Science.gov

Sample records for acid soybean oil

  1. Searching for a One-Step Bioprocess for the Production of Hydroxyl Fatty Acids and Hydroxyl Oils from Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  2. Oxidative and Flavor Stability of Tortilla Chips Fried in Expeller Pressed Low Linolenic Acid Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous pilot plant frying studies were conducted for potato chips using five oils: expeller pressed soybean oil (SBO); low linolenic acid expeller pressed SBO (EPLLSBO); high oleic sunflower oil (HOSUN); corn oil and hydrogenated SBO (HSBO) for 9 h of frying. The chips were aged at 25 deg C. A...

  3. Mid-oleic/ultra low linolenic acid soybean oil - a healthful new alternative to hydrogenated oils for frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests wer...

  4. Phosphorus fertilization differentially influences fatty acids, protein and oil in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is limited about phosphorus (P) fertilization effects on soybean seed composition. A field experiment was conducted to investigate the effects of P application rates on the concentrations of various fatty acids, protein, and oil in soybean under no-tillage on low and high testing P soils...

  5. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  6. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    PubMed

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry.

  7. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    PubMed

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry. PMID:27477075

  8. Application of hydrated and anhydrous fluroantimonic acids in the polymerization of epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerizations of epoxidized soybean oil (ESO) were catalyzed by the superacids, fluroantimonic acid hexahydrate (HSbF6•6H2O) and anhydrous fluroantimonic acid (HSbF6) using ethyl acetate solvent. This work was conducted in an effort to develop useful biodegradable polymers from renewable resources...

  9. Ternary liquid-liquid equilibria measurement for epoxidized soybean oil + acetic acid + water.

    PubMed

    Cai, Shuang-Fei; Wang, Li-Sheng; Yan, Guo-Qing; Li, Yi; Feng, Yun-Xia; Linghu, Rong-Gang

    2012-01-01

    Liquid-liquid equilibria (LLE) data were measured for ternary system epoxidized soybean oil (ESO) + acetic acid + water at 313.15, 323.15 and 333.15 K, respectively. The consistency of the measured LLE data was tested, using Othmer-Tobias correlation and root-mean-square deviation (sigma) in mass fraction of water in the lower phase and average value of the absolute difference (AAD) between experimental mass fraction of epoxidized soybean oil in the upper phase and that calculated using Othmer-Tobias correlation.

  10. Heritability of Oleic Acid Seed Content in Soybean Oil and its Genetic Correlation with Fatty Acid and Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid seed content is an important determinant of the nutritional value and the oxidative stability of soybean oil. Breeding for higher oleate content mandates the estimation of the heritability and the genetic correlations between oleate and fatty acid traits and between oleate and agronomic t...

  11. Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.

    PubMed

    Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala

    2015-02-01

    Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people. PMID:25694722

  12. Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.

    PubMed

    Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala

    2015-02-01

    Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people.

  13. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    PubMed

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored.

  14. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    PubMed

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.

  15. Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids.

    PubMed

    Elkin, Robert G; Ying, Yun; Harvatine, Kevin J

    2015-03-18

    The desaturation of α-linolenic acid (ALA) to stearidonic acid (SDA) is considered to be rate-limiting for the hepatic conversion of ALA to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans, rodents, and chickens. Thus, we hypothesized that feeding laying hens SDA, as a component of the oil derived from the genetic modification of the soybean, would bypass this inefficient metabolic step and result in the enrichment of eggs with EPA and DHA at amounts comparable to that achieved by direct supplementation of hens' diet with these very long-chain (VLC) n-3 polyunsaturated fatty acids (PUFAs). In a 28-d study, laying hens incorporated 0.132 mg, 0.041 mg, or 0.075 mg of VLC n-3 PUFAs into egg yolk for each milligram of ingested dietary ALA derived primarily from conventional soybean oil (CON), dietary ALA derived primarily from flaxseed oil (FLAX), or dietary SDA derived from SDA-enriched soybean oil, respectively. Moreover, the amounts of total yolk VLC n-3 PUFAs in eggs from hens fed the CON (51 mg), FLAX (91 mg), or SDA (125 mg) oils were markedly less than the 305 mg found in eggs from fish oil-fed hens. Unexpectedly, SDA appeared to be more readily incorporated into adipose tissue than into egg yolk. Since egg yolk FAs typically reflect the hens' dietary pattern, these tissue-specific differences suggest the existence of an alternate pathway for the hepatic secretion and transport of SDA in the laying hen.

  16. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect. PMID:26641978

  17. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect.

  18. Soybean seed protein oil fatty acids sugars and minerals as affected by seeding rates and row spacing in the Midsouth USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the effects of seeding rates (SDR) and row spacing (RS) on soybean seed composition is almost non-existent. The objective of this research was to investigate the effect of SDR and RS on soybean seed protein, oil, fatty acids, sugars, and minerals using two soybean cultivars, P 93M90 (ear...

  19. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  20. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  1. Poly(lactic acid) filled with cassava starch-g-soybean oil maleate.

    PubMed

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  2. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    PubMed Central

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  3. Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate application in soybean cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications ...

  4. Stearidonic acid-enriched soybean oil increased the omega-3 index, an emerging cardiovascular risk marker.

    PubMed

    Harris, William S; Lemke, Shawna L; Hansen, Susan N; Goldstein, Daniel A; DiRienzo, Maureen A; Su, Hong; Nemeth, Margaret A; Taylor, Mary L; Ahmed, Gulam; George, Cherian

    2008-09-01

    A plant source of omega-3 fatty acid (FA) that can raise tissue eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) is needed. A soybean oil (SBO) containing approximately 20% stearidonic acid [SDA; the delta-6 desaturase product of alpha-linolenic acid (ALA)] derived from genetically modified soybeans is under development. This study compared the effects of EPA to SDA-SBO on erythrocyte EPA+DHA levels (the omega-3 index). Overweight healthy volunteers (n=45) were randomized to SDA-SBO (24 ml/day providing approximately 3.7 g SDA) or to regular SBO (control group) without or with EPA ethyl esters (approximately 1 g/day) for 16 weeks. Serum lipids, blood pressure, heart rate, platelet function and safety laboratory tests were measured along with the omega-3 index. A per-protocol analysis was conducted on 33 subjects (11 per group). Compared to baseline, average omega-3 index levels increased 19.5% in the SDA group and 25.4% in the EPA group (p<0.05 for both, vs. control). DHA did not change in any group. Relative to EPA, SDA increased RBC EPA with about 17% efficiency. No other clinical endpoints were affected by SDA or EPA treatment (vs. control). In conclusion, SDA-enriched SBO significantly raised the omega-3 index. Since EPA supplementation has been shown to raise the omega-3 index and to lower risk for cardiac events, SDA-SBO may be a viable plant-based alternative for providing meaningful intakes of cardioprotective omega-3 FAs.

  5. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may

  6. Lewis Acid Catalyzed Ring-opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3•OEt2), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, diff...

  7. Characterization of stearidonic acid soybean oil enriched with palmitic acid produced by solvent-free enzymatic interesterification.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-09-14

    Stearidonic acid soybean oil (SDASO) is a plant source of n-3 polyunsaturated fatty acids (n-3 PUFAs). Solvent-free enzymatic interesterification was used to produce structured lipids (SLs) in a 1 L stir-batch reactor with a 1:2 substrate mole ratio of SDASO to tripalmitin, at 65 °C for 18 h. Two SLs were synthesized using immobilized lipases, Novozym 435 and Lipozyme TL IM. Free fatty acids (FFAs) were removed by short-path distillation. SLs were characterized by analyzing FFA and FA (total and positional) contents, iodine and saponification values, melting and crystallization profiles, tocopherols, and oxidative stability. The SLs contained 8.15 and 8.38% total stearidonic acid and 60.84 and 60.63% palmitic acid at the sn-2 position for Novozym 435 SL and Lipozyme TL IM SL, respectively. The SLs were less oxidatively stable than SDASO due to a decrease in tocopherol content after purification of the SLs. The saponification values of the SLs were slightly higher than that of the SDASO. The melting profiles of the SLs were similar, but crystallization profiles differed. The triacylglycerol (TAG) molecular species of the SLs were similar to each other, with tripalmitin being the major TAG. SDASO's major TAG species comprised stearidonic and oleic acids or stearidonic, α-linolenic, and γ-linolenic acids. PMID:21830790

  8. Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil.

    PubMed

    Najafi, M H; Zeinoaldini, S; Ganjkhanlou, M; Mohammadi, H; Hopkins, D L; Ponnampalam, E N

    2012-12-01

    This study examined the effect of palm, soybean or fish oils on the performance, muscle fatty acid composition and meat quality of goat kids. Twenty-four male Mahabadi kids (BW=19.4±1.2 kg) were divided into three groups according to liveweight and randomly allocated to one of three diets. Animals were fed ad libitum for 84 days. Different dietary fat sources had no effect on performance and/or carcass quality attributes. The soybean oil diet decreased 16:0 and 18:0 concentrations and increased 18:2 and 18:3 and the ratio of PUFA/SFA in the muscle compared with other treatments. Fish oil feeding increased 20:5 n-3 and 22:6 n-3 concentrations and decreased the ratio of n-6/n-3 in the muscle. The results demonstrate that the use of fish oil is a nutritional strategy to improve the health claimable long-chain omega-3 fatty acid content and n-6/n-3 ratio in goat meat without changing the sensory properties or colour of meat.

  9. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage.

  10. Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance fourier transform infrared spectroscopy and gas chromatography analysis.

    PubMed

    Li, An; Ha, Yiming; Wang, Feng; Li, Weiming; Li, Qingpeng

    2012-10-24

    The intake of edible oil containing trans-fatty acids has deleterious effects mainly on the cardiovascular system. Thermal processes such as refining and frying cause the formation of trans-fatty acids in edible oil. This study was conducted to investigate the possible formation of trans-fatty acids because of the heat treatment of soybean oil. The types of trans-fatty acids in heated soybean oil are determined by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry methods. The effects of the heating temperature on the trans-fatty acids in soybean oil were evaluated using gas chromatography flame ionization detection analysis. Results show that heat treatment at 240 °C causes the formation of trans-fatty acids in soybean oil and the amount of trans-fatty acids increases with heating time. The only peak observed at 966 cm(-1) of the samples indicates the formation of nonconjugated trans isomers in the heated soybean oil. The major types of trans-fatty acids formed were trans-polyunsaturated fatty acids. Significant increases (P < 0.05) in the amounts of two trans-linoleic acids (C18:2-9c,12t and C18:2-9t,12c) and four trans-linolenic acids (C18:3-9c,12c,15t, C18:3-9t,12c,15c, and C18:3-9t,12t,15c/C18:3-9t,12c,15t) in soybean oil heated to temperatures exceeding 200 °C were compared with those of the control sample. The heating temperature and duration should be considered to reduce the formation of trans-fatty acids during thermal treatment.

  11. Effects of rapeseed and soybean oil dietary supplementation on bovine fat metabolism, fatty acid composition and cholesterol levels in milk.

    PubMed

    Altenhofer, Christian; Spornraft, Melanie; Kienberger, Hermine; Rychlik, Michael; Herrmann, Julia; Meyer, Heinrich H D; Viturro, Enrique

    2014-02-01

    The main goal of this experiment was to study the effect of milk fat depression, induced by supplementing diet with plant oils, on the bovine fat metabolism, with special interest in cholesterol levels. For this purpose 39 cows were divided in three groups and fed different rations: a control group (C) without any oil supplementation and two groups with soybean oil (SO) or rapeseed oil (RO) added to the partial mixed ration (PMR). A decrease in milk fat percentage was observed in both oil feedings with a higher decrease of -1·14 % with SO than RO with -0·98 % compared with the physiological (-0·15 %) decline in the C group. There was no significant change in protein and lactose yield. The daily milk cholesterol yield was lower in both oil rations than in control ration, while the blood cholesterol level showed an opposite variation. The milk fatty acid pattern showed a highly significant decrease of over 10 % in the amount of saturated fatty acids (SFA) in both oil feedings and a highly significant increase in mono (MUFA) and poly (PUFA) unsaturated fatty acids, conjugated linoleic acids (CLA) included. The results of this experiment suggest that the feeding of oil supplements has a high impact on milk fat composition and its significance for human health, by decreasing fats with a potentially negative effect (SFA and cholesterol) while simultaneously increasing others with positive (MUFA, PUFA, CLA).

  12. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase

    PubMed Central

    2011-01-01

    Background Enzymatic biodiesel production by transesterification in solvent media has been investigated intensively, but glycerol, as a by-product, could block the immobilized enzyme and excess n-hexane, as a solution aid, would reduce the productivity of the enzyme. Esterification, a solvent-free and no-glycerol-release system for biodiesel production, has been developed, and two-step catalysis of soybean oil, hydrolysis followed by esterification, with Yarrowia lipolytica lipase is reported in this paper. Results First, soybean oil was hydrolyzed at 40°C by 100 U of lipase broth per 1 g of oil with approximately 30% to 60% (vol/vol) water. The free fatty acid (FFA) distilled from this hydrolysis mixture was used for the esterification of FFA to fatty acid ethyl ester by immobilized lipase. A mixture of 2.82 g of FFA and equimolar ethanol (addition in three steps) were shaken at 30°C with 18 U of lipase per 1 gram of FFA. The degree of esterification reached 85% after 3 hours. The lipase membranes were taken out, dehydrated and subjected to fresh esterification so that over 82% of esterification was maintained, even though the esterification was repeated every 3 hours for 25 batches. Conclusion The two-step enzymatic process without glycerol released and solvent-free demonstrated higher efficiency and safety than enzymatic transesterification, which seems very promising for lipase-catalyzed, large-scale production of biodiesel, especially from high acid value waste oil. PMID:21366905

  13. Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Jiang, Junqing; Zhang, Yanwu; Yan, Liwei; Jiang, Pingkai

    2012-06-01

    {PO4[W(O)(O2)2]4}3- was supported onto modified halloysite nanotubes (HNTs) to prepare heterogeneous catalysts and these catalysts were applied in epoxidation of soybean oil. To enhance the cohesive force between {PO4[W(O)(O2)2]4}3- and HNTs, quaternary amino groups were anchored onto HNTs through silylation of N-(2-aminoethyl)-3-aminopropyl trimethoxysilane and alkylation of amino groups. Further {PO4[W(O)(O2)2]4}3- was supported onto HNTs by ion exchange. The heterogeneous catalysts were characterized by FTIR, TGA, XRF and TEM-EDS. Then the catalytic behaviour to epoxidation of soybean oil was studied in detail. The results show that the introduction of phase transfer agent during preparation of the catalysts is very effective to improve catalytic activity and mechanical agitation combining with ultrasonic agitation is the best agitation way. The catalytic reactivity increased as reaction time increased. Moreover, the catalysts can be easily recovered from the reaction system by centrifugation as deposit and recycled three times without obviously decreasing the catalytic activity. Through re-exchange of {PO4[W(O)(O2)2]4}3-, the heterogeneous catalyst can be regenerated without catalytic activity loss.

  14. Ring-opening polymerization of epoxidized soybean oil catalyzed by the superacid, Fluroantimonic acid hexahydrate (HSbF6-6H2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted. The resulting polymers, SA-RPESO, were characterized using infrared spectroscopy, differential scanning calorimetry, thermogravimetri...

  15. Fluoroantimonic acid hexahydrate (HSbF6-6H2O) catalysis: The ring-opening polymerization of epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by a super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO) were characterized by using infrared (IR...

  16. Changes in milk and plasma fatty acid profile in response to fish and soybean oil supplementation in dairy sheep.

    PubMed

    Tsiplakou, Eleni; Zervas, George

    2013-05-01

    An effective strategy for enhancing the bioactive fatty acids (FA) in sheep milk could be dietary supplementation with a moderate level of a combination of soybean oil with fish oil (SFO) without negative effects on milk yield and its chemical composition. Thus, the objective of this study was to determine the effects of a moderate forage diet supplementation with SFO on milk chemical composition and FA profile, as well as on plasma FA. Twelve dairy sheep were assigned to two homogenous sub-groups. Treatments involved a control diet without added oil, and a diet supplemented with 23.6 g soybean oil and 4.7 g fish oil per kg dry matter (DM) of the total ration. The results showed that SFO diet had no effect on milk yield and chemical composition. In blood plasma the concentrations of trans-11 C(18:2) (VA), C(18:2n-6), C(20:5n-3) (EPA) and C(22:6n-3) (DHA) were significantly higher while those of C(14:0), C(16:0) and C(18:0) were lower in sheep fed with SFO diet compared with control. The SFO supplementation of sheep diet increased the concentrations of VA, cis-9, trans-11 C(18:2) CLA, trans-10, cis-12, C(18:2) CLA, EPA, DHA, monounsaturated FA (MUFA), polyusaturated fatty acids (PUFA) and n-3 FA and decreased those of short chain FA (SCFA), medium chain FA (MCFA), the saturated/unsaturated ratio and the atherogenicity index value in milk compared with the control. In conclussion, the SFO supplementation at the above levels in a sheep diet, with moderate forage to concentrate ratio, improved the milk FA profile from human health standpoint without negative effects on its chemical composition.

  17. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  18. Microbial screening and analytical methods for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to develop a new useful method including microbial screening and product identification for a bioprocess to produce polyol oils from soybean oil. Methods for separating of product polyol oils from soybean oil substrate and free fatty acid byproducts using HPLC and TLC...

  19. Enzymatic production of trans fatty acid free fat from partially hydrogenated soybean oil (PHSO)--theory, strategy and practicability.

    PubMed

    Jala, Ram Chandra Reddy; Xu, Xuebing; Guo, Zheng

    2013-12-01

    Development of an advanced process/production technology for healthful fats constitutes a major interest of plant oil refinery industry. In this work, a strategy to produce trans fatty acid (TFA) free (or low TFA) products from partially hydrogenated soybean oil by lipase-catalysed selective hydrolysis was proposed, where a physically founded mathematic model to delineate the multi-responses of the reaction as a function of selectivity factor was defined for the first time. The practicability of this strategy was assessed with commercial trans-selective Candida antarctica lipase A (CAL-A) as a model biocatalyst based on a parameter study and fitting to the model. CAL-A was found to have a selectivity factor 4.26 and to maximally remove 73.3% of total TFAs at 46.5% hydrolysis degree.

  20. Enzymatic Products from Modified Soybean Oil Containing Hydrazinoester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We use soybean oil to produce new, non-petroleum based products. The starting material is the ene reaction product of soybean oil and diethyl azodicarboxylate (DEAD), which can then be hydrolyzed chemically and enzymatically. Chemical hydrolysis gives hydrazino-fatty acids, whereas enzymatic hydro...

  1. Automotive gear oil lubricant from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  2. Predicted changes in fatty acid intakes, plasma lipids, and cardiovascular disease risk following replacement of trans fatty acid-containing soybean oil with application-appropriate alternatives.

    PubMed

    Lefevre, Michael; Mensink, Ronald P; Kris-Etherton, Penny M; Petersen, Barbara; Smith, Kim; Flickinger, Brent D

    2012-10-01

    The varied functional requirements satisfied by trans fatty acid (TFA)--containing oils constrains the selection of alternative fats and oils for use as potential replacements in specific food applications. We aimed to model the effects of replacing TFA-containing partially hydrogenated soybean oil (PHSBO) with application-appropriate alternatives on population fatty acid intakes, plasma lipids, and cardiovascular disease (CVD) risk. Using the National Health and Nutrition Examination Survey 24-hour dietary recalls for 1999-2002, we selected 25 food categories, accounting for 86 % of soybean oil (SBO) and 79 % of TFA intake for replacement modeling. Before modeling, those in the middle quintile had a mean PHSBO TFA intake of 1.2 % of energy. PHSBO replacement in applications requiring thermal stability by either low-linolenic acid SBO or mid-oleic, low-linolenic acid SBO decreased TFA intake by 0.3 % of energy and predicted CVD risk by 0.7-0.8 %. PHSBO replacement in applications requiring functional properties with palm-based oils reduced TFA intake by 0.8 % of energy, increased palmitic acid intake by 1.0 % of energy, and reduced predicted CVD risk by 0.4 %, whereas replacement with fully hydrogenated interesterified SBO reduced TFA intake by 0.7 % of energy, increased stearic acid intake by 1.0 % of energy, and decreased predicted CVD risk by 1.2 %. PHSBO replacement in both thermal and functional applications reduced TFA intake by 1.0 % of energy and predicted CVD risk by 1.5 %. Based solely on changes in plasma lipids and lipoproteins, all PHSBO replacement models reduced estimated CVD risk, albeit less than previously reported using simpler replacement models.

  3. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants. PMID:24426004

  4. Lignans as antioxidants for soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignans including nordihydroguaiaretic acid, (+)-pinoresinol, (-)-secoisolariciresinol, enterodiol, two sesame lignans (sesamol, sesamin), and four model compounds were investigated for their antipolymerization activities for soybean oil at frying temperature (180 °C). GPC (gel permeation chromatogr...

  5. Modifications of stearidonic acid soybean oil by enzymatic acidolysis for the production of human milk fat analogues.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-12-28

    Structured lipids (SLs) from stearidonic acid (SDA) soybean oil pre-enriched with palmitic acid (PA) at the sn-2 position with Novozym 435 (NSL) or Lipozyme TL IM (LSL) from previous research were further enriched with γ-linolenic acid (GLA) or docosahexaenoic acid (DHA). Small-scale acidolysis reactions with Lipozyme TL IM were performed to determine the optimal reaction conditions as 1:1 substrate mole ratio of NSL or LSL to free DHA at 65 °C for 24 h and a 1:0.5 substrate mole ratio of NSL or LSL to free GLA at 65 °C for 12 h. Optimized SL products were scaled up in a 1 L stir-batch reactor, and the resulting SLs of NSL:DHA (NDHA), LSL:DHA (LDHA), NSL:GLA (NGLA), and LSL:GLA (LGLA) were chemically and physically characterized. The SLs contained >54% PA at the sn-2 position with GLA >8% for the GLA SLs and DHA >10% for the DHA SLs. The oxidative stabilities of the SLs were increased by the addition of 200 ppm TBHQ, with NGLA being more stable due to higher tocopherol content than the other SLs. The melting and crystallization profiles did not differ between the DHA SLs or the GLA SLs. The triacylglycerol (TAG) species were similar for the GLA SLs but differed between the DHA SLs, with tripalmitin being the major TAG species in all SLs.

  6. Conjugated linoleic acids content in M.longissimus dorsi of Hanwoo steers fed a concentrate supplemented with soybean oil, sodium bicarbonate-based monensin, fish oil.

    PubMed

    Song, M K; Jin, G L; Ji, B J; Chang, S S; Jeong, J; Smith, S B; Choi, S H

    2010-06-01

    We hypothesized that increasing ruminal pH would lead to enrichment of adipose tissue with conjugated linoleic acid (CLA). Twenty-four Korean native (Hanwoo) steers were used to investigate the additive effects of monensin (30ppm, SO-BM) and/or fish oil (0.7%, SO-BMF) in the diets along with soybean oil (7%) and sodium bicarbonate (0.5%, SO-B) on cis-9, trans-11 and trans-10, cis-12 CLAs in adipose tissue. The steers were assigned to randomly four groups of six animals each based on body weight. The control group (CON) was fed a commercial concentrate for the late fattening stage. Supplementation of oil and sodium bicarbonate reduced feed intake and daily gain, and fish oil further decreased feed intake (P<0.001) and daily gain (P<0.087) compared to steers fed other diets. Total CLA and CLA isomers in M.longissimus dorsi were not affected when steers were fed SO-B and SO-BM diets compared with those of steers fed CON and SO-BMF diets. However, total poly unsaturated fatty acids were higher (P=0.03) in steers fed SO than in CON steers.

  7. Replacing cereals with dehydrated citrus pulp in a soybean oil supplemented diet increases vaccenic and rumenic acids in ewe milk.

    PubMed

    Santos-Silva, José; Dentinho, Maria T; Francisco, Alexandra; Portugal, Ana P; Belo, Ana T; Martins, António P L; Alves, Susana P; Bessa, Rui J B

    2016-02-01

    This study evaluates the effect of the replacement of cereals by dried citrus pulp (DCP) in diets supplemented with 5% of soybean oil, on ewe milk yield and composition, including milk fatty acid (FA). Four Serra da Estrela multiparous ewes in the second month of lactation were used in a double 2×2 Latin square design. Ewes were individually penned and milked twice a day with an 8-h interval. Each experimental period included 14 d of diet adaptation followed by 5d of measurements and sampling. The 2 diets included on dry matter basis 450 g/kg of corn silage and 550 g/kg of either a soybean oil-supplemented concentrate meal containing barley and maize (cereal) or dried citrus pulp (DCP; citrus). Feed was offered ad libitum, considering 10% of orts, and intake was measured daily. Milk yield was higher and dry matter intake tended to be higher with the citrus diet. Milk composition and technological properties for cheese production were not affected by treatments, except for lactose, which was lower with the citrus diet. Replacement of cereals by DCP resulted in a 3-percentage-point decrease of both 18:0 and cis-9-18:1 that were mostly compensated by the 4.19- and 1.68-percentage-point increases of trans-11-18:1 and cis-9,trans-11-18:2, respectively. The intake of C18 FA tended to increase with the citrus diet compared with the cereal diet, but the apparent transfer of 18:2n-6 and of 18:3n-3 did not differ between diets. The milk output of C18 FA increased with the citrus compared with the cereal diet, mostly due to the increase of trans-11-18:1 and cis-9,trans-11-18:2 because the daily milk output of 18:0, trans-10-18:1, cis-9-18:1, 18:2n-6 and 18:3n-3 did not differ between diets. Replacing cereals with DCP in an oil-supplemented diet resulted in a selective increase of trans-11-18:1 and cis-9,trans-11-18:2 in milk, with no major effect on other biohydrogenation intermediates. PMID:26686729

  8. Replacing cereals with dehydrated citrus pulp in a soybean oil supplemented diet increases vaccenic and rumenic acids in ewe milk.

    PubMed

    Santos-Silva, José; Dentinho, Maria T; Francisco, Alexandra; Portugal, Ana P; Belo, Ana T; Martins, António P L; Alves, Susana P; Bessa, Rui J B

    2016-02-01

    This study evaluates the effect of the replacement of cereals by dried citrus pulp (DCP) in diets supplemented with 5% of soybean oil, on ewe milk yield and composition, including milk fatty acid (FA). Four Serra da Estrela multiparous ewes in the second month of lactation were used in a double 2×2 Latin square design. Ewes were individually penned and milked twice a day with an 8-h interval. Each experimental period included 14 d of diet adaptation followed by 5d of measurements and sampling. The 2 diets included on dry matter basis 450 g/kg of corn silage and 550 g/kg of either a soybean oil-supplemented concentrate meal containing barley and maize (cereal) or dried citrus pulp (DCP; citrus). Feed was offered ad libitum, considering 10% of orts, and intake was measured daily. Milk yield was higher and dry matter intake tended to be higher with the citrus diet. Milk composition and technological properties for cheese production were not affected by treatments, except for lactose, which was lower with the citrus diet. Replacement of cereals by DCP resulted in a 3-percentage-point decrease of both 18:0 and cis-9-18:1 that were mostly compensated by the 4.19- and 1.68-percentage-point increases of trans-11-18:1 and cis-9,trans-11-18:2, respectively. The intake of C18 FA tended to increase with the citrus diet compared with the cereal diet, but the apparent transfer of 18:2n-6 and of 18:3n-3 did not differ between diets. The milk output of C18 FA increased with the citrus compared with the cereal diet, mostly due to the increase of trans-11-18:1 and cis-9,trans-11-18:2 because the daily milk output of 18:0, trans-10-18:1, cis-9-18:1, 18:2n-6 and 18:3n-3 did not differ between diets. Replacing cereals with DCP in an oil-supplemented diet resulted in a selective increase of trans-11-18:1 and cis-9,trans-11-18:2 in milk, with no major effect on other biohydrogenation intermediates.

  9. Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration.

    PubMed

    Song, Cai; Horrobin, David

    2004-06-01

    Proinflammatory cytokine interleukin (IL)-1beta can cause cognitive impairment, activate the hypothalamic-pituitary-adrenal axis and impair monoaminergic neurotransmission in the rat. IL-1beta has also been shown to increase the concentration of the inflammatory mediator prostaglandin E2 (PGE2) in the blood. Omega (n)-3 fatty acids, such as eicosapentaenoic acid (EPA), which are components of fish oil, have been shown to reduce both the proinflammatory cytokines and the synthesis of PGE2. The purpose of this study was to determine whether dietary supplements of EPA would attenuate the inflammation-induced impairment of spatial memory by centrally administered IL-1beta. Rats were fed with a diet of coconut oil (contained a negligible quantity of fatty acids), soybean oil (contained mainly n-6 fatty acids), or a diet of coconut oil enriched with ethyl-EPA (E-EPA). The rats were then injected intracerebroventricularly with IL-1beta or saline. The results of this study demonstrated that the IL-1-induced deficit in spatial memory was correlated with an impairment of central noradrenergic and serotonergic (but not dopaminergic) function and an increase in the serum corticosterone concentration. IL-1beta also caused an increase in the hippocampal PGE2 concentration. These effects of IL-1 were attenuated by the chronic administration of E-EPA. By contrast, rats fed with the soybean oil diet showed no effect on the changes induced by the IL-1 administration.

  10. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats.

    PubMed

    Song, Cai; Leonard, Brian E; Horrobin, David F

    2004-03-01

    Omega (n)-3 and n-6 fatty acids are important membrane components of neurons and immune cells, and related to psychiatric and inflammatory diseases. Increased ratio of n-6/n-3 in the blood has been reported in depressed patients and in students following stress exposure. The n-3 fatty acid, eicosapentaenoic acid (ethyl-EPA) suppresses inflammation and has antidepressant properties. Interleukin (IL)-1beta can stimulate corticosterone secretion, induce anxiety and stress-like behavior and inflammatory responses. This study was to evaluate the effect of diets enriched with coconut oil, ethyl-EPA and soybean oil on central IL-1beta induced stress and anxiety-like behavior, induced changes in the concentration of prostaglandin (PG) E2 and corticosterone and the release of IL-10. Groups of rats were fed with either 5% coconut oil (as control diet), 0.2% EPA with 4.8% coconut oil or 1% EPA with 4% coconut oil and 5% soybean oil for 7 weeks. The central administration of IL-1beta induced sickness, stress and anxiety-like behavior as indicated by a reduction in body weight, decreased time spent, and the number of entries, into the open arms of the elevated plus maze and decreased exploration and entry into the central zone of the "open field" apparatus. IL-1beta also increased PGE2 and corticosterone concentrations and decreased the release of IL-10 from leucocytes. Food enriched with ethyl-EPA but not soybean oil, significantly attenuated most of these changes. These results demonstrate that ethyl-EPA has anti-inflammatory, anti-stress and anti-anxiety effects in rats.

  11. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage. PMID:26492097

  12. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage.

  13. Detection of genetically modified soybean in crude soybean oil.

    PubMed

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil.

  14. Detection of genetically modified soybean in crude soybean oil.

    PubMed

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. PMID:24128586

  15. High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a primary source of vegetable oil, accounting for 53% of the total vegetable oil consumption in the USA in 2013. Soybean oil with high oleic acid and low linolenic acid content is desired, because it not only improves the oxidative stability of the oil, but also reduces the amount of unde...

  16. Effect of abomasal or ruminal administration of citrus pulp and soybean oil on milk fatty acid profile and antioxidant properties.

    PubMed

    de Lima, Luciano Soares; Santos, Geraldo T D; Schogor, Ana Luiza B; de Marchi, Francilaine E; de Souza, Moacir R; Santos, Nadine W; Santos, Fabio S; Petit, Hélène V

    2015-08-01

    Soybean oil (SBO) is rich in polyunsaturated fatty acids (FA) and rumen bypass of SBO can contribute to increase the polyunsaturated FA proportion in milk fat. Citrus pulp (CPP) is a source of antioxidants but there is little information on the effects of CP administration on milk properties. This study was performed to determine the role of rumen microorganisms in the transfer of antioxidants from CPP into milk when cows receive SBO as a source of polyunsaturated FA. Four ruminally fistulated lactating Holstein cows were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments: (1) SBO administered in the rumen; (2) SBO infused in the abomasum; (3) SBO + CPP administered in the rumen; and (4) SBO + CPP infused in the abomasum. Product and site of administration had no effect on yield of milk components. Concentrations of total polyphenols and flavonoids, reducing power and production of conjugated diene (CD) hydroperoxides in milk were not affected by products, but infusion in the abomasum compared with administration in the rumen increased production of CD. Milk fat FA profile was not affected by products. However, cows infused in the abomasum compared with those administered in the rumen showed lower proportions of short-chain and monounsaturated FA and higher proportions of polyunsaturated, omega 3 and omega 6 FA in milk fat, which resulted in enhanced health-promoting index of milk. Administration of SBO and CPP (0.2 + 1.0 kg/d) in the rumen or the abomasum resulted in similar milk antioxidant properties, thus suggesting that the rumen microbes have little involvement in the metabolism of antioxidants from CPP.

