Science.gov

Sample records for acid soluble material

  1. Acid soluble, pepsin resistant platelet aggregating material

    SciTech Connect

    Schneider, M.D.

    1982-08-31

    Disclosed is an acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid. The method of isolation and use to control bleeding are described. 4 figs.

  2. Acid soluble platelet aggregating material isolated from human umbilical cord

    SciTech Connect

    Schneider, M.D.

    1983-12-27

    An acid soluble, pepsin sensitive platelet aggregating material is isolated from human umbilical cord tissue by extraction with dilute aqueous acid. The method of isolation is disclosed and its use to control bleeding is described. 2 figs.

  3. Binding and solubility of oleic acid to laboratory materials: A possible artifact

    SciTech Connect

    Mailman, D.; Rose, C. )

    1990-01-01

    The possibility that significant amounts of fatty acids were dissolved in or bound to the surfaces of common laboratory materials was examined. The uptake or adsorption of radioisotopically labeled oleic acid and cholic acid by plastic tubing of Tygon{trademark}, Teflon{trademark}, and polyethylene, and Pyrex{trademark}, and borosilicate glass, and steel was measured. {sup 3}H-oleic acid and {sup 14}C-cholic acid were used in the presence of different concentration of unlabeled oleic acid, cholic acid, and/or bovine serum albumin. Concentrations, composition, pH, and perfusion rates were varied. Relatively large amounts of oleic acid were lost by dissolving in plastic and adsorption to glass or metal. The degree of losses decreased in the presence of compounds in the perfusion solution which could bind or dissolve oleic acid. In contrast, cholic acid was not lost to plastic, glass or metal. The magnitude of and influence of perfusion rate, composition, pH, and sequence of perfusion solutions on oleic acid losses were sufficiently large that the results of certain studies, such as those of unstirred water layers or albumin-stimulated fatty acid uptake by hepatocytes may need to be reexamined.

  4. A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids

    USGS Publications Warehouse

    Chlou, C.T.; Kile, D.E.; Brinton, T.I.; Malcolm, R.L.; Leenheer, J.A.; MacCarthy, P.

    1987-01-01

    Water solubility enhancements of 1,1-bis(p-chloro-phenyl)-2,2,2-trichloroethane (p,p???-DDT), 2,4,5,2???,5???-pentachlorobiphenyl (2,4,5,2???,5???-PCB), and 2,4,4???-tri-chlorobiphenyl (2,4,4???-PCB) by dissolved organic matter have been studied with the following samples: (1) acidic water samples from the Suwannee River, Georgia, and the Sopchoppy River, Florida; (2) a humic extract of a nearly neutral pH water from the Calcasieu River, Louisiana; (3) commercial humic acids from the Aldrich Chemical Co. and Fluka-Tridom Chemical Corp. The calculated partition coefficients on a dissolved organic carbon basis (Kdoc) for organic solutes with water samples and aquatic humic extracts from this and earlier studies indicate that the enhancement effect varies with the molecular composition of the aquatic humic materials. The Kdoc values with water and aquatic humic samples are, however, far less than the observed Kdoc values obtained with the two commercial samples, by factors of about 4-20. In view of this finding, one should be cautious in interpreting the effects of the dissolved organic matter on solubility enhancement of organic solutes on the basis of the use of commercial humic acids.

  5. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    PubMed

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  6. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    PubMed Central

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  7. Solubility of Structurally Complicated Materials: II. Bone

    NASA Astrophysics Data System (ADS)

    Horvath, Ari L.

    2006-12-01

    Bone is a structurally complex material, formed of both organic and inorganic chemicals. The organic compounds constitute mostly collagen and other proteins. The inorganic or bone mineral components constitute predominantly calcium, phosphate, carbonate, and a host of minor ingredients. The mineralized bone is composed of crystals which are closely associated with a protein of which collagen is an acidic polysaccharide material. This association is very close and the protein integrates into the crystalline structure. The mineralization involves the deposition of relatively insoluble crystals on an organic framework. The solubility process takes place when the outermost ions in the crystal lattice breakaway from the surface and become separated from the crystal. This is characteristic for ions dissolving in water or aqueous solutions at the specified temperature. The magnitude of solubility is temperature and pH dependent. Bone is sparingly soluble in most solvents. Enamel is less soluble than bone and fluoroapatite is the least soluble of all apatites in acid buffers. Collagen is less soluble in neutral salt solution than in dilute acid solutions at ambient temperatures. The solubility of collagens in solvents gradually decreases with increasing age of the bone samples.

  8. The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid hydrolysis lignin, a saccharification by-product from woody materials.

    PubMed

    Matsushita, Yasuyuki; Imai, Masanori; Iwatsuki, Ayuko; Fukushima, Kazuhiko

    2008-05-01

    In this study, water-soluble anionic and cationic polymers were prepared from sulfuric acid lignin (SAL), an acid hydrolysis lignin, and the relationship between the surface tension of these polymers and industrial performance was examined. The SAL was phenolized (P-SAL) to enhance its solubility and reactivity. Sulfonation and the Mannich reaction with aminocarboxylic acids produced water-soluble anionic polymers and high-dispersibility gypsum paste. The dispersing efficiency increased as the surface tension decreased, suggesting that the fluidity of the gypsum paste increased with the polymer adsorption on the gypsum particle surface. Water-soluble cationic polymers were prepared using the Mannich reaction with dimethylamine. The cationic polymers showed high sizing efficiency under neutral papermaking conditions; the sizing efficiency increased with the surface tension. This suggests that the polymer with high hydrophilicity spread in the water and readily adhered to the pulp surface and the rosin, showing good retention. PMID:17664066

  9. Solubility and equilibrium vapor pressures of HC1 dissolved in polar stratospheric cloud materials - Ice and the trihydrate of nitric acid

    NASA Technical Reports Server (NTRS)

    Hanson, David; Mauersberger, Konrad

    1988-01-01

    Measurements of the pressure-solubility behavior of HC1 in water ice and in the nitric acid trihydrate (NAT) crystal at 200 K are reported. It was found that HC1 is about 20 times more soluble in NAT than in ice for stratospheric conditions. A relation between HC1 pressure and substrate composition based on the Gibbs-Duhem equation is developed. This relation, along with other thermodynamic data, can be used to obtain the HC1 pressure-solubility behavior at different temperatures. Implications of these results for the south polar ozone hole are discussed.

  10. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  11. Wormhole growth in soluble porous materials

    SciTech Connect

    Nilson, R.H.; Griffiths, S.K. )

    1990-09-24

    Analytical solutions are derived for the quasisteady shape and speed of a single wormhole resulting from the coupled processes of Darcian fluid motion and chemical dissolution in a soluble permeable material. For an initially unsaturated medium, two-dimensional solutions are obtained by addressing an inverted free-boundary problem in which the spatial coordinates are treated as dependent variables on the plane of a complex potential. For initially saturated materials, solutions are obtained by analogy to Ivantsov's problem of dendrite growth.

  12. Solubility of chlorine in aqueous hydrochloric acid solutions.

    PubMed

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  13. Solubility series of methanofullerenes in concentrated sulfuric acid

    NASA Astrophysics Data System (ADS)

    Biglova, Yu. N.; Kolesov, S. V.; Biglova, R. Z.; Kraikin, V. A.

    2015-12-01

    A spectroscopic study of the dissolution of C60 and its monosubstituted derivatives methanofullerenes in 98% sulfuric acid revealed that methanofullerenes dissolved in sulfuric acid much better than the starting C60. A solubility series of functionalized fullerenes was obtained, which did not change during the extraction of methanofullerenes with sulfuric acid from benzene solutions. An effective methods was developed for separating methanofullerenes, which is based on the difference between the solubilities of the starting and functionalized fullerenes in concentrated sulfuric acid.

  14. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    PubMed

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water. PMID:25362971

  15. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  16. Compositional Analysis of Water-Soluble Materials in Corn Stover

    SciTech Connect

    Chen, S. F.; Mowery, R. A.; Scarlata, C. J.; Chambliss, C. K.

    2007-01-01

    Corn stover is one of the leading feedstock candidates for commodity-scale biomass-to-ethanol processing. The composition of water-soluble materials in corn stover has been determined with greater than 90% mass closure in four of five representative samples. The mass percentage of water-soluble materials in tested stover samples varied from 14 to 27% on a dry weight basis. Over 30 previously unknown constituents of aqueous extracts were identified and quantified using a variety of chromatographic techniques. Monomeric sugars (primarily glucose and fructose) were found to be the predominant water-soluble components of corn stover, accounting for 30-46% of the dry weight of extractives (4-12% of the dry weight of feedstocks). Additional constituents contributing to the mass balance for extractives included various alditols (3-7%), aliphatic acids (7-21%), inorganic ions (10-18%), oligomeric sugars (4-12%), and a distribution of oligomers tentatively identified as being derived from phenolic glycosides (10-18%).

  17. Biorelevant solubility of poorly soluble drugs: rivaroxaban, furosemide, papaverine and niflumic acid.

    PubMed

    Takács-Novák, Krisztina; Szőke, Vera; Völgyi, Gergely; Horváth, Péter; Ambrus, Rita; Szabó-Révész, Piroska

    2013-09-01

    In this work the biorelevant solubility of four drugs representing different acid-base property, wide range of lipohilicity and low aqueous solubility was studied. The equilibrium solubility of rivaroxaban (non-ionizable), furosemide (acid), papaverine (base) and niflumic acid (ampholyte) was determined in simulated gastric fluid (SGF pH 1.2), in simulated intestinal fluid fasted state (FaSSIF pH 6.5) and fed state (FeSSIF pH 5.0) and their corresponding blank buffers at a temperature of 37 °C using saturation shake-flask method. The concentration was measured by optimized HPLC analysis. The solubilizing effect of bile acid/lipid micelles as additive components of biorelevent media (BRM) is expressed with the solubility ratio (SR: SBRM/Sblank buffer) and the food effect was estimated from SFeSSIF/SFaSSIF coefficient. It was revealed that ionization plays primarily role in solubility of compounds which undergo ionization in BRM. The solubilizing effect in FaSSIF was marginal for the neutral compound (rivaroxaban) and for molecules are anionic at pH 6.5 (furosemide and niflumic acid). The higher concentration of solubilizing agents in FeSSIF improved the solubility of papaverine carrying positive charge and niflumic acid being partially zwitterionic at pH 5.0. PMID:23770783

  18. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  19. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    SciTech Connect

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose of this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.

  20. Solubility of HCL in sulfuric acid at stratospheric temperatures

    NASA Technical Reports Server (NTRS)

    Williams, Leah R.; Golden, David M.

    1993-01-01

    The solubility of HCl in sulfuric acid was measured using a Knudsen cell technique. Effective Henry's law constants are reported for sulfuric acid concentrations between 50 and 60 weight percent and for temperatures between 220 and 230 K. The measured values indicate that very little HCl will be dissolved in the stratospheric sulfate aerosol particles.

  1. Solubility of acid gases in a mixed solvent

    SciTech Connect

    MacGregor, R.J.; Mather, A.E.

    1987-01-01

    The solubility of hydrogen sulphide and carbon dioxide and their mixtures has been measured at 40/sup 0/ and 100/sup 0/C in a mixed solvent consisting of 20.9 wt% (2.0 M) MDEA (methyldiethanolamine), 30.5 wt% sulfolane, and 48.6 wt% water. The results have been compared with those for aqueous 2.0 M MDEA and an analogous mixed solvent, containing AMP (2-amino-2-methyl-1-propanol), which are available in the literature. At solution loadings less than 1 mol acid gas/mol MDEA, the solubility of the acid gas was lower in the mixed solvent that in the corresponding aqueous MDEA solvent; at solution loadings greater than 1 mol acid gas/mol MDEA, the reverse was true. At all loadings and at both temperatures studied, the mixed MDEA solvent absorbed equal or lesser quantities of acid gas than the comparable mixed AMP solvent. However, the shapes of the solubility curves show that the mixed MDEA solvent would be a better choice for certain industrial applications. These data were used to modify the solubility model of Deshmukh and Mather to account for the mixed solvent effects on the system thermodynamics. Results show that the model is useful as a first approximation in predicting acid gas solubilities; agreement with experiment was generally found to be within +-15%.

  2. The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.

    PubMed

    Chung, Ying-Chien; Wu, Li-Chun; Chen, Chih-Yu

    2013-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This research compared the coagulant performance of acid-soluble chitosan with water-soluble chitosan and with coagulant mixtures of chitosan and aluminium sulfate (alum). We also assessed the coagulant performance of chitosan and poly-aluminium chloride (PAC) to remove kaolinite from turbid water. In addition, we evaluated their respective coagulation efficiencies under different coagulant concentrations, degrees of turbidity (NTU) and pH levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants in order to illustrate major factors affecting kaolinite coagulation. The optimal concentrations of acid- versus water- soluble chitosan required to remove kaolinite from a 300 NTU suspension were 4.0 and 10.0 mg/l, respectively-with individual efficiencies of 79.3 and 92.4%, in that order. Optimum concentrations ofwater-soluble chitosan demonstrated a broader range than that of acid-soluble chitosan. In addition, it is of note that chitosan/alum and chitosan/PAC water-soluble coagulant mixtures demonstrated much wider ranges of optimal concentrations for turbidity reduction than either alum or PAC alone. Moreover, our water-soluble chitosan coagulant mixtures produced denser floc with elevated settling velocities that favour cost savings relevant to both installation and operational expenses. Based on our observations of these noteworthy performances, we confidently propose that a coagulant mixture with a 1:1 mass ratio of chitosan and alum presents a remarkably more cost-effective alternative to the use of chitosan alone in water treatment systems. PMID:23530342

  3. Transformation of acidic poorly water soluble drugs into ionic liquids.

    PubMed

    Balk, Anja; Wiest, Johannes; Widmer, Toni; Galli, Bruno; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs. PMID:25976317

  4. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    PubMed

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory. PMID:18075217

  5. Water-soluble titanium alkoxide material

    DOEpatents

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  6. Solubility calculations for acid gases in amine blends

    SciTech Connect

    Chakravarty, T.

    1985-01-01

    Treating with alkanolamines is often used to sweeten gases containing only a few parts per million of CO/sub 2/ and H/sub 2/S. Primary amines such as monoethanolamine (MEA) have great affinity for acid gases and are able to produce high purity sweet gas; on the other hand, tertiary amines like methyldiethanolamine (MDEA) have large capacity and are easy to regenerate but, because they do not bind chemically with CO/sub 2/, they are unable to produce a sweetened gas low in this component. Recently, the use of amine blends has become a subject of potentially great commercial importance. Since, the range of possible amines and blend formulations is large, a method for predicting equilibrium solubility is needed. A rigorous thermodynamic model has been developed which uses the extended Debye-Huckel expression, is very similar to one developed for single-amine solutions, and involves the fitting of binary interaction parameters to experimental data. In this work the interaction parameters found to be important in the activity coefficient expression were fitted to each single-acid-gas single-amine subsystem using all published solubility data. The resulting model was then validated by comparing mixed-acid-gas single-amine solubility predictions with published VLE data. MEA-MDEA and DEA-MDEA blends have been studied in detail in this work. It is found that each amine contributes to the overall acid gas solubility in a nonlinear way and that the solubility curves can exhibit maxima and minima as a function of the relative concentrations of the amines.

  7. The relationship between dissolved humic acids and soluble iron in estuaries

    NASA Technical Reports Server (NTRS)

    Fox, L. E.

    1984-01-01

    Dissolved humic acid and soluble iron appear to be chemically unassociated in estuaries despite their coincident removal. This conclusion is supported by differences in the aggregation kinetics of soluble iron and dissolved humic acid, the inability of extracted humic acid to stabilize laboratory preparations of ferric hydroxide, and decreasing ratios of humic acid carbon to soluble iron along the axes of some estuaries.

  8. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10

  9. A Soluble, Folded Protein without Charged Amino Acid Residues.

    PubMed

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall; Johansson, Kristoffer Enøe; Villa, Mara; Willemoës, Martin; Lindorff-Larsen, Kresten; Teilum, Kaare; Winther, Jakob R

    2016-07-19

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably, this chargeless protein is produced reasonably well in Escherichia coli, retains its stable three-dimensional structure, and is still capable of strong cellulose binding. To further deprive this protein of charges, we removed the N-terminal charge by acetylation and studied the protein at pH 2, where the C-terminus is effectively protonated. Under these conditions, the protein retains its function and proved to be both soluble and have a reversible folding-unfolding transition. To the best of our knowledge, this is the first time a soluble, functional protein with no titratable side chains has been produced. PMID:27307139

  10. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R.

    2012-02-22

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. For 6 M HNO{sub 3}, 10.5 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2 g/L and 0.25 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}.

  11. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  12. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    PubMed

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics. PMID:11829128

  13. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  14. IUPAC-NIST Solubility Data Series. 99. Solubility of Benzoic Acid and Substituted Benzoic Acids in Both Neat Organic Solvents and Organic Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Acree, William E.

    2013-09-01

    Solubility data are compiled and reviewed for benzoic acid and 63 substituted benzoic acids dissolved in neat organic solvents and well-defined binary and ternary organic solvent mixtures. The compiled solubility data were retrieved from the published chemical and pharmaceutical literature covering the period from 1900 to the beginning of 2013.

  15. Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis

    SciTech Connect

    Leon, J.; Shulaev, V.; Yalpani, N.

    1995-10-24

    Benzoic acid 2-hydroxylase (BA2H) catalyzes the biosynthesis of salicylic acid from benzoic acid. The enzyme has been partially purified and characterized as a soluble protein of 160 kDa. High-efficiency in vivo labeling of salicyclic acid with {sup 18}O{sub 2} suggested that BA2H is an oxygenase that specifically hydroxylates the ortho position of benzoic acid. The enzyme was strongly induced by either tobacco mosaic virus inoculation of benzoic acid infiltration of tobacco leaves and it was inhibited by CO and other inhibitors of cytochrome P450 hydroxylases. The BA2H activity was immunodepleted by antibodies raised against SU2, a soluble cytochrome P450 from Streptomyces griseolus. The anti-SU2 antibodies immunoprecipitated a radiolabeled polypeptide of around 160 kDa from the soluble protein extracts of L-[{sup 35}S]-methionine-fed tobacco leaves. Purified BA2H showed CO-difference spectra with a maximum at 457 nm. These data suggest that BA2H belongs to a novel class of soluble, high molecular weight cytochrome P450 enzymes. 21 refs., 6 figs., 1 tab.

  16. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  17. Placement in an acidic environment increase the solubility of white mineral trioxide aggregate

    PubMed Central

    Yavari, Hamid Reza; Borna, Zahra; Rahimi, Saeed; Shahi, Shahriar; Valizadeh, Hadi; Ghojazadeh, Morteza

    2013-01-01

    Aims: The aim of the present study was to evaluate solubility of white mineral trioxide aggregate (WMTA) in an acidic environment. Materials and Methods: Twenty-four metal rings were prepared, filled with WMTA and randomly divided into two groups. The samples in groups 1 and 2 were set in synthetic tissue fluid with pH values of 7.4 and 4.4, respectively and then were transferred to beakers containing synthetic tissue fluid with pH values of 7.7 and 4.4. Solubility of WMTA samples were calculated at the 9 experimental intervals. Data was analyzed with two-factor ANOVA and Bonferroni test (P < 0.03). Results: The total solubility of WMTA in groups 1 and 2 were −9.1796 ± 1.9158% and −1.1192 ± 2.6236%, (P = 0.028) with weight changes of 9.1574 ± 2.1432% and 7.3276 ± 1.5823%, respectively (P = 0.002). Statistical analysis revealed significant differences between the two groups. Conclusions: It was concluded that solubility of WMTA increases in acidic environments and additional therapeutic precautions should be taken to decrease inflammation in endodontic treatment. PMID:23833462

  18. Effects of CO2 enrichment on the metabolism of soluble amino acids and organic acids in barley primary leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined with barley primary leaves (Hordeum vulgare L. cv. Brant) grown in controlled environment chambers. Total soluble amino acids were enhanced 33% by CO2 enrichment when determined 9 days after sowing (DAS). However,...

  19. The solubility of aluminum in acidic forest soils: Long-term changes due to acid deposition

    NASA Astrophysics Data System (ADS)

    Mulder, Jan; Stein, Alfred

    1994-01-01

    Despite the ecological and pedogenic importance of Al, its solubility control in acidic forest soils is poorly understood. Here we discuss the solubility of Al and its development with time in three acid brown forest soils in The Netherlands, which are under extreme acidification from atmospheric deposition. All soil solutions (to a 60 cm depth) were undersaturated with respect to synthetic gibbsite (Al(OH) 3; log K = 9.12 at 8°C), with the highest degree of undersaturation occurring in the surface soil. In about one third of the individual soil layers a significant positive correlation existed between the activity of Al 3+ and H +, but this relationship was far less than cubic. Kinetically constrained dissolution of Al is unlikely to explain the disequilibrium with respect to gibbsite, because undersaturation was highest through summer when water residence times were longest and temperatures greatest. Time series analysis of six year data sets for several soil layers revealed a significant annual decline in soil solution pH and Al solubility (defined as log Al + 3 pH) despite a constant concentration of strong acid anions. The annual decline of both pH and Al solubility was greatest in the surface soil and was positively correlated with the relative depletion of reactive organically bound soil Al. The results support our earlier hypothesis that in strongly acidified forest soils complexation by solid phase organics controls the solubility of Al even in mineral soil layers, relatively low in organic C. The data lend no support to the current widespread and often uncritical use of gibbsite as a model for the Al solubility in highly acidic forest soils (pH < 4.5) of the temperate zone.

  20. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  1. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in...

  2. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... corresponding total soluble solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in...

  3. The effects of acid treatment and calcium ions on the solubility of concanavalin A

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1992-01-01

    The effects of acid treatment (which removes Mn and Ca ions) and Ca(2+) ions on the solubility of jack-bean-meal concanavalin A were investigated using two techniques: the sitting drop technique and the microcolumn technique. It was found that the solubility of concanavalin A varied with the protein preparation procedures and with measurement techniques. Addition of Ca(2+) resulted in greatly lowered solubilities compared with the acid treated protein. The sitting drop solubilities for the recalcified protein agreed better with those reported by Mikol and Giege (1989) than with solubilities determined from column data.

  4. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander

    2014-03-25

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e. NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  5. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  6. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    SciTech Connect

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0 MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.

  7. Solubility of small-chain carboxylic acids in supercritical carbon dioxide

    DOE PAGESBeta

    Sparks, Darrell L.; Estevez, L. Antonio; Hernandez, Rafael; McEwen, Jason; French, Todd

    2010-07-08

    The solubility of heptanoic acid and octanoic acid in supercritical carbon dioxide has been determined at temperatures of (313.15, 323.15, and 333.15) K over a pressure range of (8.5 to 30.0) MPa, depending upon the solute. The solubility of heptanoic acid ranged from a solute concentration of (0.08 ± 0.03) kg • m-3 (T = 323.15 K, p = 8.5 MPa) to (147 ± 0.2) kg • m-3 (T = 323.15 K, p = 20.0 MPa). The lowest octanoic acid solubility obtained was a solute concentration of (0.40 ± 0.1) kg • m-3 (T = 333.15 K, p = 10.0more » MPa), while the highest solute concentration was (151 ± 2) kg • m-3 (T = 333.15 K, p = 26.7 MPa). In addition, solubility experiments were performed for nonanoic acid in supercritical carbon dioxide at 323.15 K and pressures of (10.0 to 30.0) MPa to add to the solubility data previously published by the authors. In general, carboxylic acid solubility increased with increasing solvent density. The results also showed that the solubility of the solutes decreased with increasing molar mass at constant supercritical-fluid density. Additionally, the efficacy of Chrastil's equation and other density-based models was evaluated for each fatty acid.« less

  8. Poisoning effect on solubility of hydrogen isotopes in getter materials

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shinsuke; Sato, Yuichi; Ogawa, Hidenori; Shirasu, Yoshirou; Miyake, Masanobu

    1991-03-01

    Hydrogen and deuterium solubilities in Ti-C and Zr-N alloys with various compositions have been measured at pressures below 100 Pa. All of the solubility data were found to follow Sieverts' law. The presence of carbon in Ti increased the solubilities of hydrogen isotopes and reduced the enthalpies of solution. The solubility increased and the enthalpy of solution decreased with addition of nitrogen into Zr. The hydrogen solubility in Ti-C and Zr-N alloys was larger than the deuterium solubility. Partial thermodynamic functions of hydrogen and deuterium in Ti-C and Zr-N alloys were obtained by a dilute solution model and compared with those in Ti-(O, N) and Zr-O alloys. The isotope effect of hydrogen and deuterium solubilities in the Ti-(O, N, C) and Zr-(O, N) alloys was discussed, and the tritium solubility in Ti-C and Zr-N alloys was evaluated from hydrogen and deuterium data.

  9. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  10. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  11. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... corresponding total soluble solids. 51.1178 Section 51.1178 Agriculture Regulations of the Department of... solids. For determining the grade of juice, the maximum permissible anhydrous citric acid content in relation to corresponding total soluble solids in the fruit is set forth in the following Table II...

  12. Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling

    PubMed Central

    Tres, Alba; Heenan, Samuel P.; van Ruth, Saskia

    2014-01-01

    Demand for ethanol substituted fuels from the utilisation of cereal based biofuel has resulted in an over production of dried distillers grains with solubles (DDGS) that are now readily available on the animal feed market. With this rapid emerging availability comes potential variability in the nutritional value of DDGS and possible risks of feed contaminants. Subsequently, the authentication and traceability of alternative animal feed sources is of high priority. In this study and as part of the EU research project “Quality and Safety of Feeds and Food for Europe (QSAFFE FP7-KBBE-2010-4) an attempt was made to classify the geographical origin of cereal grains used in the production of DDGS material. DDGS material of wheat and corn origin were obtained from Europe, China, and the USA. Fatty acid profiles and volatile fingerprints were assessed by gas chromatography flame ionisation (GC-FID) and rapid proton transfer reaction mass spectrometry (PTR-MS) respectively. Chemometric analysis of fatty acid profiles and volatile fingerprints allowed for promising classifications of cereals used in DDGS material by geographical and botanical origin and enabled visual representation of the data. This objective analytical approach could be adapted for routine verification of cereal grains used in the production of DDGS material. PMID:25368433

  13. Interlaboratory evaluation of cellulosic acid-soluble internal air sampling capsules for multi-element analysis.

    PubMed

    Andrews, Ronnee N; Feng, H Amy; Ashley, Kevin

    2016-01-01

    An interlaboratory study was carried out to evaluate the use of acid-soluble cellulosic air sampling capsules for their suitability in the measurement of trace elements in workplace atmospheric samples. These capsules are used as inserts to perform closed-face cassette sample collection for occupational exposure monitoring. The interlaboratory study was performed in accordance with NIOSH guidelines that describe statistical procedures for evaluating measurement accuracy of air monitoring methods. The performance evaluation materials used consisted of cellulose acetate capsules melded to mixed-cellulose ester filters that were dosed with multiple elements from commercial standard aqueous solutions. The cellulosic capsules were spiked with the following 33 elements of interest in workplace air monitoring: Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, In, K, La, Li, Mg, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Sr, Te, Ti, Tl, V, W, Y, Zn, Zr. The elemental loading levels were certified by an accredited provider of certified reference materials. Triplicates of media blanks and multielement-spiked capsules at three different elemental loadings were sent to each participating laboratory; the elemental loading levels were not revealed to the laboratories. The volunteer participating laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by inductively coupled plasma atomic emission spectrometry in accordance with NIOSH methods. It was requested that the study participants report their analytical results in units of μg of each target element per internal capsule sample. For the majority of the elements investigated (30 out of 33), the study accuracy estimates obtained satisfied the NIOSH accuracy criterion (A < 25%). This investigation demonstrates the utility of acid-soluble internal sampling capsules for multielement analysis by atomic spectrometry. PMID:26308974

  14. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    PubMed

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. PMID:27424058

  15. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    PubMed

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. PMID:17323349

  16. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids

    USGS Publications Warehouse

    Chiou, C.T.; Malcolm, R.L.; Brinton, T.I.; Kile, D.E.

    1986-01-01

    Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p???-DDT, 2,4,5,2???,5???-PCB, 2,4,4???-PCB, 1,2,3-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. With a given DOM sample, the solute partition coefficient (Kdom) increases with a decrease of solute solubility (Sw) or with an increase of the solute's octanol-water partition coefficient (Kow). The Kdom values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment.

  17. Surface tension depression by low-solubility organic material in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Schwier, Allison; Mitroo, Dhruv; McNeill, V. Faye

    2012-07-01

    Surface-active material, including long-chain fatty acids (LCFAs), comprises a significant fraction of organic aerosol mass. Surface-active species are thought to form a film at the gas-aerosol interface, with implications for aerosol heterogeneous chemistry and cloud formation. However, LCFA phase behavior and surface-bulk partitioning has not been characterized under most conditions typical of tropospheric aerosol water (i.e. acidic, high ionic content), making it challenging to predict surface film formation in aerosols. In this study, we present measurements of the surface tension of aqueous solutions containing the slightly soluble LCFAs oleic and stearic acid. The effect of varying pH, organic concentration, and inorganic salt content was tested for each system. We observe surface tension depression compared to water of up to ˜30 and 45% for aqueous solutions containing stearic or oleic acid at pH 0-8 and high inorganic salt concentrations (NaCl and (NH4)2SO4). This suggests that surface film formation is favorable for these species in atmospheric aerosols.

  18. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  19. Interactions between water soluble porphyrin-based star polymer and amino acids: Spectroscopic evidence of molecular binding

    NASA Astrophysics Data System (ADS)

    Angelini, Nicola; Micali, Norberto; Villari, Valentina; Mineo, Placido; Vitalini, Daniele; Scamporrino, Emilio

    2005-02-01

    Molecular interactions giving rise to stable complexes between an uncharged water soluble cobalt-porphyrin and amino acids are investigated by time-resolved fluorescence, uv-vis, and circular dichroism measurements. This metalloporphyrin seems to act, by means of the coordination site of the cobalt of the core, as a recognition host, preferentially, with amino acids possessing aromatic groups. The binding with aliphatic amino acids requires longer time scales to be efficient and likely involves a slow kinetic process. The experimental findings suggest that, besides the metal(host)-N(guest) coordination bond, which is the common requisite for all amino acids, a preferential interaction with aromatic groups exists there. The solubility in water of the molecule, guaranteed by the polyethylene glycol arms as peripheral substituents, in the absence of electric charges, allows for a more selective discrimination of the binding process with respect to other water-soluble charged porphyrins. The interest devoted to the porphyrin-based star polymer and its recognition properties is, therefore, founded on the potential use either in polymeric matrices for material science or in aqueous solution for bioscience.

  20. Relationship between solubility and toxicity of coal liquefaction materials to the freshwater crustacean, Daphnia magna

    SciTech Connect

    Dauble, D.D.; Gray, R.H.; Scott, A.J.; Thomas, B.L.

    1985-11-01

    The potential ecological risk from complex coal liquids that may be released to freshwater ecosystems is ultimately dependent on both the degree of solubility of parent material and the toxic properties of constitutent compounds that an organism is exposed to. Thus, highly water-soluble components that remain bioavailable and are present in the water column at acutely toxic concentrations pose a problem for many aquatic organisms. We screened coal liquids derived from several processes and under different process designs to evaluate the acute toxicity of their water-soluble fractions (WSFs) to Daphnia magna. The solubility of materials treated varied and WSFs ranged from 44 to 2260 mg/L total carbon (TC). The most soluble materials in water exhibited greater toxicity based on percent dilution of the WSF. However, toxicity was similar for all materials tested when based on soluble components (TC in solution). Chemical characterization of the WSFs indicated that phenols comprised the majority of the TC in solution. Because toxicity based on total phenols was generally greater than that for individual phenolics tested separately, other soluble chemical classes in the complex mixtures likely contribute to observed toxicity.

  1. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  2. Synthesis of water soluble glycosides of pentacyclic dihydroxytriterpene carboxylic acids as inhibitors of α-glucosidase.

    PubMed

    Xu, Jiancong; Nie, Xuliang; Hong, Yanping; Jiang, Yan; Wu, Guoqiang; Yin, Xiaoli; Wang, Chunrong; Wang, Xiaoqiang

    2016-04-01

    A series of compounds were synthesized by glycosylation of maslinic acid (MA) and corosolic acid (CA) with monosaccharides and disaccharides, and the structures of the derivatives were elucidated by standard spectroscopic methods including (1)H NMR, (13)C NMR and HRMS. The α-glucosidase inhibitory activities of all the novel compounds were evaluated in vitro. The solubility and inhibitory activity of α-glucosidase assays showed that the bis-disaccharide glycosides of triterpene acids possessed higher water solubility and α-glucosidase inhibitory activities than the bis-monosaccharide glycosides. Among these compounds, maslinic acid bis-lactoside (8e, IC50 = 684 µM) and corosolic acid bis-lactoside (9e, IC50 = 428 µM) had the best water solubility, and 9e exhibited a better inhibitory activity than acarbose (IC50 = 478 µM). However, most of glycosylated derivatives possessed lower inhibitory activities than the parent compounds, although their water solubility was enhanced obviously. Moreover, the kinetic inhibition studies indicated that 9e was a non-competitive inhibitor, and structure-activity relationships of the derivatives are also discussed. PMID:26974355

  3. Effect of alcohols and neutral salt on the thermal stability of soluble and precipitated acid-soluble collagen

    PubMed Central

    Russell, Allan E.

    1973-01-01

    The effects of mono- and poly-hydric alcohols in the presence of KCl on the intrinsic stability of collagen molecules in dilute acid solution were compared with corresponding solvent and salt effects on the increased stability of the aggregated molecules in salt-precipitated fibrils. Salt addition decreased solubility and increased the thermal stability of fibrils, but progressively decreased the stability of collagen molecules in solution. In contrast, the alcohols enhanced solubility and decreased fibril stability, the effects increasing with solvent hydrocarbon chain length and with decreasing hydroxyl/methylene-group ratio. Molar destabilization of dissolved collagen by alcohols was lower than for fibrils, and at low salt concentration, both ethylene glycol and glycerol were structural stabilizers. Electron-micrograph studies indicated that salt-precipitated fibrils tended to adopt the native aggregation mode, and qualitatively similar solvent effects were observed in insoluble collagens. Implications of the experimental findings are discussed in terms of a model in which electrostatic and apolar interactions mainly govern the excess of stability in collagen fibrils whereas intrinsic stability of single molecules is a function of polar interactions and polypeptide-chain rigidity. PMID:4737319

  4. Solubility calculations of branched and linear amino acids using lattice cluster theory

    NASA Astrophysics Data System (ADS)

    Fischlschweiger, Michael; Enders, Sabine; Zeiner, Tim

    2014-09-01

    In this work, the activity coefficients and the solubility of amino acids in water were calculated using the lattice cluster theory (LCT) combined with the extended chemical association lattice model allowing self-association as well as cross-association. This permits the study of the influence of the amino acids structure on the thermodynamic properties for the first time. By the used model, the activity coefficient and solubilities of the investigated fourteen amino acids (glycine, alanine, γ-aminobutyric acid, dl-valine, dl-threonine, dl-methionine, l-leucine, l-glutamic acid, l-proline, hydroxyproline, histidine, l-arginine, α-amino valeric acid) could be described in good accordance with experimental data. In the case of different α-amino acids, but different hydrocarbon chains, the same interaction energy parameter can be used within the LCT. All studied amino acids could be modelled using the same parameter for the description of the amino acid association properties. The formed cross-associates contain more amino acids than expressed by the overall mole fraction of the solution. Moreover, the composition of the cross-associates depends on temperature, where the amount of amino acids increases with increasing temperature.

  5. Role of Acid Mobilization in Iron Solubility of Smaller Mineral Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2011-12-01

    Iron (Fe) is an essential element for phytoplankton. The majority of iron is transported from arid regions to the open ocean, but is mainly in an insoluble form. Since most aquatic organisms can take up iron only in the dissolved form, the amount of soluble iron is of key importance. Atmospheric processing of mineral aerosols by anthropogenic pollutants may transform insoluble iron into soluble forms. Compared to dust, combustion aerosols often contain iron with higher solubility. This paper discusses the factors that affect the iron solubility in mineral aerosols on a global scale using an aerosol chemistry transport model. Bioavailable iron is derived from atmospheric processing of relatively insoluble iron from desert sources and from direct emissions of soluble iron from combustion sources such as biomass and fossil fuels burning. The iron solubility from onboard cruise measurements over the Atlantic and the Pacific Oceans in 2001 is used to evaluate the model performance in simulating soluble iron. Sensitivity simulations from dust sources with no atmospheric processing by acidic species systematically underestimate the soluble iron concentration in fine particles. Improvement of the agreement between the model results and observations is achieved by the use of a faster iron dissolution rate in fine particles associated with anthropogenic pollutants (e.g., sulphate). Accurate simulation of the abundance of soluble iron in fine aerosols has important implications with regards to ocean fertilization because of the longer residence time of smaller particles, which supply nutrients to more remote ocean biomes. The model reveals a larger deposition of soluble iron for the fine mode than that for the coarse mode in northern oceans due to acid mobilization. The ratio of deposition rate of soluble iron in the fine mode to the total aerosols in the South Atlantic Ocean (40-60%) is less than that in northern oceans (70-100%). These results suggest that Patagonian dust

  6. Solubility and bacterial sealing ability of MTA and root-end filling materials

    PubMed Central

    ESPIR, Camila Galletti; GUERREIRO-TANOMARU, Juliane Maria; SPIN-NETO, Rubens; CHÁVEZ-ANDRADE, Gisselle Moraima; BERBERT, Fabio Luiz Camargo Villela; TANOMARU-FILHO, Mario

    2016-01-01

    ABSTRACT Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE. PMID:27119759

  7. Solubility and bacterial sealing ability of MTA and root-end filling materials.

    PubMed

    Espir, Camila Galletti; Guerreiro-Tanomaru, Juliane Maria; Spin-Neto, Rubens; Chávez-Andrade, Gisselle Moraima; Berbert, Fabio Luiz Camargo Villela; Tanomaru-Filho, Mario

    2016-04-01

    Objective To evaluate solubility and sealing ability of Mineral Trioxide Aggregate (MTA) and root-end filling materials. Material and Methods The materials evaluated were: MTA, Calcium Silicate Cement with zirconium oxide (CSC/ZrO2), and zinc oxide/eugenol (ZOE). Solubility test was performed according to ANSI/ADA. The difference between initial and final mass of the materials was analyzed after immersion in distilled water for 7 and 30 days. Retrograde cavities in human teeth with single straight root canal were performed by using ultrasonic tip CVD 9.5107-8. The cavities were filled with the evaluated materials to evaluate sealing ability using the bacterial leakage test with Enterococcus faecalis. Bacterial leakage was evaluated every 24 hours for six weeks observing the turbidity of Brain Heart infusion (BHI) medium in contact with root apex. Data were submitted to ANOVA followed by Tukey tests (solubility), and Kruskal-Wallis and Dunn tests (sealing ability) at a 5% significance level. Results For the 7-day period, ZOE presented highest solubility when compared with the other groups (p<0.05). For the 30-day period, no difference was observed among the materials. Lower bacterial leakage was observed for MTA and CSC/ZrO2, and both presented better results than ZOE (p<0.05). Conclusion MTA and CSC/ZrO2 presented better bacterial sealing capacity, which may be related to lower initial solubility observed for these materials in relation to ZOE. PMID:27119759

  8. Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod, and chlorosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of soluble amino acids and organic acids to CO2 enrichment were determined using barley primary leaves (Hordeum vulgare L. cv. Brant). Plants were grown in controlled environment chambers using either ambient (36 Pa) or elevated (100 Pa) CO2 treatments. Total soluble amino acids were inc...

  9. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  10. Phenolic acids and antioxidant activity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sample sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants in Iowa. Phenolic acids were analyzed by high performance liquid chromatography coupled with diode array and/or mass spectrometry. The antioxidant activity was ...

  11. Relationship of soluble solids, acidity and aroma volatiles to flavor in late-season navel oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Navel orange flavor development during early fruit maturation is strongly dependent on changes in soluble solids concentration (SSC) and titratable acidity (TA), while later in the season other factors, such as aroma volatiles, also become important. The flavor of individual oranges can differ gre...

  12. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    EPA Science Inventory

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  13. Water soluble quantum dot nanoclusters: energy migration in artifical materials.

    PubMed

    Oh, Megan H J; Gentleman, Darcy J; Scholes, Gregory D

    2006-11-21

    Energy migration in self-assembled, water soluble, quantum dot (QD) nanoclusters is reported. These spherical nanoclusters are composed of CdSe QDs bound together by pepsin, a digestive enzyme found in mammals. A structural model for the clusters is suggested, based on scanning transmission electron microscopy, as well as dynamic light scattering and small angle X-ray scattering. Cluster sizes range from 100 to 400 nm in diameter and show a close-packed interior structure. Optical characterization of the absorption and emission spectra of the clusters is reported, finding photoluminescence quantum yields of up to approximately 60% in water for clusters made from core-shell CdSe-ZnS QDs. Clusters prepared from two different size populations of CdSe QD samples (3 and 4 nm in diameter) demonstrate energy migration and trapping. Resonance energy transfer (RET), from small to large dots within the QD-pepsin cluster, is observed by monitoring the quenching of the small donor dot fluorescence along with enhancement of the large acceptor dot fluorescence. PMID:17091158

  14. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    NASA Astrophysics Data System (ADS)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  15. Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering.

    PubMed

    Obata, Akiko; Ozasa, Hiroki; Kasuga, Toshihiro; Jones, Julian R

    2013-07-01

    Cotton wool-like poly(L-lactic acid) and siloxane-doped vaterite (SiV) composite scaffolds were prepared with a modified electrospinning system for bone tissue engineering applications. The effects of changing the SiV content in the materials from 10 to 30 wt% on elasticity and the ability to release calcium ions and soluble silica were evaluated. The elasticity of the cotton wool-like composites was almost the same as that of the PLLA from the results of compressibility and recovery tests. The materials released calcium ions for more than 56 days and soluble silica for 28-56 days in a tris buffer solution (pH 7.4). Mouse osteoblast-like cells (MC3T3-E1 cells) were cultured on/in the cotton wool-like materials or the fibremats out of the same composite materials as that used for the cotton wool-like materials. The cells penetrated into and proliferated inside the cotton wool-like materials, although they mainly adhered on the fibremat surface. PMID:23606191

  16. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    USGS Publications Warehouse

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  17. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility.

    PubMed

    Ogawa, Kazuki; Hirose, Sayumi; Nagaoka, Satoshi; Yanase, Emiko

    2016-01-13

    The molecular mechanism by which tea polyphenols decrease the micellar solubility of cholesterol is not completely clear. To clarify this mechanism, this study investigated the interaction between tea polyphenols (catechins and oolongtheanins) and cholesterol micelles. A nuclear magnetic resonance (NMR) study was performed on a micellar solution containing taurocholic acid and epigallocatechin gallate (EGCg), and high-performance liquid chromatography (HPLC) analysis was carried out on the precipitate and the supernatant that formed when EGCg was added to a cholesterol-micelle solution. The data indicated a regiospecific interaction of EGCg with taurocholic acid. Therefore, the ability of EGCg to lower the solubility of phosphatidylcholine (PC) and cholesterol in micellar solutions can be attributed to their elimination from the micelles due to interaction between taurocholic acids and EGCg. PMID:26651358

  18. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    SciTech Connect

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  19. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    NASA Astrophysics Data System (ADS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  20. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  1. Solubility of the Sodium and Ammonium Salts of Oxalic Acid in Water with Ammonium Sulfate.

    PubMed

    Buttke, Lukas G; Schueller, Justin R; Pearson, Christian S; Beyer, Keith D

    2016-08-18

    The solubility of the sodium and ammonium salts of oxalic acid in water with ammonium sulfate present has been studied using differential scanning calorimetry, X-ray crystallography, and infrared spectroscopy. The crystals that form from aqueous mixtures of ammonium sulfate/sodium hydrogen oxalate were determined to be sodium hydrogen oxalate monohydrate under low ammonium sulfate conditions and ammonium hydrogen oxalate hemihydrate under high ammonium sulfate conditions. Crystals from aqueous mixtures of ammonium sulfate/sodium oxalate were determined to be ammonium oxalate monohydrate under moderate to high ammonium sulfate concentrations and sodium oxalate under low ammonium sulfate concentrations. It was also found that ammonium sulfate enhances the solubility of the sodium oxalate salts (salting in effect) and decreases the solubility of the ammonium oxalate salts (salting out effect). In addition, a partial phase diagram for the ammonium hydrogen oxalate/water system was determined. PMID:27482644

  2. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants. PMID:25203006

  3. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia)

    PubMed Central

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C.; Ullah, Abul H. J.

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and Pi. PAPs are typically categorized into two subfamilies: Mg2+-dependent soluble PAP and Mg2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53–60°C and unaffected by up to 0.3 mM MgCl2. The Km and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na3VO4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg2+-independent enzyme in plants. PMID:25203006

  4. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    SciTech Connect

    Kilbane, J.J. II; Jackowski, K.

    1991-01-01

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  5. Effect of magnesium carbonate on the solubility, dissolution and oral bioavailability of fenofibric acid powder as an alkalising solubilizer.

    PubMed

    Kim, Kyeong Soo; Kim, Jeong Hyun; Jin, Sung Giu; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Li, Dong Xun; Woo, Jong Soo; Choi, Han-Gon

    2016-04-01

    To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability. PMID:26992922

  6. Enhancing the intestinal absorption of poorly water-soluble weak-acidic compound by controlling local pH.

    PubMed

    Iwanaga, Kazunori; Kato, Shino; Miyazaki, Makoto; Kakemi, Masawo

    2013-12-01

    Recently, the number of poorly water-soluble drug candidates has increased and has hindered the rapid improvement of new drugs with low intestinal absorption; however, the intestinal absorption of pH-dependent poorly water-soluble compounds is expected to be markedly improved by changing the pH in the vicinity of the absorption site. The aim of this study is to clarify the effect of local pH change in the intestinal tract by magnesium oxide on the intestinal absorption of hydrochlorothiazide, a model poorly water-soluble weak-acid compound. The application of hydrochlorothiazide granule containing magnesium oxide to the rat intestinal loop increased the pH in the vicinity of the dosing site to more than 8.5 for 90 min without any mucosal damage. As a result, absorption of hydrochlorothiazide increased by the addition of magnesium oxide to the granule. Intraintestinal administration of a suspension prepared from hydrochlorothiazide granules with magnesium oxide increased the intestinal absorption and the AUC value was 3-fold higher than that without magnesium oxide. To further increase the intestinal absorption of hydrochlorothiazide, we prepared granules containing magnesium oxide and chitosan as a mucoadhesive and tight junction opening material. Chitosan showed a marked increase of intestinal absorption, and the AUC value after the administration of suspensions of chitosan granules was more than 5-fold higher than that of granules containing hydrochlorothiazide alone, respectively. In summary, it has been clarified that the intestinal absorption of weak-acidic poorly water-soluble compound can be enhanced by increasing local pH, mucoadhesion and opening tight junction. PMID:22443480

  7. Extraction of Nucleic Acids from Lyophilized Plant Material

    PubMed Central

    Guinn, Gene

    1966-01-01

    Four methods for extracting nucleic acids from lyophilized cotton (Gossypium hirsutum L. cv. Stoneville 62) leaves and roots were compared. They were based on the use of: (I) HC104; (II) KOH; (III) a mixture of 90% phenol, Tris (hydroxymethyl) aminomethane buffer, and sodium lauryl sulfate; and (IV) NaCl. (I) extracted large amounts of RNA but little DNA and extracted much carbohydrate and protein contaminants. (II) gave a good yield of both RNA and DNA but extracted such large amounts of contaminating material that purification of RNA on an anion exchange column was necessary. (III) extracted only part of the RNA and practically no DNA, but extracted contaminating materials. (IV) resulted in high yields of both RNA and DNA when modified to omit preliminary acid extraction of impurities. The use of cold trichloroacetic acid instead of ethanol, to precipitate NaCl-extracted nucleic acids, separated the nucleic acids from most of the carbohydrate and acid-soluble phosphate contaminants and resulted in good agreement among results by ultraviolet absorbance, pentose tests, and phosphate analysis. This method also resulted in lower protein contents and better ultraviolet absorption spectra than the other methods tested. Nucleic acids were extracted from leaves of 14 other species of plants, in addition to cotton, by this modified NaCl procedure. PMID:16656306

  8. Regulation of Bile Acid Synthesis by Fat-soluble Vitamins A and D*

    PubMed Central

    Schmidt, Daniel R.; Holmstrom, Sam R.; Fon Tacer, Klementina; Bookout, Angie L.; Kliewer, Steven A.; Mangelsdorf, David J.

    2010-01-01

    Bile acids are required for proper absorption of dietary lipids, including fat-soluble vitamins. Here, we show that the dietary vitamins A and D inhibit bile acid synthesis by repressing hepatic expression of the rate-limiting enzyme CYP7A1. Receptors for vitamin A and D induced expression of Fgf15, an intestine-derived hormone that acts on liver to inhibit Cyp7a1. These effects were mediated through distinct cis-acting response elements in the promoter and intron of Fgf15. Interestingly, transactivation of both response elements appears to be required to maintain basal Fgf15 expression levels in vivo. Furthermore, whereas induction of Fgf15 by vitamin D is mediated through its receptor, the induction of Fgf15 by vitamin A is mediated through the retinoid X receptor/farnesoid X receptor heterodimer and is independent of bile acids, suggesting that this heterodimer functions as a distinct dietary vitamin A sensor. Notably, vitamin A treatment reversed the effects of the bile acid sequestrant cholestyramine on Fgf15, Shp, and Cyp7a1 expression, suggesting a potential therapeutic benefit of vitamin A under conditions of bile acid malabsorption. These results reveal an unexpected link between the intake of fat-soluble vitamins A and D and bile acid metabolism, which may have evolved as a means for these dietary vitamins to regulate their own absorption. PMID:20233723

  9. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    NASA Astrophysics Data System (ADS)

    Pradeep Kumar, P.; Broekhuizen, K.; Abbatt, J. P. D.

    2003-05-01

    The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN) has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC). The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  10. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG.

