Science.gov

Sample records for acid soluble material

  1. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  2. Acid soluble platelet aggregating material isolated from human umbilical cord

    SciTech Connect

    Schneider, M.D.

    1983-12-27

    An acid soluble, pepsin sensitive platelet aggregating material is isolated from human umbilical cord tissue by extraction with dilute aqueous acid. The method of isolation is disclosed and its use to control bleeding is described. 2 figs.

  3. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    PubMed

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  4. Comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    SciTech Connect

    Chiou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-12-01

    Water solubility enhancements of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (p,p'-DDT), 2,4,5,2',5'-pentachlorobiphenyl (2,4,5,2',5'-PCB), and 2,4,4'-trichlorobiphenyl (2,4,4'-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (K/sub doc/) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials, The K/sub doc/ values with water and aquatic humic samples are, however, far less than the observed K/sub doc/ values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids. 14 references, 3 figures, 2 tables.

  5. Binding and solubility of oleic acid to laboratory materials: A possible artifact

    SciTech Connect

    Mailman, D.; Rose, C. )

    1990-01-01

    The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon{trademark}, Teflon{trademark}, and polyethylene, and Pyrex{trademark}, and borosilicate glass, and steel was measured. {sup 3}H-oleic acid and {sup 14}C-cholic acid were used in the presence of different concentration of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts of oleic acid were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers or albumin-stimulated fatty acid uptake by hepatocytes may need to be reexamined.

  6. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  7. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  8. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  9. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials.

    PubMed

    Yamamoto, Syutaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short article describes properties of new additives in water-soluble metal working fluids for aluminum alloy materials. Many half esters or diesters were prepared from the reactions of higher alcohols with acid anhydrides. Interestingly, diesters of PTMG (tetrahydrofuran oligomer, MW = 650 and 1000) and polybutylene oxide (MW = 650) with maleic anhydride and succinic anhydride showed both of an excellent anti-corrosion property for aluminum alloy and a good hard water tolerance. The industrial soluble type processing oils including these additives also showed anti-corrosion property and hard water tolerance.

  10. Solubility of RDX, PETN and Boric Acid in Methylene Chloride

    DTIC Science & Technology

    2010-08-01

    Solubility of RDX, PETN, and Boric Acid in Methylene Chloride by Rose Pesce-Rodriguez ARL-TN-0401 August 2010...of RDX, PETN, and Boric Acid in Methylene Chloride Rose Pesce-Rodriguez Weapons and Materials Research Directorate, ARL...AND SUBTITLE Solubility of RDX, PETN and Boric Acid in Methylene Chloride 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  11. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    PubMed

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method.

  12. Solubility and equilibrium vapor pressures of HC1 dissolved in polar stratospheric cloud materials - Ice and the trihydrate of nitric acid

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1988-01-01

    Measurements of the pressure-solubility behavior of HC1 in water ice and in the nitric acid trihydrate (NAT) crystal at 200 K are reported. It was found that HC1 is about 20 times more soluble in NAT than in ice for stratospheric conditions. A relation between HC1 pressure and substrate composition based on the Gibbs-Duhem equation is developed. This relation, along with other thermodynamic data, can be used to obtain the HC1 pressure-solubility behavior at different temperatures. Implications of these results for the south polar ozone hole are discussed.

  13. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  14. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water.

  15. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  16. Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid.

    PubMed

    Takács-Novák, Krisztina; Szőke, Vera; Völgyi, Gergely; Horváth, Péter; Ambrus, Rita; Szabó-Révész, Piroska

    2013-09-01

    In this work the biorelevant solubility of four drugs representing different acid-base property, wide range of lipohilicity and low aqueous solubility was studied. The equilibrium solubility of rivaroxaban (non-ionizable), furosemide (acid), papaverine (base) and niflumic acid (ampholyte) was determined in simulated gastric fluid (SGF pH 1.2), in simulated intestinal fluid fasted state (FaSSIF pH 6.5) and fed state (FeSSIF pH 5.0) and their corresponding blank buffers at a temperature of 37 °C using saturation shake-flask method. The concentration was measured by optimized HPLC analysis. The solubilizing effect of bile acid/lipid micelles as additive components of biorelevent media (BRM) is expressed with the solubility ratio (SR: SBRM/Sblank buffer) and the food effect was estimated from SFeSSIF/SFaSSIF coefficient. It was revealed that ionization plays primarily role in solubility of compounds which undergo ionization in BRM. The solubilizing effect in FaSSIF was marginal for the neutral compound (rivaroxaban) and for molecules are anionic at pH 6.5 (furosemide and niflumic acid). The higher concentration of solubilizing agents in FeSSIF improved the solubility of papaverine carrying positive charge and niflumic acid being partially zwitterionic at pH 5.0.

  17. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  18. Water-soluble titanium alkoxide material

    DOEpatents

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  19. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  20. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    SciTech Connect

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose of this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.

  1. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  2. The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.

    PubMed

    Chung, Ying-Chien; Wu, Li-Chun; Chen, Chih-Yu

    2013-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This research compared the coagulant performance of acid-soluble chitosan with water-soluble chitosan and with coagulant mixtures of chitosan and aluminium sulfate (alum). We also assessed the coagulant performance of chitosan and poly-aluminium chloride (PAC) to remove kaolinite from turbid water. In addition, we evaluated their respective coagulation efficiencies under different coagulant concentrations, degrees of turbidity (NTU) and pH levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants in order to illustrate major factors affecting kaolinite coagulation. The optimal concentrations of acid- versus water- soluble chitosan required to remove kaolinite from a 300 NTU suspension were 4.0 and 10.0 mg/l, respectively-with individual efficiencies of 79.3 and 92.4%, in that order. Optimum concentrations ofwater-soluble chitosan demonstrated a broader range than that of acid-soluble chitosan. In addition, it is of note that chitosan/alum and chitosan/PAC water-soluble coagulant mixtures demonstrated much wider ranges of optimal concentrations for turbidity reduction than either alum or PAC alone. Moreover, our water-soluble chitosan coagulant mixtures produced denser floc with elevated settling velocities that favour cost savings relevant to both installation and operational expenses. Based on our observations of these noteworthy performances, we confidently propose that a coagulant mixture with a 1:1 mass ratio of chitosan and alum presents a remarkably more cost-effective alternative to the use of chitosan alone in water treatment systems.

  3. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10

  4. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    PubMed

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  5. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R.

    2012-02-22

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. For 6 M HNO{sub 3}, 10.5 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2 g/L and 0.25 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}.

  6. Poly(aspartic acid) with adjustable pH-dependent solubility.

    PubMed

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pKa. Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings.

  7. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  8. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    PubMed

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics.

  9. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  10. Soluble Uric Acid Activates the NLRP3 Inflammasome

    PubMed Central

    Braga, Tarcio Teodoro; Forni, Maria Fernanda; Correa-Costa, Matheus; Ramos, Rodrigo Nalio; Barbuto, Jose Alexandre; Branco, Paola; Castoldi, Angela; Hiyane, Meire Ioshie; Davanso, Mariana Rodrigues; Latz, Eicke; Franklin, Bernardo S.; Kowaltowski, Alicia J.; Camara, Niels Olsen Saraiva

    2017-01-01

    Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3−/− macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88−/− cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes. PMID:28084303

  11. Solubility of HBr in sulfuric acid at stratospheric temperatures

    SciTech Connect

    Williams, L.R.; Golden, D.M.; Huestis, D.L.

    1995-04-20

    The solubility of HBr in 54 to 72 wt % sulfuric acid at low temperatures (200 to 240 K) was measured using two different experimental techniques. In the first, the time dependence of the uptake coefficient of HBr was measured in a Knudsen cell reactor and analyzed to give the effective Henry`s law coefficient. In the second, equilibrium vapor pressures of HBr (gas) over solutions containing known concentrations of HBr (dissolved) were measured. The two techniques were in good agreement. Typical values of the effective Henry`s law coefficient at 220 K were 1.5 x 10{sup 7} M/atm for 54 wt %, 2.2 x 10{sup 6} M/atm for 60 wt %, 1.5 x 10{sup 5} M/atm for 66 wt %, and 8.5 x 10{sup 3} M/atm for 72 wt % sulfuric acid. The measured solubilities combined with the stratospheric gas phase concentration of HBr indicate that very little HBr will be dissolved in stratospheric sulfate aerosol particles. 28 refs., 4 figs., 2 tabs.

  12. Dual effect of soluble materials in pretreated lignocellulose on simultaneous saccharification and co-fermentation process for the bioethanol production.

    PubMed

    Qin, Lei; Li, Xia; Liu, Li; Zhu, Jia-Qing; Guan, Qi-Man; Zhang, Man-Tong; Li, Wen-Chao; Li, Bing-Zhi; Yuan, Ying-Jin

    2017-01-01

    In this study, wash liquors isolated from ethylenediamine and dry dilute acid pretreated corn stover were used to evaluate the effect of soluble materials in pretreated biomass on simultaneous saccharification and co-fermentation (SSCF) for ethanol production, respectively. Both of the wash liquors had different impacts on enzymatic hydrolysis and fermentation. Enzymatic conversions of glucan and xylan monotonically decreased as wash liquor concentration increased. Whereas, with low wash liquor concentrations, xylose consumption rate, cell viability and ethanol yield were maximally stimulated in fermentation without nutrient supplementary. Soluble lignins were found as the key composition which promoted sugars utilization and cell viability without nutrient supplementary. The dual effects of soluble materials on enzymatic hydrolysis and fermentation resulted in the reduction of ethanol yield as soluble materials increased in SSCF.

  13. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  14. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  15. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  16. Placement in an acidic environment increase the solubility of white mineral trioxide aggregate

    PubMed Central

    Yavari, Hamid Reza; Borna, Zahra; Rahimi, Saeed; Shahi, Shahriar; Valizadeh, Hadi; Ghojazadeh, Morteza

    2013-01-01

    Aims: The aim of the present study was to evaluate solubility of white mineral trioxide aggregate (WMTA) in an acidic environment. Materials and Methods: Twenty-four metal rings were prepared, filled with WMTA and randomly divided into two groups. The samples in groups 1 and 2 were set in synthetic tissue fluid with pH values of 7.4 and 4.4, respectively and then were transferred to beakers containing synthetic tissue fluid with pH values of 7.7 and 4.4. Solubility of WMTA samples were calculated at the 9 experimental intervals. Data was analyzed with two-factor ANOVA and Bonferroni test (P < 0.03). Results: The total solubility of WMTA in groups 1 and 2 were −9.1796 ± 1.9158% and −1.1192 ± 2.6236%, (P = 0.028) with weight changes of 9.1574 ± 2.1432% and 7.3276 ± 1.5823%, respectively (P = 0.002). Statistical analysis revealed significant differences between the two groups. Conclusions: It was concluded that solubility of WMTA increases in acidic environments and additional therapeutic precautions should be taken to decrease inflammation in endodontic treatment. PMID:23833462

  17. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  18. Increasing Soluble Phosphate Species by Treatment of Phosphate Rocks with Acidic Waste.

    PubMed

    Santos, Wedisson O; Hesterberg, Dean; Mattiello, Edson M; Vergütz, Leonardus; Barreto, Matheus S C; Silva, Ivo R; Souza Filho, Luiz F S

    2016-11-01

    The development of efficient fertilizers with a diminished environmental footprint will help meet the increasing demand for food and nutrients by a growing global population. Our objective was to evaluate whether an acidic mine waste (AMW) could be used beneficially by reacting it with sparingly soluble phosphate rocks (PRs) to produce more soluble P fertilizer materials. Three PRs from Brazil and Peru were reacted with different concentrations of AMW. Changes in mineralogy and P species were determined using a combination of X-ray diffraction and phosphorus K-edge XANES spectroscopy, in addition to extractable P concentrations. Increasing the AMW concentration typically increased extractable P. X-ray diffraction data showed transformation of apatite to other species when PRs were reacted with AMW at ≥50% (v/v) in water, with gypsum or anhydrite forming at AMW concentrations as low as 12.5%. Linear combination fitting analysis of X-ray absorption near edge structure spectra also indicated a progressive transformation of apatite to noncrystalline Fe(III)-phosphate and more soluble Ca-phosphates with increasing AMW concentration. Because this AMW is costly to dispose of, reacting it with PR to produce a higher-grade phosphate fertilizer material could decrease the environmental impacts of the AMW and diminish the consumption of pure acids in conventional P fertilizer production.

  19. The effects of acid treatment and calcium ions on the solubility of concanavalin A

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1992-01-01

    The effects of acid treatment (which removes Mn and Ca ions) and Ca(2+) ions on the solubility of jack-bean-meal concanavalin A were investigated using two techniques: the sitting drop technique and the microcolumn technique. It was found that the solubility of concanavalin A varied with the protein preparation procedures and with measurement techniques. Addition of Ca(2+) resulted in greatly lowered solubilities compared with the acid treated protein. The sitting drop solubilities for the recalcified protein agreed better with those reported by Mikol and Giege (1989) than with solubilities determined from column data.

  20. Solubility relationships of aluminum and iron minerals associated with acid mine drainage

    NASA Astrophysics Data System (ADS)

    Sullivan, Patrick J.; Yelton, Jennifer L.; Reddy, K. J.

    1988-06-01

    The ability to properly manage the oxidation of pyritic minerals and associated acid mine drainage is dependent upon understanding the chemistry of the disposal environment. One accepted disposal method is placing pyritic-containing materials in the groundwater environment. The objective of this study was to examine solubility relationships of Al and Fe minerals associated with pyritic waste disposed in a low leaching aerobic saturated environment. Two eastern oil shales were used in this oxidizing equilibration study, a New Albany Shale (unweathered, 4.6 percent pyrite), and a Chattanooga Shale (weathered, 1.5 percent pyrite). Oil shale samples were equilibrated with distilled-deionized water from 1 to 180 d with a 1∶1 solid-to-solution ratio. The suspensions were filtered and the clear filtrates were analyzed for total cations and anions. Ion activities were calculated from total concentrations. Below pH 6.0, depending upon SO{4/2-} activity, Al3+ solubility was controlled by AlOHSO4 (solid phase) for both shales. Initially, Al3+ solubility for the New Albany Shale showed equilibrium with amorphous Al(OH)3. The pH decreased with time, and Al3+ solubility approached equilibrium with AlOHSO4(s). Below pH 6.0, Fe3+ solubility appeared to be regulated by a basic iron sulfate solid phase with the stoichiometric composition of FeOHSO4(s). The results of this study indicate that below pH 6.0, Al3+ solubilities, are limited by basic Al and Fe sulfate solid phases (AlOHSO4(s) and FeHSO4(s)). The results from this study further indicate that the acidity in oil shale waters is produced from the hydrolysis of Al3+ and Fe3+ activities in solution. These results indicate a fundamental change in the stoichiometric equations used to predict acidity from iron sulfide oxidation. The results of this study also indicate that water quality predictions associated with acid mine drainage can be based on fundamental thermodynamic relationships. As a result, waste management decisions

  1. Poisoning effect on solubility of hydrogen isotopes in getter materials

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shinsuke; Sato, Yuichi; Ogawa, Hidenori; Shirasu, Yoshirou; Miyake, Masanobu

    1991-03-01

    Hydrogen and deuterium solubilities in Ti-C and Zr-N alloys with various compositions have been measured at pressures below 100 Pa. All of the solubility data were found to follow Sieverts' law. The presence of carbon in Ti increased the solubilities of hydrogen isotopes and reduced the enthalpies of solution. The solubility increased and the enthalpy of solution decreased with addition of nitrogen into Zr. The hydrogen solubility in Ti-C and Zr-N alloys was larger than the deuterium solubility. Partial thermodynamic functions of hydrogen and deuterium in Ti-C and Zr-N alloys were obtained by a dilute solution model and compared with those in Ti-(O, N) and Zr-O alloys. The isotope effect of hydrogen and deuterium solubilities in the Ti-(O, N, C) and Zr-(O, N) alloys was discussed, and the tritium solubility in Ti-C and Zr-N alloys was evaluated from hydrogen and deuterium data.

  2. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  3. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  4. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  5. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGES

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; ...

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  6. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  7. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  8. Surface tension depression by low-solubility organic material in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Schwier, Allison; Mitroo, Dhruv; McNeill, V. Faye

    2012-07-01

    Surface-active material, including long-chain fatty acids (LCFAs), comprises a significant fraction of organic aerosol mass. Surface-active species are thought to form a film at the gas-aerosol interface, with implications for aerosol heterogeneous chemistry and cloud formation. However, LCFA phase behavior and surface-bulk partitioning has not been characterized under most conditions typical of tropospheric aerosol water (i.e. acidic, high ionic content), making it challenging to predict surface film formation in aerosols. In this study, we present measurements of the surface tension of aqueous solutions containing the slightly soluble LCFAs oleic and stearic acid. The effect of varying pH, organic concentration, and inorganic salt content was tested for each system. We observe surface tension depression compared to water of up to ˜30 and 45% for aqueous solutions containing stearic or oleic acid at pH 0-8 and high inorganic salt concentrations (NaCl and (NH4)2SO4). This suggests that surface film formation is favorable for these species in atmospheric aerosols.

  9. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production.

    PubMed

    Li, R; Zhong, Z P; Jin, B S; Zheng, A J

    2012-09-01

    Fast pyrolysis of rice husk was performed in a spout-fluid bed to produce water-soluble organics. The effects of mineral bed materials (red brick, calcite, limestone, and dolomite) on yield and quality of organics were evaluated with the help of principal component analysis (PCA). Compared to quartz sand, red brick, limestone, and dolomite increased the yield of the water-soluble organics by 6-55% and the heating value by 16-19%. The relative content of acetic acid was reduced by 23-43% with calcite, limestone and dolomite when compared with quartz sand. The results from PCA showed all minerals enhanced the ring-opening reactions of cellulose into furans and carbonyl compounds rather than into monomeric sugars. Moreover, calcite, limestone, and dolomite displayed the ability to catalyze the degradation of heavy compounds and the demethoxylation reaction of guaiacols into phenols. Minerals, especially limestone and dolomite, were beneficial to the production of water-soluble organics.

  10. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    PubMed

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility.

  11. [New method of near infrared spectra analysis for the content of acid soluble lignin of Acacia].

    PubMed

    Liu, Sheng

    2014-01-01

    The near infrared spectra analysis model of the content of the acid soluble lignin and the model of the content of the Klason lignin were built by the iterative method separately at first. The results show that the prediction effect of the content of the Klason lignin is obviously better than that of the acid soluble lignin. Different from usual methods of building near infrared spectra analysis model, the approximate linear relation between the contents of the acid soluble lignin and the contents of the Klason lignin was used. Combined with the near infrared spectroscopy data of multi-wavelength, twenty sub models of prediction of the content of the acid soluble lignin were built with the help of the Klason lignin content whose prediction effect is better than that of the acid soluble lignin. By calculating the weighted mean value of the prediction values of these sub models, the new prediction value of the content of the acid soluble lignin of each acacia specimen was obtained at last. The prediction error of the new model is obviously less than that of the model built by the iterative method. It is possible that the method of modeling in the paper can be used to some chemical component contents when the predictions of them by usual methods are not very effective, and the effects of the near infrared spectra analysis of them will be improved.

  12. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with the minimum ratio of total soluble solids to anhydrous citric acid: Table II Total soluble solids (average pct) Maximum anhydrous citric acid (average pct) Minimum ratio of total soluble solids to... 1.027 9.25-1 9.6 1.043 9.20-1 9.7 1.060 9.15-1 9.8 1.077 9.10-1 9.9 1.094 9.05-1 10.0 1.111...

  13. Photochromic Properties of a Water Soluble Methyl Carboxylic Acid Indolylfulgimide

    PubMed Central

    Chen, Xi; Islamova, Nadezhda I.; Robles, Rachel V.

    2011-01-01

    Photochromic fulgides and fulgimides have been identified as promising materials for applications in optical memory media, optical switches, and sensors. For applications in humid environments or biological systems, hydrolytic stability is crucial. A new photochromic methyl carboxylic acid indolylfulgimide was synthesized to improve hydrolytic stability in aqueous solution. The UV-vis spectra, extinction coefficient, thermal stability, and photochemical stability of the fulgimide were characterized in 50 mM sodium phosphate buffer (pH 7.4). The open and closed forms were both stable in buffer. At 37 °C after 500 h, the open forms of the fulgimide showed no degradation within experimental error (1–2%) by 1H NMR and 2.3% decomposition by UV-vis spectroscopy. The closed form degraded 22% and 11% after 500 h at 37 °C in buffer by UV-vis and 1H NMR data, respectively. In addition, the fulgimide cycled back and forth between the open and closed forms 80 times before degrading by 20% in buffer. The methyl group at the bridging position of the fulgimide significantly increased the thermal stability by overcoming the rapid hydrolysis of the trifluoromethyl group. PMID:21380459

  14. Relationship between solubility and toxicity of coal liquefaction materials to the freshwater crustacean, Daphnia magna

    SciTech Connect

    Dauble, D.D.; Gray, R.H.; Scott, A.J.; Thomas, B.L.

    1985-11-01

    The potential ecological risk from complex coal liquids that may be released to freshwater ecosystems is ultimately dependent on both the degree of solubility of parent material and the toxic properties of constitutent compounds that an organism is exposed to. Thus, highly water-soluble components that remain bioavailable and are present in the water column at acutely toxic concentrations pose a problem for many aquatic organisms. We screened coal liquids derived from several processes and under different process designs to evaluate the acute toxicity of their water-soluble fractions (WSFs) to Daphnia magna. The solubility of materials treated varied and WSFs ranged from 44 to 2260 mg/L total carbon (TC). The most soluble materials in water exhibited greater toxicity based on percent dilution of the WSF. However, toxicity was similar for all materials tested when based on soluble components (TC in solution). Chemical characterization of the WSFs indicated that phenols comprised the majority of the TC in solution. Because toxicity based on total phenols was generally greater than that for individual phenolics tested separately, other soluble chemical classes in the complex mixtures likely contribute to observed toxicity.

  15. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  16. Efficient synthesis of readily water-soluble sulfonic Acid carbamates.

    PubMed

    Idzik, Krzysztof R; Nödler, Karsten; Licha, Tobias

    2015-04-16

    A series of various readily water-soluble carbamates were synthesized with good yields. These compounds are useful chemical tracers for assessing the cooling progress in a georeservoir during geothermal power plant operation. Acylation of primary amines was carried out as well as using a solution of sodium bicarbonate and without the presence of salt. Products were characterized by 1H-NMR and 13C-NMR. Purity was confirmed through elemental analysis.

  17. Solubility and bacterial sealing ability of MTA and root-end filling materials.

    PubMed

    Espir, Camila Galletti; Guerreiro-Tanomaru, Juliane Maria; Spin-Neto, Rubens; Chávez-Andrade, Gisselle Moraima; Berbert, Fabio Luiz Camargo Villela; Tanomaru-Filho, Mario

    2016-04-01

    Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE.

  18. Solubility and bacterial sealing ability of MTA and root-end filling materials

    PubMed Central

    ESPIR, Camila Galletti; GUERREIRO-TANOMARU, Juliane Maria; SPIN-NETO, Rubens; CHÁVEZ-ANDRADE, Gisselle Moraima; BERBERT, Fabio Luiz Camargo Villela; TANOMARU-FILHO, Mario

    2016-01-01

    ABSTRACT Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE. PMID:27119759

  19. Soluble polymer supported synthesis of alpha-amino acid derivatives.

    PubMed

    Sauvagnat, B; Kulig, K; Lamaty, F; Lazaro, R; Martinez, J

    2000-01-01

    A Schiff base activated glycine supported on a soluble polymer (poly(ethylene glycol) (PEG)) was readily alkylated with a wide variety of electrophiles in the presence of a carbonate base in acetonitrile. The presence of the polymer provided a phase-transfer catalysis environment which accelerated the reaction. Effects of various carbonate bases and leaving groups have been also studied. Completion of the PEG-supported reaction was obtained without using a large excess of reagents or an extra phase-transfer catalyst, even in the case of unreactive or hindered electrophiles. After cleavage from the polymer, alpha-amino esters are obtained in good yields.

  20. Development of a Water Soluble Foam Packaging Material

    DTIC Science & Technology

    1975-01-01

    Material, Expanded Polystyrene , Looae-Fill Bulk and standard properties were established. Additional investigations conducted on the loose-fill samples...mechanical properties when tested as described in Federal Specification PPP-O-1683; Cushioning Material, Expanded Polystyrene , Loose-Fill Bulk. The following

  1. Interactions between water soluble porphyrin-based star polymer and amino acids: Spectroscopic evidence of molecular binding

    NASA Astrophysics Data System (ADS)

    Angelini, Nicola; Micali, Norberto; Villari, Valentina; Mineo, Placido; Vitalini, Daniele; Scamporrino, Emilio

    2005-02-01

    Molecular interactions giving rise to stable complexes between an uncharged water soluble cobalt-porphyrin and amino acids are investigated by time-resolved fluorescence, uv-vis, and circular dichroism measurements. This metalloporphyrin seems to act, by means of the coordination site of the cobalt of the core, as a recognition host, preferentially, with amino acids possessing aromatic groups. The binding with aliphatic amino acids requires longer time scales to be efficient and likely involves a slow kinetic process. The experimental findings suggest that, besides the metal(host)-N(guest) coordination bond, which is the common requisite for all amino acids, a preferential interaction with aromatic groups exists there. The solubility in water of the molecule, guaranteed by the polyethylene glycol arms as peripheral substituents, in the absence of electric charges, allows for a more selective discrimination of the binding process with respect to other water-soluble charged porphyrins. The interest devoted to the porphyrin-based star polymer and its recognition properties is, therefore, founded on the potential use either in polymeric matrices for material science or in aqueous solution for bioscience.

  2. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    SciTech Connect

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-05-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p'-DDT,2,4,5,2',5'-PCB, 2,4,4'-PCB, 1,2,3,-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. The K/sub dom/ values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment. 41 references, 6 figures, 3 tables.

  3. Use of amino acids as counterions improves the solubility of the BCS II model drug, indomethacin.

    PubMed

    ElShaer, Amr; Khan, Sheraz; Perumal, Dhaya; Hanson, Peter; Mohammed, Afzal R

    2011-07-01

    The number of new chemical entities (NCE) is increasing every day after the introduction of combinatorial chemistry and high throughput screening to the drug discovery cycle. One third of these new compounds have aqueous solubility less than 20µg/mL [1]. Therefore, a great deal of interest has been forwarded to the salt formation technique to overcome solubility limitations. This study aims to improve the drug solubility of a Biopharmaceutical Classification System class II (BCS II) model drug (Indomethacin; IND) using basic amino acids (L-arginine, L-lysine and L-histidine) as counterions. Three new salts were prepared using freeze drying method and characterised by FT-IR spectroscopy, proton nuclear magnetic resonance ((1)HNMR), Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA). The effect of pH on IND solubility was also investigated using pH-solubility profile. Both arginine and lysine formed novel salts with IND, while histidine failed to dissociate the free acid and in turn no salt was formed. Arginine and lysine increased IND solubility by 10,000 and 2296 fold, respectively. An increase in dissolution rate was also observed for the novel salts. Since these new salts have improved IND solubility to that similar to BCS class I drugs, IND salts could be considered for possible waivers of bioequivalence.

  4. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  5. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].

    PubMed

    Chen, Yongbo; Jiang, Qiaolong

    2008-05-01

    Reversed-phase high performance liquid chromatography was used to analyze water-soluble amino acids in the normal Amorphophallus Konjac, Amorphophallus albus, Amorphophallus bulbifer, and the soft rot Amorphophallus Konjac, to determine the relationship of the different soft-rot resistant Konjac varieties and the proportion and content of the multiple water-soluble amino acids. The results showed that there are remarkable differences in the content and proportion of water-soluble amino acids in different resistant varieties and the same variety of normal and diseased leaves of Amorphophallus. In this study, the bank of fingerprint 15 chromatogram was established and can be used to analyze the related characteristic peaks and the resistance of Amorphophallus.

  6. The expanded Hansen approach to solubility parameters. Paracetamol and citric acid in individual solvents.

    PubMed

    Barra, J; Lescure, F; Doelker, E; Bustamante, P

    1997-07-01

    In this study two solubility-parameter models have been compared using as dependent variables the logarithm of the mole fraction solubility, lnX2e, and ln(alpha)/U (originally used in the extended Hansen method), where alpha is the activity coefficient and U is a function of the molar volume of the solute and the volume fraction of the solvent. The results show for the first time the proton-donor and -acceptor hydrogen-bonding capacities of paracetamol, as measured by the acidic and basic partial-solubility parameters. The influence of solvents on the differential scanning calorimetry (DSC) pattern of the solid phases was also studied in relation to the solubility models tested. Citric acid was chosen as a test substance because of its high acidity and its proton donor capacity to form hydrogen bonds with basic solvents. The partial acidic and basic solubility parameters obtained from multiple regression were consistent with this property, validating the model chosen. The results show that the more direct lnX2e variable was more suitable for fitting both models, and the four-parameter model seemed better for describing the interactions between solvent and solute.

  7. Understanding the synergistic effect of arginine and glutamic acid mixtures on protein solubility.

    PubMed

    Shukla, Diwakar; Trout, Bernhardt L

    2011-10-20

    Understanding protein solubility is a key part of physical chemistry. In particular, solution conditions can have a major effect, and the effect of multiple cosolutes is little understood. It has been shown that the simultaneous addition of L-arginine hydrochloride and L-glutamic acid enhances the maximum achievable solubility of several poorly soluble proteins up to 4-8 times (Golovanov et. al, J. Am. Chem. Soc., 2004, 126, 8933-8939) and reduces the intermolecular interactions between proteins. The observed solubility enhancement is negligible for arginine and glutamic acid solutions as compared to the equimolar mixtures. In this study, we have established the molecular mechanism behind this observed synergistic effect of arginine and glutamic acid mixtures using preferential interaction theory and molecular dynamics simulations of Drosophilia Su(dx) protein (ww34). It was found that the protein solubility enhancement is related to the relative increase in the number of arginine and glutamic acid molecules around the protein in the equimolar mixtures due to additional hydrogen bonding interactions between the excipients on the surface of the protein when both excipients are present. The presence of these additional molecules around the protein leads to enhanced crowding, which suppresses the protein association. These results highlight the role of additive-additive interaction in tuning the protein-protein interactions. Furthermore, this study reports a unique behavior of additive solutions, where the presence of one additive in solution affects the concentration of another on the protein surface.

  8. Isolation, Solubility, and Characterization of D-Mannitol Esters of 4-Methoxybenzeneboronic Acid.

    PubMed

    Lopalco, Antonio; Marinaro, William A; Day, Victor W; Stella, Valentino J

    2017-02-01

    The purpose of this study was to determine the aqueous solubility of a model phenyl boronic acid, 4-methoxybenzeneboronic acid, as a function of pH both in the absence and in the presence of varying D-mannitol concentration. Solid isolated D-mannitol esters were characterized by differential scanning calorimetry, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray studies, and the boronic acid-to-D-mannitol ratio was quantified by HPLC. Hydrolysis of the monoester was studied using UV spectral differences between the monoester and the parent boronic acid. Two D-mannitol esters of 4-methoxybenzeneboronic acid were isolated. The triboronate ester was very insoluble whereas a symmetrical monoboronate monohydrate was also less soluble than the parent. Both esters were crystalline. The monoboronate monohydrate was, however, more soluble than the parent at alkaline pH values due to its lower pKa value (6.53) compared to the parent acid (9.41). Hydrolysis of the monoboronate was extremely fast when even small amount of water was added to dry acetonitrile solutions of the ester. The hydrolysis was buffer concentration dependent and apparent pH sensitive with hydrolysis accelerated by acid. Implications affecting the formulation of future boronic acid drugs are discussed.

  9. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  10. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase.

    PubMed

    Xu, Jiancong; Nie, Xuliang; Hong, Yanping; Jiang, Yan; Wu, Guoqiang; Yin, Xiaoli; Wang, Chunrong; Wang, Xiaoqiang

    2016-04-07

    A series of compounds were synthesized by glycosylation of maslinic acid (MA) and corosolic acid (CA) with monosaccharides and disaccharides, and the structures of the derivatives were elucidated by standard spectroscopic methods including (1)H NMR, (13)C NMR and HRMS. The α-glucosidase inhibitory activities of all the novel compounds were evaluated in vitro. The solubility and inhibitory activity of α-glucosidase assays showed that the bis-disaccharide glycosides of triterpene acids possessed higher water solubility and α-glucosidase inhibitory activities than the bis-monosaccharide glycosides. Among these compounds, maslinic acid bis-lactoside (8e, IC50 = 684 µM) and corosolic acid bis-lactoside (9e, IC50 = 428 µM) had the best water solubility, and 9e exhibited a better inhibitory activity than acarbose (IC50 = 478 µM). However, most of glycosylated derivatives possessed lower inhibitory activities than the parent compounds, although their water solubility was enhanced obviously. Moreover, the kinetic inhibition studies indicated that 9e was a non-competitive inhibitor, and structure-activity relationships of the derivatives are also discussed.

  11. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    PubMed

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  12. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kilbane, J.J. II; Jackowski, K.

    1991-12-31

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  13. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  14. Crystallization of a salt of a weak organic acid and base: solubility relations, supersaturation control and polymorphic behavior.

    PubMed

    Jones, H P; Davey, R J; Cox, B G

    2005-03-24

    Control of crystallization processes for organic salts is of importance to the pharmaceutical industry as many active pharmaceutical materials are marketed as salts. In this study, a method for estimating the solubility product of a salt of a weak acid and weak base from measured pH-solubility data is described for the first time. This allows calculation of the supersaturation of solutions at known pH. Ethylenediammonium 3,5-dinitrobenzoate is a polymorphic organic salt. A detailed study of the effects of pH, supersaturation, and temperature of crystallization on the physical properties of this salt shows that the desired polymorph may be produced by appropriate selection of the pH and supersaturation of crystallization. Crystal morphology is also controlled by these crystallization conditions.

  15. Acid-soluble magnesia cement; New applications in completion and workover operations

    SciTech Connect

    Sweatman, R.E.; Scoggins, W.C. )

    1990-11-01

    Acid-soluble magnesia cement (MC) was used in production zones to plug perforations temporarily to reduce brine losses during completion and workover operations. This has resulted in substantial savings for operators. The cement has also been used to reduce potential formation damage. This paper describes some of the characteristics of the cement, field applications, and results.

  16. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  17. Phenolic acids and antioxidant activity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sample sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants in Iowa. Phenolic acids were analyzed by high performance liquid chromatography coupled with diode array and/or mass spectrometry. The antioxidant activity was ...

  18. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  19. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein.

    PubMed

    Hong, Da Young; Lee, Ji-Soo; Lee, Hyeon Gyu

    2016-04-01

    The aim of this study was to improve the solubility of lutein through the use of chitosan (CS)/poly-γ-glutamic acid (γ-PGA) nanoencapsulation. In terms of redispersibility, water-soluble chitosan (WsCS)/γ-PGA nanoparticles (NPs) were better than insoluble chitosan (InCS)/γ-PGA NPs. The lutein-loaded WsCS/γ-PGA NP has a spherical form with a size around 200nm and a narrow size distribution (PDI<0.1). Solubility measures showed that nanoencapsulation of lutein into WsCS/γ-PGA NPs resulted in a significant 12-fold higher solubility compared to that of non-nanoencapsulated lutein (p<0.05). The redispersibility index of the lutein-loaded NPs was 1.01, indicating that they were completely reconstituted into aqueous solution as same as original aqueous solution. These results suggest that WsCS/γ-PGA nanoencapsulation can be used to enhance the solubility of lutein and other poorly water-soluble compounds.

  20. Denatured mammalian protein mixtures exhibit unusually high solubility in nucleic acid-free pure water.

    PubMed

    Futami, Junichiro; Fujiyama, Haruna; Kinoshita, Rie; Nonomura, Hidenori; Honjo, Tomoko; Tada, Hiroko; Matsushita, Hirokazu; Abe, Yoshito; Kakimi, Kazuhiro

    2014-01-01

    Preventing protein aggregation is a major goal of biotechnology. Since protein aggregates are mainly comprised of unfolded proteins, protecting against denaturation is likely to assist solubility in an aqueous medium. Contrary to this concept, we found denatured total cellular protein mixture from mammalian cell kept high solubility in pure water when the mixture was nucleic acids free. The lysates were prepared from total cellular protein pellet extracted by using guanidinium thiocyanate-phenol-chloroform mixture of TRIzol, denatured and reduced total protein mixtures remained soluble after extensive dialysis against pure water. The total cell protein lysates contained fully disordered proteins that readily formed large aggregates upon contact with nucleic acids or salts. These findings suggested that the highly flexible mixtures of disordered proteins, which have fully ionized side chains, are protected against aggregation. Interestingly, this unusual solubility is characteristic of protein mixtures from higher eukaryotes, whereas most prokaryotic protein mixtures were aggregated under identical conditions. This unusual solubility of unfolded protein mixtures could have implications for the study of intrinsically disordered proteins in a variety of cells.

  1. AIRWAY RETENTION OF MATERIALS OF DIFFERENT SOLUBILITY FOLLOWING LOCAL INTRABRONCHIAL DEPOSITION IN DOGS

    EPA Science Inventory

    We used a gamma camera to monitor the retention and clearance of radiolabeled human serum albumin (HSA), a water-soluble material with molecular weight of 66,000 Daltons, and radiolabeled sulfur colloid (SC), an insoluble submicron (0.22 microm) particle, following localized depo...

  2. One-pot Synthesis of Soluble Nanoscale CIGS Photoactive Functional Materials.

    PubMed

    Lin, Ying; Chen, Yu; Feng, Miao; Yan, Aixia; Zhuang, Xiaodong

    2007-12-04

    Promising alternatives for solar energy utilization are thin film technologies involving various new materials. This contribution describes an easy and inexpensive synthetic method that can be used to prepare soluble nanoscale triphenyl phosphine-coordinated CIGS (TPP-CIGS) photoactive functional materials. This complex is stable in the solid state under the irradiation of the ambient light, but its solution becomes a little bit unstable under the illumination of the low intensity laser.

  3. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    USGS Publications Warehouse

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  4. Chemical composition of phase I Coxiella burnetii soluble antigen prepared by trichloroacetic acid extraction.

    PubMed

    Lukácová, M; Brezina, R; Schramek, S; Pastorek, J

    1989-01-01

    Optimal conditions of extraction (time and temperature) by trichloroacetic acid of soluble antigen from phase I Coxiella burnetii (TCAE), possessing protective properties and used as a chemovaccine against Q fever in men, were studied. Extracts prepared under various conditions were analysed for their polysaccharide, protein and phosphorus contents. Forty-five min of extraction at 0 degrees C were sufficient to obtain a soluble antigen reacting in immunodiffusion with hyperimmune rabbit antiserum. The polysaccharide contents decreased with prolonged extraction at 0 degrees C. At higher extraction temperatures (37 and 100 degrees C), the polysaccharide contents increased while that of proteins decreased. TCAE prepared at 100 degrees C gave no positive immunodiffusion reaction.

  5. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    PubMed

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  6. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility.

    PubMed

    Ogawa, Kazuki; Hirose, Sayumi; Nagaoka, Satoshi; Yanase, Emiko

    2016-01-13

    The molecular mechanism by which tea polyphenols decrease the micellar solubility of cholesterol is not completely clear. To clarify this mechanism, this study investigated the interaction between tea polyphenols (catechins and oolongtheanins) and cholesterol micelles. A nuclear magnetic resonance (NMR) study was performed on a micellar solution containing taurocholic acid and epigallocatechin gallate (EGCg), and high-performance liquid chromatography (HPLC) analysis was carried out on the precipitate and the supernatant that formed when EGCg was added to a cholesterol-micelle solution. The data indicated a regiospecific interaction of EGCg with taurocholic acid. Therefore, the ability of EGCg to lower the solubility of phosphatidylcholine (PC) and cholesterol in micellar solutions can be attributed to their elimination from the micelles due to interaction between taurocholic acids and EGCg.

  7. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  8. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  9. Acid Rain: Resource Materials for Schools.

    ERIC Educational Resources Information Center

    American Biology Teacher, 1983

    1983-01-01

    Provides listings of acid rain resource material groups under: (1) printed materials (pamphlets, books, articles); (2) audiovisuals (slide/tape presentations, tape, video-cassette); (3) miscellaneous (buttons, pocket lab, umbrella); (4) transparencies; (5) bibliographies; and (6) curriculum materials. Sources and prices (when applicable) are…

  10. Solubility of a new calcium silicate-based root-end filling material

    PubMed Central

    Singh, Shishir; Podar, Rajesh; Dadu, Shifali; Kulkarni, Gaurav; Purba, Rucheet

    2015-01-01

    Introduction: The purpose of this study was to compare solubility of a new calcium silicate-based cement, Biodentine with three commonly used root-end filling materials viz. glass-ionomer cement (GIC), intermediate restorative material (IRM), and mineral trioxide aggregate (MTA). Materials and Methods: Twenty stainless steel ring molds were filled with cements corresponding to four groups (n = 5). The weight of 20 dried glass bottles was recorded. Samples were transferred to bottles containing 5 ml of distilled water and stored for 24 h. The bottles were dried at 105΀C and weighed. This procedure was repeated for 3, 10, 30, and 60 days. Data was analyzed with one-way analysis of variance (ANOVA) test (P < 0.05). Results: Biodentine demonstrated significantly higher solubility than MTA for 30- and 60-day immersion periods. Statistical difference was noted between the solubility values of Biodentine samples amongst each of the five time intervals. Conclusions: Biodentine exhibited higher solubility in comparison with all other cements. PMID:25829696

  11. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  12. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia)

    PubMed Central

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C.; Ullah, Abul H. J.