  17. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming.

  18. Screening of microbes for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. More than 30.6 million tons of soybean oil were produced worldwide annually and the major use of this oil is for food products. Triacylglycerols (TAG) containing hydroxy fatty acids (FA), e.g., castor oil, have many industrial uses such as the manufacture of aviation lubricant, plasti...

  19. Oil, fatty acid, and protein content of seeds harvested from soybeans exposed to O sub 3 and/or SO sub 2

    SciTech Connect

    Grunwald, C. ); Endress, A.G. )

    1988-09-01

    In a series of greenhouse experiments, we exposed soybean plant (Corsoy-79) to low levels of O{sub 3} and SO{sub 2}, singly and in combination. Exposure to O{sub 3} and SO{sub 2} alone increased the oil content of the harvested seeds, but the protein content was essentially unchanged. The seed oil: protein ratio increased with increasing pollutant concentration in both experiments. These responses, however, were not observed in seeds harvested from plants exposed to mixtures of O{sub 3} and SO{sub 2}. Differences in fatty acid content and composition were also noted. Ozone alone caused an increase in seed fatty acid content as a result of increased linoleic and stearic acids coupled with decreased oleic acid. After exposure to SO{sub 2} alone, no significant alterations of the fatty acid composition were observed. No statistically significant pattern could be identified for the content of fatty acids in seeds harvested from plants exposed to the O{sub 3} + SO{sub 2} mixtures, although the accumulation of linoleic acid appeared to be depressed.

  20. Synethesis of cyclic ketal from soybean oil and fatty esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we have shown a facile and environmentally friendly reaction to form a cyclic ketal out of soybean oil, methyl soyate, methyl linoleate, and methyl oleate. There are many advantages of this reaction. First, the ketal reaction produces a branched fatty acid moiety and is reversible. S...

  1. Organogel formation of soybean oil with waxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many waxes including plant waxes and animal waxes were evaluated for the gelation ability toward soybean oil (SBO) and compared with hydrogenated vegetable oils, petroleum waxes and commercial non-edible gelling agents to understand factors affecting the gelation ability of a gelator. Sunflower wax...

  2. Study of soybean oil-based polymers for controlled release anticancer drugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...

  3. Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a c...

  4. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  5. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on juvenile channel catfish performance, hematology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current commercial diets for Channel Catfish contain little or no marine fish oil to reduce diet cost and address environmental concerns. However, there is conflicting data on the effects of fish oil and other lipid sources in juvenile Channel Catfish, and some novel lipids have not been tested agai...

  6. "Green" composites and nanocomposites from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we report preparation of epoxidized soybean oil (ESO) based "green" composites and nanocomposites. The high strength and stiffness composites and nanocomposites are formed through flax fiber and organoclay reinforcement. The epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl...

  7. Amino acid quantification in bulk soybeans by transmission Raman spectroscopy.

    PubMed

    Schulmerich, Matthew V; Gelber, Matthew K; Azam, Hossain M; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Owen, Bridget; Kull, Linda S; Bhargava, Rohit

    2013-12-01

    Soybeans are a commodity crop of significant economic and nutritional interest. As an important source of protein, buyers of soybeans are interested in not only the total protein content but also in the specific amino acids that comprise the total protein content. Raman spectroscopy has the chemical specificity to measure the twenty common amino acids as pure substances. An unsolved challenge, however, is to quantify varying levels of amino acids mixed together and bound in soybeans at relatively low concentrations. Here we report the use of transmission Raman spectroscopy as a secondary analytical approach to nondestructively measure specific amino acids in intact soybeans. With the employment of a transmission-based Raman instrument, built specifically for nondestructive measurements from bulk soybeans, spectra were collected from twenty-four samples to develop a calibration model using a partial least-squares approach with a random-subset cross validation. The calibration model was validated on an independent set of twenty-five samples for oil, protein, and amino acid predictions. After Raman measurements, the samples were reduced to a fine powder and conventional wet chemistry methods were used for quantifying reference values of protein, oil, and 18 amino acids. We found that the greater the concentrations (% by weight component of interest), the better the calibration model and prediction capabilities. Of the 18 amino acids analyzed, 13 had R(2) values greater than 0.75 with a standard error of prediction c.a. 3-4% by weight. Serine, histidine, cystine, tryptophan, and methionine showed poor predictions (R(2) < 0.75), which were likely a result of the small sampling range and the low concentration of these components. It is clear from the correlation plots and root-mean-square error of prediction that Raman spectroscopy has sufficient chemical contrast to nondestructively quantify protein, oil, and specific amino acids in intact soybeans.

  8. Structural effect of lignans and sesamol on polymerization of soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antipolymerization activities of lignans including nordihydroguaiaretic acid, (+)-pinoresinol, (-)-secoisolariciresinol, enterodiol, two sesame lignans (sesamol, sesamin), and four model compounds were investigated for soybean oil at frying temperature (180 °C). The heated samples were analyzed by G...

  9. Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

    PubMed Central

    Mao, H. L.; Wang, J. K.; Lin, J.; Liu, J. X.

    2012-01-01

    This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a 2×2 factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression. PMID:25049609

  10. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Fehrmann-Cartes, K; Íñiguez-González, G; Toro-Mujica, P; Garnsworthy, P C

    2015-01-01

    Lipid supplements can be used to alter fatty acid (FA) profiles of dairy products. For Chanco cheese, however, little information is available concerning effects of lipid supplements on sensorial properties. The objective of this study was to examine effects of supplementation of dairy cow diets with soybean (SO) and hydrogenated vegetable (HVO) oils on chemical and FA composition of milk and cheese and sensory characteristics of cheese. Nine multiparous Holstein cows averaging 169±24d in milk at the beginning of the study were used in a replicated (n=3) 3×3 Latin square design that included 3 periods of 21d. All cows received a basal diet formulated with a 56:44 forage:concentrate ratio. Dietary treatments consisted of the basal diet (control; no fat supplement), and the basal diet supplemented with SO (unrefined oil; 500g/d per cow) and HVO (manufactured from palm oil; 500g/d per cow). Milk fat yield was lower with HVO compared with control and SO. Cheese chemical composition and sensory profile were not affected by dietary treatment. Vaccenic (C18:1 trans-11) and oleic (C18:1 cis-9) acids were higher for SO than for control and HVO. Compared with control and HVO, SO decreased saturated FA and increased monounsaturated FA. The thrombogenic index of milk and cheese produced when cows were fed SO was lower than when cows were fed on control and HVO. The outcome of this study showed that, compared with control and HVO, supplementing dairy cow diets with SO improves milk and cheese FA profile without detrimental effects on the chemical composition of milk and cheese and the sensory characteristics of cheese.

  11. Effect of supplementing different oils: linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from "Rubia Gallega" calves.

    PubMed

    González, Laura; Moreno, Teresa; Bispo, Esperanza; Dugan, Michael E R; Franco, Daniel

    2014-02-01

    The fatty acid (FA) composition of longisimus dorsi (LD) and subcutaneous fat (SCF) from Rubia Gallega (RG) calves was compared for three dietary oil sources (linseed, LO; sunflower, SFO or soybean, SYO). Oils were added (4.5%) to a commercial concentrate and no differences on animal performance, carcass characteristics or meat quality among diets were noted. Total n-3 polyunsaturated FA (PUFA) increased in LD and SCF when feeding LO diet (P<0.001). The trans(t) FA profiles were dominated by t11-18:1, except when feeding SFO diet, where ∑t6- to t10-18:1 exceeded t11-18:1 leading the highest (∑t6-to t10-18:1)/t11-18:11 ratio in LD (P<0.05). The overall changes in n-3 PUFA and t18:1 when feeding LO and SYO could be viewed as positive for human health, but quantitatively it was apparent that most dietary PUFA were completely biohydrogenated. Inhibiting PUFA biohydrogenation will be an important next step to improve the FA composition of RG cattle.

  12. Effect of supplementing different oils: linseed, sunflower and soybean, on animal performance, carcass characteristics, meat quality and fatty acid profile of veal from "Rubia Gallega" calves.

    PubMed

    González, Laura; Moreno, Teresa; Bispo, Esperanza; Dugan, Michael E R; Franco, Daniel

    2014-02-01

    The fatty acid (FA) composition of longisimus dorsi (LD) and subcutaneous fat (SCF) from Rubia Gallega (RG) calves was compared for three dietary oil sources (linseed, LO; sunflower, SFO or soybean, SYO). Oils were added (4.5%) to a commercial concentrate and no differences on animal performance, carcass characteristics or meat quality among diets were noted. Total n-3 polyunsaturated FA (PUFA) increased in LD and SCF when feeding LO diet (P<0.001). The trans(t) FA profiles were dominated by t11-18:1, except when feeding SFO diet, where ∑t6- to t10-18:1 exceeded t11-18:1 leading the highest (∑t6-to t10-18:1)/t11-18:11 ratio in LD (P<0.05). The overall changes in n-3 PUFA and t18:1 when feeding LO and SYO could be viewed as positive for human health, but quantitatively it was apparent that most dietary PUFA were completely biohydrogenated. Inhibiting PUFA biohydrogenation will be an important next step to improve the FA composition of RG cattle. PMID:24200577

  13. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.

  14. New insights into the antioxidant activity and components in crude oat oil and soybean oil.

    PubMed

    Chen, Hao; Qiu, Shuang; Gan, Jing; Li, Zaigui; Nirasawa, Satoru; Yin, Lijun

    2016-01-01

    Developing new antioxidants and using natural examples is of current interest. This study evaluated the antioxidant activities and the ability to inhibit soybean oil oxidation of oat oil obtained with different solvents. Oat oil extract obtained by ethanol extraction gave the highest antioxidant activity with a DPPH radical (1,1-diphenyl-2-picrylhydrazyl) scavenging activity of 88.2 % and a reducing power (A 700) of 0.83. Oat oil extracted by ethanol contained the highest polyphenol and α-tocopherol content. Significant correlation was observed between the total polyphenol contents, individual phenolic acid, α-tocopherol, and DPPH radical scavenging activity. Soybean oil with 2 % added oat oil showed low malondialdehyde content (8.35 mmol mL(-1)), suggesting that the added oat oil inhibited oxidation. Oat oil showed good antioxidant activity, especially when extracted with ethanol which could also retard the oxidation of soybean oil . DPPH radical scavenging activity was the best method to evaluate the antioxidant activity and components of oat oil.

  15. Comparison of soybean and cottonseed oils upon hydrogenation with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In this work, hydrogenation was carried out on soybean oil and cottonseed oil at two pressures (2 and 5 b...

  16. Effects of previous diet and duration of soybean oil supplementation on light lambs carcass composition, meat quality and fatty acid composition.

    PubMed

    Bessa, R J B; Lourenço, M; Portugal, P V; Santos-Silva, J

    2008-12-01

    Forty Merino Branco ram lambs were used to study the effects of initial diet and duration of supplementation with a conjugated linoleic acid (CLA) promoting diet, on carcass composition, meat quality and fatty acid composition of intramuscular fat. The experimental period was 6 weeks. The experimental design involved 2 initial diets (commercial concentrate (C); dehydrated lucerne (L)), and 2 finishing periods (2 and 4 weeks) on dehydrated lucerne plus 10% soybean oil (O). Data were analysed as a 2×2 factorial arrangement with initial diet and time on finishing (CLA promoting) diet as the main factors. The lambs were randomly assigned to four groups: CCO; COO; LLO; LOO according to the lamb's diet fed in each period. Lambs initially fed with concentrate showed higher hot carcass weights (11.2 vs 9.6kg) than lambs fed initially with lucerne. The increase of the duration of finishing period reduced the carcass muscle percentage (57.4% vs 55.5%) and increased the subcutaneous fat percentage (5.67% vs 7.03%). Meat colour was affected by initial diet. Lambs initially fed with concentrate showed a lower proportion of CLA (18:2cis-9, trans-11 isomer) (0.98% vs 1.38% of total fatty acids) and most of n-3 polyunsaturated fatty acids than lambs initially fed with lucerne. Initial diet did not compromise the response to the CLA-promoting diet and the proportion of 18:2cis-9, trans-11 in intramuscular fat increased with the duration of time on the CLA-promoting diet (1.02% vs 1.34% of total fatty acids).

  17. Complex role of monoacylglycerols in the oxidation of vegetable oils: different behaviors of soybean monoacylglycerols in different oils.

    PubMed

    Paradiso, Vito Michele; Caponio, Francesco; Bruno, Giuseppina; Pasqualone, Antonella; Summo, Carmine; Gomes, Tommaso

    2014-11-01

    The relationship between fatty acid composition of oils and their oxidative stability in the presence of monoacylglycerols was investigated. Purified vegetable oils were added at increasing amounts (0.5, 1, 2, and 3%) of monoacylglycerols obtained from purified soybean oil and submitted to an oven test (60 °C for 18 days). The obtained results showed a generally antioxidant effect of monoacylglycerols, with remarkable differences among oils. The antioxidant effect was significantly higher in less unsaturated oils, such as palm and olive oils. Among the more unsaturated vegetable oils, peanut and sunflower oils showed an almost linear slowdown of oxidation, slightly less pronounced in sunflower oil, which was the most susceptible to oxidation due to its high content of linoleic acid. A peculiar trend was highlighted for soybean oil, where the antioxidant effect of high amounts of monoacylglycerols was opposed to a pro-oxidant effect observed up to 1%.

  18. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    PubMed

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  19. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  20. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  1. Composition and antioxidant activities of Iranian Pulicaria gnaphalodes essential oil in Soybean oil.

    PubMed

    Shariatifar, Nabi; Kamkar, Abolfazl; Shamse-Ardekani, Mohammad Reza; Misagi, Ali; Akhonzade, Afshin; Jamshidi, Amir Hossein

    2014-07-01

    The essential oil from aerial parts of Pulicaria gnaphalodes was studied in soybean oil. The aim of this study was to evaluate the antioxidant activitiey of Iranian Pulicaria gnaphalodes essential oil in soybean oil during the storage period. The essential oil obtained from Pulicaria gnaphalodes by hydrodistillation and analyzed by GC/Mass. Fifty-eight compounds representing 90.7% of total was identified. Main ingredient in the oil were involved α -Pinene (30.2%), 1,8-Cineole (12.1%), Beta-Citronellol (9.6%), Mertenol (6.6%), α-Terpineol (6.1%), 4-Terpineol (5.9%) and Chrysanthenone (2.9%). Different concentrations (0.200, 400 and 800 ppm) of essential oil and β hydroxyl toluene (BHT; 100 and 200 ppm) was added to soybean oil and incubated for 35 days at 65°C. Peroxide values (PVs) and thiobarbitoric acid-reactive substances (TBARs) levels were measured every week during the time period of the study. Moreover, antioxidant capacity of the essential oil was determined using 1,1 diphenyl-2- picryl hydrazyl (DPPH) and β-carotene-linoleic acid methods. Values were compared among groups in each incubation time using ANOVA test. Results revealed that DPPH β-carotene-linolic acid assay findings on the P. gnaphalodes essential oil were lower than these of synthetic antioxidant, BHT. Moreover, during the incubation time, P. gnaphalodes essential oil lowered PVs and TBARs levels when compared to the control (p<0.001). According to our results essential oil was less effective than synthetic antioxidant. Therefore it may be used as a food flavor, natural antioxidant and a preventive agent for many diseases caused by free radicals.

  2. Synthesis of diethylamine-functionalized soybean oil.

    PubMed

    Biswas, Atanu; Adhvaryu, Atanu; Gordon, Sherald H; Erhan, Sevim Z; Willett, Julious L

    2005-11-30

    Specialty chemicals based on renewable resources are desirable commodities due to their eco-friendly nature and "green" product characteristics. These chemicals can demonstrate physical and chemical properties comparable to those of conventional petroleum-based products. Suitably functionalized amines in the triacylglycerol structure can function as an antioxidant, as well as an antiwear/antifriction agent. In addition, the amphiphilic nature of seed oils makes them an excellent candidate as base fluid. The reaction of amine and epoxidized seed oils in the presence of a catalyst almost always leads to different intra/intermolecular cross-linked products. In most cases, the triacylglycerol structure is lost due to disruption of the ester linkage. Currently, there is no reported literature describing the aminolysis of vegetable oil without cross-linking. Here the epoxy group of the epoxidized soybean oil has been selectively reacted with amines to give amine-functionalized soybean oil. The optimization procedure involved various amines and catalysts for maximum aminolysis, without cross-linking and disruption of the ester linkage. Diethylamine and ZnCl2 were found to be the best. NMR, IR, and nitrogen analysis were used to characterize the products. PMID:16302766

  3. Performance of Regular and Modified Canola and Soybean Oils in Rotational Frying.

    PubMed

    Przybylski, Roman; Gruczynska, Eliza; Aladedunye, Felix

    2013-01-01

    Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1-2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment. PMID:23976786

  4. Performance of Regular and Modified Canola and Soybean Oils in Rotational Frying.

    PubMed

    Przybylski, Roman; Gruczynska, Eliza; Aladedunye, Felix

    2013-01-01

    Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1-2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.

  5. Variation of unsaturated fatty acids in soybean sprout of high oleic acid accessions.

    PubMed

    Dhakal, Krishna Hari; Jung, Ki-Hwal; Chae, Jong-Hyun; Shannon, J Grover; Lee, Jeong-Dong

    2014-12-01

    Oleic acid and oleic acid rich foods may have beneficial health effects in humans. Soybeans with high oleic acid (around 80% in seed oil) have been developed. Soybean sprouts are an important vegetable in Korea, Japan and China. The objective of this study was to investigate the variation of unsaturated fatty acids, oleic, linoleic and α-linolenic acids, in sprouts from soybeans with normal and high oleic acid concentration. Twelve soybean accessions with six high oleic acid lines, three parents of high oleic acid lines, and three checks with normal and high oleic acid concentration were used in this study. The unsaturated fatty acid concentration in sprouts from each genotype was similar to the concentration in the ungerminated seed. The oleic acid concentration in the sprouts of high oleic acid lines (up to 80%) was still high (>70%) compared to the ungerminated seed. Thus, high oleic soybean varieties developed for sprout production could add valuable health benefits to sprouts and the individuals who consume this vegetable.

  6. Antioxidant activity of sesamol in soybean oil under frying conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antioxidant activity of sesamol was investigated in soybean oil using a miniaturized frying experiment with potato cubes fried at 180 °C. Oxidation of soybean oil was determined by gel permeation chromatography for polymerized triacylglycerols and by 1H NMR spectroscopy for reactions at reactive si...

  7. Biological Networks Underlying Soybean Seed Oil Composition and Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  8. Effect of stearidonic acid-enriched soybean oil on fatty acid profile and metabolic parameters in lean and obese Zucker rats

    PubMed Central

    2013-01-01

    Background Consumption of marine-based oils high in omega-3 polyunsaturated fatty acids (n3PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to protect against obesity-related pathologies. It is less clear whether traditional vegetable oils with high omega-6 polyunsaturated fatty acid (n6PUFA) content exhibit similar therapeutic benefits. As such, this study examined the metabolic effects of a plant-based n3PUFA, stearidonic acid (SDA), in polygenic obese rodents. Methods Lean (LZR) and obese Zucker (OZR) rats were provided either a standard westernized control diet (CON) with a high n6PUFA to n3PUFA ratio (i.e., 16.2/1.0) or experimental diet modified with flaxseed (FLAX), menhaden (FISH), or SDA oil that resulted in n6PUFA to n3PUFA ratios of 1.7/1.0, 1.3/1.0, and 1.0/0.8, respectively. Results After 12 weeks, total adiposity, dyslipidemia, glucose intolerance, and hepatic steatosis were all greater, whereas n3PUFA content in liver, adipose, and muscle was lower in OZR vs. LZR rats. Obese rodents fed modified FISH or SDA diets had lower serum lipids and hepatic fat content vs. CON. The omega-3 index (i.e., ΣEPA + DHA in erythrocyte membrane) was 4.0, 2.4, and 2.0-fold greater in rodents provided FISH, SDA, and FLAX vs. CON diet, irrespective of genotype. Total hepatic n3PUFA and DHA was highest in rats fed FISH, whereas both hepatic and extra-hepatic EPA was higher with FISH and SDA groups. Conclusions These data indicate that SDA oil represents a viable plant-derived source of n3PUFA, which has therapeutic implications for several obesity-related pathologies. PMID:24139088

  9. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans.

  10. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    PubMed Central

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  11. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  12. Detection and quantification of hogwash oil in soybean oils using low-cost spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Cichelli, A.; Xing, J.; Yang, X.; Sun, W.; Yuan, L.

    2013-05-01

    This paper presents the detection and quantification of hogwash oil in soybean oils by means of absorption spectroscopy. Three types of soybean oils were adulterated with different concentrations of hogwash oil. The spectra were measured in the visible band using a white LED and a low-cost spectrometer. The measured spectra were processed by means of multivariate analysis to distinguish the adulteration and, for each soybean oil, to quantify the adulterant concentration. Then the visible spectra were sliced into two bands for modeling a simple setup made of two LEDs only. The successful results indicate potentials for implementing a smartphone-compatible device for self-assessment of soybean oil quality.

  13. Evaluation of a novel soybean oil-based surfactant for fine emulsion preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is currently the world’s second largest source of vegetable oil. The growth in soybean oil production and the concerns over petrochemical surfactants have promoted the development of soybean oil-based surfactants. In this paper, we briefly describe the synthesis and properties of soybean...

  14. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-11-21

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method.

  15. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.

  16. Production of polyol oils from soybean oil by Pseudomonas aeruginosa E03-12.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyols are important starting materials for the manufacture of polymers such as polyurethane. We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus ...

  17. Production of polyol oils from soybean oil by bioprocess and Philippines edible medicinal wild mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus A01-35 (NRRL B-59985) (Hou and Lin, 2013). The objective of this study is to identify the chemical ...

  18. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  19. Mapping the low palmitate fap1 mutation and validation of its effects on soybean oil and agronomic traits in three soybean populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil with reduced palmitic acid content is desirable to reduce the risks of coronary diseases and; breast, colon, and prostate cancer incidence associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mut...

  20. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  1. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  2. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  3. Stabilization of soybean oil bodies by enzyme (laccase) cross-linking of adsorbed beet pectin coatings.

    PubMed

    Chen, Bingcan; McClements, David Julian; Gray, David A; Decker, Eric Andrew

    2010-08-25

    Soybean oil bodies are naturally coated by a layer of phospholipids and oleosin proteins, which protect them from in vivo environmental stresses. When oil bodies are incorporated into food products, they encounter new environmental stresses such as changes in pH, ionic strength, and temperature. Consequently, additional protection mechanisms are often needed to stabilize them. The purpose of this study was to determine whether soybean oil bodies could be stabilized by coating them with a layer of cross-linked anionic polysaccharide (beet pectin). The beet pectin layer was cross-linked via its ferulic acid groups using laccase (an enzyme that catalyzes the oxidation of phenolic groups). Oil body suspensions were prepared that contained 1 wt % oil and 0.06 wt % beet pectin at pH 7 and were then adjusted to pH 4.5 to promote electrostatic deposition of the beet pectin molecules onto the surfaces of the oil bodies. Laccase was then added to promote cross-linking of the adsorbed beet pectin layer. Cross-linked pectin-coated oil bodies had similar or better stability than uncoated oil bodies to pH changes (3 to 7), NaCl addition (0 to 500 mM), and freeze-thaw cycling (-20 °C for 22 h; +40 °C for 2 h). These pectin-coated oil bodies may provide a convenient means of incorporating soybean oil into food and other products.

  4. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    PubMed Central

    Zhang, Ling; Yang, Xiang-dong; Zhang, Yuan-yu; Yang, Jing; Qi, Guang-xun; Guo, Dong-quan; Xing, Guo-jie; Yao, Yao; Xu, Wen-jing; Li, Hai-yun; Li, Qi-yun; Dong, Ying-shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. PMID:25197629

  5. Changes in oleic Acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing.

    PubMed

    Zhang, Ling; Yang, Xiang-Dong; Zhang, Yuan-Yu; Yang, Jing; Qi, Guang-Xun; Guo, Dong-Quan; Xing, Guo-Jie; Yao, Yao; Xu, Wen-Jing; Li, Hai-Yun; Li, Qi-Yun; Dong, Ying-Shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts.

  6. Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...

  7. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  8. Enzymatic epoxidation of soybean oil using ionic liquid as reaction media.

    PubMed

    Sun, Shangde; Li, Ping; Bi, Yanlan; Xiao, Fugang

    2014-01-01

    An ionic liquid (IL) system for the enzymatic epoxidation of soybean oil was studied. The effects of active oxygen carriers (different fatty acids) and ILs ([Bmim]PF6 and [Bmim]BF4) on the enzymatic epoxidation were investigated. Response surface methodology (RSM) was used to study and optimize the effects of variables (reaction time, reaction temperature, molar ratio of H2O2/C=C-bonds, and molar ratio of fatty acid/C=C-bonds) on the epoxy oxygen group content (EOC) of epoxidized soybean oil (ESO). Results showed that the enzymatic epoxidation of soybean oil can be enhanced using tetradecanoic acid (C13H27COOH) as active oxygen carrier and [Bmim]PF6 as reaction medium. The optimum EOC of ESO was 5.9 ± 0.3% under the following conditions: reaction temperature 46°C, reaction time 11 h, enzyme load 3% (w/w, relative to the weight of soybean oil), molar ratio of H2O2/C=C-bonds 1.8:1, and molar ratio of C13H27COOH/C=C-bonds 0.5:1.

  9. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  10. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO 4

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Jeong, Ji Hwa; Kim, Ick-Jun; Kim, Hyun-Soo

    Kitchen oils (olive, soybean and butter) are selected for carbon coatings on LiFePO 4. The surface properties of LiFePO 4 are unknown or vary depending on synthetic methods. The multi-functional groups of fatty acids in the oils can orient properly to cope with the variable surface properties of LiFePO 4, which can lead to dense carbon coatings. The low price and low toxicity of kitchen oils are other advantages of the coating process. LiFePO 4 (D 50 = 121 nm)combined with the carbon coating enhances the rate capability. Capacities at the 2 C rate reach 150 mAh g -1 or higher. The charge retention values of 2.0 C/0.2 C are between 94.4 and 98.9%.

  11. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content

    PubMed Central

    2014-01-01

    Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115

  12. Phenolic compounds from Andean mashua (Tropaeolum tuberosum) tubers display protection against soybean oil oxidation.

    PubMed

    Betalleluz-Pallardel, I; Chirinos, R; Rogez, H; Pedreschi, R; Campos, D

    2012-06-01

    Phenolic compounds from mashua tuber were evaluated as potential antioxidants to retard the oxidation of crude soybean oil submitted to accelerated storage and frying. During the accelerated storage, an ethanolic crude extract, a purified extract, an aqueous fraction and an ethyl acetate fraction from mashua containing different gallic acid equivalent concentrations (100, 300 and 600 ppm) in oil were evaluated at 55 °C. After 15 days of storage, better effects were evidenced against soybean oil oxidation at 300 and 600 ppm of ethyl acetate fraction in comparison to 200 ppm butylated hydroxytoluene and the control (no antioxidant added). During the frying process at ∼180 °C, principal component analysis revealed that the content of trienes and dienes were strongly correlated with the frying batch. Ethyl acetate fraction at 200 ppm showed the highest efficacy against oil oxidation in terms of polar compound values, free fatty acids and conjugated dienes and trienes in comparison to the oil containing 200 ppm tert-butylhydroquinone and control. Differential scanning calorimetry corroborated the efficacy of ethyl acetate fraction phenolic and it is strongly recommended as method for validation of results. This study provides strong evidence related to the excellent protective effects against soybean oil oxidation of mashua phenolics. This crop could be utilized as an alternative source of natural antioxidants by the oil industry.

  13. Antioxidant activities of Vine Tea (Ampelopsis grossedentata) extract and its major component dihydromyricetin in soybean oil and cooked ground beef.

    PubMed

    Ye, Liyun; Wang, Hengjian; Duncan, Susan E; Eigel, William N; O'Keefe, Sean F

    2015-04-01

    Antioxidant activities of Ampelopsis grossedentata extract (EXT) and its major component dihydromyricetin (DHM) were analysed and compared with BHA in two model systems, soybean oil and cooked ground beef. Oxidation of soybean oil samples was measured using peroxide value, anisidine value, headspace volatiles and headspace oxygen content. TBARS (thiobarbituric acid reactive substances) test was used to measure the oxidation of cooked beef. DHM was more potent than BHA in preventing soybean oil oxidation. EXT was not as effective as BHA or DHM in soybean oil. In cooked beef, all three antioxidants significantly lowered oxidation compared to control, but there were no differences between the three. Mechanisms and potentials of EXT and DHM as natural food antioxidants need to be studied on a case-by-case basis.

  14. [Determination of epoxidized soybean oil in bottled foods].

    PubMed

    Kawamura, Yoko; Kanno, Shinji; Mutsuga, Motoh; Tanamoto, Kenichi

    2006-12-01

    A determination method for epoxidized soybean oil (ESBO) in bottled foods was developed and used to survey bottled foods on the Japanese market. The amount of sample required was decreased to 20 g and the standard addition method was adopted for the quantification, because lipid in foods interrupted the hydrolysis of ESBO. The recoveries were 87.1 and 98.9% and the determination limit was 5.0 microg/g for a 20 g sample, be cause lipid in foods interupted the hydrolysis of ESBO. The recoveries using the internal standard method varied widely, because hydrolysis of the internal standard, cis-11,14-eicosadienoic acid ethyl ester, was affected more than that of ESBO by coexisting lipid in the sample. ESBO was not detected in any of the bottled baby food samples examined (14 samples), though it had been frequently detected in previous European surveys. This difference may be related to the low fat content and low fluidity of the bottled baby foods retailed in Japan. On the other hand, ESBO was detected at levels of 25.7-494.0 microg/g in liver paste, pasta sauce, Sungan in spicy oil, and spicy oil. These foods had higher fat content and higher fluidity. However, ESBO intake from these foods appears unlikely to exceed the TDI in the EU (1 mg/kg bw/day). PMID:17228787

  15. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  16. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  17. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  18. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  19. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

  20. Effect of sprouting and roasting processes on some physico-chemical properties and mineral contents of soybean seed and oils.

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2014-07-01

    Free fatty acid contents of sprouted soybean oil were found between 1.26% (Adasoy) and 4.20% (Nazlıcan and Türksoy). Peroxide values (PV) of sprouted soybean oils were found between 1.52meq/kg (Adasoy) and 3.85meq/kg (A3935), while peroxide values of roasted seed oils were determined between 2.52meq/kg (Adasoy) and 4.03meq/kg (Nova). Palmitic, oleic and linoleic acids were found as major fatty acids of soybean genotypes. Oleic acid contents of samples were found between 19.07% (roasted Adasoy) and 35.31% (roasted A3935), linoleic contents of oils ranged between 42.17% (roasted Nazlican) and 54.76% (sprouted A3127). Macro and micro element contents of sprouted, oven roasted and raw (untreated) soybean seeds were determined by Inductively Coupled Plasma Atomic Emission Spectrometry. The potassium contents of soybean seeds ranged between 16,375mg/kg (raw Adasoy) and 20,357mg/kg (sprouted A3127, while phosphorus contents of seeds varied from 5427mg/kg (oven roasted Türksoy) to 7759mg/kg (sprouted Nova). The micro element contents of samples were found to be different depending on the processing procedures and soybean genotypes.

  1. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation. PMID:26980811

  2. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation.

  3. Integrated and comparative proteomics of high-oil and high-protein soybean seeds.

    PubMed

    Xu, Xiu Ping; Liu, Hui; Tian, Lihong; Dong, Xiang Bai; Shen, Shi Hua; Qu, Le Qing

    2015-04-01

    We analysed the global protein expression in seeds of a high-oil soybean cultivar (Jiyu 73, JY73) by proteomics. More than 700 protein spots were detected and 363 protein spots were successfully identified. Comparison of the protein profile of JY73 with that of a high-protein cultivar (Zhonghuang 13, ZH13) revealed 40 differentially expressed proteins, including oil synthesis, redox/stress, hydrolysis and storage-related proteins. All redox/stress proteins were less or not expressed in JY73, whereas the expression of the major storage proteins, nitrogen and carbon metabolism-related proteins was higher in ZH13. Biochemical analysis of JY73 revealed that it was in a low oxidation state, with a high content of polyunsaturated fatty acids and vitamin E. Vitamin E was more active than antioxidant enzymes and protected the soybean seed in a lower oxidation state. The characteristics of high oil and high protein in soybean, we revealed, might provide a reference for soybean nutrition and soybean breeding.