    PubMed

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG's inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  11. Sialic Acid Is Required for Neuronal Inhibition by Soluble MAG but not for Membrane Bound MAG

    PubMed Central

    Al-Bashir, Najat; Mellado, Wilfredo; Filbin, Marie T.

    2016-01-01

    Myelin-Associated Glycoprotein (MAG), a major inhibitor of axonal growth, is a member of the immunoglobulin (Ig) super-family. Importantly, MAG (also known as Siglec-4) is a member of the Siglec family of proteins (sialic acid-binding, immunoglobulin-like lectins), MAG binds to complex gangliosides, specifically GD1a and/or GT1b. Therefore, it has been proposed as neuronal receptors for MAG inhibitory effect of axonal growth. Previously, we showed that MAG binds sialic acid through domain 1 at Arg118 and is able to inhibit axonal growth through domain 5. We developed a neurite outgrowth (NOG) assay, in which both wild type MAG and mutated MAG (MAG Arg118) are expressed on cells. In addition we also developed a soluble form NOG in which we utilized soluble MAG-Fc and mutated MAG (Arg118-Fc). Only MAG-Fc is able to inhibit NOG, but not mutated MAG (Arg118)-Fc that has been mutated at its sialic acid binding site. However, both forms of membrane bound MAG- and MAG (Arg118)- expressing cells still inhibit NOG. Here, we review various results from different groups regarding MAG’s inhibition of axonal growth. Also, we propose a model in which the sialic acid binding is not necessary for the inhibition induced by the membrane form of MAG, but it is necessary for the soluble form of MAG. This finding highlights the importance of understanding the different mechanisms by which MAG inhibits NOG in both the soluble fragmented form and the membrane-bound form in myelin debris following CNS damage. PMID:27065798

  12. The Interplay between Inorganic Phosphate and Amino Acids determines Zinc Solubility in Brain Slices

    PubMed Central

    Rumschik, Sean M.; Nydegger, Irma; Zhao, Jinfu; Kay, Alan R

    2009-01-01

    Inorganic phosphate (Pi) is an important polyanion needed for ATP synthesis and bone formation. Since it is found at millimolar levels in plasma it is usually incorporated as a constituent of artificial cerebrospinal fluid (ACSF) formulations for maintaining brain slices. In this paper we show that Pi limits the extracellular zinc concentration by inducing metal precipitation. We present data suggesting that amino acids like histidine may counteract the Pi-induced zinc precipitation by the formation of soluble zinc complexes. We propose that the interplay between Pi and amino acids in the extracellular space may influence the availability of metals for cellular uptake. PMID:19183267

  13. AIRWAY RETENTION OF MATERIALS OF DIFFERENT SOLUBILITY FOLLOWING LOCAL INTRABRONCHIAL DEPOSITION IN DOGS

    EPA Science Inventory

    We used a gamma camera to monitor the retention and clearance of radiolabeled human serum albumin (HSA), a water-soluble material with molecular weight of 66,000 Daltons, and radiolabeled sulfur colloid (SC), an insoluble submicron (0.22 microm) particle, following localized depo...

  14. REMOVING WATER-SOLUBLE HAZARDOUS MATERIAL SPILLS FROM WATERWAYS WITH CARBON

    EPA Science Inventory

    A model for the removal of water-soluble organic materials from water by carbon-filled, buoyant packets and panels is described. Based on this model, equations are derived for the removal of dissolved organic compounds from waterways by buoyant packets that are either (a) cycled ...

  15. Acid Rain: Resource Materials for Schools.

    ERIC Educational Resources Information Center

    American Biology Teacher, 1983

    1983-01-01

    Provides listings of acid rain resource material groups under: (1) printed materials (pamphlets, books, articles); (2) audiovisuals (slide/tape presentations, tape, video-cassette); (3) miscellaneous (buttons, pocket lab, umbrella); (4) transparencies; (5) bibliographies; and (6) curriculum materials. Sources and prices (when applicable) are…

  16. Solubility of a new calcium silicate-based root-end filling material

    PubMed Central

    Singh, Shishir; Podar, Rajesh; Dadu, Shifali; Kulkarni, Gaurav; Purba, Rucheet

    2015-01-01

    Introduction: The purpose of this study was to compare solubility of a new calcium silicate-based cement, Biodentine with three commonly used root-end filling materials viz. glass-ionomer cement (GIC), intermediate restorative material (IRM), and mineral trioxide aggregate (MTA). Materials and Methods: Twenty stainless steel ring molds were filled with cements corresponding to four groups (n = 5). The weight of 20 dried glass bottles was recorded. Samples were transferred to bottles containing 5 ml of distilled water and stored for 24 h. The bottles were dried at 105΀C and weighed. This procedure was repeated for 3, 10, 30, and 60 days. Data was analyzed with one-way analysis of variance (ANOVA) test (P < 0.05). Results: Biodentine demonstrated significantly higher solubility than MTA for 30- and 60-day immersion periods. Statistical difference was noted between the solubility values of Biodentine samples amongst each of the five time intervals. Conclusions: Biodentine exhibited higher solubility in comparison with all other cements. PMID:25829696

  17. Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility.

    PubMed

    Francis, A J; Dodge, C J

    2008-11-15

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI): citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex,which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes. PMID:19068806

  18. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    PubMed

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields. PMID:25169839

  19. Separation of asphaltic materials from heptane soluble components in liquified solid hydrocarbonaceous extracts

    SciTech Connect

    Gleim, W.

    1980-07-08

    An improved method is described for maximizing the separation of the heat labile fraction of asphaltic materials in a liquified solid hydrocarbonaceous extract, which comprises the steps of: (A) adding a solvent having a boiling range of from about 50 to 200/sup 0/C for the heptane solubles of said extract, (B) effecting a mixing of said solvent and said extract and providing a pressurized centrifuging action of the combined stream in a confined pressure-tight powered centrifuging zone at a temperature in the range of 100/sup 0/C, to about 200/sup 0//c while at an elevated pressure at least sufficient to maintain the solvent material in a liquid state, whereby to separate the heavier heat labile asphaltic materials fraction from the mixture, and (C) effecting the withdrawal of the asphaltic fraction from the centrifuging zone substantially free of the resulting solution of the heptane soluble liquified fuel extract.

  20. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  1. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  2. Nanometer-Scale Water-Soluble Macrocycles from Nanometer-Sized Amino Acids

    PubMed Central

    Gothard, Chris M.

    2009-01-01

    This paper introduces the unnatural amino acids m-Abc2K and o-Abc2K as nanometersized building blocks for the creation of water-soluble macrocycles with well-defined shapes. m-Abc2K and o-Abc2K are homologues of the nanometer-sized amino acid Abc2K, which we recently introduced for the synthesis of water-soluble molecular rods of precise length. [J. Am. Chem. Soc. 2007, 129, 7272]. Abc2K is linear (180°), m-Abc2K creates a 120° angle, and o-Abc2K creates a 60° angle. m-Abc2K and o-Abc2K are derivatives of 3’-amino-[1,1’-biphenyl]-4-carboxylic acid and 2’-amino-[1,1’-biphenyl]-4-carboxylic acid, with two propyloxyammonium side chains for water solubility. m-Abc2K and o-Abc2K are prepared as Fmoc-protected derivatives Fmoc-m-Abc2K(Boc)-OH (1a) and Fmoc-o-Abc2K(Boc)-OH (1b). These derivatives can be used alone or in conjunction with Fmoc-Abc2K(Boc)-OH (1c) as ordinary amino acids in Fmoc-based solid-phase peptide synthesis. Building blocks 1a–c were used to synthesize macrocyclic “triangles” 9a–c, “parallelograms” 10a,b, and hexagonal “rings” 11a–d. The macrocycles range from a trimer to a dodecamer, with ring sizes from 24 to 114 atoms, and are 1–4 nm in size. Molecular modeling studies suggest that all the macrocycles except 10b should have well-defined triangle, parallelogram, and ring shapes if all of the amide linkages are trans and the ortho-alkoxy substituents are intramolecularly hydrogen bonded to the amide NH groups. The macrocycles have good water solubility and are readily characterized by standard analytical techniques, such as RP-HPLC, ESI-MS, and NMR spectroscopy. 1H and 13C NMR studies suggest that the macrocycles adopt conformations with all trans-amide linkages in CD3OD, that the “triangles” and “parallelograms” maintain these conformations in D2O, and that the “rings” collapse to form conformations with cis-amide linkages in D2O. PMID:20020731

  3. Crystallization of solid-state materials via decomplexation of soluble complexes

    SciTech Connect

    Doxsee, K.M.

    1998-10-01

    A variety of compounds which are at best sparingly soluble in aqueous media may be readily brought into solution through the formation of soluble coordination complexes. Modification of experimental conditions through, e.g., dilution or slow removal of the complexing agent, leads to supersaturation and, consequently, crystallization of the original solid-state phase. This technique of decomplexation crystallization, both of simple inorganic coordination complexes and of complexes with macrocyclic organic chelating agents, offers the opportunity both to effect the recrystallization of sparingly soluble species and to modify their crystal morphology. Similarly, precursors for solid-state materials may be solubilized in nonaqueous solvents through the formation of soluble complexes and then allowed to undergo reaction crystallization, allowing the examination of both solvent effects and chelation effects on the morphology and phase of the resulting solid-state materials. These effects are often dramatic, and such complexation-mediated crystallization approaches offer promise for the facile preparation of metastable phases from simple precursors under ambient conditions.

  4. Reactivity of Water Soluble Organic Acids with Chloride and Nitrate Particles Investigated by Micro-spectroscopy Analysis

    NASA Astrophysics Data System (ADS)

    Wang, B.; OBrien, R. E.; Kelly, S. T.; Shilling, J. E.; Tivanski, A.; Moffet, R.; Gilles, M. K.; Laskin, A.

    2013-12-01

    Atmospheric particles often consist of a complex organic and inorganic mixture. Interactions between organic and inorganic species may affect particles' chemical and physical properties thus atmospheric chemistry and climate. Water soluble organic acids (WSOA) can contribute a significant fraction of organic materials in condense phase. Inorganic particles, such as sea salt and mineral dust, are main components in the atmosphere and can undergo complex heterogeneous reactions. For example, depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids. Recently, we showed that NaCl can react with WSOA resulting in the release gaseous HCl and formation of organic salts. A similar mechanism is also applicable to mixed WSOA/nitrate particles where acid displacement reactions are mainly driven by the high volatility and evaporation of HNO3 as particles go through dehydration process. Furthermore, secondary organic material (SOM), which contains a complex mixture of carboxylic acids, exhibits a similar reactivity towards chlorides and nitrates. Here, we present field and laboratory studies on the reactions between atmospheric relevant WSOA/SOM and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis such as computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-Fourier transform infrared spectroscopy (micro-FTIR). The results show various potentials of chloride and nitrate depletion by WSOA and SOM. Formation of corresponding organic salts is confirmed and quantified.

  5. Microbial kinetic model for the degradation of poorly soluble organic materials.

    PubMed

    Yassine, Mohamad H; Suidan, Makram T; Venosa, Albert D

    2013-03-15

    A novel mechanistic model is presented that describes the aerobic biodegradation kinetics of soybean biodiesel and petroleum diesel in batch experiments. The model was built on the assumptions that biodegradation takes place in the aqueous phase according to Monod kinetics, and that the substrate dissolution kinetics at the oil/water interface is intrinsically fast compared to biodegradation kinetics. Further, due to the very low aqueous solubility of these compounds, the change in the substrate aqueous-phase concentration over time was assumed to approaches zero, and that substrate aqueous concentration remains close to the saturation level while the non-aqueous phase liquid (NAPL) is still significant. No former knowledge of the saturation substrate concentration (S(sat)) and the Monod half-saturation constant (K(s)) was required, as the term S(sat)/(K(s) + S(sat)) in the Monod equation remained constant during this phase. The n-alkanes C10-C24 of petroleum diesel were all utilized at a relatively constant actual specific utilization rate of 0.01-0.02 mg-alkane/mg-biomass-hr, while the fatty acid methyl esters (FAMEs) of biodiesel were utilized at actual specific rates significantly higher with increasing carbon chain length and lower with increasing number of double bonds. The results were found to be in agreement with kinetic, genetic, and metabolic evidence reported in the literature pertaining to microbial decay rates, uptake mechanisms, and the metabolic pathway by which these compounds are assimilated into microorganisms. The presented model can be applied, without major modifications, to estimate meaningful kinetic parameters from batch experiments, as well as near source zone field application. We suggest the estimated actual microbial specific utilization rate (kC) of such materials to be a better measure of the degradation rate when compared to the maximum specific utilization rate (k), which might be orders of magnitude higher than kC and might never

  6. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications.

    PubMed

    Shahzad, Sohail; Shahzadi, Lubna; Mahmood, Nasir; Siddiqi, Saadat Anwar; Rauf, Abdul; Manzoor, Faisal; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur; Yar, Muhammad

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and (1)H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. PMID:27207049

  7. Soluble species in the Arctic summer troposphere - Acidic gases, aerosols, and precipitation

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Vijgen, A. S.; Harriss, R. C.

    1992-01-01

    The large-scale spatial distribution from 0.15-to 6 km altitude in the North American Arctic troposphere of several soluble acidic gases and major aerosol species during the summertime is reported. The distribution is found to be compositionally consistent on a large spatial scale. The summertime troposphere is an acidic environment, with HCOOH and CH3COOH the principal acidic gases while acidic sulfate aerosols dominate the particulate phase. There appears to be a surface source of NH3 over the pack ice which may originate from decay of dead marine organisms on the ice surface, evolution from surface ocean waters in open ice leads, or release from rotting sea ice. At low altitude over the pack ice this NH34 appears to partially neutralize aerosol acidity. Over sub-Arctic tundra in southeastern Alaska, inputs of marine biogenic sulfur from the Bering Sea appear to be an important source of boundary layer aerosol SO4(2-). The rainwater acidity over the tundra is typical of remote regions.

  8. Chlorin p6-Based Water-Soluble Amino Acid Derivatives as Potent Photosensitizers for Photodynamic Therapy.

    PubMed

    Meng, Zhi; Yu, Bin; Han, Guiyan; Liu, Minghui; Shan, Bin; Dong, Guoqiang; Miao, Zhenyuan; Jia, Ningyang; Tan, Zou; Li, Buhong; Zhang, Wannian; Zhu, Haiying; Sheng, Chunquan; Yao, Jianzhong

    2016-05-26

    The development of novel photosensitizer with high phototoxicity, low dark toxicity, and good water solubility is a challenging task for photodynamic therapy (PDT). A series of chlorin p6-based water-soluble amino acid conjugates were synthesized and investigated for antitumor activity. Among them, aspartylchlorin p6 dimethylester (7b) showed highest phototoxicity against melanoma cells with weakest dark toxicity, which was more phototoxic than verteporfin while with less dark toxicity. It also exhibited better in vivo PDT antitumor efficacy on mice bearing B16-F10 tumor than verteporfin. The biological assays revealed that 7b was localized in multiple subcellular organelles and could cause both cell necrosis and apoptosis after PDT in a dose-dependent manner, resulting in more effective cell destruction. As a result, 7b represents a promising photosensitizer for PDT applications because of its strong absorption in the phototherapeutic window, relatively high singlet oxygen quantum yield, highest dark toxicity/phototoxicity ratio, good water solubility, and excellent in vivo PDT antitumor efficacy. PMID:27136389

  9. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    PubMed

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus. PMID:18656674

  10. Influence of neutral salts on the hydrothermal stability of acid-soluble collagen.

    PubMed

    Brown, E M; Farrell, H M; Wildermuth, R J

    2000-02-01

    The thermal stability of acid-soluble collagens was studied by circular dichroism (CD) spectroscopy. Adult bovine dermal collagen (BDC), rat-tail tendon collagen (RTC), and calf skin collagen (CSC) were compared. Despite some variability in amino acid composition and apparent molecular weight, the CD spectra for helical and unordered collagen structures were essentially the same for all the sources. The melting of these collagens occurs as a two-stage process characterized by a pretransition (Tp) followed by complete denaturation (Td). The characteristic temperatures vary with the source of the collagen; for mature collagens (BDC, RTC) Tp = 30 degrees C and Td = 36 degrees C, and for CSC Tp = 34 degrees C and Td = 40 degrees C. Neutral salts, NaCl or KCl, at low concentrations (0.02-0.2 M) appear to bind to the collagens and shift the thermal transitions of these collagens to lower temperatures. PMID:10945432

  11. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats.

    PubMed

    Shibata, Katsumi; Takahashi, Chisato; Fukuwatari, Tsutomu; Sasaki, Ryuzo

    2005-12-01

    To acquire the data concerning the tolerable upper intake level which prevents health problems from an excessive intake of pantothenic acid, an animal experiment was done. Rats of the Wistar strain (male, 3 wk old) were fed on a diet which contains 0%, 0.0016% (control group), 1%, or 3% calcium pantothenate for 29 d. The amount of weight increase, the food intake, and the organ weights were measured, as well as the pantothenic acid contents in urine, the liver and blood. Moreover, to learn the influence of excessive pantothenic acid on other water-soluble vitamin metabolism, thiamin, riboflavin, a vitamin B6 catabolite, the niacin catabolites, and ascorbic acid in urine were measured. As for the 3% addition group, enlargement of the testis, diarrhea, and hair damage were observed, and the amount of weight increase and the food intake were less than those of the control group. However, abnormality was not seen in the 1% addition group. The amount of pantothenic acid in urine, the liver, and blood showed a high correlation with intake level of pantothenic acid. It was only for 4-pyridoxic acid, a vitamin B6 catabolite, in urine that a remarkable difference was observed against the control group. Moreover, the (2-Py+4-Py)/MNA excretion ratio for these metabolites of the nicotinamide also indicated a low value in the 3% pantothenic acid group. As for the calcium pantothenate, it was found that the 3% level in the diet was the lowest-observed-adverse-effect-level (LOAEL) and the 1% level was the no-observed-adverse-effect-level (NOAEL). PMID:16521696

  12. The Solubility of Xenon in Simple Organic Solvents and in Aqueous Amino Acid Solutions.

    NASA Astrophysics Data System (ADS)

    Himm, Jeffrey Frank

    We have measured the Ostwald solubility (L) of ('133)Xe in a variety of liquids, including normal alkanes, normal alkanols, and aqueous solutions of amino acids, NaCl, and sucrose. For the alkanes and alkanols, measurements were made in the temperature range from 10-50(DEGREES)C. Values of L were found to decrease with increasing temperature, and also with increasing chain length, for both series of solvents. Thermodynamic properties of solution (enthalpy and entropy of solution) are calculated using both mole fraction and number density scales. Results are interpreted using Uhlig's model of the solvation process. Measurements of L in aqueous amino acid solutions were made at 25(DEGREES)C. Concentrations of amino acids in solution varied from near saturation for each of the amino acids studied to pure water. In all solutions, except those with NaCl, L decreases linearly with increasing solution molarity. Hydration numbers (H), the mean number of water molecules associated with each solute molecule, were determined for each amino acid, for NaCl, and for sucrose. Values of H obtained ranged from near zero (arginine, H = 0.2 (+OR-) 0.5) to about 16 (NaCl, H = 16.25 (+OR-) 0.3).

  13. Kinetics during the redox biotransformation of pollutants mediated by immobilized and soluble humic acids.

    PubMed

    Cervantes, Francisco J; Martínez, Claudia M; Gonzalez-Estrella, Jorge; Márquez, Arturo; Arriaga, Sonia

    2013-03-01

    The aim of this study was to elucidate the kinetic constraints during the redox biotransformation of the azo dye, Reactive Red 2 (RR2), and carbon tetrachloride (CT) mediated by soluble humic acids (HAs) and immobilized humic acids (HAi), as well as by the quinoid model compounds, anthraquinone-2,6-disulfonate (AQDS) and 1,2-naphthoquinone-4-sulfonate (NQS). The microbial reduction of both HAs and HAi by anaerobic granular sludge (AGS) was the rate-limiting step during decolorization of RR2 since the reduction of RR2 by reduced HAi proceeded at more than three orders of magnitute faster than the electron-transferring rate observed during the microbial reduction of HAi by AGS. Similarly, the reduction of RR2 by reduced AQDS proceeded 1.6- and 1.9-fold faster than the microbial reduction of AQDS by AGS when this redox mediator (RM) was supplied in soluble and immobilized form, respectively. In contrast, the reduction of NQS by AGS occurred 1.6- and 19.2-fold faster than the chemical reduction of RR2 by reduced NQS when this RM was supplied in soluble and immobilized form, respectively. The microbial reduction of HAs and HAi by a humus-reducing consortium proceeded 1,400- and 790-fold faster than the transfer of electrons from reduced HAs and HAi, respectively, to achieve the reductive dechlorination of CT to chloroform. Overall, the present study provides elucidation on the rate-limiting steps involved in the redox biotransformation of priority pollutants mediated by both HAs and HAi and offers technical suggestions to overcome the kinetic restrictions identified in the redox reactions evaluated. PMID:22565330

  14. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. PMID:27335168

  15. Processing solubility enhancement and Nanoparticles dispersion enhanced Performance Materials through thermomagnetic processing

    SciTech Connect

    Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Rios, Orlando; Kisner, Roger A; Muralidharan, Govindarajan; Manuel, Michele Viola; Manuel, Michele

    2012-01-01

    This research demonstrates that significantly enhanced materials microstructures and improved performance can be achieved by coupling two previously independent materials research concepts, namely, the thermo-magnetic processing (T-MP)1 and the electromagnetic acoustic transducer (EMAT)2 technologies. In prior, separate NHMFL research endeavors, ORNL researchers have demonstrated that: (1) thermo-magnetic processing (T-MP) can significantly enhance Ni solubility in Fe by up to 30%; and (2) using the electromagnetic acoustic transducer (EMAT) technology can significantly improve cast product homogeneity. Based on these earlier successful results, we proposed simultaneously coupling these two R&D approaches/eff ects (i.e., T-MP with EMAT), in order to simultaneously achieve: (1) enhanced elemental solid-solubility in Mg and in at least one Fe-based alloy; and (2) uniform dispersion of intentional additions of inert nanoparticles in Mg. Developing homogeneous dispersions of inert nanoparticles is and has been pursued as one of the holy grails for achieving unprecedented materials performance and highly desired mechanical properties, e.g., in creep and oxidation resistant alloys. Successfully coupling these two technologies would provide the ability to create uniquely controlled nano-scale microstructures that currently are unachievable by any other materials processing technologies.

  16. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was

  17. Comparative study of emulsifying properties in acidic condition of soluble polysaccharides fractions obtained from soy hull and defatted soy flour.

    PubMed

    Porfiri, María Cecilia; Cabezas, Darío Marcelino; Wagner, Jorge Ricardo

    2016-02-01

    The present study compares the emulsifying properties in acidic conditions of hull soluble polysaccharides (HSPS), soybean soluble polysaccharides (SSPS) and its mixtures. These fractions were obtained from byproducts of soybean processing industry (soy hull and residual fiber after isolation of soy cotyledon protein, respectively). Although SSPS is already characterized, HSPS is a novel fraction which has not been studied in deep and it is still unexplored as emulsifier. Dispersions of both fraction and a mixture 50:50 of them at pH 3.0 were used as aqueous phase (1.0-3.0 % w/w) in coarse and fine oil-in-water emulsions (oil mass fraction = 0.3). Its stability was evaluated through the evolution of backscattering profiles (%BS), particle size distribution and mean particle diameters. The rheology of the emulsions was also analyzed. Both fractions provided stability to creaming when increasing the polysaccharide concentration and energy of homogenization. While coarse emulsions were unstable systems, fine emulsions were stable enough and allowed a deeper analysis of the destabilizing processes. A bridging flocculation phenomenon in the presence of HSPS and HSPS/SSPS mixtures is suggested, which influences the creaming and rheological behavior. Also, coalescence index increases according HSPS and HSPS/SSPS concentrations, but particle sizes reached were smaller than in SSPS emulsions. Fine emulsions with 3 % of HSPS/SSPS mixtures yielded the best results on the overall stability at 28 days. So, functional properties of the fractions may improve by the formulation of emulsions consisting in mixtures of them. These results are of interest to the manufacturing of acidic foods, taking advantage of obtaining byproducts from residual materials. PMID:27162375

  18. Resistance of geopolymer materials to acid attack

    SciTech Connect

    Bakharev, T

    2005-04-01

    This article presents an investigation into durability of geopolymer materials manufactured using a class F fly ash (FA) and alkaline activators when exposed to 5% solutions of acetic and sulfuric acids. The main parameters studied were the evolution of weight, compressive strength, products of degradation and microstructural changes. The degradation was studied using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The performance of geopolymer materials when exposed to acid solutions was superior to ordinary Portland cement (OPC) paste. However, significant degradation of strength was observed in some geopolymer materials prepared with sodium silicate and with a mixture of sodium hydroxide and potassium hydroxide as activators. The deterioration observed was connected to depolymerisation of the aluminosilicate polymers in acidic media and formation of zeolites, which in some cases lead to a significant loss of strength. The best performance was observed in the geopolymer material prepared with sodium hydroxide and cured at elevated temperature, which was attributed to a more stable cross-linked aluminosilicate polymer structure formed in this material.

  19. Removal of lipid soluble process chemicals from biological materials by extraction with naturally occurring oils or synthetic substitutes thereof

    SciTech Connect

    Woods, K.R.; Orme, T.W.

    1988-12-06

    This patent describes a method of removing lipid soluble process chemicals from biological materials comprising blood plasma and fractions thereof containing the lipid soluble process chemicals. The lipid soluble process chemical is a virus attenuating solvent having a high flash point, a detergent, or a mixture thereof. It comprises bringing the biological materials containing the lipid soluble process chemicals into contact with an effective amount of a naturally occurring oil extracted from a plant or an animal or a synthetic compound of similar chemical structure. Also described is a method of removing lymphokine inducing phorbol esters from lympholkine-containing biological material. It comprises bringing the biological materials containing the phorbol esters into contact with an effective amount of a naturally occurring oil extracted from a plant or an animal or a synthetic compound of similar chemical structure so as to remove 80% or more of the phorbol esters.

  20. Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam.

    PubMed

    Minh Thuy, Le Thi; Okazaki, Emiko; Osako, Kazufumi

    2014-04-15

    Acid-soluble collagen (ASC) was successfully extracted from the scales of lizard fish (Saurida spp.) and horse mackerel (Trachurus japonicus) from Japan and Vietnam and grey mullet (Mugil cephalis), flying fish (Cypselurus melanurus) and yellowback seabream (Dentex tumifrons) from Japan. ASC yields were about 0.43-1.5% (on a dry weight basis), depending on the species. The SDS-PAGE profile showed that the ASCs were type I collagens, and consisted of two different α chains, α1 and α2, as well as a β component. ASC of horse mackerel from Vietnam contained a higher imino acid level than that from Japan. ASC denaturation temperature (Td) ranged from 26 to 29 °C, depending on fish species and imino acid content (p<0.01). Maximal solubility of individual collagens was observed at pHs 1-3. Collagen solubility decreased sharply at NaCl concentrations >0.4M, regardless of fish type. PMID:24295705

  1. Pharmacokinetics of salicylic acid following administration of aspirin tablets and three different forms of soluble aspirin in normal subjects.

    PubMed

    Gatti, G; Barzaghi, N; Attardo Parrinello, G; Vitiello, B; Perucca, E

    1989-01-01

    The pharmacokinetic profile of an innovative formulation of soluble aspirin (l-ornithine acetylsalicylate, ldB 1003) was compared with that of conventional tablets and two other soluble dosage forms (d, l-lysine acetylsalicylate and a buffered effervescent formulation of acetylsalicylic acid) after administration of single oral doses in six normal volunteers. All soluble forms showed a rapid absorption profile, peak plasma salicylic acid levels being attained after about 30 min on average and without statistically significant differences among the solutions tested. As compared to the soluble formulations, acetylsalicylic acid given as tablets resulted in slower absorption, with peak plasma salicylic acid levels being reached more than 1 h after dosing. Despite these differences in time course of plasma level profiles, the extent of absorption was similar for all formulations. Apart from the potential advantages in terms of improved gastric tolerability, the increased rate of absorption of aspirin solutions is therapeutically useful whenever a rapid onset of action is required. In this respect, the kinetic pattern of the innovative formulation compares favourably with that of other available soluble dosage forms. PMID:2517497

  2. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I., Jr.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  3. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds.

    PubMed

    Momma, M; Haraguchi, K; Saito, M; Chikuni, K; Harada, K

    1997-08-01

    Whey proteins from soybean seeds of Japanese varieties were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Among 11 varieties of soybean, three green and one black soybeans lacked a 26-kDa band that was found in all yellow soybeans. In this paper, the 26-kDa protein was named AS26k (acid soluble 26-kDa protein) temporarily. The AS26k protein was purified from Glycine max cv. Nattosyoryu, which is yellow soybean, through four purification steps: 30-35% saturated ammonium sulfate fractionation, ion exchange chromatography on S Sepharose Fast Flow, gel filtration on Sephadex G-100, and hydrophobic chromatography on phenyl Sepharose CL-4B. Purified AS26k was cleaved with V8 proteinase from Staphylococcus aureus or CNBr. The cleaved polypeptide contained two typical dehydrin motif sequences: DEYGNPV and (M)DKIKEKLPG, and a 19 amino acids sequence similar to a pea dehydrin. Native AS26k had a molecular mass of 32 kDa on gel filtration and a pl of 7.2 on two-dimensional PAGE. Similarly to other dehydrins and late embryogenesis abundant (LEA) proteins, AS26k was rich in hydrophilic amino acids, and highly heat stable. These results showed that AS26k was a dehydrin, a group II LEA protein in soybean seeds. PMID:9301109

  4. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings. PMID:25284800

  5. The entry of HCl through soluble surfactants on sulfuric acid: effects of chain branching.

    PubMed

    Burden, Daniel K; Johnson, Alexis M; Krier, James M; Nathanson, Gilbert M

    2014-07-17

    Gas-liquid scattering experiments are used to determine how a soluble, branched surfactant (2-ethylbutanol) controls the entry of gaseous HCl molecules into 60 and 68 wt % D2SO4 at 213 K. Short-chain alcohols spontaneously segregate to the surfaces of these sulfuric acid solutions, which are representative of aerosol droplets in the lower stratosphere. We find that 2-ethylbutanol enhances HCl entry at low surface coverages, most likely because it provides extra interfacial OH groups that aid HCl dissociation. This enhancement disappears at higher coverages as the alkyl chains crowd each other and block access to the acid. The branched alcohol impedes HCl entry more effectively than its unbranched isomer 1-hexanol, implying that the larger 2-ethybutanol footprint on the surface blocks more HCl molecules from reaching the alcohol-acid interface. This behavior contrasts sharply with gas transport through long-chain monolayers, where branching introduces gaps that allow more facile passage. The experiments suggest that short-chain surfactants with extended footprints may impede transport more effectively than their unbranched isomers. PMID:24620717

  6. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary and Ternary Systems. Part II. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Nonaqueous Systems

    NASA Astrophysics Data System (ADS)

    Goto, Ayako; Miyamoto, Hiroshi; Salomon, Mark; Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi; Scharlin, Pirketta

    2011-06-01

    The solid-liquid solubility data for well defined nonaqueous binary and ternary systems are reviewed. One component includes hydroxybenzoic acid, hydroxybenzoate, and hydroxybenzoic acid salt, and another component includes a variety of organic compounds (hydrocarbons, alcohols, halogenated hydrocarbons, carboxylic acids, esters, et al.) and carbon dioxide. The ternary systems include mixtures of organic substances of various classes and carbon dioxide. The total number of compilation sheets is 270 for six types of system. Almost all data are expressed as mass percent and mole fraction as well as the originally reported units, while some data are expressed as molar concentration. Critical evaluation was carried out for the binary nonaqueous systems of 2-, 3-, and 4-hydroxybenzoic acids and hydroxybenzoates (methylparaben, ethylparaben, propylparaben, and butylparaben) in alcohols, 1-heptane, and benzene.

  7. Acid-Soluble Nucleotides in an Asporogenous Mutant of Bacillus subtilis

    PubMed Central

    Chow, C. T.; Takahashi, I.

    1972-01-01

    An asporogenous mutant of Bacillus subtilis Sp−H12-3, which is considered to have a block at stage 0, showed general growth characteristics similar to those of sporulating cultures. However, a sudden increase in the total amount of acid-soluble nucleotides observed at t2 in sporulating bacteria was completely absent in this mutant. In sporulating cells, a marked increase in two nucleotides which were identified to be uridine diphosphate (UDP)-galactose and UDP-N-acetylglucosamine was noted, whereas UDP-glucose appeared to be accumulated in the mutant cells at t2. No unusual nucleotides were found in the strains of B. subtilis examined. The possible role of these UDP derivatives in early stages of sporulation in B. subtilis is discussed. PMID:4622128

  8. Membranotropic properties of the water soluble amino acid and peptide derivatives of fullerene C60.

    PubMed

    Kotelnikova, R A; Kotelnikov, A I; Bogdanov, G N; Romanova, V S; Kuleshova, E F; Parnes, Z N; Vol'pin, M E

    1996-07-01

    The modifying effects of the products of the equimolar addition Of DL-alanine and DL-alanyl-DL-alanine to fullerene C60 on the structure and permeability of the lipid bilayer of phosphatidylcholine liposomes has been studied using the luminescence probe technique. It is shown that these water soluble amino acid and dipeptide derivatives of fullerene (C60-AD) are quenchers of pyrene fluorescence and erythrosine phosphorescence of in both a water solution and liposomes. To study the permeability of the lipid bilayer a procedure based on the triplet probe technique has been developed. It has been found that the C60-AD derivatives under study are able to localize inside the artificial membrane, to penetrate into the liposomes through the lipid bilayer and to perform activated transmembrane transport of bivalent metal ions. PMID:8766810

  9. Conjugated linoleic acid increases in milk from cows fed condensed corn distillers solubles and fish oil.

    PubMed

    Bharathan, M; Schingoethe, D J; Hippen, A R; Kalscheur, K F; Gibson, M L; Karges, K

    2008-07-01

    Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 x 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 x 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages. PMID:18565937

  10. PERMEABILITY, SOLUBILITY, AND INTERACTION OF HYDROGEN IN POLYMERS- AN ASSESSMENT OF MATERIALS FOR HYDROGEN TRANSPORT

    SciTech Connect

    Kane, M

    2008-02-05

    Fiber-reinforced polymer (FRP) piping has been identified as a leading candidate for use in a transport system for the Hydrogen Economy. Understanding the permeation and leakage of hydrogen through the candidate materials is vital to effective materials system selection or design and development of safe and efficient materials for this application. A survey of the literature showed that little data on hydrogen permeation are available and no mechanistically-based models to quantitatively predict permeation behavior have been developed. However, several qualitative trends in gaseous permeation have been identified and simple calculations have been performed to identify leakage rates for polymers of varying crystallinity. Additionally, no plausible mechanism was found for the degradation of polymeric materials in the presence of pure hydrogen. The absence of anticipated degradation is due to lack of interactions between hydrogen and FRP and very low solubility coefficients of hydrogen in polymeric materials. Recommendations are made to address research and testing needs to support successful materials development and use of FRP materials for hydrogen transport and distribution.

  11. Acid-Soluble Internal Capsules for Closed-Face Cassette Elemental Sampling and Analysis of Workplace Air

    PubMed Central

    Harper, Martin; Ashley, Kevin

    2013-01-01

    Airborne particles that are collected using closed-face filter cassettes (CFCs), which are used widely in the sampling of workplace aerosols, can deposit in places other than on the filter and thereby may not be included in the ensuing analysis. A technique for ensuring that internal non-filter deposits are included in the analysis is to collect airborne particles within an acid-soluble internal capsule that, following sampling, can be dissolved along with the filter for subsequent elemental analysis. An interlaboratory study (ILS) was carried out to evaluate the use of cellulosic CFC capsule inserts for their suitability in the determination of trace elements in airborne samples. The ILS was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Performance evaluation materials consisted of prototype cellulose acetate capsules attached to mixed-cellulose ester filters. Batches of capsules were dosed with Pb-containing materials (standard aqueous solutions, and certified reference material soil and paint). Also, aerosol samples containing nine target analyte elements (As, Cd, Co, Cr, Cu, Fe, Pb, Mn, and Ni) were generated using a multiport sampler; various concentrations and sampling times were employed to yield samples fortified at desired loading levels. Triplicates of spiked capsules at three different loadings were conveyed to each volunteer laboratory; loading levels were unknown to the participants. The laboratories were asked to prepare the samples by acid dissolution and to analyze aliquots of extracted samples by atomic spectrometry in accordance with applicable ASTM International Standards. Participants were asked to report their results in units of μg of each target element per sample. For the elements investigated, interlaboratory precision and recovery estimates from the participating laboratories demonstrated the utility of the

  12. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.

    PubMed

    Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi

    2013-07-10

    We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model. PMID:23738653

  13. Solubility Database

    National Institute of Standards and Technology Data Gateway

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  14. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    PubMed

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P < 0.05) in soluble calcium. L. acidophilus ATCC 4962 and L. casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment. PMID:18034738

  15. Formation and catalytic activity of high molecular weight soluble polymers produced by heating amino acids in a modified sea medium

    NASA Astrophysics Data System (ADS)

    Okihana, Hiroyuki

    1982-06-01

    Eighteen protein amino acids with milk casein composition were heated in a modified sea medium. Marigranules were formed in the precipitates and soluble polymers were formed in the supernatant. Time course of the reaction (ultraviolet spectra, the concentration of metal ions, and the concentration of amino acids in the supernatant) were measured. The time course of the formation of the soluble polymers was also studied by Bio-Gel P-2 column. High molecular weight soluble polymers (HMWSP) were separated from low molecular weight ones by dialysis. It was shown that these polymers catalyzed the dehydrogenation of NADH. These polymers also catalyzed the coupled reaction between dehydrogenation of NADH and reduction of resazurin. This coupled reaction was accelerated by the light.

  16. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    SciTech Connect

    Hare, W.R.; Wahle, K.W. )

    1991-02-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation.

  17. Effects of soluble ferri-hydroxide complexes on microbial neutralization of acid mine drainage.

    PubMed

    Bilgin, A Azra; Silverstein, JoAnn; Hernandez, Mark

    2005-10-15

    Heterotrophic respiration of ferric iron by Acidiphilium cryptum was investigated in anoxic microcosms with initial media pH values from 1.5 to 3.5. No organic carbon consumption or iron reduction was observed with an initial pH of 1.5, indicating that A. cryptum may not be capable of iron respiration at this pH. Significant iron reduction was observed at pH 2.5 and 3.5, with different effects. When the initial pH was 3.5, pH increased to 4.7-5.5 over 60 days of incubation with simultaneous production of 0.4 g L(-1) Fe2+. However, at an initial pH of 2.5, no significant change in pH was observed during iron respiration, although the accumulation of soluble ferrous iron was significantly higher, averaging 1.1 g L(-1) Fe2+. The speciation of the ferric iron electron acceptor may explain these results. At pH values of 3.5 and higher, precipitated ferric hydroxide Fe- (OH)3 would have been the primary source of ferric iron, with reduction resulting in net production of OH- ions and the significant increases in media pH observed. However at pH 2.5, soluble complexes, FeOH2+ and Fe(OH)2+, may have been the more prevalent electron acceptors, and the alkalinity generated by reduction of complexed iron was low. The existence of charged ferri-hydroxide complexes at pH 2.5 was verified by voltammetry. Results suggest that initiation of bacterial iron reduction may result in neutralization of acid mine drainage. However, this effect is extremely sensitive to iron speciation within a relatively small and critical pH range. PMID:16295843

  18. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions.

    PubMed

    Li, Bin; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Structurally varied, carboxyl-containing cellulose derivatives were evaluated for their ability to form amorphous solid dispersions (ASD) with ellagic acid (EA), in order to improve the solubility of this high-melting, poorly bioavailable, but highly bioactive natural flavonoid compound. ASDs of EA with carboxymethylcellulose acetate butyrate (CMCAB), cellulose acetate adipate propionate (CAAdP), and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were prepared, and EA dissolution from these ASDs was compared with that from pure crystalline EA and from EA/poly(vinylpyrrolidinone) (PVP) solid dispersions (SD). Polymer/drug mixtures were characterized by powder X-ray diffraction (XRPD), modulated differential scanning calorimetry (MDSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR). The XRPD and FT-IR results indicated that EA was amorphous in solid dispersions with EA concentration up to 25 wt%. The stability against crystallization and solution concentrations of EA from these solid dispersions were significantly higher than those observed for physical mixtures and pure crystalline EA. HPMCAS stabilized EA most effectively, among the polymers tested, against both chemical degradation and recrystallization. The relative ability to solubilize EA from ASDs at pH 6.8 was PVP>HPMCAS>CMCAB. EA dissolves from ASD in PVP quickly and completely (maximum 92%) at pH 6.8, but EA is also released from PVP at pH 1.2, and then crystallizes rapidly. Therefore PVP is not a practical candidate for EA ASD. In contrast, the cellulose derivative ASDs show very slow EA release at pH 1.2 (<4%) and faster but still incomplete drug release at pH 6.8 (maximum 35% for HPMCAS SD). The pH-triggered drug release from HPMCAS ASD makes HPMCAS a practical choice for EA solubility enhancement. PMID:23399175

  19. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing sugar (RSA) and phenol–sulfuric acid (PSA) assays are commonly used to analyze water-soluble carbohydrates. However, questions have arisen as to their accuracy for measurement of feedstuffs with diverse carbohydrate profiles. This study evaluated the efficacy of RSA and PSA as they would co...

  20. Single-walled carbon nanotubes in strong acids: controlling solubility and the liquid crystal phase.

    NASA Astrophysics Data System (ADS)

    Pasquali, Matteo

    2006-03-01

    Single Walled Nanotubes (SWNTs have remarkable electrical, thermal, and mechanical properties. Neat, well-aligned SWNT fibers and sheets could be the ultimate building blocks of strong, ultra-light multifunctional materials for aerospace applications, and could yield electromechanical actuators and sensors with unprecedented performance. After the achievement of scalable production of SWNTs, the difficulty of processing pristine SWNTs by liquid-phase methods has been the single most important roadblock to manufacturing macroscopic materials composed solely of SWNTs. Here we show that SWNTs dissolve at high concentration in acids; the SWNTs are stabilized because acids protonate their sidewalls, balancing wall-wall van der Waals forces. Acid strength controls the phase behaviour. At low concentration, SWNTs in acids dissolve as individual tubes which behave as Brownian rods. At higher concentration, SWNTs form a highly unusual nematic liquid phase consisting of spaghetti-like self assembled supermolecular strands of mobile, solvated tubes in equilibrium with a dilute isotropic phase. At even higher concentration, the spaghetti strands self-assemble into a polydomain nematic liquid crystal, where the domains are entangled with each other. Under anhydrous condition, the liquid crystalline phase can be processed into continuous highly aligned fibers of pure SWNTs without the aid of surfactants or polymers. By using a new fluorescent staining technique, we measure the rotational diffusivity and persistence length of SWNTs suspended in water with the aid of surfactants, and show that SWNTs behave as Brownian rods.

  1. Examination of a vehicle for use with water soluble materials in the murine local lymph node assay.

    PubMed

    Ryan, C A; Cruse, L W; Skinner, R A; Dearman, R J; Kimber, I; Gerberick, G F

    2002-11-01

    The murine local lymph node assay (LLNA) is a validated method for identifying skin sensitization hazard. Vehicle choice can influence the sensitization potential of haptens in both the LLNA and in humans, therefore selection of an appropriate vehicle is important. Suggested vehicles for the LLNA include organic solvents and organic-aqueous mixtures. However, due to its high surface tension and poor wetting qualities, water is not recommended and therefore testing aqueous soluble materials can be problematic. The aims of this investigation were to identify a water-based vehicle that possesses better skin wetting properties than water alone, and to assess its performance relative to other solvents in the LLNA using aqueous soluble haptens. The selected wetting agent was the surfactant Pluronic(R) L92 (L92). Concentrations of L92 of up to 50% did not induce positive responses in the LLNA. 1% aqueous L92 was chosen for further examination. Dose-response analyses were performed with dinitrobenzene sulfonic acid (DNBS) and formaldehyde formulated either in water, 1% L92, dimethyl sulfoxide (DMSO) or dimethyl formamide (DMF). Potassium dichromate (PDC) and nickel sulfate were tested in 1% L92, DMSO or DMF. The highest concentration of potassium dichromate was retested in each vehicle and in water to assess the effect of the wetting agent. Estimates of the relative sensitizing potency in each vehicle were determined by calculation of EC3 values (the estimated concentration required to induce a threshold positive response). While DNBS and formaldehyde produced positive responses in all four vehicles, their relative potency varied among the vehicles. The rank ordering of potencies for both materials was, from highest to lowest, DMF > or = DMSO > 1% L92 > water. Compared with water, use of 1% L92 resulted in >2-fold increase in potency for DNBS and >3-fold increase for formaldehyde. PDC was positive in DMF, DMSO and 1% L92. The potency ranking was DMF > or = DMSO > 1% L92

  2. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Bozler, Carl; Harburg, Daniel V.; Omenetto, Fiorenzo; Rogers, John A.

    2015-01-01

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  3. Fuels production by photoelectrolysis of water and photooxidation of soluble biomass materials

    SciTech Connect

    Sammells, A.F.; St. John, M.R.

    1984-03-20

    A process and apparatus for production of fuels by photoelectrolysis of water and photooxidation of water soluble biomass and a process for preparation of Schottky-type metalized, appropriately doped n-type semiconductor photochemical diodes suitable for use in the above process and apparatus. The production of hydrogen by photoelectrolysis of water as the cathodic reaction of an optically illuminated photochemical diode is effected in an aqueous electrolyte which comprises a biomass product which may be monosaccharides, polysaccharides, lignins, their partially oxidized products, and mixtures thereof which are oxidized as the anodic reaction of the photochemical diode producing liquid fuels and useful chemicals. Molecular oxygen evolution is avoided and utilization of biomass product provides a cost effective material to increase fuels and useful chemical production by photoelectrolysis of water at potentials substantially less than required for normal water electrolysis involving oxygen evolution.

  4. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  5. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group.

    PubMed

    Cui, Li-Qian; Dong, Zhi-Lei; Liu, Kai; Zhang, Chi

    2011-12-16

    5-Trimethylammonio-1,3-dioxo-1,3-dihydro-1λ(5)-benzo[d][1,2]iodoxol-1-ol anion (AIBX 1a), an o-iodoxybenzoic acid (IBX) derivative having the trimethylammonium moiety on its phenyl ring, possesses very good solubility in water and distinct oxidative properties from IBX, which is demonstrated in the oxidation of various β-keto esters to the corresponding dehydrogenated products using water as cosolvent. The regeneration of AIBX 1a can be easily realized from the reaction mixture due to its good water solubility. PMID:22082110

  6. [Effects of simulated acid rain and its acidified soil on soluble sugar and nitrogen contents of wheat seedlings].

    PubMed

    Tong, Guanhe; Liang, Huiling

    2005-08-01

    The study showed that the cation release of simulated rain caused soil acidification and base ions release. With the decrease of simulated acid rain pH from 5.6 to 2.5, the acid rain-leached soil pH decreased from 6.06 to 3.41, and its total amount of exchange base ions decreased from 56.5 to 41.1 mmol x kg(-1). Spraying simulated acid rain on the shoots of wheat seedlings planted on such acidified soils caused a rapid decrease in the soluble sugar and nitrogen contents of wheat seedlings, and reduced some of their physiological activities. The effect of spraying simulated acid rain on the soluble sugar, nitrogen, and chlorophyll contents and photosynthetic rate of wheat stems and leaves was larger than that of acidified soil, while the effect of the latter on the soluble sugar and nitrogen contents and the physiological activity of NR and GOGAT in root system of wheat seedlings was larger than that of the former. The intensive acid rain of pH < or = 3.0 and the corresponding acidified soil had an obvious harm to the growth and physiological activity of wheat seedlings. PMID:16262064

  7. Enhancement of the water solubility of organic pollutants such as pyrene and atrazine by dissolved humic and fulvic acids

    SciTech Connect

    Patterson, H.H.; MacDonald, B.; Fang, F.

    1995-12-31

    Many factors determine the fate and transport of an organic pollutant in the environment but water solubility is certainly one of the most important. Among the environmental factors that alter the solubility of a molecule are naturally occurring humic and fulvic acids. We have hypothesized that the humic/fulvic acids from different sources within a watershed have different binding affinities for pollutants such as pyrene and atrazine. This could lead to different rates of transport or bioavailability within the watershed. Humic/fulvic acids were isolated from a stream, adjacent wetland and nearby wooded upland sites. A fluorescence quenching method was developed to quantify the binding coefficient of the pollutants with the dissolved organic carbon. From these results a model was constructed to determine the sites with the greatest potential to modify pollutant contamination in the environment.

  8. Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco.

    PubMed Central

    Du, H.; Klessig, D. F.

    1997-01-01

    Salicylic acid (SA) is a key component in the signal transduction pathway(s), leading to the activation of certain defense responses in plants after pathogen attack. Previous studies have identified several proteins, including catalase and ascorbate peroxidase, through which the SA signal might act. Here we describe a new SA-binding protein. This soluble protein is present in low abundance in tobacco (Nicotiana tabacum) leaves and has an apparent molecular weight of approximately 25,000. It reversibly binds SA with an apparent dissociation constant of 90 nM, an affinity that is 150-fold higher than that between SA and catalase. The ability of most analogs of SA to compete with labeled SA for binding to this protein correlated with their ability to induce defense gene expression and enhanced resistance. Strikingly, benzothiadiazole, a recently described chemical activator that induces plant defenses and disease resistance at very low rates of application, was the strongest competitor, being much more effective than unlabeled SA. The possible role of this SA-binding protein in defense signal transduction is discussed. PMID:12223676

  9. Influence of acid-soluble proteins from bivalve Siliqua radiata ligaments on calcium carbonate crystal growth

    NASA Astrophysics Data System (ADS)

    Huang, Zeng-Qiong; Zhang, Gang-Sheng

    2016-08-01

    In vitro biomimetic synthesis of calcium carbonate (CaCO3) in the presence of shell proteins is a heavily researched topic in biomineralization. However, little is known regarding the function of bivalve ligament proteins in the growth of CaCO3 crystals. In this study, using fibrous protein K58 from Siliqua radiata ligaments or coverslips as substrates, we report the results of our study of CaCO3 precipitation in the presence or absence of acid-soluble proteins (ASP) from inner ligament layers. ASP can disturb the controlling function of K58 or a coverslip on the crystalline phase, resulting in the formation of aragonite, calcite, and vaterite. In addition, we identified the following four primary components from ASP by mass spectroscopy: alkaline phosphatase (ALP), ABC transporter, keratin type II cytoskeletal 1 (KRT 1), and phosphate ABC transporter, phosphate-binding protein (PstS). Further analysis revealed that the first three proteins and especially ALP, which is important in bone mineralisation, could affect the polymorphism and morphology of CaCO3 crystals by trapping calcium ions in their domains. Our results indicate that ALP may play an important role in the formation of aragonite in S. radiata ligaments. This paper may facilitate our understanding of the biomineralization process.