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and Pi. PAPs are typically categorized into two subfamilies: Mg2+-dependent soluble PAP and Mg2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53–60°C and unaffected by up to 0.3 mM MgCl2. The Km and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na3VO4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg2+-independent enzyme in plants. PMID:25203006

  13. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  14. Solubility of ammonium acid urate nephroliths from bottlenose dolphins (Tursiops truncatus).

    PubMed

    Argade, Sulabha; Smith, Cynthia R; Shaw, Timothy; Zupkas, Paul; Schmitt, Todd L; Venn-Watson, Stephanie; Sur, Roger L

    2013-12-01

    Nephrolithiasis has been identified in managed populations of bottlenose dolphins (Tursiops truncatus); most of these nephroliths are composed of 100% ammonium acid urate (AAU). Several therapies are being investigated to treat and prevent nephrolithiasis in dolphins including the alkalization of urine for dissolution of nephroliths. This study evaluates the solubility of AAU nephroliths in a phosphate buffer, pH range 6.0-8.0, and in a carbonate-bicarbonate buffer, pH range 9.0-10.8. AAU nephroliths were obtained from six dolphins and solubility studies were conducted using reverse-phase high performance liquid chromatography with ultraviolet detection at 290 nm. AAU nephroliths were much more soluble in a carbonate-bicarbonate buffer, pH range 9.0-10.8 compared to phosphate buffer pH range 6.0-8.0. In the pH range 6.0-8.0, the solubility was 45% lower in potassium phosphate buffer compared to sodium phosphate buffer. When citrate was used along with phosphate in the same pH range, the solubility was improved by 13%. At pH 7 and pH 8, 150 mM ionic strength buffer was optimum for dissolution. In summary, adjustment of urinary pH alone does not appear to be a useful way to treat AAU stones in bottlenose dolphins. Better understanding of the pathophysiology of AAU nephrolithiasis in dolphins is needed to optimize kidney stone prevention and treatment.

  15. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    PubMed

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  16. Effect of magnesium carbonate on the solubility, dissolution and oral bioavailability of fenofibric acid powder as an alkalising solubilizer.

    PubMed

    Kim, Kyeong Soo; Kim, Jeong Hyun; Jin, Sung Giu; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Li, Dong Xun; Woo, Jong Soo; Choi, Han-Gon

    2016-04-01

    To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability.

  17. A soluble acid invertase is directed to the vacuole by a signal anchor mechanism.

    PubMed

    Rae, Anne L; Casu, Rosanne E; Perroux, Jai M; Jackson, Mark A; Grof, Christopher P L

    2011-06-15

    Enzyme activities in the vacuole have an important impact on the net concentration of sucrose. In sugarcane (Saccharum hybrid), immunolabelling demonstrated that a soluble acid invertase (β-fructofuranosidase; EC 3.2.1.26) is present in the vacuole of storage parenchyma cells during sucrose accumulation. Examination of sequences from sugarcane, barley and rice showed that the N-terminus of the invertase sequence contains a signal anchor and a tyrosine motif, characteristic of single-pass membrane proteins destined for lysosomal compartments. The N-terminal peptide from the barley invertase was shown to be capable of directing the green fluorescent protein to the vacuole in sugarcane cells. The results suggest that soluble acid invertase is sorted to the vacuole in a membrane-bound form.

  18. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  19. Influence of hydroxycarboxylic acids on the water solubility of various bismuth compounds.

    PubMed

    Heinemann, A; Strugala, G; Elsenhans, B

    1995-01-01

    In an equilibrium dialysis assay (bismuth being determined by atomic absorption spectrometry) a constant amount of bismuth (Bi, CAS 7440-69-9) (final maximum conc. 50 mumol Bi/l) was dialyzed against solutions with increasing concentrations of the chelators (0-25 mmol/l). At pH 5, 50% of Bi(III) nitrate was soluble in solutions with 0.3, 6.3, 13.4 and 14.6 mmol/l of edetic acid (EDTA), citric, tartaric and malic acid, respectively. At the highest concentration applied, lactic acid kept 7% of bismuth in solution. Without any chelator, bismuth was found to be essentially insoluble (limit of detection: approx. 4 nmol Bi/l). A concentration-dependent increase in solubility was found also for the other bismuth compounds; the sequence of the solubilizing capacity of the chelators was the same as for Bi(III) nitrate. Lowering the pH to 3 generally increased and raising the pH to 7, decreased the solubility of bismuth.

  20. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis.

    PubMed

    Jerga, Agoston; Lu, Ying-Jie; Schujman, Gustavo E; de Mendoza, Diego; Rock, Charles O

    2007-07-27

    Diacylglycerol kinases (DagKs) are key enzymes in lipid metabolism that function to reintroduce diacylglycerol formed from the hydrolysis of phospholipids into the biosynthetic pathway. Bacillus subtilis is a prototypical Gram-positive bacterium with a lipoteichoic acid structure containing repeating units of sn-glycerol-1-P groups derived from phosphatidylglycerol head groups. The B. subtilis homolog of the prokaryotic DagK gene family (dgkA; Pfam01219) was not a DagK but rather was an undecaprenol kinase. The three members of the soluble DagK protein family (Pfam00781) in B. subtilis were tested by complementation of an E. coli dgkA mutant, and only the essential yerQ gene possessed DagK activity. This gene was dubbed dgkB, and the soluble protein product was purified, and its DagK activity was verified in vitro. Conditional inactivation of dgkB led to the accumulation of diacylglycerol and the cessation of lipoteichoic acid formation in B. subtilis. This study identifies a soluble protein encoded by the dgkB (yerQ) gene as an essential kinase in the diacylglycerol cycle that drives lipoteichoic acid production.

  1. Synthesis and evaluation of water-soluble prodrugs of ursodeoxycholic acid (UDCA), an anti-apoptotic bile acid.

    PubMed

    Dosa, Peter I; Ward, Tim; Castro, Rui E; Rodrigues, Cecília M P; Steer, Clifford J

    2013-06-01

    Ursodeoxycholic acid (UDCA) is a bile acid with demonstrated anti-apoptotic activity in both in vitro and in vivo models. However, its utility is hampered by limited aqueous solubility. As such, water-soluble prodrugs of UDCA could have an advantage over the parent bile acid in indications where intravenous administration might be preferable, such as decreasing damage from stroke or acute kidney injury. Five phosphate prodrugs were synthesized, including one incorporating a novel phosphoryloxymethyl carboxylate (POMC) moiety. These prodrugs were highly water-soluble, but showed significant differences in chemical stability, with oxymethylphosphate prodrugs being the most unstable. In a series of NMR experiments, the POMC prodrug was bioactivated to UDCA by alkaline phosphatase (AP) faster than a prodrug containing a phosphate directly attached to the alcohol at the 3-position of UDCA. Both of these prodrugs showed significant anti-apoptotic activity in a series of in vitro assays, although the POMC prodrug required the addition of AP for activity, while the other compound was active without exogenous AP.

  2. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  3. Cellular fatty acid and soluble protein composition of Actinobacillus actinomycetemcomitans and related organisms.

    PubMed Central

    Calhoon, D A; Mayberry, W R; Slots, J

    1981-01-01

    The cellular fatty acid and protein content of twenty-five representative strains of Actinobacillus actinomycetecomitans isolated from juvenile and adult periodontitis patients was compared to that of 15 reference strains of oral and nonoral Actinobacillus species and Haemophilus aphrophilus. Trimethylsilyl derivatives of the fatty acid methyl esters were analyzed by gas-liquid chromatography. The predominant fatty acids of all 40 strains examined were 14:0, 3-OH 14:0, 16 delta, and 16:0. Actinobacillus seminis (ATCC 15768) was unlike the other strains examined because of a greater amount of 14:0 detected. The soluble protein analysis using polyacrylamide gel electrophoresis revealed that A. actinomycetemcomitans, H. aphrophilus, and nonoral Actinobacillus species possessed distinct protein profiles attesting to the validity of separating these organisms into different species. Established biotypes of A. actinomycetemcomitans could not be differentiated on the basis of fatty acid or protein profiles. PMID:7287893

  4. Enantiomeric 3-chloromandelic acid system: binary melting point phase diagram, ternary solubility phase diagrams and polymorphism.

    PubMed

    Le Minh, Tam; von Langermann, Jan; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2010-09-01

    A systematic study of binary melting point and ternary solubility phase diagrams of the enantiomeric 3-chloromandelic acid (3-ClMA) system was performed under consideration of polymorphism. The melting point phase diagram was measured by means of thermal analysis, that is, using heat-flux differential scanning calorimetry (DSC). The results reveal that 3-ClMA belongs to the racemic compound-forming systems. Polymorphism was found for both the enantiomer and the racemate as confirmed by X-ray powder diffraction analysis. The ternary solubility phase diagram of 3-ClMA in water was determined between 5 and 50 degrees C by the classical isothermal technique. The solubilities of the pure enantiomers are extremely temperature-dependent. The solid-liquid equilibria of racemic 3-ClMA are not trivial due to the existence of polymorphism. The eutectic composition in the chiral system changes as a function of temperature. Further, solubility data in the alternative solvent toluene are also presented.

  5. Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions.

    PubMed

    Pindrus, Mariya; Shire, Steven J; Kelley, Robert F; Demeule, Barthélemy; Wong, Rita; Xu, Yiren; Yadav, Sandeep

    2015-11-02

    The purpose of this work was to elucidate the molecular interactions leading to monoclonal antibody self-association and precipitation and utilize biophysical measurements to predict solubility behavior at high protein concentration. Two monoclonal antibodies (mAb-G and mAb-R) binding to overlapping epitopes were investigated. Precipitation of mAb-G solutions was most prominent at high ionic strength conditions and demonstrated strong dependence on ionic strength, as well as slight dependence on solution pH. At similar conditions no precipitation was observed for mAb-R solutions. Intermolecular interactions (interaction parameter, kD) related well with high concentration solubility behavior of both antibodies. Upon increasing buffer ionic strength, interactions of mAb-R tended to weaken, while those of mAb-G became more attractive. To investigate the role of amino acid sequence on precipitation behavior, mutants were designed by substituting the CDR of mAb-R into the mAb-G framework (GM-1) or deleting two hydrophobic residues in the CDR of mAb-G (GM-2). No precipitation was observed at high ionic strength for either mutant. The molecular interactions of mutants were similar in magnitude to those of mAb-R. The results suggest that presence of hydrophobic groups in the CDR of mAb-G may be responsible for compromising its solubility at high ionic strength conditions since deleting these residues mitigated the solubility issue.

  6. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    PubMed

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  7. Solubility and spectroscopic studies of the interaction of palladium with simple carboxylic acids and fulvic acid at low temperature

    NASA Astrophysics Data System (ADS)

    Wood, Scott A.; Tait, C. Drew; Vlassopoulos, Dimitri; Janecky, D. R.

    1994-01-01

    The interaction of Pd with some O-donor organic acid anions has been investigated using solubility measurements and a variety of spectroscopic techniques (UV-visible, Raman, FTIR, 13C NMR). Some of the ligands investigated (acetate, oxalate and fulvic acid) occur naturally in relatively high concentrations, whereas others (phthalate and salicylate) serve as models of potential binding sites on humic and fulvic acids. Solubility measurements show that the presence of acetate, phthalate, salicylate and fulvic acid (oxalate was not studied via solubility methods) can increase the mobility of Pd over various pH ranges, depending on the organic ligand. In the case of acetate, UV-visible and Raman spectroscopy ( 13C NMR results were inconclusive) provide strong evidence for the formation of electrostatically bound, possibly outer-sphere palladium acetate complexes. Oxalate was confirmed by UV-visible and FTIR spectroscopy to compete favorably with chloride (0.56 M NaCl) for Pd even at oxalate concentrations as low as 1 mM at pH = 6-7. Available data from the literature suggest that oxalate may have an influence on Pd mobility at free oxalate concentrations as low as 10 -8-10 -9 M. UV-visible spectroscopy provides evidence of an initially rapid, followed by a slower, reaction between PdCl 42- and o-phthalate ion. Our findings lend support to the idea that similar binding sites on fulvic acid may be capable of complexing and solubilizing Pd in the natural environment. Although thermodynamic data are required to fully quantify the extent, it is concluded that simple carboxylic acid anions and/or fulvic and humic acids should be capable of significantly enhancing Pd transport in the surficial environment by forming truly dissolved complexes. On the other hand, flocculation of fulvic/humic acids, owing to changing ionic strengths or pH, or adsorption of these acids onto mineral surfaces, may also provide effective means of immobilizing Pd. These results have applications in

  8. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes

    PubMed Central

    Schupp, Anna-Kathrin; Trilling, Mirko; Rattay, Stephanie; Le-Trilling, Vu Thuy Khanh; Haselow, Katrin; Stindt, Jan; Zimmermann, Albert; Häussinger, Dieter

    2016-01-01

    ABSTRACT The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds. PMID:27170759

  9. Dramatic improvement of the solubility of pseudolaric acid B by cyclodextrin complexation: preparation, characterization and validation.

    PubMed

    Chi, Liandi; Liu, Ruihao; Guo, Tao; Wang, Manli; Liao, Zuhua; Wu, Li; Li, Haiyan; Wu, Deling; Zhang, Jiwen

    2015-02-20

    As one of the most important technologies to improve the solubility of poorly water-soluble drugs, the solubilization effects of cyclodextrins (CDs) complexation are, on occasions, not as large as expected, which tends to detract from the wider application of CDs. In this study, a dramatic improvement of the solubility of pseudolaric acid B (PAB) by CDs has been found with a 600 fold increase by HP-β-CD complexation. In addition, the solubility enhancement of PAB by various CDs, including α-CD, β-CD, γ-CD, HP-β-CD and SBE-β-CD was investigated by phase solubility studies. The inclusion complex of PAB/HP-β-CD was prepared by different methods and characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy ((1)H NMR) together with molecular simulation. The results indicated that the solubility of PAB was increased to 15.78mgmL(-1) in the presence of 30% HP-β-CD, which is a 600 fold increase compared with that in pure water. And the chemical stability of PAB in PBS (pH 7.4) can be enhanced. The results of DSC and XRD showed the absence of crystallinity in the PAB/HP-β-CD inclusion complex prepared by the saturated water solution method. The results of (1)H NMR together with molecular simulation indicated the conjugated diene side-chain of PAB was included into the cavity of HP-β-CD, with the free energy of -20.34±4.69kJmol(-1). While the enzymatic degradation site of the carboxyl polar bond is located in the hydrophilic outer of HP-β-CD resulted in no significant difference for the enzymatic degradation rate between PAB and PAB/HP-β-CD complexes in rat plasma. In summary, the PAB/HP-β-CD inclusion complex prepared in this study can greatly improve the solubility and chemical stability of PAB, which will result in the in vivo administration of PAB as a liquid solution.

  10. Nanometer-Scale Water-Soluble Macrocycles from Nanometer-Sized Amino Acids

    PubMed Central

    Gothard, Chris M.

    2009-01-01

    This paper introduces the unnatural amino acids m-Abc2K and o-Abc2K as nanometersized building blocks for the creation of water-soluble macrocycles with well-defined shapes. m-Abc2K and o-Abc2K are homologues of the nanometer-sized amino acid Abc2K, which we recently introduced for the synthesis of water-soluble molecular rods of precise length. [J. Am. Chem. Soc. 2007, 129, 7272]. Abc2K is linear (180°), m-Abc2K creates a 120° angle, and o-Abc2K creates a 60° angle. m-Abc2K and o-Abc2K are derivatives of 3’-amino-[1,1’-biphenyl]-4-carboxylic acid and 2’-amino-[1,1’-biphenyl]-4-carboxylic acid, with two propyloxyammonium side chains for water solubility. m-Abc2K and o-Abc2K are prepared as Fmoc-protected derivatives Fmoc-m-Abc2K(Boc)-OH (1a) and Fmoc-o-Abc2K(Boc)-OH (1b). These derivatives can be used alone or in conjunction with Fmoc-Abc2K(Boc)-OH (1c) as ordinary amino acids in Fmoc-based solid-phase peptide synthesis. Building blocks 1a–c were used to synthesize macrocyclic “triangles” 9a–c, “parallelograms” 10a,b, and hexagonal “rings” 11a–d. The macrocycles range from a trimer to a dodecamer, with ring sizes from 24 to 114 atoms, and are 1–4 nm in size. Molecular modeling studies suggest that all the macrocycles except 10b should have well-defined triangle, parallelogram, and ring shapes if all of the amide linkages are trans and the ortho-alkoxy substituents are intramolecularly hydrogen bonded to the amide NH groups. The macrocycles have good water solubility and are readily characterized by standard analytical techniques, such as RP-HPLC, ESI-MS, and NMR spectroscopy. 1H and 13C NMR studies suggest that the macrocycles adopt conformations with all trans-amide linkages in CD3OD, that the “triangles” and “parallelograms” maintain these conformations in D2O, and that the “rings” collapse to form conformations with cis-amide linkages in D2O. PMID:20020731

  11. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was

  12. Effect of metal halide light source on hardness, water sorption and solubility of indirect composite material.

    PubMed

    Koizumi, Hiroyasu; Satsukawa, Hidetada; Tanoue, Naomi; Ogino, Tomohisa; Nishiyama, Minoru; Matsumura, Hideo

    2005-12-01

    This study evaluates the effects of a metal halide light source on the post-polymerization properties of the Sinfony indirect composite material. Two polymerization systems were employed: the Hyper LII system, comprising a metal halide polymerization unit, and the Visio system, comprising two proprietary units designed for polymerizing the Sinfony composite. The composite material was polymerized for 60, 120 or 180 s with the LII system. As a control, the composite was polymerized for 15 min with the Visio system. Knoop hardness, water sorption and solubility were determined. The results were analyzed by Dunnett's T3 multiple comparison test (P<0.05). Knoop hardness was greater for polymerization with the LII unit than for that with the Visio system. Water sorption was greater for polymerization with the Visio system than that with the LII unit. For polymerization with the LII unit for 180 s, solubility was significantly reduced as compared with the Visio system. Within the limitations of the current experiment, it can be concluded that the metal halide unit exhibited better polymerizing performance for the composite material than the proprietary units.

  13. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  14. Soluble species in the Arctic summer troposphere - acidic gases, aerosols, and precipitation

    SciTech Connect

    Talbot, R.W.; Vijgen, A.S.; Harriss, R.C. Old Dominion Univ., Norfolk, VA )

    1992-10-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions. 61 refs.

  15. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  16. Nickel hydroxide ageing time influence on its solubility in water acidified with sulphuric acid.

    PubMed

    Osińska, Małgorzata; Stefanowicz, Tadeusz; Paukszta, Dominik

    2004-08-30

    Nickel hydroxide samples freshly settled as well as stored over 1 month, 2 months and 6.5 years were examined for their solubility rate in diluted H2SO4 solutions of pH 1.9 and 2.8 as a function of time. Samples with a longer ageing history dissolved less readily than freshly settled ones. It was determined that the resistance to dissolving rose with sample ageing time and the solubility of the 6.5 years stored sample was particularly low. X-ray examination evidenced that during storage the crystallinity of Ni(OH)2 subsequently rose. The parallelity of both time-dependent phenomena allows the conclusion that with nickel hydroxide ageing the transformation of disordered nickel hydroxide species into crystalline Ni(OH)2 (without phase changes) is responsible for increasing nickel hydroxide resistance to dissolving in acidic solutions. Such decrease of nickel hydroxide solubility with ageing in case of waste nickel hydroxide, is worth to notice in a view of environment protection against pollution with electroplating waste.

  17. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin.

    PubMed

    Liu, Dasong; Wei, Guanmian; Li, Tiancheng; Hu, Jinhua; Lu, Naiyan; Regenstein, Joe M; Zhou, Peng

    2015-04-01

    This study investigated the effects of alkaline pretreatments and acid extraction conditions on the production of acid-soluble collagen (ASC) from grass carp skin. For alkaline pretreatment, 0.05 and 0.1M NaOH removed non-collagenous proteins without significant loss of ASC at 4, 10, 15 and 20 °C; while 0.2 and 0.5M NaOH caused significant loss of ASC, and 0.5M NaOH caused structural modification of ASC at 15 and 20 °C. For acid extraction at 4, 10, 15 and 20 °C, ASC was partly extracted by 0.1 and 0.2M acetic acid, while 0.5 and 1.0M acetic acid resulted in almost complete extraction. The processing conditions involving 0.05-0.1M NaOH for pretreatment, 0.5M acetic acid for extraction and 4-20 °C for both pretreatment and extraction, produced ASC with the structural integrity being well maintained and hence were recommended to prepare ASC from grass carp skin in practical application.

  18. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    SciTech Connect

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  19. Resistance of geopolymer materials to acid attack

    SciTech Connect

    Bakharev, T

    2005-04-01

    This article presents an investigation into durability of geopolymer materials manufactured using a class F fly ash (FA) and alkaline activators when exposed to 5% solutions of acetic and sulfuric acids. The main parameters studied were the evolution of weight, compressive strength, products of degradation and microstructural changes. The degradation was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The performance of geopolymer materials when exposed to acid solutions was superior to ordinary Portland cement (OPC) paste. However, significant degradation of strength was observed in some geopolymer materials prepared with sodium silicate and with a mixture of sodium hydroxide and potassium hydroxide as activators. The deterioration observed was connected to depolymerisation of the aluminosilicate polymers in acidic media and formation of zeolites, which in some cases lead to a significant loss of strength. The best performance was observed in the geopolymer material prepared with sodium hydroxide and cured at elevated temperature, which was attributed to a more stable cross-linked aluminosilicate polymer structure formed in this material.

  20. Solubility limits and phase diagrams for fatty acids in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions.

    PubMed

    Tzocheva, Sylvia S; Kralchevsky, Peter A; Danov, Krassimir D; Georgieva, Gergana S; Post, Albert J; Ananthapadmanabhan, Kavssery P

    2012-03-01

    The limiting solubility of fatty acids in micellar solutions of the anionic surfactant sodium laurylethersulfate (SLES) and the zwitterionic surfactant cocamidopropyl betaine (CAPB) is experimentally determined. Saturated straight-chain fatty acids with n=10, 12, 14, 16, and 18 carbon atoms were investigated at working temperatures of 25, 30, 35, and 40°C. The rise of the fatty acid molar fraction in the micelles is accompanied by an increase in the equilibrium concentration of acid monomers in the aqueous phase. Theoretically, the solubility limit is explained with the precipitation of fatty acid crystallites when the monomer concentration reaches the solubility limit of the acid in pure water. In agreement with theory, the experiment shows that the solubility limit is proportional to the surfactant concentration. For ideal mixtures, the plot of the log of solubility limit vs. the chainlength, n, must be a straight line, which is fulfilled for n=14, 16, and 18. For the fatty acids of shorter chains, n=10 and 12, a deviation from linearity is observed, which is interpreted as non-ideal mixing due to a mismatch between the chainlengths of the surfactant and acid. The data analysis yields the solubilization energy and the interaction parameter for the fatty acid molecules in surfactant micelles. By using the determined parameter values, phase diagrams of the investigated mixed solutions are constructed. The four inter-domain boundary lines intersect in a quadruple point, whose coordinates have been determined. The results can be applied for the interpretation and prediction of the solubility, and phase behavior of medium- and long-chain fatty acids and other amphiphiles that are solubilizable in micellar surfactant solutions, as well as for determining the critical micellization concentration (CMC) of the respective mixed solution.

  1. Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere.

    PubMed

    Andersen, Mads P Sulbaek; Axson, Jessica L; Michelsen, Rebecca R H; Nielsen, Ole John; Iraci, Laura T

    2011-05-05

    The solubility of gas-phase acetic acid (CH(3)COOH, HAc) and trifluoroacetic acid (CF(3)COOH, TFA) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (207-245 K) and acid composition (40-75 wt %, H(2)SO(4)). For both HAc and TFA, the effective Henry's law coefficient, H*, is inversely dependent on temperature. Measured values of H* for TFA range from 1.7 × 10(3) M atm(-1) in 75.0 wt % H(2)SO(4) at 242.5 K to 3.6 × 10(8) M atm(-1) in 40.7 wt % H(2)SO(4) at 207.8 K. Measured values of H* for HAc range from 2.2 × 10(5) M atm(-1) in 57.8 wt % H(2)SO(4) at 245.0 K to 3.8 × 10(8) M atm(-1) in 74.4 wt % H(2)SO(4) at 219.6 K. The solubility of HAc increases with increasing H(2)SO(4) concentration and is higher in strong sulfuric acid than in water. In contrast, the solubility of TFA decreases with increasing sulfuric acid concentration. The equilibrium concentration of HAc in UT/LS aerosol particles is estimated from our measurements and is found to be up to several orders of magnitude higher than those determined for common alcohols and small carbonyl compounds. On the basis of our measured solubility, we determine that HAc in the upper troposphere undergoes aerosol partitioning, though the role of H(2)SO(4) aerosol particles as a sink for HAc in the upper troposphere and lower stratosphere will only be discernible under high atmospheric sulfate perturbations.

  2. Water soluble and heat resistant polymers by free radical polymerization of lactic acid-based monomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Hitoshi; Kibayashi, Tatsuya; Niwa, Miki

    2013-08-01

    Tactic heat resistant polymer was prepared by free radical polymerization of lactic acid-based monomers, i.e. chiral 2-isopropyl-5-methylene-1,3-dioxolan-4-ones (1). The polymerization of 1 proceeded smoothly without ring-opening to give a polymer with high isotacticity (mm) of 29.7~100% and glass transition temperature (Tg) of 172~213°C. 1 also showed high reactivity in the copolymerization with styrene and methyl methacrylate, and the incorporation of 1 unit in the copolymer structure increased Tg of each polymer. In addition, hydrolysis of poly(1) produced a new type of water soluble poly(lactic acid), i.e. poly(α-hydroxy acrylate), and poly(α-hydroxy acrylate-co-divinyl benzene) hydrogel absorbed water as high as 1000 times of the original polymer weight.

  3. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated.

  4. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  5. Spectrophotometric determination of uric acid and some redeterminations of its solubility

    USGS Publications Warehouse

    Norton, D.R.; Plunkett, M.A.; Richards, F.A.

    1954-01-01

    The present study was initiated in order to develop a rapid and accurate method for the determination of uric acid in fresh, brackish, and sea water. It was found that the spectrophotometric determination of uric acid based upon its reaction with arsenophosphotungstic acid reagent in the presence of cyanide ion meets this objective. The absorbancy of the blue complex was measured at 890 m??. Slight variations from Beer's law were generally found. The results show the effects of pH, reaction time, concentration of reagents, and temperature upon color development and precipitate formation. Disodium dihydrogen ethylenediamine tetraacetate (Versene) was used as a buffering and complexirig agent. The results are significant in that they give the absorption spectrum of the blue complex and the effects of variables upon its absorbancy. Studies were made with the method to determine the stability of reagents and standard solutions and to determine the rate of bacterial decomposition of uric acid. Measurements of the solubility of uric acid are reported.

  6. Pigmentation Effect of Rice Bran Extracted Minerals Comprising Soluble Silicic Acids

    PubMed Central

    Jang, Hyun-Jun

    2016-01-01

    Our investigation focused on identifying melanogenesis effect of soluble minerals in rice bran ash extract (RBE) which include orthosilicic acid (OSA). Melanocytes were apparently normal in terms of morphology. It was, however, shown that they were stressed a little in the RBE and OSA added media in aspect of LDH activity. Melanin synthesis and intracellular tyrosinase activity were increased by treatment of RBE which is similar to that of OSA. The Western blotting results showed that TRP-1, tyrosinase, and MITF expression levels were 2-3 times higher in the OSA and RBE groups compared to the control group which promoted melanin synthesis through CREB phosphorylation. Moreover, histology and immunohistochemistry were shown to have similar result to that of protein expression. As a result, minerals which comprise orthosilicic acid has the potential to promote melanogenesis and both RBE and OSA have similar cell viability, protein expression, and immunostaining results, suggesting that RBE comprises specific minerals which promote melanin synthesis through increasing of MITF and CREB phosphorylation. Therefore, RBE could be used as a novel therapeutic approach to combat melanin deficiency related diseases by stimulating melanocytes via its soluble Si and mineral components. PMID:27882071

  7. Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells.

    PubMed

    Zheng, Lingling; Ma, Yingzhuang; Xiao, Lixin; Zhang, Fengyan; Wang, Yuanhao; Yang, Hongxing

    2017-04-11

    Interfacial materials play a critical role in photoelectric conversion properties as well as the anomalous hysteresis phenomenon of the perovskite solar cells (PSCs). In this article, a water-soluble polythiophene PTEBS was employed as a cathode interfacial material for PSCs. Efficient energy level aligning and improved film morphology were obtained due to an ultrathin coating of PTEBS. Better ohmic contact between the perovskite layer and the cathode also benefits the charge transport and extraction of the device. Moreover, less charge accumulation at the interface weakens the polarization of the perovskite resulting in a relatively quick response of the modified device. The ITO/PTEBS/CH3NH3PbI3/spiro-MeOTAD/Au cells by an all low-temperature process achieved power conversion efficiencies of up to 15.4% without apparent hysteresis effect. Consequently, the utilization of this water-soluble polythiophene is a practical approach for the fabrication of highly efficient, large-area, and low-cost PSCs and compatible with low-temperature solution process, roll-to-roll manufacture, and flexible application.

  8. Recent advances in water/alcohol-soluble π-conjugated materials: new materials and growing applications in solar cells.

    PubMed

    Duan, Chunhui; Zhang, Kai; Zhong, Chengmei; Huang, Fei; Cao, Yong

    2013-12-07

    Water/alcohol-soluble conjugated polymers (WSCPs) and small molecules (WSCSs) are materials that can be processed from water or other polar solvents. They provide good opportunities to fabricate multilayer organic optoelectronic devices without interface mixing by solution processing, and exhibit a promising interface modification ability for metal or metal oxide electrodes to greatly enhance the device performance of solar cells. Moreover, owing to their intriguing processability, WSCPs and WSCSs have great potential for applying environmentally friendly processing technologies to fabricate solar cells. In this review, the authors give an overview of recent developments in WSCPs and WSCSs, including their molecular design, material synthesis, functional principles and application as interface modification layers and photoactive components in emerging photovoltaic technologies such as organic/polymer solar cells, organic-inorganic hybrid solar cells and dye-sensitised solar cells.

  9. Homogenization-dependent responses of acid-soluble and acid-insoluble glycogen to exercise and refeeding in human muscles.

    PubMed

    Barnes, Phillip D; Singh, Anish; Fournier, Paul A

    2009-12-01

    Muscle glycogen exists as acid-insoluble (AIG) and acid-soluble (ASG) forms, with AIG levels reported in most recent studies in humans to be the most responsive to exercise and refeeding. Because the muscle samples in these studies were not homogenized to extract glycogen, such homogenization-free protocols might have resulted in a suboptimal yield of ASG. Our goal, therefore, was to determine whether similar findings can be achieved using homogenized muscle samples by comparing the effect of exercise and refeeding on ASG and AIG levels. Eight male participants cycled for 60 minutes at 70% Vo(2peak) before ingesting 10.9 +/- 0.6 g carbohydrate per kilogram body mass over 24 hours. Muscle biopsies were taken before exercise and after 0, 2, and 24 hours of recovery. Using a homogenization-dependent protocol to extract glycogen, 77% to 91% of it was extracted as ASG, compared with 11% to 24% with a homogenization-free protocol. In response to exercise, muscle glycogen levels fell from 366 +/- 24 to 184 +/- 46 mmol/kg dry weight and returned to 232 +/- 32 and 503 +/- 59 mmol/kg dry weight after 2 and 24 hours, respectively. Acid-soluble glycogen but not AIG accounted for all the changes in total glycogen during exercise and refeeding when extracted using a homogenization-dependent protocol, but AIG was the most responsive fraction when extracted using a homogenization-free protocol. In conclusion, the patterns of response of ASG and AIG levels to changes in glycogen concentrations in human muscles are highly dependent on the protocol used to acid-extract glycogen, with the physiologic significance of the many previous studies on AIG and ASG being in need of revision.

  10. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.

  11. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    PubMed

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  12. Effects of acid extrusion on the degradability of maize distillers dried grain with solubles in pigs.

    PubMed

    de Vries, S; Pustjens, A M; van Rooijen, C; Kabel, M A; Hendriks, W H; Gerrits, W J J

    2014-12-01

    Commonly used feed processing technologies are not sufficient to affect recalcitrant nonstarch polysaccharides (NSP) such as arabinoxylans present in maize distillers dried grain with solubles (DDGS). Instead, hydrothermal treatments combined with acid catalysts might be more effective to modify these NSP. The objective of this experiment was to investigate the effects of hydrothermal maleic acid treatment (acid extrusion) on the degradability of maize DDGS in growing pigs. It was hypothesized that acid extrusion modifies DDGS cell wall architecture and thereby increases fermentability of NSP. Two diets, containing either 40% (wt/wt) unprocessed or acid-extruded DDGS, were restrictedly fed to groups of gilts (n=11, with 4 pigs per group; initial mean BW: 20.8±0.2 kg) for 18 d and performance and digestibility were analyzed. Acid extrusion tended to decrease apparent ileal digestibility (AID) of CP (approximately 3 percentage units [% units]); P=0.063) and starch (approximately 1% unit; P=0.096). Apparent digestibility of CP and starch measured at the mid colon (2% units, P=0.030, for CP and 0.3% units, P<0.01, for starch) and apparent total tract digestibility (ATTD; 3% units, P<0.01, for CP and 0.2% units, P=0.024, for starch) were lower for the acid-extruded diet compared with the control diet. Hindgut disappearance was, however, not different between diets, indicating that reduced CP and starch digestibility were mainly due to decreased AID. Acid extrusion tended to increase AID of NSP (6% units; P=0.092) and increased digestibility of NSP measured at the mid colon (6% units; P<0.01), whereas hindgut disappearance and ATTD of NSP did not differ between diets. Greater NSP digestibility was mainly due to greater digestibility of arabinosyl, xylosyl, and glucosyl residues, indicating that both arabinoxylan and cellulose degradability were affected by acid extrusion. In conclusion, these results show that acid extrusion did not improve degradation of DDGS for

  13. Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations

    NASA Astrophysics Data System (ADS)

    Shi, Guosheng; Dang, Yaru; Pan, Tingting; Liu, Xing; Liu, Hui; Li, Shaoxian; Zhang, Lijuan; Zhao, Hongwei; Li, Shaoping; Han, Jiaguang; Tai, Renzhong; Zhu, Yiming; Li, Jichen; Ji, Qing; Mole, R. A.; Yu, Dehong; Fang, Haiping

    2016-12-01

    We experimentally observed considerable solubility of tryptophan (Trp) in a CuCl2 aqueous solution, which could reach 2-5 times the solubility of Trp in pure water. Theoretical studies show that the strong cation-π interaction between Cu2 + and the aromatic ring in Trp modifies the electronic distribution of the aromatic ring to enhance significantly the water affinity of Trp. Similar solubility enhancement has also been observed for other divalent transition-metal cations (e.g., Zn2 + and Ni2 + ), another aromatic amino acid (phenylalanine), and three aromatic peptides (Trp-Phe, Phe-Phe, and Trp-Ala-Phe).

  14. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    PubMed

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))

  15. The Saccharomyces cerevisiae PHM8 gene encodes a soluble magnesium-dependent lysophosphatidic acid phosphatase.

    PubMed

    Reddy, Venky Sreedhar; Singh, Arjun Kumar; Rajasekharan, Ram

    2008-04-04

    Phosphate is the essential macronutrient required for the growth of all organisms. In Saccharomyces cerevisiae, phosphatases are up-regulated, and the level of lysophosphatidic acid (LPA) is drastically decreased under phosphate-starved conditions. The reduction in the LPA level is attributed to PHM8, a gene of unknown function. phm8Delta yeast showed a decreased LPA-hydrolyzing activity under phosphate-limiting conditions. Overexpression of PHM8 in yeast resulted in an increase in the LPA phosphatase activity in vivo. In vitro assays of the purified recombinant Phm8p revealed magnesium-dependent LPA phosphatase activity, with maximal activity at pH 6.5. The purified Phm8p did not hydrolyze any lipid phosphates other than LPA. In silico analysis suggest that Phm8p is a soluble protein with no transmembrane domain. Site-directed mutational studies revealed that aspartate residues in a DXDXT motif are important for the catalysis. These findings indicated that LPA plays a direct role in phosphate starvation. This is the first report of the identification and characterization of magnesium-dependent soluble LPA phosphatase.

  16. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis

    PubMed Central

    Tresguerres, Martin; Parks, Scott K.; Salazar, Eric; Levin, Lonny R.; Goss, Greg G.; Buck, Jochen

    2009-01-01

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO3−). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H+) and HCO3− at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO3− and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO3− levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H+ into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom. PMID:20018667

  17. Bicarbonate-sensing soluble adenylyl cyclase is an essential sensor for acid/base homeostasis.

    PubMed

    Tresguerres, Martin; Parks, Scott K; Salazar, Eric; Levin, Lonny R; Goss, Greg G; Buck, Jochen

    2010-01-05

    pH homeostasis is essential for life, yet it remains unclear how animals sense their systemic acid/base (A/B) status. Soluble adenylyl cyclase (sAC) is an evolutionary conserved signaling enzyme that produces the second messenger cAMP in response to bicarbonate ions (HCO(3)(-)). We cloned the sAC ortholog from the dogfish, a shark that regulates blood A/B by absorbing and secreting protons (H(+)) and HCO(3)(-) at its gills. Similar to mammalian sAC, dogfish soluble adenylyl cyclase (dfsAC) is activated by HCO(3)(-) and can be inhibited by two structurally and mechanistically distinct small molecule inhibitors. dfsAC is expressed in the gill epithelium, where the subset of base-secreting cells resides. Injection of inhibitors into animals under alkaline stress confirmed that dfsAC is essential for maintaining systemic pH and HCO(3)(-) levels in the whole organism. One of the downstream effects of dfsAC is to promote the insertion of vacuolar proton pumps into the basolateral membrane to absorb H(+) into the blood. sAC orthologs are present throughout metazoans, and mammalian sAC is expressed in A/B regulatory organs, suggesting that systemic A/B sensing via sAC is widespread in the animal kingdom.

  18. Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam.

    PubMed

    Minh Thuy, Le Thi; Okazaki, Emiko; Osako, Kazufumi

    2014-04-15

    Acid-soluble collagen (ASC) was successfully extracted from the scales of lizard fish (Saurida spp.) and horse mackerel (Trachurus japonicus) from Japan and Vietnam and grey mullet (Mugil cephalis), flying fish (Cypselurus melanurus) and yellowback seabream (Dentex tumifrons) from Japan. ASC yields were about 0.43-1.5% (on a dry weight basis), depending on the species. The SDS-PAGE profile showed that the ASCs were type I collagens, and consisted of two different α chains, α1 and α2, as well as a β component. ASC of horse mackerel from Vietnam contained a higher imino acid level than that from Japan. ASC denaturation temperature (Td) ranged from 26 to 29 °C, depending on fish species and imino acid content (p<0.01). Maximal solubility of individual collagens was observed at pHs 1-3. Collagen solubility decreased sharply at NaCl concentrations >0.4M, regardless of fish type.

  19. Fuels production by photoelectrolysis of water and photooxidation of soluble biomass materials

    SciTech Connect

    Sammells, A.F.; St. John, M.R.

    1984-03-20

    A process and apparatus for production of fuels by photoelectrolysis of water and photooxidation of water soluble biomass and a process for preparation of Schottky-type metalized, appropriately doped n-type semiconductor photochemical diodes suitable for use in the above process and apparatus. The production of hydrogen by photoelectrolysis of water as the cathodic reaction of an optically illuminated photochemical diode is effected in an aqueous electrolyte which comprises a biomass product which may be monosaccharides, polysaccharides, lignins, their partially oxidized products, and mixtures thereof which are oxidized as the anodic reaction of the photochemical diode producing liquid fuels and useful chemicals. Molecular oxygen evolution is avoided and utilization of biomass product provides a cost effective material to increase fuels and useful chemical production by photoelectrolysis of water at potentials substantially less than required for normal water electrolysis involving oxygen evolution.

  20. Examination of a vehicle for use with water soluble materials in the murine local lymph node assay.

    PubMed

    Ryan, C A; Cruse, L W; Skinner, R A; Dearman, R J; Kimber, I; Gerberick, G F

    2002-11-01

    The murine local lymph node assay (LLNA) is a validated method for identifying skin sensitization hazard. Vehicle choice can influence the sensitization potential of haptens in both the LLNA and in humans, therefore selection of an appropriate vehicle is important. Suggested vehicles for the LLNA include organic solvents and organic-aqueous mixtures. However, due to its high surface tension and poor wetting qualities, water is not recommended and therefore testing aqueous soluble materials can be problematic. The aims of this investigation were to identify a water-based vehicle that possesses better skin wetting properties than water alone, and to assess its performance relative to other solvents in the LLNA using aqueous soluble haptens. The selected wetting agent was the surfactant Pluronic(R) L92 (L92). Concentrations of L92 of up to 50% did not induce positive responses in the LLNA. 1% aqueous L92 was chosen for further examination. Dose-response analyses were performed with dinitrobenzene sulfonic acid (DNBS) and formaldehyde formulated either in water, 1% L92, dimethyl sulfoxide (DMSO) or dimethyl formamide (DMF). Potassium dichromate (PDC) and nickel sulfate were tested in 1% L92, DMSO or DMF. The highest concentration of potassium dichromate was retested in each vehicle and in water to assess the effect of the wetting agent. Estimates of the relative sensitizing potency in each vehicle were determined by calculation of EC3 values (the estimated concentration required to induce a threshold positive response). While DNBS and formaldehyde produced positive responses in all four vehicles, their relative potency varied among the vehicles. The rank ordering of potencies for both materials was, from highest to lowest, DMF > or = DMSO > 1% L92 > water. Compared with water, use of 1% L92 resulted in >2-fold increase in potency for DNBS and >3-fold increase for formaldehyde. PDC was positive in DMF, DMSO and 1% L92. The potency ranking was DMF > or = DMSO > 1% L92

  1. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  2. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  3. Acidic magnetorheological finishing of infrared polycrystalline materials

    DOE PAGES

    Salzman, S.; Romanofsky, H. J.; West, G.; ...