  4. Effect of Delta 9–Stearoyl-ACP-Desaturase-C mutants in a high oleic background on soybean seed oil composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil typically contains 2-4% stearic acid. Oil with at least 20% stearic acid is desirable because of its baking properties and health profile. This study identifies two new sources of high stearic acid and evaluates the interaction of high stearic and oleic acid al...

  5. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  6. Toughening of epoxy resins by epoxidized soybean oil

    SciTech Connect

    Frischinger, I.; Dirlikov, S.

    1993-12-31

    Homogeneous mixtures of a liquid rubber based on prepolymers of epoxidized soybean oil with amines, diglycidyl ether of bisphenol A epoxy resins, and commercial diamines form, under certain conditions, two-phase thermosetting materials that consist of a rigid epoxy matrix and randomly distributed small rubbery soybean particles (0.1-5 {mu}m). These two-phase thermosets have improved toughness, similar to that of other rubber-modified epoxies, low water absorption, and low sodium content. In comparison to the unmodified thermosets, the two-phase thermosets exhibit slightly lower glass-transition temperatures and Young`s moduli, but their dielectric properties do not change. The epoxidized soybean oil is available at a price below that of commercial epoxy resins and appears very attractive for epoxy toughening on an industrial scale. 15 refs., 17 figs., 6 tabs.

  7. Soybean Oil: Powering a High School Investigation of Biodiesel

    ERIC Educational Resources Information Center

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  8. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  9. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  10. Food use and health effects of soybean and sunflower oils.

    PubMed

    Meydani, S N; Lichtenstein, A H; White, P J; Goodnight, S H; Elson, C E; Woods, M; Gorbach, S L; Schaefer, E J

    1991-10-01

    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor

  11. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  12. Antioxidative effect of loquat (Eriobotrya japonica Lindl.) fruit skin extract in soybean oil

    PubMed Central

    Delfanian, Mojtaba; Esmaeilzadeh Kenari, Reza; Sahari, Mohammad Ali

    2015-01-01

    The aim of this study was to compare the effects of solvent and ultrasound-assisted extraction methods with supercritical fluid extraction on antioxidant activity of loquat (Eriobotrya japonica Lindl.) fruit skin extract in stability of soybean oil at 25°C. Oxidative stability alterations of soybean oils containing 400 (SEA) and 1000 ppm (SEB) of ethanol extract, 400 (SSA) and 1000 ppm (SSB) of supercritical CO2 extract, 400 (SUA) and 1000 ppm (SUB) of ultrasound-assisted extract, and 100 ppm of tertiary butylhydroquinone (TBHQ) were monitored by measuring the peroxide value, thiobarbituric acid value, free fatty acids, conjugated dienes and trienes values. Oxidative changes in SEA were lower than that of oils treated with other extracts, but the best protection was observed in soybean oil consisting TBHQ. The solvent extraction method produces the maximum amount of phenolic and tocopherol compounds from loquat fruit skin. Therefore, solvent extraction method had a better effect on antioxidant activity of the loquat fruit skin extract. PMID:25648044

  13. Antioxidative effect of loquat (Eriobotrya japonica Lindl.) fruit skin extract in soybean oil.

    PubMed

    Delfanian, Mojtaba; Esmaeilzadeh Kenari, Reza; Sahari, Mohammad Ali

    2015-01-01

    The aim of this study was to compare the effects of solvent and ultrasound-assisted extraction methods with supercritical fluid extraction on antioxidant activity of loquat (Eriobotrya japonica Lindl.) fruit skin extract in stability of soybean oil at 25°C. Oxidative stability alterations of soybean oils containing 400 (SEA) and 1000 ppm (SEB) of ethanol extract, 400 (SSA) and 1000 ppm (SSB) of supercritical CO2 extract, 400 (SUA) and 1000 ppm (SUB) of ultrasound-assisted extract, and 100 ppm of tertiary butylhydroquinone (TBHQ) were monitored by measuring the peroxide value, thiobarbituric acid value, free fatty acids, conjugated dienes and trienes values. Oxidative changes in SEA were lower than that of oils treated with other extracts, but the best protection was observed in soybean oil consisting TBHQ. The solvent extraction method produces the maximum amount of phenolic and tocopherol compounds from loquat fruit skin. Therefore, solvent extraction method had a better effect on antioxidant activity of the loquat fruit skin extract.

  14. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products. PMID:23361970

  15. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  16. Anti-oxidative effect of turmeric on frying characteristics of soybean oil.

    PubMed

    Banerjee, Anindita; Ghosh, Santinath; Ghosh, Mahua

    2015-03-01

    Curcumin, the active principle of turmeric, is known to act as an anti-oxidant, anti-mutagen and anti-carcinogen. This study aimed to find out the thermal and oxidative stability of soybean oil when potatoes marinated with turmeric were deep fried in the oil. Two sets of experiment were carried out. In one set, 1 L of oil was heated for 24 h (8 h daily for 3 consecutive days) and 200 g of potato chips without any marination were fried each time twice daily. Foods were fried in batches to replicate the commercial practice of the food industries. The temperature maintained during the whole experiment was at 180-190 °C i.e. at the frying temperature. About 50 ml of the oil sample was collected after every 4 h. In the second set, another 1 L of soybean oil was heated for 24 h in the similar manner and potato chips marinated with turmeric was fried twice daily. Oil samples were collected as before and comparative studies were done. The chemical parameters like acid value, peroxide value, content of 4-hydroxy-2-trans-nonenal (HNE) and fatty acid composition for all the oil samples of each set were determined. The comparative studies on peroxide value and content of HNE revealed that the antioxidant property of curcumin in turmeric helped in reducing the oxidation of the oil initially, but with increase in duration of time, the antioxidant potency got gradually reduced. The loss of unsaturated fatty acids were calculated from the fatty acid composition and it was found that loss of unsaturation in soybean oil where turmeric marinated potatoes were fried was 6.37 % while the controlled one showed 7.76 % loss after 24 h of heating. These results indicated higher thermal and oxidative stability of the soybean oil in presence of turmeric. However, the antioxidant effect gradually decreased with increase in duration of heating.

  17. Anti-oxidative effect of turmeric on frying characteristics of soybean oil.

    PubMed

    Banerjee, Anindita; Ghosh, Santinath; Ghosh, Mahua

    2015-03-01

    Curcumin, the active principle of turmeric, is known to act as an anti-oxidant, anti-mutagen and anti-carcinogen. This study aimed to find out the thermal and oxidative stability of soybean oil when potatoes marinated with turmeric were deep fried in the oil. Two sets of experiment were carried out. In one set, 1 L of oil was heated for 24 h (8 h daily for 3 consecutive days) and 200 g of potato chips without any marination were fried each time twice daily. Foods were fried in batches to replicate the commercial practice of the food industries. The temperature maintained during the whole experiment was at 180-190 °C i.e. at the frying temperature. About 50 ml of the oil sample was collected after every 4 h. In the second set, another 1 L of soybean oil was heated for 24 h in the similar manner and potato chips marinated with turmeric was fried twice daily. Oil samples were collected as before and comparative studies were done. The chemical parameters like acid value, peroxide value, content of 4-hydroxy-2-trans-nonenal (HNE) and fatty acid composition for all the oil samples of each set were determined. The comparative studies on peroxide value and content of HNE revealed that the antioxidant property of curcumin in turmeric helped in reducing the oxidation of the oil initially, but with increase in duration of time, the antioxidant potency got gradually reduced. The loss of unsaturated fatty acids were calculated from the fatty acid composition and it was found that loss of unsaturation in soybean oil where turmeric marinated potatoes were fried was 6.37 % while the controlled one showed 7.76 % loss after 24 h of heating. These results indicated higher thermal and oxidative stability of the soybean oil in presence of turmeric. However, the antioxidant effect gradually decreased with increase in duration of heating. PMID:25745253

  18. The Effect of Fish Oil-Based Lipid Emulsion and Soybean Oil-Based Lipid Emulsion on Cholestasis Associated with Long-Term Parenteral Nutrition in Premature Infants

    PubMed Central

    Wang, Leilei; Zhang, Jing; Gao, Jiejin; Qian, Yan; Ling, Ya

    2016-01-01

    Purpose. To retrospectively study the effect of fish oil-based lipid emulsion and soybean oil-based lipid emulsion on cholestasis associated with long-term parenteral nutrition in premature infants. Methods. Soybean oil-based lipid emulsion and fish oil-based lipid emulsion had been applied in our neonatology department clinically between 2010 and 2014. There were 61 qualified premature infants included in this study and divided into two groups. Soybean oil group was made up of 32 premature infants, while fish oil group was made up of 29 premature infants. Analysis was made on the gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, age at which feeding began, usage of lipid emulsions, and incidence of cholestasis between the two groups. Results. There were no statistical differences in terms of gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, and age at which feeding began. Besides, total incidence of cholestasis was 21.3%, and the days of life of occurrence of cholestasis were 53 ± 5.0 days. Incidence of cholestasis had no statistical difference in the two groups. Conclusion. This study did not find the different role of fish oil-based lipid emulsions and soybean oil-based lipid emulsions in cholestasis associated with long-term parenteral nutrition in premature infants. PMID:27110237

  19. The Effect of Fish Oil-Based Lipid Emulsion and Soybean Oil-Based Lipid Emulsion on Cholestasis Associated with Long-Term Parenteral Nutrition in Premature Infants.

    PubMed

    Wang, Leilei; Zhang, Jing; Gao, Jiejin; Qian, Yan; Ling, Ya

    2016-01-01

    Purpose. To retrospectively study the effect of fish oil-based lipid emulsion and soybean oil-based lipid emulsion on cholestasis associated with long-term parenteral nutrition in premature infants. Methods. Soybean oil-based lipid emulsion and fish oil-based lipid emulsion had been applied in our neonatology department clinically between 2010 and 2014. There were 61 qualified premature infants included in this study and divided into two groups. Soybean oil group was made up of 32 premature infants, while fish oil group was made up of 29 premature infants. Analysis was made on the gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, age at which feeding began, usage of lipid emulsions, and incidence of cholestasis between the two groups. Results. There were no statistical differences in terms of gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, and age at which feeding began. Besides, total incidence of cholestasis was 21.3%, and the days of life of occurrence of cholestasis were 53 ± 5.0 days. Incidence of cholestasis had no statistical difference in the two groups. Conclusion. This study did not find the different role of fish oil-based lipid emulsions and soybean oil-based lipid emulsions in cholestasis associated with long-term parenteral nutrition in premature infants.

  20. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    PubMed

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  1. Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: Density, kinematic viscosity, and surface tensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A product with diesel like properties was synthesized by a pyrolysis method, from either edible soybean oil, or an inedible soybean soapstock starting material (PD and SD, respectively). Some physical properties of the material were studied, neat, and in blends; with both high sulfur and low sulfur...

  2. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    PubMed

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.

  3. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver

    PubMed Central

    Deol, Poonamjot; Evans, Jane R.; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S.; Spindler, Stephen; Sladek, Frances M.

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659

  4. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    PubMed

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659

  5. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  6. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  7. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate.

    PubMed

    Ju, Yi-Hsu; Huynh, Lien-Huong; Gunawan, Setiyo; Chern, Yaw-Terng; Kasim, Novy S

    2012-01-01

    Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly-easy-to-identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT-IR, TLC, elemental analysis, GC/FID, NMR and GC-MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives. PMID:22162261

  8. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-01-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO. PMID:26876674

  9. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-01-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO.

  10. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for soybean [Glycine max (L.) Merr.] meal has increased worldwide and soybean importers often offer premiums for soybean containing higher contents of protein and oil. Objectives were to detect quantitative trait loci (QTL) associated with soybean seed protein, oil, and seed weight in a soyb...

  11. Preparation of soybean oil-based greases: effect of composition and structure on physical properties.

    PubMed

    Adhvaryu, Atanu; Erhan, Sevim Z; Perez, Joseph M

    2004-10-20

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease.

  12. Preparation of soybean oil-based greases: effect of composition and structure on physical properties.

    PubMed

    Adhvaryu, Atanu; Erhan, Sevim Z; Perez, Joseph M

    2004-10-20

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease. PMID:15479006

  13. Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating.

    PubMed

    Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto

    2012-08-01

    Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample.

  14. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  15. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain.

  16. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain. PMID:21479540

  17. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    PubMed

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  18. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    PubMed

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions.

  19. Milk and cheese from cows fed calcium salts of palm and fish oil alone or in combination with soybean products.

    PubMed

    Allred, S L; Dhiman, T R; Brennand, C P; Khanal, R C; McMahon, D J; Luchini, N D

    2006-01-01

    Twenty cows were used in a randomized block design experiment for 6 wk to determine the influence of feeding partial ruminally inert Ca salts of palm and fish oil (Ca-PFO), alone or in combination with extruded full-fat soybeans or soybean oil, on milk fatty acid (FA) methyl esters composition and consumer acceptability of milk and Cheddar cheese. Cows were fed either a diet containing 44% forage and 56% concentrate (control) or a diet supplemented with 2.7% Ca-PFO (FO), 5% extruded full-fat soybeans + 2.7% Ca-PFO (FOESM), or 0.75% soybean oil + 2.7% Ca-PFO (FOSO). Total dietary FA content in the control, FO, FOESM, and FOSO diets were 4.61, 6.28, 6.77, and 6.62 g/100 g, respectively. There was no difference in nutrient intake, milk yield, or milk composition among treatments. Conjugated linoleic acid (CLA) C(18:2) cis-9, trans-11 isomer, C(18:1) trans-11 (VA), and total n-3 FA in milk from cows on the control, FO, FOESM, and FOSO treatments were 0.56, 1.20, 1.36, and 1.74; 3.29, 4.66, 6.34, and 7.81; 0.62, 0.69, 0.69, and 0.67 g/100 g of FA, respectively. Concentrations of CLA, VA, and total n-3 FA in cheese were similar to milk. A trained sensory panel detected no difference in flavors of milk and cheese, except for acid flavor below a slightly perceptible level in cheese from all treatments. Results suggest that feeding Ca-PFO alone or in combination with extruded full-fat soybeans or soybean oil enhanced the CLA, VA, total unsaturated and n-3 FA in milk and cheese without negatively affecting cow performance and consumer acceptability characteristics of milk and cheese.

  20. Molecular Interactions between a Novel Soybean Oil-Based Polymer and Doxorubicin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel soybean oil-based polymer, hydrolyzed polymers of epoxidized soybean oil (HPESO), was developed and investigated for drug delivery. This work was aimed at determining the molecular interactions between HPESO and doxorubicin (DOX), an anticancer drug. Powder X-ray diffraction, ATR-FTIR and ...

  1. Effect of soybean oil on oxygen transfer in the production of tetracycline with an airlift bioreactor.

    PubMed

    Jia, S; Chen, G; Kahar, P; Choi, D B; Okabe, M

    1999-01-01

    Corn starch and soybean oil are suitable carbon sources for the production of tetracycline by Streptomyces aureofacience CG-1. However, it could not produce more than 6 g/l of tetracycline even if initial corn starch concentration was increased to more than 100 g/l. It was confirmed by shaking flask experiments that the k(L)a in a mixture of 2% soybean oil in water was four folds compared with that without soybean oil. With the addition of soybean oil to the starch medium in a shaking flask, tetracycline production was significantly improved. By scaling-up to a 5.5-l airlift bioreactor from 500-ml Erlenmeyer flask, more than 10 g/l of tetracycline was produced with the addition of 60 g/l of soybean oil to the medium containing 100 g/l of corn starch. The dissolved oxygen level in the airlift bioreactor containing soybean oil was higher than that without soybean oil. This suggests that soybean oil is not only a suitable carbon source but is also a surface-active agent which may accelerate the oxygen transfer. This may lead to the possibility of the enhanced production of tetracycline at a low cost in airlift bioreactor.

  2. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  3. Oxidation and low temperature stability of polymerized soybean oil-based lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation and low temperature stability of polymerized soybean oil (PSO)-based lubricants have been investigated by the pressurized differential scanning calorimetry (PDSC) method. It was found that PSO samples have lower oxidative stability than their precursor, soybean oil. The main reason for the...

  4. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  5. Investigation of conjugated soybean oil as drying oils and CLA sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A promising pound-scale production method for the conjugation of soybean oil (SBO) using iodine under photochemical reaction conditions is reported. Variations in catalyst loading, SBO concentration, light source, free radical catalyst source, solvent, and temperature were studied. A quantitative ...

  6. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and

  7. The integral and extrinsic bioactive proteins in the aqueous extracted soybean oil bodies.

    PubMed

    Zhao, Luping; Chen, Yeming; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2013-10-01

    Soybean oil bodies (OBs), naturally pre-emulsified soybean oil, have been examined by many researchers owing to their great potential utilizations in food, cosmetics, pharmaceutical, and other applications requiring stable oil-in-water emulsions. This study was the first time to confirm that lectin, Gly m Bd 28K (Bd 28K, one soybean allergenic protein), Kunitz trypsin inhibitor (KTI), and Bowman-Birk inhibitor (BBI) were not contained in the extracted soybean OBs even by neutral pH aqueous extraction. It was clarified that the well-known Gly m Bd 30K (Bd 30K), another soybean allergenic protein, was strongly bound to soybean OBs through a disulfide bond with 24 kDa oleosin. One steroleosin isoform (41 kDa) and two caleosin isoforms (27 kDa, 29 kDa), the integral bioactive proteins, were confirmed for the first time in soybean OBs, and a considerable amount of calcium, necessary for the biological activities of caleosin, was strongly bound to OBs. Unexpectedly, it was found that 24 kDa and 18 kDa oleosins could be hydrolyzed by an unknown soybean endoprotease in the extracted soybean OBs, which might give some hints for improving the enzyme-assisted aqueous extraction processing of soybean free oil.

  8. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

  9. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks.

    PubMed

    Pignitter, Marc; Stolze, Klaus; Gartner, Stephanie; Dumhart, Bettina; Stoll, Christiane; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-03-12

    Light, temperature, and oxygen availability has been shown to promote rancidity in vegetable oils. However, the contribution of each of these environmental factors to lipid oxidation in oil stored under household conditions is not known. We aimed to identify the major inducer of oxidative deterioration of soybean oil stored at constant (67.0 mL) or increasing (67.0-283 mL) headspace volume, 22 or 32 °C, with or without illumination by cold fluorescent light for 56 days by means of fatty acid composition, peroxide value, formation of conjugated dienes, lipid radicals, hexanal, and the decrease in the contents of tocopherols. Soybean oil stored in the dark for 56 days showed an increase of the peroxide value by 124 ± 0.62% (p = 0.006), whereas exposure of the oil to light in a cycle of 12 h light alternating with 12 h darkness for 56 days led to a rise of the peroxide value by 1473 ± 1.79% (p ≤ 0.001). Little effects on the oxidative status of the oil were observed after elevating the temperature from 22 to 32 °C and the headspace volume from 67.0 to 283 mL during 56 days of storage. We conclude that storing soybean oil in transparent bottles under household conditions might pose an increased risk for accelerated lipid oxidation induced by exposure to cold fluorescent light. PMID:24548005

  10. Efficient production of free fatty acids from soybean meal carbohydrates.

    PubMed

    Wang, Dan; Thakker, Chandresh; Liu, Ping; Bennett, George N; San, Ka-Yiu

    2015-11-01

    Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids.

  11. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  12. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  13. Effect of sodium and potassium salts on the extraction of 1-butanol from aqueous solution by the ethyl esters of soybean oil fatty acids

    SciTech Connect

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1985-01-01

    The effect of 0 to 0.15 M sodium chloride, sulfate, and sulfite, and potassium acid phosphate on the extraction of 0.1 to 4.1% 1-butanol from aqueous solutions (derived from fermentation of wood pulp liquors) at 25, 40, and 55 C was evaluated using a factorial experiment. The changes in distribution coefficient were small, with mild increases occurring with increasing temperature and increasing sodium chloride, sodium sulfate, and potassium acid phosphate. Mild decreases in 1-butanol extraction occurred with increasing sodium sulfite. 6 refs., 4 tabs.

  14. Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed.

    PubMed

    Carrero-Colón, Militza; Abshire, Nathan; Sweeney, Daniel; Gaskin, Erik; Hudson, Karen

    2014-01-01

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a chemically mutagenized population. Six mutants ranged in stearate content from 6-14% stearic acid, which is 1.5 to 3 times the levels contained in wild-type seed of the Williams 82 cultivar. Candidate gene sequencing revealed that all of these lines carried amino acid substitutions in the gene encoding the delta-9-stearoyl-acyl-carrier protein desaturase enzyme (SACPD-C) required for the conversion of stearic acid to oleic acid. Five of these missense mutations were in highly conserved residues clustered around the predicted di-iron center of the SACPD-C enzyme. Co-segregation analysis demonstrated a positive association of the elevated stearate trait with the SACPD-C mutation for three populations. These missense mutations may provide additional alleles that may be used in the development of new soybean cultivars with increased levels of stearic acid.

  15. Mutations in SACPD-C Result in a Range of Elevated Stearic Acid Concentration in Soybean Seed

    PubMed Central

    Carrero-Colón, Militza; Abshire, Nathan; Sweeney, Daniel; Gaskin, Erik; Hudson, Karen

    2014-01-01

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a chemically mutagenized population. Six mutants ranged in stearate content from 6–14% stearic acid, which is 1.5 to 3 times the levels contained in wild-type seed of the Williams 82 cultivar. Candidate gene sequencing revealed that all of these lines carried amino acid substitutions in the gene encoding the delta-9-stearoyl-acyl-carrier protein desaturase enzyme (SACPD-C) required for the conversion of stearic acid to oleic acid. Five of these missense mutations were in highly conserved residues clustered around the predicted di-iron center of the SACPD-C enzyme. Co-segregation analysis demonstrated a positive association of the elevated stearate trait with the SACPD-C mutation for three populations. These missense mutations may provide additional alleles that may be used in the development of new soybean cultivars with increased levels of stearic acid. PMID:24846334

  16. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  17. Sonication-assisted production of biodiesel using soybean oil and supercritical methanol.

    PubMed

    Gobikrishnan, Sriramulu; Park, Jae-Hee; Park, Seok-Hwan; Indrawan, Natarianto; Rahman, Siti Fauziyah; Park, Don-Hee

    2013-06-01

    High temperature and pressure are generally required to produce biodiesel using supercritical methanol. We reduced the harsh reaction conditions by means of sonicating the reaction mixture prior to transesterification using supercritical methanol. Soybean oil was selected as the raw material for transesterification. As soybean oil contains more unsaturated fatty acid triglycerides, the biodiesel degraded more at high temperature. The reactants were sonicated for 60 min at 35 °C prior to transesterification to avoid degradation of the product and to enhance biodiesel yield at temperatures <300 °C. The process parameters were optimized using central composite design. The variables selected for optimization were temperature, time, and the oil to methanol molar ratio. The temperature and oil to methanol molar ratios were varied from 250 to 280 °C and 1:40-1:50, respectively. The reaction time was tested between 4 and 12 min. The biodiesel was analyzed for any possible degradation by gas chromatography-mass spectroscopy and for the wt% of fatty acid methyl esters (FAME) obtained. The maximum FAME yield (84.2 wt%) was obtained at a temperature of 265.7 °C, an oil to alcohol molar ratio of 1:44.7, and a time of 8.8 min. The optimum yield was obtained at a pressure of 1,500 psi. The pressure and optimum temperature used to obtain the maximum yield were the lowest reported so far without the use of a co-solvent. Thus, the severity of the supercritical reactions was reduced by adding sonication prior to the reaction. PMID:23380939

  18. Production of polyol oils from soybean oil through bioprocess

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produced by a two-step chemical process involving epoxidation and then the subsequent opening of the oxirane ring. The objective of this study is to d...

  19. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    PubMed

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world.

  20. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    PubMed

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world. PMID:27022763

  1. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  2. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-06-02

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques.

  3. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  4. Mortadella sausage manufactured with Caiman yacare (Caiman crocodilus yacare) meat, pork backfat, and soybean oil.

    PubMed

    Morais, C S N; Morais Júnior, N N; Vicente-Neto, J; Ramos, E M; Almeida, J; Roseiro, C; Santos, C; Gama, L T; Bressan, M C

    2013-10-01

    Mortadellas manufactured using Caiman yacare meat (70%) and pork fat (30%) were reformulated by substituting pork fat with increasing amounts of soybean oil (25%, 50%, and 100%) and evaluated 7, 30, and 60 days post-manufacture. The substitutions resulted in an increase in fat content and in the percentage of polyunsaturated fatty acids (total PUFA; 18:2 n-6 and 18:3 n-3), and a reduction in saturated fatty acids (total SFA; 14:0 and 16:0). These alterations reduced (P<0.01) the indices of atherogenicity and thrombogenicity by 4- to 5-fold in the formulation with 100% soybean oil compared to the original formulation. The levels of TBARS obtained at day 7 were positively correlated (P<0.01) with 18:2 n-6 and 18:3 n-3 (r=0.83 and 0.84, respectively) and negatively correlated with 17:0 and 17:1 (r=-0.91 and -0.89, respectively). All formulations received favourable overall acceptability by the sensory panel.

  5. High-fat diets containing soybean or canola oil affect differently pancreas function of young male rats.

    PubMed

    da Costa, C A S; Carlos, A S; de Sousa Dos Santos, A; de Moura, E G; Nascimento-Saba, C C A

    2013-09-01

    The excessive fat intake generally might induce obesity and metabolic disturbances. Thus, the goal of the study was to assess the role of high-fat diets containing soybean or canola oil on intra-abdominal adiposity and pancreatic morphology and function of young rats. After weaning, rats were fed with a control diet (7S) or a high-fat diet containing soybean oil (19S) or canola oil (19C) until they were 60 days old, when they were sacrificed. Food intake (g/day), body mass and length, retroperitoneal and epididymal fat mass, HOMA-IR, HOMA-β and area of pancreatic islets were assessed. The results were considered different with a significant level of p<0.05. Both 19S and 19C groups showed higher body mass, length, and retroperitoneal fat mass. The 19C group showed higher HOMA-IR (+43% and +78%) and HOMA-β (+40% and +59%) than 19S and 7S groups, respectively. Both 19S and 19C groups showed lower pancreatic islets area in relation to 7S group. Meantime, 19C presented lower percentage of pancreatic islets area in comparison to 19S (-41%) and 7S group (-70%, p<0.0001). Independent of soybean or canola oil, the high fat diet promoted development of the obesity. Comparing 19C and 19S groups, the higher concentrations of monounsaturated fatty acids, present in the canola oil were worse than higher concentrations of polyunsaturated fatty acids, present in the soybean oil.

  6. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998.

    PubMed

    Souza, Adriana Ferreira; Rodriguez, Dayana M; Ribeaux, Daylin R; Luna, Marcos A C; Lima E Silva, Thayse A; Andrade, Rosileide F Silva; Gusmão, Norma B; Campos-Takaki, Galba M

    2016-09-23

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 2² experimental designs with 1% inoculums (10⁷ cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2-5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm² of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources.

  7. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998.

    PubMed

    Souza, Adriana Ferreira; Rodriguez, Dayana M; Ribeaux, Daylin R; Luna, Marcos A C; Lima E Silva, Thayse A; Andrade, Rosileide F Silva; Gusmão, Norma B; Campos-Takaki, Galba M

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 2² experimental designs with 1% inoculums (10⁷ cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2-5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm² of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  8. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998

    PubMed Central

    Souza, Adriana Ferreira; Rodriguez, Dayana M.; Ribeaux, Daylin R.; Luna, Marcos A. C.; Lima e Silva, Thayse A.; Andrade, Rosileide F. Silva; Gusmão, Norma B.; Campos-Takaki, Galba M.

    2016-01-01

    Almost all oleaginous microorganisms are available for biodiesel production, and for the mechanism of oil accumulation, which is what makes a microbial approach economically competitive. This study investigated the potential that the yeast Candida lipolytica UCP0988, in an anamorphous state, has to produce simultaneously a bioemulsifier and to accumulate lipids using inexpensive and alternative substrates. Cultivation was carried out using waste soybean oil and corn steep liquor in accordance with 22 experimental designs with 1% inoculums (107 cells/mL). The bioemulsifier was produced in the cell-free metabolic liquid in the late exponential phase (96 h), at Assay 4 (corn steep liquor 5% and waste soybean oil 8%), with 6.704 UEA, IE24 of 96.66%, and showed an anionic profile. The emulsion formed consisted of compact small and stable droplets (size 0.2–5 µm), stable at all temperatures, at pH 2 and 4, and 2% salinity, and showed an ability to remove 93.74% of diesel oil from sand. The displacement oil (ODA) showed 45.34 cm2 of dispersion (central point of the factorial design). The biomass obtained from Assay 4 was able to accumulate lipids of 0.425 g/g biomass (corresponding to 42.5%), which consisted of Palmitic acid (28.4%), Stearic acid (7.7%), Oleic acid (42.8%), Linoleic acid (19.0%), and γ-Linolenic acid (2.1%). The results showed the ability of C. lipopytica to produce both bioemulsifier and biodiesel using the metabolic conversion of waste soybean oil and corn steep liquor, which are economic renewable sources. PMID:27669227

  9. Safety assessment of SDA soybean oil: results of a 28-day gavage study and a 90-day/one generation reproduction feeding study in rats.

    PubMed

    Hammond, Bruce G; Lemen, Joan K; Ahmed, Gulam; Miller, Kathleen D; Kirkpatrick, Jeannie; Fleeman, Tammye

    2008-12-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) in the diet reduce risk of cardiac mortality. Fish oils are a dietary source of LC-PUFAs (EPA, DHA) but intake is low in Western diets. Adding beneficial amounts of LC-PUFAs to foods is limited by their instability and potential to impart off-flavors. Stearidonic acid (SDA), a precursor of EPA in man, is more stable than EPA/DHA in food matrices. SDA is present in fish oils (0.5-4%) and in nutraceuticals (echium, borage oil). Genes for Delta6, Delta15 desaturases were introduced into soybeans that convert linoleic and alpha-linolenic acid to SDA (15-30% fatty acids). Since addition of SDA soybean oil into human foods increases SDA intake, toxicology studies were undertaken to assess its safety. In a 28-day pilot study, rats were gavaged with SDA soybean oil at dosages up to 3g/kg body weight/day; no treatment-related adverse effects were observed. A 90-day/one generation rat reproduction study was subsequently conducted where SDA soybean oil was added to diets to provide daily doses of 1.5 and 4 g/kg body weight. There were no treatment-related adverse effects on parental animals or on reproductive performance and progeny development. PMID:18804141

  10. Concentrations of oxysterols in meat and meat products from pigs fed diets differing in the type of fat (palm oil or soybean oil) and vitamin E concentrations.

    PubMed

    Eder, K; Müller, G; Kluge, H; Hirche, F; Brandsch, C

    2005-05-01

    The aim of this study was to find out whether concentrations of oxysterols in pig meat are affected by dietary polyunsaturated fatty acids and vitamin E. 48 growth-finishing pigs were fed diets with either palm oil or soybean oil and vitamin E concentrations of 15, 40 or 200 mg/kg. Concentrations of oxysterols were analyzed in fresh and heat-processed (180 °C, 20 min) meat (M. longissimus dorsi) and in boiled sausage prepared from meat and back fat of the animals. Concentrations of oxysterols in fresh muscle were below 5 nmol/g dry matter; they were independent of the dietary fat type and vitamin E concentration. Heating caused a large increase of oxysterol concentration (up to 55 nmol/g dry matter). This effect was reduced by increasing dietary vitamin E concentration but was independent of the dietary fat. Sausage from pigs fed soybean oil had higher concentrations of oxysterols than sausage from pigs fed palm oil; vitamin E reduced concentrations of oxysterols in sausage from pigs fed soybean oil, but not in sausage from pigs fed palm oil.

  11. Oxidative susceptibility of low density lipoprotein from rabbits fed atherogenic diets containing coconut, palm, or soybean oils.

    PubMed

    Yap, S C; Choo, Y M; Hew, N F; Yap, S F; Khor, H T; Ong, A S; Goh, S H

    1995-12-01

    The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oil were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2(+)-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyunsaturated fatty acids and vitamin E.

  12. Optimizing dietary levels of menhaden and soybean oils and soybean lecithin for pre-gonadal somatic growth in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Gibbs, Victoria K.; Heflin, Laura E.; Jones, Warren T.; Powell, Mickie L.; Lawrence, Addison L.; Makowsky, Robert; Watts, Stephen A.

