorophenoxy) propanoic acid (dichlorprop-P), (2R)-2-(4-chloro-2-methylphenoxy) propanoic acid (mecoprop-P), 4-(2,4-dichlorophenoxy) butanoic acid (2,4-DB), and 4-(4-chloro-2-methylphenoxy) butanoic acid (MCPB)-was to compare the extent of their adsorption in soils and degradation rates to assess their potential for groundwater contamination. The authors found that adsorption decreased in the sequence of 2,4-DB > 2,4-D > MCPA > dichlorprop-P > mecoprop-P. Herbicides are predominantly adsorbed as anions-on organic matter and through a water-bridging mechanism with adsorbed Fe cations-and their neutral forms are adsorbed mainly on organic matter. Adsorption of anions of 2,4-D, MCPA, dichlorprop-P, and mecoprop-P is inversely correlated with their lipophilicity values, and modeling of adsorption of the compounds based on this relationship is possible. The predominant dissipation mechanism of herbicides in soils is bacterial degradation. The contribution of other mechanisms, such as degradation by fungi, photodegradation, or volatilization from soils, is much smaller. The rate of bacterial degradation decreased in the following order: 2,4-D > MCPA > mecoprop-P > dichlorprop-P. It was found that 2,4-D and MCPA have the lowest potential for leaching into groundwater and that mecoprop-P and dichlorprop-P have slightly higher potential. Because of limited data on adsorption and degradation of 2,4-DB and MCPB, estimation of their leaching potential was not possible. PMID:26292078

  18. Calcium ion binding to a soil fulvic acid using a donnan potential model

    USGS Publications Warehouse

    Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.

    1999-01-01

    Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.

  19. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  20. [Relationships between soil moisture and needle-fall in Masson pine forests in acid rain region of Chongqing, Southwest China].

    PubMed

    Wang, Yi-Hao; Wang, Yan-Hui; Li, Zhen-Hua; Yu, Peng-Tao; Xiong, Wei; Hao, Jia; Duan, Jian

    2012-10-01

    From March 2009 to November 2011, an investigation was conducted on the spatiotemporal variation of soil moisture and its effects on the needle-fall in Masson pine (Pinus massoniana) forests in acid rain region of Chongqing, Southeast China, with the corresponding soil moisture thresholds determined. No matter the annual precipitation was abundant, normal or less than average, the seasonal variation of soil moisture in the forests could be obviously divided into four periods, i.e., sufficient (before May), descending (from June to July), drought (from August to September), and recovering (from October to November). With increasing soil depth, the soil moisture content increased after an initial decrease, but the difference of the soil moisture content among different soil layers decreased with decreasing annual precipitation. The amount of monthly needle-fall in the forests in growth season was significantly correlated with the water storage in root zone (0-60 cm soil layer), especially in the main root zone (20-50 cm soil layer). Soil field capacity (or capillary porosity) and 82% of field capacity (or 80% of capillary porosity) were the main soil moisture thresholds affecting the litter-fall. It was suggested that in acid rain region, Masson pine forest was easily to suffer from water deficit stress, especially in dry-summer period. The water deficit stress, together with already existed acid rain stress, would further threaten the health of the Masson forest. PMID:23359920

  1. Availability of elements in tundra soils on acidic and ultramafic rocks in the Polar Urals

    NASA Astrophysics Data System (ADS)

    Kataeva, M. N.

    2013-02-01

    The chemical properties of soils and their particle-size distribution in ecotopes of the Polar Urals mountain tundra were considered in relation with the lithological and geochemical features of the parent rocks. In the soils of ecotopes on the ultramafic massif, the contents of the total Ni (2830 mg/kg) and the total Cr (2327 mg/kg) were found to exceed their clarke values, which suggested the accumulation of these elements by plants and their migration with water. In the soils of the ultramafic massif, the average content of mobile Ni was 46.8 mg/kg, which exceeded the Ni MPC by 11.7 times. The average concentration of mobile Cr in the soils of the massif made up 0.35 MPC. In the soils of geochemical acidic rocks, the contents of mobile Ni and Cr were lower than their MPC levels. A higher content of particles with an average diameter ≥5 μm was found in the soils of the ultramafic massif.

  2. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: laboratory studies

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III

    1988-05-01

    In a series of laboratory incubation studies, the authors evaluated the effects of temperature, moisture, and nitrogen amendment on nitrogen mineralization rates in the acidic Lakehurst and Atsion sands of the New Jersey Pinelands. The average potentially mineralizable nitrogen (N/sub 0/) values for the Lakehurst and Atsion sands were 87 and 94 ..mu..g/g, respectively. Mineralization constants (k) were 0.0501 and 0.0756/wk at 25 and 35/degrees/C, respectively, for the Lakehurst sand and were 0.0327 and 0.0452/wk for the Atsion sand. Maximum mineralization occurred at 35/degrees/C for both soils with Q/sub 10/ values ranging from 1.8 to 2.1. Optimal soil moisture tensions for nitrogen mineralization were between /minus/0.01 and /minus/0.03 MPa. A soil moisture tension of /minus/0.01 MPa reduced nitrogen mineralization with the Lakehurst sand, but not with the Atsion sand. Amendment of the soil with ammonium sulfate increased mineralization with the Atsion sand, but had no effect on the Lakehurst soil. Conversely, ammonium chloride amendment increased the nitrogen mineralization rates in the Lakehurst, but not the Atsion sand. Urea amendment inhibited nitrogen mineralization with both soils. No nitrate accumulation was observed in any of the nitrogen-amended samples.