  10. Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye).

    PubMed

    Zhang, Junjie; Duan, Rui; Huang, Lei; Song, Yujie; Regenstein, Joe M

    2014-05-01

    Annual outbreaks of the Jellyfish (Cyanea nozakii Kishinouye) in the waters of the Yellow Sea and the East China Sea are regarded as a nuisance. Thus, utilizing this jellyfish species is of great significance to reduce harm to fisheries and marine environments. The yield of the acid-soluble collagens (ASCs) from the C. nozakii umbrella was 13.0% (dry weight) and that of the pepsin-solubilised collagens (PSCs) was 5.5% (dry weight). The SDS-PAGE patterns of the ASCs and PSCs differed from that of type I collagen, which indicate the presence of (α1)3. The denaturation temperature (Td) of the collagens was approximately 23.8°C. Fourier transform infrared spectroscopy proved that the ASCs and PSCs retained their helical structures and the As, Pb, and Hg content of the collagens, detected by ICP-MS, were considerably lower than the national standards. The results suggest that collagens isolated from C. nozakii can potentially be used as an alternative source of collagen for use in various applications. PMID:24360414

  11. Adsorption and condensation of amino acids and nucleotides with soluble mineral salts

    NASA Technical Reports Server (NTRS)

    Orenberg, J.; Lahav, N.

    1986-01-01

    The directed synthesis of biopolymers in an abiotic environment is presumably a cyclic sequence of steps which may be realized in a fluctuating environment such as a prebiotic pond undergoing wetting-drying cycles. Soluble mineral salts have been proposed as an essential component of this fluctuating environment. The following sequence may be considered as a most primitive mechanism of information transfer in a fluctuating environment: (1) adsorption of a biomolecule onto a soluable mineral salt surface to act as an adsorbed template; (2) specific adsorption of biomonomers onto the adsorbed template; (3) condensation of the adsorbed biomonomers; and (4) desorption of the elongated oligomer. In this investigation, the salts selected for study were CaSO4.2H2O(gypsum), SrSO4, and several other metal sulfates and chlorides. Adsorption of the monomeric species, gly, 5'AMP 5'GMP, and 5'CMP was investigated. The adsorbed template biopolymers used were Poly-A, Poly-G, Poly-C, and Poly-U. The results of studies involving these experimental participants, the first two steps of the proposed primitive information transfer mechanism, and condensation of amino acids to form oligomers in a fluctuating environment are to be reported.

  12. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  13. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  14. Purified membrane and soluble folate binding proteins from cultured KB cells have similar amino acid compositions and molecular weights but differ in fatty acid acylation.

    PubMed Central

    Luhrs, C A; Pitiranggon, P; da Costa, M; Rothenberg, S P; Slomiany, B L; Brink, L; Tous, G I; Stein, S

    1987-01-01

    A membrane-associated folate binding protein (FBP) and a soluble FBP, which is released into the culture medium, have been purified from human KB cells using affinity chromatography. By NaDodSO4/PAGE, both proteins have an apparent Mr of approximately 42,000. However, in the presence of Triton X-100, the soluble FBP eluted from a Sephadex G-150 column with an apparent Mr of approximately 40,000 (similar to NaDodSO4/PAGE) but the membrane-associated FBP eluted with an apparent Mr of approximately 160,000, indicating that this species contains a hydrophobic domain that interacts with the detergent micelles. The amino acid compositions of both forms of FBP were similar, especially with respect to the apolar amino acids. In addition, the 18 amino acids at the amino termini of both proteins were identical. The membrane FBP, following delipidation with chloroform/methanol, contained 7.1 mol of fatty acid per mol of protein, of which 4.7 mol was amide-linked and 2.4 mol was ester-linked. The soluble FBP contained only 0.05 mol of fatty acid per mol of protein. These studies indicate that the membrane FBP of KB cells contains covalently bound fatty acids that may serve to anchor the protein in the cell membrane. Images PMID:3476960

  15. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  16. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles.

    PubMed

    Gauthier, Kathryn M; Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D; Gutterman, David D; Falck, J R; Campbell, William B

    2011-10-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H(2)O(2)), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H(2)O(2) causes vasoconstriction. To determine the physiological contribution of H(2)O(2), catalase is used to inactivate H(2)O(2). However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10-50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1-10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (V(max) = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase(-1)·min(-1), respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H(2)O(2) and EETs. PMID:21753077

  17. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  18. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis).

    PubMed

    Yu, Di; Chi, Chang-Feng; Wang, Bin; Ding, Guo-Fang; Li, Zhong-Rui

    2014-09-01

    Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the spine (ASC-SP and PSC-SP) and skull (ASC-SK and PSC-SK) of the skipjack tuna, Katsuwonus pelamis, were successfully isolated and characterized. The yields of ASC-SP, PSC-SP, ASC-SK and PSC-SK were (2.47 ± 0.39)%, (5.62 ± 0.82)%, (3.57 ± 0.40)%, and (6.71 ± 0.81)%, respectively, on the basis of dry weight. The four collagens contained Gly (330.2-339.1 residues/1 000 residues) as the major amino acid, and their imino acid contents were between 168.8 and 178.2 residues/1 000 residues. Amino acid composition, SDS-PAGE, and FTIR investigations confirmed that ASC-SP and ASC-SK were mainly composed of type I collagen, and had higher contents of high-molecular weight cross-links than those of PSC-SK and PSC-SP. The FTIR investigation also certified all the collagens had triple helical structure. The denaturation temperatures of ASC-SK, PSC-SK, ASC-SP, and PSC-SP were 17.8, 16.6, 17.6, and 16.5 °C, respectively. All isolated collagens were soluble at acidic pH (1-5) and lost their solubilities when the NaCl concentration was above 2% (W/V). The isolated collagens from the spines and skulls of skipjack tuna could serve as an alternative source of collagens for further application in food, cosmetic, biomedical, and pharmaceutical industries. PMID:25263986

  19. Development of Developer-Soluble Gap Fill Materials for Planarization in Via-First Dual Damascene Process

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sakaida, Yasushi; Ishii, Kazuhisa; Shinjo, Tetsuya

    2008-05-01

    Gap fill materials and planar-type bottom antireflective coating are needed for patterning metal trenches in the via-first dual damascene process. We have already reported on thermal cross-link gap fill materials and bottom antireflective coating as planarizing layers under a resist that can be spin-coated and etched faster than resists. In this study, developer-soluble gap fill materials were optimized in order to obtain excellent planarization, simplify the process, and increase wafer throughput. The developer-soluble gap fill materials using poly(4-hydroxystyrene) derivatives developed by an approach of the via-first dual damascene process was obtained by optimizing the concentration of the phenol group with solubility in the alkaline developer (0.26 N tetramethylammonium hydroxide, TMAH) and by thermal cross-link reaction. In addition to a superior via-filling performance, developer-soluble gap fill materials using poly(4-hydroxystyrene) derivatives showed a wide process window of prebake temperature, the controllable dissolution rate for the etch-back process, and a good CF4 etch rate of 1.4 times higher than that of a resist for etching the substrate. These results were attributed to the polymer structures of poly(4-hydroxystyrene) derivatives. Both dry plasma cleaning and wet developer cleaning can be used to remove residual gap fill materials after processing. This novel approach using developer-soluble gap fill materials as a new type of sacrificial material in an advanced lithography process makes this solution convenient for planarizing surfaces and is economically favorable owing to high throughput.

  20. Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations.

    PubMed

    Doshi, Nidhi; Demeule, Barthélemy; Yadav, Sandeep

    2015-11-01

    The purpose of this work was to determine the aqueous solubilities at 2-8 °C of the major free fatty acids (FFAs) formed by polysorbate 20 (PS20) degradation and identify possible ways to predict, delay, or mitigate subsequent particle formation in monoclonal antibody (mAb) formulations. The FFA solubility limits at 2-8 °C were determined by titrating known amounts of FFA in monoclonal antibody formulations and identifying the FFA concentration leading to visible and subvisible particle formation. The solubility limits of lauric, myristic, and palmitic acids at 2-8 °C were 17 ± 1 μg/mL, 3 ± 1 μg/mL, and 1.5 ± 0.5 μg/mL in a formulation containing 0.04% (w/v) PS20 at pH 5.4 and >22 μg/mL, 3 ± 1 μg/mL, and 0.75 ± 0.25 μg/mL in a formulation containing 0.02% (w/v) PS20 at pH 6.0. For the first time, a 3D correlation between FFA solubility, PS20 concentration, and pH has been reported providing a rational approach for the formulator to balance these with regard to potential particle formation. The results suggest that the lower solubilities of the longer chain FFAs, generated from degradation of the stearate, palmitate, and myristate fraction of PS20, is the primary cause of seeding and subsequent FFA precipitation rather than the most abundant lauric acid. PMID:26419285

  1. Using the concept of Chou's pseudo amino acid composition to predict protein solubility: an approach with entropies in information theory.

    PubMed

    Xiaohui, Niu; Nana, Li; Jingbo, Xia; Dingyan, Chen; Yuehua, Peng; Yang, Xiao; Weiquan, Wei; Dongming, Wang; Zengzhen, Wang

    2013-09-01

    Protein solubility plays a major role and has strong implication in the proteomics. Predicting the propensity of a protein to be soluble or to form inclusion body is a fundamental and not fairly resolved problem. In order to predict the protein solubility, almost 10,000 protein sequences were downloaded from NCBI. Then the sequences were eliminated for the high homologous similarity by CD-HIT. Thus, there were 5692 sequences remained. Based on protein sequences, amino acid and dipeptide compositions were generally extracted to predict protein solubility. In this study, the entropy in information theory was introduced as another predictive factor in the model. Experiments involving nine different feature vector combinations, including the above-mentioned three kinds of factors, were conducted with support vector machines (SVMs) as prediction engine. Each combination was evaluated by re-substitution test and 10-fold cross-validation test. According to the evaluation results, the accuracies and Matthew's Correlation Coefficient (MCC) values were boosted by the introduction of the entropy. The best combination was the one with amino acid, dipeptide compositions and their entropies. Its accuracy reached 90.34% and Matthew's Correlation Coefficient (MCC) value was 0.7494 in re-substitution test, while 88.12% and 0.7945 respectively for 10-fold cross-validation. In conclusion, the introduction of the entropy significantly improved the performance of the predictive method. PMID:23524162

  2. Cryomilling-induced solid dispersion of poor glass forming/poorly water-soluble mefenamic acid with polyvinylpyrrolidone K12.

    PubMed

    Kang, Naewon; Lee, Jangmi; Choi, Ji Na; Mao, Chen; Lee, Eun Hee

    2015-06-01

    The effect of mechanical impact on the polymorphic transformation of mefenamic acid (MFA) and the formation of a solid dispersion of mefenamic acid, a poor glass forming/poorly-water soluble compound, with polyvinylpyrrolidone (PVP) K12 was investigated. The implication of solid dispersion formation on solubility enhancement of MFA, prepared by cryomilling, was investigated. Solid state characterization was conducted using powder X-ray diffraction (PXRD) and Fourier-transform infrared (FTIR) spectroscopy combined with crystal structure analysis. Apparent solubility of the mixtures in pH 7.4 buffer was measured. A calculation to compare the powder patterns and FTIR spectra of solid dispersions with the corresponding physical mixtures was conducted. Solid state characterization showed that (1) MFA I transformed to MFA II when pure MFA I was cryogenically milled (CM); and (2) MFA forms a solid dispersion when MFA was cryogenically milled with PVP K12. FTIR spectral analysis showed that hydrogen bonding facilitated by mechanical impact played a major role in forming solid dispersions. The apparent solubility of MFA was significantly improved by making a solid dispersion with PVP K12 via cryomilling. This study highlights the importance of cryomilling with a good hydrogen bond forming excipient as a technique to prepare solid dispersion, especially when a compound shows a poor glass forming ability and therefore, is not easy to form amorphous forms by conventional method. PMID:24849785

  3. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  4. Simultaneous electrochemical immunosensor based on water-soluble polythiophene derivative and functionalized magnetic material.

    PubMed

    Zhang, Xiaoyue; Ren, Xiang; Cao, Wei; Li, Yueyun; Du, Bin; Wei, Qin

    2014-10-01

    A novel, sensitive electrochemical immunosensor for simultaneous determination of squamous cell carcinoma associated antigen (SCC-Ag) and carcinoembryonic antigen (CEA) for the combined diagnosis of cervical cancer was designed. The amplification strategy for electrochemical immunoassay was based on poly[3-(1,1'-dimethyl-4-piperidine-methylene) thiophene-2,5-diylchloride] (PDPMT-Cl) and functionalized mesoporous ferroferric oxide nanoparticles (Fe3O4 NPs). PDPMT-Cl dispersed in chitosan solution with enhanced electrical conductivity and solubility was used as matrices to immobilize the first antibodies. Different redox probes (thionine (Th) and ferrocenecarboxylic acid (Fca)) functionalized Fe3O4 NPs incubated with two kinds of secondary antibodies to fabricate the labels. Using an electrochemical analysis technique, two well-separated peaks were generated by Th and Fca, making the simultaneous detection of two analytes on the electrode possible. Under optimized conditions, this method showed wide linear ranges of three orders of magnitude with the detection limits of 4 pg mL(-1) and 5 pg mL(-1), respectively. The disposable immunosensor possessed excellent clinical value in cervical cancer screening as well as convenient point-of-care diagnostics. PMID:25201276

  5. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials.

    PubMed

    Gao, Tong Guo; Xu, Yuan Yuan; Jiang, Feng; Li, Bao Zhen; Yang, Jin Shui; Wang, En Tao; Yuan, Hong Li

    2015-01-01

    The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525. PMID:26054030

  6. Nodulation Characterization and Proteomic Profiling of Bradyrhizobium liaoningense CCBAU05525 in Response to Water-Soluble Humic Materials

    PubMed Central

    Guo Gao, Tong; Yuan Xu, Yuan; Jiang, Feng; Zhen Li, Bao; Shui Yang, Jin; Tao Wang, En; Li Yuan, Hong

    2015-01-01

    The lignite biodegradation procedure to produce water-soluble humic materials (WSHM) with a Penicillium stain was established by previous studies in our laboratory. This study researched the effects of WSHM on the growth of Bradyrhizobium liaoningense CCBAU05525 and its nodulation on soybean. Results showed that WSHM enhanced the cell density of CCBAU05525 in culture, and increased the nodule number, nodule fresh weight and nitrogenase activity of the inoculated soybean plants. Then the chemical compounds of WSHM were analyzed and flavonoid analogues were identified in WSHM through tetramethyl ammonium hydroxide (TMAH)-py-GC/MS analysis. Protein expression profiles and nod gene expression of CCBAU05525 in response to WSHM or genistein were compared to illustrate the working mechanism of WSHM. The differently expressed proteins in response to WSHM were involved in nitrogen and carbon metabolism, nucleic acid metabolism, signaling, energy production and some transmembrane transports. WSHM was found more effective than genistein in inducing the nod gene expression. These results demonstrated that WSHM stimulated cell metabolism and nutrient transport, which resulted in increased cell density of CCBAU05525 and prepared the bacteria for better bacteroid development. Furthermore, WSHM had similar but superior functions to flavone in inducing nod gene and nitrogen fixation related proteins expression in CCBAU05525. PMID:26054030

  7. Restoration of Brain Acid Soluble Protein 1 Inhibits Proliferation and Migration of Thyroid Cancer Cells

    PubMed Central

    Guo, Run-Sheng; Yu, Yue; Chen, Jun; Chen, Yue-Yu; Shen, Na; Qiu, Ming

    2016-01-01

    Background: Brain acid soluble protein 1 (BASP1) is identified as a novel potential tumor suppressor in several cancers. However, its role in thyroid cancer has not been investigated yet. In the present study, the antitumor activities of BASP1 against the growth and migration of thyroid cancer cells were evaluated. Methods: BASP1 expression in thyroid cancer tissues and normal tissues were examined by immunohistochemical staining and the association between its expression and prognosis was analyzed. pcDNA-BASP1 carrying full length of BASP1 cDNA was constructed to restore the expression of BASP1 in thyroid cancer cell lines (BHT-101 and KMH-2). The cell proliferation in vitro and in vivo was evaluated by WST-1 assay and xenograft tumor models, respectively. Cell cycle distribution after transfection was analyzed using flow cytometry. Cell apoptosis after transfection was examined by annexin V/propidium iodide assay. The migration was examined using transwell assay. Results: BASP1 expression was abundant in normal tissues while it is significantly decreased in cancer tissues (P = 0.000). pcDNA-BASP1 restored the expression of BASP1 and significantly inhibited the growth of BHT-101 and KMH-2 cells as well as xenograft tumors in nude mice (P = 0.000). pcDNA-BASP1 induced G1 arrest and apoptosis in BHT-101 and KMH-2 cells. In addition, pcDNA-BASP1 significantly inhibited the cell migration. Conclusions: Downregulation of BASP1 expression may play a role in the tumorigenesis of thyroid cancer. Restoration of BASP1 expression exerted extensive antitumor activities against growth and migration of thyroid cancer cells, which suggested that BASP1 gene might act as a potential therapeutic agent for the treatment of thyroid cancer. PMID:27270539

  8. Thermodynamic modelling of the effect of hydroxycarboxylic acids on the solubility of plutonium at high pH

    SciTech Connect

    Moreton, A.D.

    1993-12-31

    A number of the hydroxycarboxlyic acids generated by the alkaline degradation of cellulosic wastes under reducing conditions in a cementitious repository can significantly increase the solubility of the actinides at high pH, especially plutonium. The solubility of plutonium at pH 12, in the presence of a range of hydroxycarboxylic acids containing a number of hydroxyl groups and between one and three carboxylate groups, has been modelled using the HARPHRQ code. All the plutonium-organic complexes assumed in the model are based on a stable unit in which a central plutonium ion is bound by four oxygen atoms. The oxygen atoms can be provided either by a deprotonated hydroxyl group on one of the ligands, or by hydroxide ions.

  9. Amino acid digestibility of heat damaged distillers dried grains with solubles fed to pigs

    PubMed Central

    2013-01-01

    The primary objective of this experiment was to determine the effects of heat treatment on the standardized ileal digestibility (SID) of amino acids (AA) in corn distillers dried grains with solubles (DDGS) fed to growing pigs. The second objective was to develop regression equations that may be used to predict the concentration of SID AA in corn DDGS. A source of corn DDGS was divided into 4 batches that were either not autoclaved or autoclaved at 130°C for 10, 20, or 30 min. Four diets containing DDGS from each of the 4 batches were formulated with DDGS being the only source of AA and CP in the diets. A N-free diet also was formulated and used to determine the basal endogenous losses of CP and AA. Ten growing pigs (initial BW: 53.5 ± 3.9 kg) were surgically equipped with a T-cannula in the distal ileum and allotted to a replicated 5 × 4 Youden square design with 5 diets and 4 periods in each square. The SID of CP decreased linearly (P < 0.05) from 77.9% in non-autoclaved DDGS to 72.1, 66.1, and 68.5% in the DDGS samples that were autoclaved for 10, 20, or 30 min, respectively. The SID of lysine was quadratically reduced (P < 0.05) from 66.8% in the non-autoclaved DDGS to 54.9, 55.3, and 51.9% in the DDGS autoclaved for 10, 20, or 30 min, respectively. The concentrations of SID Arginine, Histidine, Leucine, Lysine, Methionine, Phenylalanine, or Threonine may be best predicted by equations that include the concentration of acid detergent insoluble N in the model (r2 = 0.76, 0.68, 0.67, 0.84, 0.76, 0.73, or 0.54, respectively). The concentrations of SID Isoleucine and Valine were predicted (r2 = 0.58 and 0.54, respectively) by the Lysine:CP ratio, whereas the concentration of SID Tryptophan was predicted (r2 = 0.70) by the analyzed concentration of Tryptophan in DDGS. In conclusion, the SID of AA is decreased as a result of heat damage and the concentration of SID AA in heat-damaged DDGS may be predicted by regression equations

  10. Humic and fluvic acids and organic colloidal materials in the environment

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.; Clark, S.B.

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  11. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  12. Solubility of Fullerenes in Fatty Acids Esters: A New Way to Deliver In Vivo Fullerenes. Theoretical Calculations and Experimental Results

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco

    The biological effects of fullerenes and, in particular, of C60 have been recognized since long time. One of the problems which hindered the application of fullerenes in medicinal chemistry regards their insolubility in water and water-based fluids. In the present chapter it is reported that C60 and C70 fullerenes are soluble in vegetable oils, in general, in esters of fatty acids and in free fatty acids. These results pave the way in the utilization of vegetable oils as vehicles in the delivery of fullerenes for both topical applications and internal use (e.g., intramuscular injection).

  13. Light microscopic autoradiography for study of early changes in the distribution of water-soluble materials

    SciTech Connect

    Kawamoto, T. )

    1990-12-01

    An approach using autoradiography for the study of early changes in the distribution of water-soluble materials and the chemography involved was investigated. Radioactive calcium chloride (45Ca) was injected into the iliac vein of a rat. Ten seconds after the injection the rat was frozen in hexane (-90 degrees C). The frozen rat was embedded in 5% sodium carboxymethyl cellulose and blocked in the coolant. A sheet of plastic tape coated with a synthetic rubber glue was fastened to the trimmed block surface, and whole-body sections 2-10 microns thick were cut with a disposable microtome knife. Selected sections were freeze-dried and then covered with a dried autoradiographic emulsion film about 1 microns thick. The autoradiograph clearly showed the distribution of radioactive calcium in the calcification zone of long bones. The samples chosen to assess chemographic artifacts showed positive and negative chemographies on most of the tissues when these were kept at 23 degrees C, and although both chemographic effects were significantly reduced when the samples were kept at -20 degrees C, cells in several tissues still exhibited positive and negative chemographies. The technique can be used for the study of any animal whose size is suitable for whole-body freeze-sectioning.

  14. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability.

    PubMed

    Schuler, Aaron D; Engles, Courtney A; Maeda, Dean Y; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Mason, S Nicholas; Auten, Richard L; Zebala, John A

    2015-09-15

    The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability. PMID:26248802

  15. Water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the tropical Indian aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.

    2010-06-01

    Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is

  16. Seasonal and longitudinal distributions of atmospheric water-soluble dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific

    NASA Astrophysics Data System (ADS)

    Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro

    2015-05-01

    In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.

  17. The contribution of acidulant to the antibacterial activity of acid soluble α- and β-chitosan solutions and their films.

    PubMed

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2014-01-01

    This study evaluated individual contributions of dissolving acids (acetic acid, lactic acid, and hydrochloric acid) or acid solubilized chitosan to the antibacterial activity against Listeria innocua and Escherichia coli as solutions and dried films. Solutions containing chitosan showed significantly (P < 0.05) different inhibitory activity (measured as percentage of inhibition (PI), in percent) against L. innocua and E. coli, compared to equivalent acid solutions. This increase was calculated as additional inhibition (AI, in percent), which could be as high as 65% in solutions containing 300-320 kDa chitosan depending on the acid type, bacterial species, and the chitosan form (α or β). Solutions containing 4-5 kDa chitosan had lower AI and showed much greater variability among the different chitosan forms, acid types, and bacterial species. Higher molecular weight (Mw) chitosan also showed significantly higher levels of adsorption to bacterial cells than that of lower Mw samples, suggesting that the observed increase in inhibition was the result of surface phenomena. The contribution of acids to the antibacterial activity of chitosan films was assessed by comparing non-rinsed and rinsed films (rinsed in the appropriate broth to remove residual acids and active fragments formed on the dried film). Rinsing β-chitosan films has reduced PI by as much as 28% compared with non-rinsed films, indicating that part of the antibacterial activity of chitosan films is due to the presence of soluble acid compounds and/or other active fragments. Overall, both acidulant and chitosan were found to contribute to the antibacterial activity of acid solubilized α- and β-chitosan, with the exact antibacterial activity of chitosan varying based on the solution and film properties, suggesting a complex interaction. PMID:24196584

  18. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  19. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    SciTech Connect

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  20. Water-soluble dicarboxylic acids and ω-oxocarboxylic acids in size-segregated aerosols over northern Japan during spring: sources and formation processes

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay Kumar; Kawamura, Kimitaka; Kobayashi, Minoru; Gowda, Divyavani

    2016-04-01

    Seven sets (AF01-AF07) of size-segregated aerosol (12-sizes) samples were collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI) in Sapporo, Japan during the spring of 2001 to understand the sources and atmospheric processes of water-soluble organic aerosols in the outflow region of Asian dusts. The samples were analyzed for dicarboxylic acids (C2-C12) and ω-oxocarboxylic acids as well as inorganic ions. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2) in size-segregated aerosols. SO42- and NH4+ are enriched in submicron mode whereas NO3- and Ca2+ are in supermicron mode. Most of diacids and ω-oxoacids are enriched in supermicron mode in the samples (AF01-AF03) influenced by the long-range transport of mineral dusts whereas enhanced presence in submicron mode was observed in other sample sets. The strong correlations of C2 with Ca2+ (r = 0.95-0.99) and NO3- (r = 0.96-0.98) in supermicron mode in the samples AF01-AF03 suggest the adsorption or production of C2 diacid via heterogeneous reaction on the surface of mineral dust during long-range atmospheric transport. The preferential enrichment of diacids and ω-oxoacids in mineral dust has important implications for the solubility and cloud nucleation properties of the dominant fraction of water-soluble organic aerosols. This study demonstrates that biofuel and biomass burning and mineral dust originated in East Asia are two major factors to control the size distribution of diacids and related compounds over northern Japan.

  1. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  2. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules.

    PubMed

    Blee, Kristopher A; Anderson, Anne J

    2002-09-01

    Arbuscule formation by the arbuscular mycorrhizal fungus Glomus intraradices (Schenck & Smith) was limited to cortical cells immediately adjacent to the endodermis. Because these cortical cells are the first to intercept photosynthate exiting the vascular cylinder, transcript levels for sucrose metabolizing-enzymes were compared between mycorrhizal and non-mycorrhizal roots. The probes corresponded to genes encoding a soluble acid invertase with potential vacuolar targeting, which we generated from Phaseolus vulgaris roots, a Rhizobium-responsive sucrose synthase of soybean and a cell wall acid invertase of carrot. Transcripts in non-mycorrhizal roots were developmentally regulated and abundant in the root tips for all three probes but in differentiated roots of P. vulgaris they were predominantly located in phloem tissues for sucrose synthase or the endodermis and phloem for soluble acid invertase. In mycorrhizal roots increased accumulations of transcripts for sucrose synthase and vacuolar invertase were both observed in the same cortical cells bearing arbuscules that fluoresce. There was no effect on the expression of the cell wall invertase gene in fluorescent carrot cells containing arbuscules. Thus, it appears that presence of the fungal hyphae in the fluorescent arbusculated cell stimulates discrete alterations in expression of sucrose metabolizing enzymes to increase the sink potential of the cell. PMID:12175013

  3. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in "Starkrimson" during the Ripening Period in China.

    PubMed

    Liu, Yulian; Chen, Nianlai; Ma, Zonghuan; Che, Fei; Mao, Juan; Chen, Baihong

    2016-01-01

    "Starkrimson" is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of "Starkrimson" fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE) parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal), fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity. PMID:27338331

  4. Molecular weight distribution of soluble fiber fractions and short chain fatty acids in ileal digesta of growing pigs.

    PubMed

    Ivarsson, E; Andersson, R; Lindberg, J E

    2012-12-01

    The effect of dietary fiber source on molecular weight (MW) distribution of soluble fiber fractions and short chain fatty acids (SCFA) in ileal digesta of 7 post valve T-cecum (PVTC) cannulated growing pigs was studied. Pigs were fed semisynthetic diets with sugar beet (Beta vulgaris) pulp (SBP) or chicory (Cichorium intybus) forage (CFO) as fiber sources of which the soluble nonstarch polysaccharide (NSP) fraction originated mainly from pectin. Three MW intervals were selected-large MW (MWL): 10,000,000 to 1,000,000 g/mol, medium MW (MWM): 1,000,000 to 200,000 g/mol, and small MW (MWS): 200,000 to 10,000 g/mol-and the relative distribution (% of total) of molecules in each interval was calculated. The MWM fraction was higher (P < 0.05) in ileal digesta of pigs fed diet SBP and the MWS fraction was higher (P < 0.05) in ileal digesta of pigs fed diet CFO. The mole/100 mole of propionic acid (HPr) was higher (P < 0.010) in pigs fed diet SBP whereas pigs fed diet CFO had higher (P < 0.010) mole/100 mole of acetic acid (HAc). The proportion of the MWL and MWM fractions in ileal digesta were negatively correlated to HAc (r = -0.52, P = 0.05, and r = -0.62, P = 0.02, respectively). The proportion of MWM in ileal digesta was positively correlated to HPr (r = 0.83; P = 0.001) whereas MWS and HPr were negatively correlated (r = -0.76; P = 0.002). In conclusion, the bacterial degradation of the soluble NSP fraction is selective and MW distribution may explain differences in SCFA production. PMID:23365284

  5. Effect of Different Inclusion Level of Condensed Distillers Solubles Ratios and Oil Content on Amino Acid Digestibility of Corn Distillers Dried Grains with Solubles in Growing Pigs

    PubMed Central

    Li, P.; Xu, X.; Zhang, Q.; Liu, J. D.; Li, Q. Y.; Zhang, S.; Ma, X. K.; Piao, X. S.

    2015-01-01

    The purpose of this experiment was to determine and compare the digestibility of crude protein (CP) and amino acids (AA) in full-oil (no oil extracted) and de-oiled (oil extracted) corn distillers dried grains with solubles (DDGS) with different condensed distillers solubles (CDS) ratios. Six barrows (29.6±2.3 kg) fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3%) was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID) of lysine (from 56.16% to 71.15%) and tryptophan (from 54.90% to 68.38%) had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2) were greater (p<0.05) than de-oiled DDGS (sources 3, 4, and 5). Comparing the AA SID in the 5 DDGS, full-oil with low CDS ratio DDGS (source 1) had non-significantly higher values (p >0.05) than full-oil with high CDS ratio DDGS (source 2); however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3) were non-significantly lower (p>0.05) than de-oiled with high CDS ratio DDGS (source 4); and the de-oiled DDGS with middle CDS ratio (source 5) but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS. PMID:25557681

  6. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material.

    PubMed

    Colangelo, F; Cioffi, R; Montagnaro, F; Santoro, L

    2012-06-01

    Fly ash from municipal solid waste incinerators (MSWI) is classified as hazardous in the European Waste Catalogue. Proper stabilization processes should be required before any management option is put into practice. Due to the inorganic nature of MSWI fly ash, cementitious stabilization processes are worthy of consideration. However, the effectiveness of such processes can be severely compromised by the high content of soluble chlorides and sulphates. In this paper, a preliminary washing treatment has been optimized to remove as much as possible soluble salts by employing as little as possible water. Two different operating conditions (single-step and two-step) have been developed to this scope. Furthermore, it has been demonstrated that stabilized systems containing 20% of binder are suitable for safer disposal as well as for material recovery in the field of road basement (cement bound granular material layer). Three commercially available cements (pozzolanic, limestone and slag) have been employed as binders. PMID:22244615

  7. Acid Rain Materials for Classroom Use.

    ERIC Educational Resources Information Center

    Factor, Lance; Kooser, Robert G.

    This booklet contains three separate papers suitable for use in an advanced high school or college chemistry course. The first paper provides background information on acids and bases. The second paper provides additional background information, focusing on certain aspects of atmospheric chemistry as it relates to the acid rain problem. An attempt…

  8. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    PubMed

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. PMID:25461009

  9. Near-Infrared Electrogenerated Chemiluminescence from Aqueous Soluble Lipoic Acid Au Nanoclusters.

    PubMed

    Wang, Tanyu; Wang, Dengchao; Padelford, Jonathan W; Jiang, Jie; Wang, Gangli

    2016-05-25

    Strong electrogenerated chemiluminescence (ECL) is detected from dithiolate Au nanoclusters (AuNCs) in aqueous solution under ambient conditions. A novel mechanism to drastically enhance the ECL is established by covalent attachment of coreactants N,N-diethylethylenediamine (DEDA) onto lipoic acid stabilized Au (Au-LA) clusters with matching redox activities. The materials design reduces the complication of mass transport between the reactants during the lifetime of radical intermediates involved in conventional ECL generation pathway. The intracluster reactions are highly advantageous for applications by eliminating additional and high excess coreactants otherwise needed. The enhanced ECL efficiency also benefits uniquely from the multiple energy states per Au cluster and multiple DEDA ligands in the monolayer. Potential step and sweeping experiments reveal an onset potential of 0.78 V for oxidative-reduction ECL generation. Multifolds higher efficiency is found for the Au clusters alone in reference to the standard Rubpy with high excess TPrA. The ECL in near-IR region (beyond 700 nm) is highly advantageous with drastically reduced interference signals over visible ones. The features of ECL intensity responsive to electrode potential and solution pH under ambient conditions make Au-LA-DEDA clusters promising ECL reagents for broad applications. The strategy to attach coreactants on Au clusters is generalizable for other nanomaterials. PMID:27172252

  10. Mefenamic acid taste-masked oral disintegrating tablets with enhanced solubility via molecular interaction produced by hot melt extrusion technology

    PubMed Central

    Alshehri, Sultan M.; Park, Jun-Bom; Alsulays, Bader B.; Tiwari, Roshan V.; Almutairy, Bjad; Alshetaili, Abdullah S.; Morott, Joseph; Shah, Sejal; Kulkarni, Vijay; Majumdar, Soumyajit; Martin, Scott T.; Mishra, Sanjay; Wang, Lijia; Repka, Michael A.

    2015-01-01

    The objective of this study was to enhance the solubility as well as to mask the intensely bitter taste of the poorly soluble drug, Mefenamic acid (MA). The taste masking and solubility of the drug was improved by using Eudragit® E PO in different ratios via hot melt extrusion (HME), solid dispersion technology. Differential scanning calorimetry (DSC) studies demonstrated that MA and E PO were completely miscible up to 40% drug loads. Powder X-ray diffraction analysis indicated that MA was converted to its amorphous phase in all of the formulations. Additionally, FT-IR analysis indicated hydrogen bonding between the drug and the carrier up to 25% of drug loading. SEM images indicated aggregation of MA at over 30% of drug loading. Based on the FT-IR, SEM and dissolution results for the extrudates, two optimized formulations (20% and 25% drug loads) were selected to formulate the orally disintegrating tablets (ODTs). ODTs were successfully prepared with excellent friability and rapid disintegration time in addition to having the desired taste-masking effect. All of the extruded formulations and the ODTs were found to be physically and chemically stable over a period of 6 months at 40°C/75% RH and 12 months at 25°C/60% RH, respectively. PMID:25914727

  11. Uptake of acid pollutants by mineral dust and their effect on aerosol solubility

    NASA Astrophysics Data System (ADS)

    Saliba, N. A.; Chamseddine, Ashraf

    2012-01-01

    Due to the implications caused by mineral dust and sea-salt heterogeneous reactions with SO 2, NO x and NH 3 derivatives, this study aims to understand the interaction between gaseous and particulate phases; PM10 and PM2.5, in dust-rich and dust-poor environments. During dust outbreaks, the increase in PM10 and PM2.5 mass concentrations by 80 and 75%, respectively, was accompanied with approximately 30% decrease in water soluble inorganic ions. However, nitrate ion concentration, which increased by 36% during dust-rich episodes, was correlated with a 96% increase in gaseous HONO concentration. This implies a significant impact of dust storms on the tropospheric NO 2 to HONO conversion and consequently the formation of nitrate in PMs. Products of the reaction between HONO and mineral dust render atmospheric aerosols more soluble and consequently higher nitrogen deposition fluxes were calculated.

  12. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  13. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots. [Zea mays L

    SciTech Connect

    Beffa, R.; Martin, H.V.; Pilet, P.E. )

    1990-10-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl{sub 2} and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of ({sup 3}H)indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol.

  14. Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase

    PubMed Central

    Charles, Rebecca L.; Rudyk, Olena; Prysyazhna, Oleksandra; Kamynina, Alisa; Yang, Jun; Morisseau, Christophe; Hammock, Bruce D.; Freeman, Bruce A.; Eaton, Philip

    2014-01-01

    Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes’ epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet. PMID:24843165

  15. Increase on the Initial Soluble Heme Levels in Acidic Conditions Is an Important Mechanism for Spontaneous Heme Crystallization In Vitro

    PubMed Central

    Egan, Timothy J.; Wright, David W.; Oliveira, Marcus F.

    2010-01-01

    Background Hemozoin (Hz) is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH) (the synthetic counterpart of Hz) formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. Methodology/Principal Findings We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO) and a series of polyethyleneglycols (PEGs). We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000) increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300) caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. Conclusions The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels. PMID:20856937

  16. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    NASA Astrophysics Data System (ADS)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  17. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  18. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-02-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi

  19. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    NASA Astrophysics Data System (ADS)

    Miñambres, L.; Méndez, E.; Sánchez, M. N.; Castaño, F.; Basterretxea, F. J.

    2014-10-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.

  20. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  1. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  2. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  3. Formation of water-soluble dicarboxylic acids, oxoacids and a-dicarbonyls by ozone oxidation of isoprene

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Tachibana, E.; Sakamoto, Y.; Hirokawa, J.

    2014-12-01

    Water-soluble dicarboxylic acids such as oxalic acid (C2) are the dominant organic compound class in atmospheric aerosols. They can act as cloud condensation nuclei and affect on the Earth climate. Diacids can be primary emitted from fossil fuel combustion and biomass burning and secondarily produced by photochemical oxidations of biogenic and anthropogenic hydrocarbons. However, their sources and formation processes are still not well understood. Recently model and observation studies suggested the importance of isoprene as a precursor of oxalic acid. Isoprene is the most abundant BVOC emitted from terrestrial plants and can serve as important precursors of diacids. We conducted a laboratory oxidation of isoprene (2.0 ppm) with ozone (4.3 ppm) in a Teflon bag for 10 to 480 min. The formed particles were collected with quartz fiber filters and analyzed for diacids, oxoacids and a-dicarbonyls employing water extraction and butyl ester derivatization and using GC and GC/MS techniques. Here, we report the analytical results to better understand the formation process of diacids and related compounds from isoprene. We detected homologous series of saturated diacids (C2-C6), unsaturated diacids (maleic and methylmaleic acids), w-oxocarboxylic acids (C2-C9), pyruvic acid, glyoxal and methylglyoxal. We found that oxalic acid (3000-9700 ngm-3) is the most abundant diacid followed by succinic (C4) or malonic (C3) acid. Their concentrations increased with reaction time showing a maximum in 4 hours. Interestingly, C3/C4 ratios increased with time. The second most abundant species after oxalic acid was generally methylglyoxal (3600-9600 ngm-3), except for the 30 min. sample where methylglyoxal was more abundant than oxalic acid. Glyoxylic acid (wC2) was found as the most abundant oxoacid (1600-3800 ngm-3) followed by wC3 and wC4. Although the concentrations of diacids and related compounds are 1-2 orders magnitude higher than those reported in ambient aerosols, this study

  4. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    SciTech Connect

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  5. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    PubMed

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles. PMID:24437520

  6. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    PubMed

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  7. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  8. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids.

    PubMed

    Knöös, Patrik; Svensson, Anna V; Ulvenlund, Stefan; Wahlgren, Marie

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  9. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-w.; Seewald, J. S.; Cziczo, D. J.

    2013-11-01

    This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for three clay minerals: illite, sodium-rich montmorillonite, and Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used to determine non-sphericity in particle shape. EM is also used to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory and Frenkel, Halsey, and Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-Köhler is a suitable framework, less complex than FHH theory, to describe clay mineral nucleation activity despite apparent differences in κ with respect to size. For dry-generated particles the size dependence is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much lower critical supersaturation for droplet activation than expected. For wet-generated particles, deviation from κ-Köhler theory is likely a result of the dissolution and redistribution of soluble material. (2) Wet-generation is found to be unsuitable for simulating the lofting of fresh dry dust because it changes the size-dependent critical supersaturations by fractionating and re-partitioning soluble material.

  10. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  11. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid.

    PubMed

    Meaney, Carolyn A; Cartman, Stephen T; McClure, Peter J; Minton, Nigel P

    2016-01-01

    Mutant strains of Clostridium botulinum ATCC 3502 were generated using the ClosTron in four genes (CBO1789, CBO1790, CBO3048, CBO3145) identified as encoding α/β-type SASP homologues. The spores of mutant strains in which CBO1789 or CBO1790 was inactivated demonstrated a significant increase in sensitivity to the damaging agent nitrous acid (P<0.01), a phenotype that was partially restored to wild-type in complementation studies. In contrast to nitrous acid, the spores of the CBO1789 and CBO1790 mutants showed no change in their resistance to formaldehyde and hydrogen peroxide (P>0.05), two other chemicals commonly used as components of disinfection regimes. These data indicate that the SASPs CBO1789 or CBO1790 play a significant role in resistance to nitrous acid, but not in resistance to formaldehyde or hydrogen peroxide. PMID:26386202

  12. Water-Soluble Poly(p-aryleneethynylene)s: A Sensor Array Discriminates Aromatic Carboxylic Acids.

    PubMed

    Han, Jinsong; Wang, Benhua; Bender, Markus; Seehafer, Kai; Bunz, Uwe H F

    2016-08-10

    A chemical tongue consisting of 11 elements (four poly(p-aryleneethynylene)s (PAE) at pH 7 and pH 13, and seven electrostatic complexes formed from oppositely charged poly(p-aryleneethynylene)s at pH 7) discriminate 21 benzoic and phenylacetic acid derivatives in aqueous solution. The mechanism of discrimination is the fluorescence modulation of the PAEs, leading to quenching or fluorescence turn-on. The PAEs alone at both pH values and the tongue, consisting of the complexes only, discriminate the 21 acids with 92% (PAEs at pH 7), 95% (PAEs at pH 13), and 99% (complexes at pH 7) reliability after linear discriminant analysis (LDA). A sensor field with all 14 elements, according to LDA, discriminates all of the 21 acids with 100% accuracy. PMID:27415439

  13. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking.

    PubMed

    Wang, Lei; Xu, Honggao; Yuan, Fang; Fan, Rui; Gao, Yanxiang

    2015-10-15

    The coupled pretreatment of orange peel with steam explosion (SE) and sulfuric-acid soaking (SAS) was investigated to enhance the yield and improve the functionality of soluble dietary fiber (SDF). When orange peel was pretreated by SE at 0.8MPa for 7 min, combined with 0.8% SAS, the content of SDF was increased from 8.04% to 33.74% in comparison to the control and SDF prepared with SE-SAS showed the high water solubility, water-holding capacity, oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability and foam stability. SDF from orange peel treated by SE-SAS exhibited significantly (p < 0.05) higher binding capacity for three toxic cations (Pb, As and Cu) and smaller molecular weight (Mw = 174 kDa). Furthermore, differential scanning calorimetry (DSC) measurement showed that SDF from orange peel treated by SE-SAS had a higher peak temperature (170.7 ± 0.4 °C) than that of the untreated sample (163.4 ± 0.3 °C). Scanning electron micrograph (SEM) images demonstrated that the surface of SDF from orange peel treated by SE-SAS was rough and collapsed. It can be concluded that SDF from orange peel treated by SE-SAS has the higher potential to be applied as a functional ingredient in food products. PMID:25952845

  14. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  15. Prevention of bovine mastitis by a postmilking teat disinfectant containing chlorous acid and chlorine dioxide in a soluble polymer gel.

    PubMed

    Oliver, S P; King, S H; Torre, P M; Shull, E P; Dowlen, H H; Lewis, M J; Sordillo, L M

    1989-11-01

    A natural exposure study was conducted in a herd of 150 lactating dairy cows for 18 mo to determine the effectiveness of chlorous acid and chlorine dioxide in a soluble polymer gel as a postmilking teat disinfectant for the prevention of bovine mastitis. Right quarters of cows were dipped in the experimental teat dip after milking machine removal. Left quarters were not dipped and served as within-cow negative controls. The experimental teat dip reduced Staphylococcus aureus infections 67.4%, Streptococcus dysgalactiae infections 63.8%, and Streptococcus uberis infections 27.8%. Overall efficacy of the chlorous acid and chlorine dioxide teat dip against major mastitis pathogens was 52.2%. The experimental teat dip reduced Corynebacterium bovis infections and coagulase-negative staphylococcal infections also by 45.8 and 38.7%, respectively. Overall efficacy against minor mastitis pathogens was 43.4%. Under conditions of this trial, the experimental teat dip containing chlorous acid and chlorine dioxide was effective in preventing new intramammary infections against a variety of mastitis pathogens. PMID:2625499

  16. Fatty acids and fat-soluble vitamins in ewe's milk predicted by near infrared reflectance spectroscopy. Determination of seasonality.

    PubMed

    Revilla, I; Escuredo, O; González-Martín, M I; Palacios, C

    2017-01-01

    The aim of the present work was to determine the fatty acid and fat-soluble vitamin composition and the season of ewe's milk production using NIR spectroscopy. 219 ewe's milk samples from different breeds and feeding regimes were taken each month over one year. Fatty acids were analyzed by gas chromatography, and retinol and α-, and γ-tocopherol by liquid chromatography. The results showed that the quantification was more accurate for the milk dried on paper, except for vitamins. Calibration statistical descriptors on milk dried on paper were good for capric, lauric, myristic, palmitoleic, stearic and oleic acids, and acceptable for caprilic, undecanoic, 9c, 11tCLA, ΣCLA, PUFA, ω3, ω6, retinol and α-tocopherol. The equations for the discrimination of seasonality was obtained using the partial least squares discriminant analysis (PLSDA) algorithm. 93% of winter samples and 89% of summer samples were correctly classified using the NIR spectra of milk dried on paper. PMID:27507500

  17. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    PubMed

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread. PMID:26397032

  18. Uptake of HCl and HOCl onto sulfuric acid. Solubilities, diffusivities, and reaction

    SciTech Connect

    Hanson, D.R.; Ravishankara, A.R. Univ. of Colorado, Boulder, CO )

    1993-11-25

    The interaction of HOCl and HCl vapors with liquid sulfuric acid surfaces was studied in a flow tube equipped with chemical ionization mass spectrometry detection. Time-dependent uptake of HCl and HOCl was measured. A methodology for deriving the value of the quantity H[radical]D[sub 1], (the product of the Henry's law coefficient and the square root of the liquid-phase diffusion coefficient) is discussed. The partial pressures of HCl over HCl-doped sulfuric acid solutions were also measured to directly determine H for HCl (H[sub HCl]*). Using the measured values of H[sub HCl]* and H[sub HCl]*[radical]D[sub 1], the value of D[sub 1] for HCl in 50 wt % sulfuric acid was extracted. Values for H[sub HOCl] and for the second-order rate coefficient for the reaction between dissolved HOCl and HCl were also obtained. The application of these results to modeling stratospheric heterogeneous processes in sulfuric acid aerosols is discussed. 31 refs., 14 refs., 3 tabs.

  19. Multifunctional water-soluble molecular capsules based on p-phosphonic acid calix[5]arene.

    PubMed

    Martin, Adam D; Boulos, Ramiz A; Hubble, Lee J; Hartlieb, Karel J; Raston, Colin L

    2011-07-14

    p-Phosphonic acid calix[5]arene forms molecular capsules in water based on two of the molecules, which can be loaded with carboplatin using intense shearing, and attached to single wall carbon nano-tubes. Spin coating of the capsules onto a substrate affords 2 nm fibres of stacked calixarenes, with the self-assembly understood using molecular modelling. PMID:21637889

  20. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies.

    PubMed

    Gharagozlou, Mehrnaz; Boghaei, Davar M

    2008-12-15

    Fluorescence spectroscopy in combination with circular dichroism (CD) spectroscopy were used to investigate the interaction of water-soluble amino acid Schiff base complexes, [Zn(L1,2)(phen)] where phen is 1,10-phenanthroline and H2L1,2 is amino acid Schiff base ligands, with bovine serum albumin (BSA) under the physiological conditions in phosphate buffer solution adjusted to pH 7.0. The quenching mechanism of fluorescence was suggested as static quenching according to the Stern-Volmer equation. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between amino acid Schiff base complexes and BSA. The thermodynamic parameters DeltaG, DeltaH and DeltaS at different temperatures (298, 310 and 318K) were calculated. The results indicate that the hydrophobic and hydrogen bonding interactions play a major role in [Zn(L1)(phen)]-BSA association, whereas hydrophobic and electrostatic interactions participate a main role in [Zn(L2)(phen)]-BSA binding process. Binding studies concerning the number of binding sites and apparent binding constant Kb were performed by fluorescence quenching method. The distance R between the donor (BSA) and acceptor (amino acid Schiff base complexes) has been obtained utilizing fluorescence resonant energy transfer (FRET). Furthermore, CD spectra were used to investigate the structural changes of the BSA molecule with the addition of amino acid Schiff base complexes. The results indicate that the interaction of amino acid Schiff base complexes with BSA leads to changes in the secondary structure of the protein. Fractional contents of the secondary structure of BSA (f(alpha), f(beta), f(turn) and f(random)) were calculated with and without amino acid Schiff base complexes utilizing circular dichroism spectroscopy. Our results clarified that amino acid Schiff base complexes could bind to BSA and be effectively transported and eliminated in the body, which could be a useful guideline for

  1. Biosynthesis of Fatty Acids by a Soluble Extract From Developing Soybean Cotyledons 1

    PubMed Central

    Rinne, R. W.