    2015-01-01

    Dietary lipids serve as important sources of energy and essential fatty acids for aquatic animals. Sources of animal and plant oils are increasingly limited as well as expensive, and dietary requirements associated with the inclusion of these oils must be carefully evaluated to facilitate sustainable and affordable formulations. In this study, we investigated quantities of menhaden oil (MO) with and without soybean lecithin or soybean oil (SO) to determine appropriate levels for optimal somatic growth for pre-gonadal juvenile Lytechinus variegatus. We prepared semi-purified diets that varied in neutral lipid content (0, 2, 4, or 8% dry matter) and soy lecithin (0 or 2%) and exchanged lipids reciprocally with purified starch while holding constant all other nutrients. We maintained laboratory-reared juvenile L. variegatus (average initial wet weight 82 ± 0.7 mg, mean ± SE , n = 9 treatment−1) in recirculating seawater systems and fed each daily a sub-satiation ration for five weeks. We assessed wet weights and test diameters every two weeks and at the end of the experiment (5 wk). Level of MO with or without soybean lecithin did not significantly affect wet weight gain; however, increasing levels of SO in the diet reduced wet weight gain and dry matter production efficiency and increased feed conversion ratio. Dry gut weight was positively correlated with level of MO. Lipid level in the gut increased with increasing dietary lipid level, regardless of source. These data suggest the composition of the SO is inhibitory for either nutrient absorption or metabolic processes associated with growth at this life stage. Diets containing total lipid levels of approximately 5 to 6% that include sources of n-3 fatty acids may support optimal growth for pre-gonadal juvenile L. variegatus. PMID:26146422

  13. Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds.

    PubMed

    Liu, Wen Xian; Liu, Hua Liang; Qu, Le Qing

    2013-09-01

    Oleosin is the most abundant protein in the oil bodies of plant seeds, playing an important role in regulating oil body formation and lipid accumulation. To investigate whether lipid accumulation in transgenic rice seeds depends on the expression level of oleosin, we introduced two soybean oleosin genes encoding 24 kDa proteins into rice under the control of an embryo-specific rice promoter REG-2. Overexpression of soybean oleosin in transgenic rice leads to an increase of seed lipid content up to 36.93 and 46.06 % higher than that of the non-transgenic control, respectively, while the overall fatty acid profiles of triacylglycerols remained unchanged. The overexpression of soybean oleosin in transgenic rice seeds resulted in more numerous and smaller oil bodies compared with wild type, suggesting that an inverse relationship exists between oil body size and the total oleosin level. The increase in lipid content is accompanied by a reduction in the accumulation of total seed protein. Our results suggest that it is possible to increase rice seed oil content for food use and for use as a low-cost feedstock for biodiesel by overexpressing oleosin in rice seeds.

  14. Production of polyol oils from soybean oil by bioprocess: results of microbial screening and identification of positive cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently we reported methods for microbial screening and production of polyol oils from soybean oil through bioprocessing (Hou and Lin, 2013). Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produce...

  15. Preparation of Soypolymers by Ring-opening Polymerization of Epoxdized Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scanning calorime...

  16. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  17. Thermophysical properties of conjugated soybean oil/corn stover biocomposites.

    PubMed

    Pfister, Daniel P; Larock, Richard C

    2010-08-01

    Novel "green composites" have been prepared using a conjugated soybean oil-based resin and corn stover as a natural fiber. Corn stover is the residue remaining after grain harvest and it is estimated that approximately 75 million tons are available annually in the United States. The effect of the amount of filler, the length of the fiber, and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Young's moduli and tensile strengths of the composites prepared range from 291 to 1398 MPa and 2.7 to 7.4 MPa, respectively. Water uptake data indicate that increasing the amount and fiber length of the corn stover results in significant increases in the absorption of water by the composites. The composites, containing 20 to 80 wt.% corn stover and a resin composed of 50 wt.% natural oil, contain 60 to 90 wt.% renewable materials and should find applications in the construction, automotive, and furniture industries. PMID:20227274

  18. Thermophysical properties of conjugated soybean oil/corn stover biocomposites.

    PubMed

    Pfister, Daniel P; Larock, Richard C

    2010-08-01

    Novel "green composites" have been prepared using a conjugated soybean oil-based resin and corn stover as a natural fiber. Corn stover is the residue remaining after grain harvest and it is estimated that approximately 75 million tons are available annually in the United States. The effect of the amount of filler, the length of the fiber, and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Young's moduli and tensile strengths of the composites prepared range from 291 to 1398 MPa and 2.7 to 7.4 MPa, respectively. Water uptake data indicate that increasing the amount and fiber length of the corn stover results in significant increases in the absorption of water by the composites. The composites, containing 20 to 80 wt.% corn stover and a resin composed of 50 wt.% natural oil, contain 60 to 90 wt.% renewable materials and should find applications in the construction, automotive, and furniture industries.

  19. Dietary hydrogenated soybean oil affects lipid and vitamin E metabolism in rats.

    PubMed

    Naziroglu, Mustafa; Brandsch, Corinna

    2006-04-01

    Fatty acids containing stearic acid, which are found in hydrogenated fat, may have a detrimental effect on the cholesterol and triacylglycerol (TAG) content of plasma lipoproteins, and on the absorption of fatty acids and fat-soluble vitamins. The aim of our study was to examine the tissue concentration of lipids and vitamins A and E after feeding a hydrogenated soybean oil (HSO) diet to rats. Twenty male Sprague-Dawley rats were randomly divided into two groups, fed on coconut oil (control) and HSO, respectively in amounts corresponding to 15% of the total feed. Plasma total cholesterol, VLDL- and LDL-cholesterol, lipid peroxidation and daily excretion of the TAG and cholesterol in feces were higher in the HSO than in the control group. TAG values in plasma and liver, and HDL-cholesterol levels in plasma were lower in the HSO than in the control group. The same was true for phospholipids in plasma and for saturated fatty acids, mono- and polyunsaturated fatty acids levels in the liver and vitamin E in plasma, LDL and adipose tissue. The results of this study provide new evidence concerning the effect of dietary hydrogenated fat on lipid, TAG and vitamin E status, which are important for maintenance of good health. Consumption of dietary HSO may be associated with cardiovascular disease.

  20. Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils.

    PubMed

    Yalcin, Hasan; Toker, Omer Said; Dogan, Mahmut

    2012-01-01

    In this study, effect of fatty acid composition on dynamic and steady shear rheology of oils was studied. For this aim, different types of vegetable oils (soybean, sunflower, olive, hazelnut, cottonseed and canola), were used. Rheological properties of oil samples were identified by rheometer (Thermo-Haake) at 25°C and fatty acid composition of oils was determined by GC (Agilent 6890). Steady shear rheological properties of oil samples were measured at shear rate range of 0.1-100 s⁻¹. Viscosity of olive, hazelnut, cottonseed, canola, soybean and sunflower was 61.2 mPa.s, 59.7 mPa.s, 57.3 mPa.s, 53.5 mPa.s, 48.7 mPa.s and 48.2 mPa.s, respectively. There was a significant difference between viscosity of oils except soybean and sunflower. As a result it was seen that there was a correlation between viscosity and monounsaturated (R=0.89), polyunsaturated (R=-0.97) fatty acid composition of oils, separately. Equation was found to predict viscosity of the oils based on mono and polyunsaturation composition of oils. In addition the dynamic rheological properties of oils were also examined. G', G'' and tan δ (G''/G') values were measured at 0.3 Pa (in viscoelastic region) and 0.1-1 Hz. As a result of multiple regression analysis another equations were found between tan δ, viscosity and polyunsaturated fatty acids.

  1. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth.

  2. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  3. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  4. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  5. Identify and validate a quantitative trait locus underlying stearic acid on chromosome 14 in a soybean landrace using recombinant inbred lines and resident heterozygous lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (ST) is one of the saturated fatty acids (FAs) in soybean oil and great efforts have been made to elevate ST content through plant breeding. Improving ST content will be helpful to reduce the health risk of coronary heart diseases and breast, colon and prostate cancer. In this study, re...

  6. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  7. Genotoxicity studies in the ST cross of the Drosophila wing spot test of sunflower and soybean oils before and after frying and boiling procedures.

    PubMed

    Demir, Eşref; Marcos, Ricard; Kaya, Bülent

    2012-10-01

    Sunflower and soybean oils were tested for genotoxicity in the Drosophila wing somatic mutation and recombination assay. Results indicate that both oils produce genotoxic effects when tested without any previous frying or boiling processes. Boiling sunflower oil during fifteen, thirty and sixty minutes significantly increased its genotoxic response; nevertheless, after frying potatoes this oil showed a significant decrease in the genotoxic activity. On the other hand, boiling and frying soybean oil in the same conditions results in a decrease of its genotoxic potential. We have also detected that the amount of total polar materials increases significantly in oils submitted to frying or boiling process. Nevertheless, in oils obtained after frying potatoes, the amount of TPM was higher than after boiling. It is suggested that this effect is probably due to the amount of non-volatile TPM, the fatty acid composition of the oils, the types of frying oil, the high frying temperature and time, and the number of boiling and frying. This is the first study reporting genotoxicity data in Drosophila for the boiling and frying of both sunflower and soybean oils.

  8. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-06-01

    It was previously found that blending soybean oil with cinnamon bark oil (CBO), eugenol or thyme oil, Tween 80, and equal masses of water and propylene glycol could be used to prepare microemulsions. In the present study, the objective was to determine the antimicrobial activity of the microemulsions in tryptic soy broth (TSB) and 2% reduced fat milk. In TSB, the minimum inhibitory concentration (MIC) of CBO solubilized in microemulsions was up to 625 ppm against cocktails of Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7, which was equal to or higher in concentration than free CBO dissolved in ethanol. However, MICs of eugenol or thyme oil in microemulsions were much higher than that of free antimicrobials. Therefore, microemulsions of CBO were chosen to do further study. Inactivation curves of L. monocytogenes or E. coli O157:H7 in TSB or 2% reduced fat milk were tested and fitted using the Weibull model. In TSB, a gradual decrease in cell viability of L. monocytogenes and E. coli O157:H7 was observed with the microemulsion treatments at 625 ppm CBO, which was in contrast to the more rapid and greater inactivation by free CBO. Gradual inactivation of L. monocytogenes in 2% reduced fat milk was also observed in the treatment with 10,000 ppm free or microemulsified CBO. When fitted using the Weibull model, the predicted time to obtain a 3-log decrease of L. monocytogenes and E. coli O157:H7 in TSB or 2% reduced fat milk increased with an increased amount of soybean oil in microemulsions. Additionally, increasing the amount of Tween 80 in mixtures with different mass ratios of Tween 80 and essential oils significantly decreased the log reductions of L. monocytogenes in TSB. Our study showed that microemulsions can be used to dissolve EOs and control the rate of inactivating bacteria, but the composition of microemulsions is to be carefully chosen to minimize the reduction of antimicrobial activities.

  9. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-06-01

    It was previously found that blending soybean oil with cinnamon bark oil (CBO), eugenol or thyme oil, Tween 80, and equal masses of water and propylene glycol could be used to prepare microemulsions. In the present study, the objective was to determine the antimicrobial activity of the microemulsions in tryptic soy broth (TSB) and 2% reduced fat milk. In TSB, the minimum inhibitory concentration (MIC) of CBO solubilized in microemulsions was up to 625 ppm against cocktails of Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7, which was equal to or higher in concentration than free CBO dissolved in ethanol. However, MICs of eugenol or thyme oil in microemulsions were much higher than that of free antimicrobials. Therefore, microemulsions of CBO were chosen to do further study. Inactivation curves of L. monocytogenes or E. coli O157:H7 in TSB or 2% reduced fat milk were tested and fitted using the Weibull model. In TSB, a gradual decrease in cell viability of L. monocytogenes and E. coli O157:H7 was observed with the microemulsion treatments at 625 ppm CBO, which was in contrast to the more rapid and greater inactivation by free CBO. Gradual inactivation of L. monocytogenes in 2% reduced fat milk was also observed in the treatment with 10,000 ppm free or microemulsified CBO. When fitted using the Weibull model, the predicted time to obtain a 3-log decrease of L. monocytogenes and E. coli O157:H7 in TSB or 2% reduced fat milk increased with an increased amount of soybean oil in microemulsions. Additionally, increasing the amount of Tween 80 in mixtures with different mass ratios of Tween 80 and essential oils significantly decreased the log reductions of L. monocytogenes in TSB. Our study showed that microemulsions can be used to dissolve EOs and control the rate of inactivating bacteria, but the composition of microemulsions is to be carefully chosen to minimize the reduction of antimicrobial activities. PMID:27016636

  10. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  11. Properties of a Soybean Oil-based Surfactant and Its Application in Microbubble Preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since microbubbles are thermodynamically unstable, surfactants are usually added to improve their stability. Demand for the use of vegetable oil-based surfactants has been increasing due to safety and environmental concerns. This work investigates a soybean oil-based surfactant and its application...

  12. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated.

  13. Vitamin A is rapidly degraded in retinyl palmitate-fortified soybean oil stored under household conditions.

    PubMed

    Pignitter, Marc; Dumhart, Bettina; Gartner, Stephanie; Jirsa, Franz; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-07-30

    Oil fortification with retinyl palmitate is intended to lower the prevalence of vitamin A deficiency in populations at risk. Although the stability of vitamin A in vegetable oil has been shown to depend on environmental factors, very little information is known about the stability of vitamin A in preoxidized vegetable oils. The present study investigated the stability of retinyl palmitate in mildly oxidized (peroxide value < 2 mequiv O2/kg) and highly oxidized (peroxide value > 10 mequiv O2/kg) soybean oil stored under domestic and retail conditions. Soybean oil was filled in transparent bottles, which were exposed to cold fluorescent light at 22 or 32 °C for 56 days. Periodic oil sampling increased the headspace, thereby mimicking consumer handling. Loss of retinyl palmitate in soybean oil by a maximum of 84.8 ± 5.76% was accompanied by a decrease of vitamin E by 53.3 ± 0.87% and by an increase of the peroxide value from 1.20 ± 0.004 to 24.3 ± 0.02 mequiv O2/kg. Fortification of highly oxidized oil with 31.6 IU/g retinyl palmitate led to a doubling of the average decrease of retinol per day compared to fortification of mildly oxidized oil. In conclusion, oil fortification programs need to consider the oxidative status of the oil used for retinyl palmitate fortification. PMID:25003735

  14. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

    PubMed

    Eckert, Helene; La Vallee, Brad; Schweiger, Bruce J; Kinney, Anthony J; Cahoon, Edgar B; Clemente, Tom

    2006-10-01

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, alpha-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Delta(6) desaturase and an Arabidopsis Delta(15) desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Delta(6) desaturase event with the Delta(15) desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean beta-conglycinin promoter. Soybean events that carried only the Delta(15 )desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids. PMID:16718484

  15. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

    PubMed

    Eckert, Helene; La Vallee, Brad; Schweiger, Bruce J; Kinney, Anthony J; Cahoon, Edgar B; Clemente, Tom

    2006-10-01

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, alpha-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Delta(6) desaturase and an Arabidopsis Delta(15) desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Delta(6) desaturase event with the Delta(15) desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean beta-conglycinin promoter. Soybean events that carried only the Delta(15 )desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids.

  16. A survey of the agronomic and end-use characteristics of low phytic acid soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With unique high protein and oil contents, soybean (Glycine max L. merr.) is one of the most widely grown agronomic crops in the United States. Around 98% of those soybeans are used in animal feeds ranging from swine and cattle to domestic animals and aquaculture. This chapter will introduce phytic ...

  17. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  18. Enzymatic production of γ-aminobutyric acid in soybeans using high hydrostatic pressure and precursor feeding.

    PubMed

    Ueno, Shigeaki; Katayama, Takumi; Watanabe, Takae; Nakajima, Kanako; Hayashi, Mayumi; Shigematsu, Toru; Fujii, Tomoyuki

    2013-01-01

    The effects were investigated of the glutamic acid (Glu) substrate concentration on the generation and kinetics of γ-aminobutyric acid (GABA) in soybeans treated under high hydrostatic pressure (HHP; 200 MPa for 10 min at 25 °C). The conversion of Glu to GABA decreased with increasing initial Glu concentration in the soybeans. The crude glutamate decarboxylase (GAD) obtained from the HHP-treated soybeans showed substrate inhibition. The GABA production rate in the HHP-treated soybeans fitted the following substrate inhibition kinetic equation: v0=(VmaxS0)/(Km+S0+(S0)2/Ki). The Km value for the HHP-treated soybeans was significantly higher than that of the untreated soybeans. The Km values in this study show the affinity between Glu and GAD, and indicate that the HHP-treated soybeans had lower affinity between Glu and GAD than the untreated soybeans. GAD extracted from the HHP-treated soybeans showed a similar value to that in the HHP-treated soybeans. The intact biochemical system was so damaged in the HHP-treated soybeans that it showed substrate inhibition kinetics similar to that of the extracted GAD. The combination of HHP and precursor feeding proved to be a novel tool that can be used to increase the concentration of a target component.

  19. Identification of genes/loci and functional markers for seed oil quality improvement by exploring soybean genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The difference in seed oil composition and content among soybean genotypes can be attributed mostly to variations in transcript sequences and/or transcript accumulation of oil-related genes expressed in seeds. We applied the Illumina HiSeq 2000 system to sequence RNA populations in soybean seeds fro...

  20. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.

    PubMed

    Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou

    2015-12-01

    The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.

  1. SNP-SNP Interaction Analysis on Soybean Oil Content under Multi-Environments

    PubMed Central

    Yin, Zhengong; Leng, Yue; Yu, Hongxiao; Jia, Huiying; Jiang, Shanshan; Ni, Zhongqiu; Jiang, Hongwei; Han, Xue; Liu, Chunyan; Hu, Zhenbang; Wu, Xiaoxia; Hu, Guohua; Xin, Dawei; Qi, Zhaoming

    2016-01-01

    Soybean oil content is one of main quality traits. In this study, we used the multifactor dimensionality reduction (MDR) method and a soybean high-density genetic map including 5,308 markers to identify stable single nucleotide polymorphism (SNP)—SNP interactions controlling oil content in soybean across 23 environments. In total, 36,442,756 SNP-SNP interaction pairs were detected, 1865 of all interaction pairs associated with soybean oil content were identified under multiple environments by the Bonferroni correction with p <3.55×10−11. Two and 1863 SNP-SNP interaction pairs detected stable across 12 and 11 environments, respectively, which account around 50% of total environments. Epistasis values and contribution rates of stable interaction (the SNP interaction pairs were detected in more than 2 environments) pairs were detected by the two way ANOVA test, the available interaction pairs were ranged 0.01 to 0.89 and from 0.01 to 0.85, respectively. Some of one side of the interaction pairs were identified with previously research as a major QTL without epistasis effects. The results of this study provide insights into the genetic architecture of soybean oil content and can serve as a basis for marker-assisted selection breeding. PMID:27668866

  2. Speed of sound as a function of temperature for ultrasonic propagation in soybean oil

    NASA Astrophysics Data System (ADS)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.

  3. Extraction and characterization of oil bodies from soy beans: a natural source of pre-emulsified soybean oil.

    PubMed

    Iwanaga, Daigo; Gray, David A; Fisk, Ian D; Decker, Eric Andrew; Weiss, Jochen; McClements, David Julian

    2007-10-17

    Soybeans contain oil bodies that are coated by a layer of oleosin proteins. In nature, this protein coating protects the oil bodies from environmental stresses and may be utilized by food manufacturers for the same purpose. In this study, oil bodies were extracted from soybean using an aqueous extraction method that involved blending, dispersion (pH 8.6), filtration, and centrifugation steps. The influence of NaCl (0-250 mM), thermal processing (30-90 degrees C, 20 min) and pH (2-8) on the properties and stability of the oil bodies was analyzed using zeta-potential, particle size, and creaming stability measurements. The extracted oil bodies were relatively small ( d 32 approximately 250 nm), and their zeta-potential went from around +12 mV to -20 mV as the pH was increased from 2 to 8, with an isoelectric point around pH 4. The oil bodies were stable to aggregation and creaming at low (pH = 2) and high (pH >/= 6) pH values but were unstable at intermediate values (3 oil bodies were stable to aggregation and creaming at relatively low salt concentrations (NaCl oil bodies were stable to thermal processing from 30 to 90 degrees C (0 mM NaCl, pH 7), but there appeared to be a change in their interfacial properties (decrease in zeta-potential) at temperatures exceeding 60 degrees C. These results suggest that oil bodies extracted from soybeans have similar or improved stability compared to soybean oil emulsions produced from bulk ingredients and may provide a new way of creating functional soy products for the food industry.

  4. [Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry].

    PubMed

    Lin, Chunhua; Xie, Xianqing; Fan, Naili; Tu, Yuanhong; Chen, Yan; Liao, Weilin

    2015-04-01

    A fast analytical method for five common fatty acids in six edible vegetable oils was developed by ultra-performance convergence chromatography-mass spectrometry (UPC2-MS). The five fatty acids are palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. Their contents in the corn oil, sunflower oil, soybean oil, tea oil, rapeseed oil and peanut oil were compared. The chromatographic separation was performed on an ACQUITY UPC2 BEH 2-EP column (100 mm x 2.1 mm, 1.7 µm) using the mobile phases of carbon dioxide and methanol/acetonitrile (1:1, v/v) with gradient elution. The separated compounds were detected by negative electrospray ionization ESF-MS. The results showed that the reasonable linearities were achieved for all the analytes over the range of 0.5-100 mg/L with the correlation coefficients (R2) of 0.9985-0.9998. The limits of quantification (S/N ≥ 10) of the five fatty acids were 0.15-0.50 mg/L. The recoveries of the five fatty acids at three spiked levels were in the range of 89.61%-108.50% with relative standard deviations of 0.69%-3.01%. The developed method showed high performance, good resolution and fast analysis for the underivatized fatty acids. It has been successfully used to detect the five fatty acids from corn oil, sunflower oil, soybean oil, tea oil rapeseed oil and peanut oil.

  5. Triacylglycerol structure and composition of hydrogenated soybean oil margarine and shortening basestocks.

    PubMed

    List, Gary R; Byrdwell, William C; Steidley, Kevin R; Adlof, Richard O; Neff, William E

    2005-06-15

    The composition and structures of triacylglycerols (TAG) in a commercially prepared hydrogenated soybean oil margarine basestock [iodine value (IV) 65, 39.7% trans fatty acids] were determined by high-performance liquid chromatography (HPLC) in tandem with atmospheric pressure chemical ionization (APCI) mass spectrometry (MS). The basestock was separated by preparative HPLC into four fractions. Fractions 1 and 4, constituting approximately 8% of the total, were shown to consist of LOO, PLO, and LLS and OSS and PSS, respectively (where L = linoleic, O = oleic, S = stearic, and P = palmitic). APCI will not distinguish between O, oleic cis C18:1, and E, elaidic trans C18:1. Thus, O and E may be used interchangeably in discussion of TAG isomer structures. Fraction 2 consisted of OOO and POO. Fraction 3 consisted of OOO, POO, OOS, and POS. About 80% of the total triglycerides consisted of OOO, POO, and OOS. The trans fatty acid content of the fractions was determined, and the results showed that 92% of the total trans content was found in fractions 2 and 3. A shortening basestock (IV 81.7, 31.8% trans fatty acids) was partially characterized.

  6. Isothermal thermogravimetric analysis of soybean oil oxidation correlated to thin film micro-oxidation test methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method of correlation between the Thin Film Micro-Oxidation (TFMO) test with isothermal thermogravimetric analysis is reported utilizing a soybean oil system. Utilizing a kinetic model, pseudo-rate constants and “activation energy” can be calculated from weight loss data. This model accounts for o...

  7. Potential Large-Scale Production of Conjugated Soybean Oil Catalyzed by Photolyzed Iodine in Hexanes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory apparatus is described for the production of conjugated soybean oil (SBO) in pound quantities via irradiation with visible-light. Under our reaction conditions, quantitative conversions (determined by NMR spectroscopy) of SBO to conjugated SBO, in hexanes at reflux temperatures, were a...

  8. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy.

    PubMed

    Luna, Aderval S; da Silva, Arnaldo P; Pinho, Jéssica S A; Ferré, Joan; Boqué, Ricard

    2013-01-01

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  9. Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Luna, Aderval S.; da Silva, Arnaldo P.; Pinho, Jéssica S. A.; Ferré, Joan; Boqué, Ricard

    Near infrared (NIR) spectroscopy and multivariate classification were applied to discriminate soybean oil samples into non-transgenic and transgenic. Principal Component Analysis (PCA) was applied to extract relevant features from the spectral data and to remove the anomalous samples. The best results were obtained when with Support Vectors Machine-Discriminant Analysis (SVM-DA) and Partial Least Squares-Discriminant Analysis (PLS-DA) after mean centering plus multiplicative scatter correction. For SVM-DA the percentage of successful classification was 100% for the training group and 100% and 90% in validation group for non transgenic and transgenic soybean oil samples respectively. For PLS-DA the percentage of successful classification was 95% and 100% in training group for non transgenic and transgenic soybean oil samples respectively and 100% and 80% in validation group for non transgenic and transgenic respectively. The results demonstrate that NIR spectroscopy can provide a rapid, nondestructive and reliable method to distinguish non-transgenic and transgenic soybean oils.

  10. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  11. Boron Trifluoride Catalized Ring-Opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3.OEt2) catalyzed ring-opening polymerization of epoxidized soybean oil (ESO), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, differ...

  12. Soybean root growth in acid subsoils in relation to magnesium additions and soil solution ionic strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroponic studies with soybean [Glycine max (L.) Merr.] have shown that µM additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+ in the mM concentration range. The objectives of this study were to assess ameliorative effects of Mg on soybean root growth in acidic...

  13. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL

    PubMed Central

    Reinprecht, Yarmilla; Pauls, K. Peter

    2016-01-01

    High levels of linolenic acid (80 g kg−1) are associated with the development of off-flavors and poor stability in soybean oil. The development of low linolenic acid lines such as RG10 (20 g kg−1 linolenic acid) can reduce these problems. The level of linolenic acid in seed oil is determined by the activities of microsomal omega-3 fatty acid desaturases (FAD3). A major linolenic acid QTL (>70% of variation) on linkage group B2 (chromosome Gm14) was previously detected in a recombinant inbred line population from the RG10 × OX948 cross. The objectives of this study were to validate the major linolenic acid QTL in an independent population and characterize all the soybean FAD3 genes. Four FAD3 genes were sequenced and localized in RG10 and OX948 and compared to the genes in the reference Williams 82 genome. The FAD3A gene sequences mapped to the locus Glyma.14g194300 [on the chromosome Gm14 (B2)], which is syntenic to the FAD3B gene (locus Glyma.02g227200) on the chromosome Gm02 (D1b). The location of the FAD3A gene is the same as was previously determined for the fan allele, that conditions low linolenic acid content and several linolenic acid QTL, including Linolen 3-3, mapped previously with the RG10 × OX948 population and confirmed in the PI 361088B × OX948 population as Linolen-PO (FAD3A). The FAD3B gene-based marker, developed previously, was mapped to the chromosome Gm02 (D1b) in a region containing a newly detected linolenic acid QTL [Linolen-RO(FAD3B)] in the RG10 × OX948 genetic map and corresponds well with the in silico position of the FAD3B gene sequences. FAD3C and FAD3D gene sequences, mapped to syntenic regions on chromosomes Gm18 (locus Glyma.18g062000) and Gm11 (locus Glyma.11g227200), respectively. Association of linolenic acid QTL with the desaturase genes FAD3A and FAD3B, their validation in an independent population, and development of FAD3 gene-specific markers should simplify and accelerate breeding for low linolenic acid soybean

  14. Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-02-01

    Soybean seed is a major source of oil for human consumption worldwide and the main renewable feedstock for biodiesel production in North America. Increasing seed oil concentration in soybean [Glycine max (L.) Merrill] with no or minimal impact on protein concentration could be accelerated by exploiting quantitative trait loci (QTL) or gene-specific markers. Oil concentration in soybean is a polygenic trait regulated by many genes with mostly small effects and which is negatively associated with protein concentration. The objectives of this study were to discover and validate oil QTL in two recombinant inbred line (RIL) populations derived from crosses between three moderately high-oil soybean cultivars, OAC Wallace, OAC Glencoe, and RCAT Angora. The RIL populations were grown across several environments over 2 years in Ontario, Canada. In a population of 203 F(3:6) RILs from a cross of OAC Wallace and OAC Glencoe, a total of 11 genomic regions on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping and single-factor ANOVA. The percentage of the phenotypic variation accounted for by each QTL ranged from 4 to 11 %. Of the five QTL that were tested in a population of 211 F(3:5) RILs from the cross RCAT Angora × OAC Wallace, a "trait-based" bidirectional selective genotyping analysis validated four QTL (80 %). In addition, a total of seven two-way epistatic interactions were identified for oil concentration in this study. The QTL and epistatic interactions identified in this study could be used in marker-assisted introgression aimed at pyramiding high-oil alleles in soybean cultivars to increase oil concentration for biodiesel as well as edible oil applications.

  15. An acidic amino acid-specific protease from germinating soybeans.

    PubMed

    Tan-Wilson, A L; Liu, X; Chen, R; Qi, X; Wilson, K A

    1996-05-01

    The degradation of the beta-conglycinin protein reserves in soybean seeds during germination and early growth begins with the proteolysis of its alpha and alpha' subunits by an enzyme called Protease C1. In the pathway, a number of proteolytic intermediates are produced and subsequently degraded. Determination of the N-terminal sequences of these intermediates provides insight regarding the requirements of the cleavage sites. The N-terminal sequence of three such proteolytic intermediates has been determined. The sequence has been located in the published sequences of the beta-conglycinin subunits. Comparing these cleavage sites, plus those of two others previously delineated, shows that the P1' and P4' positions always bear either a Glu or an Asp residue while the P1 position always bears either a Glu or a Gln residue. In addition, other sites from P3 to P7' are also rich in either Glu or Asp, and the whole region is predicted to be in a alpha-helix. Consistent with the observation, synthetic poly-L-Glu inhibits the Protease C1-catalysed degradation of the alpha and alpha' subunits of beta-conglycinin. Poly-L-Glu (av. M(r) = 1000) at 12.5 mM was more effective at inhibiting the reaction than poly-L-Glu (av. M(r) = 600) or poly-L-Glu (av. M(r) = 14,300) at the same concentration. Comparing large synthetic polypeptides at 12.5mM, inhibition by poly-L-Asp (av. M(r) = 15,000) is as effective as poly-L-Glu (av. M(r) = 14,300), while poly-L-Ser (av. M(r) = 15,000) had no effect at all. Poly-D-Glu (av. M(r) = 15,000) is a better inhibitor than poly-L-Glu of the same size. A serine protease of similar molecular weight as Protease C1 and also capable of catalysing the proteolysis of the alpha and alpha' subunits of beta-conglycinin to generate proteolytic intermediates of the same size has been found in mung bean.

  16. A Systematic Review of High-Oleic Vegetable Oil Substitutions for Other Fats and Oils on Cardiovascular Disease Risk Factors: Implications for Novel High-Oleic Soybean Oils12

    PubMed Central

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-01-01

    High–oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)6 risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n–6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n–6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: −8.0%, −10.9%, −7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: −5.7%, −9.2%, −7.3%, −11.7%, −12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n–6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n–6 PUFAs would have favorable and comparable effects on

  17. Genotoxicity and oxidative stress of the mutagenic compounds formed in fumes of heated soybean oil, sunflower oil and lard.

    PubMed

    Dung, Cheng-Huang; Wu, She-Ching; Yen, Gow-Chin

    2006-06-01

    This study was to investigate the genotoxicity and cytotoxicity of the oil fumes formed from heating three common commercial cooking oils (soybean oil, sunflower oil, and lard) on human lung carcinoma pulmonary type II-like epithelium cell (A-549 cell). The major alkenal mutagenic compounds (trans-trans-2,4-decadienal, t-t-2,4-DDE; trans-trans-2,4-nonadienal, t-t-2,4-NDE; trans-2-decenal, t-2-DCA and trans-2-undecenal, t-2-UDA) contained in three oil fumes and their effects on the induction of reactive oxygen species (ROS) were also studied. It was found that the most potent mutagenic compound (t-t-2,4-DDE) of oil fumes was 66.4, 35.9 and 40.3 microg/g in soybean oil, sunflower oil and lard, respectively. The results indicated that the methanolic extracts of oil fumes could apparently lead to cytotoxicity and oxidative DNA damage. Glutathione (GSH) contents and the activities of antioxidant enzymes such as GSH reductase, and GSH S-transferase were adversely reduced by the methanolic extracts of oil fumes. When human A-549 cells were exposed to the methanolic extracts of oil fumes for 30 min, there was an increase in the formation of intracellular ROS, which was determined by dichlorofluorescein assay. Moreover, the methanolic extracts of oil fumes caused significant (p<0.05) oxidative damage through the 8-hydroxy-2'-deoxyguanosine formation in A-549 cells at the concentrations from 50 to 200 microg/ml. These results demonstrated that the DNA damage in A-549 cells, induced by cooking oil fumes, was related to the ROS formation. It is inferred that women exposed to emitted fumes from cooking oil were at higher risk of contracting lung cancer.

  18. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties.