  3. Fluorine distribution in soil in the vicinity of an accidental spillage of hydrofluoric acid in Korea.

    PubMed

    An, Jinsung; Lee, Hyun A; Lee, Junseok; Yoon, Hye-On

    2015-01-01

    This study assessed the status of fluorine (F) in soil in the vicinity of a spillage of anhydrous hydrofluoric acid in Korea. Gaseous hydrogen fluoride dispersed was suspected to have contaminated the surrounding soil environment. Total and water soluble F concentrations in soil within a 1 km radius of the spillage were determined. Total F concentrations (mean=222±70.1 mg kg(-1)) were lower than the Korean limit value (i.e., 400 mg kg(-1)) and several reported measurements of background F concentrations in soils except for a single outlying case. Soluble F concentrations ranged from 0.111 to 6.40 mg kg(-1) (mean=2.20±1.80 mg kg(-1)). A negative correlation between the soluble F concentration of soil and distance from the spillage was observed. This indicates that the soluble F concentration has a crucial role in fractionating the F concentration arising from a 'non natural input' i.e., the spillage. The F content of rice samples seemed to be significantly influenced by the soluble F concentrations of soils. Rice samples collected from the control and affected areas contained 41 mg kg(-1) and 578 mg kg(-1) of total F, respectively. PMID:25128889

  4. Effects of peat fires on the characteristics of humic acid extracted from peat soil in Central Kalimantan, Indonesia.

    PubMed

    Yustiawati; Kihara, Yusuke; Sazawa, Kazuto; Kuramitz, Hideki; Kurasaki, Masaaki; Saito, Takeshi; Hosokawa, Toshiyuki; Syawal, M Suhaemi; Wulandari, Linda; Hendri I; Tanaka, Shunitz

    2015-02-01

    When peat forest fires happen, it leads to burn soil and also humic acids as a dominant organic matter contained in peat soil as well as the forest. The structure and properties of humic acids vary depending on their origin and environment, therefore the transformation of humic acid is also diverse. The impacts of the peat fires on peat soil from Central Kalimantan, Indonesia were investigated through the characterization of humic acids, extracted from soil in burnt and unburnt sites. The characterization of humic acids was performed by elemental composition, functional groups, molecular weight by HPSEC, pyrolysate compounds by pyrolysis-GC/MS, fluorescence spectrum by 3DEEM spectrofluorometer, and thermogravimetry. The elemental composition of each humic substance indicated that the value of H/C and O/C of humic acids from burnt sites were lower than that from unburnt sites. The molecular weight of humic acids from burnt sites was also lower than that from unburnt sites. Pyrolysate compounds of humic acids from unburnt sites differed from those of humic acids from burnt soil. The heating experiment showed that burning process caused the significant change in the properties of humic acids such as increasing the aromaticity and decreasing the molecular weight. PMID:24781330

  5. Changes in soil water dynamics due to variation in precipitation and temperature: An ecohydrological analysis in a tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Bell, Jesse E.; Sherry, Rebecca; Luo, Yiqi

    2010-03-01

    There is considerable evidence that future global climate change will increase temperature and alter precipitation regime. To better understand how these factors will influence soil water dynamics, it is imperative to use multifactorial experiments. A 1 year "pulse" experiment, with 4°C warming and a doubling in precipitation, was performed to evaluate the changes in soil moisture dynamics. Frequency distribution analyses of soil moisture and soil temperature were used to explore the consequences of climate change on ecohydrological processes at different soil depths. There was a decrease in soil moisture frequency from 0 to 120 cm in both warming and warming with increased precipitation experiments. Different soil depths had similar patterns of change in soil moisture and soil temperature frequency. Additionally, we correlated evapotranspiration and soil moisture to look at changes in evapotranspiration from the wilting point (Ew) to maximum evapotranspiration (Emax). These results revealed a shift in the slope and position of Ew to Emax with experimental warming. Our results showed that the soil moisture dynamics and the ecohydrology were changed by different global climate change scenarios. Understanding the effects of global warming on soil moisture dynamics will be critical for predicting changes in ecosystem level processes.

  6. Mid-infrared soil spectral changes due to cultivation, C mineralization, and short-term substrate utilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mid infrared diffuse reflectance spectroscopy is a valuable technique for the study of the C quantity and quality of soils. We analyzed soils from two sites (Hoytville, OH, and Akron, CO), under different managements (native, vs. different levels of cultivation). Each soil was also analyzed before a...

  7. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter.