    1969-01-01

    Fractionation of developing soybean cotyledons into cellular components demonstrates that most of the activity necessary to incorporate acetate-1-14C into lipid remains in the supernatant from a 198,000g spin for 1 hr. The system studied is dependent upon ATP, CoA, and CO2. Concentrations of ATP greater than 4 × 10−3m are inhibitory, while 1 × 10−4m CoA is needed for optimal activity. Avidin inhibition of acetate incorporation into lipid could be reversed by biotin. Studies indicated that NADPH is a better source of reducing power than NADH. The system studied is inhibited by p-chloromercuribenzoic acid and this inhibition can be reversed by an excess of GSH. The system studied shows maximum activity in tris buffer at pH 8.6 or in glycine buffer, pH 9.4. The distribution of acetate into the various fatty acids is greatly influenced by the temperature of incubation. Cooler incubation temperatures favor the distribution of acetate into the more unsaturated fatty acids. PMID:16657038

  2. Use of wet FGD material for revegetation of an abandoned acidic coal refuse pile

    SciTech Connect

    Mafi, S.; Stehouwer, R.C.

    1996-12-31

    Wet FGD material has a neutralizing potential of 15% CaCO{sub 3}. These properties may make it a beneficial amendment for revegetation of hyper-acidic coal refuse. In greenhouse and field experiments, coal refuse (pH = 2.5) was amended with wet FGD (300, 500, and 700 tons/acre). Amendment with FGD was as effective as agricultural lime (AL) in increasing refuse pH and decreasing soluble Al and Fe. Addition of compost to the FGD further increased pH and decreased soluble Al and Fe. Downward transport of Ca was greater with FGD than AL, but FGD did not increase leachate concentrations of S. Amendment with FGD increased refuse, leachate and plant tissue concentrations of B. Other trace elements were not increased by FGD. In the greenhouse, plant growth was similar with AL and FGD except during the first three months when AL produced more growth than FGD. The initial growth suppression by FGD was likely due to high soluble salts, and possibly by high B concentrations. During the first year of the field experiment plant growth was greater with FGD than with AL. In both the field and greenhouse experiments compost increased plant growth when combined with FGD. These experiments show revegetation of toxic coal refuse and improvement in drainage water quality is possible by amendment with FGD. Revegetation success will be improved by combined amendment with FGD and compost.

  3. Solubility selective membrane materials for carbon dioxide removal from mixtures with light gases

    NASA Astrophysics Data System (ADS)

    Lin, Haiqing

    Membrane technology has attracted interest for the selective removal of carbon dioxide from mixtures with light gases such as H2, CH4 and N2. While conventional structure-property correlations have focused mainly on improving the separation performance by increasing polymer size sieving ability (i.e., diffusivity selectivity), this project explores the possibility of harnessing favorable interactions between CO 2 and polymers containing polar groups to improve permeability/selectivity properties. Ether oxide groups are discovered to be among the best moieties known to interact with CO2, leading to high CO2 solubility and CO2/light gas solubility selectivity, while still providing polymer chain flexibility, leading to high CO2 diffusivity and favorable CO2/H2 diffusivity selectivity. Poly(ethylene oxide) (PEO) has a high concentration of ether oxygen groups and exhibits high CO2/light gas selectivities. However, gas permeability is low due to the high crystallinity in PEO. Crosslinking and introduction of short chain branching are efficient methods to inhibit crystallization. Three series of crosslinked poly(ethylene oxide) rubbers have been prepared using prepolymer solutions containing: (1) poly(ethylene glycol) diacrylate (PEGDA) and H2O, (2) PEGDA and poly(ethylene glycol) methyl ether acrylate (PEGMEA), and (3) PEGDA and poly(ethylene glycol) acrylate (PEGA). Independent of the prepolymer composition, all of these polymers have similar ethylene oxide (EO) content (approximately 82 wt.%). Crosslink density decreases with decreasing PEGDA content in the prepolymer solution, which is estimated from water swelling experiments and/or dynamic mechanical testing and has essentially no effect on gas transport properties. Increasing PEGMEA content increases the average size of free volume elements, resulting in a decreased glass transition temperature, and increased CO 2 permeability and CO2/H2 selectivity. In contrast, the presence of PEGA or water has a negligible

  4. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores.

    PubMed Central

    Connors, M J; Mason, J M; Setlow, P

    1986-01-01

    Three Bacillus subtilis genes (termed sspA, sspB, and sspD) which code for small, acid-soluble spore proteins (SASPs) have been cloned, and their complete nucleotide sequence has been determined. The amino acid sequences of the SASPs coded for by these genes are similar to each other and to those of the SASP-1 of B. subtilis (coded for by the sspC gene) and the SASP-A/C family of B. megaterium. The sspA and sspB genes are expressed only in sporulation, in parallel with each other and with the sspC gene. Two regions upstream of the postulated transcription start sites for the sspA and B genes have significant homology with the analogous regions of the sspC gene and the SASP-A/C gene family. Purification of two of the three major B, subtilis SASPs (alpha and beta) and determination of their amino-terminal sequences indicated that the sspA gene codes for SASP-alpha and that the sspB gene codes for SASP-beta. This was confirmed by the introduction of deletion mutations into the cloned sspA and sspB genes and transfer of these deletions into the B. subtilis chromosome with concomitant loss of the wild-type gene. Images PMID:3009398

  5. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    PubMed Central

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2008-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymers under mild coupling conditions has been achieved utilising the coupling reagent O-benzotriazolyl-N,N,N′,N′-tetramethyluronium hexafluorophosphate to promote formation of the biodegradable amide bond. Even though the parent antineoplastic ferrocene and phthalocyanine derivatives are themselves insoluble in water at pH < 7, the new carrier-drug conjugates that were obtained are well water-soluble. PMID:18288243

  6. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  7. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  8. Amino acid digestibility of corn distillers dried grains with solubles, liquid condensed solubles, pulse dried thin stillage, and syrup balls fed to growing pigs.

    PubMed

    Soares, J A; Stein, H H; Singh, V; Shurson, G S; Pettigrew, J E

    2012-04-01

    Distillers dried grains with solubles (DDGS) has low and variable AA digestibility. The variability is often attributed to damage during the heating process, and it has been suggested that the damage happens to the soluble components of DDGS such as reducing sugars. Combining solubles and grains sometimes produces syrup balls (SB); their digestibility is unknown. The objective of this experiment was to identify potential sources of poor and variable AA digestibility in DDGS. Specifically, our objective was to determine whether the problems are associated with the solubles component or with SB. The ingredients evaluated were DDGS, intact SB, ground SB, liquid condensed solubles (LCS), and pulse dried thin stillage (PDTS) obtained from the same ethanol plant. The LCS is produced by evaporation of thin stillage. Each ingredient was used as the only source of AA in an experimental diet. In a duplicate 6 × 6 Latin square design with 7-d adaptation and collection periods, the 6 treatments consisted of an N-free diet and the 5 test ingredients. Pigs had 5 d of adaptation to each diet, and on d 6 and 7 ileal digesta were collected from an ileal cannula for 8 h each day. Both SB treatments had apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA that were similar or greater (P < 0.05) than those of DDGS. The AID and SID values of Lys and a few other AA were similar in LCS (SID Lys: 63.1%) and DDGS (SID Lys: 61.5%), but the digestibility values of most AA in LCS were less than in DDGS (P < 0.05). The low digestibility of AA in LCS was most pronounced for Met (SID: LCS, 41.9% vs. DDGS, 82.8%). The LCS had less (P < 0.05) AID and SID of CP (SID: 67.8%) than intact SB (SID: 85.2%) and ground SB (SID: 85.9%) as well as all AA. The PDTS generally had the least AID and SID and had less (P < 0.05) CP (SID: 55.3%) and several AA, including Lys, compared with LCS. In conclusion, the presence of SB does not decrease AA digestibility of DDGS, and the LCS

  9. Species specific identification of spore-producing microbes using the gene sequence of small acid-soluble spore coat proteins for amplification based diagnostics

    DOEpatents

    McKinney, Nancy

    2002-01-01

    PCR (polymerase chain reaction) primers for the detection of certain Bacillus species, such as Bacillus anthracis. The primers specifically amplify only DNA found in the target species and can distinguish closely related species. Species-specific PCR primers for Bacillus anthracis, Bacillus globigii and Clostridium perfringens are disclosed. The primers are directed to unique sequences within sasp (small acid soluble protein) genes.

  10. A comparison of the use of BrimA versus soluble solids/titratable acidity ratio as a maturity standard for navel oranges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maturity and time of harvest for California navel oranges is primarily determined by the ratio of the soluble solids concentration (SSC) to titratable acidity (TA). This standard has been used in the industry for decades but its usefulness and relationship to flavor have often been questioned. In re...

  11. Determination of soluble solids content and titratable acidity of intact fruit and juice of Satsuma mandarin using a hand-held NIR instrument in transmittance mode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determination of soluble solids content (SSC) and titratable acidity (TA) of intact fruit and juice of Satsuma mandarin was investigated using a hand-held NIR instrument “NIR-Gun” in transmittance mode. The resulting calibration equation measured SSC of intact fruit and juice with a standard error o...

  12. Rapid purification and direct microassay of calbindin9kDa utilizing its solubility in perchloric acid.

    PubMed Central

    Hubbard, M J

    1993-01-01

    The 9 kDa calcium-binding protein, calbindin9kDa, was found to be soluble in 7% (v/v) perchloric acid. Calbindin9kDa was easily purified from rat duodenum in 1 day with perchloric acid precipitation followed by reverse-phase h.p.l.c. The yield was 21.4 +/- 2.3 nmol/g wet weight of tissue (mean +/- S.E.M.; n = 3) from normally fed 7-8-week-old rats (approx. 70% recovery). The purification was also effective with rabbit duodenum calbindin9kDa, but not with various other EF-hand calcium-binding proteins tested in the rat. Several criteria (h.p.l.c., u.v. spectrum, denaturing two-dimensional PAGE, N-terminal sequencing) indicated that the rat calbindin9kDa was purified to homogeneity and was not affected by proteolysis. High-affinity calcium-binding properties were retained and no evidence of isoforms or charge modification was observed. Residue 59, identified as Asn (not Asp as previously reported), was fully amidated. When adopted as a microassay with isocratic h.p.l.c., the perchloric acid procedure enabled rapid (less than 6 min) and direct (peptide bond absorbance) quantification of less than 1 pmol of calbindin9kDa. This new approach to purification and assay will be of particular utility for investigations of calbindin9kDa in previously intractable low-abundance sources (e.g. cultured cells). Images Figure 1 Figure 2 PMID:8392333

  13. Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material

    NASA Astrophysics Data System (ADS)

    Garimella, S.; Huang, Y.-W.; Seewald, J. S.; Cziczo, D. J.

    2014-06-01

    This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, illite and sodium-rich montmorillonite, and an industrially derived sample, Arizona Test Dust. Using wet and dry particle generation coupled to a differential mobility analyzer (DMA) and cloud condensation nuclei counter, the critical activation of the clay mineral particles as cloud condensation nuclei is characterized. Electron microscopy (EM) is used in order to determine non-sphericity in particle shape. It is also used in order to determine particle surface area and account for transmission of multiply charged particles by the DMA. Single particle mass spectrometry and ion chromatography are used to investigate soluble material in wet-generated samples and demonstrate that wet and dry generation yield compositionally different particles. Activation results are analyzed in the context of both κ-Köhler theory (κ-KT) and Frenkel-Halsey-Hill (FHH) adsorption activation theory. This study has two main results: (1) κ-KT is the suitable framework to describe clay mineral nucleation activity. Apparent differences in κ with respect to size arise from an artifact introduced by improper size-selection methodology. For dust particles with mobility sizes larger than ~300 nm, i.e., ones that are within an atmospherically relevant size range, both κ-KT and FHH theory yield similar critical supersaturations. However, the former requires a single hygroscopicity parameter instead of the two adjustable parameters required by the latter. For dry-generated particles, the size dependence of κ is likely an artifact of the shape of the size distribution: there is a sharp drop-off in particle concentration at ~300 nm, and a large fraction of particles classified with a mobility diameter less than ~300 nm are actually multiply charged, resulting in a much

  14. Solubility determination of TNT and wax and their fractionation from an explosive material using a supercritical fluid

    SciTech Connect

    Ashraf-Khorassani, M.; Taylor, L.T.

    1999-12-01

    The solubilities of 2,4,6-trinitrotoluene (TNT) and wax have been measured in supercritical carbon dioxide (Co{sub 2}) at three pressures and temperatures under static conditions. The concentrations of each component were determined off-line via ultraviolet (TNT) and evaporative light scattering (wax) detection. The solubility of TNT was an order of magnitude higher than that of wax. Gas chromatographic assay of the wax extract revealed that only the lower molecular weight components dissolved. Fractionation of the TNT and wax from an explosive material referred to as Composition B was attempted by making incremental increases in CO{sub 2} density. Composition B contains 59.5% cyclotrimethylene triamine (RDX), 39.5% TNT, and 1% wax. While TNT and Wax could be easily isolated from nitramine TDX, attempts to separate TNT from wax were not totally successful. More specifically, the initial fractions contained the lower molecular weight wax components in addition to major amounts of TNT. Since the percentage of TNT was approximately 50 times the amount of wax, later fractions were 100% TNT although most of the TNT was removed at the lower densities.

  15. A facile and high-recovery material for rare-metals based on a water-soluble polyallylamine with side-chain thiourea groups.

    PubMed

    Nagai, Daisuke; Yoshida, Megumi; Kishi, Takuya; Morinaga, Hisatoyo; Hara, Yusuke; Mori, Masanobu; Kawakami, Satoshi; Inoue, Kenji

    2013-08-01

    We describe a facile and high-recovery material for rare metals based on a polymer combining amino groups for water solubility and thiourea groups for metal complexation. Good solubility in aqueous metal ion solutions allows for homogeneous and efficient adsorption by the polymer, and a maximum Pd(II) recovery amount (0.508 gPd gpolymer(-1)) greater than those of other polymers reported in the literature. PMID:23788410

  16. The solubility parameter for biomedical polymers-Application of inverse gas chromatography.

    PubMed

    Adamska, K; Voelkel, A; Berlińska, A

    2016-08-01

    The solubility parameter seems to be a useful tool for thermodynamic characterisation of different materials. The solubility parameter concept can be used to predict sufficient miscibility or solubility between a solvent and a polymer, as well as components of co-polymer matrix in composite biomaterials. The values of solubility parameter were determined for polycaprolactone (PCL), polylactic acid (PLA) and polyethylene glycol (PEG) by using different procedures and experimental data, collected by means of inverse gas chromatography. PMID:27155736

  17. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    SciTech Connect

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  18. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    PubMed

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-01

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment. PMID:27083357

  19. Graphdiyne as a promising material for detecting amino acids

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-11-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors.

  20. Graphdiyne as a promising material for detecting amino acids

    PubMed Central

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-01-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/ graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors. PMID:26568200

  1. Graphdiyne as a promising material for detecting amino acids.

    PubMed

    Chen, Xi; Gao, Pengfei; Guo, Lei; Zhang, Shengli

    2015-01-01

    The adsorption of glycine, glutamic acid, histidine and phenylalanine on single-layer graphdiyne/graphene is investigated by ab initio calculations. The results show that for each amino acid molecule, the adsorption energy on graphdiyne is larger than the adsorption energy on graphene and dispersion interactions predominate in the adsorption. Molecular dynamics simulations reveal that at room temperature the amino acid molecules keep migrating and rotating on graphdiyne surface and induce fluctuation in graphdiyne bandgap. Additionally, the photon absorption spectra of graphdiyne-amino-acid systems are investigated. We uncover that the presence of amino acid molecules makes the photon absorption peaks of graphdiyne significantly depressed and shifted. Finally, quantum electronic transport properties of graphdiyne-amino-acid systems are compared with the transport properties of pure graphdiyne. We reveal that the amino acid molecules induce distinct changes in the electronic conductivity of graphdiyne. The results in this paper reveal that graphdiyne is a promising two-dimensional material for sensitively detecting amino acids and may potentially be used in biosensors. PMID:26568200

  2. Directed evolution and structural analysis of N-carbamoyl-D-amino acid amidohydrolase provide insights into recombinant protein solubility in Escherichia coli

    SciTech Connect

    Jiang, Shimin; Li, Chunhong; Zhang, Weiwen; Cai, Yuanheng; Yang, Yunlin; Yang, Sheng; Jiang, Weihong

    2007-03-15

    One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that over-expressed target proteins are mostly present in an insoluble form without any biological activity. N-carbamoyl-D-amino-acid amidohydrolase (DCase) is an important enzyme involved in semi-synthesis of β-lactam antibiotics in industry. In this study, in order to determine the amino acid sites responsible for solubility in DCase, error-prone PCR and DNA shuffling techniques are applied to randomly mutate its encoding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation are isolated. Solubility tests of these mutants and several other mutants generated by site-directed mutagenesis indicate that three amino acid residues of DCase (A18, Y30 and K34) are related to the protein solubility in DCase. In silico structural modeling analyses further suggest that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins in E. coli. Based on the information, multiple engineering designated mutants were constructed by site-directed mutagenesis; among them, a triple mutant A18T/Y30N/K34E (named as DCase-M3) can be over-expressed in E. coli with up to 80% of DCase-M3 protein as soluble. DCase-M3 is purified to homogeneity and a comparative analysis with WT DCase demonstrates that DCase-M3 enzyme is similar to the native DCase in terms of its kinetic and thermodynamic properties. The study provides new insights on recombinant protein solubility in E. coli.

  3. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary, Ternary, and Multicomponent Systems. Part I. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Water and Aqueous Systems

    NASA Astrophysics Data System (ADS)

    Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi

    2011-03-01

    The solubility data for well-defined binary, ternary, and multicomponent systems of solid-liquid type are reviewed. One component, which is 2-, 3-, and 4-hydroxybenzoic acids, 4-hydroxybenzoate alkyl esters (parabens), or hydroxybenzoic acid salts, is in the solid state at room temperature and another component is liquid water, meaning that all of the systems are aqueous solutions. The ternary or multicomponent systems include organic substances of various classes (hydrocarbons of several structural types, halogenated hydrocarbons, alcohols, acids, ethers, esters, amides, and surfactants) or inorganic substances. Systems reported in the primary literature from 1898 through 2000 are compiled. For seven systems, sufficient binary data for hydroxybenzoic acids or parabens in water are available to allow critical evaluation. Almost all data are expressed as mass and mole fractions as well as the originally reported units, while some data are expressed as molar concentration.

  4. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species.

    PubMed Central

    Fairhead, H; Setlow, B; Setlow, P

    1993-01-01

    The DNA in dormant spores of Bacillus species is saturated with a group of nonspecific DNA-binding proteins, termed alpha/beta-type small, acid-soluble spore proteins (SASP). These proteins alter DNA structure in vivo and in vitro, providing spore resistance to UV light. In addition, heat treatments (e.g., 85 degrees C for 30 min) which give little killing of wild-type spores of B. subtilis kill > 99% of spores which lack most alpha/beta-type SASP (termed alpha - beta - spores). Similar large differences in survival of wild-type and alpha - beta - spores were found at 90, 80, 65, 22, and 10 degrees C. After heat treatment (85 degrees C for 30 min) or prolonged storage (22 degrees C for 6 months) that gave > 99% killing of alpha - beta - spores, 10 to 20% of the survivors contained auxotrophic or asporogenous mutations. However, alpha - beta - spores heated for 30 min at 85 degrees C released no more dipicolinic acid than similarly heated wild-type spores (< 20% of the total dipicolinic acid) and triggered germination normally. In contrast, after a heat treatment (93 degrees C for 30 min) that gave > or = 99% killing of wild-type spores, < 1% of the survivors had acquired new obvious mutations, > 85% of the spore's dipicolinic acid had been released, and < 1% of the surviving spores could initiate spore germination. Analysis of DNA extracted from heated (85 degrees C, 30 min) and unheated wild-type spores and unheated alpha - beta - spores revealed very few single-strand breaks (< 1 per 20 kb) in the DNA. In contrast, the DNA from heated alpha- beta- spores had more than 10 single-strand breaks per 20 kb. These data suggest that binding of alpha/beta-type SASP to spore DNA in vivo greatly reduces DNA damage caused by heating, increasing spore heat resistance and long-term survival. While the precise nature of the initial DNA damage after heating of alpha- beta- spores that results in the single-strand breaks is not clear, a likely possibility is DNA depurination. A

  5. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    PubMed

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. PMID:25062659

  6. An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions

    NASA Astrophysics Data System (ADS)

    Dunuwila, Dilum D.; Carroll, Leslie B.; Berglund, Kris A.

    1994-04-01

    Currently applied methods for measurement of solubility and supersaturation based on viscometry, refractometry, interferometry and density require the separation of phases prior to measurement. ATR (attenuated total reflection) infrared spectroscopy provides a unique configuration in which the infrared spectrum of a liquid phase can be obtained in a slurry without phase separation. The applicability of the technique was investigated using a micro Circle ® open boat cell equipped with a ZnSe (zinc selenide) ATR rod. Experiments conducted with aqueous citric acid proved that ATR infrared spectroscopy can be successfully employed to determine solubility and supersaturation.

  7. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acids vector for cell transfection.

    PubMed

    Faizuloev, Evgeny; Marova, Anna; Nikonova, Alexandra; Volkova, Irina; Gorshkova, Marina; Izumrudov, Vladimir

    2012-08-01

    To endow the cationic polysaccharides with solubility in the whole pH-range without loss of functionality of the amino groups, different chitosan samples were treated with glycidyltrimethylammonium chloride. Each modified unit of the exhaustively alkylated quaternized chitosan (QCht) contained both quaternary and secondary amino groups. The intercalated dye displacement assay and ζ-potential measurements implied stability of QCht polyplexes at physiological conditions and protonation of the secondary amino groups in slightly acidic media which is favorable for transfection according to proton sponge mechanism. The cytotoxicity and transfection efficacy increased with the chain lengthening. Nevertheless, the longest chains of QCht, 250 kDa were less toxic than PEI for COS-1 cells and revealed comparable and even significantly higher transfection activity of siRNA and plasmid DNA, respectively. Thus, highly polymerized QCht (250 kDa) provided the highest level of the plasmid DNA transfection being 5 and 80 times more active than QCht (100 kDa) and QCht (50 kDa), respectively, and 4-fold more effective than PEI, 25 kDa. The established influence of QCht molecular weight on toxicity and transfection efficacy allows elaborating polysaccharide vectors that possess rational balance of these characteristics. PMID:24750918

  8. Transfer model of water-soluble material in saturated/unsaturated ground

    NASA Astrophysics Data System (ADS)

    Nomura, Shun; Kawai, Katsuyuki; Kakui, Shunsuke; Tachibana, Shinya; Kanazawa, Shinichi; Iizuka, Atsushi

    The ground pollution is one of the most serious environmental issues all over the world now. Industrial wastes discharged from various human activities infiltrate to the ground, diffuse and damage to plants and animals indirectly. Therefore, it is strongly requested to know the transfer behavior of contaminant movement in the ground. In this study, continuous equations and advection-dispersion equation are derived from mass conservation laws in soil, water, air and dissolved material phases. These governing equations are applied to the constitutive model for unsaturated soil and formulated in the framework of the initial boundary value problems with the finite element method The soil/water/air coupled analysis program, DACSAR-M_ad, applied mass transfer equation to is coded. Here, the mass within the ground due to loading is simulated with this code.

  9. Correlation of foodstuffs with ethanol-water mixtures with regard to the solubility of migrants from food contact materials.

    PubMed

    Seiler, Annika; Bach, Aurélie; Driffield, Malcolm; Paseiro Losada, Perfecto; Mercea, Peter; Tosa, Valer; Franz, Roland

    2014-01-01

    Today most foods are available in a packed form. During storage, the migration of chemical substances from food packaging materials into food may occur and may therefore be a potential source of consumer exposure. To protect the consumer, standard migration tests are laid down in Regulation (EU) No. 10/2011. When using those migration tests and applying additional conservative conventions, estimated exposure is linked with large uncertainties including a certain margin of safety. Thus the research project FACET was initiated within the 7th Framework Programme of the European Commission with the aim of developing a probabilistic migration modelling framework which allows one (1) to calculate migration into foods under real conditions of use; and (2) to deliver realistic concentration estimates for consumer exposure modelling for complex packaging materials (including multi-material multilayer structures). The aim was to carry out within the framework of the FACET project a comprehensive systematic study on the solubility behaviour of foodstuffs for potentially migrating organic chemicals. Therefore a rapid and convenient method was established to obtain partition coefficients between polymer and food, KP/F. With this method approximately 700 time-dependent kinetic experiments from spiked polyethylene films were performed using model migrants, foods and ethanol-water mixtures. The partition coefficients of migrants between polymer and food (KP/F) were compared with those obtained using ethanol-water mixtures (KP/F's) to investigate whether an allocation of food groups with common migration behaviour to certain ethanol-water mixtures could be made. These studies have confirmed that the solubility of a migrant is mainly dependent on the fat content in the food and on the ethanol concentration of ethanol-water mixtures. Therefore dissolution properties of generic food groups for migrants can be assigned to those of ethanol-water mixtures. All foodstuffs (including dry

  10. Adsorption of chromate/organic-acid mixtures in aquifer materials

    SciTech Connect

    Fish, W.; Palmer, C.D.

    1991-07-15

    The overall objective of this project is to develop a fuller understanding of the interactions of mixtures of anionic co-contaminants with oxide-mineral surfaces. Our specific focus is on the competitive interactions of chromate and oxalic acid on ferric oxyhydroxide and on natural aquifer materials. Chromate and oxalate are of practical interest as widespread contaminants at many DOE facilities. However, these anions also are excellent model adsorbates for elucidating fundamental aspects of ionic adsorption processes, particularly with respect to organic acids.

  11. Carbohydrate-Binding Module–Cyclodextrin Glycosyltransferase Fusion Enables Efficient Synthesis of 2-O-d-Glucopyranosyl-l-Ascorbic Acid with Soluble Starch as the Glycosyl Donor

    PubMed Central

    Han, Ruizhi; Li, Jianghua; Shin, Hyun-Dong; Chen, Rachel R.; Du, Guocheng

    2013-01-01

    In this study, we achieved the efficient synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) from soluble starch by fusing a carbohydrate-binding module (CBM) from Alkalimonas amylolytica α-amylase (CBMAmy) to cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans. One fusion enzyme, CGT-CBMAmy, was constructed by fusing the CBMAmy to the C-terminal region of CGTase, and the other fusion enzyme, CGTΔE-CBMAmy, was obtained by replacing the E domain of CGTase with CBMAmy. The two fusion enzymes were then used to synthesize AA-2G from soluble starch as a cheap and easily soluble glycosyl donor. Under the optimal conditions, the AA-2G yields produced using CGTΔE-CBMAmy and CGT-CBMAmy were 2.01 g/liter and 3.03 g/liter, respectively, which were 3.94- and 5.94-fold of the yield from the wild-type CGTase (0.51 g/liter). The reaction kinetics of the two fusion enzymes were analyzed and modeled to confirm the enhanced specificity toward soluble starch. It was also found that, compared to the wild-type CGTase, the two fusion enzymes had relatively high hydrolysis and disproportionation activities, factors that favor AA-2G synthesis. Finally, it was speculated that the enhancement of soluble starch specificity may be related to the changes of substrate binding ability and the substrate binding sites between the CBM and the starch granule. PMID:23503312

  12. Solubility of Organic Compounds

    ERIC Educational Resources Information Center

    James, K. C.

    1972-01-01

    Outlines factors to be considered in choosing suitable solvents for non-electrolytes and salts of weak acids and bases. Describes how, in some simple situation, the degree of solubility can be estimated. (Author/DF)

  13. Characterization and Acid-Mobilization Study of Iron-Containing Mineral Dust Source Materials

    SciTech Connect

    Cwiertny, David M.; Baltrusaitis, Jonas; Hunter, Gordon J.; Laskin, Alexander; Scherer, Michelle; Grassian, Vicki H.

    2008-03-04

    Processes that solubilize the iron in mineral dust aerosols may increase the amount of iron supplied to ocean surface waters, and thereby stimulate phytoplankton productivity. It was recently proposed that mixing of mineral dusts with SO2 and HNO3 produces extremely acidic environments that favor the formation of bioavailable Fe(II). Here, four authentic mineral dust source materials (Saudi Beach sand (SB), Inland Saudi sand (IS), Saharan Sand (SS) and China Loess (CL)) and one commercial reference material (Arizona Test Dust (AZTD)) were spectroscopically characterized, and their dissolution at pH 1 was examined in aqueous batch systems. Spectroscopic analyses indicated that the bulk and near-surface region of all samples possessed similar elemental compositions and that iron was unevenly distributed among dust 10 particles. Mössbauer spectroscopy revealed Fe(III) in all samples, although SB, CL and AZTD also contained appreciable Fe(II). Both Fe(II) and Fe(III) were primarily substituted into aluminosilicates, although CL, AZTD and IS also contained Fe(III) oxides. Total iron solubility (defined as the summed concentration of dissolved Fe(II) and Fe(III) measured after 24 h) ranged 14 between 4-12% of the source materials’ iron content, but did not scale with either the surface area or the iron content of the samples. This suggests that other factors such as iron speciation and mineralogy may play a key role in iron solubility. Also, the elevated nitrate concentrations encountered from nitric acid at pH 1 suppressed dissolution of Fe(II) from AZTD, CL and SB particles, which we propose results from the surface-mediated, non-photochemical reduction of nitrate by Fe(II).

  14. Synthesis, Chemical and Enzymatic Hydrolysis, and Aqueous Solubility of Amino Acid Ester Prodrugs of 3-Carboranyl Thymidine Analogues for Boron Neutron Capture Therapy of Brain Tumors

    PubMed Central

    Hasabelnaby, Sherifa; Goudah, Ayman; Agarwal, Hitesh K.; Abd alla, Mosaad S. M.; Tjarks, Werner

    2012-01-01

    Various water-soluble L-valine-, L-glutamate-, and glycine ester prodrugs of two 3-Carboranyl Thymidine Analogues (3-CTAs), designated N5 and N5-2OH, were synthesized for Boron Neutron Capture Therapy (BNCT) of brain tumors since the water solubilities of the parental compounds proved to be insufficient in preclinical studies. The amino acid ester prodrugs were prepared and stored as hydrochloride salts. The water solubilities of these amino acid ester prodrugs, evaluated in phosphate buffered saline (PBS) at pH 5, pH 6 and pH 7.4, improved 48 to 6600 times compared with parental N5 and N5-2OH. The stability of the amino acid ester prodrugs was evaluated in PBS at pH 7.4, Bovine serum, and Bovine cerebrospinal fluid (CSF). The rate of the hydrolysis in all three incubation media depended primarily on the amino acid promoiety and, to a lesser extend, on the site of esterification at the deoxyribose portion of the 3-CTAs. In general, 3'-amino acid ester prodrugs were less sensitive to chemical and enzymatic hydrolysis than 5'-amino acid ester prodrugs and the stabilities of the latter decreased in the following order: 5'-valine > 5'-glutamate > 5'-glycine. The rate of the hydrolysis of the 5'-amino acid ester prodrugs in Bovine CSF was overall higher than in PBS and somewhat lower than in Bovine serum. Overall, 5'-glutamate ester prodrug of N5 and the 5'-glycine ester prodrugs of N5 and N5-2OH appeared to be the most promising candidates for preclinical BNCT studies. PMID:22889558

  15. Characterization and Soluble Expression of D-Hydantoinase from Pseudomonas fluorescens for the Synthesis of D-Amino Acids.

    PubMed

    Xu, Guo-Chao; Li, Lei; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-04-01

    An active D-hydantoinase from Pseudomonas fluorescens was heterogeneously overexpressed in Escherichia coli BL21(DE3) and designated as D-PfHYD. Sequence and consensus analysis suggests that D-PfHYD belongs to the dihydropyrimidinase/hydantoinase family and possesses catalytic residues for metal ion and hydantoin binding. D-PfHYD was purified to homogeneity by nickel affinity chromatography for characterization. D-PfHYD is a homotetramer with molecular weight of 215 kDa and specific activity of 20.9 U mg(-1). D-PfHYD showed the highest activity at pH 9.0 and 60 °C. Metal ions such as Mn(2+), Fe(2+), and Fe(3+) could activate D-PfHYD with 20 % improvement. Substrate specificity analysis revealed that purified D-PfHYD preferred aliphatic to aromatic 5'-monosubstituted hydantoins. Among various strategies tested, chaperone GroES-GroEL was efficient in improving the soluble expression of D-PfHYD. Employing 1.0 g L(-1) recombinant E. coli BL21(DE3)-pET28-hyd/pGRO7 dry cells, 100 mM isobutyl hydantoin was converted into D-isoleucine with 98.7 % enantiomeric excess (ee), isolation yield of 78.3 %, and substrate to biocatalyst ratio of 15.6. Our results suggest that recombinant D-PfHYD could be potentially applied in the synthesis of D-amino acids. PMID:26821258

  16. Short communication: Effect of conjugated linoleic acid on concentrations of fat-soluble vitamins in milk of lactating ewes.

    PubMed

    Zeitz, J O; Most, E; Eder, K

    2015-10-01

    Conjugated linoleic acids (CLA) are well known as milk fat-reducing feed supplements in diets for lactating ruminants. However, their effects on milk concentrations of fat-soluble vitamins are unknown. This study was performed to investigate the hypothesis that CLA affect the concentrations of retinol and tocopherol in ewe milk. For that purpose, group-housed Merino ewes (101 ± 13.7 kg) nursing twin lambs and fed with a hay:concentrate diet were supplemented with either 45 g of a rumen-protected CLA supplement containing 3.4 g of cis-9,trans-11-CLA and 3.4 g of trans-10,cis-12-CLA (CLA group, n=11) or with 45 g of a hydrogenated vegetable fat (control group, n=12) per ewe per day during the first 6 wk of lactation. Feed intake was recorded daily (concentrate) or weekly (hay) per group. Milk spot samples were collected at the beginning of the experiment (5 ± 2.4 d postpartum) and then weekly after lambs had been separated for 2 h from their mothers. The milk fat content was determined and feed and milk were analyzed for concentrations of α-, γ-, and δ-tocopherol and for retinol by HPLC. Dietary intake of tocopherol and retinol was similar in both groups. Feeding CLA decreased milk fat concentration by 23% on average, and during the first 3 wk of the study milk tocopherol concentration tended to be increased by feeding CLA (+17%), but retinol concentrations were not influenced. When related to milk fat, CLA feeding significantly increased both milk tocopherol (+40%) and retinol (+32%) and these effects were evident during the whole experimental period corresponding to the first half of lactation. PMID:26254518

  17. Particulate organic acids and overall water-soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Ng, Nga L.; Chan, Arthur W. H.; Feingold, Graham; Flagan, Richard C.; Seinfeld, John H.

    2007-07-01

    The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter participated in the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) mission during August-September 2006. A particle-into-liquid sampler (PILS) coupled to ion chromatography was used to characterize the water-soluble ion composition of aerosol and cloud droplet residual particles (976 5-min PM1.0 samples in total). Sulfate and ammonium dominated the water-soluble mass (NH4+ + SO42- = 84 ± 14%), while organic acids contributed 3.4 ± 3.7%. The average NH4+:SO42- molar ratio was 1.77 ± 0.85. Particulate concentrations of organic acids increased with decreasing carbon number from C9 to C2. Organic acids were most abundant above cloud, presumably as a result of aqueous phase chemistry in cloud droplets, followed by subsequent droplet evaporation above cloud tops; the main product of this chemistry was oxalic acid. The evolution of organic acids with increasing altitude in cloud provides evidence for the multistep nature of oxalic acid production; predictions from a cloud parcel model are consistent with the observed oxalate:glyoxylate ratio as a function of altitude in GoMACCS cumuli. Suppressed organic acid formation was observed in clouds with relatively acidic droplets, as determined by high particulate nitrate concentrations (presumably high HNO3 levels too) and lower liquid water content, as compared to other cloud fields probed. In the Houston Ship Channel region, an area with significant volatile organic compound emissions, oxalate, acetate, formate, benzoate, and pyruvate, in decreasing order, were the most abundant organic acids. Photo-oxidation of m-xylene in laboratory chamber experiments leads to a particulate organic acid product distribution consistent with the Ship Channel area observations.

  18. Gradual surface degradation of restorative materials by acidic agents.

    PubMed

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (p<0.05), followed by Fuji II LC. Valiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss. PMID:21903509

  19. Conversion of carbohydrate biomass to γ-valerolactone by using water-soluble and reusable iridium complexes in acidic aqueous media.

    PubMed

    Deng, Jin; Wang, Yan; Pan, Tao; Xu, Qing; Guo, Qing-Xiang; Fu, Yao

    2013-07-01

    Mild-mannered manipulation: A catalytic method for the conversion of carbohydrate biomass to γ-valerolactone in acidic aqueous media has been developed. The water-soluble iridium complexes were observed to be extremely catalytically active for providing γ-valerolactone in high yields with high TONs. The homogeneous catalysts can also be recycled and reused by applying a simple phase separation process. PMID:23757330

  20. Zoledronic acid increases the circulating soluble RANKL level in mice, with a further increase in lymphocyte-derived soluble RANKL in zoledronic acid- and glucocorticoid-treated mice stimulated with bacterial lipopolysaccharide.

    PubMed

    Abe, Takahiro; Sato, Tsuyoshi; Kokabu, Shoichiro; Hori, Naoko; Shimamura, Yumiko; Sato, Tomoya; Yoda, Tetsuya

    2016-07-01

    The nitrogen-containing bisphosphonate (BP) zoledronic acid (ZA) is a potent antiresorptive drug used in conjunction with standard cancer therapy to treat osteolysis or hypercalcemia due to malignancy. However, it is unclear how ZA influences the circulating levels of bone remodeling factors. The aim of this study was to evaluate the effects of ZA on the serum levels of soluble receptor activator of NF-kB ligand (sRANKL) and osteoprotegerin (OPG). The following four groups of C57BL/6 mice were used (five mice per group): (1) the placebo+phosphate-buffered saline (PBS) group, in which placebo-treated mice were injected once weekly with PBS for 4weeks; (2) the placebo+ZA group, in which placebo-treated mice were injected once weekly with ZA for 4weeks; (3) the prednisolone (PSL)+PBS group, in which PSL-treated mice were injected once weekly with PBS for 4weeks; and (4) the PSL+ZA group, in which PSL-treated mice were injected once weekly with ZA for 4weeks. At the 3-week time point, all mice were subjected to oral inflammatory stimulation with bacterial lipopolysaccharide (LPS). The sera of these mice were obtained every week and the levels of sRANKL and OPG were measured using enzyme-linked immunosorbent assay. At the time of sacrifice, femurs were prepared for micro-computed tomography (micro-CT), histological, and histomorphometric analyses. Our data indicated that ZA administration remarkably reduced bone turnover and significantly increased the basal level of sRANKL. Interestingly, the PSL+ZA group showed a dramatically elevated sRANKL level after LPS stimulation. In contrast, the PSL+ZA group in nonobese diabetic mice with severe combined immunodeficiency disease (NOD-SCID mice), which are characterized by the absence of functional T- and B-lymphocytes, showed no increase in the sRANKL level. Our data suggest that, particularly with combination treatment of ZA and glucocorticoids, surviving lymphocytes might be the source of inflammation-induced sRANKL. Thus

  1. Effects of brewers` condensed solubles (BCS) on the production of ethanol from low-grade starch materials

    SciTech Connect

    Choi, C.H.; Chung, D.S.; Seib, P.A.

    1995-02-01

    Yeast fermentation was performed on grain and bakery byproducts with and without adding the same volume of brewers` condensed solubles (BCS). Starch material in the grain and bakery byproducts effectively was converted to fermentable sugars with conversion ratios of 93-97% by successive treatments of samples with bacterial {alpha}-amylase and fungal glucoamylase. The yeast fermentation of these enzyme-digested byproducts alone showed that ethanol concentrations of 16.4-42.7 mL/100 g dry solid in the broth were achieved with fermentation efficiencies of 87-96%. Addition of BCS to the grain byproducts increased ethanol concentration by 10-86% by increasing the potential glucose content of the broth. The rates of fermentation measured by CO{sub 2} gas production demonstrated that BCS addition to bakery byproducts reduced the fermentation time from 62-72 h to 34-35 h. In bakery byproducts that were low in amino nitrogen, exhaustion of nitrogenous compounds in substrates was found to be a limiting factor for yeast growth. Because BCS is a rich source of nitrogen, adding BCS to these substrates markedly increased the fermentation rate. 15 refs., 4 figs., 3 tabs.

  2. Potential SSP Perfluorooctanoic Acid Related Fluoropolymer Materials Obsolescence

    NASA Technical Reports Server (NTRS)

    Segars, Matt G.

    2006-01-01

    The Shuttle Environmental Assurance Initiative (SEA) has identified a potential for the Space Shuttle Program (SSP) to incur materials obsolescence issues due to agreements between the fluoro-chemical industry and the United States Environmental Protection Agency (USEPA) to participate in a Global Stewardship Program for perfluorooctanoic acid (PFOA). This presentation will include discussions of the chemistry, regulatory drivers, affected types of fluoropolymer and fluoroelastomer products, timeline for reformulations, and methodology for addressing the issue. It will cover the coordination of assessment efforts with the International Space Station and Head Quarters Air Force Space Command, along with some examples of impacted materials. The presentation is directed at all members of the international aerospace community concerned with identifying potential environmentally driven materials obsolescence issues.

  3. Effects of acid fog and dew on materials. Final report

    SciTech Connect

    Mansfeld, F.; Henry, R.; Vijayakumar, R.

    1989-10-01

    Field exposure tests have been carried out in order to separate the effects of acidic fog on materials damage from those caused by rain, dew and natural weathering. The test sites were McKittrick and Visalia in the Central Valley and West Casitas Pass in Ventura County. The field tests have been supported by laboratory tests in which materials damage has been determined during exposure to carefully controlled fog water chemistry. Analysis of the field exposure results for galvanized steel and the paint samples shows that the corrosivity of the atmosphere at the three test sites have been very low. The result is confirmed by the ACRM data which show very low corrosion activity. Since corrosion rates were so low approaching those for natural weathering, it was not possible to determine the effects of acidic fog. Based on the aerometric data and the observed corrosion behavior, it is doubtful that acidic fog conditions prevailed for significant times during the exposure period of 1/87 - 3/88 at Visalia and McKittrick. The results of the laboratory tests show that exposure to HNO3 at low pH and to high pollutant concentration increased the corrosion rate of galvanized steel to over 10 micro m/year. Exposure to HNO3 caused serious corrosion damage to anodized aluminum and the paint.

  4. Water-soluble polymeric chemosensor for selective detection of Hg(2+) in aqueous solution using rhodamine-based modified poly(acrylamide-acrylic acid).

    PubMed

    Geng, Tong-Mou; Wu, Da-Yu

    2015-12-01

    We report the fabrication of a novel easily available turn-on fluorescent water-soluble polymeric chemosensor for Hg(2+) ions that was simply prepared by micellar free radical polymerization of a water-insoluble organic rhodamine-based Hg(2+)-recognizing monomer (GR6GH), with hydrophilic monomers acrylamide (AM) and acrylic acid (AA). The chemical structure of the polymeric sensor was characterized by FT-IR and (1)H NMR spectroscopy. The apparent viscosity average molecular weight Mη of poly(acrylamide-acrylic acid) [poly(AM-NaAA)] and the water-soluble polymeric chemosensor poly(AM-NaAA-GR6GH) were 1.76 × 10(6) and 6.84 × 10(4) g/mol, respectively. Because of its amphiphilic property, the water-soluble polymeric chemosensor can be used as a chemosensor in aqueous media. Upon addition of Hg(2+) ions to an aqueous solution of poly(AM-NaAA-GR6GH), fluorescence enhancements were observed instantly. Moreover, other metal ions did not induce obvious changes to the fluorescence spectra. This approach may provide an easily measurable and inherently sensitive method for Hg(2+) ion detection in environmental and biological applications. PMID:25808221

  5. New Compstatin Peptides Containing N-Terminal Extensions and Non-Natural Amino Acids Exhibit Potent Complement Inhibition and Improved Solubility Characteristics

    PubMed Central

    2015-01-01

    Compstatin peptides are complement inhibitors that bind and inhibit cleavage of complement C3. Peptide binding is enhanced by hydrophobic interactions; however, poor solubility promotes aggregation in aqueous environments. We have designed new compstatin peptides derived from the W4A9 sequence (Ac-ICVWQDWGAHRCT-NH2, cyclized between C2 and C12), based on structural, computational, and experimental studies. Furthermore, we developed and utilized a computational framework for the design of peptides containing non-natural amino acids. These new compstatin peptides contain polar N-terminal extensions and non-natural amino acid substitutions at positions 4 and 9. Peptides with α-modified non-natural alanine analogs at position 9, as well as peptides containing only N-terminal polar extensions, exhibited similar activity compared to W4A9, as quantified via ELISA, hemolytic, and cell-based assays, and showed improved solubility, as measured by UV absorbance and reverse-phase HPLC experiments. Because of their potency and solubility, these peptides are promising candidates for therapeutic development in numerous complement-mediated diseases. PMID:25494040

  6. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives.

    PubMed

    Yu, Kun; Li, Rong; Yang, Zhuang; Wang, Fang; Wu, Wenshuang; Wang, Xiaoyan; Nie, Chunlai; Chen, Lijuan

    2015-06-01

    Amino acid prodrugs are known to be very useful for improving the aqueous solubility of sparingly water soluble drugs (Drug Discovery Today 2013, 18, 93). Therefore, we synthesized eleven novel combretastatin A-4 amino acid derivatives and evaluated their anti-tumor activities in vitro and in vivo. Among them, compound 15 (valine attached to compound 3, which was shown to be a potent tubulin polymerization inhibitor in our previous study) exhibited high efficacy in tumor-bearing mice, and pharmacokinetic analysis in rats indicated that compound 15 was an effective prodrug as well. Besides, compound 15 significantly inhibited tubulin polymerization in vitro and in vivo by binding to the colchicine binding site. In addition, compound 15 induced cell cycle arrest in the G2/M phase and triggered apoptosis in a caspase-dependent manner. In conclusion, our study showed that compound 15 could have significant anti-tumor activity as a novel microtubule polymerization disrupting agent with improved aqueous solubility. PMID:25933592

  7. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II). Part VI. Studies of the lead dioxide positive electrode

    NASA Astrophysics Data System (ADS)

    Pletcher, Derek; Zhou, Hantao; Kear, Gareth; Low, C. T. John; Walsh, Frank C.; Wills, Richard G. A.

    The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities >100 mA cm -2 in electrolytes containing 0.1-1.5 M lead(II) and methanesulfonic acid concentrations in the range 0-2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C 16H 33(CH 3) 3N +. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed.

  8. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  9. Immobilization of EAFD heavy metals using acidic materials.

    PubMed

    Mitrakas, Manassis G; Sikalidis, Constantinos A; Karamanli, Theoktisti P

    2007-03-01

    This study was undertaken to determine the chemical and leaching characteristics of the Electric Arc Furnace Dust (EAFD) generated by a Greek plant and to investigate various acidic materials efficiency on the EAFD stabilization. In order to investigate how [OH(-)] neutralization influences EAFD heavy metals leachability, Na HCO3(-), HNO3 and H3PO4 were used as acidic materials. The concentration of Pb in leachate was found between 40 and 3.7 x 10(3) mg Pb/kg of EAFD, exceeding in all EAFD samples the maximum acceptable limit (MAL) 25 mg/kg for landfill disposal. Neutralization of [OH(-)] with HCO3(-) decreased Pb concentration in leachate at 350 mg Pb/kg of EAFD, while excess over a stoichiometry in HCO3(-) addition increased leachability of Pb, Cd, Cr, Cu as well as F. Using HNO3 as an acidic material decreased leachability of almost all the parameters concerning the EC directive 33/19-01-2003 in a pH value up to 7.2, in exception of Zn. Zinc leachability showed a U shape curve as a function of pH value. The concentration of Zn was minimized in a concentration lower than 1 mg Zn/kg EAFD in a pH range 10.5 to 9 and exceeded the MAL 90 mg/kg at a pH value 7.2. However, the major disadvantage of HNO3 was proved to be its leachability, since NO3(-) concentration in leachate was equal to HNO3 dose. H3PO4 was found the most promising acidic material for the chemical immobilization of heavy metals, since it decreased their leachability in a concentration significantly lower than MAL at a pH value up to 7.1. Finally, the concentration of Cl(-) ranged between 18 and 33 x 10(3) mg Cl(-)/kg EAFD exceeding in all EAFD samples the MAL 17 x 10(3) mg/kg. This high concentration of Cl(-) is attributed to the scrap and it could be reduced only by modification of its composition. PMID:17365324

  10. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    PubMed

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. PMID:26970919

  11. Relationship between the solubility, dosage and antioxidant capacity of carnosic acid in raw and cooked ground buffalo meat patties and chicken patties.

    PubMed

    Naveena, B M; Vaithiyanathan, S; Muthukumar, M; Sen, A R; Kumar, Y Praveen; Kiran, M; Shaju, V A; Chandran, K Ramesh

    2013-10-01

    Antioxidant capacity of oil soluble and water dispersible carnosic acid (CA) extracted from dried rosemary leaves using HPLC was evaluated at two different dosages (22.5 ppm vs 130 ppm) in raw and cooked ground buffalo meat patties and chicken patties. Irrespective of total phenolic content, CA extracts reduced (p<0.05) the thiobarbituric acid reactive substances (TBARS) by 39%-47% and 37%-40% in cooked buffalo meat and chicken patties at lower dosage (22.5 ppm) relative to control samples. However, at higher dosage (130 ppm) the TBARS values were reduced (p<0.05) by 86%-96% and 78%-87% in cooked buffalo meat and chicken patties compared to controls. The CA extracts were also effective in inhibiting (p<0.05) peroxide value and free fatty acids in cooked buffalo meat and chicken patties. The CA extracts when used at higher dosage, were also effective in stabilizing raw buffalo meat color. PMID:23743029

  12. [Acid-soluble collagen in the skin of rats who received a tryptophan load and were kept on a protein-free diet].