  19. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Deng, Bo; Fu, Xu-Jun; Dong, De-Kun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2009-05-13

    Reduction of phytic acid in soybean seeds has the potential to improve the nutritional value of soybean meal and lessen phosphorus pollution in large scale animal farming. The objective of this study was to assess the effect of two new low phytic acid (LPA) mutations on seed quality and nutritional traits. Multilocation/season comparative analyses showed that the two mutations did not affect the concentration of crude protein, any of the individual amino acids, crude oil, and individual saturated fatty acids. Among other traits, Gm-lpa-TW75-1 had consistently higher sucrose contents (+47.4-86.1%) and lower raffinose contents (-74.2 to -84.3%) than those of wild type (WT) parent Taiwan 75; Gm-lpa-ZC-2 had higher total isoflavone contents (3038.8-4305.4 microg/g) than its parent Zhechun # 3 (1583.6-2644.9 microg/g) in all environments. Further tests of homozygous F(3) progenies of the cross Gm-lpa-ZC-2 x Wuxing # 4 (WT variety) showed that LPA lines had a mean content of total isoflavone significantly higher than WT lines. This study demonstrated that two LPA mutant genes have no negative effects on seed quality and nutritional traits; they instead have the potential to improve a few other properties. Therefore, these two mutant genes are valuable genetic resources for breeding high quality soybean varieties. PMID:19323582

  20. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Biomass alternative fuels program. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons. An engine test plan was developed and implemented in this project. Data provide a preliminary indication that the blend containing one-third degummed soybean oil and two-thirds No. 2 diesel oil performed satisfactorily. Long term operation on the 50-50 blend is questionable. Detailed data and observations appear in the body of the report. The study also presents detailed engineering, financial, marketing, management and implementation plans for production of the proposed fuel blend, as well as a complete analysis of impacts. 4 references, 55 figures, 56 tables.

  1. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-01-01

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability. PMID:27173225

  2. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-04-25

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability.

  3. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    PubMed

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples.

  4. Amine Hydroxy Derivative of Soybean Oil as Lubricant Additive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amphiphilic character of vegetable oils makes them an excellent candidate as lubricants and as specialty chemicals. Additional advantages of vegetable oils are that they are renewable resources, environmentally friendly non toxic fluids, and readily biodegradable. Industrial application of veg...

  5. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is one of the most important oil crops in the world, and reduced linolenic acid content of soybean oil will provide increased stability of the oil to consumers and food manufacturers and limit the amount of trans-fat to be used in the processed foods. The linolenic content in soybean seeds i...

  6. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  7. Expression of Umbelopsis ramanniana DGAT2A in Seed Increases Oil in Soybean1[OA

    PubMed Central

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M.C.; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-01-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed. PMID:18633120

  8. Preparation and Characterization of Polymeric Surfactants Based on Epoxidized Soybean Oil Grafted Hydroxyethyl Cellulose.

    PubMed

    Huang, Xujuan; Liu, He; Shang, Shibin; Rao, Xiaoping; Song, Jie

    2015-10-21

    Epoxidized soybean oil (ESO) grafted hydroxyethyl cellulose (HEC) was prepared via ring-opening polymerization, in which the hydroxyl groups of HEC acted as initiators and the polymeric ESO were covalently bonded to the HEC. Hydrolysis of ESO-grafted HEC (ESO-HEC) was performed with sodium hydroxide, and the hydrolyzed ESO-HEC (H-ESO-HEC) products were characterized via Fourier transform infrared (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies, high-temperature gel permeation chromatography (HT-GPC), and differential scanning calorimetry (DSC). The results indicated that ring-opening polymerization of ESO occurred with the hydroxyl groups of HEC as initiators. The molecular weights of the H-ESO-HEC products were varied by adjusting the mass ratio of HEC and ESO. Through neutralizing the carboxylic acid of H-ESO-HEC with sodium hydroxide, novel polymeric surfactants (H-ESO-HEC-Na) were obtained, and the effects of polymeric surfactants on the surface tension of water were investigated as a function of concentration of H-ESO-HEC-Na. The H-ESO-HEC-Na was effective at lowering the surface tension of water to 26.33 mN/m, and the critical micelle concentration (CMC) value decreased from 1.053 to 0.157 g/L with increases in molecular weights of the polymeric surfactants. Rheological measurements indicated that the H-ESO-HEC-Na solutions changed from pseudoplastic property to Newtonian with increasing shear rate. PMID:26416659

  9. Recovery of phytosterols from waste residue of soybean oil deodorizer distillate.

    PubMed

    Yang, Haojun; Yan, Feng; Wu, Daogeng; Huo, Ming; Li, Jianxin; Cao, Yuping; Jiang, Yiming

    2010-03-01

    This study describes a catalytic decomposition and crystallization process to recover phytosterols from the waste residue of soybean oil deodorizer distillate (WRSODD). Various solvents were used for the crystallization of phytosterols. The effect of different solvents on the purity and yield of recovered phytosterols was investigated. The composition of WRSODD was analyzed by silica gel column chromatography and FT-IR spectrum. Gas chromatography (GC), GC-MS, and FT-IR were adopted to determine the purity and structure of phytosterols. Results showed the total amount of phytosterols, in the form of fatty acid steryl esters, was up to 20 wt.% of WRSODD. Through orthogonal experiments, the optimized crystallization conditions were obtained. It's found the mixed solvent of acetone and ethanol (4/1, v/v) could generate good crystallization. The yield of recovered phytosterols was 22.95 wt.% after the 1st crystallization. The purity of phytosterols reached 91.82, 92.73, and 97.17 wt.% after the 1st, 2nd, and 3rd crystallization, respectively. PMID:19800221

  10. Preparation and Characterization of Polymeric Surfactants Based on Epoxidized Soybean Oil Grafted Hydroxyethyl Cellulose.

    PubMed

    Huang, Xujuan; Liu, He; Shang, Shibin; Rao, Xiaoping; Song, Jie

    2015-10-21

    Epoxidized soybean oil (ESO) grafted hydroxyethyl cellulose (HEC) was prepared via ring-opening polymerization, in which the hydroxyl groups of HEC acted as initiators and the polymeric ESO were covalently bonded to the HEC. Hydrolysis of ESO-grafted HEC (ESO-HEC) was performed with sodium hydroxide, and the hydrolyzed ESO-HEC (H-ESO-HEC) products were characterized via Fourier transform infrared (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies, high-temperature gel permeation chromatography (HT-GPC), and differential scanning calorimetry (DSC). The results indicated that ring-opening polymerization of ESO occurred with the hydroxyl groups of HEC as initiators. The molecular weights of the H-ESO-HEC products were varied by adjusting the mass ratio of HEC and ESO. Through neutralizing the carboxylic acid of H-ESO-HEC with sodium hydroxide, novel polymeric surfactants (H-ESO-HEC-Na) were obtained, and the effects of polymeric surfactants on the surface tension of water were investigated as a function of concentration of H-ESO-HEC-Na. The H-ESO-HEC-Na was effective at lowering the surface tension of water to 26.33 mN/m, and the critical micelle concentration (CMC) value decreased from 1.053 to 0.157 g/L with increases in molecular weights of the polymeric surfactants. Rheological measurements indicated that the H-ESO-HEC-Na solutions changed from pseudoplastic property to Newtonian with increasing shear rate.

  11. A diet containing soybean oil heated for three hours increases adipose tissue weight but decreases body weight in C57BL/6 J mice

    PubMed Central

    2013-01-01

    Background Our previous work showed that dietary oxidized linoleic acid given, as a single fatty acid, to LDL receptor knockout mice decreased weight gain as compared to control mice. Other studies have also reported that animals fed oils heated for 24 h or greater showed reduced weight gain. These observations, while important, have limited significance since fried foods in the typical human diet do not contain the extreme levels of oxidized lipids used in these studies. The main goal of this study was to investigate the effects of a diet containing soybean oil heated for 3 h on weight gain and fat pad mass in mice. Additionally, because PPARγ and UCP-1 mediate adipocyte differentiation and thermogenesis, respectively, the effect of this diet on these proteins was also examined. Findings Four to six week old male C57BL/6 J mice were randomly divided into three groups and given either a low fat diet with heated soybean oil (HSO) or unheated soybean oil (USO) or pair fed for 16 weeks. Weight and food intake were monitored and fat pads were harvested upon the study’s termination. Mice consuming the HSO diet had significantly increased fat pad mass but gained less weight as compared to mice in the USO group despite a similar caloric intake and similar levels of PPARγ and UCP1. Conclusion This is the first study to show that a diet containing soybean oil heated for a short time increases fat mass despite a decreased weight gain in C57BL/6 J mice. The subsequent metabolic consequences of this increased fat mass merits further investigation. PMID:23510583

  12. Catalytic production of conjugated fatty acids and oils.

    PubMed

    Philippaerts, An; Goossens, Steven; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2

  13. Catalytic production of conjugated fatty acids and oils.

    PubMed

    Philippaerts, An; Goossens, Steven; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    The reactive double bonds in conjugated vegetable oils are of high interest in industry. Traditionally, conjugated vegetable oils are added to paints, varnishes, and inks to improve their drying properties, while recently there is an increased interest in their use in the production of bioplastics. Besides the industrial applications, also food manufactures are interested in conjugated vegetable oils due to their various positive health effects. While the isomer type is less important for their industrial purposes, the beneficial health effects are mainly associated with the c9,t11, t10,c12 and t9,t11 CLA isomers. The production of CLA-enriched oils as additives in functional foods thus requires a high CLA isomer selectivity. Currently, CLAs are produced by conjugation of oils high in linoleic acid, for example soybean and safflower oil, using homogeneous bases. Although high CLA productivities and very high isomer selectivities are obtained, this process faces many ecological drawbacks. Moreover, CLA-enriched oils can not be produced directly with the homogeneous bases. Literature reports describe many catalytic processes to conjugate linoleic acid, linoleic acid methyl ester, and vegetable oils rich in linoleic acid: biocatalysts, for example enzymes and cells; metal catalysts, for example homogeneous metal complexes and heterogeneous catalysts; and photocatalysts. This Review discusses state-of-the-art catalytic processes in comparison with some new catalytic production routes. For each category of catalytic process, the CLA productivities and the CLA isomer selectivity are compared. Heterogeneous catalysis seems the most attractive approach for CLA production due to its easy recovery process, provided that the competing hydrogenation reaction is limited and the CLA production rate competes with the current homogeneous base catalysis. The most important criteria to obtain high CLA productivity and isomer selectivity are (1) absence of a hydrogen donor, (2

  14. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas. PMID:17206812

  15. Poly(ester amide)s from Soybean Oil for Modulated Release and Bone Regeneration.

    PubMed

    Natarajan, Janeni; Dasgupta, Queeny; Shetty, Shreya N; Sarkar, Kishor; Madras, Giridhar; Chatterjee, Kaushik

    2016-09-28

    Designing biomaterials for bone tissue regeneration that are also capable of eluting drugs is challenging. Poly(ester amide)s are known for their commendable mechanical properties, degradation, and cellular response. In this regard, development of new poly(ester amide)s becomes imperative to improve the quality of lives of people affected by bone disorders. In this framework, a family of novel soybean oil based biodegradable poly(ester amide)s was synthesized based on facile catalyst-free melt-condensation reaction. The structure of the polymers was confirmed by FTIR and (1)H -NMR, which indicated the formation of the ester and amide bonds along the polymer backbone. Thermal analysis revealed the amorphous nature of the polymers. Contact angle and swelling studies proved that the hydrophobic nature increased with increase in chain length of the diacids and decreased with increase in molar ratio of sebacic acid. Mechanical studies proved that Young's modulus decreased with decrease in chain lengths of the diacids and increase in molar ratio of sebacic acid. The in vitro hydrolytic degradation and dye release demonstrated that the degradation and release decreased with increase in chain lengths of the diacids and increased with increase in molar ratio of sebacic acid. The degradation followed first order kinetics and dye release followed Higuchi kinetics. In vitro cell studies showed no toxic effects of the polymers. Osteogenesis studies revealed that the polymers can be remarkably efficient because more than twice the amount of minerals were deposited on the polymer surfaces than on the tissue culture polystyrene surfaces. Thus, a family of novel poly(ester amide)s has been synthesized, characterized for controlled release and tissue engineering applications wherein the physical, degradation, and release kinetics can be tuned by varying the monomers and their molar ratios. PMID:27599306

  16. Quantitative trait locus analysis of seed sulfur containing amino acids in two recombinant inbred line populations of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) is a major source of plant protein for humans and livestock. Low levels of sulfur containing amino acids (cysteine and methionine) in soybean protein is the main limitation of soybean meal as animal food. The objectives of this study were to identify and validate Q...

  17. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean-maize blends.

    PubMed

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Ostlie, Hilde M; Wicklund, Trude

    2014-03-01

    Fermented pastes of soybeans and soybean-maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans.

  18. Inhibition studies of soybean (Glycine max) urease with heavy metals, sodium salts of mineral acids, boric acid, and boronic acids.

    PubMed

    Kumar, Sandeep; Kayastha, Arvind M

    2010-10-01

    Various inhibitors were tested for their inhibitory effects on soybean urease. The K(i) values for boric acid, 4-bromophenylboronic acid, butylboronic acid, and phenylboronic acid were 0.20 +/- 0.05 mM, 0.22 +/- 0.04 mM, 1.50 +/- 0.10 mM, and 2.00 +/- 0.11 mM, respectively. The inhibition was competitive type with boric acid and boronic acids. Heavy metal ions including Ag(+), Hg(2+), and Cu(2+) showed strong inhibition on soybean urease, with the silver ion being a potent inhibitor (IC(50) = 2.3 x 10(-8) mM). Time-dependent inhibition studies exhibited biphasic kinetics with all heavy metal ions. Furthermore, inhibition studies with sodium salts of mineral acids (NaF, NaCl, NaNO(3), and Na(2)SO(4)) showed that only F(-) inhibited soybean urease significantly (IC(50) = 2.9 mM). Competitive type of inhibition was observed for this anion with a K(i) value of 1.30 mM.

  19. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our mission is to develop new, value-added uses for commodity crops and their oils. We strive to fulfill this mission with the self imposed responsibility of adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycer...

  20. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our mission is to develop new, value-added uses for commodity crops and oils. We chose to fulfill this mission while adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycerols (FSG) from the biocatalytic transester...

  1. Crystal morphology of sunflower wax in soybean oil organogel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...

  2. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate.

    PubMed

    Seong, Pil-Je; Jeon, Byoung Wook; Lee, Myunggu; Cho, Dae Haeng; Kim, Duk-Ki; Jung, Kwang S; Kim, Seung Wook; Han, Sung Ok; Kim, Yong Hwan; Park, Chulhwan

    2011-05-01

    The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved. PMID:22113023

  3. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Esfanjani, Afshin Faridi; Akhavan, Sahar

    2016-01-01

    Our objective was to evaluate the antioxidant activity of olive leave extract (OLE) encapsulated by nano-emulsions in soybean oil. The average droplet size one day after production was 6.16 nm for primary W/O nano-emulsion and, 675 nm and 1443 nm for multiple emulsions stabilized by WPC alone and complex of WPC-pectin, respectively. The antioxidant activity of these emulsions containing three concentrations of 100, 200 and 300 mg OLE during storage was evaluated in soybean oil by peroxide value, TBA value and rancimat thermal stability test and was compared with blank (non-encapsulated) OLE and synthetic TBHQ antioxidant. Nano-encapsulated OLE was capable of controlling peroxide value better than unencapsulated OLE. But because of blocking phenolic compounds within dispersed emulsions droplets, thermal stability of encapsulated OLE was lower. To summarize, with increased solubility and controlled release of olive leaf phenolic compounds through their nano-encapsulation, a higher antioxidant activity was achieved.

  4. [Application of ICP-MS to the detection of 22 elements in transgenic soybean oil].

    PubMed

    Wel, Zhen-lin; Shen, Lin; Rui, Yu-kui; Jiao, Chuan-zhen

    2008-06-01

    With the rapid development of transgenic food, more and more transgenic food has been pouring into the market, and much attention has been paid to the edible safety of transgenic food. Transgenic soybean oils were studied by ICP-MS to detect 22 kinds of elements. The results showed that the contents of 7 kinds of macroelements range from 0. 13 to 12.52 microg x g(-1) in transgenic soybean oils, the range of the rest 15 kinds of microelements is from 0.15 ng x g(-1) to 7)0.00 ng x g(-1). The sequence of macroelement concentration is Ca>Na>K>Mg>Al>P>Si. There are 5 kinds of micoelements whose concentrations were higher than 200 ng x g(-1), including Zn>Ba>Cr>Fe>Ti, especially Zn, Ba, Cr and Fe.

  5. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    PubMed

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-03-18

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.

  6. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    PubMed

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-01-01

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content. PMID:27050959

  7. Long-term operation of a turbocharged diesel engine on soybean oil fuel blends

    SciTech Connect

    Ziemke, M.C.; Peters, J.F.; Schroer, B.

    1983-08-01

    It has been known for more than 50 years that some diesel engines could be fueled for short periods with vegetable oils, either neat or with hydrocarbon fuel additives. World overproduction of soybean oil is increasing its potential as an economical diesel fuel extender. The subject test program was undertaken to determine long-term effects of this alternate fuel on a modern, high-speed diesel engine. The choice of a vegetable oil (soybean oil) as an alternative diesel engine fuel or fuel extender rather than the other major biomass motor fuel (ethanol) is related to the relative properties of these fuels. The common U.S. vegetable oils are much closer to hydrocarbon (No. 2D) diesel fuel than is ethanol in both cetane rating and volumetric energy content. Unlike ethanol, the vegetable oils can be blended 1:1 with No. 2D fuel to produce engine power and volumetric fuel consumption levels practically identical to those obtained with 100% No. 2D fuel. However, engine operation and laboratory bench tests demonstrated that some fuel blends were unsatisfactory for continuous use. The reasons for these difficulties were determined and a satisfactory fuel blend was proven through prolonged testing.

  8. Inositol metabolism and phytase activity in normal and low phytic acid soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic basis for the low seed phytic acid trait in soybean lines derived from the low phytic acid line (CX1834) of Wilcox et al (2000) is under investigation in several laboratories. Our objective was to measure metabolite levels associated with the phytic acid and raffinosaccharide biosyntheti...

  9. Cell wall, lignin and fatty acid-related transcriptome in soybean: Achieving gene expression patterns for bioenergy legume

    PubMed Central

    Pestana-Calsa, Maria Clara; Pacheco, Cinthya Mirella; de Castro, Renata Cruz; de Almeida, Renata Rodrigues; de Lira, Nayara Patrícia Vieira; Junior, Tercilio Calsa

    2012-01-01

    Increasing efforts to preserve environmental resources have included the development of more efficient technologies to produce energy from renewable sources such as plant biomass, notably through biofuels and cellulosic residues. The relevance of the soybean industry is due mostly to oil and protein production which, although interdependent, results from coordinated gene expression in primary metabolism. Concerning biomass and biodiesel, a comprehensive analysis of gene regulation associated with cell wall components (as polysaccharides and lignin) and fatty acid metabolism may be very useful for finding new strategies in soybean breeding for the expanding bioenergy industry. Searching the Genosoja transcriptional database for enzymes and proteins directly involved in cell wall, lignin and fatty acid metabolism provides gene expression datasets with frequency distribution and specific regulation that is shared among several cultivars and organs, and also in response to different biotic/abiotic stress treatments. These results may be useful as a starting point to depict the Genosoja database regarding gene expression directly associated with potential applications of soybean biomass and/or residues for bioenergy-producing technologies. PMID:22802717

  10. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    PubMed

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal.

  11. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  12. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance.

    PubMed

    Hamayun, Muhammad; Khan, Sumera Afzal; Khan, Abdul Latif; Shin, Jae-Ho; Ahmad, Bashir; Shin, Dong-Hyun; Lee, In-Jung

    2010-06-23

    The agricultural industry is severely affected by salinity due to its high magnitude of adverse impacts and worldwide distribution. We observed the role of exogenous gibberellic acid (GA(3)) in salinity alleviation of soybean. We found that GA(3) application significantly promoted plant length and plant fresh/dry biomass while markedly hindered by NaCl induced salt stress. The adverse effect of salt stress was mitigated by GA(3), as growth attributes significantly recovered, when GA(3) was added to salt stressed soybean plants. Elevated GA(3) treatments increased daidzein and genistein contents (commonly known as phytoestrogens) of soybean leaves under control and salt stress conditions. Phytohormonal analysis of soybean showed that the level of bioactive gibberellins (GA(1) and GA(4)) and jasmonic acid increased in GA(3) treated plants, while the endogenous abscisic acid and salicylic acid contents declined under the same treatment. GA(3) mitigated the adverse effects of salt stress by regulating the level of phytohormones, thus aiding the plant in resuming its normal growth and development. The presence of GA(1) and GA(4) showed that both early-C13-hydroxylation and non-C13-hydroxylation pathways of GA biosynthesis are functional in soybean. It was concluded that GA(3) ameliorates the adverse effects of salt stress and restores normal growth and development of soybean.

  13. Soybean oil and methyl oleate adsorption onto a steel surface investigated using a quartz crystal microbalance with dissipation monitoring and atomic force microscopy**1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States’ 2010 annual production of soybean oil exceeded 8 million metric tons, making a significant vegetable oil surplus available for new uses, particularly as a lubricant. Investigation of soybean oil and methyl oleate adsorption onto steel using a quartz crystal microbalance with diss...

  14. Development of epoxidized soybean oil and soy fibre composites with Polyhedral Oligomeric Silsesquioxane (POSS) nano reinforcement

    NASA Astrophysics Data System (ADS)

    de Boer, Ryan Sietze

    Soy fibre and soybean oil were utilized to produce a bio-composite targeted as a substitute for conventional petroleum-based materials. The study was divided into two parts; the first was the development of a bio-epoxy that consisted of conventional epoxy, epoxidized soybean oil, and two types of functionalized POSS. The second part of the study involved blending of the bio-epoxy with titanate treated soy fibre. Combined incorporation of epoxide and amine functionalized POSS in the bio-epoxy matrix resulted in a 29% impact strength improvement compared to the petroleum-based epoxy. Incorporation of the epoxide functionalized POSS resulted in improvements in tensile strength by 8%, tensile modulus by 2%, and an increase in the glass transition temperature by 4% compared to the petroleum-based epoxy and epoxidized soybean oil hybrid. The coupling of titanate to soy fibre in comparison to the soy fibre without titanate treatment resulted in an impact strength improvement of 37%. Furthermore, the coupling of titanate increased the tensile strength and tensile modulus by 24% and 22% respectively, and reduced the water absorption by 70%.

  15. Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis.

    PubMed

    Wang, Weifei; Li, Tie; Ning, Zhengxiang; Wang, Yonghua; Yang, Bo; Yang, Xiaoquan

    2011-07-10

    Research work was objectively targeted to synthesize highly pure diacylglycerol (DAG) with glycerolysis of soybean oil in a solvent medium of t-butanol. Three commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) were screened, and Novozym 435 was the best out of three candidates. Batch reaction conditions of the enzymatic glycerolysis, the substrate mass ratio, the reaction temperature and the substrate concentration, were studied. The optimal reaction conditions were achieved as 6.23:1 mass ratio of soybean oil to glycerol, 40% (w/v) of substrate concentration in t-butanol and reaction temperature of 50 °C. A two-stage molecular distillation was employed for purification of DAG from reaction products. Scale-up was attempted based on the optimized reaction conditions, 98.7% (24 h) for the conversion rate of soybean oil, 48.5% of DAG in the glycerolysis products and 96.1% for the content of DAG in the final products were taken in account as the results.

  16. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings.

  17. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings. PMID:25069575

  18. Investigation into photostability of soybean oils by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Savi, E. L.; Malacarne, L. C.; Baesso, M. L.; Pintro, P. T. M.; Croge, C.; Shen, J.; Astrath, N. G. C.

    2015-06-01

    Assessment of photochemical stability is essential for evaluating quality and the shelf life of vegetable oils, which are very important aspects of marketing and human health. Most of conventional methods used to investigate oxidative stability requires long time experimental procedures with high consumption of chemical inputs for the preparation or extraction of sample compounds. In this work we propose a time-resolved thermal lens method to analyze photostability of edible oils by quantitative measurement of photoreaction cross-section. An all-numerical routine is employed to solve a complex theoretical problem involving photochemical reaction, thermal lens effect, and mass diffusion during local laser excitation. The photostability of pure oil and oils with natural and synthetic antioxidants is investigated. The thermal lens results are compared with those obtained by conventional methods, and a complete set of physical properties of the samples is presented.

  19. Investigation into photostability of soybean oils by thermal lens spectroscopy.

    PubMed

    Savi, E L; Malacarne, L C; Baesso, M L; Pintro, P T M; Croge, C; Shen, J; Astrath, N G C

    2015-06-15

    Assessment of photochemical stability is essential for evaluating quality and the shelf life of vegetable oils, which are very important aspects of marketing and human health. Most of conventional methods used to investigate oxidative stability requires long time experimental procedures with high consumption of chemical inputs for the preparation or extraction of sample compounds. In this work we propose a time-resolved thermal lens method to analyze photostability of edible oils by quantitative measurement of photoreaction cross-section. An all-numerical routine is employed to solve a complex theoretical problem involving photochemical reaction, thermal lens effect, and mass diffusion during local laser excitation. The photostability of pure oil and oils with natural and synthetic antioxidants is investigated. The thermal lens results are compared with those obtained by conventional methods, and a complete set of physical properties of the samples is presented.

  20. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  1. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Chen, Minmin; Wang, Lei; Liang, Chanjuan; Zhou, Qing; Huang, Xiaohua

    2012-05-01

    Interactive effects of cadmium (Cd(2+)) and acid rain on photosynthetic light reaction in soybean seedlings were investigated under hydroponic conditions. Single treatment with Cd(2+) or acid rain and the combined treatment decreased the content of chlorophyll, Hill reaction rate, the activity of Mg(2+)-ATPase, maximal photochemical efficiency and maximal quantum yield, increased initial fluorescence and damaged the chloroplast structure in soybean seedlings. In the combined treatment, the change in the photosynthetic parameters and the damage of chloroplast structure were stronger than those of any single pollution. Meanwhile, Cd(2+) and acid rain had the interactive effects on the test indices in soybean seedlings. The results indicated that the combined pollution of Cd(2+) and acid rain aggravated the toxic effect of the single pollution of Cd(2+) or acid rain on the photosynthetic parameters due to the serious damage to the chloroplast structure.

  2. Modification of egg yolk fatty acids profile by using different oil sources

    PubMed Central

    Omidi, Mohsen; Rahimi, Shaban; Karimi Torshizi, Mohammad Ali

    2015-01-01

    The study was conducted to evaluate the effects of different dietary oil sources supplementation on laying hens’ performance and fatty acids profile of egg yolks. Seventy-two 23-week-old laying hens (Tetra-SL) divided into six experimental diets (four replicates and three birds per replication) in a completely randomized design for nine weeks. Experimental diets were included: 1) control (no oil), 2) 3.00% fish oil, 3) 3.00% olive oil, 4) 3.00% grape seed oil, 5) 3.00% canola oil, and 6) 3.00% soybean oil. The diets were similar in terms of energy and protein. Egg production, egg mass, egg weight, feed intake, feed conversion ratio and fatty acid composition of egg yolk were determined at the end of the trial. The results indicated that the performance parameters were not significantly different between treatments in the entire period (p > 0.05). However, fatty acids profiles of yolk were affected by experimental diets (p < 0.05). Fish oil significantly reduced omega-6 fatty acids and increased docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in egg yolk. Also canola oil increased linolenic acid content in the egg yolk. In conclusion, fish oil increased omega-3 long-chain fatty acids and decreased omega-6 to omega-3 ratio in eggs which may have beneficial effects on human health. PMID:26261709

  3. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion.

  4. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. PMID:25312008

  5. Evaluation of antioxidant activity of loquat fruit (Eriobotrya japonica lindl.) skin and the feasibility of their application to improve the oxidative stability of soybean oil.

    PubMed

    Delfanian, Mojtaba; Kenari, Reza Esmaeilzadeh; Sahari, Mohammad Ali

    2016-05-01

    The effects of ultrasound-assisted, supercritical CO2 and solvent extraction techniques on antioxidant activity of loqua (Eriobotrya japonica Lindl.) skin extract in oxidation stability of soybean oil was evaluated. The antioxidant efficacy of extracts was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging capacity, β-carotene/linoleic acid, and Rancimat test system. Results showed that solvent extract of loquat fruit skin at 400 ppm had the highest antioxidant activity compared to ultrasound-assisted and supercritical CO2 extracts. Further, solvent extraction was the most effective method for extraction of phenolic compounds. Protective effects of extracts in stabilization of soybean oil during both frying and storage conditions were tested and compared to tert-butyl hydroquinone (TBHQ) by measuring their peroxide value, free fatty acids, conjugated dienes and trienes value. During frying process solvent extract of skin at 400 ppm (SOEA) exhibited stronger antioxidant activity in oil compared to other oil samples, but this antioxidant potential was lower than TBHQ in storage conditions. Present study showed that loquat fruit skin is a good source of natural antioxidant compounds, and has the potential to be used as a substitute for synthetic antioxidants in vegetable oils. PMID:27407190

  6. Evaluation of antioxidant activity of loquat fruit (Eriobotrya japonica lindl.) skin and the feasibility of their application to improve the oxidative stability of soybean oil.

    PubMed

    Delfanian, Mojtaba; Kenari, Reza Esmaeilzadeh; Sahari, Mohammad Ali

    2016-05-01

    The effects of ultrasound-assisted, supercritical CO2 and solvent extraction techniques on antioxidant activity of loqua (Eriobotrya japonica Lindl.) skin extract in oxidation stability of soybean oil was evaluated. The antioxidant efficacy of extracts was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging capacity, β-carotene/linoleic acid, and Rancimat test system. Results showed that solvent extract of loquat fruit skin at 400 ppm had the highest antioxidant activity compared to ultrasound-assisted and supercritical CO2 extracts. Further, solvent extraction was the most effective method for extraction of phenolic compounds. Protective effects of extracts in stabilization of soybean oil during both frying and storage conditions were tested and compared to tert-butyl hydroquinone (TBHQ) by measuring their peroxide value, free fatty acids, conjugated dienes and trienes value. During frying process solvent extract of skin at 400 ppm (SOEA) exhibited stronger antioxidant activity in oil compared to other oil samples, but this antioxidant potential was lower than TBHQ in storage conditions. Present study showed that loquat fruit skin is a good source of natural antioxidant compounds, and has the potential to be used as a substitute for synthetic antioxidants in vegetable oils.

  7. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  8. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  9. Effects of age and dietary soybean oil level on eggshell quality, bone strength and blood biochemistry in laying hens.

    PubMed

    Jiang, S; Cui, L Y; Hou, J F; Shi, C; Ke, X; Yang, L C; Ma, X P

    2014-01-01

    The objective of the study was to investigate the differences in eggshell quality, bone quality and serum bone biochemistry markers associated with changes in age and dietary soybean oil levels in laying hens. A total of 54, 19-week-old Hy-Line Brown laying hens were housed in 18 battery cages (3 birds/cage) and randomly divided into three diet treatments for 90 d: control-fat (CF, 1.9% soybean oil), moderate-fat (MF, 7% soybean oil) and high-fat (HF, 10% soybean oil). The hens' body weights (BW), egg production, egg weights, eggshell thickness and femoral diameter were higher at d 90 than at d 60 or d 30. Meanwhile, feed intake, relative bone weights, all bone strength parameters and serum Ca were lower at d 90 or 60 than at d 30. Compared to the CF hens, the feed intake, BW, abdominal fat pad weights and serum alkaline phosphatase activity were elevated in MF or HF hens. The eggshell thickness, relative femoral and tibial weight, femoral stiffness, femoral modulus, tibial mixed force and serum calcium and phosphorus levels were lower in MF or HF hens than CF hens. These findings suggest that bone loss in caged hens starts from an early stage of the laying period, and dietary oil (particularly with diets over 10% soybean oil) has harmful effects on eggshell quality, bone strength and bone mineralisation from an early stage of the laying period.