    PubMed

    Khwaja, Abdul R; Bloom, Paul R; Brezonik, Patrick L

    2006-02-01

    Distribution coefficients (K(OC)) for Hg2+ binding by IHSS Pahokee peat humic acid (PHA) and humic acids separated from O-horizons and peats in a northern temperate forest were determined using a competitive ligand-exchange method. All measurements were made at low ratios of added Hg2+ to reduced S. The commonly used chelating agents, EGTA and DTPA, were found to be ineffective competitive ligands; thus, we used DL-penicillamine, a synthetic amino acid with a thiol group. Calculated free [Hg2+] at equilibrium is very low, ranging from 10(-26.4) at pH 1.9 to 10(-36.9) at pH 5.8. Corresponding log Koc values ranged from 22.6 to 32.8. The slope of the plot of pH versus log K(OC) was 2.68, suggesting that two or more protons are released when each Hg2+ is bound. This is consistent with binding of Hg2+ to bidentate thiol sites with some participation of a third weak-acid group, presumably a thiol. The 1:2 stoichiometry is consistent with X-ray spectroscopy data for Hg2+ bound to HA and with other pH-dependency results showing release of two protons with the binding of each Hg2+. Our K(OC) values are much greater than indicated by the data from most previous studies. PMID:16509327

  8. Health and ecological hazards due to natural radioactivity in soil from mining areas of Nasarawa State, Nigeria.

    PubMed

    Aliyu, Abubakar Sadiq; Ibrahim, Umar; Akpa, Chidozie Timothy; Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi

    2015-01-01

    Nasarawa State is located in north central Nigeria and it is known as Nigeria's home of solid minerals. It is endowed with barite, copper, zinc, tantalite and granite. Continuous releases of mining waste and tailings into the biosphere may result in a build-up of radionuclides in air, water and soil. This work therefore aims to measure the activity concentration levels of primordial radionuclides in the soil/sediment samples collected from selected mines of the mining areas of Nasarawa State. The paper also assesses the radiological and radio ecological impacts of mining activities on the residents of mining areas and their environment. The activity concentrations of primordial radionuclides ((226)Ra, (232)Th and (40)K) in the surface soils/sediment samples were determined using sodium iodide-thallium gamma spectroscopy. Seven major mines were considered with 21 samples taken from each of the mines for radiochemistry analysis. The human health hazard assessment was conducted using regulatory methodologies set by the United Nations Scientific Committee on the Effects of Atomic Radiation, while the radio ecological impact assessment was conducted using the ERICA tool v. 1.2. The result shows that the activity concentrations of (40)K in the water ways of the Akiri copper and the Azara barite mines are 60 and 67% higher than the world average value for (40)K, respectively. In all mines, the annual effective dose rates (mSv y(-1)) were less than unity, and a maximum annual gonadal dose of 0.58 mSv y(-1) is received at the Akiri copper mine, which is almost twice the world average value for gonadal dose. The external hazard indices for all the mines were less than unity. Our results also show that mollusc-gastropod, insect larvae, mollusc-bivalve and zooplankton are the freshwater biotas with the highest dose rates ranging from 5 to 7 µGy h(-1). These higher dose rates could be associated with zinc and copper mining at Abuni and Akiri, respectively. The most exposed

  9. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  10. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. PMID:26828188

  11. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.

    PubMed

    Zhang, Tao; Wei, Hang; Yang, Xiu-Hong; Xia, Bing; Liu, Jun-Min; Su, Cheng-Yong; Qiu, Rong-Liang

    2014-08-01

    The development of more selective chelators for the washing of heavy metal contaminated soil is desirable in order to avoid excessive dissolution of soil minerals. Speciation and mobility of Cu, Zn, Pb, and Ni in a contaminated soil washed with phenyldiaminetetraacetic acid (PDTA), a derivative of EDTA, were investigated by batch leaching test using a range of soil washing conditions followed by sequential extraction. With appropriate washing conditions, PDTA significantly enhanced extraction of Cu from the contaminated soil. The primary mechanisms of Cu extraction by PDTA were complexation-promoted dissolution of soil Cu and increased dissolution of soil organic matter (SOM). PDTA showed high selectivity for Cu(II) over soil component cations (Ca(II), Mg(II), Fe(III), Mn(II), Al(III)), especially at lower liquid-to-soil ratios under PDTA deficiency, thus avoiding unwanted dissolution of soil minerals during the soil washing process which can degrade soil structure and interfere with future land use. PDTA-enhanced soil washing increased the exchangeable fractions of Cu, Zn, and Pb and decreased their residual fractions, compared to their levels in unwashed soil. PMID:24873699

  12. Computational scheme for the prediction of metal ion binding by a soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.; Ephraim, J.H.; Mathuthu, A.S.

    1995-01-01

    The dissociation and metal ion binding properties of a soil fulvic acid have been characterized. Information thus gained was used to compensate for salt and site heterogeneity effects in metal ion complexation by the fulvic acid. An earlier computational scheme has been modified by incorporating an additional step which improves the accuracy of metal ion speciation estimates. An algorithm is employed for the prediction of metal ion binding by organic acid constituents of natural waters (once the organic acid is characterized in terms of functional group identity and abundance). The approach discussed here, currently used with a spreadsheet program on a personal computer, is conceptually envisaged to be compatible with computer programs available for ion binding by inorganic ligands in natural waters.

  13. Gasified grass and wood biochars facilitate plant establishment in acid mine soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thousands of abandoned mines in the Western U.S. threaten ecosystems, due to high heavy metal concentrations in exposed mine spoils and waters flowing from them. Biochars derived from the pyrolysis or gasification of organic biomass may serve as a valuable soil amendment to revegetate mine sites, du...