    PubMed

    Pechenova, T N; Gulyĭ, M F; Volodina, T T; Solodova, E V; Popova, N N

    1983-01-01

    Crystalline preparations of acid-soluble collagen of rat skin in norm and with tryptophan load against a background of the protein-free diet were fractionated by differential salting out using NaCl in concentrations corresponding to precipitation zones of collagen 1,3 and 4. Amino acid composition, electrophoretic mobility in polyacrylamide gel, profiles of elution from CM-cellulose, content of the carbohydrate component and--S--S-bonds were studied in proteins of the mentioned fractions and in the precipitate insoluble after the pepsin action. Essential differences as compared to the normal level in the amino acid composition and elution profiles were detected in the fraction corresponding to collagen I. Quantitative changes in the carbohydrate component and--S--S-bonds occur due to the fraction inaccessible to the persin action. PMID:6829075

  13. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-01

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties. PMID:23718279

  14. 1,3-Diethyl-2-thiobarbituric acid as an alternative coinitiator for acidic photopolymerizable dental materials.

    PubMed

    Münchow, Eliseu A; Valente, Lisia L; Peralta, Sonia L; Fernández, María Raquel; Lima, Giana da S; Petzhold, Cesar L; Piva, Evandro; Ogliari, Fabrício A

    2013-10-01

    The ethyl-4-dimethylaminobenzoate (EDAB) is widely used as a coinitiator of the camphorquinone (CQ), but in acidic circumstances it might present some instability, reducing the polymerization efficiency of the material. Considering this, new coinitiators are being evaluated. Hence, this study evaluated the kinetic of polymerization (KP), the degree of conversion (DC), and the rate of polymerization (RP ) of experimental resin adhesives containing 1,3-diethyl-2-thiobarbituric acid (TBA) as a coinitiator of the CQ. The experimental monomeric blend was prepared with bisphenol A glycidyl dimethacrylate, 2-hydroxyethyl methacrylate, and acidic monomers. CQ was added at 1 mol % as photoinitiator. Six groups were formulated: four containing concentrations of 0.1, 0.5, 1, and 2 mol % of TBA, one without coinitiator, and the last one containing 1 mol % of EDAB (control group). The KP and the RP were performed using real-time Fourier Transform infrared spectroscopy. The group without coinitiator has not formed a polymer, whereas the addition of TBA resulted in the conversion of monomers in polymer. The DC of the adhesives was as higher as the increase in the TBA content. The group with 2 mol % of TBA presented improved DC and reactivity (RP ) than the other groups and the control one. Hence, the TBA has performed as a coinitiator of the CQ for the radical polymerization of methacrylate resin adhesives and it has improved the DC and the reactivity of the materials. Thus, it is a potential coinitiator for the photopolymerization of dental materials. PMID:23564499

  15. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations

    NASA Astrophysics Data System (ADS)

    Hu, Guoyuan; Zhang, Yangmei; Sun, Junying; Zhang, Leiming; Shen, Xiaojing; Lin, Weili; Yang, Yun

    2014-08-01

    Daily PM2.5 and hourly water-soluble inorganic ions in PM2.5 and gaseous precursors were measured during June-November 2009 at an urban site in Beijing. The average mass concentration of the total water-soluble ions was 44 μg m- 3, accounting for 38% of PM2.5. Sulfate (SO42 -), nitrate (NO3-) and ammonium (NH4+) were dominant ions. The summer-fall difference in seasonal average mass concentrations was smaller than 30% for SO42 -, but was up to a factor of 2.0 for NO3- and NH4+. A pronounced diurnal cycle was found for most ions and gaseous precursors and could be explained by their respective sources, formation mechanisms and meteorological conditions. The average oxidation/conversion ratio for SO42 - (SOR), NO3- (NOR) and NH4+ (NHR) were estimated to be 63%, 15% and 15%, respectively. The low NHR value suggests that NH3 was mainly from local sources and that excessive NH3 existed and thus was not a limiting factor in the formation of NH4+. As a result, the diurnal pattern of NH4+ was similar to that of SO42 - to some extent, but differed significantly from that of NH3. Based on the estimated H+ concentration and acidity purity (f), 75% of data samples were strongly acidic and a few percent might be alkaline. Seasonal variations in aerosol acidity and chemical forms of major ions were also briefly discussed.

  16. Efficiency of buffered aqueous carboxylic acid solutions and organic solvents to absorb SO/sub 2/ from industrial flue gas; solubility data from gas-liquid chromatography

    SciTech Connect

    Sanza, G.J.

    1982-01-01

    Nine adsorbents were examined. These potential candidates for flue gas desulfurization included 1-methyl-2-pyrrolidinone, tri-n-butyl phosphate (TBP), both 0.5 M and 1.0 M solutions of citric acid and glycolic acid, buffered to pH's of 4.5 and 3.8, and pure water. Infinite dilution activity coefficients of SO/sub 2/ were obtained by gas-liquid chromatography in a trial solvent of Nitrobenzene, and then in systems of 1-methyl-2-pyrrolidinone and TBP, independently. The solubility data of SO/sub 2/ was derived and found to be comparable to data obtained from a classical bubble-sparger apparatus. Solubility data was then programmed into an absorber-stripper computer simulator in order to calculate the various concentration and temperature profiles that would exist, the degree of desulfurization, and the steam consumption for all nine systems. Concentrated solutions of citric acid buffered to a low pH exhibited the most favorable conditions for application in direct steam regeneration processes. 1-methyl-2-pyrrolidinone yielded better performance than TBP did with high-pressure indirect steam used for stripping. Comparison between the aqueous solution systems which employed direct steam, and the organic systems which used indirect steam was inconclusive.

  17. Preparation and characterization of humic acid-carbon hybrid materials as adsorbents for organic micro-pollutants.

    PubMed

    Radwan, Emad K; Abdel Ghafar, Hany H; Moursy, Ahmed S; Langford, Cooper H; Bedair, Ahmed H; Achari, Gopal

    2015-08-01

    The present work involves the preparation of novel adsorbent materials by the insolubilization and hybridization of humic acid (HA) with carbon. The prepared materials were characterized by N2 adsorption, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, solid-state (13)C cross polarization magic angle spinning nuclear magnetic resonance, and low-field nuclear magnetic resonance (NMR) relaxometry on wetted samples. The water solubility of these materials and the lack of effect of oxidants were also confirmed. With this background, the adsorption capacities toward phenol, 2,4,6-tricholrophenol, and atrazine were evaluated, using these as model compounds for organic micropollutants of concern in water. Experimental results show that the prepared materials are mesoporous and have a higher surface area than humic acid and even than the porous carbon in the case of carbon coating. They retain the basic features of the starting materials with lowered functional group content. Moreover, there are interesting new features. NMR relaxometry shows that equilibration of water uptake is very fast, making use in water simple. They have higher adsorption capacities than the pure materials, and they can be applied under a wide range of environmental conditions. PMID:25874433

  18. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  19. Towards an understanding of the molecular mechanism of solvation of drug molecules: a thermodynamic approach by crystal lattice energy, sublimation, and solubility exemplified by hydroxybenzoic acids.

    PubMed

    Perlovich, German L; Volkova, Tatyana V; Bauer-Brandl, Annette

    2006-07-01

    Temperature dependencies of saturated vapor pressure and heat capacities for the 2-, 3-, and 4-hydroxybenzoic acids were measured and thermodynamic functions of sublimation calculated (2-hydroxybenzoic acid: DeltaG(sub) (298) = 38.5 kJ/mol; DeltaH(sub) (298) = 96.6 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 191 +/- 3 J/mol . K; 3-hydroxybenzoic acid: DeltaG(sub) (298) = 50.6 kJ/mol; DeltaH(sub) (298) = 105.2 +/- 0.8 kJ/mol; DeltaS(sub) (298) = 180 +/- 2 J/mol . K; 4-hydroxybenzoic acid: DeltaG(sub) (298) = 55.0 kJ/mol; DeltaH(sub) (298) = 113.3 +/- 0.7 kJ/mol; DeltaS(sub) (298) = 193 +/- 2 J/mol . K). Analysis of crystal lattice packing energies based on geometry optimization of the molecules in the crystal using diffraction data and the program Dmol(3) was carried out. The energetic contributions of van der Waals, Coulombic, and hydrogen bond terms to the total packing energy were analyzed. The fraction of hydrogen bond energy in the packing energy increases as: 3-hydroxybenzoic (29.7%) < 2-hydroxybenzoic (34.7%) < 4-hydroxybenzoic acid (42.0%). Enthalpies of evaporation were estimated from enthalpies of sublimation and fusion. Temperature dependencies of the solubility in n-octanol and n-hexane were measured. The thermodynamic functions of solubility and solvation processes were deduced. Specific and nonspecific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of the molecules from water to n-octanol is enthalpy driven process. PMID:16729271

  20. Biodegradable Poly (Lactic-co-Glycolic Acid)-Polyethylene Glycol Nanocapsules: An Efficient Carrier for Improved Solubility, Bioavailability, and Anticancer Property of Lutein.

    PubMed

    Arunkumar, Ranganathan; Prashanth, Keelara Veerappa Harish; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya; Dharmesh, Shylaja Mallaiah; Baskaran, Vallikannan

    2015-06-01

    Lutein bioavailability is limited because of its poor aqueous solubility. In this study, lutein-poly (lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) nanocapsules were prepared to improve the solubility, bioavailability, and anticancer property of lutein. The scanning electron microscopy and dynamic light scattering examination revealed that the nanocapsules are smooth and spherical with size ranging from 80 to 500 nm (mean = 200 nm). In vitro lutein release profile from nanocapsules showed controlled sustainable release (66%) up to 72 h. Aqueous solubility of lutein nanocapsules was much higher by 735-fold than the lutein. Fourier transform infrared spectroscopy analyses showed no chemical interaction among PLGA, PEG, and lutein, indicating possible weak intermolecular forces like hydrogen bonds. X-ray diffraction revealed lutein is distributed in a disordered amorphous state in nanocapsules. Postprandial plasma kinetics (area under the curve) of an oral dose of lutein from nanocapsules was higher by 5.4-fold compared with that of micellar lutein (control). The antiproliferative effect of lutein from nanocapsules (IC50 value, 10.9 μM) was higher (43.6%) than the lutein (IC50 value, 25 μM). Results suggest that PLGA-PEG nanocapsule is an efficient carrier for enhancing hydrophilicity, bioavailability, and anticancer property of lipophilic molecules such as lutein. PMID:25824524

  1. Solubility and modeling acid-base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina

    2015-10-12

    Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0solubility of the ligand was calculated from simple mass balance equations, by using the free hydrogen concentration and the protonation constants of the ligand determined in the same experimental conditions of the solubility measurements. The salting-In or Out parameters and the activity coefficient of the neutral species were calculated by means of the Setschenow equation. The dependence of the protonation constants on the ionic strength was modeled by means of the Debye-Hückel type equation and of the SIT (Specific ion Interaction Theory) approach. The specific interaction parameters of the ion pairs were also reported. For the protonation constants, the following thermodynamic values at infinite dilution were obtained: T=298.15 K, logK1(H0)=10.674±0.018 and logK2(H0)=8.954±0.022; T=310.15K, logK1(H0)=10.355±0.018 and logK2(H0)=8.749±0.030. PMID:26122929

  2. Synthesis and characterization of polymeric materials derived from 2,5-diketopiperazines and pyroglutamic acid

    NASA Astrophysics Data System (ADS)

    Parrish, Dennis Arch

    The research presented in this dissertation describes the investigation of 2,5-diketopiperazines (DKPs) as property modifiers for addition polymers and the self association behavior of pyroglutamic acid derivatives. The first project involved the copolymerization of methyl methacrylate and styrene with DKP-based methacrylate monomers. Low incorporations of serine- and aspartame-based DKPs in the copolymer resulted in dramatic increases in the glass transition temperature (Ts). The research presented in Chapter II focuses on the ring-opening reactions of pyroglutamic diketopiperazine (pyDKP). The original intent was to synthesize polymers containing backbone DKPs through ring-opening polymerization of the five-membered rings. However, it was discovered that regioselective ring-opening occurs at the six-membered ring to give pyroglutamic acid derivatives. Since this reaction had not been reported previously, the focus of research was altered to investigate the scope and limitations of the new reaction. The ring-opening reactions of pyDKP with diamines to give bispyroglutamides is described in Chapter IV. While these materials are not polymeric, they display polymeric behavior. It was found that multi-functional pyroglutamides display Tgs during thermal analysis, exhibit high thermal stability, and form melt-drawn fibers. In contrast, the materials have low solution viscosities and are freely soluble in water, ethanol, and chloroform. This behavior is attributed to non-covalent supramolecular associations. The final part of this dissertation involved the investigation of thermoreversible organic solvent gelators. The ring-opening reaction of pyDKP with long alkyl amines unexpectedly gelled the reaction solvent. A series of analogous gelators were synthesized, and the minimum concentration required for gelation in various solvents was determined. It was found that the nature of the solvent, alkyl chain length, and optical activity of the gelator determined gelator

  3. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.

    PubMed

    Dussan, Karla; Girisuta, Buana; Lopes, Marystela; Leahy, James J; Hayes, Michael H B

    2016-03-01

    A comprehensive study is presented on the conversion of hemicellulose sugars in liquors obtained from the fractionation of Miscanthus, spruce bark, sawdust, and hemp by using formic acid. Experimental tests with varying temperature (130-170 °C), formic acid concentration (10-80 wt%), carbohydrate concentrations, and lignin separation were carried out, and experimental data were compared with predictions obtained by reaction kinetics developed in a previous study. The conversions of xylose and arabinose into furfural were inherently affected by the presence of polymeric soluble lignin, decreasing the maximum furfural yields observed experimentally by up to 24%. These results were also confirmed in synthetic mixtures of pentoses with Miscanthus and commercial alkali lignin. This observation was attributed to side reactions involving intermediate stable sugar species reacting with solubilized lignin during the conversion of xylose into furfural. PMID:26805656

  4. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  5. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  6. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity.

    PubMed

    Ren, Yufeng; Liu, Ying; Yang, Zhikuan; Niu, Raomei; Gao, Kai; Yang, Bo; Liao, Xiali; Zhang, Jihong

    2016-12-01

    Oleanolic acid (OA) is a pentacyclic triterpenoid acid of natural abundance in plants which possesses important biological activities. However, its medicinal applications were severely impeded by the poor water solubility and resultant low bioavailability and potency. In this work, studies on solid inclusion complexes of OA with a series of amino-appended β-cyclodextrins (ACDs) were conducted in order to address this issue. These complexes were prepared by suspension method and were well characterized by NMR, SEM, XRD, TG, DSC and Zeta potential measurement. The 2:1 inclusion mode of ACDs/OA complexes was elucidated by elaborate 2D NMR (ROESY). Besides, water solubility of OA was dramatically promoted by inclusion complexation with ACDs. Moreover, in vitro anticancer activities of OA against human cancer cell lines HepG2, HT29 and HCT116 were significantly enhanced after formation of inclusion complexes, while the apoptotic response results indicated their induction of apoptosis of cancer cells. This could provide a novel approach to development of novel pharmaceutical formulations of OA. PMID:27612690

  7. Crystallization and preliminary X-ray analysis of the complex between a Bacillus subtilis α/β-type small acid-soluble spore protein and DNA

    SciTech Connect

    Bumbaca, Daniela; Kosman, Jeffrey; Setlow, Peter; Henderson, R. Keith; Jedrzejas, Mark J.

    2007-06-01

    An α/β-type small, acid-soluble spore protein (SASP) from Bacillus subtilis, a major source of DNA protection against damaging effects in spores, was crystallized in a functionally relevant complex with a double-stranded DNA. This report provides insights into initial characterization of the complex and its structure elucidation. An engineered variant of an α/β-type small acid-soluble spore protein (SASP) from Bacillus subtilis was crystallized in a complex with a ten-base-pair double-stranded DNA by the hanging-drop vapor-diffusion method using ammonium sulfate as a precipitating agent. Crystals grew at 281 K using sodium cacodylate buffer pH 5.5 and these crystals diffracted X-rays to beyond 2.4 Å resolution using synchrotron radiation. The crystallized complex contains two or three SASP molecules bound to one DNA molecule. The crystals belong to the hexagonal space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 87.0, c = 145.4 Å, α = β = 90.0, γ = 120.0°. Diffraction data were 96.6% complete to 2.4 Å resolution, with an R{sub sym} of 8.5%. Structure solution by the multiwavelength/single-wavelength anomalous dispersion method using isomorphous crystals of selenomethionine-labeled protein is in progress.

  8. Iron oxohydroxide-polyacrylic acid magnetic composite materials

    NASA Astrophysics Data System (ADS)

    Mata-Zamora, M. E.; Arriola, H.; Nava, N.; Saniger, J. M.

    1996-08-01

    Powdered nanometer-sized precipitates of Fe(II)Fe(III) 2O x(OH) y were obtained by reacting solutions of ferrous-ferric salts with a Fe(III)/Fe(II) ratio < 2, with an excess of ammonium hydroxide. These precipitates were then mixed at room temperature with a solution of polyacrylic acid (PAA) in order to obtain a composite material. The XRD analysis showed that the iron oxohydroxide precipitates, with an average size around 10 nm, were crystalline and had a spinel structure resembling to either magnetite or maghemite. The Mössbauer spectra of the iron oxohydroxide particles presented a major magnetic phase with the double Zeeman splitting characteristic of magnetite and a minor paramagnetic phase probably originated by the nanometer size of the particles. Its structure was found to correspond to a disordered spinel, as result of the analysis of the intrinsic magnetic field and its splitting parameters. The composite material PAA-Fe(II)Fe(III) 2O x(OH) y presented a diffractogram close to the original oxohydroxide, but its Mössbauer spectrum showed a major paramagnetic phase. This change was explained as a consequence of the chemical coordination of the nanometer sized iron oxohydroxides particles with the PAA carboxylate groups.

  9. Study of inlet materials for sampling atmospheric nitric acid

    SciTech Connect

    Neuman, J.A.; Huey, L.G.; Ryerson, T.B.; Fahey, D.W. |

    1999-04-01

    The adsorption of nitric acid (HNO{sub 3}) from a flowing gas stream is studied for a variety of wall materials to determine their suitability for use in atmospheric sampling instruments. Parts per billion level mixtures of HNO{sub 3} in synthetic air flow through tubes of different materials such that >80% of the molecules interact with the walls. A chemical ionization mass spectrometer with a fast time response and high sensitivity detects HNO{sub 3} that is not adsorbed on the tube walls. Less than 5% of available HNO{sub 3} is adsorbed on Teflon fluoropolymer tubing after 1 min of HNO{sub 3} exposure, whereas >70% is lost on walls made of stainless steel, glass, fused silica, aluminum, nylon, silica-steel, and silane-coated glass. Glass tubes exposed to HNO{sub 3} on the order of hours passivate with HNO{sub 3} adsorption dropping to zero. The adsorption of HNO{sub 3} on PFA Teflon tubing (PFA) is nearly temperature-independent from 10 to 80 C, but below {minus}10 C nearly all HNO{sub 3} that interacts with PFA is reversibly adsorbed. In ambient and synthetic air, humidity increases HNO{sub 3} adsorption. The results suggest that Teflon at temperatures above 10 C is an optimal choice for inlet surfaces used for in situ measurements of HNO{sub 3} in the ambient atmosphere.

  10. Diurnal and temporal variations of water-soluble dicarboxylic acids and related compounds in aerosols from the northern vicinity of Beijing: implication for photochemical aging during atmospheric transport.

    PubMed

    He, Nannan; Kawamura, Kimitaka; Okuzawa, K; Pochanart, P; Liu, Y; Kanaya, Y; Wang, Z F

    2014-11-15

    Aerosol samples were collected in autumn 2007 on day- and nighttime basis in the northern receptor site of Beijing, China. The samples were analyzed for total carbon (TC) and water-soluble dicarboxylic acids (C2-C12), oxocarboxylic acids (C2-C9), glyoxal and methylglyoxal to better understand the photochemical aging of organic aerosols in the vicinity of Beijing. Concentrations of TC are 50% greater in daytime when winds come from Beijing than in nighttime when winds come from the northern forest areas. Most diacids showed higher concentrations in daytime, suggesting that the organics emitted from the urban Beijing and delivered to the northern vicinity in daytime are subjected to photo-oxidation to result in diacids. However, oxalic acid (C2), which is the most abundant diacid followed by C3 or C4, became on average 30% more abundant in nighttime together with azelaic, ω-oxooctanoic and ω-oxononanoic acids, which are specific oxidation products of biogenic unsaturated fatty acids. Methylglyoxal, an oxidation product of isoprene and a precursor of oxalic acid, also became 29% more abundant in nighttime. Based on a positive correlation between C2 and glyoxylic acid (ωC2) in nighttime when relative humidity significantly enhanced, we propose a nighttime aqueous phase production of C2 via the oxidation of ωC2. We found an increase in the contribution of diacids to TC by 3 folds during consecutive clear days. This study demonstrates that diacids and related compounds are largely produced in the northern vicinity of Beijing via photochemical processing of organic precursors emitted from urban center and forest areas. PMID:25181047

  11. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water.

    PubMed

    Li, Bucheng; Wu, Lei; Li, Lingxiao; Seeger, Stefan; Zhang, Junping; Wang, Aiqin

    2014-07-23

    Inspired by the mussel adhesive protein and the lotus leaf, Ag-based double-layer polyester (DL-PET) textiles were fabricated for effective removal of organic pollutants in water. The DL-PET textiles are composed of a top superamphiphilic layer and a bottom superhydrophobic/superoleophilic layer. First, the PET textiles were modified with a layer of polydopamine (PDA) and deposited with Ag nanoparticles to form the PET@PDA@Ag textiles. The top superamphiphilic layer, formed by immobilizing Ag3PO4 nanoparticles on the PET@PDA@Ag textile, shows excellent visible-light photocatalytic activity. The bottom superhydrophobic/superoleophilic layer, formed by modifying the PET@PDA@Ag textile using dodecyl mercaptan, is mechanically, environmentally, and chemically very stable. The water-insoluble oils with low surface tension can penetrate both layers of the DL-PET textiles, while the water with soluble organic dyes can only selectively wet the top layer owing to their unique wettability. Consequently, the water-soluble organic contaminants in the collected water can be decomposed by the Ag3PO4 nanoparticles of the top layer under visible-light irradiation or even sunlight in room conditions. Thus, the DL-PET textiles can remove various kinds of organic pollutants in water including both insoluble oils and soluble dyes. The DL-PET textiles feature unique wettability, high oil/water separation efficiency, and visible-light photocatalytic activity. PMID:24956183

  12. PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes With Phosphate and Ethylenediaminetetraacetic Acid

    SciTech Connect

    Rai, Dhanpat; Moore, Dean A.; Felmy, Andrew R.; Rosso, Kevin M.; Bolton, Harvey

    2010-06-15

    To determine the solubility product of PuPO4(cr, hyd.) and the complexation constants of Pu(III) with phosphate and EDTA, the solubility of PuPO4(cr, hyd.) was investigated as a function of: 1) time and pH varying from 1.0 to 12.0 and at a fixed 0.00032 M phosphate concentration; 2) NaH2PO4 concentrations varying from 0.0001 M to 1.0 M and at a fixed pH value of 2.5; 3) time and pH varying from 1.3 to 13.0 at fixed concentrations of 0.00032 M phosphate and 0.0004 M or 0.002 M Na2H2EDTA; and 4) Na2H2EDTA concentrations varying from 0.00005 M to 0.0256 M at a fixed 0.00032 M phosphate concentration and at pH values of approximately 3.5, 10.6, and 12.6. A combination of solvent extraction and spectrophotometric techniques confirmed that the use of hydroquinone and Na2S2O4 helped maintain Pu as Pu(III). The solubility data were interpreted using Pitzer and SIT models, and both provided similar values for the solubility product of PuPO4(cr, hyd.) and for the formation constant of PuEDTA-. The log10 of the solubility product of PuPO4(cr, hyd.) (PuPO4(cr, hyd.) = Pu3+ + PO4 ) was determined to be –(24.42 ± 0.38). Pitzer modeling showed that phosphate interactions with Pu3+ were extremely weak and did not require any phosphate complexes (e.g., PuPO4(aq), PuH2PO42+, Pu(H2PO4)2+, Pu(H2PO4)3(aq), and Pu(H2PO4)4-), as proposed in existing literature, to explain the experimental data. SIT modeling, however, required the inclusion of PuH2PO42+ to explain the data in high NaH2PO4 concentrations; this illustrates the differences one can expect when using these two chemical models to interpret the data. As the Pu(III)-EDTA species, only PuEDTA- was needed to interpret the experimental data in a large range in pH values (1.3–12.9) and EDTA concentrations (0.00005–0.256 M). Calculations based on density functional theory support the existence of PuEDTA- (with prospective stoichiometry as Pu(OH2)3EDTA-) as the chemically and structurally stable species. The log10 of the

  13. Characterizing the acid/base behavior of oil-soluble surfactants at the interface of nonpolar solvents with a polar phase.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Behrens, Sven Holger

    2015-06-01

    We propose a simple method of characterizing the (Lewis) acid/base behavior of oil-soluble nonionic surfactants at the interface of nonpolar solvents with a polar phase. Using interfacial tensiometry, we probe the effective acidic and basic response of nonpolar surfactant solutions to contact with a variety of polar reference liquids. The measured interfacial tensions are used as experimental coefficients in a set of equations borrowed from the thermodynamic "surface energy component model" of van Oss, Chaudhury, and Good (vOCG), but used here in a more heuristic fashion and with a revised interpretation of the parameters extracted to describe the dispersive, acidic, and basic character of the sample. We test the proposed characterization method using alkane solutions of purified polyisobutylene succinimide (PIBS) surfactants with systematic structural variations, and observe that the inferred parameter values are consistent with, and sensitive to, subtle differences in the surfactant chemistry. This suggests the possibility to compare different surfactant solutions semiquantitatively with regard to their acidic and basic character. In a further illustration of the proposed analysis, we characterize a solution of commercial PIBS surfactant in hexane, and find that the parameters obtained by the proposed method correctly predict the solution interfacial tension with a polar liquid not included among the chosen reference liquids. PMID:25978798

  14. Enhanced anti-cancer efficacy to cancer cells by doxorubicin loaded water-soluble amino acid-modified β-cyclodextrin platinum complexes.

    PubMed

    Zhao, Mei-Xia; Zhao, Meng; Zeng, Er-Zao; Li, Yang; Li, Jin-Ming; Cao, Qian; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2014-08-01

    The effective targeted delivery of insoluble anticancer drugs to increase the intracellular drug concentration has become a focus in cancer therapy. In this system, two water-soluble amino acid-modified β-cyclodextrin (β-CD) platinum complexes were reported. They showed preferable binding ability to DNA and effective inhibition to cancer cells, and they could bind and unwind pBR322 DNA in a manner which was similar to cisplatin. Besides, our platinum complexes could effectively deliver the anticancer drug doxorubicin (Dox) into cells and had higher cell inhibition ratio, but less toxicity on the normal cells, compared with cancer cells. In this combination system, Dox was encapsulated into the hydrophobic cavities of β-CD at the optimum molar ratio of 1:1, which were validated by UV-visible (UV-vis) absorption spectroscopy, fluorescence spectroscopy and MTT experiments. Moreover, the combination system had higher cell inhibition ratio than free Dox and amino acid-modified β-CD platinum complexes, and the results of high content screening (HCS) showed that Dox-loaded amino acid-modified β-CD platinum complexes could permeate the cell membrane and enter cells, suggesting the efficient transport of Dox across the membranes with the aid of the β-CD. We expect that the amino acid-modified β-CD platinum complexes will deliver the antitumor drug Dox to enhance intracellular drug accumulation and such combination system showed great potential as an antitumor drug. PMID:24803024

  15. Erosion by acid rain, accelerating the tracking of polystyrene insulating material

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chen, L.; Yoshimura, N.

    2000-05-01

    Because outdoor insulating materials in service are subjected to numerous wet and dry cycles, it is necessary to establish their performance in acid rain. The erosion effect of acid rain on atactic polystyrene insulating material is investigated using accelerated ageing by artificial acid rain. The degradation mechanisms of material structure and tracking resistance are discussed. The experimental results reported here show that the erosion of acid rain causes the degradation of the surface chemical and physical structures of polystyrene (PS) material so that the surface conductivity of aged material increases. Under electrical stress, the surface discharge current increases, and the local surface is deteriorated so that the tracking is initiated earlier and the material rapidly fails. The degradation rate of PS material in acid rain varies as function of the ion concentration, pH and conductivity of acid rain. Only the severe acid rain of high acidity and conductivity can exert an influence on PS insulating material. The concentration of actual rainwater is insufficient to lead to obvious erosion on PS insulation. PS insulation could resist on the erosion of normal acid rainwater. Even though clear degradation occurs with strong acid rain, PS could behave quite well in mild acid rain conditions.

  16. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr.

    PubMed

    Tian, Xiaoming; Xie, Jin; Zhao, Yanling; Lu, Hai; Liu, Shichang; Qu, Long; Li, Jianmei; Gai, Ying; Jiang, Xiangning

    2013-04-01

    Regulation of lignin biosynthesis affects plant growth and wood properties. Transgenic downregulation of 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) may reduce lignin content in cell walls, which could improve the qualities of pulp in papermaking and increase the efficiency of bioenergy applications. To determine the effects of Ptc4CL1 on lignin biosynthesis and plant growth, Populus tomentosa Carr. was transformed using sense-, antisense-, and RNAi-4CL1 genes. The growth properties, gene expression, enzyme activity, lignin content and composition and content of soluble phenolic acids were investigated in 1-year-old field-grown transgenic poplar trees. Transgenic up- and down-regulation of 4CL1 altered lignin content and composition in transgenic poplars, but there were no negative effects on the growth of transgenic plants. In addition, the severe changes in auxin observed in transgenic lines led to significantly enhanced growth performance. Furthermore, lignin content was tightly correlated with the alteration of 4CL1 enzymatic activity, which was correlated with 4CL1 gene expression. A significant increase in S units in lignin with a slight increase in sinapic acid was observed in 4CL1 down-regulated transgenic poplars. These results suggest that 4CL1 is a traffic control gene in monolignol biosynthesis and confirm that 4CL1 activity has been implicated with sinapoyl activation. Finally, our data demonstrate that there is cross-correlation among 4CL1 gene expression, 4CL1 enzyme activity, soluble phenolic acid, lignin monomer biosynthesis, and lignin content. PMID:23434928

  17. Water-soluble vitamins.

    PubMed

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were <6.5%. The concentrations of vitamins found in premixes with the method were comparable to the values declared. A disadvantage of the methods mentioned above is that sample composition has to be known in advance. According to European legislation, for example, foods might be fortified with riboflavin phosphate or thiamin phosphate, vitamers which are not included in the simultaneous separations described. Vitamin B2.--Viñas et al. elaborated an LC analysis of riboflavin vitamers in foods. Vitamin B2 can be found in nature as the free riboflavin, but in most biological materials it occurs predominantly in the form of 2 coenzymes, flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD). Several methods usually involve the conversion of these coenzymes into free riboflavin before quantification of total riboflavin. According to the authors, there is growing interest to know flavin composition of foods. The described method separates the individual vitamers isocratically. Accuracy of the method is tested with 2 certified reference materials (CRMs). Vitamin B5.-Methods for the determination of vitamin B5 in foods are limited

  18. Contact of clay-liner materials with acidic tailings. II. Chemical modeling

    SciTech Connect

    Peterson, S.R.; Krupka, K.M.

    1981-09-01

    The ion speciation-solubility model WATEQ3 was used to model original aqueous solutions and solutions resulting from liner materials contacted with uranium mill tailings, synthetic mill tailings or H/sub 2/SO/sub 4/. The modeling results indicate solution species which are in apparent equilibrium with respect to particular solids. These solids provide potential solubility controls for their corresponding dissolved constituents. The disequilibrium indices computed by WATEQ3 indicate amorphic Fe(OH)/sub 3/(A), Al0HO/sub 4/, alunite (KA1/sub 3/(SO/sub 4/)/sub 2/(OH)/sub 6/), gypsum (CaSO/sub 4/ . 2H/sub 2/O), celestite (SrSO/sub 4/), anglesite (PbSO/sub 4/) and MnHPO/sub 4/ may have precipitated in the contacted liner materials and may also provide solubility controls for their dissolved constituents. The disequilibrium indices also show that the solutions resulting from the interaction of Highland Mill tailings are oversaturated with K-, H-, and Na-jarosites ((K,H,Na)Fe/sub 3/(SO/sub 4/)/sub 2/(OH)/sub 6/). Because jarosite has been identified by x-ray diffraction as a precipitate in these reacted liner materials, it would appear that there is a kinetic barrier which prohibits jarosite from being an effective solubility control. Results of this study also show that the solubilities of many solid phases were pH dependent. This exploratory use of geochemical modeling has demonstrated its capability to test solubility hypotheses for clay liners reacted with tailings solutions and to guide the analyses of important constituents and parameters for these solutions. Geochemical modeling can be used, in parallel with characterization techniques for the solid phases, to support the presence of the solid phase and to guide the search for further solid phases. Geochemical modeling is also an effective tool in delineating the chemical causes for changes in permeability of liner materials.

  19. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    PubMed

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed. PMID:26797927

  20. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Zhang, Xiaolu; Parker, Eric T.; Veres, Patrick R.; Roberts, James M.; de Gouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.; Murphy, Jennifer G.; Ellis, Raluca A.; Huey, L. Greg; Weber, Rodney J.

    2012-10-01

    Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.

  1. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 2. Gas and particle phase formic acid

    NASA Astrophysics Data System (ADS)

    Liu, Jiumeng; Zhang, Xiaolu; Parker, Eric T.; Veres, Patrick R.; Roberts, James M.; Gouw, Joost A.; Hayes, Patrick L.; Jimenez, Jose L.; Murphy, Jennifer G.; Ellis, Raluca A.; Huey, L. Greg; Weber, Rodney J.

    2011-11-01

    Gas and fine particle (PM2.5) phase formic acid concentrations were measured with online instrumentation during separate one-month studies in the summer of 2010 in Los Angeles (LA), CA, and Atlanta, GA. In both urban environments, median gas phase concentrations were on the order of a few ppbv (LA 1.6 ppbv, Atlanta 2.3 ppbv) and median particle phase concentrations were approximately tens of ng/m3 (LA 49 ng/m3, Atlanta 39 ng/m3). LA formic acid gas and particle concentrations had consistent temporal patterns; both peaked in the early afternoon and generally followed the trends in photochemical secondary gases. Atlanta diurnal trends were more irregular, but the mean diurnal profile had similar afternoon peaks in both gas and particle concentrations, suggesting a photochemical source in both cities. LA formic acid particle/gas (p/g) ratios ranged between 0.01 and 12%, with a median of 1.3%. No clear evidence that LA formic acid preferentially partitioned to particle water was observed, except on three overcast periods of suppressed photochemical activity. Application of Henry's Law to predict partitioning during these periods greatly under-predicted particle phase formate concentrations based on bulk aerosol liquid water content (LWC) and pH estimated from thermodynamic models. In contrast to LA, formic acid partitioning in Atlanta appeared to be more consistently associated with elevated relative humidity (i.e., aerosol LWC), although p/g ratios were somewhat lower, ranging from 0.20 to 5.8%, with a median of 0.8%. Differences in formic acid gas absorbing phase preferences between these two cities are consistent with that of bulk water-soluble organic carbon reported in a companion paper.

  2. Acid Precipitation Awareness Curriculum Materials in the Life Sciences.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.

    1983-01-01

    Provides an outline of course content for acid precipitation and two acid rain activities (introduction to pH and effects of acid rain on an organism). Information for obtaining 20 additional activities as well as an information packet containing booklets, pamphlets, and articles are also provided. (JN)

  3. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    NASA Astrophysics Data System (ADS)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  4. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid

    PubMed Central

    Corware, Karina; Harris, Debra; Teo, Ian; Rogers, Matthew; Naresh, Kikkeri; Müller, Ingrid; Shaunak, Sunil

    2011-01-01

    Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major infection in genetically susceptible non-healing BALB/c mice. Intradermal AmB-PMA at a total dose of 18 mg of AmB/kg body weight led to rapid parasite killing and lesion healing. No toxicity was seen. No parasite relapse occurred after 80 days follow-up. Histological studies confirmed rapid parasite clearance from macrophages followed by accelerated fibroblast mediated tissue repair, regeneration and cure of the infection. Quantitative mRNA studies of the CL lesions showed that accelerated healing was associated with increased Tumor Necrosis Factor-α and Interferon-γ, and reduced Interleukin-10. These results suggest that a cost-effective AmB-PMA could be used to pharmacologically treat and immunotherapeutically accelerate the healing of CL lesions. PMID:21807409

  5. Growth and characterization of a new NLO material: L-Glutamic acid hydro bromide [L-GluHBr

    SciTech Connect

    Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.

    2009-05-06

    L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectral analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.

  6. Characterization and Determination of Origin of Lactic Acid Bacteria from a Sorghum-Based Fermented Weaning Food by Analysis of Soluble Proteins and Amplified Fragment Length Polymorphism Fingerprinting

    PubMed Central

    Kunene, Nokuthula F.; Geornaras, Ifigenia; von Holy, Alexander; Hastings, John W.

    2000-01-01

    The group that includes the lactic acid bacteria is one of the most diverse groups of bacteria known, and these organisms have been characterized extensively by using different techniques. In this study, 180 lactic acid bacterial strains isolated from sorghum powder (44 strains) and from corresponding fermented (93 strains) and cooked fermented (43 strains) porridge samples that were prepared in 15 households were characterized by using biochemical and physiological methods, as well as by analyzing the electrophoretic profiles of total soluble proteins. A total of 58 of the 180 strains were Lactobacillus plantarum strains, 47 were Leuconostoc mesenteroides strains, 25 were Lactobacillus sake-Lactobacillus curvatus strains, 17 were Pediococcus pentosaceus strains, 13 were Pediococcus acidilactici strains, and 7 were Lactococcus lactis strains. L. plantarum and L. mesenteroides strains were the dominant strains during the fermentation process and were recovered from 87 and 73% of the households, respectively. The potential origins of these groups of lactic acid bacteria were assessed by amplified fragment length polymorphism fingerprint analysis. PMID:10698775

  7. Effects of water-soluble natural antioxidants on photosensitized oxidation of conjugated linoleic acid in an oil-in-water emulsion system.

    PubMed

    Liu, T-T; Yang, T-S

    2008-05-01

    The effect of photosensitized oxidation of conjugated linoleic acid in an oil-in-water (o/w) emulsion system was studied. Water-soluble natural antioxidants, including apple polyphenols from apple extract, green tea extract, 4-hydroxy-2(or 5)-ethyl-5(or2)-methyl-3(2H)-furanone(HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), and ascorbic acid, were tested for antioxidant activity in this system. The green tea extract showed the highest antioxidant activity followed by ascorbic acid. Apple polyphenols did not give significant antioxidant activity. HEMF and HDMF exhibited a prooxidant effect. The antioxidant activity of tea catechins was also investigated. Of them, EGCG and ECG exhibited antioxidant activity at 50 ppm, but the antioxidant activity between them was not significantly different (P < 0.05). Comparatively, EC, EGC, and GCG showed no significant antioxidative effect at 50 ppm. When the concentration increased to 100 ppm, the antioxidant activity of ECG and EGCG significantly increased compared with that at 50 ppm, and EGCG had higher antioxidant activity than ECG. GCG also showed significant antioxidant activity at 100 ppm. EGCG exhibited the highest antioxidant activity among the tea catechins in the emulsion system at 100 ppm. PMID:18460119

  8. Hydrofluoric Acid Corrosion Study of High-Alloy Materials

    SciTech Connect

    Osborne, P.E.

    2002-09-11

    A corrosion study involving high-alloy materials and concentrated hydrofluoric acid (HF) was conducted in support of the Molten Salt Reactor Experiment Conversion Project (CP). The purpose of the test was to obtain a greater understanding of the corrosion rates of materials of construction currently used in the CP vs those of proposed replacement parts. Results of the study will help formulate a change-out schedule for CP parts. The CP will convert slightly less than 40 kg of {sup 233}U from a gas (UF{sub 6}) sorbed on sodium fluoride pellets to a more stable oxide (U{sub 3}O{sub 8}). One by-product of the conversion is the formation of concentrated HF. Six moles of highly corrosive HF are produced for each mole of UF{sub 6} converted. This acid is particularly corrosive to most metals, elastomers, and silica-containing materials. A common impurity found in {sup 233}U is {sup 232}U. This impurity isotope has several daughters that make the handling of the {sup 233}U difficult. Traps of {sup 233}U may have radiation fields of up to 400 R at contact, a situation that makes the process of changing valves or working on the CP more challenging. It is also for this reason that a comprehensive part change-out schedule must be established. Laboratory experiments involving the repeated transfer of HF through 1/2-in. metal tubing and valves have proven difficult due to the corrosivity of the HF upon contact with all wetted parts. Each batch of HF is approximately 1.5 L of 33 wt% HF and is transferred most often as a vapor under vacuum and at temperatures of up to 250 C. Materials used in the HF side of the CP include Hastelloy C-276 and Monel 400 tubing, Haynes 230 and alloy C-276 vessels, and alloy 400 valve bodies with Inconel (alloy 600) bellows. The chemical compositions of the metals discussed in this report are displayed in Table 1. Of particular concern are the almost 30 vendor-supplied UG valves that have the potential for exposure to HF. These valves have been

  9. The size and shape of three water-soluble, non-ionic polysaccharides produced by lactic acid bacteria: A comparative study.

    PubMed

    Dalheim, Marianne Øksnes; Arnfinnsdottir, Nina Bjørk; Widmalm, Göran; Christensen, Bjørn E

    2016-05-20

    Three water-soluble, non-ionic extracellular polysaccharides (EPS) obtained from lactic acid bacteria (S. thermophilus THS, L. helveticus K16 and S. thermophilus ST1) were subjected to a comparative study by means of multidetector size-exclusion chromatography, providing distributions and averages of molar masses, radii of gyration and intrinsic viscosities. All polysaccharides displayed random coil character. Further analysis of the data reveals differences in chain stiffness and extension that could be well correlated to structural features. The calculated persistence lengths ranged from 5 to 10nm and fall within the range typical for many single-stranded bacterial or plant polysaccharides. The ST1 polysaccharide had the highest molar mass but the lowest persistence length, which is attributed to the presence of the flexible (1→6)-linkage in the main chain. PMID:26917378

  10. Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins.

    PubMed

    Blobel, Jascha; Brath, Ulrika; Bernadó, Pau; Diehl, Carl; Ballester, Lidia; Sornosa, Alejandra; Akke, Mikael; Pons, Miquel

    2011-12-01

    Addition of a 50 mM mixture of L: -arginine and L: -glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE. PMID:21390527

  11. Effects of mace (Myristica fragrans, Houtt.) on cytosolic glutathione S-transferase activity and acid soluble sulfhydryl level in mouse liver.

    PubMed

    Kumari, M V; Rao, A R

    1989-07-15

    The aril of plant Myristica fragrans Houtt. commonly known as mace, which is consumed as a spice as well as used as a folk-medicine, was screened for its effects on the levels of cytosolic glutathione S-transferase (GST) and acid-soluble sulfhydryl (SH) groups in the liver of young adult male and female Swiss albino mice. Animals were assorted into 4 groups comprised of either sex and received either normal diet (negative control), 1% 2,3-tert-butyl-4-hydroxyanisole (BHA) diet (positive control), 1% mace diet or 2% mace diet for 10 days. There was a significant increase in the GST activity in the liver of mice exposed to BHA or mace. In addition, there was a significant increase in the SH content in the liver of mice fed on 1% BHA and 2% mace diets. PMID:2752386

  12. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    SciTech Connect

    Ying Yibin; Liu Yande; Tao Yang

    2005-09-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r{sup 2}) 0.940 for the SSC and a moderate r{sup 2} of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.

  13. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents.

    PubMed

    Devkota, Laxman; Lin, Chen-Ming; Strecker, Tracy E; Wang, Yifan; Tidmore, Justin K; Chen, Zhi; Guddneppanavar, Rajsekhar; Jelinek, Christopher J; Lopez, Ramona; Liu, Li; Hamel, Ernest; Mason, Ralph P; Chaplin, David J; Trawick, Mary Lynn; Pinney, Kevin G

    2016-03-01

    Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50=0.11-40nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50=0.62-1.5μM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10-90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (13-16, 42-45) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0μM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2h post treatment (80mg/kg), with similar results observed upon treatment (15mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results

  14. Production of a soluble single-chain variable fragment antibody against okadaic acid and exploration of its specific binding.

    PubMed

    He, Kuo; Zhang, Xiuyuan; Wang, Lixia; Du, Xinjun; Wei, Dong

    2016-06-15

    Okadaic acid is a lipophilic marine algal toxin commonly responsible for diarrhetic shellfish poisoning (DSP). Outbreaks of DSP have been increasing and are of worldwide public health concern; therefore, there is a growing demand for more rapid, reliable, and economical analytical methods for the detection of this toxin. In this study, anti-okadaic acid single-chain variable fragment (scFv) genes were prepared by cloning heavy and light chain genes from hybridoma cells, followed by fusion of the chains via a linker peptide. An scFv-pLIP6/GN recombinant plasmid was constructed and transformed into Escherichia coli for expression, and the target scFv was identified with IC-CLEIA (chemiluminescent enzyme immunoassay). The IC15 was 0.012 ± 0.02 μg/L, and the IC50 was 0.25 ± 0.03 μg/L. The three-dimensional structure of the scFv was simulated with computer modeling, and okadaic acid was docked to the scFv model to obtain a putative structure of the binding complex. Two predicted critical amino acids, Ser32 and Thr187, were then mutated to verify this theoretical model. Both mutants exhibited significant loss of binding activity. These results help us to understand this specific scFv-antigen binding mechanism and provide guidance for affinity maturation of the antibody in vitro. The high-affinity scFv developed here also has potential for okadaic acid toxin detection. PMID:26772159

  15. Acid soluble bio-organic substances isolated from urban bio-waste. Chemical composition and properties of products.

    PubMed

    Montoneri, Enzo; Boffa, Vittorio; Savarino, Piero; Perrone, Daniele; Ghezzo, Marzia; Montoneri, Corrado; Mendichi, Raniero

    2011-01-01

    As previous work proposed commercial expectations for soluble bio-organic substances (SBO) isolated from compost of urban food, gardening and park trimming residues as chemical auxiliaries, nine urban bio-wastes (BW) treated by aerobic and anaerobic digestion for 0-360 days were used to extract SBO and investigate source variability effects on product chemical composition and properties. The bio-wastes were collected over a 13732 km(2) area populated by 2.9 millions from 565 municipalities. The SBO were characterized by their content of different C types and functional groups and by their distribution coefficient (K(PEGW)) between polyethylene glycol and water. A significant linear correlation was found between K(PEGW) and the lipophilic/hydrophilic C ratio. The investigated SBO exhibited up to sixfold change of K(PEGW) demonstrating that BW available from densely populated urban areas are an interesting exploitable source of a wide variety of potential products for the chemical market. PMID:20888748

  16. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  17. Mineral oil soluble borate compositions

    SciTech Connect

    Dulat, J.

    1981-09-15

    Alkali metal borates are reacted with fatty acids or oils in the presence of a low hlb value surfactant to give a stable mineral oil-soluble product. Mineral oil containing the borate can be used as a cutting fluid.

  18. Effects of liquid aluminum chloride additions to poultry litter on broiler performance, ammonia emissions, soluble phosphorus, total volatile Fatty acids, and nitrogen contents of litter.

    PubMed

    Choi, I H; Moore, P A

    2008-10-01

    Recent studies have shown that the use of aluminum sulfate [alum, Al2(SO4)3.14H2O] and aluminum chloride (AlCl3) additions to animal manures are more effective than other chemicals in reducing ammonia (NH3) emissions and P solubility. Although the use of Al2(SO4)3.14H2O has been intensively used in the poultry industry for many years, no research has been conducted to evaluate the effect of liquid AlCl3 on these parameters. The objectives of this study were to determine the effects of applying liquid AlCl3 to poultry litter on 1) broiler performance, 2) NH3 fluxes, and 3) litter chemical characteristics, including soluble reactive P, total volatile fatty acids, and N content. Eight hundred broiler chicks were placed into 16 floor pens (50 birds/pen) in a single house for 6 wk. Liquid AlCl3 treatments were sprayed on the litter surface at rates of 100, 200, and 300 g of liquid AlCl3/kg of litter; un-treated litter served as controls. At the 2 lower rates, liquid AlCl3 treatments tended to improve weight gain and feed intake but had no effect on feed conversion or mortality, whereas the higher rate (300 g/kg of litter) had a negative effect on intake. Application of 100, 200, and 300 g of liquid AlCl3 reduced NH3 fluxes by 63, 76, and 76% during the 6-wk period, respectively, compared with the controls. Liquid AlCl3 additions reduced litter soluble reactive P contents by 24, 30, and 36%, respectively, at the low, medium, and high rates. Total volatile fatty acid contents (odor precursors) in litter were reduced by 20, 50, and 51%, respectively, with 100, 200, and 300 g of liquid AlCl3/kg of litter. Liquid AlCl3 additions increased total N, inorganic N, and plant available N contents in litter. These results indicate that liquid AlCl3 additions at the lower rates can provide significant positive environmental benefits to broiler operations. PMID:18809856

  19. Controllable and stepwise synthesis of soluble ladder-conjugated bis(perylene imide) fluorenebisimidazole as a multifunctional optoelectronic material.