  10. The role of repeatedly heated soybean oil in the development of hypertension in rats: association with vascular inflammation

    PubMed Central

    Ng, Chun-Yi; Kamisah, Yusof; Faizah, Othman; Jaarin, Kamsiah

    2012-01-01

    Thermally oxidized oil generates reactive oxygen species that have been implicated in several pathological processes including hypertension. This study was to ascertain the role of inflammation in the blood pressure raising effect of heated soybean oil in rats. Male Sprague-Dawley rats were divided into four groups and were fed with the following diets, respectively, for 6 months: basal diet (control); fresh soybean oil (FSO); five-time-heated soybean oil (5HSO); or 10-time-heated soybean oil (10HSO). Blood pressure was measured at baseline and monthly using tail-cuff method. Plasma prostacyclin (PGI2) and thromboxane A2 (TXA2) were measured prior to treatment and at the end of the study. After six months, the rats were sacrificed, and the aortic arches were dissected for morphometric and immunohistochemical analyses. Blood pressure was increased significantly in the 5HSO and 10HSO groups. The blood pressure was maintained throughout the study in rats fed FSO. The aortae in the 5HSO and 10HSO groups showed significantly increased aortic wall thickness, area and circumferential wall tension. 5HSO and 10HSO diets significantly increased plasma TXA2/PGI2 ratio. Endothelial VCAM-1 and ICAM-1 were significantly increased in 5HSO, as well as LOX-1 in 10HSO groups. In conclusion, prolonged consumption of repeatedly heated soybean oil causes blood pressure elevation, which may be attributed to inflammation. PMID:22974219

  11. Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer

    DOE PAGES

    Mauck, Sheli C.; Wang, Shu; Ding, Wenyue; Rohde, Brian J.; Fortune, C. Karen; Yang, Guozhen; Robertson, Megan L.; Ahn, Suk -Kyun

    2016-02-26

    Polylactide (PLA), a commercially available thermoplastic derived from plant sugars, finds applications in consumer products, disposable packaging, and textiles, among others. The widespread application of this material is limited by its brittleness, as evidenced by low tensile elongation at break, impact strength, and fracture toughness. Herein, a multifunctional vegetable oil, acrylated epoxidized soybean oil (AESO), was investigated as a biodegradable, renewable additive to improve the toughness of PLA. AESO was found to be a highly reactive oil, providing a dispersed phase with tunable properties in which the acrylate groups underwent cross-linking at the elevated temperatures required for processing the blends.more » Additionally, the presence of hydroxyl groups on AESO provided two routes for compatibilization of PLA/AESO blends: (1) reactive compatibilization through the transesterification of AESO and PLA and (2) synthesis of a PLA star polymer with an AESO core. The morphological, thermal, and mechanical behaviors of PLA/oil blends were investigated, in which the dispersed oil phase consisted of AESO, soybean oil (SYBO), or a 50/50 mixture of AESO/SYBO. The oil additives were found to toughen the PLA matrix, with significant enhancements in the elongation at break and tensile toughness values, while maintaining the glass transition temperature of neat PLA. Specifically, the blend containing PLA, AESO, SYBO, and the PLA star polymer was found to exhibit a uniform oil droplet size distribution with small average droplet size and interparticle distance, resulting in the greatest enhancements of PLA tensile properties with no observable plasticization.« less

  12. Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC-APCI-MS-MS.

    PubMed

    Fasciotti, Maíra; Pereira Netto, Annibal D

    2010-05-15

    Triacylglycerols (TAGs) are the main constituents of vegetable oils where they occur in complex mixtures with characteristic distributions. Mass spectrometry using an atmospheric pressure chemical ionization interface (APCI-MS) run in positive mode and an Ion Trap mass analyser were applied in the study of olive and soybean oils and their mixtures. Direct injections of soybean and olive oil solutions allowed the identification of ions derived from the main TAGs of both oils. This procedure showed to be a simple and powerful tool to evaluate mixtures or addition of soybean to olive oil. TAG separation was optimized by high performance liquid chromatography (HPLC) using an octadecylsilica LiChrospher column (250mm x 3mm; 5microm) and a gradient composed of acetonitrile and 2-propanol allowed the separation of the main TAGs of the studied oils. APCI vaporization temperature was optimized and best signals were obtained at 370 degrees C. Multiple reaction monitoring (MRM) employing the transition of the protonated TAG molecules ([M+H](+)) to the protonated diacylglycerol fragments ([M+H-R](+)) improved the selectivity of TAG detection and was used in quantitative studies. Different strategies were developed to evaluate oil composition following TAG analysis by MRM. The external standard calibration and standard additions methods were compared for triolein quantification but the former showed to be biased. Further quantitative studies were based on the estimates of soybean and olive oil proportions in mixtures by comparison of TAG areas found in mixtures of known and unknown composition of both oils. Good agreement with expected or labeled values was found for a commercial blend containing 15% (w/w) of olive oil in soybean oil and to a 1:1 mixture of both oils, showing the potential of this method in characterizing oil mixtures and estimating oil proportions. Olive oils of different origins were also evaluated by mass spectra data obtained after direct injections of oil

  13. No evidence found for Diels-Alder reaction products in soybean oil oxidized at the frying temperature by NMR study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been generally accepted that the Diels-Alder reaction mechanism is one of the major reaction mechanisms to produce dimers and polymers during heating process of vegetable oil. Soybean oil oxidized at 180 °C for 24 hrs with 1.45 surface area-to-volume ratio showed 36.1% polymer peak area in g...

  14. Amino acids as antioxidants for frying oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  15. Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions.

    PubMed

    Li, Hongyan; Fan, Ya-wei; Li, Jing; Tang, Liang; Hu, Jiang-ning; Deng, Ze-yuan

    2013-04-01

    The aim of this research was to evaluate the oxidative stabilities and qualities of different vegetable oils (almond, blend 1-8, camellia, corn, palm, peanut, rapeseed, sesame, soybean, sunflower, and zanthoxylum oil) based on peroxide value (PV), vitamin E content, free fatty acid, and fatty acid composition. The vegetable oils with different initial fatty acid compositions were studied under accelerated oxidation condition. It showed that PV and n-3 polyunsaturated fatty acid (PUFA) changed significantly during 21 d accelerated oxidation storage. Based on the changes of PV and fatty acid composition during the oxidation process, mathematical models were hypothesized and the models were simulated by Matlab to generate the proposed equations. These equations were established on the basis of the different PUFA contents as 10% to 28%, 28% to 46%, and 46% to 64%, respectively. The simulated models were proven to be validated and valuable for assessing the degree of oxidation and predicting the shelf life of vegetable oils.

  16. Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance

    NASA Astrophysics Data System (ADS)

    Simencio Otero, Rosa L.; Canale, Lauralice C. F.; Said Schicchi, Diego; Agaliotis, Eliana; Totten, George E.; Sánchez Sarmiento, Gustavo

    2013-07-01

    Vegetable and animal oils as a class of fluids have been used for hundreds of years, if not longer, as quenchants for hardening steel. However, when petroleum oils became available in the late 1800s and early 1900s, the use of these fluids as quenchants, in addition to their use in other industrial oil applications, quickly diminished. This was primarily, but not exclusively, due to their generally very poor thermal-oxidative instability and the difficulty for formulating fluid analogs with varying viscosity properties. Interest in the use of renewable fluids, such as vegetable oils, has increased dramatically in recent years as alternatives to the use of relatively non-biodegradable and toxic petroleum oils. However, the relatively poor thermal-oxidative stability has continued to be a significant reason for their general non-acceptance in the marketplace. Soybean oil (SO) is one of the most highly produced vegetable oils in Brazil. Currently, there are commercially produced epoxidized versions of SO which are available. The objective of this paper is to discuss the potential use of epoxidized SO and its heat transfer properties as a viable alternative to petroleum oils for hardening steel.

  17. 21 CFR 172.723 - Epoxidized soybean oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 5 U.S.C 552(a) and 1 CFR part 51. Copies are available from the American Oil Chemists' Society, P. O... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of this... in the control), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR...

  18. Contribution of chlorophyll to photooxidation of soybean oil at specific visible wavelengths of light.

    PubMed

    Bianchi, Laurie M; Duncan, Susan E; Webster, Janet B; Neilson, Andrew P; O'Keefe, Sean F

    2015-02-01

    Photosensitizers in foods and beverages are important considerations when selecting packaging materials. Chlorophyll is found at low concentrations in many food products. The objective of this study was to determine the photosensitizing effect of chlorophyll on soybean oil (SO) using broad-spectrum light and 3 visible wavelength regions of light. SO with added chlorophyll (0, 1, or 2 μg chlorophyll added/mL SO) was exposed to 5 light conditions, using a photochemical reactor (10 °C; 4 h). Light treatments included broad-spectrum (BS; no filter; 157.6 ± 4.7 mW intensity), 430 nm (10 nm; 1.8 ± 0.7 mW), and 660 nm (10 nm; 0.332 ± 0.05 mW) wavelengths compared to a no-light control. Chlorophyll a (but not b) absorbs light in the selected visible wavelength regions. Chlorophyll degradation was evaluated. Oxidative changes in SO were assessed by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) assay, which measures malondialdehyde (MDA). Chlorophyll was completely degraded at BS and 430 nm conditions and degraded to 36% of original concentration at 660 nm wavelength. PV and MDA concentration significantly increased with chlorophyll addition (1 μg/mL) at BS and 430 nm wavelengths compared to no-light control. Lower light intensity at 660 nm initiated oxidation reactions as measured by PV, but not significantly. There were differences in PV (BS, 430 nm) and TBARS (BS) between the no-light and light-exposed SO without chlorophyll added. There was very little effect at 450 nm. This study suggests that broad-spectrum light and at least light wavelengths at or near 430 nm and 660 nm excite chlorophyll, resulting in initiation of oxidation reactions. Packaging material selection for foods and beverages should consider blocking excitation wavelengths of photosensitizing molecules, including chlorophyll, to protect product quality.

  19. Soybean Root Elongation Response to Magnesium Additions to Acid Subsoil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additions of micromolar concentrations of Mg2+ to hydroponic solutions enhance Al tolerance of soybean [Glycine max (L.) Merr.] by increasing citrate secretion from roots and external complexation of toxic Al species in solution. The objective of this study was to assess the ameliorative effect of M...

  20. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis.

  1. Transesterification of soybean oil using bovine bone waste as new catalyst.

    PubMed

    Smith, Siwaporn Meejoo; Oopathum, Chutima; Weeramongkhonlert, Vararut; Smith, Christopher B; Chaveanghong, Suwilai; Ketwong, Pradudnet; Boonyuen, Supakorn

    2013-09-01

    Calcined bovine bone waste was employed to catalyze the transesterification reaction between soybean oil and methanol. The influence of various conditions on the efficiency of the transesterification was studied i.e. type of reactor, temperature, catalyst loading and methanol/oil ratio. The optimum yield of methyl ester (97%) was obtained by performing the closed-system transesterification at 65 °C for 3 h with catalyst loading of 8% wt and 6:1 methanol to oil ratio, using bone calcined at 750 °C. Calcination of the commercial bovine bone at 650 °C and above results in conversion of the calcium carbonate component to calcium oxide, with the major component being crystalline hydroxyapetite. Calcium oxide is believed to be responsible for the catalytic activity of the material. The reusability, low cost and low catalyst loading required (4% wt) may make bovine bone an attractive alternative to existing transesterification catalyst systems.

  2. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  3. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality.

  4. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production. PMID:25152056

  5. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  6. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  7. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.

    PubMed

    Yin, Xiaojian; Nishimura, Minoru; Hajika, Makita; Komatsu, Setsuko

    2016-06-01

    Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages.

  8. Effects of simulated acid rain on yield response of two soybean cultivars

    SciTech Connect

    Porter, P.M.; Banwart, W.L.; Hassett, J.J.; Finke, R.L.

    1987-01-01

    Field experiments were conducted for 3 yrs. to determine the effects of simulated acid rain on seed yield of two soybean (Glycine max (L.) Merr.) cultivars, 'Amsoy 71' and 'Williams 82'. Plants were treated biweekly with simulated rain of pH 5.6, 4.6, 4.2, 3.8, 3.4, and 3.0. For Amsoy 71 there was a linear decrease in yield with increasing rainfall acidity for 1 of 3 yrs but no significant effects for the other two. Thus, acid rain appears to reduce the yield of some soybean cultivars slightly, but this effect is not consistent from year to year. Amsoy 71 and Williams 82 soybean treated with the most-acidic rain, pH 3.0, resulted in average yields for the 3 yrs of the study of approximately 3% and 4% lower than the average yields for the other treatments, respectively. However, calculations from the response functions developed have shown that, at current levels of rainfall acidities, the effects on yield are very small. With an increase in rainfall acidity of 50% in Illinois, the predicted yield decrease for Amsoy 71 and Williams 82 soybean would be less than 1%. Similarly, the expected increase in yield of these cultivars would be 1% or less if acidity in the rainfall were reduced by 50%. While there may be beneficial effects of reduced S and N oxide emissions, these results suggest the resultant lower rainfall acidities are not likely to produce noticeable changes in soybean yields.

  9. Optimization of Tocopherol Concentration Process From Soybean Oil Deodorized Distillate Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ito, Vanessa Mayumi; Batistella, César Benedito; Wolf Maciel, Maria Regina; Filho, Rubens Maciel

    Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins.

  10. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    PubMed

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. PMID:27374561

  11. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    PubMed

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying.

  12. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... accordance with the following prescribed conditions: (a) They are prepared from corn oil, cottonseed oil, lard, palm oil from fruit, peanut oil, safflower oil, sesame oil, soybean oil, and tallow and the fatty....860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862....

  13. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    PubMed

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds.

  14. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang

    2014-08-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.

  15. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior.

  16. Oxidative stability and alpha-tocopherol retention in soybean oil with lemon seed extract (Citrus limon) under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2009-11-01

    The synergistic effect of lemon seed extract with tert-butylhydroquinone (TBHQ) in soybean oil subjected to thermoxidation by Rancimat was investigated, and the influence of these antioxidants on a-tocopherol degradation in thermoxidized soybean oil. Control, LSE (2400 mg/kg Lemon Seed Extract), TBHQ (50 mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180 degrees C for 20 h. Samples were taken at time 0, 5, 10, 15 and 20 h intervals and analysed for oxidative stability and alpha-tocopherol content. LSE and Mixtures 1 and 2 showed the capacity of retarding lipid oxidation when added to soya oil and also contributed to alpha-tocopherol retention in oil heated at high temperatures. However, Mixtures 1 and 2 added to the oil presented a greater antioxidant power, consequently proving the antioxidants synergistic effect.

  17. Assessment of Fatty Acid Profile and Seed Mineral Nutrients of Two Soybean (Glycine max L.) Cultivars Under Elevated Ultraviolet-B: Role of ROS, Pigments and Antioxidants.

    PubMed

    Choudhary, Krishna Kumar; Agrawal, Shashi Bhushan

    2016-01-01

    Current scenarios under global climate change envisage a considerable increase in ultraviolet B (UV-B) radiation in near future which may affect the productivity and yield quality of major agricultural crops. Present investigation was conducted to examine various defense strategies adopted against elevated UV-B (ambient + 7.2 kJ m-(2) day-(1) ) and their impact on seed nutrients, content and quality of oil including fatty acid profile of two soybean cultivars (JS-335 and PS-1042). Elevated UV-B (eUV-B) exposure leads toward higher unsaturation of fatty acids and changes in other oil quality parameters (acid, iodine and saponification value) indicated that eUV-B favored the synthesis of long-chain fatty acids with fewer carboxylic acid groups, making the oil rancid, with undesirable flavor and low nutritional value. The effect was more severe in JS-335 as compared to PS-1042. Negative effects were also seen on nutrients of soybean seeds. Adverse effects resulted due to insufficient quenching of ROS (superoxide radical and hydrogen peroxide) by the defense system and thus unable to overcome the imposed oxidative stress. Credit of better performance by PS-1042 against eUV-B may be given to the adoption of efficient defense strategies like higher wax deposition, increase in lignin and flavonoids (quercetin and kaempferol) contents. PMID:26489397

  18. Phytic acid and inorganic phosphate composition in soybean lines with independent IPK1 mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr] seeds contain a large amount of phosphorus (P), which is stored as phytic acid (PA). PA is indigestible by nonruminent livestock and considered an anti-nutritional factor because PA chelates divalent cations and prevents the uptake of essential nutrients. Interest in...

  19. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  20. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  1. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging.

    PubMed

    Salarbashi, Davoud; Tajik, Sima; Ghasemlou, Mehran; Shojaee-Aliabadi, Saeedeh; Shahidi Noghabi, Mostafa; Khaksar, Ramin

    2013-10-15

    This study examines the development of new bio-active polysaccharide-based bioplastics through casting and solvent-evaporation. Soluble soybean polysaccharide (SSPS) films incorporated with Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at various concentrations were prepared and characterized. The presence of ZEO and MEO improved polysaccharide interactions, reducing the films' water solubility and water vapor barrier properties, but did not markedly modify their moisture content or thickness. Differing amounts of ZEO or MEO had no significant effect on mechanical behavior, with the exception of 3% oil concentration, which decreased tensile strength and significantly increased elongation at break. DMTA curves revealed a single Tg, which may indicate the compatibility of essential oil and SSPS. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. These results suggest that ZEO and MEO can potentially be directly incorporated into SSPS to prepare active biodegradable films for food-packaging applications. PMID:23987454

  2. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging.

    PubMed

    Salarbashi, Davoud; Tajik, Sima; Ghasemlou, Mehran; Shojaee-Aliabadi, Saeedeh; Shahidi Noghabi, Mostafa; Khaksar, Ramin

    2013-10-15

    This study examines the development of new bio-active polysaccharide-based bioplastics through casting and solvent-evaporation. Soluble soybean polysaccharide (SSPS) films incorporated with Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at various concentrations were prepared and characterized. The presence of ZEO and MEO improved polysaccharide interactions, reducing the films' water solubility and water vapor barrier properties, but did not markedly modify their moisture content or thickness. Differing amounts of ZEO or MEO had no significant effect on mechanical behavior, with the exception of 3% oil concentration, which decreased tensile strength and significantly increased elongation at break. DMTA curves revealed a single Tg, which may indicate the compatibility of essential oil and SSPS. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. These results suggest that ZEO and MEO can potentially be directly incorporated into SSPS to prepare active biodegradable films for food-packaging applications.

  3. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram; Shokrgozar, Mohammad Ali; Yari, Abbas; Saeedi-Eslami, Seyyed Nasirodin

    2013-01-01

    In this study, a simple and versatile synthetic approach was developed to prepare bactericidal polyurethane coatings. For this purpose, introduction of both quaternary ammonium salts (QASs), with well-known antibacterial activity, and reactive hydroxyl groups on to the backbone of soybean oil was considered. Epoxidized soybean oil was reacted with diethylamine and the intermediate tertiary amine containing polyol was reacted with two different alkylating agents, methyl iodide and benzyl chloride, to produce MQAP and BQAP, respectively. These functional polyols were reacted with different diisocyanate monomers to prepare polyurethane coatings. Depending on the structure of monomers used for the preparation of polyurethane coatings, initial modulus, tensile strength and elongation at break of samples were in the ranges of 122-339 MPa, 4.6-12.4 MPa and 8.4-46%, respectively. Polyurethane coatings based on isophorone diisocyanate showed proper mechanical properties and adhesion strength (0.41 MPa) for coating application. Study of fibroblast cells interaction with prepared polyurethanes showed promising cells viability in the range of 78-108%. Meanwhile, MQAP based samples with higher concentration of QASs showed better adhesion strength, surface hydrophilicity and antibacterial activity (about 95% bacterial reduction). Therefore, these materials can find applications as bactericidal coating for biomedical devices and implants.

  4. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2007-10-01

    A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications. PMID:17877401

  5. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram; Shokrgozar, Mohammad Ali; Yari, Abbas; Saeedi-Eslami, Seyyed Nasirodin

    2013-01-01

    In this study, a simple and versatile synthetic approach was developed to prepare bactericidal polyurethane coatings. For this purpose, introduction of both quaternary ammonium salts (QASs), with well-known antibacterial activity, and reactive hydroxyl groups on to the backbone of soybean oil was considered. Epoxidized soybean oil was reacted with diethylamine and the intermediate tertiary amine containing polyol was reacted with two different alkylating agents, methyl iodide and benzyl chloride, to produce MQAP and BQAP, respectively. These functional polyols were reacted with different diisocyanate monomers to prepare polyurethane coatings. Depending on the structure of monomers used for the preparation of polyurethane coatings, initial modulus, tensile strength and elongation at break of samples were in the ranges of 122-339 MPa, 4.6-12.4 MPa and 8.4-46%, respectively. Polyurethane coatings based on isophorone diisocyanate showed proper mechanical properties and adhesion strength (0.41 MPa) for coating application. Study of fibroblast cells interaction with prepared polyurethanes showed promising cells viability in the range of 78-108%. Meanwhile, MQAP based samples with higher concentration of QASs showed better adhesion strength, surface hydrophilicity and antibacterial activity (about 95% bacterial reduction). Therefore, these materials can find applications as bactericidal coating for biomedical devices and implants. PMID:25428057

  6. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers.

    PubMed

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-02-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

  7. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    PubMed Central

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-01-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers. PMID:25557818

  8. Fatty acid content of selected seed oils.

    PubMed

    Orhan, Ilkay; Sener, Bilge

    2002-01-01

    Fatty acid content of selected seed oils from world-wide edible fruits, Ceratonia ciliqua (carob) from Caesalpiniaceae family, Diospyros kaki (persimmon) from Ebenaceae family, Zizyphus jujuba (jujube) from Rhamnaceae family, and Persea gratissima (avocado pear) from Lauraceae family, were determined by capillary gas chromatography- mass spectrometry (GC-MS) to find new natural sources for essential fatty acids. Among the seed oils analyzed, Ceratonia ciliqua has been found to have the highest essential fatty acid content.

  9. Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification

    PubMed Central

    Cavalcanti-Oliveira, Elisa d'Avila; da Silva, Priscila Rufino; Ramos, Alessandra Peçanha; Aranda, Donato Alexandre Gomes; Freire, Denise Maria Guimarães

    2011-01-01

    The process of biodiesel production by the hydroesterification route that is proposed here involves a first step consisting of triacylglyceride hydrolysis catalyzed by lipase from Thermomyces lanuginosus (TL 100L) to generate free fatty acids (FFAs). This step is followed by esterification of the FFAs with alcohol, catalyzed by niobic acid in pellets or without a catalyst. The best result for the enzyme-catalyzed hydrolysis was obtained under reaction conditions of 50% (v/v) soybean oil and 2.3% (v/v) lipase (25 U/mL of reaction medium) in distilled water and at 60°C; an 89% conversion rate to FFAs was obtained after 48 hours of reaction. For the esterification reaction, the best result was with an FFA/methanol molar ratio of 1:3, niobic acid catalyst at a concentration of 20% (w/w FFA), and 200°C, which yielded 92% conversion of FFAs to soy methyl esters after 1 hour of reaction. This study is exceptional because both the hydrolysis and the esterification use a simple reaction medium with high substrate concentrations. PMID:21052517

  10. Effects of chemical interesterification on the physicochemical, microstructural and thermal properties of palm stearin, palm kernel oil and soybean oil blends.

    PubMed

    Fauzi, Siti Hazirah Mohamad; Rashid, Norizzah Abd; Omar, Zaliha

    2013-04-15

    Blends of palm stearin (PS), palm kernel oil (PKO) and soybean oil (SBO) at certain proportions were formulated using a mixture design based on simplex-lattice (Design Expert 8.0.4 Stat-Ease Inc., Minneapolis, 2010). All the 10 oil blends were subjected to chemical interesterification (CIE) using sodium methoxide as the catalyst. The solid fat content (SFC), triacylglycerol (TAG) composition, thermal properties (DSC), polymorphism and microstructural properties were studied. Palm-based trans-free table margarine containing ternary mixture of PS/PKO/SBO [49/20/31 (w/w)], was optimally formulated through analysis of multiple isosolid diagrams and was found to have quite similar SMP and SFC profile as compared to the commercial table margarine. This study has shown chemical interesterification are effective in modifying the physicochemical properties of palm stearin, palm kernel oil, soybean oil and their mixtures.

  11. Optimization of biodiesel production process from soybean oil using the sodium potassium tartrate doped zirconia catalyst under Microwave Chemical Reactor.

    PubMed

    Li, Yihuai; Ye, Bin; Shen, Jiaowen; Tian, Zhen; Wang, Lijun; Zhu, Luping; Ma, Teng; Yang, Dongya; Qiu, Fengxian

    2013-06-01

    A solid base catalyst was prepared by the sodium potassium tartrate doped zirconia and microwave assisted transesterification of soybean oil was carried out for the production of biodiesel. It was found that the catalyst of 2.0(n(Na)/n(Zr)) and calcined at 600°C showed the optimum activity. The base strength of the catalysts was tested by the Hammett indicator method, and the results showed that the fatty acid methyl ester (FAME) yield was related to their total basicity. The catalyst was also characterized by FTIR, TGA, XRD and TEM. The experimental results showed that a 2.0:1 volume ratio of methanol to oil, 65°C reaction temperature, 30 min reaction time and 10 wt.% catalyst amount gave the highest the yield of biodiesel. Compared to conventional method, the reaction time of the way of microwave assisted transesterification was shorter. The catalyst had longer lifetime and maintained sustained activity after being used for four cycles.

  12. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer.

    PubMed

    Dizge, Nadir; Aydiner, Coskun; Imer, Derya Y; Bayramoglu, Mahmut; Tanriseven, Aziz; Keskinler, Bülent

    2009-03-01

    This study aims at carrying out lipase-catalyzed synthesis of fatty acid methyl esters (biodiesel) from various vegetable oils using lipase immobilized onto a novel microporous polymeric matrix (MPPM) as a low-cost biocatalyst. The research is focused on three aspects of the process: (a) MPPM synthesis (monolithic, bead, and powder forms), (b) microporous polymeric biocatalyst (MPPB) preparation by immobilization of lipase onto MPPM, and (c) biodiesel production by MPPB. Experimental planning of each step of the study was separately carried out in accordance with design of experiment (DoE) based on Taguchi methodology. Microporous polymeric matrix (MPPM) containing aldehyde functional group was synthesized by polyHIPE technique using styrene, divinylbenzene, and polyglutaraldehyde. Thermomyces lanuginosus lipase was covalently attached onto MPPM with 80%, 85%, and 89% immobilization efficiencies using bead, powder, and monolithic forms, respectively. Immobilized enzymes were successfully used for the production of biodiesel using sunflower, soybean, and waste cooking oils. It was shown that immobilized enzymes retain their activities during 10 repeated batch reactions at 25 degrees C, each lasting 24h. Since the developed novel method is simple yet effective, it could have a potential to be used industrially for the production of chemicals requiring immobilized lipases. PMID:19028094

  13. Fermentation of soybean oil deodorizer distillate with Candida tropicalis to concentrate phytosterols and to produce sterols-rich yeast cells.

    PubMed

    Zhao, Guoqun; Hu, Tao; Zhao, Lihua

    2014-03-01

    Phytosterols have been recovered from the deodorizer distillate produced in the final deodorization step of vegetable oil refining by various processes. The deodorizer distillate contains mainly free fatty acids (FFAs), phytosterols, and tocopherols. The presence of FFAs hinders recovery of phytosterols. In this study, fermentation of soybean oil deodorizer distillate (SODD) with Candida tropicalis 1253 was carried out. FFAs were utilized as carbon source and converted into cellular components as the yeast cells grew. Phytosterols concentration in SODD increased from 15.2 to 28.43 % after fermentation. No significant loss of phytosterols was observed during the process. Microbial fermentation of SODD is a potential approach to concentrate phytosterols before the recovery of phytosterols from SODD. During SODD fermentation, sterols-rich yeast cells were produced and the content of total sterols was as high as 6.96 %, but its major sterol was not ergosterol, which is the major sterol encountered in Saccharomyces cerevisiae. Except ergosterol, other sterols synthesized in the cells need to be identified. PMID:24297326

  14. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  15. Kinetic isotope effects in the oxidation of arachidonic acid by soybean lipoxygenase-1.

    PubMed

    Jacquot, Cyril; Peng, Sheng; van der Donk, Wilfred A

    2008-11-15

    The reaction of soybean lipoxygenase-1 with linoleic acid has been extensively studied and displays very large kinetic isotope effects. In this work, substrate and solvent kinetic isotope effects as well as the viscosity dependence of the oxidation of arachidonic acid were investigated. The hydrogen atom abstraction step was rate-determining at all temperatures, but was partially masked by a viscosity-dependent step at ambient temperatures. The observed KIEs on k(cat) were large ( approximately 100 at 25 degrees C).

  16. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-06-01

    Soybean [Glycine max (L.) Merrill] seed oil is the primary global source of edible oil and a major renewable and sustainable feedstock for biodiesel production. Therefore, increasing the relative oil concentration in soybean is desirable; however, that goal is complex due to the quantitative nature of the oil concentration trait and possible effects on major agronomic traits such as seed yield or protein concentration. The objectives of the present study were to study the relationship between seed oil concentration and important agronomic and seed quality traits, including seed yield, 100-seed weight, protein concentration, plant height, and days to maturity, and to identify oil quantitative trait loci (QTL) that are co-localized with the traits evaluated. A population of 203 F4:6 recombinant inbred lines, derived from a cross between moderately high oil soybean genotypes OAC Wallace and OAC Glencoe, was developed and grown across multiple environments in Ontario, Canada, in 2009 and 2010. Among the 11 QTL associated with seed oil concentration in the population, which were detected using either single-factor ANOVA or multiple QTL mapping methods, the number of QTL that were co-localized with other important traits QTL were six for protein concentration, four for seed yield, two for 100-seed weight, one for days to maturity, and one for plant height. The oil-beneficial allele of the QTL tagged by marker Sat_020 was positively associated with seed protein concentration. The oil favorable alleles of markers Satt001 and GmDGAT2B were positively correlated with seed yield. In addition, significant two-way epistatic interactions, where one of the interacting markers was solely associated with seed oil concentration, were identified for the selected traits in this study. The number of significant epistatic interactions was seven for yield, four for days to maturity, two for 100-seed weight, one for protein concentration, and one for plant height. The identified molecular

  17. Yields of field-grown soybeans exposed to simulated acidic rainfalls

    SciTech Connect

    Evans, L.S.; Lewin, K.F.; Hendrey, G.R.

    1986-06-01

    Effects of simulated acidic rainfalls on seed yields of several cultivars of field grown soybean (Glycine max Merrill) were studied under automatically moveable rainfall exclusion shelters. In the five growing seasons (1981-1985) statistically significant effects of rain pH on yield occurred each year with the Amsoy 71 cultivar. In almost all bases, the seed yields from Amsoy plants treated with pH 5.6 rain were significantly greater than yields from plants receiving more acidic treatments. 1982 and 1983 experiments did not show any statistically significant reduction in seed yields of the Williams cultivar at acidity levels between pH 5.6 and pH 2.7. Altering the frequency and duration of the simulated rainfall did alter the yield of the Amsoy and Williams soybean cultivars, while treatment acidity did not. In 1984 and 1985, the Asgrow 3127, Corsoy 79, and Hobbit cultivars were studied along with Amsoy 71. The seed yields tended to be reduced when treated with rain simulants with acidity levels between pH 4.4 and pH 3.3, when compared to plants exposed to pH 5.6 rain simulant, but the observed reductions were not always statistically significant at the 95% confidence level. Studies examining the flowering and pod filling of soybean plants exposed to simulated acid rain were inconclusive for determining the cause of decrease in pod number per plant. (PSB)

  18. Analyses of microbial community within a composter operated using household garbage with special reference to the addition of soybean oil.

    PubMed

    Aoshima, M; Pedro, M S; Haruta, S; Ding, L; Fukada, T; Kigawa, A; Kodama, T; Ishii, M; Igarashi, Y

    2001-01-01

    A commercially available composter was operated using fixed composition of garbage with or without the addition of soybean oil. The composter was operated without adding seed microorganisms or bulking materials. Microflora within the composter were analyzed by denaturing gradient gel electrophoresis (DGGE) in the case of oil addition, or by 16/18 S rRNA gene sequencing of the isolated microorganisms in the case of no oil addition. The results showed that, irrespective of the addition of oil, the bacteria identified were all gram positive, and that lactobacilli seemed to be the key microorganisms. Based on the results, suitable microflora for use in a household composter are discussed.

  19. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  20. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  1. Lipid oxidation and volatile production in irradiated raw pork batters prepared with commercial soybean oil containing vitamin E

    NASA Astrophysics Data System (ADS)

    Jo, Cheorun; Ahn, Dong Uk; Byun, Myung Woo

    2001-04-01

    An emulsion-type raw pork batter was prepared using 10% (meat weight) of backfat or commercial soybean oil enriched with vitamin E to determine the effect of irradiation on lipid oxidation and volatile production during storage. Batters (approximately 100 g) were vacuum- or aerobically packaged and irradiated at 0, 2.5 or 4.5 kGy. Irradiation increased lipid oxidation of aerobically packaged raw pork batters prepared with both backfat and soybean oil. Lipid oxidation of vacuum-packaged pork batters was not influenced by irradiation except for the batter prepared with backfat at day 0. Aerobically packaged batters prepared with soybean oil had lower ( P<0.05) TBARS than that with backfat, but vacuum-packaged ones were not different. The sum of volatile compounds with short retention time (<1.80) increased by irradiation, and with storage time except for aerobic packaging at day 7. The amount of total volatile compounds had an increasing trend until day 3, but not at day 7. Irradiation increased the production of total volatile compounds in the batters prepared with soybean oil and vacuum packaged, but irradiation effect on volatile production was not consistent with other treatments.