  14. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: field rates

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III; Bloom, R.A.

    1988-04-01

    Using the buried-bag procedure, the authors quantified nitrogen mineralization rates in the xeric, acidic Lakehurst, and Atsion sands of the New Jersey Pine Barrens. Average annual nitrogen yields in the upper 15 cm for the Lakehurst and the Atsion sands were 38.4 and 53.0 kg N/ha, corresponding to 4.5 and 2.5% of the total nitrogen, respectively. Net nitrogen mineralization in both soils exhibited distinct seasonal patterns with maxima in summer and minimum rates in the winter. Nitrification accounted for only 5% of the total N mineralized in both soils. This is consistent with the finding of low populations of autotrophic nitrifiers in these soils.

  15. Comparison of acid leaching and fusion techniques to determine uranium in soil samples by alpha spectrometry.

    PubMed

    Dirican, Abdullah; Şahin, Mihriban

    2016-03-01

    Dissolution of radionuclides of interest is an indispensable first step in the alpha spectrometric analysis of soil samples. In this study a uranium recovery method for the analysis of uranium isotopes in soil samples is presented. Two different soil sample dissolution techniques were used: digestion in open beaker and fusion. The results of these techniques were compared. Two proficiency test samples and one reference material prepared by the IAEA were analyzed. Better results were obtained by fusion dissolution technique but impurities were higher than with acid leaching. Results of two techniques were more or less similar within the uncertainty limits. The detection limit (a(#)) was evaluated as part of the quality control. PMID:26651172

  16. Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction.

    PubMed

    Washington, John W; Henderson, W Matthew; Ellington, J Jackson; Jenkins, Thomas M; Evans, John J

    2008-02-15

    With the objective of detecting and quantitating low concentrations of perfluorinated carboxylic acids (PFCAs), including perfluorooctanoic acid (PFOA), in soils, we compared the analytical suitability of liquid chromatography columns containing three different stationary phases, two different liquid chromatography-tandem mass spectrometry (LC/MS/MS) systems, and eight combinations of sample-extract pretreatments, extractions and cleanups on three test soils. For the columns and systems we tested, we achieved the greatest analytical sensitivity for PFCAs using a column with a C(18) stationary phase in a Waters LC/MS/MS. In this system we achieved an instrument detection limit for PFOA of 270 ag/microL, equating to about 14 fg of PFOA on-column. While an elementary acetonitrile/water extraction of soils recovers PFCAs effectively, natural soil organic matter also dissolved in the extracts commonly imparts significant noise that appears as broad, multi-nodal, asymmetric peaks that coelute with several PFCAs. The intensity and elution profile of this noise is highly variable among soils and it challenges detection of low concentrations of PFCAs by decreasing the signal-to-noise contrast. In an effort to decrease this background noise, we investigated several methods of pretreatment, extraction and cleanup, in a variety of combinations, that used alkaline and unbuffered water, acetonitrile, tetrabutylammonium hydrogen sulfate, methyl-tert-butyl ether, dispersed activated carbon and solid-phase extraction. For the combined objectives of complete recovery and minimization of background noise, we have chosen: (1) alkaline pretreatment; (2) extraction with acetonitrile/water; (3) evaporation to dryness; (4) reconstitution with tetrabutylammonium-hydrogen-sulfate ion-pairing solution; (5) ion-pair extraction to methyl-tert-butyl ether; (6) evaporation to dryness; (7) reconstitution with 60/40 acetonitrile/water (v/v); and (8) analysis by LC/MS/MS. Using this method, we

  17. Activation of the biochemical processes in an oil-contaminated soil using a light-correcting film and humic acids

    NASA Astrophysics Data System (ADS)

    Filatov, D. A.; Ivanov, A. A.; Svarovskaya, L. I.; Yudina, N. V.

    2011-02-01

    It was shown that the use of a light-correcting film as a covering material for an oil-contaminated soil in combination with humic acids increased the number of the main physiological groups of the soil microorganisms responsible for the development of the soil's fertility (heterotrophic bacteria, actinomycetes, and micromycetes) by 60-100 times. The activity of the soil enzymes (catalase, dehydrogenase, polyphenoloxidase, peroxidase, and urease) increased by 3-6 times. The biochemical oxidation of oil hydrocarbons in the soil became significantly more intense.

  18. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal.

    PubMed

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2011-10-01

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. PMID:21782301

  19. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.