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however,more » surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.« less

  4. Acidic magnetorheological finishing of infrared polycrystalline materials

    SciTech Connect

    Salzman, S.; Romanofsky, H. J.; West, G.; Marshall, K. L.; Jacobs, S. D.; Lambropoulos, J. C.

    2016-10-12

    Here, chemical-vapor–deposited (CVD) ZnS is an example of a polycrystalline material that is difficult to polish smoothly via the magnetorheological–finishing (MRF) technique. When MRF-polished, the internal infrastructure of the material tends to manifest on the surface as millimeter-sized “pebbles,” and the surface roughness observed is considerably high. The fluid’s parameters important to developing a magnetorheological (MR) fluid that is capable of polishing CVD ZnS smoothly were previously discussed and presented. These parameters were acidic pH (~4.5) and low viscosity (~47 cP). MRF with such a unique MR fluid was shown to reduce surface artifacts in the form of pebbles; however, surface microroughness was still relatively high because of the absence of a polishing abrasive in the formulation. In this study, we examine the effect of two polishing abrasives—alumina and nanodiamond—on the surface finish of several CVD ZnS substrates, and on other important IR polycrystalline materials that were finished with acidic MR fluids containing these two polishing abrasives. Surface microroughness results obtained were as low as ~28 nm peak-to-valley and ~6-nm root mean square.

  5. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages.

  6. Soluble narrow band gap and blue propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic and electrochromic applications.

    PubMed

    Thompson, Barry C; Kim, Young-Gi; McCarley, Tracy D; Reynolds, John R

    2006-10-04

    A family of soluble narrow band gap donor-acceptor conjugated polymers based on dioxythiophenes and cyanovinylenes is reported. The polymers were synthesized using Knoevenagel polycondensation or Yamamoto coupling polymerizations to yield polymers with molecular weights on the order of 10 000-20 000 g/mol, which possess solubility in common organic solvents. Thin film optical measurements revealed narrow band gaps of 1.5-1.8 eV, which gives the polymers a strong overlap of the solar spectrum. The energetic positions of the band edges were determined by cyclic voltammetry and differential pulse voltammetry and demonstrate that the polymers are both air stable and show a strong propensity for photoinduced charge transfer to fullerene acceptors. Such measurements also suggest that the polymers can be both p- and n-type doped, which is supported by spectroelectrochemical results. These polymers have been investigated as electron donors in photovoltaic devices in combination with PCBM ([6,6]-phenyl C(61)-butyric acid methyl ester) as an electron acceptor based on the near ideal band structures designed into the polymers. Efficiencies as high as 0.2% (AM1.5) with short circuit current densities as high as 1.2-1.3 mA/cm(2) have been observed in polymer/PCBM (1:4 by weight) devices and external quantum efficiencies of more than 10% have been observed at wavelengths longer than 600 nm. The electrochromic properties of the narrow band gap polymers are also of interest as the polymers show three accessible color states changing from an absorptive blue or purple in the neutral state to a transmissive sky-blue or gray in the oxidized and reduced forms. The wide electrochemical range of electrochromic activity coupled with the strong observed changes in transmissivity between oxidation states makes these materials potentially interesting for application to electrochromic displays.

  7. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method.

    PubMed

    Cabot, Joan Marc; Fuguet, Elisabet; Rosés, Martí

    2014-12-01

    A set of 33 drugs with different solubilities, ranging from soluble to very insoluble, has been chosen in order to evaluate the performance of the internal standard CE method to determine acidity constants of compounds with limited solubility. The set of drugs tested in this work has been chosen as a function of their intrinsic solubility. For the most insoluble compounds, several analytical conditions to overcome the insolubility in aqueous buffers have been tested. This paper assesses the compound solubility limits for the IS-CE method in aqueous pKa determinations, and also compares the determined pKa s with the results from the literature data obtained by other methods. It is proved that IS-CE method determines acidity constants of sparingly soluble drugs in aqueous media (compounds with logS down to around -6), whereas other reference methods require the use of aqueous-organic solvent buffers and extrapolation procedures to obtain the aqueous pKa for the same compounds.

  8. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  9. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  10. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 μL of Serum or Plasma by High-Throughput Mass Spectrometry.

    PubMed

    Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M

    2016-11-01

    Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.

  11. Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding.

    PubMed

    Zhan, Yingqing; Yang, Xulin; Meng, Fanbin; Wei, Junji; Zhao, Rui; Liu, Xiaobo

    2011-11-01

    Hybrids of Fe(3)O(4) nanoparticles and surface-modified graphene nanosheets (GNs) were synthesized by a two-step process. First, graphene nanosheets were modified by SOCl(2) and 4-aminophenoxyphthalonitrile to introduce nitrile groups on their surface. Second, the nitrile groups of surface-modified graphene nanosheets were reacted with ferric ions on the surface of Fe(3)O(4) with the help of relatively high boiling point solvent ethylene glycol to form a GNs/Fe(3)O(4) hybrid. The covalent attachment of Fe(3)O(4) nanoparticles on the graphene nanosheet surface was confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectrometer (EDS) and scanning electron microscopy (SEM). TEM and HRTEM observations indicated that the sizes of the nanoparticles and their coverage density on GNs could be easily controlled by changing the concentration of the precursor and the weight ratio to GNs. Magnetic measurements showed that magnetization of the hybrid materials is strongly influenced by the reaction conditions. Chemically bonded by phthalocyanine, the solubility of as-synthesized GNs/Fe(3)O(4) hybrid materials was greatly enhanced, which was believed to have potential for applications in the fields of composites, wastewater treatment and biomaterials.

  12. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  13. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    SciTech Connect

    Hare, W.R.; Wahle, K.W. )

    1991-02-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation.

  14. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions.

    PubMed

    Li, Bin; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Structurally varied, carboxyl-containing cellulose derivatives were evaluated for their ability to form amorphous solid dispersions (ASD) with ellagic acid (EA), in order to improve the solubility of this high-melting, poorly bioavailable, but highly bioactive natural flavonoid compound. ASDs of EA with carboxymethylcellulose acetate butyrate (CMCAB), cellulose acetate adipate propionate (CAAdP), and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were prepared, and EA dissolution from these ASDs was compared with that from pure crystalline EA and from EA/poly(vinylpyrrolidinone) (PVP) solid dispersions (SD). Polymer/drug mixtures were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). The XRPD and FT-IR results indicated that EA was amorphous in solid dispersions with EA concentration up to 25 wt%. The stability against crystallization and solution concentrations of EA from these solid dispersions were significantly higher than those observed for physical mixtures and pure crystalline EA. HPMCAS stabilized EA most effectively, among the polymers tested, against both chemical degradation and recrystallization. The relative ability to solubilize EA from ASDs at pH 6.8 was PVP>HPMCAS>CMCAB. EA dissolves from ASD in PVP quickly and completely (maximum 92%) at pH 6.8, but EA is also released from PVP at pH 1.2, and then crystallizes rapidly. Therefore PVP is not a practical candidate for EA ASD. In contrast, the cellulose derivative ASDs show very slow EA release at pH 1.2 (<4%) and faster but still incomplete drug release at pH 6.8 (maximum 35% for HPMCAS SD). The pH-triggered drug release from HPMCAS ASD makes HPMCAS a practical choice for EA solubility enhancement.

  15. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing sugar (RSA) and phenol–sulfuric acid (PSA) assays are commonly used to analyze water-soluble carbohydrates. However, questions have arisen as to their accuracy for measurement of feedstuffs with diverse carbohydrate profiles. This study evaluated the efficacy of RSA and PSA as they would co...

  16. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials

    PubMed Central

    Guo Gao, Tong; Yuan Xu, Yuan; Jiang, Feng; Zhen Li, Bao; Shui Yang, Jin; Tao Wang, En; Li Yuan, Hong

    2015-01-01

    The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525. PMID:26054030

  17. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid).

    PubMed

    Jeon, Young Ok; Lee, Ji-Soo; Lee, Hyeon Gyu

    2016-11-01

    Resveratrol (RES), a polyphenolic compound found in grape skins, is a potent antioxidant with broad health benefits. However, its utilization in food has been limited by its poor water solubility, instability, and low bioavailability. The purpose of this study is to improve the solubility, stability, and cellular uptake of RES by nanoencapsulation using chitosan (CS) and γ-poly (glutamic acid) (γ-PGA). The size of nanoparticles significantly decreases with a decrease in the CS/γ-PGA ratio (p<0.05). The nanoparticle size with CS/γ-PGA ratio of 5 was 100-150nm. The entrapment efficiency and UV-light protection effect significantly increases (p<0.05), with an increase in the CS and γ-PGA concentration. The solubility of RES increases 3.2 and 4.2 times before and after lyophilization by nanoencapsulation, respectively. Compared with non-nanoencapsulated RES, the nanoencapsulated RES tends to maintain its solubility and antioxidant activity during storage. CS/γ-PGA nanoencapsulation was able to significantly enhance the transport of RES across a Caco-2 cell monolayer (p<0.05). The highest cellular uptake was found for nanoparticles prepared with 0.5mg/mL CS and 0.1mg/mL γ-PGA, which showed the highest solubility and antioxidant activity during storage. Therefore, CS/γ-PGA nanoencapsulation is found to be a potentially valuable technique for improving the solubility, stability, and cellular uptake of RES.

  18. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  19. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  20. Enhancement of the water solubility of organic pollutants such as pyrene and atrazine by dissolved humic and fulvic acids

    SciTech Connect

    Patterson, H.H.; MacDonald, B.; Fang, F.

    1995-12-31

    Many factors determine the fate and transport of an organic pollutant in the environment but water solubility is certainly one of the most important. Among the environmental factors that alter the solubility of a molecule are naturally occurring humic and fulvic acids. We have hypothesized that the humic/fulvic acids from different sources within a watershed have different binding affinities for pollutants such as pyrene and atrazine. This could lead to different rates of transport or bioavailability within the watershed. Humic/fulvic acids were isolated from a stream, adjacent wetland and nearby wooded upland sites. A fluorescence quenching method was developed to quantify the binding coefficient of the pollutants with the dissolved organic carbon. From these results a model was constructed to determine the sites with the greatest potential to modify pollutant contamination in the environment.

  1. Adsorption and condensation of amino acids and nucleotides with soluble mineral salts

    NASA Technical Reports Server (NTRS)

    Orenberg, J.; Lahav, N.

    1986-01-01

    The directed synthesis of biopolymers in an abiotic environment is presumably a cyclic sequence of steps which may be realized in a fluctuating environment such as a prebiotic pond undergoing wetting-drying cycles. Soluble mineral salts have been proposed as an essential component of this fluctuating environment. The following sequence may be considered as a most primitive mechanism of information transfer in a fluctuating environment: (1) adsorption of a biomolecule onto a soluable mineral salt surface to act as an adsorbed template; (2) specific adsorption of biomonomers onto the adsorbed template; (3) condensation of the adsorbed biomonomers; and (4) desorption of the elongated oligomer. In this investigation, the salts selected for study were CaSO4.2H2O(gypsum), SrSO4, and several other metal sulfates and chlorides. Adsorption of the monomeric species, gly, 5'AMP 5'GMP, and 5'CMP was investigated. The adsorbed template biopolymers used were Poly-A, Poly-G, Poly-C, and Poly-U. The results of studies involving these experimental participants, the first two steps of the proposed primitive information transfer mechanism, and condensation of amino acids to form oligomers in a fluctuating environment are to be reported.

  2. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    NASA Astrophysics Data System (ADS)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  3. Acid-Soluble Nucleotides of Pinto Bean Leaves at Different Stages of Development 1

    PubMed Central

    Weinstein, L. H.; McCune, D. C.; Mancini, Jill F.; van Leuken, P.

    1969-01-01

    Acid-soluble nucleotides of unifoliate leaves of Pinto bean plants (Phaseolus vulgaris L.) were determined at young, mature, and senescent stages of development. At least 25 components could be distinguished on the basis of inorganic phosphorus determinations and 37 or more fractions on the basis of 32P labeling, with adenosine di- and triphosphates accounting for 60% of the total moles of nucleotide. The total nucleotide P and inorganic P, on a fresh weight basis, decreased about 44% between each stage of leaf development, but decrements in the levels of individual nucleotides varied from this over-all pattern. Minor changes in the relative abundance of the individual nucleotides accompanied aging although the percentage of purine-containing nucleotides decreased with age. Total 32P activity per leaf in the nucleotide pool increased about 3-fold between the young and mature leaves and decreased slightly as leaves became senescent. In general, the specific activities of the nucleotides increased with increased age and adenosine-, guanosine-, uridine-, and cytidine triphosphates and adenosine diphosphate accounted for approximately 90% of the total activity. The changes in the relative sizes and energy status of the nucleotide pools were not so obvious as the changes in other metabolites that have been reported to accompany aging in leaf tissue. PMID:16657232

  4. Soluble Epoxide Hydrolase Inhibition and Epoxyeicosatrienoic Acid Treatment Improve Vascularization of Engineered Skin Substitutes

    PubMed Central

    Hahn, Jennifer M.; McFarland, Kevin L.; Combs, Kelly A.; Lee, Kin Sing Stephen; Inceoglu, Bora; Wan, Debin; Boyce, Steven T.; Hammock, Bruce D.

    2016-01-01

    Background: Autologous engineered skin substitutes comprised of keratinocytes, fibroblasts, and biopolymers can serve as an adjunctive treatment for excised burns. However, engineered skin lacks a vascular plexus at the time of grafting, leading to slower vascularization and reduced rates of engraftment compared with autograft. Hypothetically, vascularization of engineered skin grafts can be improved by treatment with proangiogenic agents at the time of grafting. Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are inactivated by soluble epoxide hydrolase (sEH). EETs have multiple biological activities and have been shown to promote angiogenesis. Inhibitors of sEH (sEHIs) represent attractive therapeutic agents because they increase endogenous EET levels. We investigated sEHI administration, alone or combined with EET treatment, for improved vascularization of engineered skin after grafting to mice. Methods: Engineered skin substitutes, prepared using primary human fibroblasts and keratinocytes, were grafted to full-thickness surgical wounds in immunodeficient mice. Mice were treated with the sEHI 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), which was administered in drinking water throughout the study period, with or without topical EET treatment, and were compared with vehicle-treated controls. Vascularization was quantified by image analysis of CD31-positive areas in tissue sections. Results: At 2 weeks after grafting, significantly increased vascularization was observed in the TPPU and TPPU + EET groups compared with controls, with no evidence of toxicity. Conclusions: The results suggest that sEH inhibition can increase vascularization of engineered skin grafts after transplantation, which may contribute to enhanced engraftment and improved treatment of full-thickness wounds. PMID:28293507

  5. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Aggarwal, Shankar G.; Singh, Khem; Gupta, Prabhat K.; Kawamura, Kimitaka

    2009-10-01

    Day- and nighttime aerosol samples were collected at an urban site in New Delhi, India, in winter 2006-2007. They were studied for low molecular weight dicarboxylic acids and related compounds, as well as total water-soluble organic carbon (TWSOC). High concentrations of diacids (up to 6.03 μg m-3), TWSOC, and OC were obtained, which are substantially higher than those previously observed at other urban sites in Asia. Daytime TWSOC/OC ratio (37%) was on average higher than that in nighttime (25%). In particular, more water-soluble OC (M-WSOC) to TWSOC ratio in daytime (50%) was twice higher than in nighttime (27%), suggesting that aerosols in New Delhi are photochemically more processed in daytime to result in more water-soluble organic compounds. Oxalic acid (C2) was found as the most abundant dicarboxylic acid, followed by succinic (C4) and malonic (C3) acids. Contributions of C2 to M-WSOC were greater (av. 8%) in nighttime than daytime (av. 3%). Positive correlations of C2 with malic acid (hC4), glyoxylic acid (ωC2), and relative humidity suggest that secondary production of C2 probably in aqueous phase is important in nighttime via the oxidation of both longer-chain diacids and ωC2. C2 also showed a positive correlation with potassium (K+) in nighttime, suggesting that the enhanced C2 concentrations are associated with biomass/biofuel burning. More tight, positive correlation between less water-soluble OC (L-WSOC) and K+ was found in both day- and nighttime, suggesting that L-WSOC, characterized by longer chain and/or higher molecular weight compounds, is significantly influenced by primary emissions from biomass/biofuel burning.

  6. Water-soluble organic acids in cryomorphic peat soils of the southeastern Bol'shezemel'skaya tundra

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Kubik, O. S.; Punegov, V. V.

    2015-03-01

    The composition of the water extracts, the pH, and the weight concentrations of the total organic carbon and low-molecular-weight organic acids in seasonally thawed and perennially frozen horizons of cryomorphic peat soils have been determined. The quantitative analysis of the acids converted to trimethylsilyl derivatives has been performed by gas chromatography and chromato-mass spectroscopy. Hydroxypropanoic, propanoic, and hydroxyethanoic acids are the prevailing acids (30-50, 10-20, and 10% of the total acids, respectively). Malic, glyceric, hexadionic, trihydroxybutanoic, ribonic, and other acids have also been detected. It has been shown that the differences in the genesis of the peat deposits significantly affect the composition and content of water-soluble organic compounds in soils on the soil-profile and landscape levels.

  7. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  8. Purified membrane and soluble folate binding proteins from cultured KB cells have similar amino acid compositions and molecular weights but differ in fatty acid acylation

    SciTech Connect

    Luhrs, C.A.; Pitiranggon, P.; Costa, M.D.; Rothenberg, S.P.; Slomiany, B.L.; Brink, L.; Tous, G.I.; Stein, S.

    1987-09-01

    A membrane-associated folate binding protein (FBP) and a soluble FBP, which is released into the culture medium, have been purified from human KB cells using affinity chromatography. By NaDodSO/sub 4/PAGE, both proteins have an apparent M/sub r/ of approx. 42,000. However, in the presence of Triton X-100, the soluble FBP eluted from a Sephadex G-150 column with an apparent M/sub r/ of approx. 40,000 (similar to NaDodSO/sub 4/PAGE) but the membrane-associated FBP eluted with an apparent M/sub r/ of approx. = 160,000, indicating that this species contains a hydrophobic domain that interacts with the detergent micelles. The amino acid compositions of both forms of FBP were similar, especially with respect to the apolar amino acids. In addition, the 18 amino acids at the amino termini of both proteins were identical. The membrane FBP, following delipidation with chloroformmethanol, contained 7.1 mol of fatty acid per mol of protein, of which 4.7 mol was amide-linked and 2.4 mol was ester-linked. The soluble FBP contained only 0.05 mol of fatty acid per mol of protein. These studies indicate that the membrane FBP of KB cells contains covalently bound fatty acids that may serve to anchor the protein in the cell membrane.

  9. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    PubMed Central

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  10. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  11. Effects of solution degassing on solubility, crystal growth and dissolution-Case study: Salicylic acid in methanol

    NASA Astrophysics Data System (ADS)

    Seidel, J.; Ulrich, J.

    2017-02-01

    The influence of dissolved gases on the crystallization parameter solubility, MZW, growth and dissolution rates was investigated experimentally using degassed and non-degassed (air-saturated) solutions. The results of this study show that degassing has no effect on the solubility curve of the used model substance salicylic acid (SA) in methanol (MeOH). This reveals in the assumption that a thermodynamic effect of dissolved gases can be excluded. Growth rates were measured by means of a desupersaturation method and the results indicate that the growth rates of SA are not affected by degassing. The results of the dissolution rate measurements reveal a distinct decrease in dissolution rates for non-degassed solutions compared to degassed solutions, especially, at low temperature (10 °C). To explain this phenomenon the gas solubility, represented by oxygen, in MeOH in dependence on the SA concentration was estimated by means of Hansen Solubility Parameters (HSP) [1]. It was found that the oxygen solubility decreases with increasing SA content which explains the inhibition of crystal dissolution in non-degassed solution compared to degassed solution. Moreover, this kind of 'drowing-out' mechanism would not appear in growth rate measurements, where indeed no effect of degassing could be observed.

  12. Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations.

    PubMed

    Doshi, Nidhi; Demeule, Barthélemy; Yadav, Sandeep

    2015-11-02

    The purpose of this work was to determine the aqueous solubilities at 2-8 °C of the major free fatty acids (FFAs) formed by polysorbate 20 (PS20) degradation and identify possible ways to predict, delay, or mitigate subsequent particle formation in monoclonal antibody (mAb) formulations. The FFA solubility limits at 2-8 °C were determined by titrating known amounts of FFA in monoclonal antibody formulations and identifying the FFA concentration leading to visible and subvisible particle formation. The solubility limits of lauric, myristic, and palmitic acids at 2-8 °C were 17 ± 1 μg/mL, 3 ± 1 μg/mL, and 1.5 ± 0.5 μg/mL in a formulation containing 0.04% (w/v) PS20 at pH 5.4 and >22 μg/mL, 3 ± 1 μg/mL, and 0.75 ± 0.25 μg/mL in a formulation containing 0.02% (w/v) PS20 at pH 6.0. For the first time, a 3D correlation between FFA solubility, PS20 concentration, and pH has been reported providing a rational approach for the formulator to balance these with regard to potential particle formation. The results suggest that the lower solubilities of the longer chain FFAs, generated from degradation of the stearate, palmitate, and myristate fraction of PS20, is the primary cause of seeding and subsequent FFA precipitation rather than the most abundant lauric acid.

  13. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.

    PubMed

    Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee

    2015-06-01

    The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method.

  14. An innovative method for preparation of acid-free-water-soluble low-molecular-weight chitosan (AFWSLMWC).

    PubMed

    Yue, Wu; Yao, Pingjia; Wei, Yuanan; Li, Shiqian; Lai, Fang; Liu, Xiongmin

    2008-06-01

    The ozone generated from compressed oxygen by a laboratory-scale corona discharge generator was used for the preparation of acid-free-water-soluble low-molecular-weight chitosan (AFWSLMWC). Factors affecting the percent yield of AFWSLMWC were studied in batch experiments. AFWSLMWC with a molecular weight of 4.3-13.1kDa was obtained. IR spectra demonstrated that the chemical structures of AFWSLMWC were not modified during the depolymerisation process. There was no significant change of the total degree of deacetylation (DD) of AFWSLMWC, compared with the initial chitosan. The method is promisingly suitable for scale-up manufacture of acid-free-water-soluble low-molecular-weight chitosan.

  15. Quantitative extraction and concentration of synthetic water-soluble acid dyes from aqueous media using a quinine-chloroform solution

    SciTech Connect

    Kobayashi, F.; Ozawa, N.; Hanai, J.; Isobe, M.; Watabe, T.

    1986-12-01

    Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidic base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.

  16. Calculation of the solubility of TiO2 and titanates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Kramer, S. M.; Gorichev, I. G.; Lainer, Yu. A.; Artamonova, I. V.; Terekhova, M. V.

    2014-09-01

    The Gibbs energies of formation of Ti(IV) hydrolysis forms have been obtained, and they can be used to calculate the TiO2 solubility as a function of the hydrogen ion concentration (pH). The dependence of the change of the Gibbs energy during dissolution of various ilmenites on mole fraction of TiO2 in compounds is established. A method to increase the rate of dissolution of low soluble titanates by their conversion into compounds with a higher solubility is proposed.

  17. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  18. Antibacterial and anti-atrophic effects of a highly soluble, acid stable UDCA formula in Helicobacter pylori-induced gastritis.

    PubMed

    Thao, Tran Dang Hien; Ryu, Ho-Cheol; Yoo, Seo-Hong; Rhee, Dong-Kwon

    2008-06-01

    Helicobacter pylori is one of the main causes of atrophic gastritis and gastric carcinogenesis. Gastritis can also occur in the absence of H. pylori as a result of bile reflux suggesting the eradication of H. pylori by bile acids. However, the bile salts are unable to eradicate H. pylori due to their low solubility and instability at acidic pH. This study examined the effect of a highly soluble and acid stable ursodeoxycholic acid (UDCA) formula on H. pylori-induced atrophic gastritis. The H. pylori infection decreased the body weight, mitochondrial membrane potential and ATP level in vivo. Surprisingly, H. pylori-induced expression of malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, at both the protein and mRNA levels. However, the UDCA formula repressed MDH expression and increased the membrane potential thereby increasing the ATP level and body weight in vivo. Moreover, UDCA scavenged the reactive oxygen species (ROS), increased the membrane potential, and inhibited apoptosis in AGS cells exposed to H(2)O(2) in vitro through the mitochondria-mediated pathway. Taken together, UDCA decreases the MDH and ROS levels, which can prevent apoptosis in H. pylori-induced gastritis.

  19. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability.

    PubMed

    Schuler, Aaron D; Engles, Courtney A; Maeda, Dean Y; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Mason, S Nicholas; Auten, Richard L; Zebala, John A

    2015-09-15

    The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.

  20. Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2010-06-01

    Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is

  1. Apparent ileal amino acid digestibility of reduced-oil distillers dried grains with solubles fed to broilers from 23 to 31 days of age.

    PubMed

    Dozier, W A; Perryman, K R; Hess, J B

    2015-03-01

    An experiment was conducted using male Ross×Ross 708 broiler chicks to determine the effect of oil extraction from corn distillers dried grains with solubles on apparent ileal amino acid digestibility from 23 to 31 d of age. On an as-fed basis, ether extract concentrations were determined as 5.4% (L-distillers dried grains with solubles), 7.9% (M-distillers dried grains with solubles), and 10.5% (H-distillers dried grains with solubles) for the 3 experimental distillers dried grains with solubles sources. Prior to experimentation, each sample (H-distillers dried grains with solubles (control), M-distillers dried grains with solubles and L-distillers dried grains with solubles) was analyzed on an as-fed basis for crude protein (29.2, 27.6, and 27.9%), starch (4.4, 5.2, and 6.1%), neutral detergent fiber (29.5, 33.2, and 29.9%), and total dietary fiber (31.4, 36.6, and 33.6 %). Four hundred and thirty-two male chicks (12 birds per cage; 0.04 m2 per bird) were randomly assigned to 36 battery grower cages. Broilers were fed one of 3 semi-purified diets, which were comprised of 76% L-distillers dried grains with solubles, M- distillers dried grains with solubles, or H-distillers dried grains with solubles as the sole amino acid source from 23 to 31 d of age. Apparent ileal amino acid digestibility coefficients were negatively affected (P<0.05) by oil extraction for Met (0.722, 0.788, and 0.791), Lys (0.504, 0.510, and 0.552), Thr (0.563, 0.566, and 0.612), Trp (0.708, 0.733, and 0.767), and Arg (0.762, 0.776, and 0.799) for L-distillers dried grains with solubles, M-distillers dried grains with solubles, and H-distillers dried grains with solubles, respectively. Conversely, no differences in apparent amino acid coefficients were reported for Ile, Leu, and Val. These results indicated that L-distillers dried grains with solubles had lower apparent amino acid digestibility coefficients for Met, Lys, Thr, Trp, and Arg compared with H-distillers dried grains with

  2. Acid Rain Materials for Classroom Use.

    ERIC Educational Resources Information Center

    Factor, Lance; Kooser, Robert G.

    This booklet contains three separate papers suitable for use in an advanced high school or college chemistry course. The first paper provides background information on acids and bases. The second paper provides additional background information, focusing on certain aspects of atmospheric chemistry as it relates to the acid rain problem. An attempt…

  3. Amino acid digestibility in low-fat distillers dried grains with solubles fed to growing pigs.

    PubMed

    Curry, Shelby Marie; Navarro, Diego Mario David Labadan; Almeida, Ferdinando Nielsen; Almeida, Juliana Abranches Soares; Stein, Hans Henrik

    2014-01-01

    The objective of this experiment was to determine the standardized ileal digestibility (SID) of amino acids (AA) in 3 sources of distillers dried grains with solubles (DDGS) with different concentrations of fat. Twelve growing barrows (initial body weight: 76.1 [Formula: see text] 6.2 kg) were randomly allotted to a replicated 6 × 4 Youden square design with 6 diets and 4 periods. The fat content of the 3 sources of DDGS were 11.5, 7.5, and 6.9% respectively. Diets contained 60% DDGS and fat concentration of the diets were 7.5, 5.2, and 5.2%, respectively. Two additional diets containing the 2 sources of DDGS with 7.5 and 6.9% fat were also formulated, and corn oil was added to these diets to increase the concentration of fat in the diets to levels that were calculated to be similar to the diet containing conventional DDGS with 11.5% fat. A N-free diet was also formulated to calculate endogenous losses of crude protein (CP) and AA from the pigs. Pigs were fed experimental diets during four 7-d periods. The first 5 d of each period were an adaptation period and ileal digesta were collected on d 6 and 7 of each period. The apparent ileal digestibililty (AID) and SID of CP and all indispensable AA, except AID Pro and SID of Trp, were greater (P < 0.01) in conventional DDGS than in the 2 sources of DDGS with reduced fat. Adding oil to the diets containing the 2 sources of DDGS with reduced fat did not consistently increase SID of AA. In conclusion, conventional DDGS has greater SID values for most AA compared with DDGS that contains less fat and inclusion of additional oil to diets containing low-fat DDGS does not increase AID or SID of AA. The lower AA digestibility in low-fat DDGS could not be overcome by the inclusion of additional fat to the diets.

  4. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.

    PubMed

    Lopez, H W; Ouvry, A; Bervas, E; Guy, C; Messager, A; Demigne, C; Remesy, C

    2000-06-01

    Five strains of lactic bacteria have been isolated from sour doughs and examined for their ability to degrade phytic acid. In white flour medium in which phytic acid was the only source of phosphorus, the disappearance of phytate and an elevation of inorganic phosphate were observed after only 2 h of incubation in all strains tested (-30 and +60%, respectively). Both phenomena correspond to phytate breakdown. No difference was observed in the levels of phytic acid hydrolysis among strains, suggesting that phytase enzymes are similar among these bacteria. Using whole wheat flour medium naturally rich in phytic acid in the presence of Leuconostoc mesenteroides strain 38, a 9 h fermentation established that the degradation of PA and the production of lactic acid lead to greater Ca and Mg solubility than in control medium.

  5. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  6. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant.

  7. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  8. Thermochemical investigations of nearly ideal binary solvents. VII: Monomer and dimer models for solubility of benzoic acid in simple binary and ternary solvents.

    PubMed

    Acree, W E; Bertrand, G L

    1981-09-01

    Solubilities are reported for benzoic acid at 25.0 degrees in binary mixtures of carbon tetrachloride with cyclohexane, n-hexane, or n-heptane and of cyclohexane with n-hexane or n-heptane and in ternary mixtures of carbon tetrachloride-cyclohexane-n-hexane and carbon tetrachloride-cyclohexane-n-heptane. Solubilities also are reported for benzoic acid in some binary solvents at 30.0 degrees and for m-toluic acid in binary mixtures of cyclohexane and n-hexane at 25.0 degrees. The results are compared to the predictions of equations developed previously for solubility in systems of purely nonspecific interactions, with the benzoic acids considered as either monomeric or dimeric molecules in solution. The dimer model gave more accurate predictions, with a maximum deviation of 4.4% between observed and predicted solubilities in all systems studied. Solubility maxima were predicted and observed for benzoic and m-toluic acids in cyclohexane-n-hexane and for benzoic acid in cyclohexane-n-heptane. The application of these solubility relationships to liquid-liquid partition coefficients is discussed.

  9. Salt Effect Model for Aqueous Solubility of TBP in a 5 to 100% TBP/n-Dodecane-Nitric Acid-Water Biphasic System at 298.2 K

    SciTech Connect

    Kumar, Shekhar; Koganti, Sudhir Babu

    2000-02-15

    The solubilities of nonelectrolytes in aqueous electrolyte solutions have traditionally been modeled by using the Setschenow equation for salt effect. The aqueous solubility of tri-n-butyl phosphate (TBP) during operating conditions of the Purex process is an important parameter for safety considerations. Use of the Setschenow equation for aqueous solubility of TBP under limited conditions has been reported in the literature. However, there is no general model available to account for the presence of the diluent and for the case of multicomponent electrolyte solutions in which only some electrolytes are solvated and extracted by TBP. An extended salt effect model is proposed for predicting the aqueous solubility of TBP in a 5 to 100% TBP/n-dodecane-nitric acid-water biphasic system at 298.2 K. The literature data on TBP solubility were correlated to aqueous acid concentration, diluent concentration in the solvents, and an interaction parameter for electrolytic solutes (extracted or not extracted by TBP)

  10. Acid-base properties of water-soluble organic matter of forest soils, studied by the pK-spectroscopy method.

    PubMed

    Shamrikova, E V; Ryazanov, M A; Vanchikova, E V

    2006-11-01

    Using the potentiometric titration and pK spectroscopy method, acid-base properties of water-soluble organic matter of forest soils have been studied. Five acidic classes composed of different substances with pK(a) values around 3.6; 4.8; 6.7; 8.7 and 9.7 have been identified. Testing the properties of soluble soil fraction, it is to be taken into account that when it is isolated from non-soluble soil matter, some water-soluble substances remain in soil and do not pass into the solution. Most firmly adsorbed in soil are water-soluble components with pK(a) 9.6-9.8.

  11. Effect of different inclusion level of condensed distillers solubles ratios and oil content on amino Acid digestibility of corn distillers dried grains with solubles in growing pigs.

    PubMed

    Li, P; Xu, X; Zhang, Q; Liu, J D; Li, Q Y; Zhang, S; Ma, X K; Piao, X S

    2015-01-01

    The purpose of this experiment was to determine and compare the digestibility of crude protein (CP) and amino acids (AA) in full-oil (no oil extracted) and de-oiled (oil extracted) corn distillers dried grains with solubles (DDGS) with different condensed distillers solubles (CDS) ratios. Six barrows (29.6±2.3 kg) fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3%) was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID) of lysine (from 56.16% to 71.15%) and tryptophan (from 54.90% to 68.38%) had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2) were greater (p<0.05) than de-oiled DDGS (sources 3, 4, and 5). Comparing the AA SID in the 5 DDGS, full-oil with low CDS ratio DDGS (source 1) had non-significantly higher values (p >0.05) than full-oil with high CDS ratio DDGS (source 2); however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3) were non-significantly lower (p>0.05) than de-oiled with high CDS ratio DDGS (source 4); and the de-oiled DDGS with middle CDS ratio (source 5) but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS.

  12. Water-soluble dicarboxylic acids and ω-oxocarboxylic acids in size-segregated aerosols over northern Japan during spring: sources and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay Kumar; Kawamura, Kimitaka; Kobayashi, Minoru; Gowda, Divyavani

    2016-04-01

    Seven sets (AF01-AF07) of size-segregated aerosol (12-sizes) samples were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) in Sapporo, Japan during the spring of 2001 to understand the sources and atmospheric processes of water-soluble organic aerosols in the outflow region of Asian dusts. The samples were analyzed for dicarboxylic acids (C2-C12) and ω-oxocarboxylic acids as well as inorganic ions. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2) in size-segregated aerosols. SO42- and NH4+ are enriched in submicron mode whereas NO3- and Ca2+ are in supermicron mode. Most of diacids and ω-oxoacids are enriched in supermicron mode in the samples (AF01-AF03) influenced by the long-range transport of mineral dusts whereas enhanced presence in submicron mode was observed in other sample sets. The strong correlations of C2 with Ca2+ (r = 0.95-0.99) and NO3- (r = 0.96-0.98) in supermicron mode in the samples AF01-AF03 suggest the adsorption or production of C2 diacid via heterogeneous reaction on the surface of mineral dust during long-range atmospheric transport. The preferential enrichment of diacids and ω-oxoacids in mineral dust has important implications for the solubility and cloud nucleation properties of the dominant fraction of water-soluble organic aerosols. This study demonstrates that biofuel and biomass burning and mineral dust originated in East Asia are two major factors to control the size distribution of diacids and related compounds over northern Japan.

  13. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  14. Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry.

    PubMed

    del Campo, Gloria; Berregi, Iñaki; Caracena, Raúl; Zuriarrain, Juan

    2010-04-15

    A quantitative method for the determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural (5-HMF) in soluble coffees by applying the proton nuclear magnetic resonance technique ((1)H NMR) is proposed. Each of these compounds records a singlet signal at the 7.6-9.5 ppm interval of the spectrum, and its area is used to determine the concentration. 3-(Trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid is added in an exact known concentration as a reference for delta=0.00 ppm and as an internal standard. The method is applied to commercial soluble coffees and satisfactorily compared with results obtained by standard methods. The limits of detection and the coefficients of variation (N=10) are, respectively, 1.32 mg/g of solid product and 4.2% for caffeine, 0.45 mg/g and 2.6% for formic acid, 0.58 mg/g and 2.4% for trigonelline, and 0.30 mg/g and 7.3% for 5-HMF. The described method is direct and no previous derivatization is needed.

  15. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in "Starkrimson" during the Ripening Period in China.

    PubMed

    Liu, Yulian; Chen, Nianlai; Ma, Zonghuan; Che, Fei; Mao, Juan; Chen, Baihong

    2016-06-22

    "Starkrimson" is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of "Starkrimson" fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE) parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal), fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.

  16. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively.

  17. Molecular weight distribution of soluble fiber fractions and short chain fatty acids in ileal digesta of growing pigs.

    PubMed

    Ivarsson, E; Andersson, R; Lindberg, J E

    2012-12-01

    The effect of dietary fiber source on molecular weight (MW) distribution of soluble fiber fractions and short chain fatty acids (SCFA) in ileal digesta of 7 post valve T-cecum (PVTC) cannulated growing pigs was studied. Pigs were fed semisynthetic diets with sugar beet (Beta vulgaris) pulp (SBP) or chicory (Cichorium intybus) forage (CFO) as fiber sources of which the soluble nonstarch polysaccharide (NSP) fraction originated mainly from pectin. Three MW intervals were selected-large MW (MWL): 10,000,000 to 1,000,000 g/mol, medium MW (MWM): 1,000,000 to 200,000 g/mol, and small MW (MWS): 200,000 to 10,000 g/mol-and the relative distribution (% of total) of molecules in each interval was calculated. The MWM fraction was higher (P < 0.05) in ileal digesta of pigs fed diet SBP and the MWS fraction was higher (P < 0.05) in ileal digesta of pigs fed diet CFO. The mole/100 mole of propionic acid (HPr) was higher (P < 0.010) in pigs fed diet SBP whereas pigs fed diet CFO had higher (P < 0.010) mole/100 mole of acetic acid (HAc). The proportion of the MWL and MWM fractions in ileal digesta were negatively correlated to HAc (r = -0.52, P = 0.05, and r = -0.62, P = 0.02, respectively). The proportion of MWM in ileal digesta was positively correlated to HPr (r = 0.83; P = 0.001) whereas MWS and HPr were negatively correlated (r = -0.76; P = 0.002). In conclusion, the bacterial degradation of the soluble NSP fraction is selective and MW distribution may explain differences in SCFA production.

  18. Peptide nucleic acids in materials science

    PubMed Central

    Bonifazi, Davide; Carloni, Laure-Elie; Corvaglia, Valentina; Delforge, Arnaud

    2012-01-01

    This review highlights the recent methods to prepare PNA-based materials through a combination of self-assembly and self-organization processes. The use of these methods allows easy and versatile preparation of structured hybrid materials showing specific recognition properties and unique physicochemical properties at the nano- and micro-scale levels displaying potential applications in several directions, ranging from sensors and microarrays to nanostructured devices for biochips. PMID:22925824

  19. Preparation and value assignment of standard reference material 968e fat-soluble vitamins, carotenoids, and cholesterol in human serum.

    PubMed

    Thomas, Jeanice B; Duewer, David L; Mugenya, Isaac O; Phinney, Karen W; Sander, Lane C; Sharpless, Katherine E; Sniegoski, Lorna T; Tai, Susan S; Welch, Michael J; Yen, James H

    2012-01-01

    Standard Reference Material 968e Fat-Soluble Vitamins, Carotenoids, and Cholesterol in Human Serum provides certified values for total retinol, γ- and α-tocopherol, total lutein, total zeaxanthin, total β-cryptoxanthin, total β-carotene, 25-hydroxyvitamin D(3), and cholesterol. Reference and information values are also reported for nine additional compounds including total α-cryptoxanthin, trans- and total lycopene, total α-carotene, trans-β-carotene, and coenzyme Q(10). The certified values for the fat-soluble vitamins and carotenoids in SRM 968e were based on the agreement of results from the means of two liquid chromatographic methods used at the National Institute of Standards and Technology (NIST) and from the median of results of an interlaboratory comparison exercise among institutions that participate in the NIST Micronutrients Measurement Quality Assurance Program. The assigned values for cholesterol and 25-hydroxyvitamin D(3) in the SRM are the means of results obtained using the NIST reference method based upon gas chromatography-isotope dilution mass spectrometry and liquid chromatography-isotope dilution tandem mass spectrometry, respectively. SRM 968e is currently one of two available health-related NIST reference materials with concentration values assigned for selected fat-soluble vitamins, carotenoids, and cholesterol in human serum matrix. This SRM is used extensively by laboratories worldwide primarily to validate methods for determining these analytes in human serum and plasma and for assigning values to in-house control materials. The value assignment of the analytes in this SRM will help support measurement accuracy and traceability for laboratories performing health-related measurements in the clinical and nutritional communities.

  20. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-w.; Seewald, J. S.; Cziczo, D. J.

    2013-11-01

    This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for three clay minerals: illite, sodium-rich montmorillonite, and Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used to determine non-sphericity in particle shape. EM is also used to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory and Frenkel, Halsey, and Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-Köhler is a suitable framework, less complex than FHH theory, to describe clay mineral nucleation activity despite apparent differences in κ with respect to size. For dry-generated particles the size dependence is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-Köhler theory is likely a result of the dissolution and redistribution of soluble material. (2) Wet-generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.