  2. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  3. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  4. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  5. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORMS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  6. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  7. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  8. Quartz Crystal Microbalance Investigation of the Structure of Adsorbed Soybean Oil and Methyl Oleate onto Steel Surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of soybean oil (SBO) and methyl oleate (MO) onto steel was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). Adsorption of both SBO and MO increased with increasing concentrations. At full surface coverage, SBO and MO formed rigid thin films and ach...

  9. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control.

  10. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control. PMID:22324875

  11. Psyllium husk fiber supplementation to the diets rich in soybean or coconut oil: hypocholesterolemic effect in healthy humans.

    PubMed

    Ganji, V; Kies, C V

    1996-03-01

    The objective of this study was to investigate the effect of psyllium husk fiber supplementation to the diets of soybean and coconut oil on serum lipids in normolipidemic humans. A 28-day study was divided into four 7-day experimental periods. Dietary periods were soybean oil (SO), soybean oil plus psyllium fiber (SO + PF), coconut oil (CO) and coconut oil plus psyllium fiber (CO + PF), and were arranged to a randomized cross over design. Ten subjects consumed controlled diet containing 30% fat calories (20% from test oils and 10% from controlled diet) and 20 g per day of psyllium during fiber supplementation periods. SO + PF diet significantly reduced serum cholesterol compared with SO diet (P < 0.001). CO + PF diet significantly reduced serum cholesterol compared with CO diet (P < 0.014). Hypocholesterolemic response was greater with SO + PF compared with CO + PF (0.36 mmol 1(-1) vs 0.31 mmol 1(-1)). Reductions in low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were parallel to reductions of serum cholesterol. SO diet decreased, while CO diet increased serum cholesterol, LDL cholesterol and apo B. Very-low density lipoprotein cholesterol, high-density lipoprotein cholesterol and apo A-1 were unaffected by psyllium fiber and saturation of fat. Reduction of serum cholesterol was due to reduction of LDL cholesterol. Psyllium fiber supplementation lowered serum cholesterol regardless of saturation level of dietary fat.

  12. Yield Responses of Field-Grown Soybeans Exposed to Simulated Acid Rain

    SciTech Connect

    Evans, L. S.; Conway, C. A.; Lewin, K. F.

    1980-03-01

    An important area of interest is to determine the effects of acid precipitation on the yield of agronomic crops under field conditions. Experiments described herein were performed with field-grown soybeans at Brookhaven National Laboratory during the summer of 1979. A preliminary experiment was performed the preceding year at the same site to estimate the most appropriate plot design and statistical analyses. Soybeans were seeded to provide six Latin Squares. Five treatments (no rain, simulated rainfalls of pH levels of 4.0, 3.1, 2.7, and 2.3) replicated five times in each Latin Square were used to produce a total of 30 plots per treatment. These results show that additions of small amounts of simulated acid rain to soybeans decreased the number of pods per plant. This decrease in the number of pods per plant produced a small but significant decrease in seed mass. The decreases (3, 5 and 8% at simulated rain pH levels of 4.0, 3.1, and 2.7) were present in soybeans already exposed to rainfalls at Brookhaven National Laboratory with an average H+ concentration of about pH 4.0 over the period of this experiment.

  13. Molecular species of phospholipid in rats in primary and transplanted fibrosarcomas induced by soybean oil containing tocopherol acetate.

    PubMed

    Ishinaga, M; Tanimoto, M; Sugiyama, S; Kumamoto, R; Yokoro, K

    1991-09-01

    When soybean oil containing tocopherol acetate was given to rats once a week subcutaneously for 10-12 months, it caused the development of fibrosarcomas at the injection site in 11 of 15 rats. A tumor produced in this manner proved eminently transplantable into other rats. The molecular species of phospholipid subclasses were determined in primary and transplanted tumors. The molecular species composition of the phospholipid subclasses in both types of tumors were similar. The percentages of diacyl and alkylacyl glycerophosphocholine (GPC) were 90-93 and 6-8% of total phosphatidylcholine, respectively. The percentages of diacyl and alkenylacyl glycerophosphoethanolamine (GPE) were 51 and 45%, respectively, of total phosphatidylethanolamine (PE). Diacyl and alkylacyl GPC species containing arachidonic acid (20:4) composed about 15-16 and 37-40% of each subclass, respectively. Diacyl and alkenylacyl GPE species containing 20:4 composed about 38-40 and 56-60% of each subclass, respectively. Disaturated species of diacyl and alkylacyl GPC composed about 22-24 and 13% of each subclass, respectively, whereas these species of PE composed less than 2%. The fatty acid composition of the other tumor phospholipids was analyzed.

  14. The characterization of soybean oil body integral oleosin isoforms and the effects of alkaline pH on them.

    PubMed

    Cao, Yanyun; Zhao, Luping; Ying, Yusang; Kong, Xiangzhen; Hua, Yufei; Chen, Yeming

    2015-06-15

    Oil body, an organelle in seed cell (naturally pre-emulsified oil), has great potentials to be used in food, cosmetics, pharmaceutical and other applications requiring stable oil-in-water emulsions. Researchers have tried to extract oil body by alkaline buffers, which are beneficial for removing contaminated proteins. But it is not clear whether alkaline buffers could remove oil body integral proteins (mainly oleosins), which could keep oil body integrity and stability. In this study, seven oleosin isoforms were identified for soybean oil body (three isoforms, 24 kDa; three isoforms, 18 kDa; one isoform, 16kDa). Oleosins were not glycoproteins and 24 kDa oleosin isoforms possessed less thiol groups than 18 kDa ones. It was found that alkaline pH not only removed contaminated proteins but also oleosins, and more and more oleosins were removed with increasing alkaline pH.

  15. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  16. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study.

    PubMed

    Wiggers, V R; Meier, H F; Wisniewski, A; Chivanga Barros, A A; Wolf Maciel, M R

    2009-12-01

    The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 degrees C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical-chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process. PMID:19692230

  17. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound.

    PubMed

    Yin, Xiulian; You, Qinghong; Ma, Haile; Dai, Chunhua; Zhang, Henan; Li, Kexin; Li, Yunliang

    2015-03-01

    Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound was studied. Effect of static probe ultrasonic enhanced transesterification (SPUE) and counter-current probe ultrasonic enhanced transesterification (CCPUE) on the biodiesel conversion were compared. The results indicated that CCPUE was a better method for enhancing transesterification. The working conditions of CCPUE were studied by single-factor experiment design and the results showed that the optimal conditions were: initial temperature 25 °C, methanol to triglyceride molar ratio 10:1, flow rate 200 mL/min, catalyst content 1.8%, ultrasound working on-time 4 s, off-time 2 s, total working time 50 min. Under these conditions, the average biodiesel conversion of three experiments was 96.1%.

  18. "Green" films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films.

    PubMed

    Yang, Dong; Peng, Xinwen; Zhong, Linxin; Cao, Xuefei; Chen, Wei; Zhang, Xueming; Liu, Shijie; Sun, Runcang

    2014-03-15

    Epoxidized soybean oil (ESO), which is a biomass-derived resource, was first used as a novel plasticizer for ethyl cellulose (EC) film preparation. Surface morphologies, mechanical performances, thermal properties, oxygen and water vapor permeabilities of plasticized EC films were detected in detail to evaluate the plasticizing effect of ESO and explore the plastication mechanisms. Results showed that ESO was an effective plasticizer that outstripped conventional plasticizers, i.e. dibutyl phthalate (DBP) and triethyl citrate (TEC) in producing high-quality films. Especially, at plasticizer concentrations of 15-25%, ESO-EC films had preferable mechanical properties and better thermal stability, as well as non-flammability. In addition, the water vapor permeability of ESO-EC films was lower than that of traditional plasticized films. Their oxygen permeability was also remained in a low level. These outstanding performances were related to the relatively high molecular weight, hydrophobicity, chemical structure of ESO, and the intermolecular interactions between ESO and EC chains.

  19. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound.

    PubMed

    Yin, Xiulian; You, Qinghong; Ma, Haile; Dai, Chunhua; Zhang, Henan; Li, Kexin; Li, Yunliang

    2015-03-01

    Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound was studied. Effect of static probe ultrasonic enhanced transesterification (SPUE) and counter-current probe ultrasonic enhanced transesterification (CCPUE) on the biodiesel conversion were compared. The results indicated that CCPUE was a better method for enhancing transesterification. The working conditions of CCPUE were studied by single-factor experiment design and the results showed that the optimal conditions were: initial temperature 25 °C, methanol to triglyceride molar ratio 10:1, flow rate 200 mL/min, catalyst content 1.8%, ultrasound working on-time 4 s, off-time 2 s, total working time 50 min. Under these conditions, the average biodiesel conversion of three experiments was 96.1%. PMID:25199445

  20. Low erucic acid canola oil does not induce heart triglyceride accumulation in neonatal pigs fed formula.

    PubMed

    Green, T J; Innis, S M

    2000-06-01

    Canola oil is not approved for use in infant formula largely because of concerns over possible accumulation of triglyceride in heart as a result of the small amounts of erucic acid (22:1n-9) in the oil. Therefore, the concentration and composition of heart triglyceride were determined in piglets fed from birth for 10 (n = 4-6) or 18 (n = 6) d with formula containing about 50% energy fat as 100% canola oil (0.5% 22:1n-9) or 100% soybean oil, or 26% canola oil or soy oil (blend) with palm, high-oleic sunflower and coconut oil, providing amounts of 16:0 and 18:1 closer to milk, or a mix of soy, high-oleic sunflower and flaxseed oils with C16 and C18 fatty acids similar to canola oil but without 22:1. Biochemical analysis found no differences in heart triglyceride concentrations among the groups at 10 or 18 d. Assessment of heart triglycerides using Oil Red O staining in select treatments confirmed no differences between 10-d-old piglets fed formula with 100% canola oil (n = 4), 100% soy oil (n = 4), or the soy oil blend (n = 2). Levels of 22:1n-9 in heart triglyceride and phospholipid, however, were higher (P<0.01) in piglets fed 100% canola oil or the canola oil blend, with higher levels found in triglycerides compared with phospholipids. The modest accumulation of 22:1n-9 associated with feeding canola oil was not associated with biochemical evidence of heart triglyceride accumulation at 10 and 18 d. PMID:10901421

  1. Soybean oil as a possible solubilizing and vehicular medium for zinc phthalocyanine in photodynamic therapy.

    PubMed

    Iwunze, M O; Ekiko, D B

    2004-09-01

    Soybean oil (SBO) is used as a medium to solubilize zinc phthalocyanine (ZnPc), a known photosensitizer, which has been found to be of potential use in photodynamic therapy. It absorbs red light in this medium at 670 nm with good molar absorptivity comparable to its value in most organic solvents (2.45 x 10(5) M(-1) cm(-1)). The wavelength of the fluorescence emission band peaked at 700 nm when excited at 591 nm, and when excited at 560 nm, the emission band was observed at 680 nm. The characteristic emission band of ZnPc at the near end of the visible spectral region suggests that this compound exists in this medium in a monomeric form, a form most useful in photo therapeutic applications. Moreover, the excitation wavelength, observed in the far-red region, precludes minimal effect, if any, of skin photonecrosis if this medium is used in PDT. A fluorescence spectral analysis of the ZnPc-SBO solution carried out for thirty-eight days indicates that this solution is stable within this time frame. No toxicity was detected when this solution was seeded in human endothelial cells in a culture well for 36 hr and also when injected subcutaneously into the nude and Balb C mice. In both cases the ZnPc was observed to clear from the injected area in a reasonable time. This fact coupled with its good solubilizing property for ZnPc and its virtual nontoxicity may make soybean oil a possible vehicular medium for transporting useful photosensitizers to target cells in photodynamic therapy and related applications.

  2. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  3. Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

    PubMed Central

    Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-01-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

  4. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  5. Chemometric Approach to Fatty Acid Profiles in Soybean Cultivars by Principal Component Analysis (PCA).

    PubMed

    Shin, Eui-Cheol; Hwang, Chung Eun; Lee, Byong Won; Kim, Hyun Tae; Ko, Jong Min; Baek, In Youl; Lee, Yang-Bong; Choi, Jin Sang; Cho, Eun Ju; Seo, Weon Taek; Cho, Kye Man

    2012-09-01

    The purpose of this study was to investigate the fatty acid profiles in 18 soybean cultivars grown in Korea. A total of eleven fatty acids were identified in the sample set, which was comprised of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1, ω7), stearic (C18:0), oleic (C18:1, ω9), linoleic (C18:2, ω6), linolenic (C18:3, ω3), arachidic (C20:0), gondoic (C20:1, ω9), behenic (C22:0), and lignoceric (C24:0) acids by gas-liquid chromatography with flame ionization detector (GC-FID). Based on their color, yellow-, black-, brown-, and green-colored cultivars were denoted. Correlation coefficients (r) between the nine major fatty acids identified (two trace fatty acids, myristic and palmitoleic, were not included in the study) were generated and revealed an inverse association between oleic and linoleic acids (r=-0.94, p<0.05), while stearic acid was positively correlated to arachidic acid (r=0.72, p<0.05). Principal component analysis (PCA) of the fatty acid data yielded four significant principal components (PCs; i.e., eigenvalues>1), which together account for 81.49% of the total variance in the data set; with PC1 contributing 28.16% of the total. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed to by oleic, linoleic, and gondoic acids, PC2 by stearic, linolenic and arachidic acids, PC3 by behenic and lignoceric acids, and PC4 by palmitic acid. The score plots generated between PC1-PC2 and PC3-PC4 segregated soybean cultivars based on fatty acid composition. PMID:24471082

  6. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils. PMID:26239443

  7. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils.

  8. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These show not only the excellent surface-active properties but also versatile biochemical actions. In course of MEL production from soybean oil by P. shanxiensis, new extracellular glycolipids (more hydrophilic than the previously reported MELs) were found in the culture medium. As a result of the structural characterization, the glycolipids were identified as a mixture of 4-O-[(2', 4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol. Interestingly, the new MELs possessed a much shorter chain (C(2) or C(4)) at the C-2' position of the mannose moiety compared to the MELs hitherto reported, which mainly possess a medium-chain acid (C(10)) at the position. They would thus show higher hydrophilicity and/or water-solubility, and expand the development of the environmentally advanced yeast biosurfactants. PMID:17898510

  9. High-Temperature Natural Antioxidant Improves Soy Oil for Frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine the frying stability of soybean oil (SBO) treated with a natural citric acid-based antioxidant, EPT-OILShield able to withstand high temperatures and to establish the oxidative stability of food fried in the treated oil. Soybean oil with 0.05% and 0.5%...

  10. Synthesis of alpha-hydroxyphosphonic acids from Lesquerella oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella oil has been a substance of growing chemical interest, due to the ease with which it is produced and its similarity in structure to castor oil. The primary fatty acid in Lesquerella oil, lesquerolic acid, is very similar to the principal component of castor oil, ricinoleic acid, and may ...

  11. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  12. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  13. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: preparation and characterization.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-10-01

    Biocompatible and biodegradable nanocomposites comprising epoxidized soybean oil (ESO) as matrix, zinc oxide (ZnO) nanoparticles as reinforcements, and 4-dimethylaminopyridine (DMAP) as a catalyst have been successfully prepared via epoxidization of the double bonds of the vegetable oil, ultrasonication, and curing without the need for interfacial modifiers. Their morphology, water uptake, thermal, mechanical, barrier, tribological, and antibacterial properties have been investigated. FT-IR analysis revealed the existence of strong ESO-ZnO hydrogen-bonding interactions. The nanoparticles acted as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process and leading to higher thermal stability, and also reduced the water absorption and gas permeability of the bioresin. Significant improvements in the static and dynamic mechanical properties, such as storage and Young's moduli, tensile strength, toughness, hardness, glass transition, and heat distortion temperature, were attained on reinforcement. A small drop in the nanocomposite stiffness and strength was found after exposure to several cycles of steam sterilization or to simulated body fluid (SBF) at physiological temperature. Extraordinary reductions in the coefficient of friction and wear rate were detected under both dry and SBF conditions, confirming the potential of these nanoparticles for improving the tribological performance of ESO. The nanocomposites displayed antimicrobial action against human pathogen bacteria with and without UV illumination, which increased progressively with the ZnO content. These sustainable, ecofriendly, and low-cost biomaterials are very promising for use in biomedical applications, like structural tissue engineering scaffolds. PMID:25222018

  14. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: preparation and characterization.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-10-01

    Biocompatible and biodegradable nanocomposites comprising epoxidized soybean oil (ESO) as matrix, zinc oxide (ZnO) nanoparticles as reinforcements, and 4-dimethylaminopyridine (DMAP) as a catalyst have been successfully prepared via epoxidization of the double bonds of the vegetable oil, ultrasonication, and curing without the need for interfacial modifiers. Their morphology, water uptake, thermal, mechanical, barrier, tribological, and antibacterial properties have been investigated. FT-IR analysis revealed the existence of strong ESO-ZnO hydrogen-bonding interactions. The nanoparticles acted as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process and leading to higher thermal stability, and also reduced the water absorption and gas permeability of the bioresin. Significant improvements in the static and dynamic mechanical properties, such as storage and Young's moduli, tensile strength, toughness, hardness, glass transition, and heat distortion temperature, were attained on reinforcement. A small drop in the nanocomposite stiffness and strength was found after exposure to several cycles of steam sterilization or to simulated body fluid (SBF) at physiological temperature. Extraordinary reductions in the coefficient of friction and wear rate were detected under both dry and SBF conditions, confirming the potential of these nanoparticles for improving the tribological performance of ESO. The nanocomposites displayed antimicrobial action against human pathogen bacteria with and without UV illumination, which increased progressively with the ZnO content. These sustainable, ecofriendly, and low-cost biomaterials are very promising for use in biomedical applications, like structural tissue engineering scaffolds.

  15. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    PubMed Central

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  16. The effect of L-carnitine and soybean oil on performance and nitrogen and energy utilization by neonatal and young pigs.

    PubMed

    Hoffman, L A; Ivers, D J; Ellersieck, M R; Veum, T L

    1993-01-01

    A total of 64 neonatal pigs was used in an experiment to study the effect of L-carnitine and soybean oil on pig performance and N and energy utilization. Pigs were weaned at an average of 3 d of age and individually fed diets that contained dextrose, corn syrup solids, and isolated soy protein for 21 d. Two levels of soybean oil (1.18 or 12.31%) and L-carnitine (0 or 800 ppm) were used in a factorial arrangement of treatments. Diets were formulated to contain the same nutrient content per megacalorie of ME. Total fecal and urine collections were made from d 17 to 21 of the experiment. Pigs were paired within treatments on d 21 and housed in pens until d 63. L-carnitine was lowered to 750 ppm and the soybean oil additions were 1.15 or 13.22% from d 21 to 42 and 2.17 or 14.74% from d 42 to 63. Soybean meal replaced isolated soy protein from d 42 to 63. Analysis of covariance was used with calculated ME intake per day as the covariate. There were no carnitine x soybean oil interactions (P > .05) for any criteria measured. L-carnitine or soybean oil did not (P > .05) affect ADG, grams of gain per megacalorie of ME, ME as a percentage of GE or N retained as a percentage of N consumed. In conclusion, L-carnitine did not improve the utilization of ME in diets that contained high additions of soybean oil, and calories from soybean oil were utilized as effectively as calories from carbohydrate by neonatal and young pigs.

  17. Quaternary ammonium salt containing soybean oil: an efficient nanosize gene delivery carrier for halophile green microalgal transformation.

    PubMed

    Akbari, Fariba; Yari Khosroushahi, Ahmad; Yeganeh, Hamid

    2015-01-01

    Dunaliella salina, a halophile green microalga, is considered a robust photobioreactor and a remarkable cost beneficial system for the production of therapeutic recombinant proteins. In this study, with low overall cost, a proper cationic lipid was synthesized from renewable soybean oil as an efficient gene delivery carrier for D. salina cells to create appropriate protein-producing transformed cell lines. To obtain an effective carrier, quaternary ammonium salt containing soybean oil (QASSO) was synthesized through the ring opening reaction of the epoxy groups of epoxidized soybean oil with diethylamine. QASSO was characterized using nuclear magnetic resonance and Fourier-transform infrared instruments. QASSO was used to prepare nanolipoplex construct using plasmid DNA molecules containing green fluorescent protein (GFP) as reporter gene. These nanolipoplexes (QASSO-pGFP, N/P=3) and QASSO had diameter of 63.62 and 110.63 nm, and zeta potential of -68.89 and 48.25 mV at pH 7.0, respectively. Results indicated the GFP gene expression and cytoplasmic accumulation of GFP protein in the transformants after incubation under desirable conditions for 48 h and 1 week. The transformation efficiency was quantitatively assayed by flow cytometry, which yielded transformations of 58.87% and 48.34% for QASSO and 38.32% and a negligible percentage for Polyfect® after 48 h and 1 week incubation, respectively.

  18. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram

    2013-06-01

    Preparation of antibacterial polyurethane coatings from novel functional soybean oil was considered in this work. First, epoxidized soybean oil (ESBO) as a low price and widely available renewable resource raw material was subjected to the reaction with aniline using an ionic liquid as a green catalyst. The intermediate phenylamine containing polyol (SAP) was then methylated by reaction with methyl iodide to produce a polyol (QAP) with pendant dimethylphenylammonium iodide groups. To regulate the physical and mechanical properties as well as biological characteristics of final coatings, QAP was mixed with different portions of a similar soybean oil-based polyol (MSP) without quaternary ammonium groups. The mixtures were reacted with isophorone diisocyanate to produce crosslinked polyurethane coatings. Evaluation of viscoelastic properties by DMA method revealed single phase structure with Tg in the range of 50-82°C. Stress-strain analysis of the prepared polyurethanes showed initial modulus, tensile strength, and elongation at break in the ranges of 13-299 MPa, 4.5-13.8 MPa, and 16-109%, respectively. Additionally, the coatings showed good adherence to aluminum and PVC substrates. The solvent extracted samples showed excellent biocompatibility as determined by monitoring L929 fibroblast cells morphology and MTT assay. Meanwhile, very promising antibacterial properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with bacterial reduction in the range of 83-100% was observed. PMID:23172859

  19. Short communication: Effect of blackberry and pomegranate oils on vaccenic acid formation in a single-flow continuous culture fermentation system.

    PubMed

    Ishlak, A; AbuGhazaleh, A A; Günal, M

    2014-02-01

    A single-flow continuous culture fermenter system was used to study the effect of blackberry and pomegranate oils on vaccenic acid (trans-11 C18:1; VA) formation. Four continuous culture fermenters were used in a 4 × 4 Latin square design with 4 periods of 10d each. Diets were (1) control (CON), (2) control plus soybean oil (SBO), (3) control plus blackberry oil (BBO), and (4) control plus pomegranate oil (PMO). Oil supplements were added at 30 g/kg of diet dry matter. Effluents were collected from each fermenter during the last 3d of each period and analyzed for nutrient and fatty acid composition. The concentration of VA in effluents increased with oil supplements and was greatest with the BBO diet. The concentration of stearic acid (C18:0) increased with the addition of soybean oil but decreased with the addition of pomegranate oil compared with the CON diet. The concentration of cis-9,trans-11 conjugated linoleic acid increased with oil supplements and was greatest with the PMO diet. In conclusion, all 3 oil sources were effective in increasing the production of VA. The effect of PMO and BBO on VA may have resulted in part from inhibition of the final step in the biohydrogenation of VA to stearic acid.

  20. Short communication: Effect of blackberry and pomegranate oils on vaccenic acid formation in a single-flow continuous culture fermentation system.

    PubMed

    Ishlak, A; AbuGhazaleh, A A; Günal, M

    2014-02-01

    A single-flow continuous culture fermenter system was used to study the effect of blackberry and pomegranate oils on vaccenic acid (trans-11 C18:1; VA) formation. Four continuous culture fermenters were used in a 4 × 4 Latin square design with 4 periods of 10d each. Diets were (1) control (CON), (2) control plus soybean oil (SBO), (3) control plus blackberry oil (BBO), and (4) control plus pomegranate oil (PMO). Oil supplements were added at 30 g/kg of diet dry matter. Effluents were collected from each fermenter during the last 3d of each period and analyzed for nutrient and fatty acid composition. The concentration of VA in effluents increased with oil supplements and was greatest with the BBO diet. The concentration of stearic acid (C18:0) increased with the addition of soybean oil but decreased with the addition of pomegranate oil compared with the CON diet. The concentration of cis-9,trans-11 conjugated linoleic acid increased with oil supplements and was greatest with the PMO diet. In conclusion, all 3 oil sources were effective in increasing the production of VA. The effect of PMO and BBO on VA may have resulted in part from inhibition of the final step in the biohydrogenation of VA to stearic acid. PMID:24342694

  1. Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound.

    PubMed

    Remonatto, Daniela; Santin, Claudia M Trentin; Valério, Alexsandra; Lerin, Lindomar; Batistella, Luciane; Ninow, Jorge Luiz; de Oliveira, J Vladimir; de Oliveira, Débora

    2015-06-01

    This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs.

  2. Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound.

    PubMed

    Remonatto, Daniela; Santin, Claudia M Trentin; Valério, Alexsandra; Lerin, Lindomar; Batistella, Luciane; Ninow, Jorge Luiz; de Oliveira, J Vladimir; de Oliveira, Débora

    2015-06-01

    This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs. PMID:25875788

  3. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  4. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  5. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  6. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  7. Soybean, palm kernel, and animal-vegetable oils and vitamin E supplementation effect on lipid oxidation stability of sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Bailey, C A; Miller, R K; Smith, S B; Leyva-Ovalle, O R; Sánchez-Plata, M X

    2010-04-01

    There is an increasing demand in precooked chicken meat products for restaurants and catering services. Because cooked chicken meat develops lipid oxidation relatively fast, sous vide chicken meat was studied to assess its shelf-life. Six hundred Cobb x Ross broilers were fed for 6 wk with a basal corn-soybean meal diet including soybean, palm kernel, or animal-vegetable oil, each supplemented with 33 or 200 mg/kg of dl-alpha-tocopheryl acetate. Broilers were randomly assigned into 6 treatments and 4 repetitions with 25 birds each. Boneless breast or thigh muscle pieces were dissected into 5 x 5 x 5 cm cubes, vacuum-packed, cooked in water bath (until 74 degrees C internal temperature), chilled, and stored at 4 degrees C for 1, 5, 10, 25, and 40 d. For each storage day, each pouch contained 3 pieces of meat, either breast or thigh. Thiobarbituric acid reactive substances analysis, to quantify malonaldehyde (MDA) values, was conducted to estimate the lipid oxidation development. Nonheme iron values of cooked meat were analyzed. Fatty acid methyl esters analysis was performed in chicken muscle to determine its fatty acid composition. There was no interaction between dietary fat and vitamin E level in all of the variables studied except in nonheme iron. Dietary fat significantly influenced the fatty acid composition of the muscle (P < 0.01), but it did not affect the MDA values, regardless of differences in the muscle fatty acid composition between treatments. Supplementation of the high level of vitamin E significantly reduced the MDA values in both breast and thigh meat (P < 0.01). The maximum MDA values were observed at d 40 of storage in thigh and breast meat in animal-vegetable and soybean oil treatments with the low levels of vitamin E, 0.91 and 0.70 mg/kg, respectively. Nonheme iron values in thigh meat differed between treatments at 1 or 25 d of storage but not in breast meat. In conclusion, refrigerated sous vide chicken meat has a prolonged shelf-life, which

  8. Soybean, palm kernel, and animal-vegetable oils and vitamin E supplementation effect on lipid oxidation stability of sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Bailey, C A; Miller, R K; Smith, S B; Leyva-Ovalle, O R; Sánchez-Plata, M X

    2010-04-01

    There is an increasing demand in precooked chicken meat products for restaurants and catering services. Because cooked chicken meat develops lipid oxidation relatively fast, sous vide chicken meat was studied to assess its shelf-life. Six hundred Cobb x Ross broilers were fed for 6 wk with a basal corn-soybean meal diet including soybean, palm kernel, or animal-vegetable oil, each supplemented with 33 or 200 mg/kg of dl-alpha-tocopheryl acetate. Broilers were randomly assigned into 6 treatments and 4 repetitions with 25 birds each. Boneless breast or thigh muscle pieces were dissected into 5 x 5 x 5 cm cubes, vacuum-packed, cooked in water bath (until 74 degrees C internal temperature), chilled, and stored at 4 degrees C for 1, 5, 10, 25, and 40 d. For each storage day, each pouch contained 3 pieces of meat, either breast or thigh. Thiobarbituric acid reactive substances analysis, to quantify malonaldehyde (MDA) values, was conducted to estimate the lipid oxidation development. Nonheme iron values of cooked meat were analyzed. Fatty acid methyl esters analysis was performed in chicken muscle to determine its fatty acid composition. There was no interaction between dietary fat and vitamin E level in all of the variables studied except in nonheme iron. Dietary fat significantly influenced the fatty acid composition of the muscle (P < 0.01), but it did not affect the MDA values, regardless of differences in the muscle fatty acid composition between treatments. Supplementation of the high level of vitamin E significantly reduced the MDA values in both breast and thigh meat (P < 0.01). The maximum MDA values were observed at d 40 of storage in thigh and breast meat in animal-vegetable and soybean oil treatments with the low levels of vitamin E, 0.91 and 0.70 mg/kg, respectively. Nonheme iron values in thigh meat differed between treatments at 1 or 25 d of storage but not in breast meat. In conclusion, refrigerated sous vide chicken meat has a prolonged shelf-life, which

  9. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  10. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants.

  11. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  12. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  13. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry.

    PubMed

    Zhang, Wenle; Li, Na; Feng, Yuyan; Su, Shujun; Li, Tao; Liang, Bing

    2015-10-15

    UV-Vis spectroscopy coupled with chemometrics was used effectively to study the impact of heating on edible oils (corn oil, sunflower oil, rapeseed oil, peanut oil, soybean oil and sesame oil) and determine their acid value. Analysis of their first derivative spectra showed that the peak at 370 nm was a common indicator of the heated oils. Partial least squares regression (PLS) and principle component regression (PCR) were applied to building individual quantitative models of acid value for each kind of oil, respectively. The PLS models had a better performance than PCR models, with determination coefficients (R(2)) of 0.9904-0.9977 and root mean square errors (RMSE) of 0.0230-0.0794 for the prediction sets of each kind of oil, respectively. An integrate quantitative model built by support vector regression for all the six kinds of oils was also developed and gave a satisfactory prediction with a R(2) of 0.9932 and a RMSE of 0.0656.

  14. Combined effects of lanthanum ion and acid rain on growth, photosynthesis and chloroplast ultrastructure in soybean seedlings.

    PubMed

    Wen, Kejia; Liang, Chanjuan; Wang, Lihong; Hu, Gang; Zhou, Qing

    2011-07-01

    Rare earth elements (REEs) have been accumulated in the agricultural environment. Acid rain is a serious environmental issue. In the present work, the effects of lanthanum ion (La(3+)) and acid rain on the growth, photosynthesis and chloroplast ultrastructure in soybean seedlings were investigated using the gas exchange measurements system, chlorophyll fluorometer, transmission electron microscopy and some biochemical techniques. It was found that although the growth and photosynthesis of soybean seedlings treated with the low concentration of La(3+) was improved, the growth and photosynthesis of soybean seedlings were obviously inhibited in the combined treatment with the low concentration of La(3+) and acid rain. At the same time, the chloroplast ultrastructure in the cell of soybean seedlings was destroyed. Under the combined treatment with the high concentration of La(3+) and acid rain, the chloroplast ultrastructure in the cell of soybean seedlings was seriously destroyed, and the growth and of photosynthesis were greatly decreased compared with those of the control, the single treatment with the high concentration of La(3+) and the single treatment with acid rain, respectively. The degree of decrease and destruction on chloroplast ultrastructure depended on the increases in the concentration of La(3+) and acid rain (H(+)). In conclusion, the combined pollution of La(3+) and acid rain obviously destroyed the chloroplast ultrastructure of cell and aggravated the harmful effect of the single La(3+) and acid rain on soybean seedlings. As a new combined pollutant, the harmful effect of REEs ions and acid rain on plant should be paid attention to.

  15. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.

    PubMed

    Komatsu, Setsuko; Han, Chao; Nanjo, Yohei; Altaf-Un-Nahar, Most; Wang, Kun; He, Dongli; Yang, Pingfang

    2013-11-01

    Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.

  16. Monitoring biodiesel reactions of soybean oil and sunflower oil using ultrasonic parameters

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. K. K.; Silva, C. E. R.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2015-01-01

    Biodiesel is an innovation that attempts to substitute diesel oil with biomass. The aim of this paper is to show the development of a real-time method to monitor transesterification reactions by using low-power ultrasound and pulse/echo techniques. The results showed that it is possible to identify different events during the transesterification process by using the proposed parameters, showing that the proposed method is a feasible way to monitor the reactions of biodiesel during its fabrication, in real time, and with relatively low- cost equipment.