    PubMed

    Clemente, Rafael; Bernal, M Pilar

    2006-08-01

    The effects of humic acids (HAs) extracted from two different organic materials on the distribution of heavy metals and on organic-C mineralisation in two contaminated soils were studied in incubation experiments. Humic acids isolated from a mature compost (HAC) and a commercial Spaghnum peat (HAP) were added to an acid soil (pH 3.4; 966 mg kg(-1) Zn and 9,229 mg kg(-1) Pb as main contaminants) and to a calcareous soil (pH 7.7; 2,602 mg kg(-1) Zn and 1,572 mg kg(-1) Pb as main contaminants) at a rate of 1.1g organic-C added per 100g soil. The mineralisation of organic-C was determined by the CO(2) released during the experiment. After 2, 8 and 28 weeks of incubation the heavy metals of the soils were fractionated by a sequential extraction procedure. After 28 weeks of incubation, the mineralisation of the organic-C added was rather low in the soils studied (<8% of TOC in the acid soil; <10% of TOC in the calcareous soil). Both humic acids caused significant Zn and Pb immobilisation (increased proportion of the residual fraction, extractable only with aqua regia) in the acid soil, while Cu and Fe were slightly mobilised (increased concentrations extractable with 0.1M CaCl(2) and/or 0.5M NaOH). In the calcareous soil there were lesser effects, and at the end of the experiment only the fraction mainly related to carbonates (EDTA-extractable) was significantly increased for Zn and decreased for Fe in the humic acids treated samples. However, HA-metal interactions provoked the flocculation of these substances, as suggested by the association of the humic acids with the sand fraction of the soil. These results indicate that humic acid-rich materials can be useful amendments for soil remediation involving stabilisation, although a concomitant slight mobilisation of Zn, Pb and Cu can be provoked in acid soils. PMID:16481023

  20. Nutrients, heavy metals and phthalate acid esters in solar greenhouse soils in Round-Bohai Bay-Region, China: impacts of cultivation year and biogeography.

    PubMed

    Chen, Zhiqun; Tian, Tian; Gao, Lihong; Tian, Yongqiang

    2016-07-01

    Solar greenhouse is a common facility type used for horticultural crop production in China. However, most solar greenhouse fields have been degraded due to continuous cropping and excessive fertilizer use. Therefore, we investigated solar greenhouse soils covering a wide range of cultivation years and environmental conditions in Round-Bohai Bay-Region to test the effects of cultivation year and biogeography on nutrients, heavy metals, and phthalate acid esters (PAEs). In general, soil pH decreased while soil electrical conductivity (EC), organic matter (OM), total nitrogen (TN), NO3 (-)-N, NH4 (+)-N, mineral nitrogen (MN), Olsen-P, and NH4OAc-K contents increased as time of cultivation increased. However, this trend was influenced by sampling sites. Among sampling sites, Jiangsu showed a relatively low soil pH and high Olsen-P content, while Hebei showed a relatively high soil EC value, NO3 (-)-N, NH4 (+)-N, MN, and NH4OAc-K contents. Liaoning was characterized by relatively high soil OM and TN contents. The nutrient level indexes in evaluation of soil quality on Olsen-P and NH4OAc-K exceeded the standard seriously. The maximum values of the heavy metals Cd, Cu, and Zn were 4.87, 2.78, and 1.15 times higher than the threshold values, respectively. There was a rising trend on the heavy metal contents with the increasing cultivation years, and this trend was significantly influenced by sampling sites. Both Cu and Zn had relative high heavy metal indexes in evaluation of soil pollution. The PAEs were not detected in almost all sampling soils. Overall, the excessive fertilizer application was an important cause of nutrient accumulation and heavy metal pollution, resulting in soil degradation in solar greenhouses. PMID:26996919

  1. Investigation of the formation of physical damage on automotive finishes due to acidic reagent exposure

    SciTech Connect

    White, D.F.; Fornes, R.E.; Gilbert, R.D.; Speer, J.A. )

    1993-10-15

    Automotive paints with clear-coat surfaces can be physically damaged by exposure to acidic reagents produced in a smog chamber designed to reproduce real environmental conditions. Visual and reflectance microscopy observations show that deposition of material formed from the reaction of the clear coat and the reagent drop occurs on the paint surface after the drop evaporates to a critical size, with the greatest deposition occurring at the edge of the drop. This type of deposition suggests a free-energy minimization process favoring the formation of stable nuclei at the reagent drop edge. With heating after the drop evaporation to stimulate exposure to the sun, a damaged area containing sulfur that is in the shape of a circular ring is observed at the location of the deposits. The majority of the visual damage appears to result from an interaction between the deposit and the paint at elevated temperatures. Results from profilometry, scanning electron microscopy, and reflectance microscopy show that the damaged areas are ring-shaped cracked blisters on the surface resulting from the clear coat separating into layers.

  2. [Influence of Three Low-Molecular-Weight Organic Acids on the Adsorption of Phenanthrene in Purple Soil].

    PubMed

    Xie, Li; Chen, Ben-shou; Zhang, Jin-zhong; Lu, Song; Jiang, Tao

    2016-03-15

    The effects of three low-molecular-weight organic acids (citric acid, malic acid and oxalic acid) on the adsorption of phenanthrene in purple soil were studied by static adsorption experiment. The results showed that the adsorption kinetic process of phenanthrene in purple soil could be described by the second-order kinetic model, and the adsorption rate constant would significantly decrease in the presence of the three low-molecular-weight organic acids ( LMWOAs). The adsorption thermodynamic process could be well described by linear adsorption model, which was dominated by distribution role. The three LMWOAs could promote the adsorption of phenantherene in purple soil when their concentrations were less than 5 mmol · L⁻¹, whereas inhibit the adsorption when their concentrations were more than 10 mmol · L⁻¹, and the inhibition would increase with increasing concentrations. Moreover, the inhibitory ability displayed a decreasing order of citric acid, oxalic acid, and malic acid when their concentrations were 20 mmol · L⁻¹, which is related to the molecular structure and acidity of the three LMWOAs. Compared with the control, the content of dissolved organic matter (DOM) released from purple soil showed a trend of first decrease and then increase with increasing LMWOAs concentration, and the adsorption capacity of phenanthrene in purple soil was negatively related to DOM content. PMID:27337897