  1. Effects of ascorbic acid and sugars on solubility, thermal, and mechanical properties of egg white protein gels.

    PubMed

    Mohammadi Nafchi, Abdorreza; Tabatabaei, Ramin H; Pashania, Bita; Rajabi, Hadiseh Z; Karim, A A

    2013-11-01

    The effects of reducing sugars (fructose, glucose, ribose, and arabinose), sucrose, and ascorbic acid were studied on thermo-mechanical properties and crosslinking of egg white proteins (EWP) through Maillard reaction. Sugars (0%, 1%, 5%, and 10%) and ascorbic acid (0%, 0.25%, 0.5%, and 2.5%) were added to EWP solutions. Thermal denaturation and crosslinking of EWP were characterized by differential scanning calorimetry (DSC). Mechanical properties (failure strength, failure strain and Young's modulus) of modified and unmodified EWP gels were evaluated by texture analyzer. Ascorbic acid decreased thermal denaturation temperature of EWP, but the reducing sugars increased the denaturation temperature. DSC thermograms of EWP showed that ascorbic acid exhibited an exothermic transition (≈110 °C) which was attributed to Maillard crosslinking of the protein. The reduction in pH (from 7.21 to ≈6) and protein solubility of egg white protein gel (from ≈70% to ≈10%) provides further evidence of the formation of Maillard cross-linking. Reactive sugars (ribose and arabinose) increased the mechanical properties of EWP gels, whereas ascorbic acid decreased the mechanical properties. Generally, the effect of ascorbic acid was more pronounced than that of various reducing sugars on the thermal and mechanical properties of egg white proteins.

  2. Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology

    PubMed Central

    Alshehri, Sultan M.; Park, Jun-Bom; Alsulays, Bader B.; Tiwari, Roshan V.; Almutairy, Bjad; Alshetaili, Abdullah S.; Morott, Joseph; Shah, Sejal; Kulkarni, Vijay; Majumdar, Soumyajit; Martin, Scott T.; Mishra, Sanjay; Wang, Lijia; Repka, Michael A.

    2015-01-01

    The objective of this study was to enhance the solubility as well as to mask the intensely bitter taste of the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility of the drug was improved by using Eudragit® E PO in different ratios via hot melt extrusion (HME), solid dispersion technology. Differential scanning calorimetry (DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. Powder X-ray diffraction analysis indicated that MA was converted to its amorphous phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time in addition to having the desired taste-masking effect. All of the extruded formulations and the ODTs were found to be physically and chemically stable over a period of 6 months at 40°C/75% RH and 12 months at 25°C/60% RH, respectively. PMID:25914727

  3. Effect of extrusion processing on the soluble and insoluble fiber, and phytic acid contents of cereal brans.

    PubMed

    Gualberto, D G; Bergman, C J; Kazemzadeh, M; Weber, C W

    1997-01-01

    The health benefits associated with dietary fiber have resulted in it now being used in virtually all food product categories, including many products which are manufactured using extrusion processing. The objective of the present study was to determine if extrusion processing affected phytic acid, and soluble and insoluble fiber contents. The effect of screw speeds of 50, 70, and 100% of maximum rotations per minute (% MRPM) on these components was investigated. A BI-EX Model DNDG-62/20D co-rotating intermeshing self-cleaning twin-screw extruder, manufactured by Bühlerag, CH-9240, Uzwil, Switzerland, was used to process wheat, oat and rice brans. It was found that extrusion did not affect the insoluble fiber content of wheat bran; however, a decrease in this component was observed in rice and oat brans. The effect on rice bran insoluble fiber was greatest at screw speeds of 50 and 70% MRPM. This occurred in oat bran at 50% MRPM. Soluble fiber content increased in all brans after extrusion, except ER100. For oat and rice bran soluble fibers, the greatest increase occurred at 50 and 70% MRPM, while for wheat bran this occurred at 70 and 100% MRPM. Extrusion did not affect the phytate content of the cereal brans.

  4. Solubility of Two Root-End Filling Materials over Different Time Periods in Synthetic Tissue Fluid: a Comparative Study

    PubMed Central

    Shojaee, Nooshin Sadat; Sahebi, Safoora; Karami, Elahe; Sobhnamayan, Fereshte

    2015-01-01

    Statement of the Problem Insolubility is an important criterion for an ideal root-end filling material to both prevent any microleakage between the root canal and the periradicular space and provide sealing ability. Purpose Many recent studies have shown that mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) have acceptable sealing ability. The purpose of this in vitro study was to evaluate the solubility of these root-end filling materials. Materials and Method Forty stainless steel ring moulds with an internal diameter of 10±1 mm and a height of 2±0.1 mm were selected. Samples of MTA and CEM were mixed according to the manufacturer’s instructions and inserted into the moulds. The specimens were divided into 4 experimental groups and kept in synthetic tissue fluid (STF) for 2 different time periods (7 and 28 days). The control group contained 8 empty rings. The moulds’ weights were recorded before and after immersion in STF. The changes in the weight of the samples were measured and compared using a two- way ANOVA test at a significance level of 5%. Specimens were evaluated with scanning electron microscopy (SEM) at a magnification of 500×. Results There was no significant difference in weight changes between MTA and CEM samples (p> 0.05). Conclusion MTA and CEM have similar solubility in STF in different time periods. PMID:26331148

  5. Kinetics of 12-Hydroxyoctadecanoic Acid SAFiN Crystallization Rationalized Using Hansen Solubility Parameters.

    PubMed

    Rogers, Michael A; Marangoni, Alejandro G

    2016-12-06

    Changes in solvent chemistry influenced kinetics of both nucleation and crystallization of 12-hydroxyoctadecenoic, as determined using differential scanning calorimetry and applying a modified Avrami model to the calorimetric data. Altering solvent properties influenced solvent-gelator compatibility, which in turn altered the chemical potential of the system at the onset of crystallization, the kinetics of gelation, and the resulting 12HOA crystal fiber length. The chemical potential at the onset of crystallization was linearly correlated to both the hydrogen-bonding Hansen solubility parameter and the solvent-gelator vectorial distance in Hansen space, Ra. Our work suggests that solvent properties can be modulated to affect the solubility of 12HOA, which in turn influences the kinetics of crystallization and the self-assembly of this organogelator into supramolecular crystalline structures. Therefore, modulation of solvent properties during organogelation can be used to control fiber length and thus engineer the physical properties of the gel.

  6. Thermodynamic origin of the solubility profile of drugs showing one or two maxima against the polarity of aqueous and nonaqueous mixtures: niflumic acid and caffeine.

    PubMed

    Bustamante, Pilar; Navarro, J; Romero, S; Escalera, B

    2002-03-01

    The purpose of this work was to investigate the origin of the different solubility profiles of drugs against the polarity of solvent mixtures with a common cosolvent. Niflumic acid and caffeine where chosen as model drugs. The solubilities were measured at five or six temperatures in aqueous (ethanol-water) and nonaqueous (ethyl acetate-ethanol) mixtures. The enthalpies of solution were obtained at the harmonic mean of the experimental temperature. Solid phase changes were analyzed using differential scanning calorimetry and thermomicroscopy. A single solubility maximum was obtained for niflumic acid against the solubility parameter of both mixtures that is not related to solid phase changes. In contrast, caffeine displays two maxima and anhydrous-hydrate transition occurs at the solubility peak in the amphiprotic mixture. The apparent enthalpies of solution of both drugs show endothermic maxima against solvent composition that are related to hydrophobic hydration. A general explanation for the cosolvent action in aqueous mixtures is proposed. The dominant mechanism shifts from entropy to enthalpy at a certain cosolvent ratio dependent on the hydrophobicity and the solubility parameter of the drug. Niflumic acid and caffeine show enthalpy-entropy compensation in ethanol-water, and this relationship is demonstrated for the first time in nonaqueous mixtures. The results support that enthalpy-entropy compensation is a general effect for the solubility of drugs in solvent mixtures. The shape of the solubility curves is correlated with the compensation plots. The solubility peaks separate different enthalpy-entropy relationships that also differentiate the solubility behavior of the hydrate and the anhydrous forms of caffeine.

  7. High-temperature and high-pressure water solubility in ethylbenzene to 200°C and 1 kbar and the acetic acid effect

    NASA Astrophysics Data System (ADS)

    Guillaume, Damien; Tkachenko, Sergey; Dubessy, Jean; Pironon, Jacques

    2001-10-01

    Water solubility in hydrocarbon systems is of great interest for deep oil fields. A new autoclave has been designed to measure phase equilibria in water-hydrocarbon systems up to 400°C and 1.5 kbar. It has been applied for the measurement of water solubility in ethylbenzene with or without acetic acid to 200°C and 1 kbar in the two-phase field. Water solubility was measured by the Karl Fisher method. The acetic acid concentration was measured by FT-IR microspectroscopy. Both the experimental procedure and analytical techniques were validated by showing the consistency of our data with those of Heidman et al. ("High-temperature mutual solubilities of hydrocarbons and water," AIChE J.31, 376-384, 1995) along the liquid-liquid-vapor curve. At constant pressure, the solubility of water in ethylbenzene increases significantly with temperature. On the other hand, at constant temperature, the solubility of water is constant to 1 kbar at 100°C, and decreases slightly with pressure at 150 and 200°C. Data were regressed by the Krichevsky-Kasarnovsky equation to obtain estimates of the Henry's law constant and estimates of the molar volume of water at infinite dilution. Acetic acid increases the solubility of water in ethylbenzene and fractionates preferentially into the aqueous phase.

  8. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  9. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids.

    PubMed

    Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka

    2013-11-01

    A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory.

  10. Characterization of excipient and tableting factors that influence folic acid dissolution, friability, and breaking strength of oil- and water-soluble multivitamin with minerals tablets.

    PubMed

    Du, Jianping; Hoag, Stephen W

    2003-11-01

    The goal of this study is to characterize the formulation and processing factors that influence folic acid dissolution from oil- and water-soluble multivitamin with minerals tablet formulations for direct compression. The following parameters were studied: bulk filler solubility, soluble to insoluble bulk filler ratio, triturating agent (preblending carrier) solubility, disintegrant usage, compression pressure, and folic acid particle size. Folic acid particle size was determined by using light microscopy, and surface area was measured by using BET adsorption. The tablets were compressed on an instrumented Stokes B2 tablet press, and the friability, weight variation, and dissolution were measured according to USP methods, along with tablet breaking strength. In summary, we found the following factors to be critical to folic acid dissolution: bulk filler solubility (soluble fillers, such as maltose, increase folic acid dissolution); disintegrant amount (levels less than 0.4% (w/w) are ineffectual, whereas levels greater than 1.2% (w/w) did not further increase dissolution); and compression force (generally, maltose produce harder tablets). In addition, folic acid dissolution was less affected by changes in compaction pressure when a "super" disintegrant and maltose, as a bulk filler, were used. It was determined that the trituration agent did not play a significant role in folic acid dissolution. In the range of parameters studied, statistical analysis found no significant interactions between the parameters studied, which means they act independently in an additive manner. The results also show that no one factor is completely responsible for dissolution failure. Thus, it is the combination of formulation factors and processing conditions that collectively add up to produce dissolution failure; however, the use of a disintegrant and a soluble filler such as maltose can make a formulation more robust to the inevitable changes that can occur during commercial

  11. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. [Zea mays L

    SciTech Connect

    Beffa, R.; Martin, H.V.; Pilet, P.E. )

    1990-10-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl{sub 2} and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of ({sup 3}H)indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol.

  12. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  13. Utilization of condensed distillers solubles as nutrient supplement for production of nisin and lactic acid from whey.

    PubMed

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W

    2007-04-01

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  14. [Study on predicting total acid content and soluble sugar of tomato juice by near infrared optical fiber spectrometer technique].

    PubMed

    Zhang, Bing-Fang; Yuan, Li-Bo; Zhang, Bing-Xiu

    2014-02-01

    In order to explore a simple, rapid and efficient tomato quality detection method, in the present experiment near infrared spectroscopy and optical fiber sensing technology were applied to quickly measure the nutrition ingredient content in tomato juice samples. The main instrument used in this experiment was near infrared optical fiber spectrometer in a wavelength range from 900 to 2 500 nm, which measured the absorbance of the tomato juice samples; A collection of one hundred and sixty-four tomato juice samples were selected as the standard samples, the spectra and the corresponding chemical value were measured. Partial least squares (PLS) was adopted to establish the mathematical model of the total acid and soluble sugar content in tomato juice samples, and the regression equation was statistically analysed. The total acid in tomato juice prediction correlation coefficient was 0.967, calibration standard deviation (RMSEC) was 0.133, standard error of prediction (RMSEP) was 0.103; the soluble sugar prediction correlation coefficient is 0.976, calibration standard deviation (RMSEC) was 0.463, and the standard error of prediction (RMSEP) was 0. 460. The above data achieved better forecasting results, which showed that the method of quantitative analysis of tomato fruit multicomponent content was feasible. The method is rapid, simple and can do multicomponent analysis on the same sample simultaneously. It is a promising sensor and gradually becoming a international research focus in sensor field.

  15. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions.

    PubMed

    Gekko, K

    1981-12-01

    The solubilities of several amino acids and diglycine have been measured in water and at several concentrations of methanol and various polyols (glycerol, erythritol, xylitol, sorbitol, and inositol). The solubility data were used to calculate the free energy of transfer of amino acid side chains and peptide group from water to the aqueous alcohol solutions. The results for methanol systems were similar to those reported for ethanol and dioxane systems. The free energy of transfer to aqueous solutions of linear polyols was positive for most nonpolar side chains and peptide group, but high concentrations of the polyols may disrupt the hydrophobic interactions of large nonpolar side chains. Moreover, the linear polyols appeared to stabilize the hydrophobic interaction more effectively and the peptide-peptide hydrogen bond less effectively with increasing hydroxymethyl chain length of polyols. A cyclic polyol, inositol, had a very strong stabilizing ability on hydrophobic interactions of nonpolar side chains, but it may act as a destabilizing reagent for peptide-peptide hydrogen bonds. From these results, it was concluded that the protein stabilization by polyols is a manifestation of polyol-induced strengthening of the hydrophobic interaction of protein molecules.

  16. Phosphoric acid, nitric acid, and hydrogen peroxide digestion of soil and plant materials for selenium determination

    SciTech Connect

    Dong, A.; Rendig, V.V.; Burau, R.G.; Besga, G.S.

    1987-11-15

    A mixture of phosphoric acid, nitric acid, and hydrogen peroxide has been proposed as an alternative to the use of the nitric/perchloric acid mixture to digest biological fluids to determine their selenium (Se) content. The purpose of the studies reported here was to test the applicability of this digestion method for the determination of Se in soil and plant materials.

  17. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  18. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  19. Certification of fat-soluble vitamins, carotenoids, and cholesterol in human serum: Standard Reference Material 968b.

    PubMed

    Thomas, J B; Kline, M C; Schiller, S B; Ellerbe, P M; Sniegoski, L T; Duewer, D L; Sharpless, K E

    1996-08-01

    In Standard Reference Material 968b, fat-soluble vitamins and cholesterol in human serum, certified values are provided for cholesterol, retinol, retinyl palmitate, alpha-tocopherol, trans-beta-carotene, total beta-carotene ( trans plus cis isomers), total alpha-carotene, and lutein. Non-certified values are also reported for gamma-tocopherol (includes beta-tocopherol), delta-tocopherol, zeaxanthin, beta-cryptoxanthin, trans-lycopene, trans-lycopene, trans-alpha-carotene, total lycopene, 9- cis-betacarotene, 13- plus 15- cis-beta-carotene, and 15- cis-beta-carotene. Both certified and non-certified values are based on the agreement among results from three different liquid chromatographic analytical procedures developed at NIST and from an interlaboratory comparison exercise among institutions that participate in a NIST-managed Micronutrients Measurement Quality Assurance Program. Cholesterol is certified in this material using the NIST isotope dilution/mass spectrometric definitive method.

  20. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat.

  1. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  2. Optical properties of selected components of mineral dust aerosol processed with organic acids and humic material

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer M.; Grassian, V. H.; Young, M. A.; Kleiber, P. D.

    2015-03-01

    Visible light scattering phase function and linear polarization profiles of mineral dust components processed with organic acids and humic material are measured, and results are compared to T-matrix simulations of the scattering properties. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acids. Clear differences in light scattering properties are observed for all three processed samples when compared to the unprocessed dust or organic salt products. Results for quartz processed with humic acid sodium salt (NaHA) indicate the presence of both internally mixed quartz-NaHA particles and externally mixed NaHA aerosol. Simulations of light scattering suggest that the processed quartz particles become more moderate in shape due to the formation of a coating of humic material over the mineral core. Experimental results for calcite reacted with acetic acid are consistent with an external mixture of calcite and the reaction product, calcium acetate. Modeling of the light scattering properties does not require any significant change to the calcite particle shape distribution although morphology changes cannot be ruled out by our data. It is expected that calcite reacted with oxalic acid will produce internally mixed particles of calcite and calcium oxalate due to the low solubility of the product salt. However, simulations of the scattering for the calcite-oxalic acid system result in rather poor fits to the data when compared to the other samples. The poor fit provides a less accurate picture of the impact of processing in the calcite-oxalic acid system.

  3. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  4. Effects of caffeine intake during gestation and lactation on the acid solubility of enamel in weanling rats.

    PubMed

    Schneider, P E; Alonzo, G; Nakamoto, T; Falster, A U; Simmons, W B

    1995-01-01

    The purpose of this study was to evaluate the effects of dietary caffeine during gestation and lactation on the acid solubility of molar teeth of weanling rats. Nineteen pregnant dams were divided into two groups. The 9 dams in the control group were fed a 20% protein diet supplemented with caffeine (2 mg/100 g BW) throughout the experiment. At birth, 8 pups were randomly assigned to each dam. Pups were killed on day 22. The 1st and 2nd molars were removed from each pup's maxilla and mandible. Four randomly selected molars from each litter were placed in a chamber and bathed with a flow of acid solution and the amount of mineral dissolved from the enamel was determined. The results showed that the amount of dissolved Ca and Mg from enamel surfaces of 1st molars from rats in the caffeine group after exposure to acid was consistently greater than that of the non caffeine group. In the 2nd molars there was no significant difference between caffeine and noncaffeine groups. Scanning electron microscopy revealed an alteration of the enamel surface of the 1st molars of the caffeine group after acid exposure. These results indicate that caffeine intake during gestation and lactation would have a deleterious effect on dental enamel of 1st molars in newborn rats.

  5. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  6. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  7. Formation of water-soluble dicarboxylic acids, oxoacids and a-dicarbonyls by ozone oxidation of isoprene

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Sakamoto, Y.; Hirokawa, J.

    2014-12-01

    Water-soluble dicarboxylic acids such as oxalic acid (C2) are the dominant organic compound class in atmospheric aerosols. They can act as cloud condensation nuclei and affect on the Earth climate. Diacids can be primary emitted from fossil fuel combustion and biomass burning and secondarily produced by photochemical oxidations of biogenic and anthropogenic hydrocarbons. However, their sources and formation processes are still not well understood. Recently model and observation studies suggested the importance of isoprene as a precursor of oxalic acid. Isoprene is the most abundant BVOC emitted from terrestrial plants and can serve as important precursors of diacids. We conducted a laboratory oxidation of isoprene (2.0 ppm) with ozone (4.3 ppm) in a Teflon bag for 10 to 480 min. The formed particles were collected with quartz fiber filters and analyzed for diacids, oxoacids and a-dicarbonyls employing water extraction and butyl ester derivatization and using GC and GC/MS techniques. Here, we report the analytical results to better understand the formation process of diacids and related compounds from isoprene. We detected homologous series of saturated diacids (C2-C6), unsaturated diacids (maleic and methylmaleic acids), w-oxocarboxylic acids (C2-C9), pyruvic acid, glyoxal and methylglyoxal. We found that oxalic acid (3000-9700 ngm-3) is the most abundant diacid followed by succinic (C4) or malonic (C3) acid. Their concentrations increased with reaction time showing a maximum in 4 hours. Interestingly, C3/C4 ratios increased with time. The second most abundant species after oxalic acid was generally methylglyoxal (3600-9600 ngm-3), except for the 30 min. sample where methylglyoxal was more abundant than oxalic acid. Glyoxylic acid (wC2) was found as the most abundant oxoacid (1600-3800 ngm-3) followed by wC3 and wC4. Although the concentrations of diacids and related compounds are 1-2 orders magnitude higher than those reported in ambient aerosols, this study

  8. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    PubMed

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  9. Use of wet FGD material for revegetation of an abandoned acidic coal refuse pile

    SciTech Connect

    Mafi, S.; Stehouwer, R.C.

    1996-12-31

    Wet FGD material has a neutralizing potential of 15% CaCO{sub 3}. These properties may make it a beneficial amendment for revegetation of hyper-acidic coal refuse. In greenhouse and field experiments, coal refuse (pH = 2.5) was amended with wet FGD (300, 500, and 700 tons/acre). Amendment with FGD was as effective as agricultural lime (AL) in increasing refuse pH and decreasing soluble Al and Fe. Addition of compost to the FGD further increased pH and decreased soluble Al and Fe. Downward transport of Ca was greater with FGD than AL, but FGD did not increase leachate concentrations of S. Amendment with FGD increased refuse, leachate and plant tissue concentrations of B. Other trace elements were not increased by FGD. In the greenhouse, plant growth was similar with AL and FGD except during the first three months when AL produced more growth than FGD. The initial growth suppression by FGD was likely due to high soluble salts, and possibly by high B concentrations. During the first year of the field experiment plant growth was greater with FGD than with AL. In both the field and greenhouse experiments compost increased plant growth when combined with FGD. These experiments show revegetation of toxic coal refuse and improvement in drainage water quality is possible by amendment with FGD. Revegetation success will be improved by combined amendment with FGD and compost.

  10. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) United States Standards for Grades of Florida Oranges and Tangelos Standards for Internal Quality of Common Sweet Oranges (citrus Sinensis (l) Osbeck) § 51.1178 Maximum anhydrous citric acid permissible...

  11. Novel Soluble Dietary Fiber-Tannin Self-Assembled Film: A Promising Protein Protective Material.

    PubMed

    Song, Guo-Bin; Xu, Juan; Zheng, Hua; Feng, Ying; Zhang, Wen-Wen; Li, Kun; Ge, Shuang-shuang; Li, Kai; Zhang, Hong

    2015-06-24

    In this experiment, a natural promising protein protective film was fabricated through soluble dietary fiber (SDF)-tannin nanocluster self-assembly. FT-IR, XRD, and DSC tests were employed to investigate the interaction between the SDF and tannins before and after cross-linking induced by calcium ion. On the other hand, referring to the SEM and TEM results, the self-assembly process of the protein protective film could be indicated as follows: first, calcium ion, with its cross-ability, served as the "nucleus"; SDF and tannins were combined to prepare the nanoscale SDF-tannin clusters; then, the clusters were homogeneously deposited on the surface of protein to form a protective film by self-assembling hydrogen bond between tannin component of clusters as "adhesive" and protein in aqueous solutions under very mild conditions. Film thickness could also be controlled by tannin of different concentrations ranging from 114 to 1384 μm. Antibacterial test and in vitro cytotoxicity test proved that the film had a broad spectrum of antimicrobial properties and excellent cell biocompatibility, respectively, which might open up new applications in the food preservation and biomedical fields.

  12. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    PubMed

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  13. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  14. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.

    2014-06-01

    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel-Halsey-Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much

  15. Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment.

    PubMed

    Rosenberger, S; Laabs, C; Lesjean, B; Gnirss, R; Amy, G; Jekel, M; Schrotter, J-C

    2006-02-01

    Two parallel membrane bioreactors (2 m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial products (SMP).

  16. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking.

    PubMed

    Wang, Lei; Xu, Honggao; Yuan, Fang; Fan, Rui; Gao, Yanxiang

    2015-10-15

    The coupled pretreatment of orange peel with steam explosion (SE) and sulfuric-acid soaking (SAS) was investigated to enhance the yield and improve the functionality of soluble dietary fiber (SDF). When orange peel was pretreated by SE at 0.8MPa for 7 min, combined with 0.8% SAS, the content of SDF was increased from 8.04% to 33.74% in comparison to the control and SDF prepared with SE-SAS showed the high water solubility, water-holding capacity, oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability and foam stability. SDF from orange peel treated by SE-SAS exhibited significantly (p < 0.05) higher binding capacity for three toxic cations (Pb, As and Cu) and smaller molecular weight (Mw = 174 kDa). Furthermore, differential scanning calorimetry (DSC) measurement showed that SDF from orange peel treated by SE-SAS had a higher peak temperature (170.7 ± 0.4 °C) than that of the untreated sample (163.4 ± 0.3 °C). Scanning electron micrograph (SEM) images demonstrated that the surface of SDF from orange peel treated by SE-SAS was rough and collapsed. It can be concluded that SDF from orange peel treated by SE-SAS has the higher potential to be applied as a functional ingredient in food products.

  17. Development of an enteric coating formulation and process for tablets primarily composed of a highly water-soluble, organic acid.

    PubMed

    Crotts, G; Sheth, A; Twist, J; Ghebre-Sellassie, I

    2001-01-01

    The purpose of this study was to define coating conditions for the enteric coating of a highly water soluble, acidic tablet core. Acidic tablet cores containing a marker drug were separated into three groups and seal coated to coverage levels of 0% (uncoated, white), 1% (yellow), and 3% (tan) weight gains. By employing a 'color coding' scheme, the different seal coated tablets could be coated simultaneously to reduce the number of experiments and eliminate potential differences that may exist during separate coating processes. In addition, an allotment of each coded tablet type was sequentially numbered with a marker pen, weighed, and recorded in order to identify the precise level of enteric coating as well as to monitor the variability of a given coating operation. The tablets were coated with five Eudragit((R)) L30D-based enteric formulations containing different amounts of plasticizer (10-20 parts) and talc (10-50 parts). During each enteric coating process, a predetermined amount of labeled tablets were removed after attaining 6, 8, and 10% weight gains. The labeled tablets were re-weighed, sorted, and then tested using USP disintegration and dissolution methods. Weight gain measurements of individual tablets indicated low coating variability (6.2% RSD) during the enteric coating processes. Dissolution results revealed that all enteric coat formulations inhibited drug release for 2 h in 0.1 N HCl. In contrast, it was found that tablets without a seal coat failed the USP disintegration test. In addition, seal coated tablets exhibited ca. 1.5-5 fold greater drug release at most intermediate sampling time points in phosphate buffer, pH 6.8, than tablets without a seal coat, suggesting that the dissolution of the latter was delayed by the generation of an acidic microenvironment at the interface of the enteric coat/acidic tablet core. Prior to enteric coating an acidic, highly water soluble substrate, a seal coat barrier should be applied to prevent retardation in

  18. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    NASA Astrophysics Data System (ADS)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  19. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  20. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    PubMed

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  1. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

    PubMed

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2016-01-04

    Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P<0.01), a phenotype that was partially restored to wild-type in complementation studies. In contrast to nitrous acid, the spores of the CBO1789 and CBO1790 mutants showed no change in their resistance to formaldehyde and hydrogen peroxide (P>0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide.

  2. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    PubMed

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.

  3. Soluble species in the Arctic summer troposphere: Acidic gases, aerosols, and precipitation

    NASA Astrophysics Data System (ADS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-10-01

    We report here the distribution of selected acidic gases and aerosol species in the North American Arctic and sub-Arctic summer troposphere. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases and acidic sulfate aerosols dominating the particulate phase. Our data show that the acidic gas and aerosol composition is uniform on a large spatial scale. There appears to be a surface source of NH4+ over the Arctic Ocean pack ice which may reflect release of NH3 from decay of dead marine organisms on the ice surface near ice leads, release from rotting sea ice, or an upward flux from surface ocean waters in open ice leads. This NH3 appears to partially neutralize aerosol acidity in the boundary layer. Over sub-Arctic tundra in southwestern Alaska inputs of marine biogenic sulfur from the nearby Bering Sea appear to be an important source of boundary layer aerosol SO42-. While there were only minor effects on aerosol chemistry over the tundra from sea salt, the rainwater chemistry showed influence from marine aerosols which were apparently incorporated into air masses during frontal passages moving inland from the Bering Sea. The rainwater acidity over the tundra (pH 4.69) is typical of remote regions. The principal acidity components are H2SO4 and carboxylic acids, especially HCOOH. The carboxylic acids appear to have a strong continental biogenic source, but hydrocarbons of marine origin and emissions from forest fires may also be important. The wet deposition fluxes of NO3--N and SO42--S over sub-Arctic tundra during July-August 1988 were 2.1 and 2.4 mmol m-2 yr-1. Wet deposition of NO3- was nearly 3 times higher than the average NOy deposition flux, which is believed to represent primarily dry deposition of HNO3 (Bakwin et al., this issue). Our measurements indicate that the mid-troposphere in the Arctic is generally contaminated with low levels of anthropogenic pollutants even in summer when direct atmospheric coupling

  4. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    SciTech Connect

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  5. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    PubMed

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-05

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment.

  6. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  7. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    PubMed

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  8. Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.

    2010-11-01

    Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m-3) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic.

  9. Graphdiyne as a promising material for detecting amino acids

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  10. Key amino acid residues in the regulation of soluble methane monooxygenase catalysis by component B.

    PubMed

    Brazeau, Brian J; Lipscomb, John D

    2003-05-20

    The regulatory component MMOB of soluble methane monooxygenase (sMMO) has been hypothesized to control access of substrates into the active site of the hydroxylase component (MMOH) through formation of a size specific channel or region of increased structural flexibility tuned to methane and O(2). Accordingly, a decrease in the size of four MMOB residues (N107G/S109A/S110A/T111A, the Quad mutant) was shown to accelerate the reaction of substrates larger than methane with the reactive MMOH intermediate Q [Wallar, B. J., and Lipscomb, J. D. (2001) Biochemistry 40, 2220-2233]. Here, this hypothesis is tested by construction of single and double mutations involving the residues of the Quad mutant. It is shown that mutations of residues that extend into the core structure of MMOB alter many aspects of the MMOH catalyzed reaction but do not mimic the effects of the Quad mutant. In contrast, the MMOB residues that are thought to form part of the interface in the MMOH-MMOB complex increase active site accessibility as observed for the Quad mutant. In particular, the mutant T111A mimics most of the effects of the Quad mutant; thus, Thr111 is proposed to most directly control access. Unexpectedly, mutation of Thr111 to the larger Tyr greatly increases the rate constant for the reaction of larger substrates such as ethane, furan, and nitrobenzene with Q while decreasing the rate constant for the reaction with methane. Other steps in the cycle are dramatically slowed, the regiospecificity for nitrobenzene oxidation is altered, and 10-fold more T111Y than wild-type MMOB is required to maximize the rate of turnover. Thus, T111Y appears to make a more extensive change in local interface structure that allows hydrocarbons at least as large as ethane to bind and react with Q similarly. As a result, the bond cleavage rates for methane, ethane, and their deuterated analogues are shown for the first time to correlate with bond strength in accord with a mechanism in which C-H bond

  11. Total Serum Bilirubin Predicts Fat-Soluble Vitamin Deficiency Better Than Serum Bile Acids in Infants with Biliary Atresia

    PubMed Central

    Venkat, Veena L.; Shneider, Benjamin L.; Magee, John C.; Turmelle, Yumirle; Arnon, Ronen; Bezerra, Jorge A.; Hertel, Paula M.; Karpen, Saul J; Kerkar, Nanda; Loomes, Kathleen M.; Molleston, Jean; Murray, Karen F.; Ng, Vicky L.; Raghunathan, Trivellore; Rosenthal, Philip; Schwartz, Kathleen; Sherker, Averell H.; Sokol, Ronald J.; Teckman, Jeffrey; Wang, Kasper; Whitington, Peter F.; Heubi, James E.

    2014-01-01

    Objective Fat soluble vitamin (FSV) deficiency is a well-recognized consequence of cholestatic liver disease and reduced intestinal intraluminal bile acids. We hypothesized that serum bile acids (SBA) would predict biochemical FSV deficiency better than serum total bilirubin level (TB) in infants with biliary atresia. Methods Infants enrolled in the Trial of Corticosteroid Therapy in Infants with Biliary Atresia (START) after hepatoportoenterostomy were the subjects of this investigation. Infants received standardized FSV supplementation and monitoring of TB, SBA and vitamin levels at 1, 3 and 6 months. A logistic regression model was used with the binary indicator variable insufficient/sufficient as the outcome variable. Linear and non-parametric correlations were made between specific vitamin measurement levels and either TB or SBA. Results The degree of correlation for any particular vitamin at a specific time point was higher with TB than SBA (higher for TB in 31 circumstances versus 3 circumstances for SBA). Receiver operating characteristic (ROC) shows that TB performed better than SBA (AUC 0.998 vs. 0.821). Including both TB and SBA did not perform better than TB alone (AUC 0.998). Conclusion We found that TB was a better predictor of FSV deficiency than SBA in infants with biliary atresia. The role of SBA as a surrogate marker of FSV deficiency in other cholestatic liver diseases, such as PFIC, alpha-one antitrypsin deficiency and Alagille syndrome where the pathophysiology is dominated by intrahepatic cholestasis, warrants further study. PMID:25419594

  12. Synthesis, spectra, and electron-transfer reaction of aspartic acid-functionalized water-soluble perylene bisimide in aqueous solution.

    PubMed

    Zhong, Lina; Xing, Feifei; Shi, Wei; Yan, Liuming; Xie, Liqing; Zhu, Shourong

    2013-04-24

    An aspartic acid-functionalized water-soluble perylene bisimide, N,N'-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic bisimide (PASP) was synthesized and characterized. It has absorbance maximum A(0-0) and A(0-1) at 527 and 498 nm (ε ≈ 1.7 × 10(4) L cm(-1) mol(-1)) respectively in pH 7.20 HEPES buffer. Two quasi-reversible redox processes with E1/2 at -0.17 and -0.71 V (vs Ag/AgCl) respectively in pH 7-12.5 aqueous solutions. PASP can react with Na2S in pure aqueous solution to form monoanion radical and dianion species consecutively. PASP(-•) has EPR signal with g = 1.998 in aqueous solution, whereas PASP(2-) is EPR silent. The monoanion radical formation is a first-order reaction with k = 8.9 × 10(-2) s(-1). Dianion species formation is a zero-order reaction and the rate constant is 4.3 × 10(-8) mol L(-1) s(-1). The presence of H2O2 greatly increases the radical formation rate constant. PASP as a two-electron transfer reagent is expected to be used in the water photolysis.

  13. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives.

    PubMed

    Yu, Kun; Li, Rong; Yang, Zhuang; Wang, Fang; Wu, Wenshuang; Wang, Xiaoyan; Nie, Chunlai; Chen, Lijuan

    2015-06-01

    Amino acid prodrugs are known to be very useful for improving the aqueous solubility of sparingly water soluble drugs (Drug Discovery Today 2013, 18, 93). Therefore, we synthesized eleven novel combretastatin A-4 amino acid derivatives and evaluated their anti-tumor activities in vitro and in vivo. Among them, compound 15 (valine attached to compound 3, which was shown to be a potent tubulin polymerization inhibitor in our previous study) exhibited high efficacy in tumor-bearing mice, and pharmacokinetic analysis in rats indicated that compound 15 was an effective prodrug as well. Besides, compound 15 significantly inhibited tubulin polymerization in vitro and in vivo by binding to the colchicine binding site. In addition, compound 15 induced cell cycle arrest in the G2/M phase and triggered apoptosis in a caspase-dependent manner. In conclusion, our study showed that compound 15 could have significant anti-tumor activity as a novel microtubule polymerization disrupting agent with improved aqueous solubility.

  14. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    PubMed Central

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2008-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymers under mild coupling conditions has been achieved utilising the coupling reagent O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate to promote formation of the biodegradable amide bond. Even though the parent antineoplastic ferrocene and phthalocyanine derivatives are themselves insoluble in water at pH < 7, the new carrier-drug conjugates that were obtained are well water-soluble. PMID:18288243

  15. Porous calcium carbonate as a carrier material to increase the dissolution rate of poorly soluble flavouring compounds.

    PubMed

    Lundin Johnson, Maria; Noreland, David; Gane, Patrick; Schoelkopf, Joachim; Ridgway, Cathy; Millqvist Fureby, Anna

    2017-03-15

    Two different food grade functionalised porous calcium carbonates (FCC), with different pore size and pore size distributions, were characterised and used as carrier materials to increase the dissolution rate of poorly soluble flavouring compounds in aqueous solution. The loading level was varied between 1.3% by weight (wt%) and 35 wt%, where the upper limit of 35 wt% was the total maximum loading capacity of flavouring compound in FCC based on the fraction of the total weight of FCC plus flavouring compound. Flavouring compounds (l-carvone, vanillin, and curcumin) were selected based on their difference in hydrophilicity and capacity to crystallise. Release kinetic studies revealed that all flavouring compounds showed an accelerated release when loaded in FCC compared to dissolution of the flavouring compound itself in aqueous medium. The amorphous state and/or surface enlargement of the flavouring compound inside or on FCC explains the faster release. The flavouring compounds capable of crystallising (vanillin and curcumin) were almost exclusively amorphous within the porous FCC material as determined by X-ray powder diffraction one week after loading and after storing the loaded FCC material for up to 9 months at room temperature. A small amount of crystalline vanillin and curcumin was detected in the FCC material with large pores and high flavouring compound loading (≥30 wt%). Additionally, two different loading strategies were evaluated, loading by dissolving the flavouring compound in acetone or loading by a hot melt method. Porosimetry data showed that the melt method was more efficient in filling the smallest pores (<100 nm). The main factor influencing the release rate appears to be the amorphous state of the flavouring compound and the increase in exposed surface area. The confinement in small pores prevents crystallisation of the flavouring compounds during storage, providing a stable amorphous form retaining high release rate also after storage.

  16. Highly Soluble p-Terphenyl and Fluorene Derivatives as Efficient Dopants in Plastic Scintillators for Sensitive Nuclear Material Detection.

    PubMed

    Sellinger, Alan; Yemam, Henok A; Mahl, Adam; Greife, Uwe; Tinkham, Jonathan; Koubek, Joshua

    2017-04-10

    Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt%) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and used as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. Select fluorene derivatives produced scintillator samples whose mechanical properties exceeded those of the commercial PPO based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects.

  17. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    PubMed

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  18. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  19. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  20. Determination of soluble solids content and titratable acidity of intact fruit and juice of Satsuma mandarin using a hand-held NIR instrument in transmittance mode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of soluble solids content (SSC) and titratable acidity (TA) of intact fruit and juice of Satsuma mandarin was investigated using a hand-held NIR instrument “NIR-Gun” in transmittance mode. The resulting calibration equation measured SSC of intact fruit and juice with a standard error o...

  1. The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles.

    PubMed

    Jiang, Wen; Nie, Shaoping; Qu, Zhe; Bi, Chongpeng; Shan, Anshan

    2014-05-01

    This study investigated the effects of dietary supplementation with conjugated linoleic acid (CLA) on the growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles (DDGS). Four hundred eighty 1-d-old broilers were randomly assigned to 4 groups, consisting of 6 replicates with 20 broilers each. Broilers were allocated 1 of 4 diets and fed for 49 d in a 2 × 2 factorial design. The dietary treatments consisted of 2 levels of DDGS (0 or 15%) and 2 levels of CLA (0 or 1%). The results of growth performance analyses showed that dietary supplementation with 1% CLA, 15% DDGS, or both in broilers had no significant effects on ADG, ADFI, and feed/gain (P > 0.05). Dietary supplementation with 15% DDGS did not significantly affect meat color values, drip loss percentage, pH value at 15 min, crude fat content, or shear force value (P > 0.05). Diets supplemented with 15% DDGS decreased the proportions of saturated fatty acids (P < 0.05) and monounsaturated fatty acids but increased the proportion of polyunsaturated fatty acids of the thigh meat (P < 0.05). Diets supplemented with 1% CLA significantly decreased the abdominal fat percentage (P < 0.05). Supplementation with 1% CLA increased the crude fat content and decreased the color (b*) value and shear force value of the breast meat (P < 0.05). Diets supplemented with 1% CLA increased the total superoxide dismutase activity of the serum, breast meat, and liver, and decreased the malondialdehyde content of the serum and breast meat (P < 0.05). Supplementation with 1% CLA decreased the proportion of monounsaturated fatty acids and increased the proportion of saturated fatty acids (P < 0.05). Accumulation of CLA in the thigh meat was significantly increased (P < 0.05) with increasing CLA level in the diet. In conclusion, dietary supplementation with 1% CLA had positive effects on meat quality, antioxidant capacity, and fatty acid

  2. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  3. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  4. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials

    SciTech Connect

    Cwiertny, David M.; Baltrusaitis, Jonas; Hunter, Gordon J.; Laskin, Alexander; Scherer, Michelle; Grassian, Vicki H.

    2008-03-04

    Processes that solubilize the iron in mineral dust aerosols may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. It was recently proposed that mixing of mineral dusts with SO2 and HNO3 produces extremely acidic environments that favor the formation of bioavailable Fe(II). Here, four authentic mineral dust source materials (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were spectroscopically characterized, and their dissolution at pH 1 was examined in aqueous batch systems. Spectroscopic analyses indicated that the bulk and near-surface region of all samples possessed similar elemental compositions and that iron was unevenly distributed among dust 10 particles. Mössbauer spectroscopy revealed Fe(III) in all samples, although SB, CL and AZTD also contained appreciable Fe(II). Both Fe(II) and Fe(III) were primarily substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxides. Total iron solubility (defined as the summed concentration of dissolved Fe(II) and Fe(III) measured after 24 h) ranged 14 between 4-12% of the source materials’ iron content, but did not scale with either the surface area or the iron content of the samples. This suggests that other factors such as iron speciation and mineralogy may play a key role in iron solubility. Also, the elevated nitrate concentrations encountered from nitric acid at pH 1 suppressed dissolution of Fe(II) from AZTD, CL and SB particles, which we propose results from the surface-mediated, non-photochemical reduction of nitrate by Fe(II).