    PubMed

    Chen, Lingcheng; Zhang, Kaichen; Tang, Changquan; Zheng, Qingdong; Xiao, Yi

    2015-02-01

    By a controllable and stepwise strategy, a soluble ladder-conjugated perylene derivative BPI-FBI as the only product has been synthesized, which avoids the tough work to isolate regioisomers generated by a conventional one-step condensation method. BPI-FBI exhibits broad absorption spectra covering the whole visible region from 300 to 700 nm because of the large π-conjugation skeleton and has a low LUMO level inheriting the prototype PDI. In the steady-state space-charge-limited current (SCLC) devices, BPI-FBI exhibits an intrinsic electron mobility of 1.01 × 10(-5) cm(2) V(-1) s(-1). With a high two photon absorbing activity in the near-infrared region from 1200 to 1400 nm, BPI-FBI also exhibits good optical limiting performance, which will be useful for sensor or human eye protection and stabilization of light sources for optical communications. PMID:25574830

  20. Sensory profile, soluble sugars, organic acids, and mineral content in milk- and soy-juice based beverages.

    PubMed

    Andrés, Víctor; Tenorio, M Dolores; Villanueva, M José

    2015-04-15

    The juice industry has undergone a continuous innovation to satisfy the increasing healthy food demand by developing, among others, beverages based on fruits and milk or soybeans. The comparison among the sensory attributes between nineteen commercial mixed beverages showed significant differences in colour, sweetness, acidity, and consistency. Sucrose and citric acid were found in large proportion due to their natural presence or their addition. Potassium was the major macromineral (148-941 mg/L), especially in soy beverages. The low concentration of sodium in soy drinks is a healthy characteristic. The profile of inorganic anions has been included for the first time. Sulphate (39-278 mg/L) and phosphate (51-428 mg/L) were the predominant anions. High correlations were found between the percentage of fruit and consistency, fructose, malic acid, potassium and phosphate content (r(2)>0.790). Based on the data obtained, these beverages show pleasant organoleptic characteristics and constitute a good source of essential nutrients for regular consumers. PMID:25466130

  1. Dissolution difference between acidic and neutral media of acetaminophen tablets containing a super disintegrant and a soluble excipient. II.

    PubMed

    Chen, C R; Cho, S L; Lin, C K; Lin, Y H; Chiang, S T; Wu, H L

    1998-03-01

    The disintegration and dissolution of acetaminophen tablets containing sucrose and Ac-Di-Sol/Primojel was significantly different between acidic and neutral media. The purpose of this study was to investigate the mechanism of this phenomenon and to propose a way of reducing the dissolution difference between the two media. Tablets of different combinations of active ingredient, sucrose, and Ac-Di-Sol/Primojel were prepared and their dissolution in various media was evaluated. The dissolution differences were found to be largely related to the hydrophobicity of the active ingredient and pH difference of the two media. This difference was even more evident under the condition where acetaminophen, sucrose, and Primojel were combined. The dissolution difference was therefore attributed to the depressed function of Primojel in the acidic medium, the stronger binding of sucrose, the hydrophobicity of the active ingredient and pH difference of the two media. Increasing the concentration of Primojel or incorporating the surfactant in the tablet can thus greatly decrease the dissolution difference between acidic and neutral media. PMID:9549889

  2. Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species.

    PubMed

    Chan, Man Nin; Choi, Man Yee; Ng, Nga Lee; Chan, Chak K

    2005-03-15

    Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles. PMID:15819209

  3. Coal liquefaction process streams characterization and evaluation: [sup 13]C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J. )

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS [sup 13]C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850[degrees]F[sup +] distillation resids and one 850[degrees]F[sup +] distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  4. Coal liquefaction process streams characterization and evaluation: {sup 13}C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J.

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS {sup 13}C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850{degrees}F{sup +} distillation resids and one 850{degrees}F{sup +} distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  5. Investigation of the role of nitric oxide/soluble guanylyl cyclase pathway in ascorbic acid-mediated protection against acute kidney injury in rats.

    PubMed

    Koul, Vaishali; Kaur, Anudeep; Singh, Amrit Pal

    2015-08-01

    The present study investigated the possible involvement of nitric oxide/soluble guanylyl cyclase (NO/sGC) pathway in ascorbic acid (AA)-mediated protection against acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia by occluding renal pedicles for 40 min followed by reperfusion for 24 h. The AKI was assessed in terms of measuring creatinine clearance (CrCl), blood urea nitrogen (BUN), plasma uric acid, potassium level, fractional excretion of sodium (FeNa), and microproteinuria. The NO level and oxidative stress in renal tissues were assessed by measuring myeloperoxidase activity, thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione level. AA (50 and 100 mg/kg, p.o.) was administered for 3 days before subjecting rats to AKI. In separate groups, the nitric oxide synthase inhibitor, L-NAME (20 mg/kg, i.p.) and sGC inhibitor, methylene blue (50 mg/kg, i.p.) was administered prior to AA treatment in rats. The significant decrease in CrCl and increase in BUN, plasma uric acid, potassium, FeNa, microproteinuria, and oxidative stress in renal tissues demonstrated ischemia-reperfusion-induced AKI in rats. The AA treatment ameliorated ischemia-reperfusion-induced AKI along with the increase in renal NO level. The pretreatment with L-NAME and methylene blue abolished protective effect of AA. It is concluded that AA protects against ischemia-reperfusion-induced AKI. Moreover, the NO/sGC pathway finds its definite involvement in AA-mediated reno-protective effect. PMID:26142728

  6. Inclusion of sunflower seed and wheat dried distillers' grains with solubles in a red clover silage-based diet enhances steers performance, meat quality and fatty acid profiles.

    PubMed

    Mapiye, C; Aalhus, J L; Turner, T D; Vahmani, P; Baron, V S; McAllister, T A; Block, H C; Uttaro, B; Dugan, M E R

    2014-12-01

    The current study compared beef production, quality and fatty acid (FA) profiles of yearling steers fed a control diet containing 70 : 30 red clover silage (RCS) : barley-based concentrate, a diet containing 11% sunflower seed (SS) substituted for barley, and diets containing SS with 15% or 30% wheat dried distillers' grain with solubles (DDGS). Additions of DDGS were balanced by reductions in RCS and SS to maintain crude fat levels in diets. A total of two pens of eight animals were fed per diet for an average period of 208 days. Relative to the control diet, feeding the SS diet increased (P<0.05) average daily gain, final live weight and proportions of total n-6 FA, non-conjugated 18:2 biohydrogenation products (i.e. atypical dienes) with the first double bond at carbon 8 or 9 from the carboxyl end, conjugated linoleic acid isomers with the first double bond from carbon 7 to 10 from the carboxyl end, t-18:1 isomers, and reduced (P<0.05) the proportions of total n-3 FA, conjugated linolenic acids, branched-chain FA, odd-chain FA and 16:0. Feeding DDGS-15 and DDGS-30 diets v. the SS diet further increased (P<0.05) average daily gains, final live weight, carcass weight, hot dressing percentage, fat thickness, rib-eye muscle area, and improved instrumental and sensory panel meat tenderness. However, in general feeding DGGS-15 or DDGS-30 diets did not change FA proportions relative to feeding the SS diet. Overall, adding SS to a RCS-based diet enhanced muscle proportions of 18:2n-6 biohydrogenation products, and further substitutions of DDGS in the diet improved beef production, and quality while maintaining proportions of potentially functional bioactive FA including vaccenic and rumenic acids. PMID:25075808

  7. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    PubMed

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification

  8. Pepsin treatment of avian skin collagen. Effects on solubility, subunit composition and aggregation properties

    PubMed Central

    Bannister, D. W.; Burns, Anne B.

    1972-01-01

    1. Collagen was extracted from chick skin with dilute acetic acid followed by dilute acetic acid containing pepsin. 2. The solubilized collagens were purified and portions subjected to further digestion by pepsin. 3. This treatment decreased the aldehyde content but contamination by hexosamine was not diminished. 4. Pepsin treatment converted practically all the acid-soluble collagen into monomeric subunits (α-chains), but the pepsinsolubilized material retained a significant amount of higher subunits (β- and γ-chains). 5. Treatment lowered the rate of fibrillogenesis by acid-soluble collagen, but was without effect on pepsin-solubilized collagen. PMID:4572795

  9. Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotus ostreatus mushrooms.

    PubMed

    Szwengiel, Artur; Stachowiak, Barbara

    2016-08-01

    Some ß-glucans can be easily extracted from Basidiomycete mushrooms but commonly used extraction procedures are not satisfactory. A simultaneous method for acid extraction and deproteinization in the case of Pleurotus ostreatus was developed using response surface methodology. The optimized extraction conditions proposed here (30°C, 3.8% HCl, 300min, stirring) allow for the simultaneous extraction and deproteinization of polysaccharides. Additionally, the acid extraction yield was 7 times greater than that of hot water extraction. The combined enzymatic digestion with lyticase, ß-glucanase, exo-1,3-ß-d-glucanase, and ß-glucosidase results elucidated that an extract containing ß-1,3-ß-1,6-ß-1,4-glucan. The gel permeation chromatography (GPC) results showed that the two glucan fractions obtained do not contain linked proteins. The weight average molecular weight of the first fraction (Mw=1137kDa) was 60 times higher than that of the second fraction (Mw=19kDa). PMID:27112879

  10. A numerical model for a soluble lead-acid flow battery comprising a three-dimensional honeycomb-shaped positive electrode

    NASA Astrophysics Data System (ADS)

    Oury, Alexandre; Kirchev, Angel; Bultel, Yann

    2014-01-01

    A novel reactor design is proposed for the soluble lead-acid flow battery (SLFB), in which a three-dimensional honeycomb-shaped positive PbO2-electrode is sandwiched between two planar negative electrodes. A two-dimensional stationary model is developed to predict the electrochemical behaviour of the cell, especially the current distribution over the positive structure and the cell voltage, as a function of the honeycomb dimensions and the electrolyte composition. The model includes several experimentally-based parameters measured over a wide range of electrolyte compositions. The results show that the positive current distribution is almost entirely determined by geometrical effects, with little influence from the hydrodynamic. It is also suggested that an increase in the electrolyte acidity diminishes the overvoltage during discharge but leads at the same time to a more heterogeneous reaction rate distribution on account of the faster kinetics of PbO2 dissolution. Finally, the cycling of experimental mono-cells is performed and the voltage response is in fairly good accordance with the model predictions.

  11. Water/alcohol soluble electron injection material containing azacrown ether groups: synthesis, characterization and application to enhancement of electroluminescence.

    PubMed

    Wu, Chia-Shing; Lu, Huai-An; Chen, Chiao-Pei; Guo, Tzung-Fang; Chen, Yun

    2014-03-01

    Using an environmentally stable metal as the cathode in a polymer light-emitting diode (PLED) is an essential requirement for its practical application. We present the preparation of a water/alcohol soluble copoly(p-phenylene) (P1) containing pendant azacrown ether and ethylene glycol ether groups as a highly efficient electron injection layer (EIL) for PLEDs, allowing the use of environmentally stable aluminum as the cathode. Multilayer PLEDs [ITO/PEDOT:PSS/PF-Green-B/EIL/Al] using P1 as EIL exhibit significantly enhanced device performance, particularly in the presence of K2CO3 or Cs2CO3. The maximum luminous power efficiency and maximum luminance of the device with Cs2CO3-doped P1 as EIL were enhanced to 9.16 lm W(-1) and 17,050 cd m(-2), respectively, compared with those without EIL (0.16 lm W(-1), 890 cd m(-2)). The turn-on voltage was also significantly reduced from 5.7 V to 3.7 V simultaneously. The performance enhancement has been attributed to improved electron injection which has been confirmed by the rise in open-circuit voltage (Voc) obtained from photovoltaic measurements. The incorporation of such an electron injection layer significantly enhances device performance for PLEDs with an environmentally stable metal as the cathode. PMID:24442208

  12. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  13. Materials and methods for efficient lactic acid production

    DOEpatents

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  14. Materials and methods for efficient lactic acid production

    SciTech Connect

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  15. Recovery of sterols as fatty acid steryl esters from waste material after purification of tocopherols.

    PubMed

    Nagao, Toshihiro; Hirota, Yoshinori; Watanabe, Yomi; Kobayashi, Takashi; Kishimoto, Noriaki; Fujita, Tokio; Kitano, Motohiro; Shimada, Yuji

    2004-08-01

    Tocopherols are purified industrially from soybean oil deodorizer distillate by a process comprising distillation and ethanol fractionation. The waste material after ethanol fractionation (TC waste) contains 75% sterols, but a purification process has not yet been developed. We thus attempted to purify sterols by a process including a lipase-catalyzed reaction. Candida rugosa lipase efficiently esterified sterols in TC waste with oleic acid (OA). After studying several factors affecting esterification, the reaction conditions were determined as follows: ratio of TC waste/OA, 1:2 (wt/wt); water content, 30%; amount of lipase, 120 U/g-reaction mixture; temperature, 40 degrees C. Under these conditions, the degree of esterification reached 82.7% after 24 h. FA steryl esters (steryl esters) in the oil layer were purified successfully by short-path distillation (purity, 94.9%; recovery, 73.1%). When sterols in TC waste were esterified with FFA originating from olive, soybean, rapeseed, safflower, sunflower, and linseed oils, the FA compositions of the steryl esters differed somewhat from those of the original oils: The content of saturated FA was lower and that of unsaturated FA was higher. The m.p. of the steryl esters synthesized (21.7-36.5 degrees C) were remarkably low compared with those of the steryl esters purified from high-b.p. soybean oil deodorizer distillate substances (56.5 degrees C; JAOCS 80, 341-346, 2003). The low-m.p. steryl esters were soluble in rapeseed oil even at a final concentration of 10%. PMID:15638248

  16. Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals

    USGS Publications Warehouse

    Hemingway, Bruch S.; Seal, Robert R., II; Chou, I-Ming

    2002-01-01

    Enthalpy of formation, Gibbs energy of formation, and entropy values have been compiled from the literature for the hydrated ferrous sulfate minerals melanterite, rozenite, and szomolnokite, and a variety of other hydrated sulfate compounds. On the basis of this compilation, it appears that there is no evidence for an excess enthalpy of mixing for sulfate-H2O systems, except for the first H2O molecule of crystallization. The enthalpy and Gibbs energy of formation of each H2O molecule of crystallization, except the first, in the iron(II) sulfate - H2O system is -295.15 and -238.0 kJ?mol-1, respectively. The absence of an excess enthalpy of mixing is used as the basis for estimating thermodynamic values for a variety of ferrous, ferric, and mixed-valence sulfate salts of relevance to acid-mine drainage systems.

  17. The influence of low concentrations of a water soluble poragen on the material properties, antibiotic release, and biofilm inhibition of an acrylic bone cement.

    PubMed

    Slane, Josh A; Vivanco, Juan F; Rose, Warren E; Squire, Matthew W; Ploeg, Heidi-Lynn

    2014-09-01

    Soluble particulate fillers can be incorporated into antibiotic-loaded acrylic bone cement in an effort to enhance antibiotic elution. Xylitol is a material that shows potential for use as a filler due to its high solubility and potential to inhibit biofilm formation. The objective of this work, therefore, was to investigate the usage of low concentrations of xylitol in a gentamicin-loaded cement. Five different cements were prepared with various xylitol loadings (0, 1, 2.5, 5 or 10 g) per cement unit, and the resulting impact on the mechanical properties, cumulative antibiotic release, biofilm inhibition, and thermal characteristics were quantified. Xylitol significantly increased cement porosity and a sustained increase in gentamicin elution was observed in all samples containing xylitol with a maximum cumulative release of 41.3%. Xylitol had no significant inhibitory effect on biofilm formation. All measured mechanical properties tended to decrease with increasing xylitol concentration; however, these effects were not always significant. Polymerization characteristics were consistent among all groups with no significant differences found. The results from this study indicate that xylitol-modified bone cement may not be appropriate for implant fixation but could be used in instances where sustained, increased antibiotic elution is warranted, such as in cement spacers or beads. PMID:25063107

  18. Acid Rain Affecting the Electrical Properties of Outdoor Composite Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Wang, Xinsheng; Kumagai, Seiji; Yoshimura, Noboru

    1998-12-01

    Acid rain is precipitation with acidity, i.e., pH, below 5.6. There is an increasing interest in the degradation of the electrical properties of outdoor composite dielectric materials under severe contaminant conditions such as acid rain. In this study, the degradation effects of acid rain on the outdoor composite dielectrics are investigated by accelerated aging due to artificial acid rain. Based on the investigation of acid rain, the composition of artificial acid rain is chosen to agree with the actual composition of precipitation. The surface potential, breakdown voltage, tracking resistance, and surface discharge current of dielectric materials are studied. Furthermore, the degradation mechanisms of electrical properties of composite dielectrics are discussed by investigating the degradation of the chemical and physical microstructures of material surface using Fourier transform infrared (FTIR), the X-ray diffraction spectrum (XDS), and the metalloscope. Experimental results show that the outdoor polymeric dielectrics suffer severely and degrade due to acid rain so that their surface electrical properties deteriorate after aging. The erosion, by acid rain, of the energized dielectric materials is larger than that of outdoor materials used for other purposes.

  19. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  20. An attempt to calculate in silico disintegration time of tablets containing mefenamic acid, a low water-soluble drug.

    PubMed

    Kimura, Go; Puchkov, Maxim; Leuenberger, Hans

    2013-07-01

    Based on a Quality by Design (QbD) approach, it is important to follow International Conference on Harmonization (ICH) guidance Q8 (R2) recommendations to explore the design space. The application of an experimental design is, however, not sufficient because of the fact that it is necessary to take into account the effects of percolation theory. For this purpose, an adequate software needs to be applied, capable of detecting percolation thresholds as a function of the distribution of the functional powder particles. Formulation-computer aided design (F-CAD), originally designed to calculate in silico the drug dissolution profiles of a tablet formulation is, for example, a suitable software for this purpose. The study shows that F-CAD can calculate a good estimate of the disintegration time of a tablet formulation consisting of mefenamic acid. More important, F-CAD is capable of replacing expensive laboratory work by performing in silico experiments for the exploration of the formulation design space according to ICH guidance Q8 (R2). As a consequence, a similar workflow existing as best practice in the automotive and aircraft industry can be adopted by the pharmaceutical industry: The drug delivery vehicle can be first fully designed and tested in silico, which will improve the quality of the marketed formulation and save time and money. PMID:23613462

  1. Gas Cluster Ion Beam Etching under Acetic Acid Vapor for Etch-Resistant Material

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akira; Hinoura, Ryo; Toyoda, Noriaki; Hara, Ken-ichi; Yamada, Isao

    2013-05-01

    Gas cluster ion beam (GCIB) etching of etch-resistant materials under acetic acid vapor was studied for development of new manufacturing process of future nonvolatile memory. Etching depths of various etch-resistant materials (Pt, Ru, Ta, CoFe) with acetic acid vapor during O2-GCIB irradiations were 1.8-10.7 times higher than those without acetic acid. Also, etching depths of Ru, Ta, CoFe by Ar-GCIB with acetic acid vapor were 2.2-16.1 times higher than those without acetic acid. Even after etching of Pt, smoothing of Pt was realized using O2-GCIB under acetic acid. From XPS and angular distribution of sputtered Pt, it was shown that PtOx layer was formed on Pt after O2-GCIB irradiation. PtOx reacted with acetic acid by GCIB bombardments; as a result, increase of etching depth was observed.

  2. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  3. Evaluation of commonly used methods for the analysis of acid-soluble phosphate in internationally traded inorganic fertilizers.

    PubMed

    Hall, William L; Siegel, Sanford

    2014-01-01

    Several methodologies are used throughout the world to determine phosphate concentration (measured as PO4 and expressed as % P2O5) in fertilizers. Concentrated phosphate materials, including diammonium phosphate (DAP) and monoammonium phosphate (MAP), are traded in large volumes (millions of metric tons) internationally. The International Fertilizer Association (IFA) identified a need to assess the methods currently being used to measure the phosphate content for suitability (scope), accuracy, and repeatability. Even small discrepancies in the expressed P2O5 content can have a major financial impact on buyers and sellers as contracts are settled and import regulations are imposed. The IFA's Technical Committee selected a working group to address issues dealing with harmonization of fertilizer sampling and analytical methodologies. The working group identified phosphate content in DAP and MAP fertilizers as a major concern for commerce. The working group initiated a method screening and comparison project to assess method performance and to determine which methods, if any, could be considered best practice methods and, therefore, be deemed acceptable for use by the industry. In order to systematically review the acceptability of methods for consideration, the task force developed an assessment protocol outlined in a white paper involving three steps: (1) compile all known relevant methods practiced in global fertilizer trade, (2) review and evaluate methods based upon specific evaluation criteria, and (3) compare the methods that most closely fit the evaluation criteria by multilaboratory analysis of unknown materials for accuracy and repeatability. Six methods were evaluated for analysis of total phosphate in concentrated phosphate products. From these methods, four were determined to be acceptable as best practice methods. The study members proposed three of the methods, while a fourth method was commonly used among the participating laboratories. This publication

  4. Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly - Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles

    PubMed Central

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  5. Fungus-mediated preferential bioleaching of waste material such as fly - ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles.

    PubMed

    Khan, Shadab Ali; Uddin, Imran; Moeez, Sana; Ahmad, Absar

    2014-01-01

    In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Energy dispersive analysis of X-rays (EDAX). PMID:25244567

  6. Static corrosion of construction materials exposed to superphosphoric acid made from various sources of phosphate rock

    SciTech Connect

    Nguyen, D.T.; McDonald, C.L.; McGill, K.E.

    1994-10-01

    Corrosion tests were performed with various construction materials, such as carbon steel, cast iron, stainless steels, nickel and nickel-based alloys, copper and its alloys, aluminum alloy, zirconium alloy, and tantalum, exposed to wet-process superphosphoric acids (approximately 70% P{sub 2}O{sub 5}) from all the suppliers in the United States and to a technical-grade (55% P{sub 2}O{sub 5}) acid made by the electric furnace process. The study was conducted in response to reports from pipe-reactor users of excessive corrosion by superphosphoric acids and electric furnace acid. Test temperatures were ambient (approximately 21{degrees}C or 70{degrees}F), 66{degrees}C (150{degrees}F), and 93{degrees}C (200{degrees}F). Test results showed that temperature was a significant factor in acid corrosivity. Electric furnace acid was more corrosive than the superphosphoric acids. Carbon steel, cast iron, and aluminum alloy were not resistant to either the superphosphoric acids or the electric furnace acid. Nickel-chromium (Ni-Cr) and nickel-molybdenum (Ni-Mo) based alloys and tantalum exhibited adequate corrosion resistance in the superphosphoric acids and the electric furnace acid. Stainless steels performed well in all test acids at all test temperatures with some exceptions in the electric furnace acid at 93{degrees}C. Zirconium alloy, copper and its alloys, pure nickel, and Monel 400 provided adequate corrosion resistance to all test acids at ambient temperature only.

  7. Effects of balancing crystalline amino acids in diets containing heat-damaged soybean meal or distillers dried grains with solubles fed to weanling pigs.

    PubMed

    Almeida, F N; Htoo, J K; Thomson, J; Stein, H H

    2014-10-01

    Two experiments were conducted to investigate if adjustments in diet formulations either based on total analysed amino acids or standardized ileal digestible (SID) amino acids may be used to eliminate negative effects of including heat-damaged soybean meal (SBM) or heat-damaged corn distillers dried grains with solubles (DDGS) in diets fed to weanling pigs. In Experiment 1, four corn-SBM diets were formulated. Diet 1 contained non-autoclaved SBM (315 g/kg), and this diet was formulated on the basis of analysed amino acid concentrations and using SID values from the AminoDat® 4.0 database. Diet 2 was similar to Diet 1 in terms of ingredient composition, except that the non-autoclaved SBM was replaced by autoclaved SBM at 1 : 1 (weight basis). Diet 3 was formulated using autoclaved SBM and amino acid inclusions in the diet were adjusted on the basis of analysed total amino acid concentrations in the autoclaved SBM and published SID values for non-autoclaved SBM (AminoDat® 4.0). Diet 4 also contained autoclaved SBM, but the formulation of this diet was adjusted on the basis of analysed amino acids in the autoclaved SBM and SID values that were adjusted according to the degree of heat damage in this source of SBM. Pigs (160; initial BW: 10.4 kg) were allotted to the four treatments with eight replicate pens per treatment in a randomized complete block design. Diets were fed to pigs for 21 days. The gain to feed ratio (G : F) was greater (P<0.05) for pigs fed Diet 1 compared with pigs fed the other diets and pigs fed Diet 4 had greater (P<0.05) G : F than pigs fed Diet 2. In Experiment 2, 144 pigs (initial BW: 9.9 kg) were allotted to four diets with eight replicate pens per diet. The four diets contained corn, SBM (85 g/kg) and DDGS (220 g/kg), and were formulated using the concepts described for Experiment 1, except that heat-damaged DDGS, but not heat-damaged SBM, was used in the diets. Pigs fed Diet 1 had greater (P<0.05) G : F than pigs fed Diet 2, but no

  8. Influence of the in vivo method and basal dietary ingredients employed in the determination of the amino acid digestibility of wheat distillers dried grains with solubles in broilers.

    PubMed

    O'Neill, H V Masey; White, G A; Li, D; Bedford, M R; Htoo, J K; Wiseman, J

    2014-05-01

    As distillers dried grains with solubles (DDGS) become increasingly available, it is important to determine their nutritional value for precise feed formulation. The accurate determination of digestibility is crucial, and it is known that the methods used will affect the values obtained. An experiment was designed to determine and compare the standardized ileal digestibility (SID) of amino acids from wheat DDGS using a semisynthetic diet and a difference method using 4 further diets based on corn, wheat, corn DDGS, and wheat DDGS. Eighty 1-d-old male broilers were fed a commercial starter diet until d 21. Between d 21 and 23, they were fed test diets in order to adapt to those diets before the trial took place between d 24 and 27. The trial period took place between d 24 and 27. Feed intake was measured, excreta collected, and at d 27, all birds were culled and ileal digesta was collected for the determination of apparent ileal digestibility and SID of amino acids. Values determined were similar to those reported elsewhere in the literature, although SID values for lysine were particularly low, being 0.26, 0.27, or 0.32, measured in semisynthetic, corn, or wheat diet backgrounds, respectively. It appeared that diet type employed was influential in the values obtained. The SID values for methionine, cysteine, methionine plus cysteine, and arginine were significantly lower (P < 0.05) when measured in semisynthetic diet backgrounds than wheat- or corn-based diets. It appears that dextrose and possibly purified starch have a detrimental impact on the broiler digestive tract. This may affect all digestibility methodologies in which such a diet base is used. PMID:24795310

  9. Soluble CD163 is not increased in visceral fat and steatotic liver and is even suppressed by free fatty acids in vitro.

    PubMed

    Bauer, Sabrina; Weiss, Thomas S; Wiest, Reiner; Schacherer, Doris; Hellerbrand, Claus; Farkas, Stefan; Scherer, Marcus N; Ritter, Mirko; Schmitz, Gerd; Schäffler, Andreas; Buechler, Christa

    2011-12-01

    Visceral fat differs from subcutaneous fat by higher local inflammation and increased release of IL-6 and free fatty acids (FFA) which contribute to hepatic steatosis. IL-6 has been shown to upregulate the monocyte/macrophage specific receptor CD163 whose soluble form, sCD163, is increased in inflammatory diseases. Here, it was analyzed whether CD163 and sCD163 are differentially expressed in the human fat depots and fatty liver. CD163 mRNA and protein were similarly expressed in paired samples of human visceral and subcutaneous fat, and comparable levels in portal venous and systemic venous blood of liver-healthy controls indicate that release of sCD163 from visceral adipose tissue was not increased. CD163 was also similarly expressed in steatotic liver when compared to non-steatotic tissues and sCD163 was almost equal in the respective sera. Concentrations of sCD163 were not affected when passing the liver excluding substantial hepatic removal/release of this protein. A high concentration of IL-6 upregulated CD163 protein while physiological doses had no effect. However, sCD163 was not increased by any of the IL-6 doses tested. FFA even modestly decreased CD163 and sCD163. The anti-inflammatory mediators fenofibrate, pioglitazone, and eicosapentaenoic acid (EPA) did not influence sCD163 levels while CD163 was reduced by EPA. These data suggest that in humans neither visceral fat nor fatty liver are major sources of sCD163. PMID:21839737

  10. Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920).

    PubMed

    Velasquez-Vottelerd, P; Anton, Y; Salazar-Lugo, R

    2015-01-01

    The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l(-1)). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman's method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384

  11. J-aggregation of a water-soluble tetracationic porphyrin in mixed LB films with a calix[8]arene carboxylic acid derivative.

    PubMed

    Miguel, Gustavo de; Pérez-Morales, Marta; Martín-Romero, María T; Muñoz, Eulogia; Richardson, Tim H; Camacho, Luis

    2007-03-27

    The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix. PMID:17315895

  12. Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920)

    PubMed Central

    Velasquez-Vottelerd, P.; Anton, Y.; Salazar-Lugo, R.

    2015-01-01

    The freshwater fish Ancistrus brevifilis, which is found in Venezuelan rivers, is considered a potential sentinel fish in ecotoxicological studies. The cadmium (Cd) effect on the mitochondrial viability (MV) and acid soluble thiols levels (AST) in A. brevifilis tissues (liver, kidney, heart, and gill) was evaluated. Forty-two fish with similar sizes and weights were randomly selected, of which 7 fish (with their respective replicate) were exposed for 7 and 30 days to a Cd sublethal concentration (0.1 mg.l-1). We determined the MV through a Janus Green B colorimetric assay and we obtained the concentration of AST by Ellman’s method. Mitochondrial viability decreased in fish exposed to Cd for 30 days with the liver being the most affected tissue. We also detected a significant decrease in AST levels was in fishes exposed to Cd for 7 days in liver and kidney tissues; these results suggests that AST levels are elevated in some tissues may act as cytoprotective and adaptive alternative mechanism related to the ROS detoxification, maintenance redox status and mitochondrial viability. Organ-specifics variations were observed in both assays. We conclude that the Cd exposure effect on AST levels and MV, vary across fish tissues and is related to the exposure duration, the molecule dynamics in different tissues, the organism and environmental conditions. PMID:26623384

  13. Levels of mRNAs which code for small, acid-soluble spore proteins and their LacZ gene fusions in sporulating cells of Bacillus subtilis.

    PubMed Central

    Mason, J M; Fajardo-Cavazos, P; Setlow, P

    1988-01-01

    The levels of mRNAs from genes (sspA, B and E) which code for major small, acid-soluble, spore proteins of Bacillus subtilis have been determined, as well as the levels of mRNAs from ssp-lacZ gene fusions. Increasing the gene dosage of ssp-lacZ fusions resulted in parallel increases in both the ssp-lacZ mRNA level and the rate of b-galactosidase accumulation. Similarly, an 11-fold increase in sspE gene dosage gave a comparable increase in sspE mRNA, but at most a 1.5-fold increase in the amount of sspE gene product accumulated. In contrast, an 11-fold increase in the dosage of the sspA or B genes had no significant effect on the level of total sspA plus sspB mRNA, but did alter the ratios of these mRNAs as well as the amount of their gene products, to reflect the altered ratio of the two genes. These results suggest that intact ssp genes, but not ssp-lacZ gene fusions, are subject to feedback regulation of gene expression, with this regulation of the sspA and B genes effected by modulation of mRNA levels, while the feedback regulation of the sspE gene is at the post-transcriptional level. Images PMID:2456528

  14. Poly(lactic acid) nanoparticles coated with combined WGA and water-soluble chitosan for mucosal delivery of β-galactosidase.

    PubMed

    Sheng, Yan; He, Hongjun; Zou, Hui

    2014-08-01

    A combinatorial design, physical adsorption of water-soluble chitosan (WSC) to particle surface and covalent conjugation of wheat germ agglutinin (WGA) to WSC, was applied to surface modification of poly(lactic acid) nanoparticles (NPs) for targeted delivery of β-galactosidase to the intestinal mucosa. All the surface-engineered NPs in the size range of 500-600 nm were prepared by a w/o/w solvent diffusion/evaporation technique. β-Galactosidase encapsulated in these NPs was well protected from external proteolysis and exerted high hydrolytic activity on the permeable lactose. The presence of WSC coating, whether alone or with WGA, highly improved the suspension stability of NPs and tailored the particle surface positively charged. In comparison to NPs modified with WGA or WSC alone, the synergistic action of WGA and WSC greatly enhanced the NP-mucin interactions in vitro. The highest amount of NPs was found in the small intestine at 24 h after oral administration in rats. Notably, calculated half-life of WGA-WSC-NPs in the small intestine was 6.72 h, resulting in 2.1- and 4.3-fold increase when compared to WGA-polyvinylalcohol (PVA)-NPs and WSC-NPs, much longer than that of control PVA-NPs (6.9-fold). These results suggest that NPs with the combined WGA and WSC coating represent promising candidates for efficient mucosal drug delivery as well as biomimetic treatment of lactose intolerance. PMID:24797098

  15. Method for estimating solubility parameter

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Ingham, J. D.

    1973-01-01

    Semiempirical correlations have been developed between solubility parameters and refractive indices for series of model hydrocarbon compounds and organic polymers. Measurement of intermolecular forces is useful for assessment of material compatibility, glass-transition temperature, and transport properties.

  16. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea

    PubMed Central

    2012-01-01

    Background Invertebrate biominerals are characterized by their extraordinary functionality and physical properties, such as strength, stiffness and toughness that by far exceed those of the pure mineral component of such composites. This is attributed to the organic matrix, secreted by specialized cells, which pervades and envelops the mineral crystals. Despite the obvious importance of the protein fraction of the organic matrix, only few in-depth proteomic studies have been performed due to the lack of comprehensive protein sequence databases. The recent public release of the gastropod Lottia gigantea genome sequence and the associated protein sequence database provides for the first time the opportunity to do a state-of-the-art proteomic in-depth analysis of the organic matrix of a mollusc shell. Results Using three different sodium hypochlorite washing protocols before shell demineralization, a total of 569 proteins were identified in Lottia gigantea shell matrix. Of these, 311 were assembled in a consensus proteome comprising identifications contained in all proteomes irrespective of shell cleaning procedure. Some of these proteins were similar in amino acid sequence, amino acid composition, or domain structure to proteins identified previously in different bivalve or gastropod shells, such as BMSP, dermatopontin, nacrein, perlustrin, perlucin, or Pif. In addition there were dozens of previously uncharacterized proteins, many containing repeated short linear motifs or homorepeats. Such proteins may play a role in shell matrix construction or control of mineralization processes. Conclusions The organic matrix of Lottia gigantea shells is a complex mixture of proteins comprising possible homologs of some previously characterized mollusc shell proteins, but also many novel proteins with a possible function in biomineralization as framework building blocks or as regulatory components. We hope that this data set, the most comprehensive available at present, will

  17. A review on synthesis and characterization of solid acid materials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mohammad, Norsyahida; Mohamad, Abu Bakar; Kadhum, Abdul Amir H.; Loh, Kee Shyuan

    2016-08-01

    Solid acids emerged as an electrolyte material for application in fuel cells due to their high protonic conductivity and stability at high temperatures between 100 °C and 250 °C. This paper gives an overview of the different solid acid materials and their properties, such as high protonic conductivity and thermal stability, in relation to phase transitions and mechanisms of proton transport. Various solid acid synthesis methods including aqueous and dry mixing, electrospinning, sol-gel, impregnation and thin-film casting will be discussed, and the impact of synthesis methods on the properties of solid acids will be highlighted. The properties of solid acids synthesized as either single crystals and or polycrystalline powders were identified via X-ray diffraction, nuclear magnetic resonance, thermal analyses, optical microscopy and infrared spectroscopy. A selection of electrolyte-electrode assembly methods and the performance of solid acid fuel cell prototypes are also reviewed.

  18. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E

    2000-02-01

    In order to find alternative protein sources in African regions where protein deficiency in nutrition is prevailing, solubility, in-vitro digestibility, amino acid composition and chemical score of Balanites aegyptiaca Del. kernel proteins were investigated as a function of different processing steps including defatting, air classification, wet sieving and aqueous ethanol treatment. Air classification delivered a fine fraction of 58.1% of the total protein. Applying a wet sieving process, a protein concentrate of 72.9% protein content was achieved but the recovery was very low (35.6%). However, in case of isoelectric precipitation followed by aqueous ethanol treatment both protein content (78.2%) and recovery (53.7%) were high. Data concerning the chemical score revealed, that lysine content of the defatted kernel flour amounted to 74.2% of the recommended FAO/WHO standard level. In-vitro protein digestibility was found to be higher than of legume proteins. The digestible protein of the full fat flour, defatted flour, air classified and wet sieved fine fractions and protein concentrate were 91.9, 93.7, 82.0, 86.4 and 94.2%, respectively. The sapogenin content per 100 g protein of the investigated protein preparations was significantly lower (46% to 62%) than of the initial material (oilcake). PMID:10702992

  19. Repeated exposure of acidic beverages on esthetic restorative materials: An in-vitro surface microhardness study

    PubMed Central

    Sunny, Steffy M.; Rai, Kavita; Hegde, Amitha M.

    2016-01-01

    Background A manifold increase in the consumption of aerated beverages has witnessed a twin increase in tooth wear and raised demand for esthetic restorative materials. This study aimed to evaluate the surface microhardness changes of esthetic restorative materials following treatment with aerated beverages in an in-vitro situation. Material and Methods The initial surface microhardness of the restorative materials GC Fuji II LC, GC Fuji IX, Nano Glass ionomer, Resin and Nano composite was recorded. These materials were studied under 3 groups that included those exposed to the acidic beverages daily, weekly once in a month and those that had no exposures at all. The final surface microhardness of the materials was recorded following experimentation and was subjected to statistical comparisons. Results The restorative materials were compared for their surface microhardness changes following respective treatments using the T-test and One-way ANOVA analysis. Inter-comparisons between the groups showed statistical significance (p<.05), when treated with both the beverages. The five restorative materials revealed surface microhardness loss; the maximum reduction noticed with the Nano glass ionomer cement tested (p<.0005). Conclusions The surface microhardness of restorative materials markedly reduced upon repeated exposures with acidic beverages; the product with phosphoric acid producing the maximum surface microhardness loss. Key words:Restorative materials, acidic beverages, surface microhardness, resin composites, glass ionomers. PMID:27398183

  20. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by... testing. This type of device includes recombinant, synthetic, and cell line-based DNA controls....

  1. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by... testing. This type of device includes recombinant, synthetic, and cell line-based DNA controls....

  2. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by... testing. This type of device includes recombinant, synthetic, and cell line-based DNA controls....

  3. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by... testing. This type of device includes recombinant, synthetic, and cell line-based DNA controls....

  4. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a... cystic fibrosis nucleic acid assays is a device intended to help monitor reliability of a test system by... testing. This type of device includes recombinant, synthetic, and cell line-based DNA controls....

  5. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  6. Critical material attributes (CMAs) of strip films loaded with poorly water-soluble drug nanoparticles: I. Impact of plasticizer on film properties and dissolution.

    PubMed

    Krull, Scott M; Patel, Hardik V; Li, Meng; Bilgili, Ecevit; Davé, Rajesh N

    2016-09-20

    Recent studies have demonstrated polymer films to be a promising platform for delivery of poorly water-soluble drug particles. However, the impact of critical material attributes, for example plasticizer, on the properties of and drug release from such films has yet to be investigated. In response, this study focuses on the impact of plasticizer and plasticizer concentration on properties and dissolution rate of polymer films loaded with poorly water-soluble drug nanoparticles. Glycerin, triacetin, and polyethylene glycol were selected as film plasticizers. Griseofulvin was used as a model Biopharmaceutics Classification System class II drug and hydroxypropyl methylcellulose was used as a film-forming polymer. Griseofulvin nanoparticles were prepared via wet stirred media milling in aqueous suspension. A depression in film glass transition temperature was observed with increasing plasticizer concentration, along with a decrease in film tensile strength and an increase in film elongation, as is typical of plasticizers. However, the type and amount of plasticizer necessary to produce strong yet flexible films had no significant impact on the dissolution rate of the films, suggesting that film mechanical properties can be effectively manipulated with minimal impact on drug release. Griseofulvin nanoparticles were successfully recovered upon redispersion in water regardless of plasticizer or content, even after up to 6months' storage at 40°C and 75% relative humidity, which contributed to similar consistency in dissolution rate after 6months' storage for all films. Good content uniformity (<4% R.S.D. for very small film sample size) was also maintained across all film formulations. PMID:27402100

  7. Solubility of cobalt in cement.

    PubMed

    Fregert, S; Gruvberger, B

    1978-02-01

    Unlike chromate, cobalt occurring as cobalt oxides in cement is not water-soluble in a detectable amount. Cobalt oxides are to some extent soluble in the presence of amino acids with which cobalt forms complexes. Such complexes can elicit patch test reactions. It is postulated that cobalt is more readily dissolved by forming complexes in eczematous skin than in normal skin. This may explain why cobalt sensitization in cement eczemas is secondary to chromate sensitivity. PMID:657784

  8. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    SciTech Connect

    Shao, Yanqiu; Liu, Heng; Yu, Xiaofang; Guan, Jingqi; Kan, Qiubin

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  9. Boronic acid-modified magnetic materials for antibody purification.

    PubMed

    Dhadge, Vijaykumar L; Hussain, Abid; Azevedo, Ana M; Aires-Barros, Raquel; Roque, Ana C A

    2014-02-01

    Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g(-1) MP and eluted 160 ± 5 mg hIgG g(-1) MP, while binding only 15 ± 5 mg BSA g(-1) MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 10(5) M(-1) (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g(-1) MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g(-1) MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions. PMID:24258155

  10. Inverted Solubility of the Pro 23 to Val Mutant of Human γD Crystallin-- Altered Phase Diagram from a Single Amino Acid Substitution and the Effect of PEG

    NASA Astrophysics Data System (ADS)

    McManus, J. J.; Lomakin, A.; Basan, M.; Ogun, O.; Pande, A.; Pande, J.; Benedek, G. B.

    2007-03-01

    Many genetic cataracts are the result of single point mutations in the amino acid sequence of lens crystallin proteins. The P23T mutation in human γD-crystallin (HGD) is associated with several different cataract phenotypes. The solubility of the protein shows an inverse temperature dependence. This is in contrast with the native protein. The replacement of Thr23 with a Ser or a Val residue shifts the location of the inverted solubility line to higher concentrations [1]. We describe the phase diagram of the P23V mutant of HGD, which exhibits aggregation, crystallization and liquid-liquid phase separation (LLPS). We have used QLS to probe the interactions of the protein in the soluble region of the phase diagram. We have developed a model to describe the observed retrograde solubility of the protein. Using PEG we introduce a so-called ``depletion interaction'' to further investigate the origin of the retrograde solubility. [1] A. Pande, O. Anunziata, N. Asherie, O. Ogun, G.B. Benedek, J. Pande, Biochemistry 44, 2491-2500 (2005).

  11. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    SciTech Connect

    Sugama, T.; Petrakis, L.; Webster, R.P.

    1999-12-21

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  12. Application of chemometrics in determination of the acid dissociation constants (pKa) of several benzodiazepine derivatives as poorly soluble drugs in the presence of ionic surfactants.

    PubMed

    Shayesteh, Tavakol Heidary; Radmehr, Moojan; Khajavi, Farzad; Mahjub, Reza

    2015-03-10

    In this study, the acid dissociation constants (pKa) of some benzodiazepine derivatives including chlordiazepoxide, clonazepam, lorazepam, and oxazepam in aqueous micellar solution were determined spectrophotometrically at an ionic strength of 0.1M at 25°C. The effect of cetyl trimethylammonium bromide (CTAB) as a cationic and sodium n-dodecyl sulfate(SDS) as an anionic surfactant on the absorption spectra of benzodiazepine drugs at different pH values were studied. The acidity constants of all related species are estimated by considering the surfactant concept and the application of chemometric methods using the whole spectral fitting of the collected data to an established factor analysis model. DATAN® software (Ver. 5.0, Multid Analyses AB, and Goteborg, Sweden) was applied to determine the acidity constants. In this study, a simple and fast method to determine the ionization constant (pKa) of poorly soluble drugs was developed using surfactants. The acidity constant (i.e. pKa) for chlordiazepoxide, clonazepam, lorazepam, and oxazepam were reported as 4.62, pKa1 value of 1.52 and pKa2 value of 10.51, pKa1 value of 1.53 and pKa2 value of 10.92 and pKa1 value 1.63 and pKa2 value of 11.21 respectively. The results showed that the peak values in the spectrophotometric absorption spectra of drugs are influenced by the presence of anionic and cationic surfactants. According to the results, by changing the SDS concentration from 0 to 0.05M, the pKa of chlordiazepoxide was increased to 5.9, the pKa1 of lorazepam was decreased to 0.1 while the pKa2 was increased to 11.5. Increase in SDS concentration has not shown significant alteration in pKa of clonazepam and oxazepam. Results indicate that by Changing the CTAB concentration from 0 to 0.05M, the pKa of chlordiazepoxide was reduced to 4.4, the pKa1 of clonazepam was decreased to 0.1 and the pKa2 was decreased to 9.1, the pKa1 of lorazepam was decreased to 0.4 and the pKa2 was decreased to 9.4, the pKa1 of oxazepam was

  13. Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report

    SciTech Connect

    Not Available

    1983-05-01

    Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

  14. Development and Evaluation of a Calibrator Material for Nucleic Acid-Based Assays for Diagnosing Aspergillosis

    PubMed Central

    Abdul-Ali, Deborah; Loeffler, Juergen; White, P. Lewis; Wickes, Brian; Herrera, Monica L.; Alexander, Barbara D.; Baden, Lindsey R.; Clancy, Cornelius; Denning, David; Nguyen, M. Hong; Sugrue, Michele; Wheat, L. Joseph; Wingard, John R.; Donnelly, J. Peter; Barnes, Rosemary; Patterson, Thomas F.; Caliendo, Angela M.

    2013-01-01

    Twelve laboratories evaluated candidate material for an Aspergillus DNA calibrator. The DNA material was quantified using limiting-dilution analysis; the mean concentration was determined to be 1.73 × 1010 units/ml. The calibrator can be used to standardize aspergillosis diagnostic assays which detect and/or quantify nucleic acid. PMID:23616459

  15. The formation of an ordered microporous aluminum-based material mediated by phthalic acid.

    PubMed

    Zhang, Wei; Cai, Jian-Hua; Huang, Pei-Pei; Hu, Lin-Lin; Cao, An-Min; Wan, Li-Jun

    2016-06-28

    By using phthalic acid as a soft template, we showed that it was possible to prepare a microporous aluminum-based material when the precipitation of Al(3+) was properly controlled. We also identified that this microporous aluminum-based material could be promising for the removal of fluoride ions in water treatment. PMID:27263661

  16. Short communication: Effects of molasses products on productivity and milk fatty acid profile of cows fed diets high in dried distillers grains with solubles.

    PubMed

    Siverson, A; Vargas-Rodriguez, C F; Bradford, B J

    2014-01-01

    Previous research has shown that replacing up to 5% [of dietary dry matter (DM)] corn with cane molasses can partially alleviate milk fat depression when cows are fed high-concentrate, low-fiber rations containing dried distillers grains with solubles. The primary objective of this study was to determine whether dietary molasses alters milk fatty acid (FA) profile or improves solids-corrected milk yield in the context of a more typical lactation diet. A secondary objective was to assess production responses to increasing rumen-degradable protein supply when molasses was fed. Twelve primiparous and 28 multiparous Holstein cows (196 ± 39 d in milk) were blocked by parity and assigned to 4 pens. Pens were randomly allocated to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 21 d, with 17 d for diet adaptation and 4 d for sample and data collection. Treatments were a control diet, providing 20% dried distillers grains with solubles (DM basis), 35% neutral detergent fiber, 30% starch, and 5% ether extract; a diet with 4.4% cane molasses replacing a portion of the corn grain; a diet with 2.9% molasses supplement containing 32% crude protein on a DM basis; and a diet with 5.8% (DM basis) molasses supplement. Animal-level data were analyzed using mixed models, including the fixed effect of treatment and the random effects of period, pen, period × pen interaction, and cow within pen to recognize pen as the experimental unit. Diets did not alter DM intake, milk production, milk component concentration or yield, feed efficiency (DM intake/milk yield), body weight change, or milk somatic cell count. Milk stearic acid content was increased by the diet containing 5.8% molasses supplement compared with the control diet and the diet containing 2.9% molasses supplement, but the magnitude of the effect was small (12.27, 11.75, and 11.69 ± 0.29 g/100g of FA). Production data revealed a dramatic effect of period on milk fat

  17. [Use of water-soluble beta-cyclodextrin derivatives as carriers of anti-inflammatory drug biphenylylacetic acid in rectal delivery].

    PubMed

    Arima, H; Kondo, T; Irie, T; Hirayama, F; Uekama, K; Miyaji, T; Inoue, Y

    1992-01-01

    To improve the rectal delivery of an anti-inflammatory drug, biphenylylacetic acid (BPAA), the use of 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and heptakis (2,6-di-O-methyl)-beta-cyclodextrin (DM-beta-CyD) was investigated. Inclusion complex formations of BPAA with both beta-CyDs in a molar ratio of 1:1 in water were ascertained, and their stability constants were determined. The dissolution of BPAA in water and the release of BPAA from an oleaginous suppository (Witepsol H-5) were significantly increased by beta-CyDs, depending on the magnitude of the stability constants of the water-soluble complexes. However, the serum levels of BPAA after rectal administration of the suppositories containing BPAA or its beta-CyDs complexes in rats increased in the order of BPAA alone much less than DM-beta-CyD less than or equal to HP-beta-CyD complex. The in situ recirculation study revealed that the greater the stability constant of the complex, the lesser was the absorption of BPAA from the rectal lumen of rats under the solution state. Both in vivo and in situ studies demonstrated that rather high amount of HP-beta-CyD (about 20% of dose) was absorbable from the rat's rectum, compared with DM-beta-CyD (less than 5% of dose), suggesting the possibility of the permeation of BPAA through the rectal membrane in the form of HP-beta-CyD complex. Furthermore, DM-beta-CyD and HP-beta-CyD significantly reduced the irritation of the rectal mucosa caused by BPAA after the administration of the suppositories to rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1578346

  18. Valproic Acid Inhibits the Release of Soluble CD40L Induced by Non-Nucleoside Reverse Transcriptase Inhibitors in Human Immunodeficiency Virus Infected Individuals

    PubMed Central

    Davidson, Donna C.; Schifitto, Giovanni; Maggirwar, Sanjay B.