  3. Mapping of Acid Sulfate Soils in Finland: determining of areas of risks and compiling guidelines for environmental protection and safe land use

    NASA Astrophysics Data System (ADS)

    Kupila, Juho

    2013-04-01

    Acid sulfate soils (ASS), also referred to as the "nastiest soils in the world", are soils that contain or have contained metal sulfides that oxidize under aerobic conditions and, subsequently, typically produce very severe acidity and metal pollution. In Finland, for example, the discharge of several metals to water courses from ASS is greater than that from the entire Finnish industry, and due to the acidity these metals largely occur in a soluble toxic form. In Europe, the largest occurrences of acid sulfate soils are located in Finland. It has been estimated that coverage of these harmful soils is approximately 1000 - 1500 km2 along the coastal areas of Finland. Sulfide-bearing fine-grained sediments were deposited in the sea between Finland and Sweden after the melting of the latest continental ice sheet, about 10,000 years ago. In places, the formation of such sediments is still going on today. The rapid isostatic land uplift (more than 200 m after the latest glacial period, currently up to 8 mm/year) after the retreat of the continental ice sheet has lifted these sediments above sea level. In Finland, systematic mapping and classification of acid sulfate soils started in 2009 with Geological Survey of Finland (GTK) as the leading partner, together with Åbo Akademi University and University of Helsinki. The definition of a risk classification of Finnish acid sulfate soils has been developed during the project. The observations, measurements and analyses have been used to produce e.g. probability maps of integrated catchment areas (at the scale 1:250 000), reports of the areas and guides for the identification of ASS and their environments. The main users of the results have been authorities at governmental, regional and local levels, organizations and actors in agriculture and forestry, peat production and earthwork companies and consultants concerned with soil and construction. The mapping project carried out by GTK is still in process and should be

  4. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    PubMed

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  5. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  6. The combined effects of urea application and simulated acid rain on soil acidification and microbial community structure.

    PubMed

    Liu, Xingmei; Zhou, Jian; Li, Wanlu; Xu, Jianming; Brookes, Philip C

    2014-05-01

    Our aim was to test the effects of simulated acid rain (SAR) at different pHs, when applied to fertilized and unfertilized soils, on the leaching of soil cations (K, Ca, Mg, Na) and Al. Their effects on soil pH, exchangeable H(+) and Al(3+) and microbial community structure were also determined. A Paleudalfs soil was incubated for 30 days, with and without an initial application of urea (200 mg N kg(-1)soil) as nitrogen (N) fertilizer. The soil was held in columns and leached with SAR at three pH levels. Six treatments were tested: SAR of pH 2.5, 4.0 and 5.6 leaching on unfertilized soil (T1, T2 and T3), and on soils fertilized with urea (T4, T5 and T6). Increasing acid inputs proportionally increased cation leaching in both unfertilized and fertilized soils. Urea application increased the initial Ca and Mg leaching, but had no effect on the total concentrations of Ca, Mg and K leached. There was no significant difference for the amount of Na leached between the different treatments. The SAR pH and urea application had significant effects on soil pH, exchangeable H(+) and Al(3+). Urea application, SAR treated with various pH, and the interactions between them all had significant impacts on total phospholipid fatty acids (PLFAs). The highest concentration of total PLFAs occurred in fertilized soils with SAR pH5.6 and the lowest in soils leached with the lowest SAR pH. Soils pretreated with urea then leached with SARs of pH 4.0 and 5.6 had larger total PLFA concentrations than soil without urea. Bacterial, fungal, actinomycete, Gram-negative and Gram-positive bacterial PLFAs had generally similar trends to total PLFAs. PMID:24488523

  7. Potential origin and formation for molecular components of humic acids in soils

    NASA Astrophysics Data System (ADS)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  8. Soil acidity affects distribution, behavior, and physiology of the salamander Plethodon cinereus

    SciTech Connect

    Wyman, R.L.; Hawksley-Lescault, D.S.

    1987-12-01

    Censuses at two sites in Delaware County, New York from spring 1981 through spring 1985 indicated that the density and distribution of Plethodon cinereus were influenced by soil pH but not by soil temperature or moisture. Of 1044 1-m/sup 2/ quadrats of forest litter searched, 284 had a pH of 3.7 or less and only 25 of these (8.8%) contained salamanders. Of 760 quadrats with a pH 3.8 or more, 386 (50.8%) contained salamanders. Juvenile salamanders were never found on soils with a pH less than or equal to 3.7. Seasonal salamander density was correlated (r = -0.92) with the percentage of quadrats with a pH of 3.7 and less. Salamanders apparently were excluded from 27% of forest habitat because of low soil pH. In the laboratory, P. cinereus preferred to occupy substrates near neutral pH when given a choice among three levels of substrate acidity. The acutely lethal pH was between 2.5 and 3 and the 8-mo chronically lethal pH was between 3 and 4. Growth and respiration were reduced at low pHs. The influence of soil pH on salamander distribution might fundamentally change the forest floor decomposer food web of which P. cinereus is an upper-level consumer.