  5. Effects of adding supplemental tallow to diets containing distillers dried grains with solubles on fatty acid digestibility in growing pigs.

    PubMed

    Davis, J M; Urriola, P E; Baidoo, S K; Johnston, L J; Shurson, G C

    2015-01-01

    An experiment was conducted to measure the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of fatty acids in diets containing 0 or 30% corn distillers dried grains with solubles (DDGS) and 0, 5, or 10% tallow. Barrows (n = 24; initial BW = 25 kg) were surgically fitted with a T-cannula at the distal ileum. Pigs (n = 4/diet) were randomly assigned to diets: corn-soybean meal control (CON), CON plus 5% tallow (5T0D), CON plus 10% tallow (10T0D), CON plus 30% DDGS (0T30D), CON plus 5% tallow and 30% DDGS (5T30D), and CON plus 10% tallow and 30% DDGS (10T30D). Eight replicates per treatment were achieved by randomizing diets among pigs for a second collection period. Each pig was fed their respective diet for a 5-d adaptation period followed by 3-d fecal collection and 2-d ileal digesta collection periods. The AID and ATTD of fatty acids was calculated using the index method and acid-insoluble ash as an indigestible marker. When tallow was added to diets with 0% DDGS, there was no effect on AID of palmitic acid (C16:0) or SFA, while AID of stearic acid (C18:0) was increased (66.87% for CON, 72.06% for 5T0D, and 76.81% for 10T0D; P < 0.01). However, when diets contained 30% DDGS, the AID of all SFA was reduced as levels of tallow increased C16:0 (77.62% for 0T30D, 69.66% for 5T30D, and 68.43% for 10T30D), C18:0 (85.87% for 0T30D, 64.08% for 5T30D, and 61.25% for 10T30D), and SFA (79.88% for 0T30D, 68.23% for 5T30D, and 66.29% for 10T30D). The AID of MUFA was not affected when tallow was added to diets with 30% DDGS but actually increased in 5T0D and 10T0D. The amount of apparent ileal digested fatty acids increased with the addition of DDGS and tallow regardless of their digestibility. Amounts of ileal digested MUFA and PUFA increased when both DDGS (P < 0.01) and tallow (P < 0.01) were included in the diet compared to when either ingredient was excluded. For ileal digestible SFA, an interaction (P < 0.01) between DDGS and tallow was

  6. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... length: 1 cm (Note: Reference and Sample cells) (1) Record the visible spectrum of a blank. Fill the... spectrum of the ether soluble material. (3) Compare the spectra obtained to the spectra attached. The attached spectra represents 150% of the absorbance at each wavelength for similarly analyzed D&C Red No....

  7. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    PubMed

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal.

  8. Gradual surface degradation of restorative materials by acidic agents.

    PubMed

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (p<0.05), followed by Fuji II LC. Valiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss.

  9. Optimization of two methods based on ultrasound energy as alternative to European standards for soluble salts extraction from building materials.

    PubMed

    Prieto-Taboada, N; Gómez-Laserna, O; Martinez-Arkarazo, I; Olazabal, M A; Madariaga, J M

    2012-11-01

    The Italian recommendation NORMAL 13/83, later replaced by the UNI 11087/2003 norm, were used as standard for soluble salts extraction from construction materials. These standards are based on long-time stirring (72 and 2h, respectively) of the sample in deionized water. In this work two ultrasound based methods were optimized in order to reduce the extraction time while efficiency is improved. The instrumental variables involved in the extraction assisted by ultrasound bath and focused ultrasounds were optimized by experimental design. As long as it was possible, the same non-instrumental parameters values as those of standard methods were used in order to compare the results obtained on a mortar sample showing a black crust by the standards and the optimized methods. The optimal extraction time for the ultrasounds bath was found to be of two hours. Although the extraction time was equal to the standard UNI 11087/2003, the obtained extraction recovery was improved up to 119%. The focused ultrasound system achieved also better recoveries (up to 106%) depending on the analyte in 1h treatment time. The repeatabilities of the proposed ultrasound based methods were comparables to those of the standards. Therefore, the selection of one or the other of the ultrasound based methods will depend on topics such as laboratory facilities or number of samples, and not in aspects related with their quality parameters.

  10. Effects of brewers` condensed solubles (BCS) on the production of ethanol from low-grade starch materials

    SciTech Connect

    Choi, C.H.; Chung, D.S.; Seib, P.A.

    1995-02-01

    Yeast fermentation was performed on grain and bakery byproducts with and without adding the same volume of brewers` condensed solubles (BCS). Starch material in the grain and bakery byproducts effectively was converted to fermentable sugars with conversion ratios of 93-97% by successive treatments of samples with bacterial {alpha}-amylase and fungal glucoamylase. The yeast fermentation of these enzyme-digested byproducts alone showed that ethanol concentrations of 16.4-42.7 mL/100 g dry solid in the broth were achieved with fermentation efficiencies of 87-96%. Addition of BCS to the grain byproducts increased ethanol concentration by 10-86% by increasing the potential glucose content of the broth. The rates of fermentation measured by CO{sub 2} gas production demonstrated that BCS addition to bakery byproducts reduced the fermentation time from 62-72 h to 34-35 h. In bakery byproducts that were low in amino nitrogen, exhaustion of nitrogenous compounds in substrates was found to be a limiting factor for yeast growth. Because BCS is a rich source of nitrogen, adding BCS to these substrates markedly increased the fermentation rate. 15 refs., 4 figs., 3 tabs.

  11. Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of Benzotriazole-4-hydroxybenzoic acid single crystals

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-06-01

    Organic Benzotriazole-4-hydroxybenzoic acid (BHBA), a novel second-order nonlinear optical single crystal was grown by solution growth method. The solubility and nucleation studies were performed for BHBA crystal at different temperatures 30, 35, 40 45 and 50 °C. Single crystal X-ray diffraction study reveals that the BHBA belongs to Pna21 space group of orthorhombic crystal system. The crystal perfection of BHBA was examined from powder and high resolution X-ray diffraction analysis. UV-visible and photoluminescence spectra were recorded to study its transmittance and excitation, emission behaviors respectively. Kurtz powder second harmonic generation test reveals that, the frequency conversion efficiency of BHBA is 3.7 times higher than that of potassium dihydrogen phosphate (KDP) crystal. The dielectric constant and dielectric loss values were estimated for BHBA crystal at various temperatures and frequencies. The mechanical property of BHBA crystal was studied on (110), (010) and (012) planes by using Vicker's microhardness test. The chemical etching study was performed on (012) facet of BHBA crystal to analyze its growth feature.

  12. Soluble uric acid increases intracellular calcium through an angiotensin II-dependent mechanism in immortalized human mesangial cells.

    PubMed

    Albertoni, Guilherme; Maquigussa, Edgar; Pessoa, Edson; Barreto, Jose Augusto; Borges, Fernanda; Schor, Nestor

    2010-07-01

    Hyperuricemia is associated with increases in cardiovascular risk and renal disease. Mesangial cells regulate glomerular filtration rates through the release of hormones and vasoactive substances. This study evaluates the signaling pathway of uric acid (UA) in immortalized human mesangial cells (ihMCs). To evaluate cell proliferation, ihMCs were exposed to UA (6-10 mg/dL) for 24-144 h. In further experiments, ihMCs were treated with UA (6-10 mg/dL) for 12 and 24 h simultaneously with losartan (10(-7) mmol/L). Angiotensin II (AII) and endothelin-1 (ET-1) were assessed using the enzyme-linked immunosorbent assay (ELISA) technique. Pre-pro-ET mRNA was evaluated by the real-time PCR technique. It was observed that soluble UA (8 and 10 mg/dL) stimulated cellular proliferation. UA (10 mg/dL) for 12 h significantly increased AII protein synthesis and ET-1 expression and protein production was increased after 24 h. Furthermore, UA increased [Ca(2+)](i), and this effect was significantly blocked when ihMCs were preincubated with losartan. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. In addition, UA can potentially affect glomerular function due to UA-induced proliferation and contraction of mesangial cells. The latter mechanism could be related to the long-term effects of UA on renal function and chronic kidney disease.

  13. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary, Ternary, and Multicomponent Systems. Part I. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Water and Aqueous Systems

    NASA Astrophysics Data System (ADS)

    Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi

    2011-03-01

    The solubility data for well-defined binary, ternary, and multicomponent systems of solid-liquid type are reviewed. One component, which is 2-, 3-, and 4-hydroxybenzoic acids, 4-hydroxybenzoate alkyl esters (parabens), or hydroxybenzoic acid salts, is in the solid state at room temperature and another component is liquid water, meaning that all of the systems are aqueous solutions. The ternary or multicomponent systems include organic substances of various classes (hydrocarbons of several structural types, halogenated hydrocarbons, alcohols, acids, ethers, esters, amides, and surfactants) or inorganic substances. Systems reported in the primary literature from 1898 through 2000 are compiled. For seven systems, sufficient binary data for hydroxybenzoic acids or parabens in water are available to allow critical evaluation. Almost all data are expressed as mass and mole fractions as well as the originally reported units, while some data are expressed as molar concentration.

  14. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee.

    PubMed

    Marmet, Cynthia; Actis-Goretta, Lucas; Renouf, Mathieu; Giuffrida, Francesca

    2014-01-01

    Chlorogenic acids and derivatives like phenolic acids are potentially bioactive phenolics, which are commonly found in many foods. Once absorbed, chlorogenic and phenolic acids are highly metabolized by the intestine and the liver, producing glucuronidated and/or sulphated compounds. These metabolites were analyzed in human plasma using a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method. After protein precipitation, phenolic acids and their metabolites were extracted by using ethanol and chromatographic separation was achieved by reversed-phase using an Acquity UPLC BEH C18 column combined with a gradient elution system using 1% acetic acid aqueous solution and 1% acetic acid with 100% acetonitrile. The method was able to quantify 56 different compounds including 24 phenolic acids, 4 lactones, 15 sulfates and 13 glucuronides metabolites between 5 and 1000nM in plasma for most of them, except for m-dihydrocoumaric acid, 5-ferulloylquinic-glucuronide, 4-methoxycinnamic acid, 3-phenylpropionic acid, 3-(4-methoxyphenyl)propionic acid (25 to 1000nM) and p-dihydrocoumaric acid (50-1000nM). Values of repeatability and intermediate reproducibility were below 15% of deviation in general, and maximum 20% for the lowest concentrations. The validated method was successfully applied to quantify phenolic acids and their metabolites in plasma obtained after oral ingestion of soluble coffee. In conclusion, the developed and validated method is proved to be very sensitive, accurate and precise for the quantification of these possible dietary phenols.

  15. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    PubMed

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  16. Human urine certified reference material CZ 6009: creatinine, styrene metabolites (mandelic acid and phenylglyoxylic acid).

    PubMed

    Sperlingová, I; Dabrowská, L; Stránský, V; Kucera, J; Tichý, M

    2004-03-01

    The reference material was prepared by freeze-drying pooled urine samples obtained from healthy persons occupationally exposed to styrene. The concentrations of mandelic acid (MA), phenylglyoxylic acid (PGA), and hippuric acid (HA) in urine were determined by three modes of high-performance liquid chromatography (HPLC). For isochronous stability testing the urinary mandelic acid and phenylglyoxylic acid concentrations were followed over a 24-month period for a preliminary batch by use of HPLC. No changes of the concentration values were found. The creatinine concentration was stable for more than five years. Standard Reference Material NIST 914a Creatinine was used for traceability purposes for creatinine. Pure chemicals MA and PGA were used for traceability purposes. Control material ClinChek-Urine Control (Recipe) was analyzed simultaneously. The mean values of MA and PGA compare well with the means and fall within the control range of control samples. Results from homogeneity, stability, and traceability testing were evaluated using the statistical program ANOVA. The certified values and their uncertainties were evaluated from the results of interlaboratory comparisons, and homogeneity and stability tests. The values are unweighed arithmetical averages of accepted results and their uncertainties are combined uncertainties (coverage factor=1).

  17. Effects of soluble and insoluble fractions from bilberries, black currants, and raspberries on short-chain fatty acid formation, anthocyanin excretion, and cholesterol in rats.

    PubMed

    Jakobsdottir, Greta; Nilsson, Ulf; Blanco, Narda; Sterner, Olov; Nyman, Margareta

    2014-05-14

    Dietary fiber and flavonoids, important components in berries, are suggested to improve metabolic health. This study investigates whether soluble and insoluble fractions isolated from bilberry, black currant, and raspberry affect the formation of short-chain fatty acids (SCFAs), uptake and excretion of flavonoids, and levels of cholesterol differently. Cecal SCFA pools were higher in rats fed the soluble than the insoluble fractions (525 vs 166 μmol, P < 0.001), whereas higher concentrations of butyric acid were found in the distal colon and serum of rats fed the insoluble fractions (5 vs 3 μmol/g and 58 vs 29 μmol/L, respectively, P < 0.001). The soluble bilberry fraction gave lower amounts of liver cholesterol (56 mg) than the other berry fractions (87 ± 5 mg), formed the highest amount of SCFAs (746 vs 266 ± 21 μmol), and contributed the highest intake of anthocyanins. Cyanidin-3-glucoside monoglucuronide was detected in the urine of all groups, whereas anthocyanins were found only in groups fed soluble black currant and raspberry.

  18. Effects of acid fog and dew on materials. Final report

    SciTech Connect

    Mansfeld, F.; Henry, R.; Vijayakumar, R.

    1989-10-01

    Field exposure tests have been carried out in order to separate the effects of acidic fog on materials damage from those caused by rain, dew and natural weathering. The test sites were McKittrick and Visalia in the Central Valley and West Casitas Pass in Ventura County. The field tests have been supported by laboratory tests in which materials damage has been determined during exposure to carefully controlled fog water chemistry. Analysis of the field exposure results for galvanized steel and the paint samples shows that the corrosivity of the atmosphere at the three test sites have been very low. The result is confirmed by the ACRM data which show very low corrosion activity. Since corrosion rates were so low approaching those for natural weathering, it was not possible to determine the effects of acidic fog. Based on the aerometric data and the observed corrosion behavior, it is doubtful that acidic fog conditions prevailed for significant times during the exposure period of 1/87 - 3/88 at Visalia and McKittrick. The results of the laboratory tests show that exposure to HNO3 at low pH and to high pollutant concentration increased the corrosion rate of galvanized steel to over 10 micro m/year. Exposure to HNO3 caused serious corrosion damage to anodized aluminum and the paint.

  19. Synthesis, Chemical and Enzymatic Hydrolysis, and Aqueous Solubility of Amino Acid Ester Prodrugs of 3-Carboranyl Thymidine Analogues for Boron Neutron Capture Therapy of Brain Tumors

    PubMed Central

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K.; Abd alla, Mosaad S. M.; Tjarks, Werner

    2012-01-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogues (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48 to 6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  20. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tang, Haiyan; Wu, Tuo; Wu, Guanghui; Li, Jingshe

    2017-04-01

    The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

  1. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates.

    PubMed

    Li, Jihong; McClane, Bruce A

    2008-05-02

    Clostridium perfringens is a major cause of food poisoning (FP) in developed countries. C. perfringens isolates usually induce the gastrointestinal symptoms of this FP by producing an enterotoxin that is encoded by a chromosomal (cpe) gene. Those typical FP strains also produce spores that are extremely resistant to food preservation approaches such as heating and chemical preservatives. This resistance favors their survival and subsequent germination in improperly cooked, prepared, or stored foods. The current study identified a novel alpha/beta-type small acid soluble protein, now named Ssp4, and showed that sporulating cultures of FP isolates producing resistant spores consistently express a variant Ssp4 with an Asp substitution at residue 36. In contrast, Gly was detected at Ssp4 residue 36 in C. perfringens strains producing sensitive spores. Studies with isogenic mutants and complementing strains demonstrated the importance of the Asp 36 Ssp4 variant for the exceptional heat and sodium nitrite resistance of spores made by most FP strains carrying a chromosomal cpe gene. Electrophoretic mobility shift assays and DNA binding studies showed that Ssp4 variants with an Asp at residue 36 bind more efficiently and tightly to DNA than do Ssp4 variants with Gly at residue 36. Besides suggesting one possible mechanistic explanation for the highly resistant spore phenotype of most FP strains carrying a chromosomal cpe gene, these findings may facilitate eventual development of targeted strategies to increase killing of the resistant spores in foods. They also provide the first indication that SASP variants can be important contributors to intra-species (and perhaps inter-species) variations in bacterial spore resistance phenotypes. Finally, Ssp4 may contribute to spore resistance properties throughout the genus Clostridium since ssp4 genes also exist in the genomes of other clostridial species.

  2. Effect of Acid-Soluble Aluminum on the Evolution of Non-metallic Inclusions in Spring Steel

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Tang, Haiyan; Wu, Tuo; Wu, Guanghui; Li, Jingshe

    2017-01-01

    The content of acidic soluble aluminum in molten steel ([Al]s) is of significance to the control of total oxygen (TO), the formation of non-metallic inclusions, and the improvement of the surface quality of billets. Industrial trials and thermodynamic calculations were performed to study the effects of [Al]s content on the TO and the evolution of non-metallic inclusions in 60Si2Mn-Cr spring steel that was deoxidized by Si-Mn ((low aluminum process (LAP)) and Si-Mn-Al (high aluminum process (HAP)). The results show that the [Al]s contents in billets are within 0.0060 to 0.0069 mass pct in the LAP and 0.016 to 0.055 mass pct in the HAP. The TO content at each station of the LAP is higher than that in the HAP; the inclusions of billets were mainly of the CaO-Al2O3-SiO2 type in the former, and of the CaO-Al2O3-MgO and CaS-Al2O3-MgO types in the latter. A tendency is found that the higher the [Al]s, the easier it is to deviate from the low melting point region of the inclusion distribution and the larger the size of the inclusions. The relationships between [Al]s and the melting point of the oxide inclusions and the Al2O3 content in the oxide inclusions are also discussed in terms of experiment and calculation.

  3. Immobilization of EAFD heavy metals using acidic materials.

    PubMed

    Mitrakas, Manassis G; Sikalidis, Constantinos A; Karamanli, Theoktisti P

    2007-03-01

    This study was undertaken to determine the chemical and leaching characteristics of the Electric Arc Furnace Dust (EAFD) generated by a Greek plant and to investigate various acidic materials efficiency on the EAFD stabilization. In order to investigate how [OH(-)] neutralization influences EAFD heavy metals leachability, Na HCO3(-), HNO3 and H3PO4 were used as acidic materials. The concentration of Pb in leachate was found between 40 and 3.7 x 10(3) mg Pb/kg of EAFD, exceeding in all EAFD samples the maximum acceptable limit (MAL) 25 mg/kg for landfill disposal. Neutralization of [OH(-)] with HCO3(-) decreased Pb concentration in leachate at 350 mg Pb/kg of EAFD, while excess over a stoichiometry in HCO3(-) addition increased leachability of Pb, Cd, Cr, Cu as well as F. Using HNO3 as an acidic material decreased leachability of almost all the parameters concerning the EC directive 33/19-01-2003 in a pH value up to 7.2, in exception of Zn. Zinc leachability showed a U shape curve as a function of pH value. The concentration of Zn was minimized in a concentration lower than 1 mg Zn/kg EAFD in a pH range 10.5 to 9 and exceeded the MAL 90 mg/kg at a pH value 7.2. However, the major disadvantage of HNO3 was proved to be its leachability, since NO3(-) concentration in leachate was equal to HNO3 dose. H3PO4 was found the most promising acidic material for the chemical immobilization of heavy metals, since it decreased their leachability in a concentration significantly lower than MAL at a pH value up to 7.1. Finally, the concentration of Cl(-) ranged between 18 and 33 x 10(3) mg Cl(-)/kg EAFD exceeding in all EAFD samples the MAL 17 x 10(3) mg/kg. This high concentration of Cl(-) is attributed to the scrap and it could be reduced only by modification of its composition.

  4. The influence of ethylenediamine tetra acetic acid (EDTA) on the transformation and solubility of metallic palladium and palladium(II) oxide in the environment.

    PubMed

    Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin

    2015-05-01

    The environmental occurrence of elevated concentrations of platinum (Pt), palladium (Pd) and rhodium (Rh) from automotive catalytic converters has been well-documented. Limited information exists regarding their chemical behavior post-emission, however, especially in the presence of commonly occurring complexing agents. The purpose of this study is to examine the influence of ethylenediamine tetra acetic acid (EDTA) on the possible environmental transformation and solubility of Pd by conducting batch experiments using metallic palladium (Pd black) and palladium(ii) oxide (PdO). Changes in the particle surface chemistry of treated samples were analyzed using X-ray Photoelectron Spectroscopy (XPS) and Transition Electron Microscopy/Energy Dispersive X-ray Spectrometry (TEM/EDX) techniques. Metallic palladium was partially transformed into PdOx (x < 1), while PdO remained largely unaffected. The pH of EDTA solutions was observed to modulate Pd solubility, with Pd black demonstrating a higher solubility compared to PdO. Solubility was also found to increase with a corresponding increase in the strength of EDTA solution concentrations, as well as with the length of extraction time. The overall solubility of Pd remained relatively low for most samples (<1 wt%). A dissolution rate of 2.01 ± 0.17 nmol m(-2) h(-1) was calculated for Pd black in 0.1 M EDTA (pH 7). In contrast to previously held assumptions about the environmental immobility of Pd, small amounts of this element emitted in metallic form are likely to be soluble in the presence of complexing agents such as EDTA.

  5. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization.

    PubMed

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering.

  6. Electrospinning of calcium phosphate-poly (d,l-lactic acid) nanofibers for sustained release of water-soluble drug and fast mineralization

    PubMed Central

    Fu, Qi-Wei; Zi, Yun-Peng; Xu, Wei; Zhou, Rong; Cai, Zhu-Yun; Zheng, Wei-Jie; Chen, Feng; Qian, Qi-Rong

    2016-01-01

    Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP) nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(d,l-lactic acid) (ACP-PLA) nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63) cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due to the high biocompatibility, sustained drug release, and fast mineralization, the as-prepared composite nanofibers may have potential applications in water-soluble drug loading and release for tissue engineering. PMID:27785016

  7. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    PubMed

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs.

  8. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  9. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  10. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  11. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  12. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  13. Stearic acid and high molecular weight PEO as matrix for the highly water soluble metoprolol tartrate in continuous twin-screw melt granulation.

    PubMed

    Monteyne, Tinne; Adriaensens, Peter; Brouckaert, Davinia; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-15

    Granules with release-sustaining properties were developed by twin screw hot melt granulation (HMG) using a combination of stearic acid (SA) and high molecular weight polyethylene oxide (PEO) as matrix for a highly water soluble model drug, metoprolol tartrate (MPT). Earlier studies demonstrated that mixing molten SA and PEO resulted in hydrogen bond formation between hydroxyl groups of fatty acid molecules and ether groups in PEO chains. These molecular interactions might be beneficial in order to elevate the sustained release effect of drugs from a SA/PEO matrix. This study aims to investigate the continuous twin screw melt granulation technique to study the impact of a SA/PEO matrix on the dissolution rate of a highly water soluble drug (MPT). Decreasing the SA/PEO ratio improved the release-sustaining properties of the matrix. The solid state of the granules was characterized using differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and near infrared chemical imaging (NIR-CI) in order to understand the dissolution behavior. The results revealed a preferential interaction of the MPT molecules with stearic acid impeding the PEO to form hydrogen bonds with the stearic acid chains. However, this allowed the PEO chains to recrystallize inside the stearic acid matrix after granulation, hence, elevating the release-sustaining characteristics of the formulation.

  14. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  15. A chemical test of the principle of critical point universality: The solubility of nickel (II) oxide in isobutyric acid + water near the consolute point

    NASA Astrophysics Data System (ADS)

    Hu, Baichuan; Baird, James K.; Richey, Randi D.; Reddy, Ramana G.

    2011-04-01

    A mixture of isobutyric acid + water has an upper consolute point at 38.8 mass % isobutyric acid and temperature near 26 °C. Nickel (II) oxide dissolves in this mixture by reacting with the acid to produce water and nickel isobutyrate. The solubility of nickel (II) oxide in isobutyric acid + water has been measured as a function of temperature at compositions, 25, 38.8, and 60 mass % isobutyric acid. For values of the temperature, T, which were at least 2 K in excess of the liquid-liquid phase transition temperature, the measured values of the solubility, s, lie on a straight line when plotted in van't Hoff form with ln s versus 1/T. The slope, (∂ln s/∂(1/T)), of the line is negative indicating that the dissolution reaction is endothermic. When the temperature was within 2 K of the phase transition temperature, however, (∂ln s/∂(1/T)) diverged toward negative infinity. The principle of critical point universality predicts that when excess solid nickel (II) oxide is in dissolution equilibrium with liquid isobutyric acid + water, (∂ln s/∂(1/T)) should diverge upon approaching the consolute point along the critical isopleth at 38.8 mass % isobutyric acid. As determined by the sign of the enthalpy of solution, the sign of this divergence is expected to be negative. Not only do our experiments confirm these predictions, but they also show that identical behavior can be observed at both 25 and 60 mass % isobustyric acid, compositions which lie substantially to either side of the critical composition.

  16. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  17. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  18. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    PubMed

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis.

  19. Using urinary solubility data to estimate the level of safety concern of low levels of melamine (MEL) and cyanuric acid (CYA) present simultaneously in infant formulas.

    PubMed

    Dominguez-Estevez, Manuel; Constable, Anne; Mazzatorta, Paolo; Renwick, Andrew G; Schilter, Benoit

    2010-01-01

    Melamine (MEL) and cyanuric acid (CYA) may occur simultaneously in milk products. There is no health based guidance value for the mixture of MEL+CYA. Limited toxicological data indicate that MEL+CYA toxicity occurs at levels lower than the toxic doses of the single compounds. The key adverse effect of MEL+CYA is the formation of crystals in the urinary tract, which is dependent on the solubility of the MEL+CYA complex. Urinary concentrations resulting from oral doses of MEL+CYA and MEL alone have been calculated from published data from animal studies. A human exposure scenario assuming consumption of infant formula contaminated at a level of 1 ppm of MEL and CYA each (2 ppm of MEL+CYA) was also analyzed. Margins of more than two orders or magnitude were observed between estimated urine concentrations known to be without detectable effects in rats and calculated human urine concentrations. Because the hazard is related to the physico-chemical characteristics of the mixture, there would be a negligible concern associated with crystal formation if the urinary concentration of the complex is within the solubility range. The solubility of MEL+CYA was higher in urine than in water. A strong pH-dependency was observed with the lowest solubility found at pH 5-5.5. The calculated human urinary concentration was about 30 times less than the solubility limit for MEL+CYA in adult human urine. Altogether, these data provide preliminary evidence suggesting that the presence of 1 ppm of MEL and CYA each in infant formula is unlikely to be of significant health concern.

  20. Synthesis and characterization of polymeric materials derived from 2,5-diketopiperazines and pyroglutamic acid

    NASA Astrophysics Data System (ADS)

    Parrish, Dennis Arch

    The research presented in this dissertation describes the investigation of 2,5-diketopiperazines (DKPs) as property modifiers for addition polymers and the self association behavior of pyroglutamic acid derivatives. The first project involved the copolymerization of methyl methacrylate and styrene with DKP-based methacrylate monomers. Low incorporations of serine- and aspartame-based DKPs in the copolymer resulted in dramatic increases in the glass transition temperature (Ts). The research presented in Chapter II focuses on the ring-opening reactions of pyroglutamic diketopiperazine (pyDKP). The original intent was to synthesize polymers containing backbone DKPs through ring-opening polymerization of the five-membered rings. However, it was discovered that regioselective ring-opening occurs at the six-membered ring to give pyroglutamic acid derivatives. Since this reaction had not been reported previously, the focus of research was altered to investigate the scope and limitations of the new reaction. The ring-opening reactions of pyDKP with diamines to give bispyroglutamides is described in Chapter IV. While these materials are not polymeric, they display polymeric behavior. It was found that multi-functional pyroglutamides display Tgs during thermal analysis, exhibit high thermal stability, and form melt-drawn fibers. In contrast, the materials have low solution viscosities and are freely soluble in water, ethanol, and chloroform. This behavior is attributed to non-covalent supramolecular associations. The final part of this dissertation involved the investigation of thermoreversible organic solvent gelators. The ring-opening reaction of pyDKP with long alkyl amines unexpectedly gelled the reaction solvent. A series of analogous gelators were synthesized, and the minimum concentration required for gelation in various solvents was determined. It was found that the nature of the solvent, alkyl chain length, and optical activity of the gelator determined gelator

  1. Boric acid inhibition of steam generator materials corrosion

    SciTech Connect

    Wootten, M.J.; Wolfe, C.R.; Hermer, R.E.

    1985-01-01

    In 1974, Westinghouse recommended a change from phosphate water chemistry control for nuclear steam generators to one in which no solids are intentionally added, called all volatile treatment (AVT). The reason for the recommended change in water chemistry control was the occurrence of phosphate thinning of the Alloy 600 heat transfer tubes in some operating plants. Since the change over to AVT, other types of corrosion from impurities in the water have been observed of the materials of construction of nuclear steam generators. Initially, several plants observed denting, which is caused by the corrosion of the carbon steel tube support plates. After 8 yr of usage as a denting inhibitor in nuclear plants, no detrimental effects have been identified as due to boric acid. It is believed that boric acid will inhibit denting-type corrosion and caustic attack of Alloy 600; however, it must be stressed that it is not a substitute for good chemistry practices and all levels and disciplines within the operating plant should recognize the importance of rigorous, long-term chemistry control.

  2. Relationship between the solubility, dosage and antioxidant capacity of carnosic acid in raw and cooked ground buffalo meat patties and chicken patties.

    PubMed

    Naveena, B M; Vaithiyanathan, S; Muthukumar, M; Sen, A R; Kumar, Y Praveen; Kiran, M; Shaju, V A; Chandran, K Ramesh

    2013-10-01

    Antioxidant capacity of oil soluble and water dispersible carnosic acid (CA) extracted from dried rosemary leaves using HPLC was evaluated at two different dosages (22.5 ppm vs 130 ppm) in raw and cooked ground buffalo meat patties and chicken patties. Irrespective of total phenolic content, CA extracts reduced (p<0.05) the thiobarbituric acid reactive substances (TBARS) by 39%-47% and 37%-40% in cooked buffalo meat and chicken patties at lower dosage (22.5 ppm) relative to control samples. However, at higher dosage (130 ppm) the TBARS values were reduced (p<0.05) by 86%-96% and 78%-87% in cooked buffalo meat and chicken patties compared to controls. The CA extracts were also effective in inhibiting (p<0.05) peroxide value and free fatty acids in cooked buffalo meat and chicken patties. The CA extracts when used at higher dosage, were also effective in stabilizing raw buffalo meat color.

  3. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-02

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties.

  4. Water soluble nano-scale transient material germanium oxide for zero toxic waste based environmentally benign nano-manufacturing

    NASA Astrophysics Data System (ADS)

    Almuslem, A. S.; Hanna, A. N.; Yapici, T.; Wehbe, N.; Diallo, E. M.; Kutbee, A. T.; Bahabry, R. R.; Hussain, M. M.

    2017-02-01

    In the recent past, with the advent of transient electronics for mostly implantable and secured electronic applications, the whole field effect transistor structure has been dissolved in a variety of chemicals. Here, we show simple water soluble nano-scale (sub-10 nm) germanium oxide (GeO2) as the dissolvable component to remove the functional structures of metal oxide semiconductor devices and then reuse the expensive germanium substrate again for functional device fabrication. This way, in addition to transiency, we also show an environmentally friendly manufacturing process for a complementary metal oxide semiconductor (CMOS) technology. Every year, trillions of complementary metal oxide semiconductor (CMOS) electronics are manufactured and billions are disposed, which extend the harmful impact to our environment. Therefore, this is a key study to show a pragmatic approach for water soluble high performance electronics for environmentally friendly manufacturing and bioresorbable electronic applications.

  5. Carboxylic acids in the hindgut of rats fed highly soluble inulin and Bifidobacterium lactis (Bb-12), Lactobacillus salivarius (UCC500) or Lactobacillus rhamnosus (GG)

    PubMed Central

    Nilsson, Ulf; Nyman, Margareta

    2007-01-01

    Background Propionic and butyric acids are important nutrients for the mucosal cells and may therefore increase the nutritional status and reduce the permeability of the colonic mucosa. These acids have also been suggested to counteract diseases in the colon, e.g. ulcerative colitis and colon cancer. Different substrates lead to different amounts and patterns of carboxylic acids (CAs). Objective To study the effect of probiotics on CA formation in the hindgut of rats given inulin. Design The rats were given inulin, marketed as highly soluble by the producer, together with the probiotic bacteria Bifidobacterium lactis (Bb-12), Lactobacillus salivarius (UCC500) or Lactobacillus rhamnosus (GG), or a mixture of all three. Results Rats fed inulin only had comparatively high proportions of propionic and butyric acids throughout the hindgut. When diets were supplemented with Bb-12 and UCC500, the caecal pool of CAs increased compared with inulin only. In the caecum the proportion of butyric acid generally decreased when the rats were fed probiotics. In the distal colon the proportion of propionic and butyric acid was lower, while that of lactic acid was generally higher. The caecal pH in rats fed GG and Bb-12 was lower than expected from the concentration of CAs. Further, rats fed GG had the lowest weight gain and highest caecal tissue weight. Conclusions It is possible to modify the formation of CAs by combining inulin with probiotics. Different probiotics had different effects.

  6. [Reaction of bone tissue elements on synthetic bioresorbable materials based on lactic and glycolic acids].

    PubMed

    Kulakov, A A; Grigor'ian, A S

    2014-01-01

    The aim of the study was to evaluate the adverse effects of synthetic polymeric bioresorbable materials based on lactic and glycolic acids on the bone tissue. The study was carried-out on 40 Wister-line rats. Four types of bioresorbable polymeric materials were implanted: PolyLactide Glycolide Acid (PLGA), Poly-L-Lactide Acid (PLLA); Poly-96L/4D-Lactide Acid (96/4 PLDLA); Poly-70L/30D-Lactide Acid (70/30 PLDLA). The results showed connective tissue formation (fibrointegration) bordering bone adjacent to implanted materials. This proved the materials to cause pathogenic influence on the bone which mechanisms are described in the article.

  7. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.

    PubMed

    Hüsch, Jan; Gerbeth, Kathleen; Fricker, Gert; Setzer, Constanze; Zirkel, Jürgen; Rebmann, Herbert; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2012-10-26

    Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration.

  8. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations.

    PubMed

    Bi, J L; Toscano, N C; Madore, M A

    2003-03-01

    The impact of urea nitrogen fertilization on silverleaf whitefly, Bemisia argentifolii Bellows & Perring, population dynamics was examined in field-grown cotton (Gossypium hirsutum L.). Five urea nitrogen treatments were tested, consisting of soil applications of 0, 112, 168, and 224 kg nitrogen per hectare, and acombined soil-foliar application of 112:17 kg nitrogen per hectare. A positive response was observed between N application rates and the measured levels of nitrate N in petioles from mature cotton leaves. Similarly, a positive response was observed between N application rates and the numbers of adult and immature whiteflies appearing during population peaks. To determine whether these positive responses were related, we measured the levels of dietary N compounds (proteins and free amino acids) that would be available for insect nutrition in cotton petioles at the different N application rates. Sampling dates and N application treatments affected levels of soluble proteins in cotton petioles, and interactions between sampling dates and treatments were significant. Across all sampling dates, the relationship between N application rates and levels of soluble proteins was linear. Sampling dates also affected levels of total and individual free amino acids. Fertilizer treatments only affected levels of total amino acids, aspartate, asparagine, and arginine plus threonine. Levels of aspartate or asparagine and the N application rates were linearly correlated. No significant correlations were observed between levels of dietary N compounds in cotton petioles and numbers of whiteflies, either adults or immatures, on the cotton plants.

  9. Solubility and modeling acid-base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina

    2015-10-12

    Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0solubility of the ligand was calculated from simple mass balance equations, by using the free hydrogen concentration and the protonation constants of the ligand determined in the same experimental conditions of the solubility measurements. The salting-In or Out parameters and the activity coefficient of the neutral species were calculated by means of the Setschenow equation. The dependence of the protonation constants on the ionic strength was modeled by means of the Debye-Hückel type equation and of the SIT (Specific ion Interaction Theory) approach. The specific interaction parameters of the ion pairs were also reported. For the protonation constants, the following thermodynamic values at infinite dilution were obtained: T=298.15 K, logK1(H0)=10.674±0.018 and logK2(H0)=8.954±0.022; T=310.15K, logK1(H0)=10.355±0.018 and logK2(H0)=8.749±0.030.

  10. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein.

    PubMed

    Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan

    2015-06-01

    Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein.

  11. Fat-soluble vitamins and plasma and erythrocyte membrane fatty acids in chylothorax pediatric patients receiving a medium-chain triglyceride-rich diet.

    PubMed

    Densupsoontorn, Narumon; Jirapinyo, Pipop; Tirapongporn, Hathaichanok; Wongarn, Renu; Chotipanang, Kwanjai; Phuangphan, Phakkanan; Chongviriyaphan, Nalinee

    2014-11-01

    Post-operative chylothorax can be cured by a medium-chain triglyceride (MCT)-rich diet. However, there is concern that an MCT-rich diet results in clinical and biochemical deficiencies in fat-soluble vitamins and fatty acids. We compared fat-soluble vitamins status and fatty acids status before and after administration of an MCT-rich diet. Nine children with congenital heart disease developed chylothorax after cardiac surgery. Blood samples were drawn from each subject twice, first prior to administration of an MCT-rich diet and secondly when the chylothorax was clinically cured and the MCT diet discontinued. Both blood samples were analyzed for retinol and 25-hydroxy vitamin D concentrations, the ratio of α-tocopherol to total lipids (α-TE/TL), coagulogram, and the fatty acid composition in plasma and erythrocyte membrane phospholipids. In spite of a decrease in the α-TE/TL ratio (3.78 ± 0.89 vs 2.36 ± 0.44 mg/g, p<0.05), this decrease did not reach the deficiency cut-off level. Linoleic acid in both plasma and erythrocyte membrane lipids decreased significantly (25.25 ± 8.06 vs 14.25 ± 2.88%, and 11.19 ± 2.15 vs 6.89 ± 2.45%, respectively). Administration of an MCT-rich diet for treatment of postoperative chylothorax caused a reduction in vitamin E status and linoleic acid, but without any symptoms of deficiency.

  12. Influence of water-soluble flavonoids, quercetin-5'-sulfonic acid sodium salt and morin-5'-sulfonic acid sodium salt, on antioxidant parameters in the subacute cadmium intoxication mouse model.

    PubMed

    Chlebda, Ewa; Magdalan, Jan; Merwid-Lad, Anna; Trocha, Małgorzata; Kopacz, Maria; Kuźniar, Anna; Nowak, Dorota; Szelag, Adam

    2010-03-01

    Water-soluble quercetin-5'-sulfonic acid sodium salt (NaQSA) and morin-5'-sulfonic acid sodium salt (NaMSA) could exert an antagonistic effect on cadmium intoxication. The aim of the study was to examine the influence of these substances on superoxide dismutase (SOD) and glutathione (GSH) levels in the mouse liver in the subacute cadmium intoxication model. NaQSA and NaMSA significantly counteracted cadmium-induced decreases in SOD and GSH levels. No significant differences in SOD and GSH levels between groups exposed to cadmium receiving NaQSA or/and NaMSA were observed.

  13. Critical Material Attributes of Strip Films Loaded With Poorly Water-Soluble Drug Nanoparticles: II. Impact of Polymer Molecular Weight.

    PubMed

    Krull, Scott M; Ammirata, Jennifer; Bawa, Sonia; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2017-02-01

    Recent work established polymer strip films as a robust platform for delivery of poorly water-soluble drug particles. However, a simple means of manipulating rate of drug release from films with minimal impact on film mechanical properties has yet to be demonstrated. This study explores the impact of film-forming polymer molecular weight (MW) and concentration on properties of polymer films loaded with poorly water-soluble drug nanoparticles. Nanoparticles of griseofulvin, a model Biopharmaceutics Classification System class II drug, were prepared in aqueous suspension via wet stirred media milling. Aqueous solutions of 3 viscosity grades of hydroxypropyl methylcellulose (14, 21, and 88 kDa) at 3 viscosity levels (∼9500, ∼12,000, and ∼22,000 cP) were mixed with drug suspension, cast, and dried to produce films containing griseofulvin nanoparticles. Few differences in film tensile strength or elongation at break were observed between films within each viscosity level regardless of polymer MW despite requiring up to double the time to achieve 100% drug release. This suggests film-forming polymer MW can be used to manipulate drug release with little impact on film mechanical properties by matching polymer solution viscosity. In addition, changing polymer MW and concentration had no negative impact on drug content uniformity or nanoparticle redispersibility.

  14. Wollastonite hybridizing stearic acid as thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Xu, Dawei; Yang, Huaming

    2014-11-01

    This paper reported on the preparation of a novel stearic acid (SA)/wollastonite (W) composite as a form-stable phase change material (PCM) for thermal energy-storage (TES) by vacuum impregnation, and especially investigated the effect of the size grade of W on the thermal properties of the SA/W composite. Samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), laser particle-size analysis, and differential scanning calorimetry (DSC). Natural W (Wr) was classified into four size grades by wet screening. The results indicate that no chemical reaction took place between SA and W, and the SA load in the SA/W composite increased with an increase in the length/diameter (L/D) ratio of the W. The SA/W composite with a W L/D ratio of 22.5 exhibited latent heats of melting and freezing of 58.64 J/g and 56.95 J/g, respectively, which was higher than those of the composite incorporating natural W. We believe that the as-prepared form-stable PCM composite could provide a potential means of TES for the concentrated solar power.