    2013-01-01

    Despite the use of highly active antiretroviral therapies (HAART), a majority of Human Immunodeficiency Virus Type 1 (HIV) infected individuals continually develop HIV – Associated Neurocognitive Disorders (HAND), indicating that host inflammatory mediators, in addition to viral proteins, may be contributing to these disorders. Consistent with this notion, we have previously shown that levels of the inflammatory mediator soluble CD40 ligand (sCD40L) are elevated in the plasma and cerebrospinal fluid (CSF) of HIV infected, cognitively impaired individuals, and that excess sCD40L can contribute to blood brain barrier (BBB) permeability in vivo, thereby signifying the importance of this inflammatory mediator in the pathogenesis of HAND. Here we demonstrate that the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) induces the release of circulating sCD40L in both HIV infected individuals and in an in vitro suspension of washed human platelets, which are the main source of circulating sCD40L. Additionally, EFV was found to activate glycogen synthase kinase 3 beta (GSK3β) in platelets, and we now show that valproic acid (VPA), a known GSK3β inhibitor, was able to attenuate the release of sCD40L in HIV infected individuals receiving EFV, and in isolated human platelets. Collectively these results have important implications in determining the pro-inflammatory role that some antiretroviral regimens may have. The use of antiretrovirals remains the best strategy to prevent HIV-associated illnesses, including HAND, however these drugs have clear limitations to this end, and thus, these results underscore the need to develop adjunctive therapies for HAND that can also minimize the undesired negative effects of the antiretrovirals. PMID:23555843

  19. Factors affecting ethylene and carbon dioxide concentrations during ripening: Incidence on final dry matter, total soluble solids content and acidity of mango fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2016-06-01

    Ripening of climacteric fruits is associated with pronounced changes in fruit gas composition caused by a concomitant rise in respiration and ethylene production. There is a discrepancy in the literature since some authors reported that changes in fruit gas compositions differ in attached and detached fruits. This study presents for the first time an overview of pre- and post-harvest factors that lead to variations in the climacteric respiration and ethylene production, and attempts to determine their impacts on fruit composition, i.e., dry matter, total soluble solids content and acidity. The impact of growing conditions such as the fruit position in the canopy and the fruit carbon supply; fruit detachment from the tree, including the maturity stage at harvest; and storage conditions after harvest, i.e., relative humidity and temperature were considered as well as changes in fruit skin resistance to gas diffusion during fruit growth and storage. Results showed that fruit gas composition vary with all pre and post-harvest factors studied. Although all mangoes underwent a respiratory climacteric and an autocatalytic ethylene production, whatever pre and post-harvest factors studied, large differences in ethylene production, climacteric respiration and fruit quality were measured. Results suggested that the ripening capacity is not related to the fruit ability to produce great amount of ethylene. In agreement with precedent studies, this work provided several lines of evidence that gas composition of fruit is related to its water balance. Our measurements indicated that skin resistance to gas diffusion increased after the harvest and during storage. It was so suggested that the faster ripening of detached fruit may be explained in part by changes in fruit water balance and skin resistance to gas diffusion caused by fruit detachment. PMID:27085177

  20. Testing the role of silicic acid and bioorganic materials in the formation of rock coatings

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.; Philip, Ajish I.; Perry, Randall S.

    2004-11-01

    Silica, amino acids, and DNA were recently discovered in desert varnish. In this work we experimentally test the proposed role of silicic acid and bio-chemicals in the formation of desert varnish and other rock coatings. We have developed a protocol in which the rocks were treated with a mixture of silicic acid, sugars, amino acids, metals and clays, under the influence of heat and UV light. This protocol reflects the proposed mechanism of the polymerization of silicic acid with the biooganic materials, and the laboratory model for the natural conditions under which the desert varnish is formed. Our experiments produced coatings with a hardness and morphology that resemble the natural ones. These results provide a support for the role of silicic acid in the formation of rock coatings. Since the hard silica-based coatings preserve organic compounds in them, they may serve as a biosignature for life, here or possibly on Mars.

  1. Testing the Role of Silicic Acid and Bioorganic Materials in the Formation of Rock Coatings

    SciTech Connect

    Kolb, Vera; Philip, Ajish I.; Perry, Randall S.

    2004-12-01

    Silica, amino acids, and DNA were recently discovered in desert varnish. In this work we experimentally test the proposed role of silicic acid and bio-chemicals in the formation of desert varnish and other rock coatings. We have developed a protocol in which hte rocks were treated with a mixture of silicic acid, sugars, amino acids, metals and clays, under the influence of heat and UV light. This protocol reflects the proposed mechanism of hte polymerization of silicic acid with the bioorganic materials, and the laboratory model for the natural conditions under which the desert varnish is formed. Our experiments produced coatings with a hardness and morphology that resemble the nature ones. These results provide a support for the role of silicic acid in the formation of rock coatings. Since the hard silica-based coatings preserve organic compounds in them, they may serve as a biosignature for life, here or possibly Mars.

  2. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications. PMID:26502170

  3. Preparation, characterization and catalytic properties of MCM-48 supported tungstophosphoric acid mesoporous materials for green synthesis of benzoic acid

    SciTech Connect

    Wu, Hai-Yan; Zhang, Xiao-Li; Chen, Xi; Chen, Ya; Zheng, Xiu-Cheng

    2014-03-15

    MCM-48 and tungstophosphoric acid (HPW) were prepared and applied for the synthesis of HPW/MCM-48 mesoporous materials. The characterization results showed that HPW/MCM-48 obtained retained the typical mesopore structure of MCM-48, and the textural parameters decreased with the increase loading of HPW. The catalytic oxidation results of benzyl alcohol and benzaldehyde with 30% H{sub 2}O{sub 2} indicated that HPW/MCM-48 was an efficient catalyst for the green synthesis of benzoic acid. Furthermore, 35 wt% HPW/MCM-48 sample showed the highest activity under the reaction conditions. Highlights: • 5–45 wt% HPW/MCM-48 mesoporous catalysts were prepared and characterized. • Their catalytic activities for the green synthesis of benzoic acid were investigated. • HPW/MCM-48 was approved to be an efficient catalyst. • 5 wt% HPW/MCM-48 exhibited the highest catalytic activity.

  4. Gold nanoparticles hosted in a water-soluble silsesquioxane polymer applied as a catalytic material onto an electrochemical sensor for detection of nitrophenol isomers.

    PubMed

    Silva, Paulo Sérgio da; Gasparini, Bianca C; Magosso, Hérica A; Spinelli, Almir

    2014-05-30

    The water-soluble 3-n-propyl-4-picolinium silsesquioxane chloride (Si4Pic(+)Cl(-)) polymer was prepared, characterized and used as a stabilizing agent for the synthesis of gold nanoparticles (nAu). The ability of Si4Pic(+)Cl(-) to adsorb anionic metal complexes such as AuCl4(-) ions allowed well-dispersed nAu to be obtained with an average particle size of 4.5nm. The liquid suspension of nAu-Si4Pic(+)Cl(-) was deposited by the drop coating method onto a glassy carbon electrode (GCE) surface to build a sensor (nAu-Si4Pic(+)Cl(-)/GCE) which was used for the detection of o-nitrophenol (o-NP) and p-nitrophenol (p-NP). Under optimized experimental conditions the reduction peak current increased with increasing concentrations of both nitrophenol isomers in the range of 0.1-1.5μmolL(-1). The detection limits were 46nmolL(-1) and 55nmolL(-1) for o-NP and p-NP, respectively. These findings indicate that the nAu-Si4Pic(+)Cl(-) material is a very promising candidate to assemble electrochemical sensors for practical applications in the field of analytical chemistry. PMID:24721696

  5. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  6. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  7. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  8. Development of botanical and fish oil standard reference materials for fatty acids.

    PubMed

    Schantz, Michele M; Sander, Lane C; Sharpless, Katherine E; Wise, Stephen A; Yen, James H; NguyenPho, Agnes; Betz, Joseph M

    2013-05-01

    As part of a collaboration with the National Institutes of Health's Office of Dietary Supplements and the Food and Drug Administration's Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed Standard Reference Material (SRM) 3274 Botanical Oils Containing Omega-3 and Omega-6 Fatty Acids and SRM 3275 Omega-3 and Omega-6 Fatty Acids in Fish Oil. SRM 3274 consists of one ampoule of each of four seed oils (3274-1 Borage (Borago officinalis), 3274-2 Evening Primrose (Oenothera biennis), 3274-3 Flax (Linium usitatissimum), and 3274-4 Perilla (Perilla frutescens)), and SRM 3275 consists of two ampoules of each of three fish oils (3275-1 a concentrate high in docosahexaenoic acid, 3275-2 an anchovy oil high in docosahexaenoic acid and eicosapentaenoic acid, and 3275-3 a concentrate containing 60% long-chain omega-3 fatty acids). Each oil has certified and reference mass fraction values for up to 20 fatty acids. The fatty acid mass fraction values are based on results from analyses using gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). These SRMs will complement other reference materials currently available with mass fractions for similar analytes and are part of a series of SRMs being developed for dietary supplements. PMID:23371533

  9. Surface acidity effects of Al-SBA-15 mesoporous materials on adsorptive desulfurization.

    PubMed

    Meng, Xiuhong; Wang, Yuan; Duan, Linhai; Qin, Yucai; Yu, Wenguang; Wang, Qiang; Dong, Shiwei; Ruan, Yanjun; Wang, Haiyan; Song, Lijuan

    2014-09-01

    SBA-15 and Aluminum-substituted SBA-15 with Si/Al molar ratio 10 (Al-SBA-15(10)) mesoporous materials were directly synthesized by a hydrolysis approach and characterized by a powder X-ray diffraction (XRD), N2 physisorption analysis and Fourier transform infrared (FTIR) etc. The relative number of hydroxyl groups was investigated by in situ FTIR systematically. The acid type and acid strength of the adsorbents were monitord by FTIR at 423 K and 673 K, respectively, utilizing pyridine as a probe. Desulfurization performances of the adsorbents were investigated via static adsorption experiment. Gas chromatography-sulfur chemiluminescence detector (GC-SCD) was employed to detect the sulfur compounds in model fuels before and after treated by the adsorbents. The calcined Al-SBA-15(10) material shows well-ordered hexagonal mesostructure and strong Lewis acid sites (L acid) and weak Brönsted acid sites (B acid). The number of hydroxy on the surface of the Al-SBA-15(10) is more than that of SBA-15, which is beneficial to further modifications such as spontaneous monolayer dispersion. Desulfurization performance of the adsorbents is affected by surface acidity of adsorbents and the constituent of model fuels (olefins, arene, etc.). The thiophene and olefins adsorbed on the B acid site of the adsorbent may occur subsequently alkylation reactions, which may block the pores of the adsorbents and thus cause the reduction of desulfurization capacity. PMID:25924387

  10. Phenylated Polyimides With Greater Solubility

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    1991-01-01

    In experiments, 3,6-diphenylpyromellitic dianhydride monomer prepared and polymerized with several different diamines. Polyimides with pendent phenyl groups along polymer backbones considerably more soluble than PMDA-based materials. Increased solubility eases processing, providing increased potential use in variety of applications. Because most polymers soluble in organic solvents, usable in microelectronics applications. Excellent thermal stabilities and high transition temperatures make them ideally suited. Many polymers extremely rigid and useful as reinforcing polymers in molecular composites. More flexible compositions useful as matrix resins in carbon-reinforced composites.

  11. Determination of effect factor for effective parameter on saccharification of lignocellulosic material by concentrated acid

    NASA Astrophysics Data System (ADS)

    Aghili, Sina; Nodeh, Ali Arasteh

    2015-12-01

    Tamarisk usage as a new group of lignocelluloses material to produce fermentable sugars in bio ethanol process was studied. The overall aim of this work was to establish the optimum condition for acid hydrolysis of this new material and a mathematical model predicting glucose release as a function of operation variable. Sulfuric acid concentration in the range of 20 to 60%(w/w), process temperature between 60 to 95oC, hydrolysis time from 120 to 240 min and solid content 5,10,15%(w/w) were used as hydrolysis conditions. HPLC was used to analysis of the product. This analysis indicated that glucose was the main fermentable sugar and was increase with time, temperature and solid content and acid concentration was a parabola influence in glucose production. The process was modeled by a quadratic equation. Curve study and model were found that 42% acid concentration, 15 % solid content and 90oC were optimum condition.

  12. Determination of amino acids in fodders and raw materials using capillary zone electrophoresis.

    PubMed

    Komarova, N V; Kamentsev, J S; Solomonova, A P; Anufrieva, R M

    2004-02-01

    Two schemes were offered for analysis of amino acid contents in fodders and raw materials for mixed fodders by capillary zone electrophoresis (CZE). The first variant provides express analysis of four technologically important amino acids (lysine, methionine, threonine, cystine) in borate buffer on characteristic absorption of aminogroup (190 nm), with limits of quantitation being on average 0.2%. The second scheme includes pre-capillary derivatization of amino acids using phenylisothiocyanate (PITC) and separation of phenylthiocarbamyl (PTC)-derivatives obtained by CZE with a detection on 254 nm, which allows to widen a list of detectable components up to 19 (without tryptophan) and significantly improve detection limits down to 0.01%. Acid hydrolysis was used for a sample preparation. The results of analysis of fodders were compared using such methods, as CZE, ion exchange chromatography (amino acid analyzer) and reversed-phase (RP)-HPLC (with gradient technique of elution). PMID:14698247

  13. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation. PMID:24754448

  14. Effects of distillers' dried grains with solubles and soybean oil on dietary lipid, fiber, and amino acid digestibility in corn-based diets fed to growing pigs.

    PubMed

    Gutierrez, N A; Serão, N V L; Patience, J F

    2016-04-01

    The use of corn coproducts increases the concentration of fiber and, often, the use of supplemental lipids in swine diets, which may affect energy and nutrient digestibility. An experiment was conducted to determine the effects of reduced-oil distillers' dried grains with solubles (DDGS) and soybean oil (SBO) on dietary AA, acid hydrolyzed ether extract (AEE), and NDF digestibility in corn-based diets fed to growing pigs. Eighteen growing pigs (33.8 ± 2.2 kg BW) were surgically fitted with a T-cannula in the distal ileum and allocated to 1 of 6 dietary treatment groups in a 3-period incomplete Latin square design, with 9 observations per treatment. Six dietary treatments were obtained by adding 0, 20, and 40% DDGS to corn-casein diets formulated with 2 and 6% SBO. Ileal digesta and fecal samples were collected and the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of AEE and NDF and the AID of AA were determined. Apparent values were corrected for endogenous losses of lipids, and true ileal (TID) and true total tract digestibility (TTTD) values of lipids were calculated. Results showed that the AID of Lys decreased ( < 0.001) with the inclusion of DDGS but was not affected ( = 0.63) by the inclusion of SBO. An interaction between DDGS and SBO on the AID ( = 0.002) and ATTD ( = 0.009) of NDF was observed, where the AID and ATTD of NDF decreased with DDGS at 6% SBO but no effect was observed at 2% SBO. The AID of NDF increased with SBO at 0% DDGS, but no effect was observed at 20 or 40% DDGS. An interaction between DDGS and SBO on the AID ( = 0.011) and ATTD ( = 0.008) of AEE was observed, where the AID and ATTD of AEE increased with SBO. The AID and ATTD of AEE increased with DDGS at 2% SBO, but no effect was observed at 6% SBO. Correction by ileal and fecal endogenous loss of AEE (9.5 and 13.6 g/kg of DMI, respectively) showed that increasing dietary AEE had no effect on the TID and TTD of AEE ( > 0.05). In conclusion, the AID of

  15. Soluble vs. insoluble fiber

    MedlinePlus

    ... soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  16. Evaluation of Acid Digestion Procedures to Estimate Mineral Contents in Materials from Animal Trials

    PubMed Central

    Palma, M. N. N.; Rocha, G. C.; Valadares Filho, S. C.; Detmann, E.

    2015-01-01

    Rigorously standardized laboratory protocols are essential for meaningful comparison of data from multiple sites. Considering that interactions of minerals with organic matrices may vary depending on the material nature, there could be peculiar demands for each material with respect to digestion procedure. Acid digestion procedures were evaluated using different nitric to perchloric acid ratios and one- or two-step digestion to estimate the concentration of calcium, phosphorus, magnesium, and zinc in samples of carcass, bone, excreta, concentrate, forage, and feces. Six procedures were evaluated: ratio of nitric to perchloric acid at 2:1, 3:1, and 4:1 v/v in a one- or two-step digestion. There were no direct or interaction effects (p>0.01) of nitric to perchloric acid ratio or number of digestion steps on magnesium and zinc contents. Calcium and phosphorus contents presented a significant (p<0.01) interaction between sample type and nitric to perchloric acid ratio. Digestion solution of 2:1 v/v provided greater (p<0.01) recovery of calcium and phosphorus from bone samples than 3:1 and 4:1 v/v ratio. Different acid ratios did not affect (p>0.01) calcium or phosphorus contents in carcass, excreta, concentrate, forage, and feces. Number of digestion steps did not affect mineral content (p>0.01). Estimated concentration of calcium, phosphorus, magnesium, and zinc in carcass, excreta, concentrated, forage, and feces samples can be performed using digestion solution of nitric to perchloric acid 4:1 v/v in a one-step digestion. However, samples of bones demand a stronger digestion solution to analyze the mineral contents, which is represented by an increased proportion of perchloric acid, being recommended a digestion solution of nitric to perchloric acid 2:1 v/v in a one-step digestion. PMID:26333671

  17. EVALUATION OF POLY(LACTIC ACID) AND AGRICULTURAL COPRODUCTS AS GREEN COMPOSITE MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green composite materials of poly(lactic acid)(PLA) and agricultural coproducts such as sugar beet pulp(SBP), cuphea, lesquerella, and milkweed were compounded using a twin-screw extruder, molded by injection molding and evaluated for structural and mechanical properties using acoustic emission and ...

  18. URBAN AEROSOL ACIDS: ANALYSIS OF NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY STANDARD REFERENCE MATERIAL 1649

    EPA Science Inventory

    Urban air particulate matter, collected from Washington, D.C. and certified by the National Institute of Standards and Technology (NIST) as Standard Reference Material 1649, was extracted and fractionated into acid, base and neutral fractions. ach fraction was tested for biologic...

  19. Modification of wheat gluten with citric acid to produce superabsorbent materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten was reacted with citric acid to produce natural superabsorbent materials able to absorb up to 78 times its weight in water. The properties of the modified gluten samples were characterized using Fourier Transform Infra-red (FTIR) spectroscopy, thermogravimetric analysis, and water uptak...

  20. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs.

    PubMed

    Stawiński, Wojciech; Freitas, Olga; Chmielarz, Lucjan; Węgrzyn, Agnieszka; Komędera, Kamila; Błachowski, Artur; Figueiredo, Sónia

    2016-06-01

    The influence of different acid treatments over vermiculite was evaluated. Equilibrium, kinetic and column studies have been conducted. The results showed that vermiculite first treated with nitric acid and then with citric acid has higher adsorption capacity, presenting maximum adsorption capacities in column experiments: for Astrazon Red (AR), 100.8 ± 0.8 mg g(-1) and 54 ± 1 mg g(-1) for modified and raw material, respectively; for Methylene Blue (MB) 150 ± 4 mg g(-1) and 55 ± 2 mg g(-1) for modified and raw material, respectively. Materials characterization by X-ray diffraction, UV-vis-diffuse reflectance spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, X-ray fluorescence, N2 adsorption and CEC determination, has been performed. The results suggest the existence of exchange of interlayer cations, leaching of metals from vermiculite's sheets and formation of an amorphous phase in the material. Adsorption follows pseudo 2(nd) order model kinetics for both dyestuffs and equilibrium occurs accordingly to Langmuir's model for AR and Freundlich's model for MB. In column systems Yan's model is the best fit. The enhanced properties of acid treated vermiculite offer new perspectives for the use of this adsorbent in wastewater treatment. PMID:27015571

  1. Long-term stability of earthen materials in contact with acidic tailings solutions

    SciTech Connect

    Peterson, S.R.; Erikson, R.L.; Gee, G.W.

    1982-11-01

    The objectives of the studies documented in this report were to use experimental and geochemical computer modeling tools to assess the long-term environmental impact of leachate movement from acidic uranium mill tailings. Liner failure (i.e., an increase in the permeability of the liner material) was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 years. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The high clay materials tested appear suitable for lining tailings impoundment ponds. The decreases in permeability are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. In conclusion the same mineralogical changes and contaminant reactions predicted by geochemical modeling and observed in laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 4 year history of acid attack.

  2. Preparation and Ion Recognition Characteristics of a Trichloroacetic Acid Surface-Imprinted Material.

    PubMed

    Gao, Baojiao; Zhang, Tintin; Chen, Tao

    2015-05-01

    In this work, a trichloroacetic acid (TCAA) surface-imprinted material with high performance was prepared. In an aqueous solution, the molecules of the cationic monomer acryloyloxyethyl-trimethyl ammonium chloride (DAC) arranged around the template TCAA anion via electrostatic interaction. By initiating of the surface-initiating system of -NH2/S2O8(2-), the graft/cross-linking polymerization of DAC and the crosslinker N,N'-Methylenebisacrylamide and the TCAA surface-imprinting were simultaneously carried out on SiO2 particles, forming TCAA anion surface-imprinted material IIP-PDAC/ SiO2. With monochloroacetic acid (MCAA) and phenylacetic acid (PAA) as two contrast acids, the recognition character of the imprinted material IIP-PDAC/SiO2 was investigated. This imprinted material possesses special recognition selectivity and excellent binding affinity for TCAA anion. The binding amount of IIP-PDAC/SiO2 particles for TCAA reaches 0.93 mmol/g, whereas their binding amounts for MCAA and PAA are only 0.48 mmol/g and 0.15 mmol/g, respectively. The selectivity coefficients of IIP-PDAC/SiO2 for TCAA relative to MCAA and PAA anions are 3.61 and 9.12, respectively. PMID:26460460

  3. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. PMID:23770535

  4. Biomolecular interactions of emerging two-dimensional materials with aromatic amino acids

    NASA Astrophysics Data System (ADS)

    Mallineni, Sai Sunil Kumar; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao

    The present work experimentally investigates the interaction of aromatic amino acids, viz., tyrosine, tryptophan, and phenylalanine with novel two-dimensional (2D) materials including graphene (G), graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Consistent with previous theoretical studies, graphene and BN were observed to interact with amino acids through π- π interactions. Furthermore, we found that GO exhibits strong interactions with tryptophan and tyrosine as compared to graphene and BN, which we attribute to the formation of H-bonds between tryptophan and GO as shown theoretically in Ref. 2. On the other hand, phenylalanine did not exhibit much difference in interactions with G, GO, and BN. Clemson Nanomaterials Center, Clemson University, Clemson, SC, USA.

  5. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  6. Effects of liquid aluminum chloride additions to poultry litter on broiler performance, ammonia emissions, soluble phosphorus, total volatile fatty acids, and nitrogen contents of litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown that the use of aluminum sulfate (Al2(SO4)3.14H2O) and aluminum chloride (AlCl3) additions to animal manures are more effective than other chemicals in reducing ammonia (NH3) emissions and phosphorus (P) solubility. Although the use of alum has been intensively used in the ...

  7. Comparison of amino acid digestibility coefficients for corn, corn gluten meal, and corn distillers dried grains with solubles (DDGS) among three different bioassays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine standardized AA digestibility of corn, corn gluten meal (CGM) and three distillers dried grains with solubles (DDGS) using the precision-fed cecectomized rooster assay (PFR), the standardized ileal AA broiler chicken assay (SIAAD), and a newly developed p...

  8. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  9. Effects of pH, sample size, and solvent partitioning on recovery of soluble phenolic acids and isoflavonoids in red clover (Trifolium pratense cv. Kenland)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several extraction parameters were tested to determine optimal conditions for extracting phenolics from red clover (Trifolium pratense L. cv. Kenland). HPLC-UV profiles were compared before and after partitioning a methanolic extract of soluble phenolics with ethyl acetate-ether (1:1, v/v). The e...

  10. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    SciTech Connect

    Yu, Xiaofang; Zou, Yongcun; Wu, Shujie; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  11. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail: maireles@uma.es; Moreno-Tost, R.

    2006-07-15

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  12. Nucleic acids and smart materials: advanced building blocks for logic systems.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2014-09-01

    Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon-based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble-metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found. PMID:25042025

  13. The distribution of common construction materials at risk to acid deposition in the United States

    NASA Astrophysics Data System (ADS)

    Lipfert, Frederick W.; Daum, Mary L.

    Information on the geographic distribution of various types of exposed materials is required to estimate the economic costs of damage to construction materials from acid deposition. This paper focuses on the identification, evaluation and interpretation of data describing the distributions of exterior construction materials, primarily in the United States. This information could provide guidance on how data needed for future economic assessments might be acquired in the most cost-effective ways. Materials distribution surveys from 16 cities in the U.S. and Canada and five related databases from government agencies and trade organizations were examined. Data on residential buildings are more commonly available than on nonresidential buildings; little geographically resolved information on distributions of materials in infrastructure was found. Survey results generally agree with the appropriate ancillary databases, but the usefulness of the databases is often limited by their coarse spatial resolution. Information on those materials which are most sensitive to acid deposition is especially scarce. Since a comprehensive error analysis has never been performed on the data required for an economic assessment, it is not possible to specify the corresponding detailed requirements for data on the distributions of materials.

  14. Effect of Acidic Environment on Dislocation Resistance of Endosequence Root Repair Material and Mineral Trioxide Aggregate

    PubMed Central

    Shokouhinejad, Noushin; Yazdi, Kazem Ashofteh; Nekoofar, Mohammad Hossein; Matmir, Shakiba; Khoshkhounejad, Mehrfam

    2014-01-01

    Objective: The aim of this study was to compare the effect of an acidic environment on dislocation resistance (push-out bond strength) of EndoSequence Root Repair Material (ERRM putty and ERRM paste), a new bioceramic-based material, to that of mineral tri-oxide aggregate (MTA). Materials and Methods: One-hundred twenty root dentin slices with standardized canal spaces were divided into 6 groups (n = 20 each) and filled with tooth-colored ProRoot MTA (groups 1 and 2), ERRM putty (groups 3 and 4), or ERRM paste (groups 5 and 6). The specimens of groups 1, 3, and 5 were exposed to phosphate buffered saline (PBS) solution (pH=7.4) and those of groups 2, 4, and 6 were exposed to butyric acid (pH= 4.4). The specimens were then incubated for 4 days at 37°C. The push-out bond strength was then measured using a universal testing machine. Failure modes after the push-out test were examined under a light microscope at ×40 magnification. The data for dislocation resistance were analyzed using the t-test and one-way analysis of variance. Results: In PBS environment (pH=7.4), there were no significant differences among materials (P=0.30); but the mean push-out bond strength of ERRM putty was significantly higher than that of other materials in an acidic environment (P<0.001). Push-out bond strength of MTA and ERRM paste decreased after exposure to an acidic environment; whereas ERRM putty was not affected by acidic pH. The bond failure mode was predominantly cohesive for all groups except for MTA in an acidic environment; which showed mixed bond failure in most of the specimens. Conclusion: The force needed for dislocation of MTA and ERRM paste was significantly lower in samples stored in acidic pH; however, push-out bond strength of ERRM putty was not influenced by acidity. PMID:24910691

  15. Time Dependence of Material Properties of Polyethylene Glycol Hydrogels Chain Extended with Short Hydroxy Acid Segments

    PubMed Central

    Barati, Danial; Moeinzadeh, Seyedsina; Karaman, Ozan; Jabbari, Esmaiel

    2014-01-01

    The objective of this work was to investigate the effect of chemical composition and segment number (n) on gelation, stiffness, and degradation of hydroxy acid-chain-extended star polyethylene glycol acrylate (SPEXA) gels. The hydroxy acids included glycolide (G,), L-lactide (L), p-dioxanone (D) and -caprolactone (C). Chain-extension generated water soluble macromers with faster gelation rates, lower sol fractions, higher compressive moduli, and a wide-ranging degradation times when crosslinked into a hydrogel. SPEGA gels with the highest fraction of inter-molecular crosslinks had the most increase in compressive modulus with n whereas SPELA and SPECA had the lowest increase in modulus. SPEXA gels exhibited a wide range of degradation times from a few days for SPEGA to a few weeks for SPELA, a few months for SPEDA, and many months for SPECA. Marrow stromal cells and endothelial progenitor cells had the highest expression of vasculogenic markers when co-encapsulated in the faster degrading SPELA gel. PMID:25267858

  16. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits.

    PubMed

    Wang, Ying; Tashiro, Yukihiro; Sonomoto, Kenji

    2015-01-01

    The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes. PMID:25077706

  17. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    PubMed

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  18. Pretreatment of solid carbonaceous material with dicarboxylic aromatic acids to prevent scale formation

    DOEpatents

    Brunson, Roy J.

    1982-01-01

    Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.

  19. Tank 12H Acidic Chemical Cleaning Sample Analysis And Material Balance

    SciTech Connect

    Martino, C. J.; Reboul, S. H.; Wiersma, B. J.; Coleman, C. J.

    2013-11-08

    A process of Bulk Oxalic Acid (BOA) chemical cleaning was performed for Tank 12H during June and July of 2013 to remove all or a portion of the approximately 4400 gallon sludge heel. Three strikes of oxalic acid (nominally 4 wt% or 2 wt%) were used at 55°C and tank volumes of 96- to 140-thousand gallons. This report details the sample analysis of a scrape sample taken prior to BOA cleaning and dip samples taken during BOA cleaning. It also documents a rudimentary material balance for the Tank 12H cleaning results.

  20. Formic acid as a hydrogen storage material - development of homogeneous catalysts for selective hydrogen release.

    PubMed

    Mellmann, Dörthe; Sponholz, Peter; Junge, Henrik; Beller, Matthias

    2016-07-11

    Formic acid (FA, HCO2H) receives considerable attention as a hydrogen storage material. In this respect, hydrogenation of CO2 to FA and dehydrogenation of FA are crucial reaction steps. In the past decade, for both reactions, several molecularly defined and nanostructured catalysts have been developed and intensively studied. From 2010 onwards, this review covers recent advancements in this area using homogeneous catalysts. In addition to the development of catalysts for H2 generation, reversible H2 storage including continuous H2 production from formic acid is highlighted. Special focus is put on recent progress in non-noble metal catalysts. PMID:27119123

  1. Toward a Molecular Understanding of Protein Solubility: Increased Negative Surface Charge Correlates with Increased Solubility

    PubMed Central

    Kramer, Ryan M.; Shende, Varad R.; Motl, Nicole; Pace, C. Nick; Scholtz, J. Martin

    2012-01-01

    Protein solubility is a problem for many protein chemists, including structural biologists and developers of protein pharmaceuticals. Knowledge about how intrinsic factors influence solubility is limited due to the difficulty of obtaining quantitative solubility measurements. Solubility measurements in buffer alone are difficult to reproduce, because gels or supersaturated solutions often form, making it impossible to determine solubility values for many proteins. Protein precipitants can be used to obtain comparative solubility measurements and, in some cases, estimations of solubility in buffer alone. Protein precipitants fall into three broad classes: salts, long-chain polymers, and organic solvents. Here, we compare the use of representatives from two classes of precipitants, ammonium sulfate and polyethylene glycol 8000, by measuring the solubility of seven proteins. We find that increased negative surface charge correlates strongly with increased protein solubility and may be due to strong binding of water by the acidic amino acids. We also find that the solubility results obtained for the two different precipitants agree closely with each other, suggesting that the two precipitants probe similar properties that are relevant to solubility in buffer alone. PMID:22768947

  2. Preparation, characterization, and thermal properties of starch microencapsulated fatty acids as phase change materials thermal energy storage applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...

  3. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  4. Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics".

    PubMed

    Sun, Shengtong; Mao, Li-Bo; Lei, Zhouyue; Yu, Shu-Hong; Cölfen, Helmut

    2016-09-19

    Given increasing environmental issues due to the large usage of non-biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio-inspired synthesis of mineral-based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)-based hydrogel consisting of very small ACC nanoparticles physically cross-linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self-healable. Upon drying, the hydrogel forms free-standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the "mineral plastics". PMID:27444970

  5. Electrochemical degradation of trichloroacetic acid in aqueous media: influence of the electrode material.

    PubMed

    Esclapez, M D; Díez-García, M I; Sàez, V; Bonete, P; González-García, José

    2013-01-01

    The electrochemical degradation of trichloroacetic acid (TCAA) in water has been analysed through voltammetric studies with a rotating disc electrode and controlled-potential bulk electrolyses. The influence of the mass-transport conditions and initial concentration of TCAA for titanium, stainless steel and carbon electrodes has been studied. It is shown that the electrochemical reduction of TCAA takes place prior to the massive hydrogen evolution in the potential window for all electrode materials studied. The current efficiency is high (> 18%) compared with those normally reported in the literature, and the fractional conversion is above 50% for all the electrodes studied. Only dichloroacetic acid (DCAA) and chloride anions were routinely detected as reduction products for any of the electrodes, and reasonable values of mass balance error were obtained. Of the three materials studied, the titanium cathode gave the best results. PMID:23530352

  6. Exposure of Atlantic salmon parr (Salmo salar) to a combination of resin acids and a water soluble fraction of diesel fuel oil: A model to investigate the chemical causes of pigmented salmon syndrome

    SciTech Connect

    Croce, B. |; Stagg, R.M.

    1997-09-01

    Pigmented salmon syndrome is a pollutant-induced hemolytic anemia and hyperbilirubinemia. As part of an investigation of this condition, S2 Atlantic salmon parr (Salmo salar) were exposed to a diesel fuel oil, water soluble fraction (WSF) in combination with a mixture of three resin acids (isopimaric, dehydroabietic, and abietic acids) in a continuous-flow freshwater system. The total nominal concentrations of resin acids in the exposure tanks were 10, 50, and 100 {micro}g/L; the diesel WSF was generated in situ and provided a mean hydrocarbon concentration of 2.0 {+-} 0.1 mg/L (n = 12) during the 9-d exposure period. Exposure to the diesel WSF alone depressed liver bilirubin UDP-glucuronosyl transferase (UDPGT) activity and induced phenol UDPGT activity. Exposure to the diesel WSF in the absence or presence of resin acids induced liver cytochrome P4501A and increased the concentrations in the plasma of the enzymes lactate dehydrogenase, alkaline phosphatase, and glutamic oxaloacetic transaminase. The combined exposure to diesel WSF with either 50 or 100 {micro}g/L total resin acid caused significant elevations in the concentrations of bilirubin in the plasma and many of these fish had yellow pigmentation on the ventral surface and around the gill arches. The results demonstrate that exposure to combinations of two groups of contaminants can result in the manifestation of toxic effects not apparent from exposure to either of these chemicals in isolation.

  7. Boric acid corrosion of light water reactor pressure vessel head materials.

    SciTech Connect

    Park, J.-H.; Chopra, O. K.; Natesan, K.; Shack, W. J.; Cullen, Jr.; W. H.; Energy Technology; USNRC

    2005-01-01

    This work presents experimental data on electrochemical potential and corrosion rates for the materials found in the reactor pressure vessel head and control rod drive mechanism (CRDM) nozzles in boric acid solutions of varying concentrations at temperatures of 95-316 C. Tests were conducted in (a) high-temperature, high-pressure aqueous solutions with a range of boric acid concentrations, (b) high-temperature (150-316 C)H-B-Osolutions at ambient pressure, in wet and dry conditions, and (c) low-temperature (95 C) saturated, aqueous, boric acid solutions. These correspond to the following situations: (a) low leakage through the nozzle and nozzle/head annulus plugged, (b) low leakage through the nozzle and nozzle/head annulus open, and (c) significant cooling due to high leakage and nozzle/head annulus open. The results showed significant corrosion only for the low-alloy steel and no corrosion for Alloy 600 or 308 stainless steel cladding. Also, corrosion rates were significant in saturated boric acid solutions, and no material loss was observed in H-B-O solution in the absence of moisture. The results are compared with the existing corrosion/wastage data in the literature.

  8. A 5-day method for determination of soluble silicon concentrations in nonliquid fertilizer materials using a sodium carbonate-ammonium nitrate extractant followed by visible spectroscopy with heteropoly blue analysis: single-laboratory validation.

    PubMed

    Sebastian, Dennis; Rodrigues, Hugh; Kinsey, Charles; Korndörfer, Gaspar; Pereira, Hamilton; Buck, Guilherme; Datnoff, Lawrence; Miranda, Stephen; Provance-Bowley, Mary

    2013-01-01

    A 5-day method for determining the soluble silicon (Si) concentrations in nonliquid fertilizer products was developed using a sodium carbonate (Na2CO3)-ammonium nitrate (NH4NO3) extractant followed by visible spectroscopy with heteropoly blue analysis at 660 nm. The 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method can be applied to quantify the plant-available Si in solid fertilizer products at levels ranging from 0.2 to 8.4% Si with an LOD of 0.06%, and LOQ of 0.20%. This Si extraction method for fertilizers correlates well with plant uptake of Si (r2 = 0.96 for a range of solid fertilizers) and is applicable to solid Si fertilizer products including blended products and beneficial substances. Fertilizer materials can be processed as received using commercially available laboratory chemicals and materials at ambient laboratory temperatures. The single-laboratory validation of the 5-Day Na2CO3-NH4NO3 Soluble Si Extraction Method has been approved by The Association of American Plant Food Control Officials for testing nonliquid Si fertilizer products. PMID:23767347

  9. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-02-01

    In recent studies, we microencapsulated pancreatic β-cells using sodium alginate (SA) and poly-L-ornithine (PLO) and the bile acid, ursodeoxycholic acid (UDCA), and tested the morphology and cell viability post-microencapsulation. Cell viability was low probably due to limited strength of the microcapsules. This study aimed to assess a β-cell delivery system which consists of UDCA-based microcapsules incorporated with water-soluble gel matrix. The polyelectrolytes, water-soluble gel (WSG), polystyrenic sulphate (PSS), PLO and polyallylamine (PAA) at ratios 4:1:1:2.5 with or without 4% UDCA, were incorporated into our microcapsules, and cell viability, metabolic profile, cell functionality, insulin production, levels of inflammation, microcapsule morphology, cellular distribution, UDCA partitioning, biocompatibility, thermal and chemical stabilities and the microencapsulation efficiency were examined. The incorporation of UDCA with PSS, PAA and WSG enhanced cell viability per microcapsule (p < 0.05), cellular metabolic profile (p < 0.01) and insulin production (p < 0.01); reduced the inflammatory release TNF-α (p < 0.01), INF-gamma (p < 0.01) and interleukin-6 (IL-6) (p < 0.01); and ceased the production of IL-1β. UDCA, PSS, PAA and WSG addition did not change the microencapsulation efficiency and resulted in biocompatible microcapsules. Our designed microcapsules showed good morphology and desirable insulin production, cell functionality and reduced inflammatory profile suggesting potential applications in diabetes. PMID:26671765

  10. A Solution-Processed Heteropoly Acid Containing MoO3 Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices.

    PubMed

    Ohisa, Satoru; Kagami, Sho; Pu, Yong-Jin; Chiba, Takayuki; Kido, Junji

    2016-08-17

    We report hole-injection layers (HILs) comprising a heteropoly acid containing MoO3 units, phosphomolybdic acid (PMA), in organic light-emitting devices (OLEDs). PMA possesses outstanding properties, such as high solubility in organic solvents, very low surface roughness in the film state, high transparency in the visible region, and an appropriate work function (WF), that make it suitable for HILs. We also found that these properties were dependent on the postbaking atmosphere and temperature after film formation. When the PMA film was baked in N2, the Mo in the PMA was reduced to Mo(V), whereas baking in air had no influence on the Mo valence state. Consequently, different baking atmospheres yielded different WF values. OLEDs with PMA HILs were fabricated and evaluated. OLEDs with PMA baked under appropriate conditions exhibited comparably low driving voltages and higher driving stability compared with OLEDs employing conventional hole-injection materials (HIMs), poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate), and evaporated MoO3, which clearly shows the high suitability of PMA HILs for OLEDs. PMA is also a commercially available and very cheap material, leading to the widespread use of PMA as a standard HIM. PMID:27456454

  11. Pure Phase Solubility Limits: LANL

    SciTech Connect

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  12. Characterization of Soluble Organics in Produced Water

    SciTech Connect

    Bostick, D.T.

    2002-01-16

    coupled plasma (ICP)-atomic emission spectrometry (AES). The WSO found in produced water samples was primarily polar in nature and distributed between the low and midrange carbon ranges. Typical levels of total extractable material (TEM) was about 20 mg/L; that associated with the aromatic fraction was present at 0.2 mg/L and that in the saturated hydrocarbon fraction was present at less than 0.02 mg/L. Formic, acetic, and propionic acids were also found in the produced water, occurring at a total concentration of 30 mg/L. It was estimated that the presence of 30 mg/L organic acids would artificially overstate TEM content by 2 mg/L. Of the five tested parameters, the factor that most controlled the total WSO in produced water was that of aqueous phase pH. Beyond a value of pH7 significant quantities of C{sub 10}-C{sub 20} range material become markedly soluble as they deprotonate in a basic aqueous phase. Both the absolute and relative volumes of GOM brine and crude additionally affected total WSO. Produced water appeared to reach a saturation level of WSO at a.50% water/oil ratio. Pressure slightly enhanced WSO by increasing the relative quantity of C{sub 6}-C{sub 10} range material. Temperature primarily altered the relative ratio of carbon ranges within the WSO without significantly elevating the total WSO in the GOM brine. Salinity had the least affect on the chemical character or the carbon size of WSO in produced water.

  13. Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane.

    PubMed

    Iwaoka, Michio; Katakura, Arisa; Mishima, Jun; Ishihara, Yoshimi; Kunwar, Amit; Priyadarsini, Kavirayani Indira

    2015-01-01

    A series of fatty acid conjugates of trans-3,4-dihydroxy-1-selenolane (DHS) were synthesized by reacting DHS with appropriate acid chlorides. The obtained monoesters were evaluated for their antioxidant capacities by the lipid peroxidation assay using a lecithin/cholesterol liposome as a model system. The observed antioxidant capacities against accumulation of the lipid hydroperoxide (LOOH) increased with increasing the alkyl chain length and became saturated for dodecanoic acid (C12) or higher fatty acid monoesters, for which the capacities were much greater than those of DHS, its tridecanoic acid (C13) diester, and PhSeSePh. On the other hand, the bacteriostatic activity of myristic acid (C14) monoester, evaluated through the colony formation assay using Bacillus subtilis, indicated that it has higher affinity to bacterial cell membranes than parent DHS. Since DHS-fatty acid conjugates would inhibit lipid peroxidation through glutathione peroxidase (GPx)-like 2e- mechanism, higher fatty acid monoesters of DHS can mimic the function of GPx4, which interacts with LOOH to reduce it to harmless alcohol (LOH). Importance of the balance between hydrophilicity and lipophilicity for the design of effective GPx4 mimics was suggested. PMID:26198222

  14. Synthesis and solution imidization studies of soluble poly(imide siloxane) segmented copolymers

    NASA Technical Reports Server (NTRS)

    Summers, J. D.; Arnold, C. A.; Bott, R. H.; Taylor, L. T.; Ward, T. C.

    1987-01-01

    Soluble metalinked poly(imide siloxane) segmented copolymers were synthesized utilizing a THF/NMP cosolvent system. The presence of dual solvent makes it possibled to reach high molecular weight in the amid acid stage. Incorporation of siloxanes at about 10 weight percent or higher enables the materials to be fully soluble in a range of polar solvents even after imidization. Imidization may be achieved either by conventional thermal methods on cast amic acid films or in appropriate solvent/azeotroping-agent systems employing moderate temperatures. The imidization procedure has been followed by FT-IR and NMR studies. FT-IR studies show the solution imidization follows first order kinetics and proceeds to about 96 percent completion. NMR studies of the isolated products show residual amic acid may be present after solution imidization, but only at very low levels. Properties of the solution imidized materials compared well with those obtained from samples imidized as thin films.

  15. Observations on the Solubility of Skeletal Carbonates in Aqueous Solutions.

    PubMed

    Chave, K E; Deffeyes, K S; Weyl, P K; Garrels, R M; Thompson, M E

    1962-07-01

    Carbonate skeletal materials of marine organisms exhibit a wide range of solubilities in aqueous solutions. In most cases, the dissolution of the carbonate mineral is irreversible and therefore the material can have no true equilibrium solubility. Relative solubilities have been measured in distilled water and in sea water. The least soluble mineral appears to be calcite with low magnesium content; the most soluble is calcite containing 20 to 30 percent MgCO(3) in solid solution. Aragonite has an intermediate solubility. PMID:17774123

  16. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils

    NASA Astrophysics Data System (ADS)

    Duvall, R. M.; Majestic, B. J.; Shafer, M. M.; Chuang, P. Y.; Simoneit, B. R. T.; Schauer, J. J.

    We quantified the water-soluble species in 24 h average TSP (Dunhuang and Gosan) and PM1.0 (Gosan only) samples associated with the Spring 2001 Asian Dust season. Samples were analyzed for water-soluble organic carbon, water-soluble sulfur, and water-soluble crustal elements, as well as their bulk chemical composition. Water-soluble organic carbon in Gosan accounted for 28-83% (average=63%) of the particle-phase TSP total organic carbon, and 1-69% (average=23%) of the particle-phase PM1.0 organic carbon. Water-soluble sulfur, primarily in the form of sulfate, accounted for 2-22% of the TSP mass in Gosan, and 0.9-11% of the TSP mass in Dunhuang. The absolute concentrations and the soluble fraction of crustal elements in TSP samples collected at Gosan were found to correlate with the air mass source region as determined by back-trajectory analysis. For example, elevated levels of water-soluble sodium, potassium, and calcium were observed during dust events. These observations are likely the result of differences in anthropogenic sources, mineralogical composition of resuspended crustal materials, and atmospheric processing of the aerosols. Experiments were conducted using Asian soil samples to study the impact of acidification by nitric acid vapor on the solubility of crustal elements present in Asian desert and non-desert dusts. These experiments demonstrated that gaseous nitric acid attack leads to significant increases (>100% increase) in water-soluble calcium, magnesium, aluminum, manganese, and iron, while little or no increases in water-soluble sodium and potassium were observed in the soils.

  17. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    PubMed

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during

  18. A study of the metal binding capacity of saccharinic acids formed during the alkali catalysed decomposition of cellulosic materials: nickel complexation by glucoisosaccharinic acids and xyloisosaccharinic acids.

    PubMed

    Almond, Michael; Belton, Daniel; Humphreys, Paul N; Laws, Andrew P

    2016-06-01

    The stoichiometry of the metal complexes formed between nickel and the ligand β-glucoisosaccharinic acid (β-GISA) and a racemic mixture of enantiomers of xyloisosaccharinic acid (XISA) has been determined at both neutral and alkaline pHs. Bjerrum plots, Job's plots and conductance measurements indicated that for each of the systems one to one Ni(ligand) complexes were formed at near neutral pHs (<7.5). At intermediate alkaline pHs (7.5-13) there is evidence to support the formation and precipitation of Ni2(ligand)(OH)3 complexes, finally, at high pH (>13) sparingly soluble Ni2(ligand)(OH)4 complexes were formed. The stability constants for the Ni(β-GISA), Ni(α-GISA) and Ni(XISA) complexes formed at neutral pH were determined under identical conditions using polarographic studies. The measured stability constants for Ni(β-GISA) (log10 β = 1.94 ± 0.15) and for Ni(α-GISA)(log10 β = 2.07 ± 0.13) are very similar; the value measured for the Ni(XISA) complex (log10 β = 0.83) was an order of magnitude smaller. The stability constants for the Ni2(Ligand)(OH)4 complexes formed at highly alkaline pHs were determined using the Schubert method. The measured stability constant for Ni2(β-GISA)(OH)4 (log10 β = 30.6 ± 0.5) was an order of magnitude bigger than the value for Ni2(α-GISA)(OH)4 (log10 β = 29.0 ± 0.5) measured under identical conditions. Attempts to measure the stability constant for Ni2(XISA)(OH)4 were unsuccessful; Ni2(XISA)(OH)4 complexes were not present in significant amounts at high pH to allow the log10β value to be determined by the Schubert method. PMID:27107221

  19. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou; Brinker, C. Jeffrey; Lopez, Gabriel P.

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  20. Effect of Naturally Acidic Agents on Microhardness and Surface Micromorphology of Restorative Materials

    PubMed Central

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    Objectives: This study investigated the titratable acidity and erosive potential of acidic agents on the microhardness and surface micromorphology of four restorative materials. Methods: Forty-seven discs of each restorative material; metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250) and amalgam (Valiant-Ph.D.), 12 mm in diameter and 2.5 mm in thickness, were divided into four groups (5 discs/group). Specimens were then immersed for 7 days into four storage media; deionized water (control), citrate buffer solution, green mango juice and pineapple juice. Microhardness testing before and after immersions was performed. Micromorphological changes were evaluated under a scanning electron microscope (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey’s tests. Results: The Fuji II LC and the Ketac-S showed the highest reduction in microhardness (P<.05). The Valiant-Ph.D. and the Filtek Z250 showed some minor changes over the period of 7 days. The mango juice produced the greatest degradation effect (P<.05). Conclusions: This study suggested that for restorations in patients who have tooth surface loss, materials selected should be considered. In terms of materials evaluated, amalgam and resin composite are the most suitable for restorations. PMID:21311608

  1. Soluble vs. insoluble fiber

    MedlinePlus

    ... diseases. Soluble fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in oat bran, barley, nuts, seeds, beans, lentils, peas, and some fruits and vegetables. It is also found in psyllium, ...

  2. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  3. Oxidative potential of ambient water-soluble PM2.5 measured by Dithiothreitol (DTT) and Ascorbic Acid (AA) assays in the southeastern United States: contrasts in sources and health associations

    NASA Astrophysics Data System (ADS)

    Fang, T.; Verma, V.; Bates, J. T.; Abrams, J.; Klein, M.; Strickland, M. J.; Sarnat, S. E.; Chang, H. H.; Mulholland, J. A.; Tolbert, P. E.; Russell, A. G.; Weber, R. J.

    2015-11-01

    The ability of certain components of particulate matter to induce oxidative stress through catalytic generation of reactive oxygen species (ROS) in vivo may be one mechanism accounting for observed linkages between ambient aerosols and adverse health outcomes. A variety of assays have been used to measure this so-called aerosol oxidative potential. We developed a semi-automated system to quantify oxidative potential of filter aqueous extracts utilizing the dithiothreitol (DTT) assay and have recently developed a similar semi-automated system using the ascorbic acid (AA) assay. Approximately 500 PM2.5 filter samples collected in contrasting locations in the southeastern US were analyzed using both assays. We found that water-soluble DTT activity on a per air volume basis was more spatially uniform than water-soluble AA activity. DTT activity was higher in winter than in summer/fall, whereas AA activity was higher in summer/fall compared to winter, with highest levels near highly trafficked highways. DTT activity was correlated with organic and metal species, whereas AA activity was correlated with water-soluble metals (especially water-soluble Cu, r=0.70-0.91 at most sites). Source apportionment models, Positive Matrix Factorization (PMF) and a Chemical Mass Balance Method with ensemble-averaged source impact profiles (CMB-E), suggest a strong contribution from secondary processes (e.g., organic aerosol oxidation or metal mobilization by formation of an aqueous particle with secondary acids) and traffic emissions to both DTT and AA activities in urban Atlanta. Biomass burning was a large source for DTT activity, but insignificant for AA. DTT activity was well correlated with PM2.5 mass (r=0.49-0.86 across sites/seasons), while AA activity did not co-vary strongly with mass. A linear model was developed to estimate DTT and AA activities for the central Atlanta Jefferson Street site, based on the CMB-E sources that are statistically significant with positive

  4. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation.