  9. Impairment of cellulose- and cellobiose-degrading soil Bacteria by two acidic herbicides.

    PubMed

    Schellenberger, Stefanie; Drake, Harold L; Kolb, Steffen

    2012-02-01

    Herbicides have the potential to impair the metabolism of soil microorganisms. The current study addressed the toxic effect of bentazon and 4-chloro-2-methylphenoxyacetic acid on aerobic and anaerobic Bacteria that are involved in cellulose and cellobiose degradation in an agricultural soil. Aerobic saccharide degradation was reduced at concentrations of herbicides above environmental values. Microbial processes (e.g. fermentations, ferric iron reduction) that were linked to anaerobic cellulose and cellobiose degradation were reduced in the presence of both herbicides at concentrations above and at those that occur in crop field soil. 16S rRNA gene transcript numbers of total Bacteria, and selected bacterial taxa (Clostridia [Group I], Planctomycetaceae, and two uncultivated taxa of Bacteroidetes) decreased more in anoxic than in oxic cellulose-supplemented soil microcosms in the presence of both herbicides. Collectively, the results suggested that the metabolism of anaerobic cellulose-degrading Bacteria was impaired by typical in situ herbicide concentrations, whereas in situ concentrations did not impair metabolism of aerobic cellulose- and cellobiose-degrading soil Bacteria. PMID:22098368

  10. Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil.

    PubMed

    Druart, Coline; Delhomme, Olivier; de Vaufleury, Annette; Ntcho, Evodie; Millet, Maurice

    2011-02-01

    Analysing herbicides in soil is a complex issue that needs validation and optimization of existing methods. An extraction and analysis method was developed to assess concentrations of glyphosate, glufosinate and aminomethylphophonic acid (AMPA) in field soil samples. After testing extractions by accelerated solvent extraction and ultrasonic extraction, agitation was selected with the best recoveries. Water was preferred as solvent extraction because it resulted in a cleaner chromatogram with fewer impurities than was the case with alkaline solvents. Analysis was performed by FMOC pre-column derivatization followed by high-performance liquid chromatography (HPLC) on a 300 mm C(18) column which permitted enhanced separation and sensitivity than a 250 mm C(18) column and increased resistance than the NH(2) column for soil samples. This extraction and analysis method allowing a minimum of steps before the injection in the HPLC with fluorescence detection is efficient and sensitive for a clay-loamy soil with detection limits of 103 μg kg(-1) for glyphosate, 15 μg kg(-1) for glufosinate and 16 μg kg(-1) for AMPA in soil samples. PMID:21153586

  11. Soil nutrient bioavailability and nutrient content of pine trees (Pinus thunbergii) in areas impacted by acid deposition in Korea.

    PubMed

    Yang, Jae E; Lee, Wi-Young; Ok, Yong Sik; Skousen, Jeffrey

    2009-10-01

    Acid deposition has caused detrimental effects on tree growth near industrial areas of the world. Preliminary work has indicated that concentrations of NO(3-), SO(4)(2-), F( - ) and Al in soil solutions were 2 to 33 times higher in industrial areas compared to non-industrial areas in Korea. This study evaluated soil nutrient bioavailability and nutrient contents of red pine (Pinus thunbergii) needles in forest soils of industrial and non-industrial areas of Korea. Results confirm that forest soils of industrial areas have been acidified mainly by deposition of sulfate, resulting in increases of Al, Fe and Mn and decreases of Ca, Mg and K concentrations in soils and soil solutions. In soils of industrial areas, the molar ratios of Ca/Al and Mg/Al in forest soils were <2, which can lead to lower levels and availability of nutrients for tree growth. The Ca/Al molar ratio of Pinus thunbergii needles on non-industrial sites was 15, while that of industrial areas was 10. Magnesium concentrations in needles of Pinus thunbergii were lower in soils of industrial areas and the high levels of acid cations such as Al and Mn in these soils may have antagonized the uptake of base cations like Mg. Continued acidification can further reduce uptake of base cations by trees. Results show that Mg deficiency and high concentrations of Al and Mn in soil solution can be limiting factors for Pinus thunbergii growth in industrial areas of Korea. PMID:18758977

  12. Possible long-term effects of γ-hydroxybutyric acid (GHB) due to neurotoxicity and overdose.

    PubMed

    van Amsterdam, Jan G C; Brunt, Tibor M; McMaster, Minni T B; Niesink, Raymond J M

    2012-04-01

    In several countries, including the Netherlands, the use of GHB seems to be rising. GHB is regarded by recreational users as an innocent drug without any side effects. Recently, the number of patients in treatment due to GHB addiction sharply increased. In addition, various studies report incidents following risky GHB use or GHB overdosing. Other sedative drugs, like ketamine and alcohol have been shown to result in unintended neurotoxic harm at the level of memory and cognitive function. As outlined in the present review, GHB and ketamine have a common mode of action, which suggests that GHB may also lead to similar neurotoxicity as ketamine. GHB overdosing, as well as binge drinking (and high ketamine doses), induce profound coma which is probably neurotoxic for the brain especially in the maturing brain of young adults. It is therefore advocated to investigate possible long-term neurotoxic effects in recreational GHB users e.g. by studying the residual effects on cognition and memory. PMID:22342779

  13. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid.