  15. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  16. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  17. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.

    PubMed

    Dussan, Karla; Girisuta, Buana; Lopes, Marystela; Leahy, James J; Hayes, Michael H B

    2016-03-08

    A comprehensive study is presented on the conversion of hemicellulose sugars in liquors obtained from the fractionation of Miscanthus, spruce bark, sawdust, and hemp by using formic acid. Experimental tests with varying temperature (130-170 °C), formic acid concentration (10-80 wt%), carbohydrate concentrations, and lignin separation were carried out, and experimental data were compared with predictions obtained by reaction kinetics developed in a previous study. The conversions of xylose and arabinose into furfural were inherently affected by the presence of polymeric soluble lignin, decreasing the maximum furfural yields observed experimentally by up to 24%. These results were also confirmed in synthetic mixtures of pentoses with Miscanthus and commercial alkali lignin. This observation was attributed to side reactions involving intermediate stable sugar species reacting with solubilized lignin during the conversion of xylose into furfural.

  18. Spectrophotometric method for the determination of ascorbic acid with iron (III)-1,10-phenanthroline after preconcentration on an organic solvent-soluble membrane filter.

    PubMed

    Gu, X; Chen, C; Thou, T

    1996-04-01

    A solvent-soluble membrane filter is proposed for the simple and rapid preconcentration and spectrophotometric determination of ascorbic acid based on the reduction of 1, 10-phenanthroline (phen)-iron (III), which is collected on a nitrocellulose membrane filter as an ion-associate of the cationic complex of tri,phen-iron (II) [ferroin, Fe(phen)(2+)(3)] with an anionic surfactant (of dodecyl sulfate). The ion-associate collected is dissolved in a small volume of 2-methoxyethanol together with the filter. The colour intensity is measured at 510 nm against the reagent blank and is proportional to the content of ascorbic acid in the range 2.5-50 microg ascorbic acid in 5 ml of solvent with excellent reproducibility (RSD 3.2% for 200 microg 1(-1) ascorbic acid), the enrichment factor achieves 100-fold and detection limits better than 2.0 microg 1(-1) can be obtained. Diverse components of organic and inorganic compounds normally present in fruits, vegetable, beverages and urine do not interfere. The recoveries of the ascorbic acid added to the samples are quantitative.

  19. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  20. δ-Conotoxins Synthesized Using an Acid-cleavable Solubility Tag Approach Reveal Key Structural Determinants for NaV Subtype Selectivity*

    PubMed Central

    Peigneur, Steve; Paolini-Bertrand, Marianne; Gaertner, Hubert; Biass, Daniel; Violette, Aude; Stöcklin, Reto; Favreau, Philippe; Tytgat, Jan; Hartley, Oliver

    2014-01-01

    Conotoxins are venom peptides from cone snails with multiple disulfide bridges that provide a rigid structural scaffold. Typically acting on ion channels implicated in neurotransmission, conotoxins are of interest both as tools for pharmacological studies and as potential new medicines. δ-Conotoxins act by inhibiting inactivation of voltage-gated sodium channels (Nav). Their pharmacology has not been extensively studied because their highly hydrophobic character makes them difficult targets for chemical synthesis. Here we adopted an acid-cleavable solubility tag strategy that facilitated synthesis, purification, and directed disulfide bridge formation. Using this approach we readily produced three native δ-conotoxins from Conus consors plus two rationally designed hybrid peptides. We observed striking differences in Nav subtype selectivity across this group of compounds, which differ in primary structure at only three positions: 12, 23, and 25. Our results provide new insights into the structure-activity relationships underlying the Nav subtype selectivity of δ-conotoxins. Use of the acid-cleavable solubility tag strategy should facilitate synthesis of other hydrophobic peptides with complex disulfide bridge patterns. PMID:25352593

  1. Acid Precipitation Awareness Curriculum Materials in the Life Sciences.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.

    1983-01-01

    Provides an outline of course content for acid precipitation and two acid rain activities (introduction to pH and effects of acid rain on an organism). Information for obtaining 20 additional activities as well as an information packet containing booklets, pamphlets, and articles are also provided. (JN)

  2. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    SciTech Connect

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  3. Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica.

    PubMed

    Sohal, R S; Allen, R G; Farmer, K J; Newton, R K; Toy, P L

    1985-09-01

    Effects of exogenous antioxidant administration (0.5% and 2% ascorbate, beta-carotene and alpha-tocopherol in sucrose) on life-span, metabolic rate, activities of superoxide dismutase and catalase, levels of glutathione, inorganic peroxides and chloroform-soluble fluorescent material (lipofuscin) were examined in adult male houseflies. Administration of antioxidants at a level of 0.5% did not affect life-span, whereas, 2% ascorbate and alpha-tocopherol decreased average life-span. Metabolic rate of flies was unaffected, except by 2% ascorbate, which caused a decrease. Superoxide dismutase activity was depressed by 2% ascorbate at all ages, and by beta-carotene and alpha-tocopherol in older flies. Catalase activity was unaffected except by alpha-tocopherol at younger ages. Glutathione concentration was decreased by ascorbate and beta-carotene at both concentrations administered. Inorganic peroxides (H2O2) were increased by 2% beta-carotene and alpha-tocopherol. Only high concentrations of ascorbate and beta-carotene decreased the level of soluble fluorescent material. Results suggest that administration of exogenous antioxidants causes a compensatory depression of endogenous defenses.

  4. Controllable and stepwise synthesis of soluble ladder-conjugated bis(perylene imide) fluorenebisimidazole as a multifunctional optoelectronic material.

    PubMed

    Chen, Lingcheng; Zhang, Kaichen; Tang, Changquan; Zheng, Qingdong; Xiao, Yi

    2015-02-06

    By a controllable and stepwise strategy, a soluble ladder-conjugated perylene derivative BPI-FBI as the only product has been synthesized, which avoids the tough work to isolate regioisomers generated by a conventional one-step condensation method. BPI-FBI exhibits broad absorption spectra covering the whole visible region from 300 to 700 nm because of the large π-conjugation skeleton and has a low LUMO level inheriting the prototype PDI. In the steady-state space-charge-limited current (SCLC) devices, BPI-FBI exhibits an intrinsic electron mobility of 1.01 × 10(-5) cm(2) V(-1) s(-1). With a high two photon absorbing activity in the near-infrared region from 1200 to 1400 nm, BPI-FBI also exhibits good optical limiting performance, which will be useful for sensor or human eye protection and stabilization of light sources for optical communications.

  5. Water-soluble vitamins.

    PubMed

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were <6.5%. The concentrations of vitamins found in premixes with the method were comparable to the values declared. A disadvantage of the methods mentioned above is that sample composition has to be known in advance. According to European legislation, for example, foods might be fortified with riboflavin phosphate or thiamin phosphate, vitamers which are not included in the simultaneous separations described. Vitamin B2.--Viñas et al. elaborated an LC analysis of riboflavin vitamers in foods. Vitamin B2 can be found in nature as the free riboflavin, but in most biological materials it occurs predominantly in the form of 2 coenzymes, flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). Several methods usually involve the conversion of these coenzymes into free riboflavin before quantification of total riboflavin. According to the authors, there is growing interest to know flavin composition of foods. The described method separates the individual vitamers isocratically. Accuracy of the method is tested with 2 certified reference materials (CRMs). Vitamin B5.-Methods for the determination of vitamin B5 in foods are limited

  6. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids.

    PubMed

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.

  7. Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

    PubMed Central

    Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko

    2014-01-01

    Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114

  8. Coal liquefaction process streams characterization and evaluation: [sup 13]C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J. )

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS [sup 13]C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850[degrees]F[sup +] distillation resids and one 850[degrees]F[sup +] distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  9. Coal liquefaction process streams characterization and evaluation: {sup 13}C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J.

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS {sup 13}C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850{degrees}F{sup +} distillation resids and one 850{degrees}F{sup +} distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  10. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  11. Expression of Soluble Forms of Yeast Diacylglycerol Acyltransferase 2 That Integrate a Broad Range of Saturated Fatty Acids in Triacylglycerols

    PubMed Central

    Haïli, Nawel; Louap, Julien; Canonge, Michel; Jagic, Franjo; Louis-Mondésir, Christelle; Chardot, Thierry

    2016-01-01

    The membrane proteins acyl-CoA:diacylglycerol acyltransferases (DGAT) are essential actors for triglycerides (TG) biosynthesis in eukaryotic organisms. Microbial production of TG is of interest for producing biofuel and value-added novel oils. In the oleaginous yeast Yarrowia lipolytica, Dga1p enzyme from the DGAT2 family plays a major role in TG biosynthesis. Producing recombinant DGAT enzymes pure and catalytically active is difficult, hampering their detailed functional characterization. In this report, we expressed in Escherichia coli and purified two soluble and active forms of Y. lipolytica Dga1p as fusion proteins: the first one lacking the N-terminal hydrophilic segment (Dga1pΔ19), the second one also devoid of the N-terminal putative transmembrane domain (Dga1pΔ85). Most DGAT assays are performed on membrane fractions or microsomes, using radiolabeled substrates. We implemented a fluorescent assay in order to decipher the substrate specificity of purified Dga1p enzymes. Both enzyme versions prefer acyl-CoA saturated substrates to unsaturated ones. Dga1pΔ85 preferentially uses long-chain saturated substrates. Dga1p activities are inhibited by niacin, a specific DGAT2 inhibitor. The N-terminal transmembrane domain appears important, but not essential, for TG biosynthesis. The soluble and active proteins described here could be useful tools for future functional and structural studies in order to better understand and optimize DGAT enzymes for biotechnological applications. PMID:27780240

  12. Expression of Soluble Forms of Yeast Diacylglycerol Acyltransferase 2 That Integrate a Broad Range of Saturated Fatty Acids in Triacylglycerols.

    PubMed

    Haïli, Nawel; Louap, Julien; Canonge, Michel; Jagic, Franjo; Louis-Mondésir, Christelle; Chardot, Thierry; Briozzo, Pierre

    2016-01-01

    The membrane proteins acyl-CoA:diacylglycerol acyltransferases (DGAT) are essential actors for triglycerides (TG) biosynthesis in eukaryotic organisms. Microbial production of TG is of interest for producing biofuel and value-added novel oils. In the oleaginous yeast Yarrowia lipolytica, Dga1p enzyme from the DGAT2 family plays a major role in TG biosynthesis. Producing recombinant DGAT enzymes pure and catalytically active is difficult, hampering their detailed functional characterization. In this report, we expressed in Escherichia coli and purified two soluble and active forms of Y. lipolytica Dga1p as fusion proteins: the first one lacking the N-terminal hydrophilic segment (Dga1pΔ19), the second one also devoid of the N-terminal putative transmembrane domain (Dga1pΔ85). Most DGAT assays are performed on membrane fractions or microsomes, using radiolabeled substrates. We implemented a fluorescent assay in order to decipher the substrate specificity of purified Dga1p enzymes. Both enzyme versions prefer acyl-CoA saturated substrates to unsaturated ones. Dga1pΔ85 preferentially uses long-chain saturated substrates. Dga1p activities are inhibited by niacin, a specific DGAT2 inhibitor. The N-terminal transmembrane domain appears important, but not essential, for TG biosynthesis. The soluble and active proteins described here could be useful tools for future functional and structural studies in order to better understand and optimize DGAT enzymes for biotechnological applications.

  13. PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes With Phosphate and Ethylenediaminetetraacetic Acid

    SciTech Connect

    Rai, Dhanpat; Moore, Dean A.; Felmy, Andrew R.; Rosso, Kevin M.; Bolton, Harvey

    2010-06-15

    To determine the solubility product of PuPO4(cr, hyd.) and the complexation constants of Pu(III) with phosphate and EDTA, the solubility of PuPO4(cr, hyd.) was investigated as a function of: 1) time and pH varying from 1.0 to 12.0 and at a fixed 0.00032 M phosphate concentration; 2) NaH2PO4 concentrations varying from 0.0001 M to 1.0 M and at a fixed pH value of 2.5; 3) time and pH varying from 1.3 to 13.0 at fixed concentrations of 0.00032 M phosphate and 0.0004 M or 0.002 M Na2H2EDTA; and 4) Na2H2EDTA concentrations varying from 0.00005 M to 0.0256 M at a fixed 0.00032 M phosphate concentration and at pH values of approximately 3.5, 10.6, and 12.6. A combination of solvent extraction and spectrophotometric techniques confirmed that the use of hydroquinone and Na2S2O4 helped maintain Pu as Pu(III). The solubility data were interpreted using Pitzer and SIT models, and both provided similar values for the solubility product of PuPO4(cr, hyd.) and for the formation constant of PuEDTA-. The log10 of the solubility product of PuPO4(cr, hyd.) (PuPO4(cr, hyd.) = Pu3+ + PO4 ) was determined to be –(24.42 ± 0.38). Pitzer modeling showed that phosphate interactions with Pu3+ were extremely weak and did not require any phosphate complexes (e.g., PuPO4(aq), PuH2PO42+, Pu(H2PO4)2+, Pu(H2PO4)3(aq), and Pu(H2PO4)4-), as proposed in existing literature, to explain the experimental data. SIT modeling, however, required the inclusion of PuH2PO42+ to explain the data in high NaH2PO4 concentrations; this illustrates the differences one can expect when using these two chemical models to interpret the data. As the Pu(III)-EDTA species, only PuEDTA- was needed to interpret the experimental data in a large range in pH values (1.3–12.9) and EDTA concentrations (0.00005–0.256 M). Calculations based on density functional theory support the existence of PuEDTA- (with prospective stoichiometry as Pu(OH2)3EDTA-) as the chemically and structurally stable species. The log10 of the

  14. [Determination of glutamic acid in biological material by capillary electrophoresis].

    PubMed

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  15. Effects of acids on gravels and proppants

    SciTech Connect

    Cheung, S.K.

    1988-05-01

    The effects of acids on the integrity of gravels and proppants should be considered in acid treatments. This paper reports on the influence of acid type, acid concentration, and contact duration on the acid solubility of five sands and bauxitic materials. The effects of the acids on the mechanical strength and the size distribution of the solids are determined. The authors found that intermediate-density and low-density bauxites (IDB and LDB) are very soluble in HF acid and that sintered bauxite is weakened by HF acid.

  16. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Zhang, Xiaolu; Parker, Eric T.; Veres, Patrick R.; Roberts, James M.; de Gouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.; Murphy, Jennifer G.; Ellis, Raluca A.; Huey, L. Greg; Weber, Rodney J.

    2012-10-01

    Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.

  17. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  18. Prostaglandin involvement in the responses of the rabbit eye to water-soluble marihuana-derived material.

    PubMed

    Green, K; Cheeks, K E; Watkins, L; Bowman, K A; McDonald, T F; Ocasio, H; Deutsch, H M; Hodges, L C; Zalkow, L H

    1987-02-01

    Both anticoagulants (heparin and streptokinase) and non-steroidal anti-inflammatory compounds (aspirin and indomethacin) were used against a water-soluble derivative of marihuana, MDM. While the anticoagulants had no effect on the ocular effects of MDM, both aspirin and indomethacin altered the time course and effected the MDM-induced reduction of intraocular pressure. The usual initial hypertensive effect of intravenous MDM was eliminated and the later intraocular pressure fall occurred earlier as well as being inhibited by about 35 to 50%. Assay for prostaglandins revealed that intravenous MDM (3.86 micrograms) caused a marked rise in PGE2 concentration of the aqueous humor and iris-ciliary body during the first hour or two after administration of MDM, but normal values occurred at 4, 6, and 8 hours when the intraocular pressure is reduced by up to 60%. Following intravitreal MDM (0.002 microgram), however, the PGE2 levels remained unchanged over 24 hours, despite the induction of a fall in intraocular pressure between 14 and 18 hours which lasts for many hours. Prostaglandin appears to be involved in the hypertensive phase of intraocular pressure change after intravenous MDM injection; and, while the fall in intraocular pressure may contain a component partially mediated by prostaglandins, there is no evidence that intravitreal MDM induces any effect on prostaglandin levels. The involvement of prostaglandins, therefore, in the mediation of MDM-induced ocular hypotensive effects is apparently small.

  19. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    NASA Astrophysics Data System (ADS)

    Vance, George F.; David, Mark B.

    1991-12-01

    Our understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, we examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4+, NO 3-, K +, and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3-. Snowmelt resulted in NO 3- levels that decreased in time due to flushing of mineralization/nitrification by-products that had accumulated during the winter months. Total DOC ranged from 2228 to 7193 μmol L -1 with an average of 4835 μmol L -1. Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity ( E 4/E 6) ratios, CuO oxidation products, FT-IR and 13C-NMR spectra, and acidity by potentiometric titration. Results from these analyses indicate the organic acids in the forest floor leachates are similar to fulvic acids. Hydrophobic and hydrophilic acids had average exchange acidities of 0.126 and 0.148 μeq μmol -1 C, respectively, and pKa, of 4.23 and 4.33. Their FT-IR and 13C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge

  20. CR@BaSO4: an acid rain-indicating material.

    PubMed

    Gao, Hong-Wen; Xu, Xin-Hui

    2011-12-28

    The CR@BaSO(4) hybrid was synthesized, characterized and used as an acid rain-indicating (ARI) material. A painted ARI umbrella was discolored after exposure to simulated acid rain of pH 5 or less and returned to the initial color after the rain stopped. Such a functionalized material may make acid rain visual to remind people in real-time.

  1. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid

    PubMed Central

    Corware, Karina; Harris, Debra; Teo, Ian; Rogers, Matthew; Naresh, Kikkeri; Müller, Ingrid; Shaunak, Sunil

    2011-01-01

    Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major infection in genetically susceptible non-healing BALB/c mice. Intradermal AmB-PMA at a total dose of 18 mg of AmB/kg body weight led to rapid parasite killing and lesion healing. No toxicity was seen. No parasite relapse occurred after 80 days follow-up. Histological studies confirmed rapid parasite clearance from macrophages followed by accelerated fibroblast mediated tissue repair, regeneration and cure of the infection. Quantitative mRNA studies of the CL lesions showed that accelerated healing was associated with increased Tumor Necrosis Factor-α and Interferon-γ, and reduced Interleukin-10. These results suggest that a cost-effective AmB-PMA could be used to pharmacologically treat and immunotherapeutically accelerate the healing of CL lesions. PMID:21807409

  2. The influence of low concentrations of a water soluble poragen on the material properties, antibiotic release, and biofilm inhibition of an acrylic bone cement.

    PubMed

    Slane, Josh A; Vivanco, Juan F; Rose, Warren E; Squire, Matthew W; Ploeg, Heidi-Lynn

    2014-09-01

    Soluble particulate fillers can be incorporated into antibiotic-loaded acrylic bone cement in an effort to enhance antibiotic elution. Xylitol is a material that shows potential for use as a filler due to its high solubility and potential to inhibit biofilm formation. The objective of this work, therefore, was to investigate the usage of low concentrations of xylitol in a gentamicin-loaded cement. Five different cements were prepared with various xylitol loadings (0, 1, 2.5, 5 or 10 g) per cement unit, and the resulting impact on the mechanical properties, cumulative antibiotic release, biofilm inhibition, and thermal characteristics were quantified. Xylitol significantly increased cement porosity and a sustained increase in gentamicin elution was observed in all samples containing xylitol with a maximum cumulative release of 41.3%. Xylitol had no significant inhibitory effect on biofilm formation. All measured mechanical properties tended to decrease with increasing xylitol concentration; however, these effects were not always significant. Polymerization characteristics were consistent among all groups with no significant differences found. The results from this study indicate that xylitol-modified bone cement may not be appropriate for implant fixation but could be used in instances where sustained, increased antibiotic elution is warranted, such as in cement spacers or beads.

  3. Relationship between lead uptake by lettuce and water-soluble low-molecular-weight organic acids in rhizosphere as influenced by transpiration.

    PubMed

    Liao, Yuan Chung; Chang Chien, Shui-Wen; Wang, Min-Chao; Shen, Yuan; Seshaiah, Kalluru

    2007-10-17

    The relationship between Pb uptake by leaf lettuce ( Lactuca sativa L.) and water-soluble low-molecular-weight organic acids (LMWOAs) in rhizosphere, as influenced by transpiration (high and low), has been studied. Studies were carried out by culturing lettuce plants grown for 2 weeks in pots filled with quartz sand mixed with anion-exchange resin and then for 30 days in a greenhouse. The potted lettuce plants were subjected to stress by the addition of Pb(NO 3) 2 solutions (100, 200, and 300 mg of Pb L (-1)) and by high and low transpiration treatments for another 10-day period. Blank experiments (without addition of Pb(NO 3) 2 solutions to the pots) were also run. There were no significant differences in the growth of the plants with the addition of Pb(NO 3) 2 solutions in either of the transpirations studies. Uptake of Pb by the shoots and roots of the plants was found to be proportional to the concentration of Pb solutions added, and more accumulation was observed in the roots than in the shoots at the end of days 3 and 10. High transpiration caused more Pb uptake than did low transpiration. One volatile acid (propionic acid) and nine nonvolatile acids (lactic, glycolic, oxalic, succinic, fumaric, oxalacetic, d-tartaric, trans-aconitic, and citric acids) in rhizosphere quartz sand or anion-exchange resin were identified and quantified by gas chromatography analysis with a flame ionization detector. The amount of LMWOAs in rhizosphere quartz sand or anion-exchange resin increased with higher amounts of Pb in quartz sand solution and also with longer duration of the study. The total quantities of the LMWOAs in the rhizosphere quartz sand or anion-exchange resin were significantly higher under high and low transpiration with a 300 mg of Pb L (-1) solution addition at the end of day 10. Compared with our previous related studies (published work), the present study shows that the presence of LMWOAs in rhizosphere does not significantly affect Pb uptake by lettuce

  4. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-02-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2) and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl-) and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia Smoke Aerosols, Clouds, Rainfall and Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015 ppb for acidic trace gases and aerosol anions and ≤0.118 ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative humidity and temperature variations between day and night as well as to

  5. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-06-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl- and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative

  6. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  7. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    SciTech Connect

    Ying Yibin; Liu Yande; Tao Yang

    2005-09-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r{sup 2}) 0.940 for the SSC and a moderate r{sup 2} of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.

  8. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores

    SciTech Connect

    Mason, J.M.; Setlow, P.

    1987-08-01

    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of one or more copies of the sspA or sspB genes themselves; multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or multiple copies of the SASP-C gene, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha/beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.

  9. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and uv (ultraviolet) radiation resistance of Bacillus subtilis spores

    SciTech Connect

    Mason, J.M.; Setlow, P.

    1987-08-01

    Spores of Bacillus subtilis strains which carry deletion mutations in one gene (sspA) or two genes (sspA and sspB) which code for major alpha/beta-type small, acid-soluble spore proteins (SASP) are known to be much more sensitive to heat and UV radiation than wild-type spores. This heat- and UV-sensitive phenotype was cured completely or in part by introduction into these mutant strains of (i) one or more copies of the sspA or sspB genes themselves; (ii) multiple copies of the B. subtilis sspD gene, which codes for a minor alpha/beta-type SASP; or (iii) multiple copies of the SASP-C genes, which codes for a major alpha/beta-type SASP of Bacillus megaterium. These findings suggest that alpha-beta-type SASP play interchangeable roles in the heat and UV radiation resistance of bacterial spores.

  10. Effects of mace (Myristica fragrans, Houtt.) on cytosolic glutathione S-transferase activity and acid soluble sulfhydryl level in mouse liver.

    PubMed

    Kumari, M V; Rao, A R

    1989-07-15

    The aril of plant Myristica fragrans Houtt. commonly known as mace, which is consumed as a spice as well as used as a folk-medicine, was screened for its effects on the levels of cytosolic glutathione S-transferase (GST) and acid-soluble sulfhydryl (SH) groups in the liver of young adult male and female Swiss albino mice. Animals were assorted into 4 groups comprised of either sex and received either normal diet (negative control), 1% 2,3-tert-butyl-4-hydroxyanisole (BHA) diet (positive control), 1% mace diet or 2% mace diet for 10 days. There was a significant increase in the GST activity in the liver of mice exposed to BHA or mace. In addition, there was a significant increase in the SH content in the liver of mice fed on 1% BHA and 2% mace diets.

  11. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix.

  12. Analysis of sample of highly water-soluble Th-symmetric fullerenehexamalonic acid C66(COOH)12 by ion-chromatography and capillary electrophoresis.

    PubMed

    Cerar, Janez; Pompe, Matevz; Gucek, Marjan; Cerkovnik, Janez; Skerjanc, Joze

    2007-10-26

    Ion chromatography (IC) was used to establish isomer purity of the highly water-soluble sample of fullerenehexamalonic acid, Th-symmetric hexakis-adduct C66(COOH)12. Sharp and symmetric peaks were obtained by IC using 1.0 M potassium hydroxide as eluent and applying gradient elution program. The identity of the two largest peaks in the chromatogram was assigned to Th-C66(COOH)12 and C66H(COOH)11. The developed IC procedure can be used for the semi-quantitative determination of the extent of the partial decarboxylation of the sample. As an alternative analytical technique, a CE procedure was introduced and its performance against IC was compared for this particular case.

  13. THE SMALL ACID SOLUBLE PROTEINS (SASP α and SASP β) OF BACILLUS WEIHENSTEPHANENSIS AND B. MYCOIDES GROUP 2 ARE THE MOST DISTINCT AMONG THE B. CEREUS GROUP

    PubMed Central

    Callahan, Courtney; Fox, Karen; Fox, Alvin

    2009-01-01

    The Bacillus cereus group includes Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides and Bacillus weihenstephanensis. The small acid-soluble spore protein (SASP) β has been previously demonstrated to be among the biomarkers differentiating B. anthracis and B. cereus; SASP β of B. cereus most commonly exhibits one or two amino acid substitutions when compared to B. anthracis. SASP α is conserved in sequence among these two species. Neither SASP α nor β for B. thuringiensis, B. mycoides and B. weihenstephanensis have been previously characterized as taxonomic discriminators. In the current work molecular weight (MW) variation of these SASPs were determined by matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) for representative strains of the 5 species within the B. cereus group. The measured MWs also correlate with calculated MWs of translated amino acid sequences generated from whole genome sequencing projects. SASP α and β demonstrated consistent MW among B. cereus, B. thuringiensis, and B. mycoides strains (group 1). However B. mycoides (group 2) and B. weihenstephanensis SASP α and β were quite distinct making them unique among the B. cereus group. Limited sequence changes were observed in SASP α (at most 3 substitutions and 2 deletions) indicating it is a more conserved protein than SASP β (up to 6 substitutions and a deletion). Another even more conserved SASP, SASP α-β type, was described here for the first time. PMID:19616612

  14. Characterization and Determination of Origin of Lactic Acid Bacteria from a Sorghum-Based Fermented Weaning Food by Analysis of Soluble Proteins and Amplified Fragment Length Polymorphism Fingerprinting

    PubMed Central

    Kunene, Nokuthula F.; Geornaras, Ifigenia; von Holy, Alexander; Hastings, John W.

    2000-01-01

    The group that includes the lactic acid bacteria is one of the most diverse groups of bacteria known, and these organisms have been characterized extensively by using different techniques. In this study, 180 lactic acid bacterial strains isolated from sorghum powder (44 strains) and from corresponding fermented (93 strains) and cooked fermented (43 strains) porridge samples that were prepared in 15 households were characterized by using biochemical and physiological methods, as well as by analyzing the electrophoretic profiles of total soluble proteins. A total of 58 of the 180 strains were Lactobacillus plantarum strains, 47 were Leuconostoc mesenteroides strains, 25 were Lactobacillus sake-Lactobacillus curvatus strains, 17 were Pediococcus pentosaceus strains, 13 were Pediococcus acidilactici strains, and 7 were Lactococcus lactis strains. L. plantarum and L. mesenteroides strains were the dominant strains during the fermentation process and were recovered from 87 and 73% of the households, respectively. The potential origins of these groups of lactic acid bacteria were assessed by amplified fragment length polymorphism fingerprint analysis. PMID:10698775

  15. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents.

    PubMed

    Devkota, Laxman; Lin, Chen-Ming; Strecker, Tracy E; Wang, Yifan; Tidmore, Justin K; Chen, Zhi; Guddneppanavar, Rajsekhar; Jelinek, Christopher J; Lopez, Ramona; Liu, Li; Hamel, Ernest; Mason, Ralph P; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2016-03-01

    Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50=0.11-40nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50=0.62-1.5μM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10-90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (13-16, 42-45) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0μM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2h post treatment (80mg/kg), with similar results observed upon treatment (15mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results

  16. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  17. Materials and methods for efficient lactic acid production

    SciTech Connect

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  18. Effect of dietary adipic acid and corn dried distillers grains with solubles on laying hen performance and nitrogen loss from stored excreta with or without sodium bisulfate.

    PubMed

    Romero, C; Abdallh, M E; Powers, W; Angel, R; Applegate, T J

    2012-05-01

    Effects of dietary adipic acid (0 vs. 1%) and corn dried distillers grains with solubles (DDGS; 0 vs. 20%) were evaluated on hen performance and egg characteristics from 26 to 34 wk of age. Four isocaloric and isonitrogenous diets were randomly assigned to blocks of 6 consecutive cages (36 cages per diet; 2 hens per cage). On wk 2 and 7 of the experiment, excreta were collected by cage block, mixed, and equally split into 2 containers. Sodium bisulfate (SBS) was spread (8.8 kg/100 m(2)) on the top surface of half of the containers. All containers were stored uncovered for 14 d at room temperature. Excreta pH, DM, and N content were measured on d 0, 7, and 14 of storage. Feed intake (112 g/d per hen), egg production (96.1%), and egg specific gravity (1.079 g/g) were not affected by diet. On excreta collection day, a synergy (P = 0.014) between dietary adipic acid and DDGS was detected, as the lowest excreta pH was obtained with the diet including both adipic acid and DDGS. On d 7 of storage, excreta pH was still reduced by dietary adipic acid (P = 0.046) and DDGS (P < 0.001), but a week later, only dietary DDGS decreased excreta pH (8.91 vs. 9.21; P < 0.001). Whereas dietary adipic acid had no influence on excreta N loss, excreta from hens fed 20% DDGS lost 19.7% more N (P = 0.039) during storage than hens not eating DDGS. Surface amendment of excreta with SBS increased excreta DM content, with the effect being even more marked on d 14 of storage (increase of 6.7 percentage units; P < 0.001), consistently decreased excreta pH during storage (P < 0.001) and reduced N loss by 26.1% for the 14 d of storage period.

  19. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms.

    PubMed

    Harper, April D; Bar-Peled, Maor

    2002-12-01

    UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.

  20. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  1. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  2. Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly - Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles

    PubMed Central

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  3. Determination of fat-soluble vitamins and carotenoids in standard reference material 3280 multivitamin/multielement tablets by liquid chromatography with absorbance detection.

    PubMed

    Thomas, Jeanice B; Sharpless, Katherine E; Yen, James H; Rimmer, Catherine A

    2011-01-01

    The concentrations of selected fat-soluble vitamins and carotenoids in Standard Reference Material (SRM) 3280 Multivitamin/Multielement Tablets have been determined by two independent LC methods, with measurements performed by the National Institute of Standards and Technology (NIST). This SRM has been prepared as part of a collaborative effort between NIST and the National Institutes of Health Office of Dietary Supplements. The SRM is also intended to support the Dietary Supplement Ingredient Database that is being established by the U.S. Department of Agriculture. The methods used at NIST to determine the concentration levels of vitamins A and E, and beta-carotene in the SRM used RPLC with absorbance detection. The relative precision of these methods ranged from 2 to 8% for the analytes measured. SRM 3280 is primarily intended for use in validating analytical methods for the determination of selected vitamins, carotenoids, and elements in multivitamin/multielement tablets and similar matrixes.

  4. Solubilities and Glass Formation in Aqueous Solutions of the Sodium Salts of Malonic Acid With and Without Ammonium Sulfate.

    PubMed

    Kissinger, Jared A; Buttke, Lukas G; Vinokur, Anastasiya I; Guzei, Ilia A; Beyer, Keith D

    2016-06-02

    The solubility of sodium hydrogen malonate and sodium malonate in water both with and without ammonium sulfate present has been studied using differential scanning calorimetry and infrared spectroscopy. The crystals that form from sodium hydrogen malonate/water solutions were determined to be sodium hydrogen malonate monohydrate by single-crystal X-ray diffractometry. The crystals formed in sodium malonate/water solutions were determined to be sodium malonate monohydrate, a compound whose structure had not been previously known. When ammonium sulfate is added to these respective aqueous systems, the precipitation solids contain sodium sulfate decahydrate under low to moderate ammonium concentrations and lecontite (NaNH4SO4·2H2O) under high ammonium concentrations, which can be found under dry atmospheric conditions. Thus, it appears the presence of malonate and hydrogen malonate ions does not significantly affect the precipitation of inorganic salts in these systems. The glass transition temperatures of all solutions were also determined, and it was observed that the addition of ammonium sulfate slightly lowers the glass transition temperature in these solutions.

  5. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection.

  6. ZnO Solubility and Zn 2 Complexation by Chloride and Sulfate in Acidic Solutions to 290°C with In-Situ pH Measurement

    NASA Astrophysics Data System (ADS)

    Wesolowski, David J.; Bénézeth, Pascale; Palmer, Donald A.

    1998-03-01

    The solubility of zincite in mildly to strongly acidic aqueous solutions, according to the reaction ZnO + 2H + ⇔ Zn 2+ + H 2O, has been measured at ionic strengths of 0.03-1.0 (stoichiometric molal basis) from 50 to 290°C at saturation vapor pressure in sodium trifluoromethanesulfonate solutions (NaTriflate, a noncomplexing 1:1 electrolyte). The hydrogen-electrode concentration cells employed in this study permit continuous and highly accurate pH measurement at elevated temperatures, and periodic sampling to determine the dissolved metal content of the experimental solution. The solubility of zincite is shown to be reversible at 200°C by addition of acidic and basic titrants, at constant ionic strength. The equilibrium constant is precisely described (±0.05 log units) by the function log K = -4.0168 + 4527.66/T. One additional adjustable parameter, together with an extended Debye-Hückel function, is sufficient to model the ionic strength dependence of the reaction. The solubility product at infinite dilution obtained from this study is in quantitative agreement with the thermodynamic model of Ziemniak 1992. This experimental approach is demonstrated to be advantageous in studying the complexation of Zn 2+ with Cl - and SO 42-, by titrations involving the appropriate anion into NaTriflate solutions pre-equilibrated with zincite at constant temperature and ionic strength. Formation constants in 0.1 molal NaTriflate for the reaction Zn 2+ + yL z- ⇔ Zn(L) y2-yz are reported for ZnCl +, ZnCl 2° and ZnSO 4° at 200°C (log Q = 1.7 ± 0.1, 3.0 ± 0.1, and 2.6 ± 0.1, respectively). Estimates of the equilibrium constants for the chloride species at infinite dilution and 200°C are log K = 2.5 ± 0.1 (ZnCl +), and 4.2 ± 0.1 (ZnCl 2°). This value for the dichlorozinc complex agrees quantitatively with values reported by Bourcier and Barnes 1987 and Ruaya and Seward 1986. However, the latter authors give a value for the monochlorozinc complex (log K = 4.01 ± 0

  7. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  8. Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture.

    PubMed

    Erbe, T; Brückner, H

    2000-06-09

    Using gas chromatography (GC) on a chiral stationary phase, accompanied by high-performance liquid chromatography, beers and raw materials used for manufacturing (hops, barley grains, malts) were investigated for the pattern and quantities of amino acid enantiomers. Although L-amino acids were most abundant, certain D-amino acids were detected in all beers and most of the raw materials. Highest amounts of D-amino acids were detected in special beers such as Berliner Weisse that underwent bottle-conditioning with lactic cultures, and Belgian fruit beers produced by spontaneous fermentation. It is demonstrated that GC on chiral stationary phases is highly suitable for the quantitative determination of amino acid enantiomers in beers and raw materials used for their manufacture. Quantities, relative amounts and pattern of amino acid enantiomers can serve in particular as chiral markers for the authenticity of special beers.

  9. Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?

    PubMed Central

    Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2012-01-01

    Objective: This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. Methods: A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm3). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey’s HSD test (P<.05). Results: There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Conclusions: Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo. PMID:23077420

  10. In vitro binding of acetic acid and its chlorinated derivatives by the soluble glutathione S-transferases from rat liver.

    PubMed

    Dierickx, P J

    1984-05-01

    The in vitro interaction of acetic acid and its chlorinated derivatives with rat liver glutathione S-transferases (GST) was studied, using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as substrates. The investigated compounds inhibited the GST activity in crude extracts in a dose dependent manner. Each of the different GST isoenzymes was inhibited by each of the compounds under study, albeit at very different degrees. Kinetic studies never revealed competitive inhibition kinetics, with GSH nor CDNB as the variable substrate. Titration of remaining GSH in appropriate incubation mixtures revealed no GST catalyzed conjugation with GSH. It is concluded that acetic acid and its chlorinated derivatives interact with GST by direct binding to these proteins. This binding could have a protective function against these compounds.

  11. Dissolution difference between acidic and neutral media of acetaminophen tablets containing a super disintegrant and a soluble excipient. II.

    PubMed

    Chen, C R; Cho, S L; Lin, C K; Lin, Y H; Chiang, S T; Wu, H L

    1998-03-01

    The disintegration and dissolution of acetaminophen tablets containing sucrose and Ac-Di-Sol/Primojel was significantly different between acidic and neutral media. The purpose of this study was to investigate the mechanism of this phenomenon and to propose a way of reducing the dissolution difference between the two media. Tablets of different combinations of active ingredient, sucrose, and Ac-Di-Sol/Primojel were prepared and their dissolution in various media was evaluated. The dissolution differences were found to be largely related to the hydrophobicity of the active ingredient and pH difference of the two media. This difference was even more evident under the condition where acetaminophen, sucrose, and Primojel were combined. The dissolution difference was therefore attributed to the depressed function of Primojel in the acidic medium, the stronger binding of sucrose, the hydrophobicity of the active ingredient and pH difference of the two media. Increasing the concentration of Primojel or incorporating the surfactant in the tablet can thus greatly decrease the dissolution difference between acidic and neutral media.

  12. Sensory profile, soluble sugars, organic acids, and mineral content in milk- and soy-juice based beverages.

    PubMed

    Andrés, Víctor; Tenorio, M Dolores; Villanueva, M José

    2015-04-15

    The juice industry has undergone a continuous innovation to satisfy the increasing healthy food demand by developing, among others, beverages based on fruits and milk or soybeans. The comparison among the sensory attributes between nineteen commercial mixed beverages showed significant differences in colour, sweetness, acidity, and consistency. Sucrose and citric acid were found in large proportion due to their natural presence or their addition. Potassium was the major macromineral (148-941 mg/L), especially in soy beverages. The low concentration of sodium in soy drinks is a healthy characteristic. The profile of inorganic anions has been included for the first time. Sulphate (39-278 mg/L) and phosphate (51-428 mg/L) were the predominant anions. High correlations were found between the percentage of fruit and consistency, fructose, malic acid, potassium and phosphate content (r(2)>0.790). Based on the data obtained, these beverages show pleasant organoleptic characteristics and constitute a good source of essential nutrients for regular consumers.

  13. Isolation and structural characterisation of acid- and pepsin-soluble collagen from the skin of squid Sepioteuthis lessoniana (Lesson, 1830).

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2014-01-01

    Acid-solubilised collagen (ASC) and pepsin-solubilised collagen (PSC) were effectively isolated from squid skin with good yield and total protein content. ASC and PSC consist of two α-chains with an imino acid content of 182.6 and 184 imino acid residues/1000 residues. The molecular weight was determined to be between 73 and 107 kDa by using SDS-PAGE. For peptide mapping, collagens were digested with achromo endopeptidase, and all components, including α, β-chains, were markedly hydrolysed. Degradation peptides with molecular weights between 106.9 and 15.47 kDa were obtained. UV-vis absorption spectrum revealed distinct absorption at 220-240 nm. FT-IR spectra of collagens were almost similar when compared with standard. In differential scanning calorimetry profile, ASC and PSC exhibited a To of 59.10, 62.18°C and TP of 104.91, 98.10 °C, respectively. This investigation indicates that the collagen isolated from the squid skin, which is thrown as waste in the seafood-processing plant, might supplement the vertebrate collagen in industrial applications.

  14. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    PubMed

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  15. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  16. Inclusion of sunflower seed and wheat dried distillers' grains with solubles in a red clover silage-based diet enhances steers performance, meat quality and fatty acid profiles.

    PubMed

    Mapiye, C; Aalhus, J L; Turner, T D; Vahmani, P; Baron, V S; McAllister, T A; Block, H C; Uttaro, B; Dugan, M E R

    2014-12-01

    The current study compared beef production, quality and fatty acid (FA) profiles of yearling steers fed a control diet containing 70 : 30 red clover silage (RCS) : barley-based concentrate, a diet containing 11% sunflower seed (SS) substituted for barley, and diets containing SS with 15% or 30% wheat dried distillers' grain with solubles (DDGS). Additions of DDGS were balanced by reductions in RCS and SS to maintain crude fat levels in diets. A total of two pens of eight animals were fed per diet for an average period of 208 days. Relative to the control diet, feeding the SS diet increased (P<0.05) average daily gain, final live weight and proportions of total n-6 FA, non-conjugated 18:2 biohydrogenation products (i.e. atypical dienes) with the first double bond at carbon 8 or 9 from the carboxyl end, conjugated linoleic acid isomers with the first double bond from carbon 7 to 10 from the carboxyl end, t-18:1 isomers, and reduced (P<0.05) the proportions of total n-3 FA, conjugated linolenic acids, branched-chain FA, odd-chain FA and 16:0. Feeding DDGS-15 and DDGS-30 diets v. the SS diet further increased (P<0.05) average daily gains, final live weight, carcass weight, hot dressing percentage, fat thickness, rib-eye muscle area, and improved instrumental and sensory panel meat tenderness. However, in general feeding DGGS-15 or DDGS-30 diets did not change FA proportions relative to feeding the SS diet. Overall, adding SS to a RCS-based diet enhanced muscle proportions of 18:2n-6 biohydrogenation products, and further substitutions of DDGS in the diet improved beef production, and quality while maintaining proportions of potentially functional bioactive FA including vaccenic and rumenic acids.