    PubMed

    Fernandes, Diana M; Barbosa, André D S; Pires, João; Balula, Salete S; Cunha-Silva, Luís; Freire, Cristina

    2013-12-26

    A novel hybrid composite material, PMo10V2@MIL-101 was prepared by the encapsulation of the tetra-butylammonium (TBA) salt of the vanadium-substituted phosphomolybdate [PMo10V2O40](5-) (PMo10V2) into the porous metal-organic framework (MOF) MIL-101(Cr). The materials characterization by powder X-ray diffraction, Fourier transform infrared spectra and scanning electron microscopy confirmed the preparation of the composite material without disruption of the MOF porous structure. Pyrolytic graphite electrodes modified with the original components (MIL-101(Cr), PMo10V2), and the composite material PMo10V2@MIL-101 were prepared and their electrochemical responses were studied by cyclic voltammetry. Surface confined redox processes were observed for all the immobilized materials. MIL-101(Cr) showed one-electron reduction process due to chromium centers (Cr(III) → Cr(II)), while PMo10V2 presented five reduction processes: the peak at more positive potentials is attributed to two superimposed 1-electron vanadium reduction processes (V(V) → V(IV)) and the other four peaks to Mo-centred two-electron reduction processes (Mo(VI) → Mo(V)). The electrochemical behavior of the composite material PMo10V2@MIL-101 showed both MIL-101(Cr) and PMo10V2 redox features, although with the splitting of the two vanadium processes and the shift of the Mo- and Cr- centered processes to more negative potentials. Finally, PMo10V2@MIL-101 modified electrode showed outstanding enhanced vanadium-based electrocatalytic properties towards ascorbic acid oxidation, in comparison with the free PMo10V2, as a result of its immobilization into the porous structure of the MOF. Furthermore, PMo10V2@MIL-101 modified electrode showed successful simultaneous detection of ascorbic acid and dopamine. PMID:24308331

  5. The development and amino acid binding ability of nano-materials based on azo derivatives: theory and experiment.

    PubMed

    Shang, Xuefang; Du, Jinge; Yang, Wancai; Liu, Yun; Fu, Zhiyuan; Wei, Xiaofang; Yan, Ruifang; Yao, Ningcong; Guo, Yaping; Zhang, Jinlian; Xu, Xiufang

    2014-05-01

    Two nano-material-containing azo groups have been designed and developed, and the binding ability of nano-materials with various amino acids has been characterized by UV-vis and fluorescence titrations. Results indicated that two nano-materials showed the strongest binding ability for homocysteine among twenty normal kinds of amino acids (alanine, valine, leucine, isoleucine, methionine, aspartic acid, glutamic acid, arginine, glycine, serine, threonine, asparagine, phenylalanine, histidine, tryptophan, proline, lysine, glutamine, tyrosine and homocysteine). The reason for the high sensitivity for homocysteine was that two nano-materials containing an aldehyde group reacted with SH in homocysteine and afforded very stable thiazolidine derivatives. Theoretical investigation further illustrated the possible binding mode in host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. Thus, the two nano-materials can be used as optical sensors for the detection of homocysteine. PMID:24656358

  6. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid.

    PubMed

    Bizzi, Cezar Augusto; Barin, Juliano Smanioto; Müller, Edson Irineu; Schmidt, Lucas; Nóbrega, Joaquim A; Flores, Erico Marlon Moraes

    2011-02-15

    The feasibility of diluted nitric acid solutions for microwave-assisted decomposition of botanical samples in closed vessels was evaluated. Oxygen pressurized atmosphere was used to improve the digestion efficiency and Al, Ca, K, Fe, Mg and Na were determined in digests by inductively coupled plasma optical emission spectrometry (ICP OES). Efficiency of digestion was evaluated taking into account the residual carbon content (RCC) and residual acidity in digests. Samples were digested using nitric acid solutions (2, 3, 7, and 14 mol L(-1) HNO(3)) and the effect of gas phase composition inside the reaction vessels by purging the vessel with Ar (inert atmosphere, 1 bar), air (20% of oxygen, 1 bar) and pure O(2) (100% of oxygen, 1 bar) was evaluated. The influence of oxygen pressure was studied using pressures of 5, 10, 15 and 20 bar. It was demonstrated that a diluted nitric acid solution as low as 3 mol L(-1) was suitable for an efficient digestion of sample masses up to 500 mg of botanical samples using 5 bar of oxygen pressure. The residual acidities in final digests were lower than 45% in relation to the initial amount of acid used for digestion (equivalent to 1.3 mol L(-1) HNO(3)). The accuracy of the proposed procedure was evaluated using certified reference materials of olive leaves, apple leaves, peach leaves and pine needles. Using the optimized conditions for sample digestion, the results obtained were in agreement with certified values. The limit of quantification was improved up to a factor of 14.5 times for the analytes evaluated. In addition, the proposed procedure was in agreement with the recommendations of the green chemistry once it was possible to obtain relatively high digestion efficiency (RCC<5%) using only diluted HNO(3), which is important to minimize the generation of laboratory residues. PMID:21238716

  7. 21 CFR Appendix A to Part 74 - The Procedure for Determining Ether Soluble Material in D&C Red Nos. 6 and 7

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required. (A) Glacial Acetic Acid (ACS grade). (B) Diethyl ether (Anhydrous)—Note and follow safety... acetic acid to the beaker and stir. Place the beaker on a hot plate and heat with stirring, until all of... layer into the beaker and save for the determination of 3-hydroxy-4- -2-naphthalenecarboxylic...

  8. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    PubMed

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. PMID:26776045

  9. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  10. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Ramsey, W.G.; Cicero-Herman, C.A.; Bickford, D.F.

    1999-09-28

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140 C to about 210 C for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  11. Acid and enzymatic hydrolysis of pretreated cellulosic materials as an analytical tool

    SciTech Connect

    Ladisch, C.M.; Chiasson, C.M.; Tsao, G.T.

    1982-07-01

    A rapid and accurate procedure for the quantitative analysis of cellulose in textiles based on acid and enzymatic hydrolysis was investigated. Total hydrolysis was achieved by a two-step procedure: the cellulose in the sample was first dissolved in cadoxen and then reprecipitated. The material, thus pretreated, was then hydrolyzed with acid or enzyme catalytic agents. Hydrolysis products were detected and quantified by colorimetric, enzymic, and liquid chromatographic methods of analysis. Samples examined included cotton, rayon, Avicel, CF-11, and cotton/polyester blends. The specificity of the enzyme hydrolysis method allowed analysis of raw cotton without prior purification. Results of the analyses were compared to those obtained by existing methods of analysis.

  12. A solubility model for amorphous silica in concentrated electrolytes

    SciTech Connect

    Felmy, A.R.; Schroeder, C.C.; Mason, M.J.

    1994-08-01

    Silica is one of the major constituents of the earth`s crust and is ubiquitously present in most natural materials. The solubility of silica and other silica-containing compounds is, therefore, of primary concern in geochemistry and in chemical processing applications where silica scale formation, resulting from changes in temperature and electrolyte composition, can cause problems in process design and operation. This paper describes the development of an aqueous thermodynamic model for accurately predicting the solubility of amorphous silica and other silica-containing compounds in the system Na{sup +}-H{sup +}-Mg{sup 2+}-NO{sub 3}{sup {minus}}-SO{sub 4}{sup 2{minus}}-Cl{sup {minus}}-H{sub 2}O to high concentration and across the temperature range 25--100 C. This model, which utilizes the aqueous thermodynamic model of Pitzer, includes only one dissolved silica species, H{sub 4}SiO{sub 4}(aq), and is valid in neutral to very acidic solutions. The model is parameterized from the extensive set of solubility data in the literature as well as from new experimental data on amorphous silica solubility in HNO{sub 3} and HCl developed as part of this study. The accuracy of the model is tested on solutions more complex than those used in model parameterization.

  13. Laboratory study of modified Kohler curves for slightly soluble organic compounds

    NASA Astrophysics Data System (ADS)

    Bilde, M.; Svenningsson, B.

    2003-04-01

    Even though organic compounds make up a large fraction of the fine aerosol, their influence on cloud nucleation is not well understood. A theoretic treatment of slightly soluble compounds (modified Köhler theory) was presented by Schulman et al. (1996). However, laboratory experiments often deviate from this modified Köhler theory. A possible explanation for these inconsistencies and a confirmation of the two maxima predicted by the modified Köhler equation for succinic (HOOC(CH_2)_2COOH) and adipic acid (HOOC(CH_2)_4COOH ) are presented. Furthermore we suggest (and confirm experimentally) that slightly soluble organic compounds follow two different Köhler curves depending on whether the particles are wet or dry. We have used a cloud condensation nucleus spectrometer (CCNC-100B from the University of Wyoming) to study the cloud droplet activation of aerosol particles of adipic and succinic acid as well as mixtures between these acids and small amounts of NaCl. The results from the experiments follow the modified Köhler theory. According to experiments as well as theory a few percent, or less, of NaCl reduces the extra barrier to activation, caused by the limited solubility for these compounds. For succinic acid, about 1% of NaCl causes a particle with a diameter of 60 nm to activate as if it is infinitely soluble. For adipic acid, that is even less soluble, NaCl concentrations of about 8% and 4% make particles with diameters of 60 nm and 100 nm respectively behave as if the acid is completely soluble. Small amounts of soluble components, will thus strongly influence cloud droplet activation of slightly soluble organic compounds. As mentioned above modified Köhler theory predicts a barrier to activation due to the slightly soluble organic compound. By introducing wet particles into the cloud condensation nucleus chamber we show that this barrier is eliminated for particles that are supersaturated solutions of organic material. Shulman, M. L., Jacobson, M. C

  14. Amyloid Fibril Solubility.

    PubMed

    Rizzi, L G; Auer, S

    2015-11-19

    It is well established that amyloid fibril solubility is protein specific, but how solubility depends on the interactions between the fibril building blocks is not clear. Here we use a simple protein model and perform Monte Carlo simulations to directly measure the solubility of amyloid fibrils as a function of the interaction between the fibril building blocks. Our simulations confirms that the fibril solubility depends on the fibril thickness and that the relationship between the interactions and the solubility can be described by a simple analytical formula. The results presented in this study reveal general rules how side-chain-side-chain interactions, backbone hydrogen bonding, and temperature affect amyloid fibril solubility, which might prove to be a powerful tool to design protein fibrils with desired solubility and aggregation properties in general. PMID:26496385

  15. Spectrophotometric determination of deacetylation degree of chitinous materials dissolved in phosphoric acid.

    PubMed

    Hsiao, Hsien-Yi; Tsai, Chih-Cheng; Chen, Suming; Hsieh, Bo-Chuan; Chen, Richie L C

    2004-10-20

    A simple spectrophotometric method is proposed for determining deacetylation degrees (DD) of chitinous materials using phosphoric acid as the UV-transparent solvent system. Calibrating by the extinction coefficients (A(210)) of D-glucosamine and N-acetyl-D-glucosamine, DD values (24-88%) were computed numerically. The results correlated well (R(2) = 0.9805, n = 50) with those obtained by solid-state (13)C NMR. Comparison of the results obtained by the proposed UV method and solid-state (13)C NMR. PMID:15490434

  16. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    SciTech Connect

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. )

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  17. Evaluation of protein content, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins for gamma-irradiated semolina before and after milling of durum wheat

    NASA Astrophysics Data System (ADS)

    Azzeh, F. S.; Amr, A. S.

    2009-11-01

    Influenced of gamma irradiation (0, 0.25, 1, 2.5, 5 and 10 kGy) on total nitrogen, lysine and sulfur-containing amino acids content and electrophoretic patterns of soluble proteins of semolina was studied. The effect of irradiation before and after milling on previous parameters was also investigated. Protein content of semolina was not affected with gamma irradiation before and after milling. Up to 10 kGy dose, cystine and methionine were not significantly changed, although they increased slightly with increasing irradiation dose. Lysine content decreased significantly ( P≤0.05) at irradiation dose higher than 5 kGy. At 10 kGy dose, lysine decreased 5% and 14% for irradiated semolina and that obtained from irradiated wheat grains, respectively. The bands number and intensity of soluble proteins decreased with increasing irradiation dose higher than 5 kGy, as shown on SDS-PAGE electrophoresis. Irradiated semolina and semolina obtained from irradiated wheat grains at 10 kGy showed 13 and 15 bands, respectively. Unirradiated sample showed 19 bands.

  18. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  19. Chemically amplified resist using self-solubility acceleration effect

    NASA Astrophysics Data System (ADS)

    Kihara, Naoko; Ushirogouchi, Tohru; Tada, Tsukasa; Naito, Takuya; Saito, Satoshi; Nakase, Makoto

    1994-11-01

    This paper concerns a novel three-component chemically amplified positive tone resist system for EB lithography composed of a novolak resin, an acid generator, and a newly synthesized dissolution inhibitor. To obtain resist materials with high sensitivity and high contrast, the authors synthesized four 1-(3H)-isobenzofuranone derivatives as novel dissolution inhibitors, which contain a tert-butoxycarbonyl (t-Boc) group and a lactone ring. The t-Boc group of these dissolution inhibitors was effectively decomposed by an acid catalyzed thermal reaction. In addition to this decomposition, the lactone ring of the decomposed product was spontaneously cleft in an aqueous base to generate carboxylic acid. Among these synthesized substances, only the t-Boc derivative of o-cresolphthalein, named CP-TBOC, showed an excellent solubility in 1-acetoxy-2-ethoxyethane. The subsequent cleavage in an aqueous developer was investigated by UV-visible spectroscopy.

  20. ACIDIC DEPOSITION AND THE CORROSION AND DETERIORATION OF MATERIALS IN THE ATMOSPHERE: A BIBLIOGRAPHY, 1880-1982

    EPA Science Inventory

    The bibliography contains more than 1300 article citations and abstracts on the effects of acidic deposition, air pollutants, and biological and meteorological factors on the corrosion and deterioration of materials in the atmosphere. The listing includes citations for the years ...

  1. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    PubMed

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  2. Acid Functionalized Mesoporous Ordered Materials for the Production of 5-Hydroxymethyfurfural from Carbohydrates

    NASA Astrophysics Data System (ADS)

    Crisci, Anthony J.

    Solid acid catalysts were designed for the conversion of fructose to 5-hydroxymethylfurfural (HMF). Some of the catalysts incorporate thioether groups to promote the tautomerization of fructose to its furanose form, as well as sulfonic acid groups to catalyze its dehydration. A bifunctional silane, 3-((3-(trimethoxysilyl)propyl)thio)propane-1-sulfonic acid (TESAS), was designed for incorporation into SBA-15-type silica by co-condensation. To achieve mesopore ordering in the functionalized silica, the standard SBA-15 synthetic protocol was modified, resulting in well-formed hexagonal particles. Functional groups incorporated into mesoporous silica by co-condensation are more robust under the reaction conditions than those grafted onto a non-porous silica. In a variation, the thioether group of TESAS was oxidized by H2O 2 to the sulfone during the synthesis of the modified SBA-15. The materials were tested in batch reactors and compared in the selective dehydration of fructose to 5-hydroxymethylfurfural (HMF). Compared to benchmark catalysts, the thioether-containing TESAS-SBA-15 showed the highest activity in the dehydration of aqueous fructose, as well as the highest selectivity towards HMF (71 % at 84 % conversion). In addition, the stability of several supported acid catalysts was evaluated in tubular reactors designed to produce 5-hydroxymethylfurfural (HMF) continuously. The reactors, packed with the solid catalysts, were operated at 403 K for extended periods, up to 180 h. The behaviors of three propylsulfonic acid-functionalized, ordered porous silicas (one inorganic SBA-15-type silica, and two ethane-bridged SBA-15-type organosilicas) were compared with that of a propylsulfonic acid-modified, non-ordered porous silica. The HMF selectivity of the catalysts with ordered pore structures ranged from 60 to 75 %, while the selectivity of the non-ordered catalyst peaked at 20 %. The latter was also the least stable, deactivating with a first-order rate constant of

  3. Variability of humic acid properties depending on their precursor material: a study of peat profiles

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Purmalis, Oskars

    2015-04-01

    and impact of environmental conditions on the surfactant properties of humic matter. Amongst the main objectives of the study was the identification of the dependence of the humic acid properties on the composition of original living matter in the peat, especially considering high variability of peat composition in the studied bogs. Despite some correlation between peat botanical composition and properties exist, in general the similarities are much more expressed, thus indicating the significance of microbial decay processes on the properties of humic material. Acknowledgement: Support from a project ResProd

  4. Reaction Products of Unsaturated Polycarboxylic Acids and Sodium Hypophosphite for Improved Flame Resistance of Cotton-Containing Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reaction products of unsaturated polycarboxylic acids and sodium hypophosite were found to improve flame resistance of cellulosic materials as determined by the 45 degree flammability test for apparel textiles. The most effective product was that from the reaction of maleic acid with sodium hypopho...

  5. Roles of the Major, Small, Acid-Soluble Spore Proteins and Spore-Specific and Universal DNA Repair Mechanisms in Resistance of Bacillus subtilis Spores to Ionizing Radiation from X Rays and High-Energy Charged-Particle Bombardment▿

    PubMed Central

    Moeller, Ralf; Setlow, Peter; Horneck, Gerda; Berger, Thomas; Reitz, Günther; Rettberg, Petra; Doherty, Aidan J.; Okayasu, Ryuichi; Nicholson, Wayne L.

    2008-01-01

    The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via α/β-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and α/β-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the α/β-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation. PMID:18055591

  6. Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-derived polyphenolic compounds that precipitate proteins, bind to metals and complex with other compounds and may be particularly important in soil ecosystems. Solutions of tannic acid, or other phenolic compounds, were added to soil samples to determine if they would affect recov...

  7. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  8. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    PubMed Central

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  9. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  10. Preparation and characterization of dry method esterified starch/polylactic acid composite materials.

    PubMed

    Zuo, Yingfeng; Gu, Jiyou; Yang, Long; Qiao, Zhibang; Tan, Haiyan; Zhang, Yanhua

    2014-03-01

    Corn starch and maleic anhydride were synthesized from a maleic anhydride esterified starch by dry method. Fourier transform infrared spectroscopy (FTIR) was used for the qualitative analysis of the esterified starches. The reaction efficiency of dry method esterified starch reached 92.34%. The dry method esterified starch was blended with polylactic acid (PLA), and the mixture was melted and extruded to produce the esterified starch/polylactic acid (ES/PLA) composites. The degree of crystallinity of the ES/PLA was lower than that of the NS/PLA, indicating that the relative dependence between these two components of starch and polylactic acid was enhanced. Scanning electron microscopy (SEM) indicated that the dry method esterified starch increased the two-phase interface compatibility of the composites, thereby improving the tensile strength, bending strength, and elongation at break of the ES/PLA composite. The introduction of a hydrophobic ester bond and increase in interface compatibility led to an increase in ES/PLA water resistance. Melt index determination results showed that starch esterification modification had improved the melt flow properties of starch/PLA composite material. Strain scanning also showed that the compatibility of ES/PLA was increased. While frequency scanning showed that the storage modulus and complex viscosity of ES/PLA was less than that of NS/PLA. PMID:24315947

  11. Luminescence behavior of terbium sulphosalicylic acid complexes in sol-gel derived host materials

    SciTech Connect

    Fan, X.; Wang, M.; Wang, Z.; Hong, Z.

    1997-08-01

    The formation and luminescence behavior of terbium sulphosalicylic acid (TbSSA) complexes in sol-gel derived host materials have been investigated. The 5-sulphosalicylic acid (H{sub 3}SSA) was dissolved in ethanol in advance, and then the TbCl{sub 3} and ethanol containing H{sub 3}SSA were introduced into the initial precursor sol, respectively. The resulting sol exhibits intramolecular energy transfer from the coordinated sulphosalicylic acid to the terbium ion. The TbSSA complex has formed in the TbCl{sub 3} and H{sub 3}SSA codoped sol. The complexes were found to have notably higher fluorescence intensities than TbCl{sub 3} in both the sol and the gel. In the sol, the concentration quenching was a diffusion-controlled process due to aggregation and effective collision between molecules and the fluorescence was decreased with increase of H{sub 3}SSA concentration. On the other hand, the molecules in the gel were isolated in the pores of the silica network. The fluorescence intensities of TbSSA in the gel were increased with the increase of concentration ratio of H{sub 3}SSA/TbCl{sub 3}. Maximum fluorescence intensity was obtained at H{sub 3}SSA/TbCl{sub 3} = 2.

  12. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.

    PubMed

    Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng

    2016-05-01

    Poly-l-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10wt.% β-TCP, but it decreased as the addition amount increased from 10wt.% to 20wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load. PMID:26952440

  13. Determination of perfluorinated alkyl acid concentrations in biological standard reference materials.

    PubMed

    Reiner, Jessica L; O'Connell, Steven G; Butt, Craig M; Mabury, Scott A; Small, Jeff M; De Silva, Amila O; Muir, Derek C G; Delinsky, Amy D; Strynar, Mark J; Lindstrom, Andrew B; Reagen, William K; Malinsky, Michelle; Schäfer, Sandra; Kwadijk, Christiaan J A F; Schantz, Michele M; Keller, Jennifer M

    2012-11-01

    Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned for legacy pollutants. These SRMs can also serve as test materials for method development, method validation, and measurement for contaminants of emerging concern. Because inter-laboratory comparison studies have revealed substantial variability of measurements of perfluoroalkyl acids (PFAAs), future analytical measurements will benefit from determination of consensus values for PFAAs in SRMs to provide a means to demonstrate method-specific performance. To that end, NIST, in collaboration with other groups, has been measuring concentrations of PFAAs in a variety of SRMs. Here we report levels of PFAAs and perfluorooctane sulfonamide (PFOSA) determined in four biological SRMs: fish tissue (SRM 1946 Lake Superior Fish Tissue, SRM 1947 Lake Michigan Fish Tissue), bovine liver (SRM 1577c), and mussel tissue (SRM 2974a). We also report concentrations for three in-house quality-control materials: beluga whale liver, pygmy sperm whale liver, and white-sided dolphin liver. Measurements in SRMs show an array of PFAAs, with perfluorooctane sulfonate (PFOS) being the most frequently detected. Reference and information values are reported for PFAAs measured in these biological SRMs. PMID:22476786

  14. Microwave-assisted green synthesis of ultrasmall fluorescent water-soluble silver nanoclusters and its application in chiral recognition of amino acids.

    PubMed

    Liu, Tao; Su, Yingying; Song, Hongjie; Lv, Yi

    2013-11-01

    In this article, we established a fluorescent chiral recognition and detection method for cysteine based on the L-glutathione (L-GSH)-stabilized Ag nanoclusters (AgNCs) with high selectivity and sensitivity. A fast and green microwave (MW)-assisted strategy has been employed for synthesizing water-soluble fluorescent L-GSH-AgNCs. The reaction time was shortened from hours to several minutes. The synthetic process utilized L-glutathione as a stabilizing agent and a reducing agent without any other toxic reducing agent, such as NaBH4 or N2H4. The method is environmental friendly. Due to the different responses to AgNCs from chiral cysteine, we found d-cysteine hardly affects the fluorescence intensity of the AgNCs, whereas L-cysteine distinctly weakened its fluorescence intensity. This experiment indicated that fluorescence quenching efficiency of AgNCs was proportional to the concentration of L-cysteine in the range from 0.025 to 50 μmol L(-1). PMID:24029964

  15. Preparation and Electrochemical Performance of Hybrid Materials Containing Heteropoly Acid with Dawson Structure and Polymers

    NASA Astrophysics Data System (ADS)

    Tong, Xia; Wu, Wen; Zhou, Shengming; Wu, Qingyin; Cao, Fahe; Yaroslavtsev, A. B.

    2012-11-01

    Highly proton-conducting hybrid materials (P2W17V/PEG and P2W17V/PEG/SiO2) were prepared by heptadecatungstovanadodiphosphoric heteropoly acid with Dawson structure (P2W17V, 90 wt.%), polyethylene glycol (PEG, 10 wt.% and 5 wt.%) and silica gel (SiO2, 0 wt.% and 5 wt.%). The products were characterized by the infrared (IR) spectrum, X-ray powder diffraction (XRD) analysis and electrochemical impedance spectrum (EIS). The result reveals that their conductivity values are 1.02 × 10-2 and 2.58 × 10-2S ṡ cm-1 at room temperature (26°C) and 75% relative humidity (RH), respectively. Their conductivities increase with higher temperature and these activation energies of proton conduction are 9.51 and 14.95 kJṡmol-1, which are lower than that of pure heteropoly acid (32.23 kJṡmol-1). These mechanisms of proton conduction for these two materials are Grotthuss mechanism.

  16. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  17. Tough soluble aromatic thermoplastic copolyimides

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor)

    2000-01-01

    Tough, soluble, aromatic, thermoplastic copolyimides were prepared by reacting 4,4'-oxydiphthalic anhydride, 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydianiline. Alternatively, these copolyimides may be prepared by reacting 4,4'-oxydiphthalic anhydride with 3,4,3',4'-biphenyltetracarboxylic dianhydride and 3,4'-oxydiisocyanate. Also, the copolyimide may be prepared by reacting the corresponding tetra acid and ester precursors of 4,4'-oxydiphthalic anhydride and 3,4,3',4'-biphenyltetracarboxylic dianhydride with 3,4'-oxydianiline. These copolyimides were found to be soluble in common amide solvents such as N,N'-dimethyl acetamide, N-methylpyrrolidinone, and dimethylformamide allowing them to be applied as the fully imidized copolymer and to be used to prepare a wide range of articles.

  18. Amino acid sequences of peptides from a tryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.; Robson, A.

    1967-01-01

    1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497

  19. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials.

    PubMed

    Weeks, Andrea; Boone, Adrienne; Luensmann, Doerte; Jones, Lyndon; Sheardown, Heather

    2013-09-01

    Conventional and silicone hydrogels as models for contact lenses were prepared to determine the effect of the presence of hyaluronic acid on lysozyme sorption and denaturation. Hyaluronic acid was loaded into poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) hydrogels, which served as models for conventional and silicone hydrogel contact lens materials. The hyaluronic acid was cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in the presence of dendrimers. Active lysozyme was quantified using a Micrococcus lysodeikticus assay while total lysozyme was determined using 125-I radiolabeled protein. To examine the location of hyaluronic acid in the gels, 6-aminofluorescein labeled hyaluronic acid was incorporated into the gels using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry and the gels were examined using confocal laser scanning microscopy. Hyaluronic acid incorporation significantly reduced lysozyme sorption in poly(2-hydroxyethyl methacrylate) (p < 0.00001) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.001) hydrogels, with the modified materials sorbing only 20% and 16% that of the control, respectively. More importantly, hyaluronic acid also decreased lysozyme denaturation in poly(2-hydroxyethyl methacrylate) (p < 0.005) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.02) hydrogels. The confocal laser scanning microscopy results showed that the hyaluronic acid distribution was dependent on both the material type and the molecular weight of hyaluronic acid. This study demonstrates that hyaluronic acid incorporated as a wetting agent has the potential to reduce lysozyme sorption and denaturation in contact lens applications. The distribution of hyaluronic acid within hydrogels appears to affect denaturation, with more surface mobile, lower

  20. The release of N-acetyl- and N-glycolloyl-neuraminic acid from soluble complex carbohydrates and erythrocytes by bacterial, viral and mammalian sialidases.

    PubMed Central

    Corfield, A P; Veh, R W; Wember, M; Michalski, J C; Schauer, R

    1981-01-01

    A series of substrates, sialyl(2 leads to 6)GalNAc and ganglioside GM3, containing either N-acetylneuraminic acid (AcNeu) or N-glycolloylneuraminic acid (GcNeu), has been prepared. The trisaccharide GcNeu(2 leads to 3)lactose was preapred by ozonolysis of GcNeu-GM3, and the disaccharides AcNeu(2 leads to 6)GalNAc and GcNeu(2 leads to 6)GalNAc were isolated from bovine submandibular-gland mucin by alkali elimination. Sialidases from Newcastle-disease virus, fowl-plague virus, influenza virus A2, Clostridium perfringens, Vibrio cholerae, Arthrobacter ureafaciens and human liver lysosomes were studied with the above substrates and all showed poorer cleavage of GcNeu-containing substrates when compared with the corresponding AcNeu-containing compounds. This was reflected in the Km and Vmax. values of these sialidases. Differences between viral and bacterial sialidases could be detected on the basis of their kinetic constants and time curves of sialic acid release. Preferred release of AcNeu relative to GcNeu was also observed with bovine submandibular gland mucin and a mixture of human and porcine erythrocytes, macromolecular substrates containing both AcNeu and GcNeu. The significance of differential cleavage of AcNeu and GcNeu by sialidases is considered together with examples of the role of GcNeu in physiologicaL systems. PMID:7325957

  1. Tunable macromolecular-based materials for the adsorption of perfluorooctanoic and octanoic acid anions.

    PubMed

    Karoyo, Abdalla H; Wilson, Lee D

    2013-07-15

    The sorption properties of tunable urethane-based copolymer materials containing β-cyclodextrin (β-CD) were evaluated with perfluorooctanoic acid (PFOA) and octanoic acid (OA) anions in aqueous solutions, respectively. The copolymer materials are herein referred to as macromolecular imprinted materials (MIMs) since their design strategy incorporates a porogen macromolecule (β-CD) within a cross-linked hexamethylene diisocyanate (HDI) framework. We report the tunable uptake of OA and PFOA anions from aqueous solution with variable adsorption modes, in accordance with the composition of the MIMs. The sorption results with granular activated carbon (GAC) were compared at 295 K and pH values exceeding the pKa values of each adsorbate. The BET and Sips models provided estimates of the monolayer sorption capacity (Qm) and related equilibrium sorption parameters. The Qm value for GAC with PFOA was ~1.4 mmol/g; whereas, a greater Qm value for PFOA (up to 2.6 mmol/g) was observed with the MIMs. GAC displays greater sorption capacity toward PFOA at relatively low Ce values and saturation of the monolayer occurs at Ce~0.5 mM. The MIMs/PFOA system displays monolayer completion at values of Ce~1 mM and multilayer sorption when Ce>1mM. Equilibrium sorption of PFOA onto MIMs occurs at the inclusion sites of β-CD and interstitial binding sites of the polymeric framework. Surface adsorption of the PFOA anion occurs between the PFOA carboxylate head group and dipolar interstitial domains of the cross-linker framework. The MIMs sorbents display tunable and favorable binding with PFOA and OA anions where the uptake (per mg MIMs) with PFOA was ~5-33% (5 μM-5 mM) and with OA was ~0.5-5% (1-20 mM). The overall sorptive uptake of OA and PFOA anions by the MIMs sorbents meets or exceeds those observed for GAC. PMID:23664395

  2. Positively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from Methylococcus capsulatus (Bath).

    PubMed

    Balendra, Suki; Lesieur, Claire; Smith, Thomas J; Dalton, Howard

    2002-02-26

    The soluble methane monooxygenase (sMMO) complex from Methylococcus capsulatus (Bath) catalyses oxygen- and NAD(P)H-dependent oxygenation of methane, propene, and other substrates. Whole-complex sMMO oxygenase activity requires all three sMMO components: the hydroxylase, the reductase, and protein B. Also, in the presence of hydrogen peroxide, the hydroxylase alone catalyzes substrate oxygenation via the peroxide shunt reaction. We investigated the effect of amine cross-linking on hydroxylase activity to probe the role of a gross conformational change that occurs in the hydroxylase upon binding of the other protein components. The cross-linker inhibited hydroxylase activity in the whole complex, but this effect was due to covalent modification of primary amine groups rather than cross-linking. Covalent modification of arginine side-chains on the hydroxylase had a similar effect, but, most remarkably, neither form of modification affected the activity of the hydroxylase via the peroxide shunt reaction. It was shown that covalent modification of positively charged groups on the hydroxylase, which occurred at multiple sites, interfered with its physical and functional interactions with protein B and with the passage of electrons from the reductase. These results indicate that protein B and the reductase of the sMMO complex interact via positively charged groups on the surface of the hydroxylase to induce a conformational change that is necessary for delivery of electrons into the active site of the hydroxylase. Modification of positively charged groups on protein B had no effect on its function, consistent with the hypothesis that positively charged groups on the hydroxylase interact with negative charges on protein B. Thus, we have discovered a means of specifically inactivating the interactions between the sMMO complex while preserving the catalytic activity of the hydroxylase active site which provides a new method of studying intercomponent interactions within s

  3. Acid/vanadium-containing saponite for the conversion of propene into coke: potential flame-retardant filler for nanocomposite materials.

    PubMed

    Ostinelli, Luca; Recchia, Sandro; Bisio, Chiara; Carniato, Fabio; Guidotti, Matteo; Marchese, Leonardo; Psaro, Rinaldo

    2012-10-01

    Vanadium-containing saponite samples were synthesized in a one-pot synthetic procedure with the aim of preparing samples for potential application as fillers for polymeric composites. These vanadium-modified materials were prepared from an acid support by adopting a synthetic strategy that allowed us to introduce isolated structural V species (H/V-SAP). The physicochemical properties of these materials were investigated by XRD analysis and by DR-UV/Vis and FTIR spectroscopy of CO that was adsorbed at 100 K; these data were compared to those of a V-modified saponite material that did not contain any Brønsted acid sites (Na/V-SAP). The surface-acid properties of both samples (together with the fully acidic H-SAP material and the Na-SAP solid) were studied in the catalytic isomerization of α-pinene oxide. The V-containing solids were tested in the oxidative dehydrogenation reaction of propene to evaluate their potential use as flame-retardant fillers for polymer composites. The effect of tuning the presence of Lewis/Brønsted acid sites was carefully studied. The V-containing saponite sample that contained a marked presence of Brønsted acid sites showed the most interesting performance in the oxidative dehydrogenation (ODH) reactions because they produced coke, even at 773 K. The catalytic data presented herein indicate that the H/V-SAP material is potentially active as a flame-retardant filler. PMID:22791515

  4. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis

    ERIC Educational Resources Information Center

    Hasenekoglu, Ismet; Timucin, Melih

    2007-01-01

    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the "case". The goal of the…

  5. AMINO ACID COMPOSITION OF SUSPENDED PARTICLES, SEDIMENT-TRAP MATERIAL, AND BENTHIC SEDIMENT IN THE POTOMAC ESTUARY

    EPA Science Inventory

    Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. he amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and...

  6. Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of Talinolol with Naringin: Solid state characterization, in-vivo in-situ evaluation.

    PubMed

    Teja, Ainampudi; Musmade, Prashant B; Khade, Amol B; Dengale, Swapnil J

    2015-10-12

    The aim of the current study was to prepare binary amorphous forms of Talinolol (TLN) by using Naringin (NRG) as a stabilizing agent. The secondary objective of this study was to study the effect of P-gp inhibitor NRG on the P-gp probe drug TLN. The binary amorphous samples were prepared by quench cooling technique in the molar ratios TLN:NRG (1:1), TLN:NRG (1:2), TLN:NRG (2:1). The prepared samples were characterized by DSC, FTIR and XRD. Amorphicity of the prepared binary amorphous samples was confirmed by spotting diffuse halo in the diffractograms and further corroborated by detecting glass transition event (Tg) in the thermograms of the respective samples. The Tgs for all prepared systems were found above room temperature, the highest being 45.43 °C. The systems were found physically stable at 25 °C and 40 °C at dry conditions for 60 days. The temperature stability of prepared amorphous forms may be attributed to strong intermolecular hydrogen bond interaction between TLN and NRG, which was confirmed by Gordon-Taylor calculations and FTIR data. The solubility of TLN in amorphous form was increased by approximately 9-fold as compared to its crystalline counterpart. The in-vivo bioavailability study conducted on wistar rats demonstrated 5.4-fold increase in the AUC0-t value for TLN as compared to its crystalline counterpart. Further to learn the contribution of P-gp inhibition by NRG on the permeability of TLN, In-vitro single pass perfusion studies were conducted on the ileum of wistar rats. The permeability of TLN in rat ileum in the presence of NRG was significantly increased to 3.16×10(-5) cm/s as compare to control value 2.48×10(-5) cm/s. The current study demonstrated the ability of binary amorphous technology to simultaneously overcome both the BCS barriers i.e. solubility and permeability. PMID:26253355

  7. Distribution of Components in Ion Exchange Materials Taken from the K East Basin and Leaching of Ion Exchange Materials by Nitric/Hydrofluoric Acid and Nitric/Oxalic Acid

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.; Hoopes, F.V.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of mixed nitric/hydrofluoric acid followed by mixed nitric/oxalic acid leach treatments to decontaminate ion exchange materials that have been found in a number of samples retrieved from K East (KE)Basin sludge. The ion exchange materials contain organic ion exchange resins and zeolite inorganic ion exchange material. Based on process records, the ion exchange resins found in the K Basins is a mixed-bed, strong acid/strong base material marketed as Purolite NRW-037. The zeolite material is Zeolon-900, a granular material composed of the mineral mordenite. Radionuclides sorbed or associated with the ion exchange material can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). Elutriation and washing steps are designed to remove the organic resins from the K Basin sludge. To help understand the effects of the anticipated separation steps, tests were performed with well-rinsed ion exchange (IX) material from KE Basin floor sludge (sample H-08 BEAD G) and with well-rinsed IX having small quantities of added KE canister composite sludge (sample KECOMP). Tests also were performed to determine the relative quantities of organic and inorganic IX materials present in the H-08 K Basin sludge material. Based on chemical analyses of the separated fractions, the rinsed and dry IX material H-08 BEAD G was found to contain 36 weight percent inorganic material (primarily zeolite). The as-received (unrinsed) and dried H-08 material was estimated to contain 45 weight percent inorganic material.

  8. Crystal growth, spectral, optical and thermal properties of semiorganic nonlinear optical material: Picolinic acid hydrochloride

    NASA Astrophysics Data System (ADS)

    Gowri, S.; Uma Devi, T.; Sajan, D.; Surendra Dilip, C.; Chandramohan, A.; Lawrence, N.

    2013-06-01

    The bulk single crystal of 2-picolinic acid hydrochloride (PHCL) (a semi-organic nonlinear optical material of dimensions 25 × 15 × 10 mm3) was successfully grown by slow solvent evaporation technique. The XRD results revealed the cell parameters and the centrosymmetric nature of the crystal structure. FT-IR spectral study identified the functional groups, nature of bonding and their bond strength. The UV-Vis-NIR studies recognized the optical transmittance window and the lower cut off wavelength of the PHCL crystal and thus it could be performed as a NLO material. 1H NMR and 13CNMR spectra were correlated with the XRD standard for the molecular structure reveals harmony of the materials. Thermal properties of the crystal were studied by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA); the derived kinetic parameter values support the intuitive association of picolinicacid and HCl leads to the spontaneous formation of PHCL with a first order reaction. The presence of a proton and a proton acceptor groups provide the necessary stability to induce charge asymmetry in the PHCL structure. The load dependent hardness values of the crystal were measured by microhardness testing.

  9. New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid.

    PubMed

    Ilie, Andreia; Ghiţulică, Cristina; Andronescu, Ecaterina; Cucuruz, Andrei; Ficai, Anton

    2016-08-30

    The purpose of this article was to obtain prolonged drug release systems in which the drug (ascorbic acid) to reach intact the target area in an environment that is able to control the administration of the active component by chemical or physiological pathways. As support for drug, it was used a material based on calcium phosphate - hydroxyapatite and a natural polymer - alginate, since it is one of the most investigated composite materials for medical applications due to its positive response to biological testing: bioactivity, biocompatibility and osteoconductivity. Three composites with different ratios between alginate and hydroxyapatite were obtained: (a) Alg/HA/AA 1:1 (the mass ratio between Alg and HA being of 1:1), (b) Alg/HA/AA 1:3 (Alg:HA mass ratio of 1:3) and (c) Alg/HA/AA 3:1 (Alg:HA mass ratio of 3:1). The synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and to observe the drug release process, UV-vis spectroscopy. PMID:26784979

  10. Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil.

    PubMed

    Koskinen, William C; Marek, LeEtta J; Hall, Kathleen E

    2016-03-01

    There is a need for simple, fast, efficient and sensitive methods of analysis for glyphosate and its degradate aminomethylphosphonic acid (AMPA) in diverse matrices such as water, plant materials and soil to facilitate environmental research needed to address the continuing concerns related to increasing glyphosate use. A variety of water-based solutions have been used to extract the chemicals from different matrices. Many methods require extensive sample preparation, including derivatization and clean-up, prior to analysis by a variety of detection techniques. This review summarizes methods used during the past 15 years for analysis of glyphosate and AMPA in water, plant materials and soil. The simplest methods use aqueous extraction of glyphosate and AMPA from plant materials and soil, no derivatization, solid-phase extraction (SPE) columns for clean-up, guard columns for separation and confirmation of the analytes by mass spectrometry and quantitation using isotope-labeled internal standards. They have levels of detection (LODs) below the regulatory limits in North America. These methods are discussed in more detail in the review. © 2015 Society of Chemical Industry. PMID:26454260

  11. Solubilities of NiO and LaNiO 3 in Li/Na eutectic carbonate with rare-earth oxide

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Koichi; Akinaga, Yoji; Mitsushima, Shigenori; Ota, Ken-ichiro

    For the commercial application of molten carbonate fuel cells (MCFCs) under high-pressure operation, the problem of Ni shorting should be solved that is closely related to the solubility of cathode material. In order to improve the MCFC cathode stability, effects of the addition of rare-earth metal oxides to the molten carbonates have been quantitatively investigated. Especially, La 2O 3 addition to the molten carbonate significantly decreased the solubility of NiO. Such low solubility of NiO was caused by effects of both the acid-base equilibrium of molten carbonate and the activity of Ni in solid by the formation of complex oxide. Solubilities of LaNiO 3 and Nd 2NiO 4 were also smaller than that of NiO in molten carbonate as the same reason as that of NiO in the molten carbonates with saturated La 2O 3. Based on the data of solubility, a new parameter was proposed to evaluate the solubility of metal ion in molten carbonates. This parameter concerned with the acid-base equilibrium of melts and the activity of solid for the metal oxide. A linear relationship with the measured solubility of metal oxide in molten carbonates was obtained by this parameter. It would be indicated that the parameter is useful for the prediction of metal oxide solubilities in molten carbonates.

  12. An attempt towards simultaneous biobased solvent based extraction of proteins and enzymatic saccharification of cellulosic materials from distiller's grains and solubles.

    SciTech Connect

    Datta, S.; Bals, B. D.; Lin, Y. J.; Negri, M. C.; Datta, R.; Pasieta, L.; Ahmad, S. F.; Moradia, A. A.; Dale, B. E.; Snyder, S. W.; Energy Systems; Michigan State Univ.; Vertec BioSolvents Inc.; Illinois Mathematics and Science Academy

    2010-07-01

    Distiller's grains and solubles (DGS) is the major co-product of corn dry mill ethanol production, and is composed of 30% protein and 30-40% polysaccharides. We report a strategy for simultaneous extraction of protein with food-grade biobased solvents (ethyl lactate, d-limonene, and distilled methyl esters) and enzymatic saccharification of glucan in DGS. This approach would produce a high-value animal feed while simultaneously producing additional sugars for ethanol production. Preliminary experiments on protein extraction resulted in recovery of 15-45% of the protein, with hydrophobic biobased solvents obtaining the best results. The integrated hydrolysis and extraction experiments showed that biobased solvent addition did not inhibit hydrolysis of the cellulose. However, only 25-33% of the total protein was extracted from DGS, and the extracted protein largely resided in the aqueous phase, not the solvent phase. We hypothesize that the hydrophobic solvent could not access the proteins surrounded by the aqueous phase inside the fibrous structure of DGS due to poor mass transfer. Further process improvements are needed to overcome this obstacle.

  13. Hydrogen generation from alcohols (α-hydroxy carboxylic acids) and alcohol-ammonia coupling in aqueous media catalysed by water-soluble bipyridine-Cp*Ir (Rh or Os) catalyst: a computational mechanism insight

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Dan; Chen, Xian-Kai; Liu, Hui-Ling; Huang, Xu-Ri

    2015-06-01

    Density functional theory (DFT) calculations were performed to elucidate the mechanism of the dehydrogenative oxidation of various primary alcohols (or α-hydroxy carboxylic acids) and the dehydrogenative coupling of alcohols with ammonia catalysed by the same water-soluble Cp*Ir complex bearing a 2-pyridonate-based ligand (A-Ir). Another two new catalysts A-Rh and A-Os are computationally designed for the dehydrogenative oxidation of alcohols. The plausible pathway for alcohol dehydrogenation includes three steps: alcohol oxidation to aldehyde (step I); the generation of dihydrogen in the metal coordination sphere (step II); and the liberation of dihydrogen accompanied with the regeneration of active catalyst A (step III). Among them, the step I follows bifunctional concerted double hydrogen transfer mechanism rather than the β-H elimination. For step II, the energy barriers involving the addition of one or two water molecules are higher than in absence of water. Our results also confirm that A-Ir can be applied in the dehydrogenation of various α-hydroxy carboxylic acids by the similar mechanism. Remarkably, A-Ir is also found to be efficient for the coupling reactions of various primary benzyl alcohols with ammonia to afford amides.

  14. Applications of Solubility Data

    ERIC Educational Resources Information Center

    Tomkins, Reginald P. T.

    2008-01-01

    This article describes several applications of the use of solubility data. It is not meant to be exhaustive but rather to show that knowledge of solubility data is required in a variety of technical applications that assist in the design of chemical processes. (Contains 3 figures and 1 table.)

  15. What Variables Affect Solubility?

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn

    2003-01-01

    Helps middle school students understand the concept of solubility through hands-on experience with a variety of liquids and solids. As they explore factors that affect solubility and saturation, students gain content mastery and an understanding of the inquiry process. Also enables teachers to authentically assess student performance on several…

  16. Synthesis of poly(alkenoic acid) with L-leucine residue and methacrylate photopolymerizable groups useful in formulating dental restorative materials.

    PubMed

    Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C

    2014-01-01

    To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated. PMID:24701975

  17. A new supporting material for fascia grafting during myringoplasty: polyglycolic acid sheets.

    PubMed

    Yamanaka, Toshiaki; Sawai, Yachiyo; Hosoi, Hiroshi

    2013-08-01

    We used polyglycolic acid (PGA) sheets, a reinforcing material, as supporting devices for securing the fascia instead of fibrin glue or Gelfoam in patients with tympanic membrane (TM) perforations. PGA sheets were placed lateral to the fascia graft attached using the underlay grafting technique in 6 patients. In each case, the PGA sheet had been macerated and had merged into the fascia within 1 week of the procedure. At 2 to 3 postoperative weeks, parts of the sheet had become dehydrated and detached from the fascia, revealing a new epithelialized TM underneath. Eventually, the sheet had disappeared, and complete epithelialization had been achieved at 4 to 5 postoperative weeks, resulting in the successful closure of the perforation. The repair of TM remained stable throughout the follow-up period of at least 6 months in all patients. These results suggest that PGA sheets have the potential to secure fascia grafts and to guide the epithelialization of new tissue. PMID:23744836

  18. The NH4--NO3--Cl--SO42--H2O Aerosol System and its Gas Phase Precursors at a Rural Site in the Amazon Basin: How Relevant are Mineral Cations and Soluble Organic Acids?

    NASA Astrophysics Data System (ADS)

    Helas, G.; Trebs, I.; Metzger, S.; Meixner, F. X.; Hoffer, A.; Moura, M. A.; da Silva, R. S.; Rudich, Y.; Falkovich, A.; Artaxo, P.; Slanina, J.; Andreae, M. O.

    2004-12-01

    We performed real-time measurements of ammonia (NH3), nitric acid (HNO3), hydrochloric acid (HCl), sulfur dioxide (SO2) and the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-) at a pasture site in the Amazon Basin (Rondônia, Brazil). The measurements were made during the closing of the dry season (biomass burning), the transition period, and the onset of the wet season (clean conditions) (12 Sep. to 14 Nov. 2002, LBA-SMOCC*), using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC). Real-time data were combined with measurements of mineral cations (K+ , Ca2+ , Mg2+) and low-molecular weight (LMW) polar organic acids on 12-, 24- and 48-hours integrated filter samples. The contribution of inorganic species to the fine particulate mass (Dp < 2.5 um)was frequently below 20 % by mass, indicating the preponderance of organic matter. The high abundance of NH3 at the sampling site substantially influenced gas/aerosol partitioning processes, being responsible for complete acid neutralization through the aerosol phase forming aerosol NH4+. Balances of aerosol fine mode inorganic ionic charges indicated the role of dissociated low-molecular weight (LMW) polar organic acids, which were apparently neutralized by excess NH3. The measured concentration products of NH3 x HNO3 and NH3 x HCl persistently remained below the theoretical equilibrium dissociation constants of the NH3/HNO3/NH4NO3 and NH3/HCl/NH4Cl systems during daytime (RH < 90 %). The application of thermodynamic equilibrium models (EQMs), namely EQSAM, ISORROPIA, GEFMN and SCAPE2 indicated that balancing of aerosol NO3-, Cl- and SO42- preferentially proceeded via mineral cations (particularly pyrogenic K+) during daytime. At nighttime (RH > 90 %) NH4NO3 and NH4Cl were predicted to be formed in the aqueous aerosol phase. Cl- was largely driven out of the aerosol phase by reaction of KCl with HNO3 and H2SO4. As shown by an

  19. Influences of heating temperature, pH, and soluble solids on the decimal reduction times of acid-adapted and non-adapted Escherichia coli O157:H7 (HCIPH 96055) in a defined liquid heating medium.

    PubMed

    Gabriel, Alonzo A

    2012-11-01

    The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. PMID:23141645

  20. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property. PMID:27102367