    PubMed

    Song, Guixue; Hayes, Michael H B; Novotny, Etelvino H; Simpson, Andre J

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% (v/v) sulphuric acid (H(2)SO(4)) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state (13)C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H(2)SO(4) medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H(2)SO(4) medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H(2)SO(4) are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic

  14. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid

    NASA Astrophysics Data System (ADS)

    Song, Guixue; Hayes, Michael H. B.; Novotny, Etelvino H.; Simpson, Andre J.

    2011-01-01

    Humin, the most recalcitrant and abundant organic fraction of soils and of sediments, is a significant contributor to the stable carbon pool in soils and is important for the global carbon budget. It has significant resistance to transformations by microorganisms. Based on the classical operational definition, humin can include any humic-type substance that is not soluble in water at any pH. We demonstrate in this study how sequential exhaustive extractions with 0.1 M sodium hydroxide (NaOH) + 6 M urea, followed by dimethylsulphoxide (DMSO) + 6% ( v/ v) sulphuric acid (H2SO4) solvent systems, can extract 70-80% of the residual materials remaining after prior exhaustive extractions in neutral and aqueous basic media. Solid-state 13C NMR spectra have shown that the components isolated in the base + urea system were compositionally similar to the humic and fulvic acid fractions isolated at pH 12.6 in the aqueous media. The NMR spectra indicated that the major components isolated in the DMSO + H2SO4 medium had aliphatic hydrocarbon associated with carboxyl functionalities and with lesser amounts of carbohydrate and peptide and minor amounts of lignin-derived components. The major components will have significant contributions from long-chain fatty acids, waxes, to cuticular materials. The isolates in the DMSO + H2SO4 medium were compositionally similar to the organic components that resisted solvation and remained associated with the soil clays. It is concluded that the base + urea system released humic and fulvic acids held by hydrogen bonding or by entrapment within the humin matrix. The recalcitrant humin materials extracted in DMSO + H2SO4 are largely biological molecules (from plants and the soil microbial population) that are likely to be protected from degradation by their hydrophobic moieties and by sorption on the soil clays. Thus, the major components of humin do not satisfy the classical definitions for humic substances which emphasise that these arise from

  15. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  16. [Effects of simulated nitrogen deposition on soil acid phosphomonoesterase activity and soil available phosphorus content in subtropical forests in Dinghushan Mountain].

    PubMed

    Li, Yin; Zeng, Shu-cai; Huang, Wen-juan

    2011-03-01

    An in situ field experiment was conducted to study the effects of simulated nitrogen (N) deposition on soil acid phosphomonoesterase activity (APA) and soil available phosphorous (AP) content in Pinus massoniana forest (PF), coniferous and broad-leaved mixed forest (MF), and monsoon evergreen broad-leaved forest (MEBF) in Dinghushan Mountain. In PF and MF, three treatments were installed, i.e., CK (0 kg N x hm(-2) x a(-1)), low N (50 kg N x hm(-2) x a(-1)), and medium N (100 kg N x hm(-2) x a(-1)); in MEBF, four treatments were installed, i.e., CK, low N, medium N, and high N (150 kg N x hm(-2) x a(-1)). The soil APA and soil AP content decreased with soil depth. The soil APA was the highest in MEBF, while the AP content had no significant difference in the three forests. The effects of N addition on soil APA differed with forest types. In MEBF, the APA was the highest (19.52 micromol x g(-1) x h(-1)) in low N treatment; while in PF and MF, the APA was the highest (12.74 and 11.02 micromol x g(-1) x h(-1), respectively) in medium N treatment. In the three forests, soil AP content was the highest in low N treatment, but had no significant differences among the N treatments. There was a significant positive correlation between soil APA and soil AP content. PMID:21657017

  17. Enhancing Phospholipid Fatty Acid Profiling of Soil Bacterial Communities via Substrate- Specific 13C-labelling

    NASA Astrophysics Data System (ADS)

    Evershed, R. P.; Maxfield, P. J.; Bingham, E. M.; Dildar, N.; Brennand, E. L.; Hornibrook, E.

    2008-12-01

    A range of culture-independent methods, has recently emerged to study environmental microorganisms in situ[1]. One such method is phospholipid fatty acid (PLFA) analysis, wherein these ubiquitous membrane lipids provide a powerful tool for the study of unculturable soil microorganisms. PLFA analyses have been used to investigate the impacts of a wide range of environmental factors on the soil microbial community. An acknowledged shortcoming of the PLFAs approach is the lack the chemotaxonoic specificity, which restricts the ability of the method to probe the activities of specific functional groups of the microbial community selectively. However, the selectivity of PLFAs analyses can be enhanced by incubating soils with 13C- labelled substrates followed by gas chromatography-combustion-isotope ratio mass spectrometry to reveal the specific PLFAs incorporating the 13C-label. The application of this approach will be demonstrated through our recent work on methanotrophic bacteria in soils. We applied this approach initially to minera