  17. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification

  18. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.

    PubMed

    Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E

    2016-10-06

    The synthesis and characterization of two water-soluble bis-N-heterocyclic carbene (NHC) complexes of rhodium and iridium is presented. Both compounds are active in H2 generation from formic acid and in hydrogenation of bicarbonate to formate. The rhodium derivative is most active in both reactions, reaching a TOF of 39 000 h(-1) and a TON of 449 000 for H2 production. The catalytic hydrogenation reactions were carried out in an autoclave system and analyzed using the integrated peak areas in the (1) H NMR spectra. Decomposition of formic acid was investigated using a Fisher-Porter bottle equipped with a pressure transducer. Long-term stability for hydrogen evolution was tested by surveillance of the gas flow rate. The procedure does not require any additives like amines or inert gas conditions. Density functional theory calculations in agreement with experimental results suggest a bicarbonate reduction mechanism involving a second catalyst molecule, which provides an external hydride acting as reducing agent.

  19. A numerical model for a soluble lead-acid flow battery comprising a three-dimensional honeycomb-shaped positive electrode

    NASA Astrophysics Data System (ADS)

    Oury, Alexandre; Kirchev, Angel; Bultel, Yann

    2014-01-01

    A novel reactor design is proposed for the soluble lead-acid flow battery (SLFB), in which a three-dimensional honeycomb-shaped positive PbO2-electrode is sandwiched between two planar negative electrodes. A two-dimensional stationary model is developed to predict the electrochemical behaviour of the cell, especially the current distribution over the positive structure and the cell voltage, as a function of the honeycomb dimensions and the electrolyte composition. The model includes several experimentally-based parameters measured over a wide range of electrolyte compositions. The results show that the positive current distribution is almost entirely determined by geometrical effects, with little influence from the hydrodynamic. It is also suggested that an increase in the electrolyte acidity diminishes the overvoltage during discharge but leads at the same time to a more heterogeneous reaction rate distribution on account of the faster kinetics of PbO2 dissolution. Finally, the cycling of experimental mono-cells is performed and the voltage response is in fairly good accordance with the model predictions.

  20. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms.

    PubMed

    Szwengiel, Artur; Stachowiak, Barbara

    2016-08-01

    Some ß-glucans can be easily extracted from Basidiomycete mushrooms but commonly used extraction procedures are not satisfactory. A simultaneous method for acid extraction and deproteinization in the case of Pleurotus ostreatus was developed using response surface methodology. The optimized extraction conditions proposed here (30°C, 3.8% HCl, 300min, stirring) allow for the simultaneous extraction and deproteinization of polysaccharides. Additionally, the acid extraction yield was 7 times greater than that of hot water extraction. The combined enzymatic digestion with lyticase, ß-glucanase, exo-1,3-ß-d-glucanase, and ß-glucosidase results elucidated that an extract containing ß-1,3-ß-1,6-ß-1,4-glucan. The gel permeation chromatography (GPC) results showed that the two glucan fractions obtained do not contain linked proteins. The weight average molecular weight of the first fraction (Mw=1137kDa) was 60 times higher than that of the second fraction (Mw=19kDa).

  1. ITC and NMR Analysis of the Encapsulation of Fatty Acids within a Water-Soluble Cavitand and its Dimeric Capsule.

    PubMed

    Wang, Kaiya; Sokkalingam, Punidha; Gibb, Bruce C

    We report here NMR and ITC studies of the binding of ionizable guests (carboxylate acids) to a deep-cavity cavitand. These studies reveal that the shortest guests favored 1:1 complex formation, but the longer the alkyl chain the more the 2:1 host-guest capsule is favored. For intermediate-sized guests, the equilibrium between these two states is controlled by pH; at low values the capsule containing the carboxylic acid guest is favored, whereas as the pH is raised deprotonation of the guest favors the 1:1 complex. Interestingly, for one host-guest pair the energy required to de-cap the 2:1 capsular complex and form the 1:1 complex is sufficient to shift the pKa of the guest by ~ 3-4 orders of magnitude (4.1-5.4 kcal mol(-1)). The two largest guests examined form stable 2:1 capsules, with in both cases the guest adopting a relatively high energy J-shaped motif. Furthermore, these 2:1 complexes are sufficiently stable that at high pH guest deprotonation occurs without de-capping of the capsule.

  2. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations.

  3. Repeated exposure of acidic beverages on esthetic restorative materials: An in-vitro surface microhardness study

    PubMed Central

    Sunny, Steffy M.; Rai, Kavita; Hegde, Amitha M.

    2016-01-01

    Background A manifold increase in the consumption of aerated beverages has witnessed a twin increase in tooth wear and raised demand for esthetic restorative materials. This study aimed to evaluate the surface microhardness changes of esthetic restorative materials following treatment with aerated beverages in an in-vitro situation. Material and Methods The initial surface microhardness of the restorative materials GC Fuji II LC, GC Fuji IX, Nano Glass ionomer, Resin and Nano composite was recorded. These materials were studied under 3 groups that included those exposed to the acidic beverages daily, weekly once in a month and those that had no exposures at all. The final surface microhardness of the materials was recorded following experimentation and was subjected to statistical comparisons. Results The restorative materials were compared for their surface microhardness changes following respective treatments using the T-test and One-way ANOVA analysis. Inter-comparisons between the groups showed statistical significance (p<.05), when treated with both the beverages. The five restorative materials revealed surface microhardness loss; the maximum reduction noticed with the Nano glass ionomer cement tested (p<.0005). Conclusions The surface microhardness of restorative materials markedly reduced upon repeated exposures with acidic beverages; the product with phosphoric acid producing the maximum surface microhardness loss. Key words:Restorative materials, acidic beverages, surface microhardness, resin composites, glass ionomers. PMID:27398183

  4. Improved grid materials for valve regulated lead acid batteries

    SciTech Connect

    Prengaman, R.D.

    1997-12-01

    During the last several years, research into lead alloys used as grid materials for VRLA batteries has led to a much better understanding of the roles of chemical composition and mechanical properties on the performance of the battery. VRLA batteries have suffered from premature capacity losses. It was believed that the loss was due to the absence of antimony in the battery grids. Recent work has indicated the beneficial effects of high tin contents on enhancing the conductivity of the grid-active material interface, increasing the mechanical properties, and reducing the corrosion rates of Pb-Ca-Sn alloys used in VRLA batteries. Additions of silver and controlled deformation processes enhance resistance to growth at elevated operating temperatures. The paper discusses how modification of composition and processing parameters can produce more stable, corrosion resistant, grid materials for VRLA batteries.

  5. Lyophilized wafers comprising carrageenan and pluronic acid for buccal drug delivery using model soluble and insoluble drugs.

    PubMed

    Kianfar, Farnoosh; Antonijevic, Milan; Chowdhry, Babur; Boateng, Joshua S

    2013-03-01

    Lyophilized muco-adhesive wafers with optimum drug loading for potential buccal delivery have been developed. A freeze-annealing cycle was used to obtain optimized wafers from aqueous gels containing 2% κ-carrageenan (CAR 911), 4% pluronic acid (F127), 4.4% (w/w) polyethylene glycol with 1.8% (w/w) paracetamol or 0.8% (w/w) ibuprofen. Thermogravimetric analysis showed acceptable water content between 0.9 and 1.5%. Differential scanning calorimetry and X-ray diffraction showed amorphous conversion for both drugs. Texture analysis showed ideal mechanical and mucoadhesion characteristics whilst both drugs remained stable over 6 months and drug dissolution at a salivary pH showed gradual release within 2h. The results show the potential of CAR 911 and F127 based wafers for buccal mucosa drug delivery.

  6. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R., II; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  7. Method for estimating solubility parameter

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Ingham, J. D.

    1973-01-01

    Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.

  8. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  9. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  10. Evaluation of commonly used methods for the analysis of acid-soluble phosphate in internationally traded inorganic fertilizers.

    PubMed

    Hall, William L; Siegel, Sanford

    2014-01-01

    Several methodologies are used throughout the world to determine phosphate concentration (measured as PO4 and expressed as % P2O5) in fertilizers. Concentrated phosphate materials, including diammonium phosphate (DAP) and monoammonium phosphate (MAP), are traded in large volumes (millions of metric tons) internationally. The International Fertilizer Association (IFA) identified a need to assess the methods currently being used to measure the phosphate content for suitability (scope), accuracy, and repeatability. Even small discrepancies in the expressed P2O5 content can have a major financial impact on buyers and sellers as contracts are settled and import regulations are imposed. The IFA's Technical Committee selected a working group to address issues dealing with harmonization of fertilizer sampling and analytical methodologies. The working group identified phosphate content in DAP and MAP fertilizers as a major concern for commerce. The working group initiated a method screening and comparison project to assess method performance and to determine which methods, if any, could be considered best practice methods and, therefore, be deemed acceptable for use by the industry. In order to systematically review the acceptability of methods for consideration, the task force developed an assessment protocol outlined in a white paper involving three steps: (1) compile all known relevant methods practiced in global fertilizer trade, (2) review and evaluate methods based upon specific evaluation criteria, and (3) compare the methods that most closely fit the evaluation criteria by multilaboratory analysis of unknown materials for accuracy and repeatability. Six methods were evaluated for analysis of total phosphate in concentrated phosphate products. From these methods, four were determined to be acceptable as best practice methods. The study members proposed three of the methods, while a fourth method was commonly used among the participating laboratories. This publication

  11. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  12. Peptide nucleic acid (PNA): a model structure for the primordial genetic material?

    PubMed

    Nielsen, P E

    1993-12-01

    It is proposed that the primordial genetic material could have been peptide nucleic acids, i.e., DNA analogues having a peptide backbone. PNA monomers based on the amino acid, alpha, gamma-diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.

  13. Development and Evaluation of a Calibrator Material for Nucleic Acid-Based Assays for Diagnosing Aspergillosis

    PubMed Central

    Abdul-Ali, Deborah; Loeffler, Juergen; White, P. Lewis; Wickes, Brian; Herrera, Monica L.; Alexander, Barbara D.; Baden, Lindsey R.; Clancy, Cornelius; Denning, David; Nguyen, M. Hong; Sugrue, Michele; Wheat, L. Joseph; Wingard, John R.; Donnelly, J. Peter; Barnes, Rosemary; Patterson, Thomas F.; Caliendo, Angela M.

    2013-01-01

    Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 1010 units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid. PMID:23616459

  14. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    SciTech Connect

    Sugama, T.; Petrakis, L.; Webster, R.P.

    1999-12-21

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  15. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E

    2000-02-01

    In order to find alternative protein sources in African regions where protein deficiency in nutrition is prevailing, solubility, in-vitro digestibility, amino acid composition and chemical score of Balanites aegyptiaca Del. kernel proteins were investigated as a function of different processing steps including defatting, air classification, wet sieving and aqueous ethanol treatment. Air classification delivered a fine fraction of 58.1% of the total protein. Applying a wet sieving process, a protein concentrate of 72.9% protein content was achieved but the recovery was very low (35.6%). However, in case of isoelectric precipitation followed by aqueous ethanol treatment both protein content (78.2%) and recovery (53.7%) were high. Data concerning the chemical score revealed, that lysine content of the defatted kernel flour amounted to 74.2% of the recommended FAO/WHO standard level. In-vitro protein digestibility was found to be higher than of legume proteins. The digestible protein of the full fat flour, defatted flour, air classified and wet sieved fine fractions and protein concentrate were 91.9, 93.7, 82.0, 86.4 and 94.2%, respectively. The sapogenin content per 100 g protein of the investigated protein preparations was significantly lower (46% to 62%) than of the initial material (oilcake).

  16. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs.

    PubMed

    Almeida, F N; Htoo, J K; Thomson, J; Stein, H H

    2014-10-01

    Two experiments were conducted to investigate if adjustments in diet formulations either based on total analysed amino acids or standardized ileal digestible (SID) amino acids may be used to eliminate negative effects of including heat-damaged soybean meal (SBM) or heat-damaged corn distillers dried grains with solubles (DDGS) in diets fed to weanling pigs. In Experiment 1, four corn-SBM diets were formulated. Diet 1 contained non-autoclaved SBM (315 g/kg), and this diet was formulated on the basis of analysed amino acid concentrations and using SID values from the AminoDat® 4.0 database. Diet 2 was similar to Diet 1 in terms of ingredient composition, except that the non-autoclaved SBM was replaced by autoclaved SBM at 1 : 1 (weight basis). Diet 3 was formulated using autoclaved SBM and amino acid inclusions in the diet were adjusted on the basis of analysed total amino acid concentrations in the autoclaved SBM and published SID values for non-autoclaved SBM (AminoDat® 4.0). Diet 4 also contained autoclaved SBM, but the formulation of this diet was adjusted on the basis of analysed amino acids in the autoclaved SBM and SID values that were adjusted according to the degree of heat damage in this source of SBM. Pigs (160; initial BW: 10.4 kg) were allotted to the four treatments with eight replicate pens per treatment in a randomized complete block design. Diets were fed to pigs for 21 days. The gain to feed ratio (G : F) was greater (P<0.05) for pigs fed Diet 1 compared with pigs fed the other diets and pigs fed Diet 4 had greater (P<0.05) G : F than pigs fed Diet 2. In Experiment 2, 144 pigs (initial BW: 9.9 kg) were allotted to four diets with eight replicate pens per diet. The four diets contained corn, SBM (85 g/kg) and DDGS (220 g/kg), and were formulated using the concepts described for Experiment 1, except that heat-damaged DDGS, but not heat-damaged SBM, was used in the diets. Pigs fed Diet 1 had greater (P<0.05) G : F than pigs fed Diet 2, but no

  17. Lipoic Acid Gold Nanoparticles Functionalized with Organic Compounds as Bioactive Materials

    PubMed Central

    Turcu, Ioana; Zarafu, Irina; Popa, Marcela; Chifiriuc, Mariana Carmen; Bleotu, Coralia; Culita, Daniela; Ghica, Corneliu; Ionita, Petre

    2017-01-01

    Water soluble gold nanoparticles protected by lipoic acid were obtained and further functionalized by standard coupling reaction with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether. Derivatives of lipoic acid with 1-naphtylamine, 4-aminoantipyrine, and 4′-aminobenzo-15-crown-5 ether were also obtained and characterized. All these were tested for their antimicrobial activity, as well as for their influence on mammalian cell viability and cellular cycle. In all cases a decreased antimicrobial activity of the obtained bioactive nanoparticles was observed as compared with the organic compounds, proving that a possible inactivation of the bioactive groups could occur during functionalization. However, both the gold nanoparticles as well as the functionalized bioactive nanosystems proved to be biocompatible at concentrations lower than 50 µg/mL, as revealed by the cellular viability and cell cycle assay, demonstrating their potential for the development of novel antimicrobial agents. PMID:28336877

  18. Standardized Ileal Amino Acid Digestibility of Corn, Corn Distillers' Dried Grains with Solubles, Wheat Middlings, and Bakery By-Products in Broilers and Laying Hens.

    PubMed

    Adedokun, S A; Jaynes, P; Payne, R L; Applegate, T J

    2015-10-01

    Standardized ileal amino acid digestibility (SIAAD) of 5 samples of corn distillers dried grain with solubles (DDGS), 5 samples of bakery by-products (BBP), 3 samples of corn, and 1 sample of wheat middlings (WM) were evaluated in broilers and laying hens. Diets containing each of the 14 feed ingredients were evaluated in 21 day-old broiler chickens. The DDGS and BBP containing diets were fed to 30-week-old laying hens, while corn and wheat middling were evaluated in 50-week-old laying hens. All the diets were semi-purified with each feed ingredient being the only source of amino acid (AA). To obtain SIAAD values, apparent ileal AA digestibility was corrected for basal ileal endogenous AA losses using values generated from broilers and laying hens fed a nitrogen-free diet. Ileal crude protein digestibility for the 5 DDGS samples was higher (P < 0.05) in broilers than in laying hens. Broilers had higher SIAAD for DDGS 2, 3, 4, and 5 while there was no difference for DDGS 1 except for 4 AA where broilers had higher (P < 0.05) SIAAD values. Standardized ileal AA digestibility values for broilers were higher (P < 0.05) for BBP 1 and 4. Ileal CP digestibility for corn 1 was higher (P < 0.05) for broilers compared to laying hens, and SIAAD values for the 16 AA (9 indispensable and 7 dispensable) evaluated in this study were higher (P < 0.05) in broilers. Broilers had higher (P < 0.05) SIAAD values for 4 (histidine, leucine, phenylalanine, and valine) and 6 (histidine, leucine, methionine, phenylalanine, threonine, and valine) indispensable and 3 (cysteine, glutamic acid, and proline) and 4 (cysteine, glutamic acid, proline, and serine) dispensable AA for corn 2 and corn 3, respectively. No difference in SIAAD between broilers and laying hens was observed for WM. Results from this study confirm that high variability in digestibility exists between different samples of DDGS. Differences in SIAAD between broilers and laying hens were observed in some samples of

  19. The Bacillus subtilis HBsu Protein Modifies the Effects of α/β-Type, Small Acid-Soluble Spore Proteins on DNA

    PubMed Central

    Ross, Margery A.; Setlow, Peter

    2000-01-01

    HBsu, the Bacillus subtilis homolog of the Escherichia coli HU proteins and the major chromosomal protein in vegetative cells of B. subtilis, is present at similar levels in vegetative cells and spores (∼5 × 104 monomers/genome). The level of HBsu in spores was unaffected by the presence or absence of the α/β-type, small acid-soluble proteins (SASP), which are the major chromosomal proteins in spores. In developing forespores, HBsu colocalized with α/β-type SASP on the nucleoid, suggesting that HBsu could modulate α/β-type SASP-mediated properties of spore DNA. Indeed, in vitro studies showed that HBsu altered α/β-type SASP protection of pUC19 from DNase digestion, induced negative DNA supercoiling opposing α/β-type SASP-mediated positive supercoiling, and greatly ameliorated the α/β-type SASP-mediated increase in DNA persistence length. However, HBsu did not significantly interfere with the α/β-type SASP-mediated changes in the UV photochemistry of DNA that explain the heightened resistance of spores to UV radiation. These data strongly support a role for HBsu in modulating the effects of α/β-type SASP on the properties of DNA in the developing and dormant spore. PMID:10715001

  20. Derivation of a drinking water equivalent level (DWEL) related to the maximum contaminant level goal for perfluorooctanoic acid (PFOA), a persistent water soluble compound.

    PubMed

    Tardiff, Robert G; Carson, M Leigh; Sweeney, Lisa M; Kirman, Christopher R; Tan, Yu-Mei; Andersen, Melvin; Bevan, Christopher; Gargas, Michael L

    2009-10-01

    Water soluble compounds persistent in humans and the environment pose a challenge for estimating safe levels in tap water. A viable approach to estimate a drinking water equivalent level (DWEL) for perfluorooctanoic acid (PFOA) was applied to its extensive relevant information from human and laboratory animal studies. PFOA has been identified at 3.5 microg/L (mean) in tap water in proximity to a manufacturing facility; however, in most supplies, the levels were below 7.5 ng/L (usual limit of detection). PFOA has an average half-life in humans of 3.5years. From animal studies, PFOA is considered a possible hepatotoxicant and developmental toxicant for humans. Based on two chronic studies, PFOA was judged to be a possible human carcinogen, whose mode-of-action was likely to be related to receptor activation but not genotoxicity. The Benchmark Dose-Uncertainty Factor approach was selected for dose-response for noncancer and cancer. Based on internal dose of PFOA, the DWEL protective against cancer is 7.7 microgPFOA/L tap water, and the noncancer DWELs range from 0.88 to 2.4 microg/L. These DWELs can be considered a reliable, albeit conservative, basis to set a Maximum Concentration Level Goal under the US Safe Drinking Water Act.

  1. Glucose-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar[5]arene and Pyridylboronic Acid Derivative for Controlled Insulin Delivery.

    PubMed

    Gao, Lei; Wang, Tingting; Jia, Keke; Wu, Xuan; Yao, Chenhao; Shao, Wei; Zhang, Dongmei; Hu, Xiao-Yu; Wang, Leyong

    2017-03-22

    The stimuli-responsive behavior of supramolecular nanocarriers is crucial for their potential applications as smart drug delivery systems. We hereby constructed a glucose-responsive supramolecular drug delivery system constructed by the host-guest interaction between a water-soluble pillar[5]arene (WP5) and a pyridylboronic acid derivative (G) for insulin delivery and controlled release at physiological condition, which represents the ideal treatment of diabetes mellitus. The drug loading and in vitro drug release experiments demonstrated that large molecular weight insulin could be successfully encapsulated into the vesicles with high loading efficiency, which to the best of our knowledge, is the first example of small size supramolecular vesicles with excellent encapsulation capacity of large protein molecule. Moreover, FITC-labeled insulin was used to evaluate the release behavior of insulin, and it was demonstrated that high glucose concentration could facilitate the quick release of insulin, suggesting a smart DDS for the potential application in controlled insulin release only under hyperglycemic conditions. Finally, we demonstrated that these supramolecular nanocarriers have good cytocompatibility, which is essential for their further biomedical applications. The present study provides a novel strategy for the construction of glucose-responsive smart supramolecular drug delivery system, which has potential applications for the treatment of diabetes mellitus.

  2. Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920)

    PubMed Central

    Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.

    2015-01-01

    The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384

  3. Ultraviolet irradiation of DNA complexed with. alpha. /. beta. -type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers

    SciTech Connect

    Nicholson, W.L.; Setlow, B.; Setlow, P. )

    1991-10-01

    UV irradiation of complexes of DNA and an {alpha}/{beta}-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were < 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m{sup 2}; in the absence of SASP the yields were reversed - 4.5% and 0.3%, respectively. Complexes of DNA with {alpha}/{beta}-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of {alpha}/{beta}-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.

  4. Aspartic acid functionalized water-soluble perylene diimide as “Off-On” fluorescent sensor for selective detection Cu2+ and ATP

    NASA Astrophysics Data System (ADS)

    Zhong, Lina; Xing, Feifei; Bai, Yueling; Zhao, Yongmei; Zhu, Shourong

    2013-11-01

    Aspartic functionalized water-soluble perylene diimide, N,N‧-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP) has two absorbance maximums at 527 and 498 nm (ε ≈ 1.7 × 104 L cm-1 mol-1) and two emission peaks at 547 and 587 nm respectively. Emission intensities decrease with the increase of PASP concentrations in 20-100 μM ranges. Spectral titrations demonstrate that each PASP can coordinate to two Cu2+ ions in the absence of HEPES buffer. Its stability constant is estimated to be about 1.0 × 1012 L2 mol-2 at pH 7.20 and its coordinate stoichiometry increased to 7.5 in the same pH in the presence of HEPES buffer. The emission of PASP will be completely quenched upon formation of Cu2+ complex. The lowest "turn-off" fluorescence detection limit was calculated to be 0.3 μM Cu2+. PASP-Cu solution was used as a "turn-on" fluorescence biosensor to detect ATP. The sensitivity towards ATP is 0.3 μM in 50 mM HEPES buffer at pH 7.20, which is one of the most sensitive fluorescence sensors.

  5. Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase.

    PubMed

    Sheng, Yan; He, Hongjun; Zou, Hui

    2014-08-01

    A combinatorial design, physical adsorption of water-soluble chitosan (WSC) to particle surface and covalent conjugation of wheat germ agglutinin (WGA) to WSC, was applied to surface modification of poly(lactic acid) nanoparticles (NPs) for targeted delivery of β-galactosidase to the intestinal mucosa. All the surface-engineered NPs in the size range of 500-600 nm were prepared by a w/o/w solvent diffusion/evaporation technique. β-Galactosidase encapsulated in these NPs was well protected from external proteolysis and exerted high hydrolytic activity on the permeable lactose. The presence of WSC coating, whether alone or with WGA, highly improved the suspension stability of NPs and tailored the particle surface positively charged. In comparison to NPs modified with WGA or WSC alone, the synergistic action of WGA and WSC greatly enhanced the NP-mucin interactions in vitro. The highest amount of NPs was found in the small intestine at 24 h after oral administration in rats. Notably, calculated half-life of WGA-WSC-NPs in the small intestine was 6.72 h, resulting in 2.1- and 4.3-fold increase when compared to WGA-polyvinylalcohol (PVA)-NPs and WSC-NPs, much longer than that of control PVA-NPs (6.9-fold). These results suggest that NPs with the combined WGA and WSC coating represent promising candidates for efficient mucosal drug delivery as well as biomimetic treatment of lactose intolerance.

  6. Effects of metal ions on entero-soluble poly(methacrylic acid-methyl methacrylate) coating: a combined analysis by ATR-FTIR spectroscopy and computational approaches.

    PubMed

    Cilurzo, Francesco; Gennari, Chiara G M; Selmin, Francesca; Vistoli, Giulio

    2010-04-05

    Poly(methacrylic acid-methyl methacrylate)s (HPMMs) are pH-dependent polymers which ionize and form salts (PMMs) in neutral conditions. Despite their wide use in tablet coating, the interactions of PMMs with electrolytes present in biorelevant media and luminal fluids have been scantly investigated. The data generated in the current work provide the basic information on the effect of bivalent cations, namely, Ca2+, Zn2+ and Mn2+, on the HPMMs' solubility and, consequently, on the performances (disintegration and drug dissolution) of acetaminophen gastroresistant tablets when exposed to fluid containing such salts. The interactions between polymers and metal ions were analyzed by ATR-FTIR spectroscopy and in silico combining molecular dynamics simulations to explore the conformational profiles of several oligomers with different M(w), taken as model of the polymers, with ab initio and semiempirical calculations in the gas phase. The computational results agree with the experimental data in terms of spatial disposition of the bications with respect to PMMs (Ca2+ and Mn2+ as bidentate form and Zn2+ as monodentate ligand) and interaction strength (Zn2+ > Mn(2+) > Ca2+). The tablet disintegration and dissolution rate of acetaminophen were strongly affected by the interactions of the dissolving copolymer with the metal ions which led to coating insolubilization. These preliminary results underline that the ingestion of metal ions at high concentrations could affect the drug liberation from gastroresistant dosage forms.

  7. Syntheses, structures, and antimicrobial activities of remarkably light-stable and water-soluble silver complexes with amino acid derivatives, silver(I) N-acetylmethioninates.

    PubMed

    Kasuga, Noriko Chikaraishi; Yoshikawa, Rie; Sakai, Yoshitaka; Nomiya, Kenji

    2012-02-06

    Reaction of L- and DL-N-acetylmethionine (Hacmet) and Ag(2)O in water at ambient temperature afforded the remarkably light-stable silver complexes {[Ag(L-acmet)]}(n) (1) and {[Ag(2)(D-acmet)(L-acmet)]}(n) (2), respectively. The color of the solids and aqueous solutions of 1 and 2 did not change for more than 1 month under air without any shields. The light stability of these two silver(I) complexes is much higher than that of silver(I) methioninate {[Ag(2)(D-met)(L-met)]}(n) (3) (Hmet = methionine), silver(I) S-methyl-L-cysteinate {[Ag(L-mecys)]}(n) (4), and silver(I) L-cysteinate {[Ag(L-Hcys)]}(n) (5). X-ray crystallography of 1 obtained by vapor diffusion revealed that ladder-like coordination polymers with two O- and two S-donor atoms were formed. The acetyl group of acmet(-) prevents chelate formation of the ligand to the metal center, which is frequently observed in amino acid metal complexes, but allows for formation of hydrogen bonds between the ligands in the crystals of 1. These two silver(I) N-acetylmethioninates showed a wide spectrum of effective antimicrobial activities against gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and yeasts (Candida albicans and Saccharomyces cerevisiae), the effectiveness of which was comparable to that of water-soluble Ag-O bonding complexes.

  8. Aspartic acid functionalized water-soluble perylene diimide as "Off-On" fluorescent sensor for selective detection Cu(2+) and ATP.

    PubMed

    Zhong, Lina; Xing, Feifei; Bai, Yueling; Zhao, Yongmei; Zhu, Shourong

    2013-11-01

    Aspartic functionalized water-soluble perylene diimide, N,N'-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP) has two absorbance maximums at 527 and 498nm (ε≈1.7×10(4)Lcm(-1)mol(-1)) and two emission peaks at 547 and 587nm respectively. Emission intensities decrease with the increase of PASP concentrations in 20-100μM ranges. Spectral titrations demonstrate that each PASP can coordinate to two Cu(2+) ions in the absence of HEPES buffer. Its stability constant is estimated to be about 1.0×10(12)L(2)mol(-2) at pH 7.20 and its coordinate stoichiometry increased to 7.5 in the same pH in the presence of HEPES buffer. The emission of PASP will be completely quenched upon formation of Cu(2+) complex. The lowest "turn-off" fluorescence detection limit was calculated to be 0.3μM Cu(2+). PASP-Cu solution was used as a "turn-on" fluorescence biosensor to detect ATP. The sensitivity towards ATP is 0.3μM in 50mM HEPES buffer at pH 7.20, which is one of the most sensitive fluorescence sensors.

  9. Adequacy of benzo(a)pyrene and benzene soluble materials as indicators of exposure to polycyclic aromatic hydrocarbons in a Sderberg aluminum smelter

    SciTech Connect

    Friesen, M.C.; Demers, P.A.; Spinelli, J.J.; Le, N.D.

    2008-07-01

    Occupational and environmental exposure to polycyclic aromatic hydrocarbons (PAHs) occurs as a complex mixture that is evaluated using specific components, such as benzo(a)pyrene (BaP) and benzene soluble materials (BSM). Factors that influence the relationship between BaP, BSM, and other PAHs within an aluminum smelter were investigated. Personal samples collected from 1978 to 2001 were used. Differences in the log-transformed ratios (PAH/BaP, BaP/BSM) due to anode paste composition, pot group, season, and job were examined using linear regression. In linear regression, 27% of the variability in the log-transformed BaP/BSM ratio was explained by coal tar pitch, work area, and job; no seasonal or pot group differences were observed. Within the potrooms, BaP was very strongly correlated with other PAHs (majority 0.9). Depending on the PAH, between 23% and 89% of the variability in the log-transformed PAH/BSM was explained by season, coal tar pitch, pot group, and job. The BaP toxic equivalency factors of the mixture varied more across job (2.1-3.5) than across coal tar pitch source (1.8-2.8) or pot group (2.3-2.5). Seasonal and work area differences in the relationship between BaP and other PAHs have not been reported previously.

  10. Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers.

    PubMed

    Silva, Paulo Sérgio da; Gasparini, Bianca C; Magosso, Hérica A; Spinelli, Almir

    2014-05-30

    The water-soluble 3-n-propyl-4-picolinium silsesquioxane chloride (Si4Pic(+)Cl(-)) polymer was prepared, characterized and used as a stabilizing agent for the synthesis of gold nanoparticles (nAu). The ability of Si4Pic(+)Cl(-) to adsorb anionic metal complexes such as AuCl4(-) ions allowed well-dispersed nAu to be obtained with an average particle size of 4.5nm. The liquid suspension of nAu-Si4Pic(+)Cl(-) was deposited by the drop coating method onto a glassy carbon electrode (GCE) surface to build a sensor (nAu-Si4Pic(+)Cl(-)/GCE) which was used for the detection of o-nitrophenol (o-NP) and p-nitrophenol (p-NP). Under optimized experimental conditions the reduction peak current increased with increasing concentrations of both nitrophenol isomers in the range of 0.1-1.5μmolL(-1). The detection limits were 46nmolL(-1) and 55nmolL(-1) for o-NP and p-NP, respectively. These findings indicate that the nAu-Si4Pic(+)Cl(-) material is a very promising candidate to assemble electrochemical sensors for practical applications in the field of analytical chemistry.

  11. Novel mixed metal Ag(I)-Sb(III)-metallotherapeutics of the NSAIDs, aspirin and salicylic acid: Enhancement of their solubility and bioactivity by using the surfactant CTAB.

    PubMed

    Gkaniatsou, E I; Banti, C N; Kourkoumelis, N; Skoulika, S; Manoli, M; Tasiopoulos, A J; Hadjikakou, S K

    2015-09-01

    The already known Ag(I)-Sb(III) compound of the formula {Ag(Ph3Sb)3(NO3)} (1) and two novel mixed metal Ag(I)-Sb(III) metallotherapeutics of the formulae {Ag(Ph3Sb)3(SalH)}(2) and {Ag(Ph3Sb)3(Asp)}(3) (SalH2=salicylic acid, AspH=aspirin or 2-acetylsalicylic acid and Ph3Sb=triphenyl antimony(III)) have been synthesised and characterised by m.p., vibrational spectroscopy (mid-FT-IR), (13)C-,(1)H-NMR, UV-visible (UV-vis) spectroscopic techniques, high resolution mass spectroscopy (HRMS) and X-ray crystallography. Compounds 1,-3 were treated with the surfactant cetyltrimethylammonium bromide (CTAB) in order to enhance their solubility and as a consequence their bioactivity. The resulting micelles a-c were characterised with X-ray powder diffraction (XRPD) analysis, X-ray fluorescence (XRF) spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), conductivity, Thermal gravimetry-differential thermal analysis (TG-DTA), and atomic absorption. Compounds 1-3 and the relevant micelles a-c were evaluated for their in vitro cytotoxic activity against human cancer cell lines: MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, ER negative) and MRC-5 (normal human fetal lung fibroblast cells) with sulforhodamine B (SRB) colorimetric assay. The results show significant increase in the activity of micelles compared to that of the initial compounds. Moreover, micelles exhibited lower activity against normal cells than tumor cells. The binding affinity of a-c towards the calf thymus (CT)-DNA, lipoxygenase (LOX) and glutathione (GSH) was studied by the fluorescent emission light and UV-vis spectroscopy.

  12. Rapid discrimination of Bacillus anthracis from other members of the B. cereus group by mass and sequence of "intact" small acid soluble proteins (SASPs) using mass spectrometry.

    PubMed

    Castanha, Elisangela R; Fox, Alvin; Fox, Karen F

    2006-11-01

    The intentional contamination of buildings, e.g. anthrax in the bioterrorism attacks of 2001, demonstrated that the population can be affected rapidly and lethally if the appropriate treatment is not provided at the right time. Molecular approaches, primarily involving PCR, have proved useful in characterizing "white powders" used in these attacks as well as isolated organisms. However there is a need for a simpler approach, which does not involve temperamental reagents (e.g. enzymes and primers) which could potentially be used by first responders. It is demonstrated here that small acid-soluble proteins (SASPs), located in the core region of Bacillus spores, are reliable biomarkers for identification. The general strategy used in this study was to measure the molecular weight (MW) of an intact SASP by electrospray ionization mass spectrometry (ESI MS) followed by generation of sequence-specific information by ESI MS/MS (tandem mass spectrometry). A prominent SASP of mass 6679 was present in all B. anthracis strains. For B. cereus and B. thuringiensis strains the SASP had a mass of 6712. This represents a two amino acid substitution (serine to alanine; phenylalanine to tyrosine). The only SASP present in the B. anthracis genome consistent with this sequence is encoded by the gene ssB. This protein has a predicted mass of 6810, presumably post-translational processing leads to loss of methionine (mass 131) generating a SASP of mass 6679. This study showed that intact SASPs can be used as a biomarker for identification of B. anthracis; the protocol is simple and rapid. Extrapolation of this approach might prove important for real-time biodetection.

  13. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  14. pH-metric solubility. 3. Dissolution titration template method for solubility determination.

    PubMed

    Avdeef, A; Berger, C M

    2001-12-01

    The main objective of this study was to develop an effective potentiometric saturation titration protocol for determining the aqueous intrinsic solubility and the solubility-pH profile of ionizable molecules, with the specific aim of overcoming incomplete dissolution conditions, while attempting to shorten the data collection time. A modern theory of dissolution kinetics (an extension of the Noyes-Whitney approach) was applied to acid-base titration experiments. A thermodynamic method was developed, based on a three-component model, to calculate interfacial, diffusion-layer, and bulk-water reactant concentrations in saturated solutions of ionizable compounds perturbed by additions of acid/base titrant, leading to partial dissolution of the solid material. Ten commercial drugs (cimetidine, diltiazem hydrochloride, enalapril maleate, metoprolol tartrate, nadolol, propoxyphene hydrochloride, quinine hydrochloride, terfenadine, trovafloxacin mesylate, and benzoic acid) were chosen to illustrate the new titration methodology. It was shown that the new method is about 10 times faster in determining equilibrium solubility constants, compared to the traditional saturation shake-flask methods.

  15. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea

    PubMed Central

    2012-01-01

    Background Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. Results Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. Conclusions The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will

  16. Testing the Role of Silicic Acid and Bioorganic Materials in the Formation of Rock Coatings

    SciTech Connect

    Kolb, Vera; Philip, Ajish I.; Perry, Randall S.

    2004-12-01

    Silica, amino acids, and DNA were recently discovered in desert varnish. In this work we experimentally test the proposed role of silicic acid and bio-chemicals in the formation of desert varnish and other rock coatings. We have developed a protocol in which hte rocks were treated with a mixture of silicic acid, sugars, amino acids, metals and clays, under the influence of heat and UV light. This protocol reflects the proposed mechanism of hte polymerization of silicic acid with the bioorganic materials, and the laboratory model for the natural conditions under which the desert varnish is formed. Our experiments produced coatings with a hardness and morphology that resemble the nature ones. These results provide a support for the role of silicic acid in the formation of rock coatings. Since the hard silica-based coatings preserve organic compounds in them, they may serve as a biosignature for life, here or possibly Mars.

  17. Pure Phase Solubility Limits: LANL

    SciTech Connect

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  18. [Soluble of Metals within TSP in Shanghai].

    PubMed

    Chang, Yan; Feng, Chong; Qu, Jian-guo; Zhang, Jing

    2015-04-01

    The dissolution of metals within aerosol particles is meaningful to evaluate the bioavailability and mobility of metals. Total suspended particles (TSP) samples were collected in Shanghai. We extracted the water soluble and acid soluble (pH = 2) metals by the mini-recirculation-leach-system and measured their concentrations by the high resolution inductively coupled plasma mass spectrometry. The dissolution kinetics were rapid, the maximum solubility of metals could be reached in a few minutes. Overall, the average water-soluble concentrations were low for Co, Cr, Cd, V and Ni, median for Cu, Pb and Mn and high for Fe, Al, Zn and Mg. Combine the soluble metal concentrations with the back trajectory, the original air mass had significant impacts on water soluble metal concentrations. The water solubility and acid solubility were different for various metals, the water solubility of Fe was the lowest (2.0%), others followed an order: Al, Cr, V, Pb, Co, Ni, Cu, Cd, Mn, Mg, Zn. The metals' solubility was increased with the decrease of the solvent pH value. While the chemical speciation of metals was the internal cause of metals' solubility, the metals' ionic potential and the water solubility was negatively correlated.

  19. Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter

    SciTech Connect

    Luttmer, J.D.; Konrad, D.; Trachtenberg, I.

    1985-05-01

    Texas Instruments has developed a solar chemical converter (SCC) which converts solar energy into chemical energy via the electrolysis of hydrobromic acid. Various materials were evaluated as anodes and cathodes for the electrolysis of the acid. Emphasis was placed on obtaining low overvoltage electrodes with good long-term stability. Sputtered platinum-iridium thin films were identified as the best choice as the cathode material, and sputtered iridium and iridium oxide thin films were identified as the best choice as anode materials. Electrochemical measurements indicate that low overvoltage losses are encountered on these materials at operating current densitities in the SCC. Accelerated corrosion tests of the materials predict acceptable electrode stability for 20 years in an environment representative of onthe-roof service.

  20. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    SciTech Connect

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  1. Phenylated Polyimides With Greater Solubility

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1991-01-01

    In experiments, 3,6-diphenylpyromellitic dianhydride monomer prepared and polymerized with several different diamines. Polyimides with pendent phenyl groups along polymer backbones considerably more soluble than PMDA-based materials. Increased solubility eases processing, providing increased potential use in variety of applications. Because most polymers soluble in organic solvents, usable in microelectronics applications. Excellent thermal stabilities and high transition temperatures make them ideally suited. Many polymers extremely rigid and useful as reinforcing polymers in molecular composites. More flexible compositions useful as matrix resins in carbon-reinforced composites.

  2. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants.

    PubMed

    Shayesteh, Tavakol Heidary; Radmehr, Moojan; Khajavi, Farzad; Mahjub, Reza

    2015-03-10

    In this study, the acid dissociation constants (pKa) of some benzodiazepine derivatives including chlordiazepoxide, clonazepam, lorazepam, and oxazepam in aqueous micellar solution were determined spectrophotometrically at an ionic strength of 0.1M at 25°C. The effect of cetyl trimethylammonium bromide (CTAB) as a cationic and sodium n-dodecyl sulfate(SDS) as an anionic surfactant on the absorption spectra of benzodiazepine drugs at different pH values were studied. The acidity constants of all related species are estimated by considering the surfactant concept and the application of chemometric methods using the whole spectral fitting of the collected data to an established factor analysis model. DATAN® software (Ver. 5.0, Multid Analyses AB, and Goteborg, Sweden) was applied to determine the acidity constants. In this study, a simple and fast method to determine the ionization constant (pKa) of poorly soluble drugs was developed using surfactants. The acidity constant (i.e. pKa) for chlordiazepoxide, clonazepam, lorazepam, and oxazepam were reported as 4.62, pKa1 value of 1.52 and pKa2 value of 10.51, pKa1 value of 1.53 and pKa2 value of 10.92 and pKa1 value 1.63 and pKa2 value of 11.21 respectively. The results showed that the peak values in the spectrophotometric absorption spectra of drugs are influenced by the presence of anionic and cationic surfactants. According to the results, by changing the SDS concentration from 0 to 0.05M, the pKa of chlordiazepoxide was increased to 5.9, the pKa1 of lorazepam was decreased to 0.1 while the pKa2 was increased to 11.5. Increase in SDS concentration has not shown significant alteration in pKa of clonazepam and oxazepam. Results indicate that by Changing the CTAB concentration from 0 to 0.05M, the pKa of chlordiazepoxide was reduced to 4.4, the pKa1 of clonazepam was decreased to 0.1 and the pKa2 was decreased to 9.1, the pKa1 of lorazepam was decreased to 0.4 and the pKa2 was decreased to 9.4, the pKa1 of oxazepam was

  3. Novel sol-gel synthesis of acidic MgF(2-x)(OH)(x) materials.

    PubMed

    Wuttke, Stefan; Coman, Simona M; Scholz, Gudrun; Kirmse, Holm; Vimont, Alexandré; Daturi, Maro; Schroeder, Sven L M; Kemnitz, Erhard

    2008-01-01

    Novel magnesium fluorides have been prepared by a new fluorolytic sol-gel synthesis for fluoride materials based on aqueous HF. By changing the amount of water at constant stoichiometric amount of HF, it is possible to tune the surface acidity of the resulting partly hydroxylated magnesium fluorides. These materials possess medium-strength Lewis acid sites and, by increasing the amount of water, Brønsted acid sites as well. Magnesium hydroxyl groups normally have a basic nature and only with this new synthetic route is it possible to create Brønsted acidic magnesium hydroxyl groups. XRD, MAS NMR, TEM, thermal analysis, and elemental analysis have been applied to study the structure, composition, and thermal behaviour of the bulk materials. XPS measurements, FTIR with probe molecules, and the determination of N(2)/Ar adsorption-desorption isotherms have been carried out to investigate the surface properties. Furthermore, activity data have indicated that the tuning of the acidic properties makes these materials versatile catalysts for different classes of reactions, such as the synthesis of (all-rac)-[alpha]-tocopherol through the condensation of 2,3,6-trimethylhydroquinone (TMHQ) with isophytol (IP).

  4. Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis.

    PubMed

    Adel, Abeer M; Abd El-Wahab, Zeinab H; Ibrahim, Atef A; Al-Shemy, Mona T

    2010-06-01

    Rice hulls (RH) and bean hulls (BH) were subjected to prehydrolysis treatments, to define the optimum conditions for producing a high percentage of hydrolyzed hemicellulose with a small or moderate degradation of the cellulosic portion. The hydrolysis experiments were performed using hydrochloric and sulfuric acids in concentrations ranging from (0.5 to 5)% (w/w) at 120 degrees C for 90 min and 10% consistency. The effects of different temperatures (80 to 120 degrees C) and time (30 to 120 min) on acid hydrolysis of lignocellulosic materials were recorded. It was found that, the optimum condition to hydrolyze the lignocellulosic materials (RH) and (BH) are 2% (w/w) of mineral acid at 120 degrees C for 90 min and 10% consistency. The cellulose crystallinity index in the different types of lignocellulosic materials with and without acid treatment, were increased from 0.32 to 0.46 in case of RH and from 0.43 to 0.61 in case of BH. Due to the lignin depolymerization during the pretreatment process, the relative absorbency of the methoxyl group and the aromatic rings bands were lowered for the pretreated than the untreated lignocellulosic materials. Also, the band at 1730 cm(-1) which is attributed to carbonyl groups of uronic acids was lowered due the hemicellulose hydrolysis.

  5. Peptide nucleic acid (PNA): A model structure for the primordial genetic material?

    NASA Astrophysics Data System (ADS)

    Nielsen, Peter Egil

    1993-12-01

    It is proposed that the primordial genetic material could have been peptide nucleic aicds,i.e., DNA analogues having a peptide backbone. PNA momomers based on the amino acid, α, γ-diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.

  6. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    SciTech Connect

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  7. The water-soluble extract from cultured medium of Ganoderma lucidum (Reishi) mycelia (Designated as MAK) ameliorates murine colitis induced by trinitrobenzene sulphonic acid.

    PubMed

    Hanaoka, R; Ueno, Y; Tanaka, S; Nagai, K; Onitake, T; Yoshioka, K; Chayama, K

    2011-11-01

    Ganoderma lucidum Karst is well known as 'Reishi', a traditional food in China and Japan. It contains a polysaccharide component known to induce granulocyte macrophage colony-stimulating factor (GM-CSF) production from murine splenocytes. Moreover, GM-CSF may be a therapeutic agent for Crohn's disease. In this study, we investigated the water-soluble, polysaccharide components of Reishi (designated as MAK) in murine colitis induced by trinitrobenzene sulphonic acid (TNBS). We examined the concentration of GM-CSF in peritoneal macrophage cells (PMs) of C57BL/6 mice during in vitro and in vivo stimulation with MAK. After feeding with chow or MAK for 2 weeks, 2 mg of TNBS/50% ethanol was administered to each mouse. After 3 days of TNBS treatment, intestinal inflammation was evaluated, and mononuclear cells of the mesenteric lymph nodes (MLNs) and colon were cultured for ELISA. To determine the preventive role of GM-CSF, the mice were pre-treated with or without anti-GM-CSF antibody before TNBS administration. In vitro and in vivo MAK-stimulated PMs produced GM-CSF in a dose-dependent manner. Intestinal inflammation by TNBS was improved by feeding with MAK. MLNs of mice treated with TNBS produced IFN-γ, which was inhibited by feeding with MAK. In contrast, MLNs of mice treated with TNBS inhibited GM-CSF production, which was induced by feeding with MAK. The colon organ culture assay also revealed that IFN-γ was decreased and GM-CSF was increased by MAK. The preventive effect was blocked by the neutralization of GM-CSF. We concluded that the induction of GM-CSF by MAK may provide the anti-inflammatory effect.

  8. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-κB signalling in intestinal epithelial cells

    PubMed Central

    Kim, J S; Narula, A S; Jobin, C

    2005-01-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IκB phosphorylation/degradation, NF-κB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IκB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-κB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-κB cis-elements (cis-NF-κBEGFP). SME significantly blocked LPS-induced EGFP expression and IκBα phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-κB transcriptional activity and IκB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-κB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-κB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation. PMID:15996193

  9. Salvia miltiorrhiza water-soluble extract, but not its constituent salvianolic acid B, abrogates LPS-induced NF-kappaB signalling in intestinal epithelial cells.

    PubMed

    Kim, J S; Narula, A S; Jobin, C

    2005-08-01

    Herbal medicine has become an increasing popular therapeutic alternative among patients suffering from various inflammatory disorders. The Salvia miltiorrhizae water-soluble extract (SME) have been shown to possess antioxidant and anti-inflammatory properties in vitro. However, the mechanism of action and impact of SME on LPS-induced gene expression is still unknown. We report that SME significantly abrogated LPS-induced IkappaB phosphorylation/degradation, NF-kappaB transcriptional activity and ICAM-1 gene expression in rat IEC-18 cells. Chromatin immunoprecipitation assay demonstrated that LPS-induced RelA recruitment to the ICAM-1 gene promoter was inhibited by SME. Moreover, in vitro kinase assay showed that SME directly inhibits LPS induced IkappaB kinase (IKK) activity in IEC-18 cells. To investigate the physiological relevance of SME inhibitory activity on NF-kappaB signalling, we used small intestinal explants and primary intestinal epithelial cells derived from a transgenic mouse expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-kappaB cis-elements (cis-NF-kappaB(EGFP)). SME significantly blocked LPS-induced EGFP expression and IkappaBalpha phosphorylation in intestinal explants and primary IECs, respectively. However, salvianolic acid B, an activate component of SME did not inhibit NF-kappaB transcriptional activity and IkappaB phosphorylation/degradation in IEC-18 cells. These results indicate that SME blocks LPS-induced NF-kappaB signalling pathway by targeting the IKK complex in intestinal epithelial cells. Modulation of bacterial product-mediated NF-kappaB signalling by natural plant extracts may represent an attractive strategy towards the prevention and treatment of intestinal inflammation.

  10. Stabilization of two smallest possible diastereomeric β-hairpins in a water soluble tetrapeptide containing non-coded α-amino isobutyric acid (Aib) and m-amino benzoic acid

    NASA Astrophysics Data System (ADS)

    Dutt, Anita; Dutta, Arpita; Kar, Sudeshna; Koley, Pradyot; Drew, Michael G. B.; Pramanik, Animesh

    2009-06-01

    Single crystal X-ray diffraction study reveals that the water soluble tetrapeptide H 2N-Ile-Aib-Leu- m-ABA-CO 2H, containing non-coded Aib (α-amino isobutyric acid) and m-ABA ( meta-amino benzoic acid), crystallizes with two smallest possible diastereomeric β-hairpin molecules in the asymmetric unit. Although in both of the molecules the chiralities at Ile(1) and Leu(3) are S, a conformational reversal in the back bone chain is observed to produce the β-hairpins with β-turn conformations of type II and II'. Interestingly Aib which is known to adopt helical conformation, adopts unusual semi-extended conformation with ϕ: -49.5(5)°, ψ: 135.2(5)° in type II and ϕ: 50.6(6)°, ψ: -137.0(4)° in type II' for occupying the i + 1 position of the β-turns. The two hairpin molecules are further interlocked through intermolecular hydrogen bonds and electrostatic interactions between - CO2- and - +NH 3 groups to form dimeric supramolecular β-hairpin aggregate in the crystal state. The CD measurement and 2D NMR study of the peptide in aqueous medium support the existence of β-hairpin structure in water.

  11. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  12. Antimicrobial activity of transition metal acid MoO(3) prevents microbial growth on material surfaces.

    PubMed

    Zollfrank, Cordt; Gutbrod, Kai; Wechsler, Peter; Guggenbichler, Josef Peter

    2012-01-01

    Serious infectious complications of patients in healthcare settings are often transmitted by materials and devices colonised by microorganisms (nosocomial infections). Current strategies to generate material surfaces with an antimicrobial activity suffer from the consumption of the antimicrobial agent and emerging multidrug-resistant pathogens amongst others. Consequently, materials surfaces exhibiting a permanent antimicrobial activity without the risk of generating resistant microorganisms are desirable. This publication reports on the extraordinary efficient antimicrobial properties of transition metal acids such as molybdic acid (H(2)MoO(4)), which is based on molybdenum trioxide (MoO(3)). The modification of various materials (e.g. polymers, metals) with MoO(3) particles or sol-gel derived coatings showed that the modified materials surfaces were practically free of microorganisms six hours after contamination with infectious agents. The antimicrobial activity is based on the formation of an acidic surface deteriorating cell growth and proliferation. The application of transition metal acids as antimicrobial surface agents is an innovative approach to prevent the dissemination of microorganisms in healthcare units and public environments.

  13. pKa and aggregation of bilirubin: titrimetric and ultracentrifugation studies on water-soluble pegylated conjugates of bilirubin and fatty acids.

    PubMed

    Boiadjiev, Stefan E; Watters, Kimberly; Wolf, Steven; Lai, Bryon N; Welch, William H; McDonagh, Antony F; Lightner, David A

    2004-12-14

    A water-soluble conjugate (1) with intact carboxyl groups was prepared by addition of poly(ethylene glycol) thiol (MPEG-SH) regiospecifically to the exo vinyl group of bilirubin. (1)H and (13)C NMR and absorbance spectroscopy in CDCl(3) and DMSO-d(6) confirmed the assigned structure and showed that pegylation did not disrupt the hydrogen-bonded ridge-tile conformation of the pigment moiety. Aqueous solutions of 1 were optically clear, but NMR signals were seen only from the MPEG portion and none from the tetrapyrrole, consistent with dissolved assemblies containing aggregated bilirubin cores within mobile polyether chains. On alkalinization (pH >12), signals from the pigment moiety reappeared. Titrimetric measurements on 1 in water showed the pK(a)'s of the two carboxyl groups to be similar (average 6.42). Control studies with pegylated half-esters of succinic, suberic, brassylic, thapsic, and 1,20-eicosanedioic acid showed that pegylation per se has little, if any, effect on carboxyl ionization. However, aggregation increases the apparent pK(a) by approximately 1-2 units. The molecularity of bilirubin in solution was further characterized by ultracentrifugation. Over the pH range 8.5-10 in buffer, bilirubin formed multimers with aggregation numbers ranging from approximately 2-7. Bilirubin is monomeric in DMSO or CHCl(3) at approximately 2 x 10(-)(5) M, but aggregation occurred when the CHCl(3) was contaminated with trace adventitious (perhaps lipoidal) impurities. These observations show that aggregation increases the pK(a)'s of aliphatic carboxylic acids relative to their monomer values in water. They are consistent with earlier (13)C NMR-based estimates of approximately 4.2 and approximately 4.9 for the aqueous pK(a)'s of bilirubin and similar studies of bilirubin in micellar bile-salt solutions. Together with earlier work, they confirm that the pK(a)'s of bilirubin are about normal for aliphatic carboxyls and suggest that the high (>7.5) values occasionally

  14. Determination of energy and amino acid digestibility in growing pigs fed corn distillers' dried grains with solubles containing different lipid levels.

    PubMed

    Ren, Ping; Zhu, Zhengpeng; Dong, Bing; Zang, Jianjun; Gong, Limin

    2011-08-01

    Two experiments were conducted to estimate the digestibility of energy, nitrogen and amino acids (AA) in growing pigs fed diets containing one of five corn distillers' dried grains with solubles (DDGS), including three normal oil DDGS (NO-DDGS) and two low oil DDGS (LO-DDGS) samples. Exp. 1 was conducted to determine the digestible energy (DE) and metabolisable energy (ME) content. Six growing barrows (initial body weight [BW]: 35.1 +/- 2.2 kg) were allotted to a 6 x 6 Latin square design, with six periods and six diets. One diet was a corn soybean meal basal diet and the other five diets were based on corn, soybean meal and 28.8% DDGS. The average DE and ME values for the three NO-DDGS samples were 16.0 and 14.9 MJ/kg dry matter (DM). These values were 9 and 13% greater than the LO-DDGS values of 14.7 and 13.2 MJ/kg DM respectively. Exp. 2 was conducted to determine and compare apparent (AID) and standardised (SID) ileal digestibility for crude protein and AA in the five DDGS samples. Six growing barrows (initial BW, 32.2 +/- 1.9 kg) fitted with a simple T-cannula were allotted to a 6 x 6 Latin square design with six periods and six diets. Five of the diets were based on the five DDGS samples, and the remaining one diet was nitrogen-free diet based on cornstarch and sucrose. Titanium dioxide (0.1%) was used as inert marker. The results of the experiment showed the largest variation among the different samples in AID and SID for lysine (from 41.8 to 65.8% and 53.8 to 73.9% respectively) and threonine (from 54.3 to 73.8% and 65.2 to 79.5% respectively). Also, among the indispensable AA, the SID values for arginine, histidine, threonine and tryptophan observed in LO-DDGS were not different from the values derived from NO-DDGS. In conclusion, LO-DDGS may have decreased energy compared with NO-DDGS because of its lower fat content. However, oil removal during the production of DDGS may not affect amino acid digestibility.

  15. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  16. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  17. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  18. Calcium sulfate solubility in organic-laden wastewater. Progress report, September 1981-December 1982

    SciTech Connect

    Banz, I.; Luthy, R.G.

    1982-12-01

    The purpose of this investigation was to determine the solubility of calcium sulfate in wastewaters, and to examine the effect of organic constituents in wastewater and in synthetic waters on calcium sulfate solubility. The study entailed both laboratory experiments and chemical equilibria computer modeling. The calcium sulfate solubility product in a solvent-extracted, ammonia-stripped coal gasification wastewater was found to be 3.65 x 10/sup -5/ M/sup 2/; this is 45% higher than that observed in clean water. Wastewater treated further by activated carbon adsorption showed the solubility product of calcium sulfate to be 2.87 x 10/sup -5/ M/sup 2/. This is only 14% higher than that observed in clean water; this indicates that organic material removed in the adsorption process may be responsible for enhanced solubility in wastewater. Synthetic wastewaters were prepared using humic-like organic compounds, since it was believed that humic-like material accounted for a major fraction of the residual organic carbon content of solvent-extracted coal gasification wastewater. Calcium sulfate solubility in oxidized samples of resorcinol, catechol, and tannic acid showed little difference from that in clean water. In humic acid, however, the calcium sulfate solubility product was 47% higher than in clean water; this increase in solubility product was similar to that observed in pretreated wastewater, indicating that a complex organic material is responsible for the increase in solubility. These results imply that calcium and organic constituents in wastewater form a chemical complex which has the effect of increasing total calcium in solution without preciptating calcium sulfate. Thus higher levels of calcium and sulfate may be maintained in wastewaters destined for reuse in recirculating cooling waters than would be indicated by considering only inorganic chemical interactions. 51 references, 18 figures, 40 tables.

  19. Assessment of surface acidity in mesoporous materials containing aluminum and titanium

    NASA Astrophysics Data System (ADS)

    Araújo, Rinaldo S.; Maia, Débora A. S.; Azevedo, Diana C. S.; Cavalcante, Célio L., Jr.; Rodríguez-Castellón, E.; Jimenez-Lopez, A.

    2009-04-01

    The surface acidity of mesoporous molecular sieves of aluminum and titanium was evaluated using four different techniques: n-butylamine volumetry, cyclohexylamine thermodesorption, temperature-programmed desorption of ammonia and adsorption of pyridine. The nature, strength and concentration of the acid sites were determined and correlated to the results of a probe reaction of anthracene oxidation to 9,10-anthraquinone (in liquid phase). In general, the surface acidity was highly influenced by the nature, location and coordination of the metal species (Al and Ti) in the mesoporous samples. Moderate to strong Brönsted acid sites were identified for the Al-MCM-41 sample in a large temperature range. For mesoporous materials containing Ti, the acidity was represented by a combination of weak to moderate Brönsted and Lewis acid sites. The Ti-HMS sample exhibits a higher acidity of moderate strength together with a well-balanced concentration of Brönsted and Lewis acid sites, which enhanced both conversion and selectivity in the oxidation reaction of anthracene.

  20. Use of green rooibos (Aspalathus linearis) extract and water-soluble nanomicelles of green rooibos extract encapsulated with ascorbic acid for enhanced aspalathin content in ready-to-drink iced teas.

    PubMed

    Joubert, Elizabeth; Viljoen, Melvi; De Beer, Dalene; Malherbe, Christiaan J; Brand, D Jacobus; Manley, Marena

    2010-10-27

    Heat-induced changes in aspalathin, iso-orientin, and orientin content of ready-to-drink (RTD) green rooibos iced tea formulations were investigated. An organic-solvent-based aspalathin-enriched extract prepared from green rooibos was used "as-is" or encapsulated with ascorbic acid in a water-soluble nanomicelle-based carrier system. The common iced tea ingredients, ascorbic acid, and/or citric acid were added to the iced tea containing green rooibos extract. Only citric acid was added to the iced tea containing the nanomicelles. Heat treatments consisted of pasteurization (93 °C/5 min and 93 °C/30 min), normal-temperature sterilization (NTS; 121 °C/15 min), and high-temperature sterilization (HTS; 135 °C/4 min). Pasteurization had little or no effect on the flavonoid content. NTS and HTS induced significant losses in the flavonoids. The addition of citric and ascorbic acids improved the stability of the flavonoids, but encapsulation of green rooibos extract with ascorbic acid in nanomicelles did not offer additional stability. The only benefit of using the water-soluble nanomicelles was the improved clarity of the RTD product. Iso-orientin and orientin contents were substantially less affected than aspalathin by the heat treatments, partially because of conversion of aspalathin to these flavones, which countered losses. 5-Hydroxymethylfurfural (HMF), a known dehydration product of hexoses under mild acidic conditions and also a degradation product of ascorbic acid, was observed in formulations containing citric and/or ascorbic acids.

  1. EVALUATION OF POLY(LACTIC ACID) AND AGRICULTURAL COPRODUCTS AS GREEN COMPOSITE MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green composite materials of poly(lactic acid)(PLA) and agricultural coproducts such as sugar beet pulp(SBP), cuphea, lesquerella, and milkweed were compounded using a twin-screw extruder, molded by injection molding and evaluated for structural and mechanical properties using acoustic emission and ...

  2. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  3. Long-term stability of earthen materials in contact with acidic tailings solutions

    SciTech Connect

    Peterson, S.R.; Erikson, R.L.; Gee, G.W.

    1982-11-01

    The objectives of the studies documented in this report were to use experimental and geochemical computer modeling tools to assess the long-term environmental impact of leachate movement from acidic uranium mill tailings. Liner failure (i.e., an increase in the permeability of the liner material) was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 years. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The high clay materials tested appear suitable for lining tailings impoundment ponds. The decreases in permeability are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. In conclusion the same mineralogical changes and contaminant reactions predicted by geochemical modeling and observed in laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 4 year history of acid attack.

  4. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs.

    PubMed

    Stawiński, Wojciech; Freitas, Olga; Chmielarz, Lucjan; Węgrzyn, Agnieszka; Komędera, Kamila; Błachowski, Artur; Figueiredo, Sónia

    2016-06-01

    The influence of different acid treatments over vermiculite was evaluated. Equilibrium, kinetic and column studies have been conducted. The results showed that vermiculite first treated with nitric acid and then with citric acid has higher adsorption capacity, presenting maximum adsorption capacities in column experiments: for Astrazon Red (AR), 100.8 ± 0.8 mg g(-1) and 54 ± 1 mg g(-1) for modified and raw material, respectively; for Methylene Blue (MB) 150 ± 4 mg g(-1) and 55 ± 2 mg g(-1) for modified and raw material, respectively. Materials characterization by X-ray diffraction, UV-vis-diffuse reflectance spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, X-ray fluorescence, N2 adsorption and CEC determination, has been performed. The results suggest the existence of exchange of interlayer cations, leaching of metals from vermiculite's sheets and formation of an amorphous phase in the material. Adsorption follows pseudo 2(nd) order model kinetics for both dyestuffs and equilibrium occurs accordingly to Langmuir's model for AR and Freundlich's model for MB. In column systems Yan's model is the best fit. The enhanced properties of acid treated vermiculite offer new perspectives for the use of this adsorbent in wastewater treatment.

  5. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi.

    PubMed

    Li, Wei; Zhou, Peng-Peng; Jia, Li-Ping; Yu, Long-Jiang; Li, Xue-Li; Zhu, Min

    2009-01-01

    Microorganisms influence the dissolution of a number of minerals. Limestone is one of the most abundant rock types in karst areas, and is predominantly calcium carbonate. Two types of experimental systems were designed in this paper, to make comparisons of limestone dissolution rate among the acidic materials and extracellular carbonic anhydrase (CA) excreted by fungi and the enwrapping effect of fungal mycelia. One was the simulated experimental system containing microorganisms. Another was the simulated experimental system without microorganisms. Results of previous experiment indicated that the acidic materials and CA like enzymatic materials excreted by fungi and the enwrapping effect of fungal mycelia were important factors influencing limestone dissolution. In the three factors mentioned above, the dissolution effect was mycelia enwraping effect>acidic dissolution effect>CA enzymatic effect. The results of the second experiment demonstrated further that the limestone dissolution effect of the acidic materials excreted by fungi was stronger than that of CA excreted by fungi. Nevertheless, CA still played an important role in promoting the dissolution of limestone.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield.

  7. Investigations of surface acidities and pore size distributions of selected pillared layered materials

    SciTech Connect

    Odom, M.A.; Wade, K.L.; Morgan, D.M.; White, J.L.; Schroeder, N.C.

    1996-10-01

    Pillared Layered Materials (PLMs) are being designed for a variety of applications. Currently, PLMs are being prepared in this laboratory for the selective sorption of radionuclides from liquid-nuclear wastes. It is important to have a good understanding of characteristics, such as pore size distributions and surface acidities, in order to tailor there sizes and environments are manipulated by varying the layered materials and pillaring species used for preparing the PLM. A variety of techniques have been employed to study these characteristics. For this study the pore size distributions were derived by determining the sorption of hydrocarbons of various sizes and shapes into the PLMs. The surface acidities were probed by sorbing basic species, such as ammonia and pyridine, and assessing the interactions with the acid sites using FTIR spectroscopy.

  8. Biomolecular interactions of emerging two-dimensional materials with aromatic amino acids

    NASA Astrophysics Data System (ADS)

    Mallineni, Sai Sunil Kumar; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao

    The present work experimentally investigates the interaction of aromatic amino acids, viz., tyrosine, tryptophan, and phenylalanine with novel two-dimensional (2D) materials including graphene (G), graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Consistent with previous theoretical studies, graphene and BN were observed to interact with amino acids through π- π interactions. Furthermore, we found that GO exhibits strong interactions with tryptophan and tyrosine as compared to graphene and BN, which we attribute to the formation of H-bonds between tryptophan and GO as shown theoretically in Ref. 2. On the other hand, phenylalanine did not exhibit much difference in interactions with G, GO, and BN. Clemson Nanomaterials Center, Clemson University, Clemson, SC, USA.

  9. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  10. Nucleic acids and smart materials: advanced building blocks for logic systems.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-09-03

    Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found.

  11. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid.

    PubMed

    Orge, C A; Órfão, J J M; Pereira, M F R

    2012-04-30

    Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals.

  12. Reflectance and Emittance Properties of Spring-formed Ferricretes and Acid Mine Drainage Materials: Relevance to Remote Sensing of Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Lane, M. D.

    1999-03-01

    The reflectance and emittance properties of minerals associated with spring formed ferricretes and acid mine drainage materials is described. It is suggested that they may be appropriate analog materials for certain regions on Mars.

  13. Long-term fungal inhibitory activity of water-soluble extracts of Phaseolus vulgaris cv. Pinto and sourdough lactic acid bacteria during bread storage.

    PubMed

    Coda, Rossana; Rizzello, Carlo G; Nigro, Franco; De Angelis, Maria; Arnault, Philip; Gobbetti, Marco

    2008-12-01

    The antifungal activity of proteinaceous compounds from different food matrices was investigated. In initial experiments, water-soluble extracts of wheat sourdoughs, cheeses, and vegetables were screened by agar diffusion assays with Penicillium roqueforti DPPMAF1 as the indicator fungus. Water-soluble extracts of sourdough fermented with Lactobacillus brevis AM7 and Phaseolus vulgaris cv. Pinto were selected for further study. The crude water-soluble extracts of L. brevis AM7 sourdough and P. vulgaris cv. Pinto had a MIC of 40 mg of peptide/ml and 30.9 mg of protein/ml, respectively. MICs were markedly lower when chemically synthesized peptides or partially purified protein fractions were used. The water-soluble extract of P. vulgaris cv. Pinto showed inhibition toward a large number of fungal species isolated from bakeries. Phaseolin alpha-type precursor, phaseolin, and erythroagglutinating phytohemagglutinin precursor were identified in the water-soluble extract of P. vulgaris cv. Pinto by nano liquid chromatography-electrospray ionization-tandem mass spectrometry. When the antifungal activity was assayed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, all three proteins were inhibitory. A mixture of eight peptides was identified from the water-soluble extract of sourdough L. brevis AM7, and five of these exhibited inhibitory activity. Bread was made at the pilot plant scale by sourdough fermentation with L. brevis AM7 and addition of the water-soluble extract (27%, vol/wt; 5 mg of protein/ml) of P. vulgaris cv. Pinto. Slices of bread packed in polyethylene bags did not show contamination by fungi until at least 21 days of storage at room temperature, a level of protection comparable to that afforded by 0.3% (wt/wt) calcium propionate.

  14. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  15. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  16. High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid.

    PubMed

    Wang, Yinjie; Liu, Jincheng; Liu, Lei; Sun, Darren Delai

    2011-03-21

    Reduced graphene oxide-nanocrystalline platinum (RGO-Pt) hybrid materials were synthesized by simultaneous co-reduction of graphene oxide (GO) and chloroplatinic acid with sodium citrate in water at 80°C, of pH 7 and 10. The resultant RGO-Pt hybrid materials were characterized using transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Platinum (Pt) nanoparticles were anchored randomly onto the reduced GO (RGO) sheets with average mean diameters of 1.76 (pH 7) and 1.93 nm (pH 10). The significant Pt diffraction peaks and the decreased intensity of (002) peak in the XRD patterns of RGO-Pt hybrid materials confirmed that the Pt nanoparticles were anchored onto the RGO sheets and intercalated into the stacked RGO layers at these two pH values. The Pt loadings for the hybrid materials were determined as 36.83 (pH 7) and 49.18% (pH 10) by mass using XPS analysis. With the assistance of oleylamine, the resultant RGO-Pt hybrid materials were soluble in the nonpolar organic solvents, and the dispersion could remain stable for several months.

  17. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail: maireles@uma.es; Moreno-Tost, R.

    2006-07-15

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  18. A comparative evaluation of effect on water sorption and solubility of a temporary soft denture liner material when stored either in distilled water, 5.25% sodium hypochlorite or artificial saliva: An in vitro study

    PubMed Central

    Garg, Aditi; Shenoy, K. Kamalakanth

    2016-01-01

    Introduction: Soft denture liners have a key role in modern removable prosthodontics since they restore health to inflamed and abused mucosa by redistribution of forces transmitted to the edentulous ridges. The most common problems encountered using soft denture liners are water sorption and solubility when in contact with saliva or storage media. These problems are associated with swelling, distortion, support of Candida albicans growth, and stresses at the liner/denture base interface that reduces the bond strength. Objective: To evaluate the water sorption and solubility of commercially available acrylic based self cure soft denture lining material (GC RELINE™ Tissue Conditioner) after immersion in three different storage media (distilled water, Shellis artificial saliva, 5.25% sodium hypochlorite disinfectant solution) at time interval of 4, 7, 11, and 15 days. Material and Methods: The study involved preparation of artificial saliva using Shellis formula. A total 45 standardized samples of the material (GC RELINE™) were prepared in disk form (15 mm in diameter and 2 mm in thickness). The study was divided into three groups with storage in Control (distilled water), Shellis artificial saliva, and 5.25% sodium hypochlorite. Samples were dried in a desiccator and weighed in the analytical balance to measure the initial weight (mg/cm2) of the disks (W1). The first groups (15 samples) were placed in 30 ml distilled water (Group A) at 37ºC, second group 30 ml of artificial saliva (Group B) and third group in 5.25% sodium hypochlorite (Group C). Disks were removed from disinfectant after 5 min and placed in 30 ml distilled water. On days 4, 7, 11, and 15, all samples were removed from their containers and reweighed to measure the weight (mg/cm2) of the disks after sorption (W2). The solubility was measured by placing the disks back in the desiccator after each sorption cycle and drying them to constant weight in the desiccator. These values were weight after

  19. Nanocrosses of lead sulphate as the negative active material of lead acid batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Gao, Pengran; Bu, Xianfu; Kuang, Guizhi; Liu, Wei; Lei, Lixu

    2014-10-01

    Lead sulphate transforms into PbO2 and Pb in the positive and negative electrodes, respectively, when a lead acid battery is charged, thus, it is an active material. It is also generally acknowledged that sulphation results in the failure of lead acid batteries; therefore, it is very interesting to find out how to make lead sulphate more electrochemically active. Here, we demonstrate that nanocrystalline lead sulphate can be used as excellent negative active material in lead acid batteries. The lead sulphate nanocrystals, which are prepared by a facile chemical precipitation of aqueous lead acetate and sodium sulphate in a few minutes, look like crosses with diameter of each arm being 100 nm to 3 μm. The electrode is effectively formed in much shorter time than traditional technique, yet it discharges a capacity of 103 mA h g-1 at the current density of 120 mA g-1, which is 24% higher than that discharged by the electrode made from leady oxide under the same condition. During 100% DOD cycles, more than 80% of that capacity remains in 550 cycles. These results show that lead sulphate can be a nice negative active material in lead acid batteries.

  20. Quality improvement of acidic soils by biochar derived from renewable materials.

    PubMed

    Moon, Deok Hyun; Hwang, Inseong; Chang, Yoon-Young; Koutsospyros, Agamemnon; Cheong, Kyung Hoon; Ji, Won Hyun; Park, Jeong-Hun

    2017-02-01

    Biochar derived from waste plant materials and agricultural residues was used to improve the quality of an acidic soil. The acidic soil was treated for 1 month with both soy bean stover-derived biochar and oak-derived biochar in the range of 1 to 5 wt% for pH improvement and exchangeable cation enhancement. Following 1 month of treatment, the soil pH was monitored and exchangeable cations were measured. Moreover, a maize growth experiment was performed for 14 days with selected treated soil samples to confirm the effectiveness of the treatment. The results showed that the pH of the treated acidic soil increased by more than 2 units, and the exchangeable cation values were greatly enhanced upon treatment with 5 wt% of both biochars, after 1 month of curing. Maize growth was superior in the 3 wt% biochar-treated samples compared to the control sample. The presented results demonstrate the effective use of biochar derived from renewable materials such as waste plant materials and agricultural residues for quality improvement of acidic soils.

  1. Cyclic voltammetry using silver as cathode material: a simple method for determining electro and chemical features and solubility values of CO2 in ionic liquids.

    PubMed

    Reche, Irene; Gallardo, Iluminada; Guirado, Gonzalo

    2015-01-28

    A report is presented on the use of cyclic voltammetry using silver as a working electrode. The combined electrocatalytic properties of silver and ionic liquids allow cyclic voltammetry to be turned into an ideal tool for the rapid and accurate access to diffusion coefficient values and solubility values of carbon dioxide in ionic liquids under standard conditions.

  2. Water-soluble sacrificial layers for surface micromachining.

    PubMed

    Linder, Vincent; Gates, Byron D; Ryan, Declan; Parviz, Babak A; Whitesides, George M

    2005-07-01

    This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography.

  3. Time Dependence of Material Properties of Polyethylene Glycol Hydrogels Chain Extended with Short Hydroxy Acid Segments

    PubMed Central

    Barati, Danial; Moeinzadeh, Seyedsina; Karaman, Ozan; Jabbari, Esmaiel

    2014-01-01

    The objective of this work was to investigate the effect of chemical composition and segment number (n) on gelation, stiffness, and degradation of hydroxy acid-chain-extended star polyethylene glycol acrylate (SPEXA) gels. The hydroxy acids included glycolide (G,), L-lactide (L), p-dioxanone (D) and -caprolactone (C). Chain-extension generated water soluble macromers with faster gelation rates, lower sol fractions, higher compressive moduli, and a wide-ranging degradation times when crosslinked into a hydrogel. SPEGA gels with the highest fraction of inter-molecular crosslinks had the most increase in compressive modulus with n whereas SPELA and SPECA had the lowest increase in modulus. SPEXA gels exhibited a wide range of degradation times from a few days for SPEGA to a few weeks for SPELA, a few months for SPEDA, and many months for SPECA. Marrow stromal cells and endothelial progenitor cells had the highest expression of vasculogenic markers when co-encapsulated in the faster degrading SPELA gel. PMID:25267858

  4. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits.

    PubMed

    Wang, Ying; Tashiro, Yukihiro; Sonomoto, Kenji

    2015-01-01

    The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes.

  5. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    SciTech Connect

    Brunson, R.J.

    1982-06-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5 to about 80/sup 0/ C.

  6. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    SciTech Connect

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  7. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    SciTech Connect

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  8. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products.

  9. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  10. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  11. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics".

  12. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  13. Comparison of amino acid digestibility coefficients for corn, corn gluten meal, and corn distillers dried grains with solubles (DDGS) among three different bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine standardized AA digestibility of corn, corn gluten meal (CGM) and three distillers dried grains with solubles (DDGS) using the precision-fed cecectomized rooster assay (PFR), the standardized ileal AA broiler chicken assay (SIAAD), and a newly developed p...

  14. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  15. Interaction of bismuth subsalicylate with fruit juices, ascorbic acid, and thiol-containing substrates to produce soluble bismuth products active against Clostridium difficile.

    PubMed

    Mahony, D E; Woods, A; Eelman, M D; Burford, N; Veldhuyzen van Zanten, S J O

    2005-01-01

    Bismuth subsalicylate (BSS), the active ingredient of Pepto-Bismol, has been used for many years to treat various disorders of the gastrointestinal tract. Using mass spectrometry and the agar dilution method, we determined that insoluble BSS interacts with certain dietary components and organic substrates to produce water-soluble products with activity against Clostridium difficile.

  16. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results.

  17. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  18. Boric acid corrosion of light water reactor pressure vessel head materials.

    SciTech Connect

    Park, J.-H.; Chopra, O. K.; Natesan, K.; Shack, W. J.; Cullen, Jr.; W. H.; Energy Technology; USNRC

    2005-01-01

    This work presents experimental data on electrochemical potential and corrosion rates for the materials found in the reactor pressure vessel head and control rod drive mechanism (CRDM) nozzles in boric acid solutions of varying concentrations at temperatures of 95-316 C. Tests were conducted in (a) high-temperature, high-pressure aqueous solutions with a range of boric acid concentrations, (b) high-temperature (150-316 C)H-B-Osolutions at ambient pressure, in wet and dry conditions, and (c) low-temperature (95 C) saturated, aqueous, boric acid solutions. These correspond to the following situations: (a) low leakage through the nozzle and nozzle/head annulus plugged, (b) low leakage through the nozzle and nozzle/head annulus open, and (c) significant cooling due to high leakage and nozzle/head annulus open. The results showed significant corrosion only for the low-alloy steel and no corrosion for Alloy 600 or 308 stainless steel cladding. Also, corrosion rates were significant in saturated boric acid solutions, and no material loss was observed in H-B-O solution in the absence of moisture. The results are compared with the existing corrosion/wastage data in the literature.

  19. Screening for perfluoroalkyl acids in consumer products, building materials and wastes.

    PubMed

    Bečanová, Jitka; Melymuk, Lisa; Vojta, Šimon; Komprdová, Klára; Klánová, Jana

    2016-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a large group of important chemical compounds with unique and useful physico-chemical properties, widely produced and used in many applications. However, due to the toxicity, bioaccumulation and long-range transport potential of certain PFASs, they are of significant concern to scientists and policy makers. To assess human exposure to PFASs, it is necessary to understand the concentrations of these emerging contaminants in our environment, and particularly environments where urban population spend most of their time, i.e. buildings and vehicles. A total of 126 samples of building materials, consumer products, car interior materials and wastes were therefore analyzed for their content of key PFASs - 15 perfluoroalkyl acids (PFAAs). At least one of the target PFAAs was detected in 88% of all samples. The highest concentration of Σ15PFAAs was found in textile materials (77.61 μg kg(-1)), as expected, since specific PFAAs are known to be used for textile treatment during processing. Surprisingly, PFAAs were also detected in all analyzed composite wood building materials, which were dominated by perfluoroalkyl carboxylic acids with 5-8 carbons in the chain (Σ4PFCAs up to 32.9 μg kg(-1)). These materials are currently widely used for building refurbishment, and this is the first study to find evidence of the presence of specific PFASs in composite wood materials. Thus, in addition to consumer products treated with PFASs, materials used in the construction of houses, schools and office buildings may also play an important role in human exposure to PFASs.

  20. The combination of oxalic acid with power ultrasound fully degrades chrysotile asbestos fibres.

    PubMed

    Turci, Francesco; Tomatis, Maura; Mantegna, Stefano; Cravotto, Giancarlo; Fubini, Bice

    2007-10-01

    The simultaneous action of power ultrasound and oxalic acid, as a chelating agent, rapidly converts chrysotile asbestos into water soluble material and a non-asbestos debris, not classifiable as hazardous under worldwide safety regulations.

  1. The Solubility Rules: Why Are All Acetates Soluble?

    NASA Astrophysics Data System (ADS)

    van der Sluys, William G.

    2001-01-01

    According to the solubility rules presented in many introductory chemistry texts, all (or most) acetate salts are soluble in aqueous solution. The thermodynamic factors that contribute to the solubility of acetates are compared with those of other slightly basic anions. In particular, the hydration enthalpy of acetate is calculated using the Born-Haber approach, from lattice energies, heats of solution, and the hydration energies of several cations. The hydration enthalpy of acetate (-375 kJ/mol) is similar to that of chloride ({355 kJ/mol), nitrite ({383 kJ/mol), and nitrate ({370 kJ/mol), which are all considerably less exothermic than fluoride ({497 kJ/mol). This was somewhat unexpected, since hydration enthalpies generally correlate well with the acid-base properties of an ion, and acetate is more basic than fluoride. Factors influencing the solubility and acid-base properties of acetates, such as the electron donating and hydrophobic nature of the methyl group, are discussed in light of the thermodynamic data.

  2. Salt formation to improve drug solubility.

    PubMed

    Serajuddin, Abu T M

    2007-07-30

    Salt formation is the most common and effective method of increasing solubility and dissolution rates of acidic and basic drugs. In this article, physicochemical principles of salt solubility are presented, with special reference to the influence of pH-solubility profiles of acidic and basic drugs on salt formation and dissolution. Non-ideality of salt solubility due to self-association in solution is also discussed. Whether certain acidic or basic drugs would form salts and, if salts are formed, how easily they would dissociate back into their free acid or base forms depend on interrelationships of several factors, such as S0 (intrinsic solubility), pH, pKa, Ksp (solubility product) and pHmax (pH of maximum solubility). The interrelationships of these factors are elaborated and their influence on salt screening and the selection of optimal salt forms for development are discussed. Factors influencing salt dissolution under various pH conditions, and especially in reactive media and in presence of excess common ions, are discussed, with practical reference to the development of solid dosage forms.

  3. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that