  17. Green processing for commercial production of feruloylated vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Covalent incorporation of ferulic acid into vegetable oils produces a desirable product for cosmetic applications. Current practice involves the biocatalytic transesterification of ethyl ferulate with soybean oil, followed by a molecular distillation step to remove unconsumed ethyl ferulate and the...

  18. Effect of alginate coatings with cinnamon bark oil and soybean oil on quality and microbiological safety of cantaloupe.

    PubMed

    Zhang, Yue; Ma, Qiumin; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2015-12-23

    The quality and microbiological safety of cantaloupes can potentially be improved using antimicrobial coatings that are able to maintain effectiveness throughout storage. The objective of this work was to study the effect of coating mixtures containing sodium alginate and cinnamon bark oil (CBO) on the quality of cantaloupes and the survival of inoculated bacterial pathogens and naturally occurring yeasts and molds during ambient storage at 21 °C. Cantaloupes were dipped in mixtures containing 1% sodium alginate with or without 2% CBO and 0 or 0.5% soybean oil (SBO). Weight loss and total soluble solids content of the flesh were not significantly different among coating treatments. However, changes in color and firmness of cantaloupes were delayed to different extents after coating, most significantly for the CBO+SBO treatment. Cocktails of Salmonella enterica, Escherichia coli O157:H7, or Listeria monocytogenes inoculated on cantaloupes were reduced to the detection limit (1.3 log CFU/cm(2)) and completely inhibited during the 15-day storage by the CBO+SBO treatment, while L. monocytogenes and S. enterica reached populations of 2.9 log CFU/cm(2) and 2.4 log CFU/cm(2), respectively, on cantaloupes coated with CBO alone. Antimicrobial coatings, especially with SBO, also reduced yeast and mold counts on cantaloupes by 2.6 log CFU/cm(2). SBO improved the retention of CBO during storage suggesting it is related to the enhancement of quality and microbiological safety. Findings demonstrated the potential of the antimicrobial coating system studied to improve microbiological safety and quality of cantaloupes.

  19. Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers.

    PubMed

    Liang, Fangfang; Jiang, Shouqun; Mo, Yi; Zhou, Guilian; Yang, Lin

    2015-08-01

    This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and 8.97 meqO2/kg) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding 3.14 meqO2/kg for early ADFI and MDA in jejunum, and POV exceeding 1.01 meqO2/kg for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B (NF-κB) P50 and NF-κB P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to 4.95 meqO2/kg. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil.

  20. Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers

    PubMed Central

    Liang, Fangfang; Jiang, Shouqun; Mo, Yi; Zhou, Guilian; Yang, Lin

    2015-01-01

    This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and 8.97 meqO2/kg) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding 3.14 meqO2/kg for early ADFI and MDA in jejunum, and POV exceeding 1.01 meqO2/kg for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B (NF-κB) P50 and NF-κB P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to 4.95 meqO2/kg. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil. PMID:26104529

  1. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties. PMID:23648407

  2. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  3. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  4. Vitamins as radioprotectors in vivo II. protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides

    SciTech Connect

    Harapanhalli, R.S.; Narra, V.R.; Yaghmai, V.; Azure, M.T.; Goddu, M.; Howell, R.W.; Rao, D.V.

    1994-07-01

    Tissue-incorporated radionuclides impart radiation energy over extended periods of time depending on their effective half-lives. The capacity of vitamin A dissolved in soybean oil to protect against the biological effects caused by internal radionuclides is investigated. The radiochemicals examined are DNA-binding {sup 125}IdU, cytoplasmically localized H{sup 125}IPDM and the {alpha}-particle emitter {sup 210}Po citrate. As in our previous studies, spermatogenesis in mice is used as the experimental model and spermatogonial cell survival is the biological end point. Surprisingly, soybean oil itself provides substantial and equal protection against the Auger effect of {sup 125}IdU, which is comparable to a high-LET radiation effect, as well as the low-LET effects of H{sup 125}IPDM, the dose modification factors (DMFs) being 3.6 {+-} 0.9 (SEM) and 3.4 {+-} 0.9, respectively. The protection afforded by the oil against the effects of 5.3 MeV {alpha} particles emitted by 210Po is also significant (DMF = 2.2 {+-} 0.4). The presence of vitamin A in the oil further enhanced the radioprotection against the effect of {sup 125}IdU (DMF = 4.8 {+-} 1.3) and H{sup 125}IKPDM (DMF = 5.1 {+-} 0.6); however, no enhancement is provided against the effects of {alpha} particles. These interesting results with soybean oil and vitamin A, together with data on the subcellular distribution of the protectors, provide clues regarding the mechanistic aspects of the protection. In addition, the data for vitamin A reaffirm our earlier conclusion that the mechanism by which DNA-bound Auger emitters impart biological damage is primarily indirect in nature. 29 refs., 7 figs., 2 tabs.

  5. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO. PMID:25794742

  6. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised.

  7. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. PMID:27374582

  8. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  9. Antibacterial soybean-oil-based cationic polyurethane coatings prepared from different amino polyols.

    PubMed

    Xia, Ying; Zhang, Zongyu; Kessler, Michael R; Brehm-Stecher, Byron; Larock, Richard C

    2012-11-01

    Antibacterial soybean-oil-based cationic polyurethane (PU) coatings have been successfully prepared from five different amino polyols. The structure and hydroxyl functionality of these amino polyols affects the particle morphology, mechanical properties, thermal stability, and antibacterial properties of the resulting coatings. An increase in the hydroxyl functionality of the amino polyols increases the cross-link density, resulting in an increased glass transition temperature and improved mechanical properties. Both the cross-link density and the amount of ammonium cations incorporated into the PU backbone affect the thermal stability of PU films. PUs with the lowest ammonium cation content and highest cross-link density exhibit the best thermal stability. With some strain-specific exceptions, these PUs show good antibacterial properties toward a panel of bacterial pathogens comprised of Listeria monocytogenes NADC 2045, Salmonella typhimurium ATCC 13311 and Salmonella minnesota (S. minnesota) R613. S. minnesota R613 is a "deep rough" mutant lacking a full outer membrane (OM) layer, an important barrier structure in gram-negative bacteria. With wild-type strains, the PU coatings exhibit better antibacterial properties toward the gram-positive Listeria monocytogenes than the gram-negative S. minnesota. However, the coatings have excellent activity against S. minnesota R613, suggesting a protective role for an intact OM against the action of these PUs.

  10. Gel Point Suppression in RAFT Polymerization of Pure Acrylic Cross-Linker Derived from Soybean Oil.

    PubMed

    Yan, Mengguo; Huang, Yuerui; Lu, Mingjia; Lin, Fang-Yi; Hernández, Nacú B; Cochran, Eric W

    2016-08-01

    Here we report the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylated epoxidized soybean oil (AESO), a cross-linker molecule, to high conversion (>50%) and molecular weight (>100 kDa) without macrogelation. Surprisingly, gelation is suppressed in this system far beyond the expectations predicated both on Flory-Stockmeyer theory and multiple other studies of RAFT polymerization featuring cross-linking moieties. By varying AESO and initiator concentrations, we show how intra- versus intermolecular cross-linking compete, yielding a trade-off between the degree of intramolecular linkages and conversion at gel point. We measured polymer chain characteristics, including molecular weight, chain dimensions, polydispersity, and intrinsic viscosity, using multidetector gel permeation chromatography and NMR to track polymerization kinetics. We show that not only the time and conversion at macrogelation, but also the chain architecture, is largely affected by these reaction conditions. At maximal AESO concentration, the gel point approaches that predicted by the Flory-Stockmeyer theory, and increases in an exponential fashion as the AESO concentration decreases. In the most dilute solutions, macrogelation cannot be detected throughout the entire reaction. Instead, cyclization/intramolecular cross-linking reactions dominate, leading to microgelation. This work is important, especially in that it demonstrates that thermoplastic rubbers could be produced based on multifunctional renewable feedstocks. PMID:27359245

  11. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  12. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil.

    PubMed

    Terés, S; Barceló-Coblijn, G; Benet, M; Alvarez, R; Bressani, R; Halver, J E; Escribá, P V

    2008-09-16

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as alpha-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (approximately 70-80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (H(II) phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA.

  13. Oleosins (24 and 18 kDa) are hydrolyzed not only in extracted soybean oil bodies but also in soybean germination.

    PubMed

    Chen, Yeming; Zhao, Luping; Cao, Yanyun; Kong, Xiangzhen; Hua, Yufei

    2014-01-29

    After oil bodies (OBs) were extracted from ungerminated soybean by pH 6.8 extraction, it was found that 24 and 18 kDa oleosins were hydrolyzed in the extracted OBs, which contained many OB extrinsic proteins (i.e., lipoxygenase, β-conglycinin, γ-conglycinin, β-amylase, glycinin, Gly m Bd 30K (Bd 30K), and P34 probable thiol protease (P34)) as well as OB intrinsic proteins. In this study, some properties (specificity, optimal pH and temperature) of the proteases of 24 and 18 kDa oleosins and the oleosin hydrolysis in soybean germination were examined, and the high relationship between Bd 30K/P34 and the proteases was also discussed. The results showed (1) the proteases were OB extrinsic proteins, which had high specificity to hydrolyze 24 and 18 kDa oleosins, and cleaved the specific peptide bonds to form limited hydrolyzed products; (2) 24 and 18 kDa oleosins were not hydrolyzed in the absence of Bd 30K and P34 (or some Tricine-SDS-PAGE undetectable proteins); (3) the protease of 24 kDa oleosin had strong resistance to alkaline pH while that of 18 kDa oleosin had weak resistance to alkaline pH, and Bd 30K and P34, resolved into two spots on two-dimensional electrophoresis gel, also showed the same trend; (4) 16 kDa oleosin as well as 24 and 18 kDa oleosins were hydrolyzed in soybean germination, and Bd 30K and P34 were always contained in the extracted OBs from germinated soybean even when all oleosins were hydrolyzed; (5) the optimal temperature and pH of the proteases were respectively determined as in the ranges of 35-50 °C and pH 6.0-6.5, while 60 °C or pH 11.0 could denature them.

  14. Agronomic effects of mutations in two soybean Stearoyl-ACP-Desaturases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil normally contains 2-4% stearic acid. Oil with higher levels of stearic acid is desired for use in the baking industry, for both its chemical properties and human health benefits. Several lines with increased stearic acid have been identified; however, the agronom...

  15. Authentication of Nigella sativa Seed Oil in Binary and Ternary Mixtures with Corn Oil and Soybean Oil Using FTIR Spectroscopy Coupled with Partial Least Square

    PubMed Central

    Rohman, Abdul

    2013-01-01

    Fourier transform infrared spectroscopy (FTIR) combined with multivariate calibration of partial least square (PLS) was developed and optimized for the analysis of Nigella seed oil (NSO) in binary and ternary mixtures with corn oil (CO) and soybean oil (SO). Based on PLS modeling performed, quantitative analysis of NSO in binary mixtures with CO carried out using the second derivative FTIR spectra at combined frequencies of 2977–3028, 1666–1739, and 740–1446 cm−1 revealed the highest value of coefficient of determination (R2, 0.9984) and the lowest value of root mean square error of calibration (RMSEC, 1.34% v/v). NSO in binary mixtures with SO is successfully determined at the combined frequencies of 2985–3024 and 752–1755 cm−1 using the first derivative FTIR spectra with R2 and RMSEC values of 0.9970 and 0.47% v/v, respectively. Meanwhile, the second derivative FTIR spectra at the combined frequencies of 2977–3028 cm−1, 1666–1739 cm−1, and 740–1446 cm−1 were selected for quantitative analysis of NSO in ternary mixture with CO and SO with R2 and RMSEC values of 0.9993 and 0.86% v/v, respectively. The results showed that FTIR spectrophotometry is an accurate technique for the quantitative analysis of NSO in binary and ternary mixtures with CO and SO. PMID:24319381

  16. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings.

    PubMed

    Hegeman, C E; Grabau, E A

    2001-08-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases.

  17. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean.

    PubMed

    Oliva, M de las M; Carezzano, M E; Giuliano, M; Daghero, J; Zygadlo, J; Bogino, P; Giordano, W; Demo, M

    2015-05-01

    The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re-isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml(-1) on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections. PMID:25359697

  18. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  19. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean.

    PubMed

    Oliva, M de las M; Carezzano, M E; Giuliano, M; Daghero, J; Zygadlo, J; Bogino, P; Giordano, W; Demo, M

    2015-05-01

    The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re-isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml(-1) on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.

  20. The interaction of salicylic acid and Ca(2+) alleviates aluminum toxicity in soybean (Glycine max L.).

    PubMed

    Lan, Tu; You, Jiangfeng; Kong, Lingnan; Yu, Miao; Liu, Minghui; Yang, Zhenming

    2016-01-01

    Both calcium ion (Ca(2+)) and salicylic acid (SA) influence various stress responses in plants. In acidic soils, aluminum (Al) toxicity adversely affects crop yield. In this study, we determined the influences of Ca(2+) and SA on root elongation, Al accumulation, and citrate secretion in soybean plant. We also investigated the activity of antioxidative enzymes in Al-exposed soybean roots. Root elongation was severally inhibited when the roots were exposed to 30 μM Al. The Al-induced inhibition of root elongation was ameliorated by Ca(2+) and SA but aggravated by Ca(2+) channel inhibitor (VP), CaM antagonists (TFP), Ca(2+) chelator (EGTA), and SA biosynthesis inhibitor (PAC). Furthermore, 1.0 mM CaCl2 and 10 μM SA reduced the accumulation of Al in roots, but their inhibitors stimulated the accumulation of Al in roots. Citrate secretion from these roots increased with the addition of either 1.0 mM CaCl2 or 10 μM SA but did not increase significantly when treated with higher Ca(2+) concentration. Enzymatic analysis showed that Ca(2+) and SA stimulated the activities of superoxidase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in Al-treated roots. In addition, SA restored the inhibition of Ca(2+) inhibitors on root elongation and Al content. Thus, both Ca(2+) and SA contribute to Al tolerance in soybean. Furthermore, Ca(2+) supplements rapidly increased Al-induced accumulation of free-SA or conjugated SA (SAG), while Ca(2+) inhibitors delayed the accumulation of SA for more than 8 h. Within 4 h of treatment, SA increased cytosolic Ca(2+) concentration in Al-treated roots, and upregulated the expression of four genes that possibly encode calmodulin-like (CML) proteins. These findings indicate that SA is involved in Ca(2+)-mediated signal transduction pathways in Al tolerance.

  1. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    PubMed

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures. PMID:27314226

  2. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    PubMed

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures.

  3. Effect of steam-flaked corn and soybeans on muscle and intramuscular fatty acid composition in Holstein calves.

    PubMed

    Zhang, Y Q; He, D C; Meng, Q X; Wang, D C

    2015-12-01

    This study aimed to evaluate the effects of steam-flaked corn grains and soybeans on muscle fatty acid composition. Thirty Holstein bull calves (21 ± 3 d) were divided into 3 groups according to birth date and BW and were randomly assigned to receive fresh milk and a commercial pelleted starter diet containing extruded corn and soybean (ECS), steam-flaked corn and soybean (SFCS), or ground corn and raw soybean (GCS). The calves were fed the designated diet from 3 to 13 wk of age, after which they were slaughtered. The supraspinatus (CTM), longissimus lumborum (RLM), and spinalis dorsi (ERM) were analyzed to determine the chemical and intramuscular fatty acid composition. The fatty acid composition of muscle and its deposition differed among calves fed different starter feeds. Medium-chain fatty acid levels of the RLM and CTM were greater in GCS-fed calves than in ECS- and SFCS-fed calves ( < 0.05). Extruded processing increased the content of linoleic, linolenic, and arachidonic acids of the RLM ( < 0.05). The palmitoleic and -vaccenic acid content of the ERM were greater in GCS-fed calves than in ECS- or SFCS-fed calves ( < 0.05). No significant differences were observed among the 3 diets with respect to the stearic, oleic, linoleic, -9 -11 CLA, or arachidonic acid content of the ERM ( > 0.05). The levels of -3 and -6 fatty acids were similar among the 3 groups; a lower -6:-3 PUFA ratio was observed in GCS-fed calves ( < 0.05). The cereal processing method of the calf starter feed had no significant effect on the chemical composition of the CTM, RLM, or ERM. Therefore, different methods of processing corn and soybean in calf starter feeds had no effect on the chemical composition of the RLM, CTM, or ERM but had a significant effect on the intramuscular fatty acid composition.

  4. Effect of strain, sex and duration of feeding on plasma fatty acids of rats fed various dietary oils.

    PubMed

    Innis, S M; Clandinin, M T

    1980-05-01

    Experiments were conducted to determine if regression of cardiac lipidosis and strain or sex differences in susceptibility to cardiopathological change induced by rapeseed oils are coincident with physiological differences in fatty acid substrates supplied to the heart. Plasma fatty acid composition was determined in male Sprague-Dawley rats after 7 or 28 days and in female Sprague-Dawley and male Chester-Beatty rats after 28 days of feeding high or low erucic acid rapeseed oils, soybean oil or peanut oil. After 28 days, C14:0 and C18:1 fell and C20:4 increased as a percent of total fatty acid in all animals irrespective of oil fed, suggesting that changes in plasma fatty acids normally occur with development. Saturated and essential fatty acid profiles of male and female rats were different. Differences in plasma fatty acids stemming from sex-related physiological differences in whole body fat metabolism may form the basis of lower cardiopathological involvement for females. Results suggest physiological differences unrelated to plasma fatty acids determine strain differences in timing and severity of rapeseed oil-induced cardiac pathology.

  5. The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans.

    PubMed

    Padgette, S R; Taylor, N B; Nida, D L; Bailey, M R; MacDonald, J; Holden, L R; Fuchs, R L

    1996-03-01

    One important aspect of the safety assessment of genetically engineered crops destined for food and feed uses is the characterization of the consumed portion of the crop. One crop currently under development, glyphosate-tolerant soybeans (GTS), was modified by the addition of a glyphosate-tolerance gene to a commercial soybean cultivar. The composition of seeds and selected processing fractions from two GTS lines, designated 40-3-2 and 61-67-1, was compared with that of the parental soybean cultivar, A5403. Nutrients measured in the soybean seeds included macronutrients by proximate analyses (protein, fat, fiber, ash, carbohydrates), amino acids and fatty acids. Antinutrients measured in either the seed or toasted meal were trypsin inhibitor, lectins, isoflavones, stachyose, raffinose and phytate. Proximate analyses were also performed on batches of defatted toasted meal, defatted nontoasted meal, protein isolate, and protein concentrate prepared from GTS and control soybean seeds. In addition, refined, bleached, deodorized oil was made, along with crude soybean lecithin, from GTS and control soybeans. The analytical results demonstrated the GTS lines are equivalent to the parental, conventional soybean cultivar.

  6. Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats.

    PubMed

    Li, Guipu; Singh, Anish; Liu, Yandi; Sunderland, Bruce; Li, Duo

    2013-02-01

    The aim of the present study was to investigate the effect of sandalwood seed oil on fatty acid (FA) profiles and inflammatory factors in rats. Fifty male Sprague-Dawley rats were randomly divided into five different dietary groups: 10 % soybean oil (SO), 10 % olive oil (OO), 10 % safflower oil (SFO), 10 % linseed oil (LSO) and 8 % sandalwood seed oil blended with 2 % SO (SWSO) for 8 weeks. The SWSO group had a higher total n-3 polyunsaturated fatty acids (PUFA) levels but lower n-6:n-3 PUFA ratios in both adipose tissue and liver than those in the SO, OO and SFO groups (p < 0.05). Although the SWSO group had a much lower 18:3n-3 level (4.51 %) in their dietary lipids than the LSO group (58.88 %), the levels of docosahexaenoic acid (DHA: 22:6n-3) in liver lipids and phospholipids of the SWSO group (7.52 and 11.77 %) were comparable to those of the LSO group (7.07 and 13.16 %). Ximenynic acid, a predominant acetylenic FA in sandalwood seed oil, was found to be highly incorporated into adipose tissue (13.73 %), but relatively lower in liver (0.51 %) in the SWSO group. The levels of prostaglandin F(2α), prostaglandin E₂, thromboxane B₂, leukotriene B₄, tumor necrosis factor-α and interleukin-1β in both liver and plasma were positively correlated with the n-6:n-3 ratios, suggesting that increased n-6 PUFA appear to increase the formation of pro-inflammatory cytokines, whereas n-3 PUFA exhibit anti-inflammatory activity. The present results suggest that sandalwood seed oil could increase tissue levels of n-3 PUFA, DHA and reduce the n-6:n-3 ratio, and may increase the anti-inflammatory activity in rats. PMID:23275078

  7. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses.

  8. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses. PMID:24078183

  9. Immobilization of tetramethylguanidine on mesoporous SBA-15 silica: a heterogeneous basic catalyst for transesterification of soybean oil.

    PubMed

    Xie, Wenlei; Fan, Mingliang

    2013-07-01

    An active heterogeneous catalyst, namely 1,1,3,3-tetramethylguanidine (TMG) immobilized on mesoporous SBA-15 silica (SBA-15-pr-TMG), was prepared and the catalytic activity was investigated for transesterification of soybean oil with methanol. The heterogeneous catalysts were characterized using Hammett titration method, Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, and X-ray photoelectron spectroscopy techniques. It is shown that the activity of the catalysts for the transesterification reaction is closely related to their basic properties. By using this catalyst, an environmentally benign process for biodiesel production in a heterogeneous manner was developed. When the reaction was carried out at reflux of methanol, with a molar ratio of methanol to soybean oil of 15:1, a reaction time 12h and a catalyst amount 5 wt%, the oil conversion of 91.7% was achieved. The catalyst could be recovered easily and reused without significant degradation in activity.

  10. Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system.

    PubMed

    Trentin, Claudia M; Popiolki, Ariana S; Batistella, Luciane; Rosa, Clarissa Dalla; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir

    2015-03-01

    This work reports the transesterification of soybean oil with ethanol using a commercial immobilized lipase, Novozym 435, under the influence of ultrasound irradiation, in a solvent-free s. The experiments were performed in an ultrasonic water bath, following a sequence of experimental designs to evaluate the effects of temperature, enzyme and water concentrations, oil to ethanol molar ratio and output irradiation power on the reaction yield. Besides, a kinetic study varying the substrates molar ratio and enzyme concentration was also carried out. Results show that ultrasound-assisted lipase-catalyzed transesterification of soybean oil with ethanol in solvent-free system might be a potential alternative route to conventional alkali-catalyzed and/or traditional enzymatic methods, as high reaction yields (~78 wt%) were obtained at mild irradiation power supply (~132 W), and temperature (63 °C) in a relatively short reaction time, 1 h. Additionally, a study regarding the enzyme reuse was carried out at the experimental condition that afforded the best reaction yield. PMID:25362889

  11. Involvement of abscisic acid in correlative control of flower abscission in soybean

    SciTech Connect

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.

  12. Studies of the Kaneda Reaction in the Synthesis of Oocydin A/Haterumalide NA and Polyurethanes from Renewable Resources: Polyols from Soybean Oil

    NASA Astrophysics Data System (ADS)

    Schmit, Amanda L.

    This thesis is broken down into two main projects. First, studies of the Kaneda reaction in the synthesis of oocydin A/haterumalide NA and, second, polyurethanes from renewable resources: polyols from soybean oil. In Chapter I, the stereoselectivity of the Kaneda reaction was studied. The driving interest stemmed from the hypothesis that one epimer of an acyclic precursor could give the desired bicyclic core of oocydin A/haterumalide NA. In Chapter II, the work toward new polyols from soybean oil is discussed. Renewable content in polyurethanes on the market is still low because of economics and performance. Our ideas for new polyol systems are presented.

  13. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    PubMed

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean.

  14. Acidity of biomass fast pyrolysis bio-oils

    SciTech Connect

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

  15. Sunflowers versus soybeans

    SciTech Connect

    Baldwin, J.D.C.

    1980-10-01

    While both soybeans and sunflowers provide oil and protein, sunflowers offer the higher potential yield of oil per hectare. Research to modify vegetable oils to improve their fuel properties is suggested, particularly on improving the characteristics of the oil as a fuel for diesel engines.

  16. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these...

  17. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows.

    PubMed

    Rafiee-Yarandi, H; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Drackley, J K

    2016-07-01

    To evaluate the effect of soybeans roasted at different temperatures on milk yield and milk fatty acid composition, 8 (4 multiparous and 4 primiparous) mid-lactation Holstein cows (42.9±3 kg/d of milk) were assigned to a replicated 4×4 Latin square design. The control diet (CON) contained lignosulfonate-treated soybean meal (as a source of rumen-undegradable protein) and calcium salts of fatty acids (Ca-FA, as a source of energy). Diets 2, 3, and 4 contained ground soybeans roasted at 115, 130, or 145°C, respectively (as the source of protein and energy). Dry matter intake (DMI) tended to be greater for CON compared with the roasted soybean diets (24.6 vs. 23.3 kg/d). Apparent total-tract digestibilities of dry matter, organic matter, and crude protein were not different among the treatments. Actual and 3.5% fat-corrected milk yield were greater for CON than for the roasted soybean diets. Milk fat was higher for soybeans roasted at 130°C than for those roasted at either 115 or 145°C. No differences were observed between the CON and the roasted soybean diets, or among roasting temperatures, on feed efficiency and nitrogen concentrations in rumen, milk, and plasma. Milk from cows fed roasted soybeans had more long-chain fatty acids and fewer medium-chain fatty acids than milk from cows fed Ca-FA. Compared with milk from cows fed the CON diet, total milk fat contents of conjugated linoleic acid, cis-9,trans-11 conjugated linoleic acid, cis-C18:2, cis-C18:3, and C22:0 were higher for cows fed the roasted soybean diets. Polyunsaturated fatty acids and total unsaturated fatty acids were greater in milk from cows fed roasted soybean diets than in milk from cows fed CON. Concentrations of C16:0 and saturated fatty acids in milk fat were greater for CON than for the roasted soybean diets. Cows fed roasted soybean diets had lower atherogenic and thrombogenic indices than cows fed CON. Milk fatty acid composition did not differ among different roasting temperatures. In

  18. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves.

    PubMed

    Kanitkar, Akanksha; Balasubramanian, Sundar; Lima, Marybeth; Boldor, Dorin

    2011-09-01

    Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80°C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.

  19. Preparation of spread oils meeting U.S. Food and Drug Administration Labeling requirements for trans fatty acids via pressure-controlled hydrogenation.

    PubMed

    Eller, Fred J; List, Gary R; Teel, Jeffrey A; Steidley, Kevin R; Adlof, Richard O

    2005-07-27

    On July 11, 2003, the U.S. Food and Drug Administration (FDA) announced final regulations for trans fatty acid (TFA) labeling. By January 1, 2006, the TFA content of foods must be labeled as a separate line on the Nutrition Facts label. Products containing <0.5 g of TFA/14 g serving may be declared as zero. This paper describes technologies allowing compliance with TFA labeling requirements. Soybean oil was hydrogenated in a 2-L vessel at temperatures ranging from 120 to 170 degrees C at a hydrogen pressure of 200 psi. A commercial nickel-supported catalyst (25% Ni) was used at 0.02% Ni by weight of oil. The hydrogenated oils were characterized for fatty acid composition, solid fat content, and melting point. Compared to commercially processed soybean oil basestocks that typically contain approximately 40% TFA, those obtained at lower temperatures and higher pressures contain >56% less TFA. Basestocks prepared in the laboratory when blended with liquid soybean oil will yield spread oils meeting FDA labeling requirements for zero TFA, that is, <0.5 g of TFA/serving.

  20. Rhizobins, a Group of Peptides in the Free-Amino-Acid Pool of the Soybean-Rhizobium System †

    PubMed Central

    Garay, Andrew S.; Ahlgren, Joy A.; Gonzalez, Mark A.; Stasney, Mark A.; Madtes, Paul C.

    1986-01-01

    Free-living Rhizobium (according to Bergey's Manual of Systematic Bacteriology, [1984, The Williams & Wilkins Co., Baltimore], Bradyrhizobium) japonicum was found to release a peptide into the nutrient media. Soybean nodules contained this peptide and exuded it into the soil. The name “rhizobin A” is suggested for this peptide. Nodules also contained another peptide, rhizobin B, as well as an unidentified, ninhydrin-positive compound, rhizobin C. The three peptides were confined to the free-amino-acid pool of the soluble fraction and eluted consecutively from a cation-exchange column. Rhizobin A was isolated in a highly purified form; its molecular mass was approximately 1,600 daltons as determined by Sephadex gel filtration and mass spectrometry. The amino-acid composition could be determined only approximately, because a long time was necessary for acid hydrolysis, possibly due to unusual linkages. The rhizobin concentration in soybean nodules continually increased during 50 days of growth, from 2 to approximately 400 μg/g (fresh weight). When combined nitrogen was added to nodulated soybean and subsequently removed, nitrogenase activity, nodulation, and nodule growth first decreased and then recovered. The relative amount of rhizobin A followed a similar pattern. Rhizobins were not detected in the roots, stems, and leaves of nodulated soybean plants. They were present in Lupinus nodules, but absent in alder nodules. PMID:16347004

  1. Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.

    PubMed

    Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe

    2013-07-01

    The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime.

  2. Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.

    PubMed

    Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe

    2013-07-01

    The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime. PMID:23648759

  3. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    PubMed

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-23

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans.

  4. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2008-11-01

    The environmentally friendly vegetable-oil-based waterborne polyurethane dispersions with very promising properties have been successfully synthesized without difficulty from a series of methoxylated soybean oil polyols (MSOLs) with different hydroxyl functionalities ranging from 2.4 to as high as 4.0. The resulting soybean-oil-based waterborne polyurethane (SPU) dispersions exhibit a uniform particle size, which increases from about 12 to 130 nm diameter with an increase in the OH functionality of the MSOL from 2.4 to 4.0 and decreases with increasing content of the hard segments. The structure and thermophysical and mechanical properties of the resulting SPU films, which contain 50-60 wt % MSOL as renewable resources, have been studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, transmission electron microscopy, and mechanical testing. The experimental results reveal that the functionality of the MSOLs and the hard segment content play a key role in controlling the structure and the thermophysical and mechanical properties of the SPU films. These novel films exhibit tensile stress-strain behavior ranging from elastomeric polymers to rigid plastics and possess Young's moduli ranging from 8 to 720 MPa, ultimate tensile strengths ranging from 4.2 to 21.5 MPa, and percent elongation at break values ranging from 16 to 280%. This work has addressed concerns regarding gelation and higher cross-linking caused by the high functionality of vegetable-oil-based polyols. This article reports novel environmentally friendly biobased SPU materials with promising applications as decorative and protective coatings.

  5. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  6. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  7. Changes in the contents and profiles of selected phenolics, soyasapogenols, tocopherols, and amino acids during soybean-rice mixture cooking: Electric rice cooker vs electric pressure rice cooker.

    PubMed

    Kim, Seung-Hyun; Yu, Bo-Ra; Chung, Ill-Min

    2015-06-01

    This study investigated the changes in the contents and profiles of 35 phenolics (including 12 isoflavones), four tocopherols, two soyasapogenols and 20 amino acids when soybean and rice were cooked together (soybean-rice mixture) using either an electric rice cooker (ERC) or an electric pressure rice cooker (EPRC). The contents of the 35 selected phenolics in soybean decreased by 12% and 8% upon cooking by ERC and EPRC, respectively, and their profiles were different from that prior to cooking (P<0.05). Total tocopherol content of soybeans decreased by 7% after cooking in an ERC, but increased by 3% in soybeans cooked by EPRC. Total soyasapogenol content in soybeans cooked by ERC and EPRC decreased by 15% and 6%, respectively. Lastly, the total amino acid content of soybeans increased by 41% and 10% after cooking by ERC and EPRC, respectively. This study extends our knowledge about the effects of heat and pressure on the contents and profiles of bioactive compounds during soybean-rice mixture cooking. These results may be useful for improving the quality of bioactive compounds in soybean and rice depending on cooking conditions.

  8. Comparison of broiler meat quality when fed diets supplemented with neutralized sunflower soapstock or soybean oil.

    PubMed

    Pekel, A Y; Demirel, G; Midilli, M; Yalcintan, H; Ekiz, B; Alp, M

    2012-09-01

    The objective of the current study was to evaluate the effect of dietary fat type and level on broiler meat quality. A 2 × 3 factorial arrangement with 2 types of fat including neutralized sunflower soapstock (NSS) and soybean oil (SO) at 3 levels of fat inclusion (2, 4, and 6%) was used with 5 replicates per treatment using 750 one-day-old broiler chicks in a completely randomized design. At the end of the study (d 36), 10 broilers from each replication were processed at a commercial slaughtering facility. Six carcasses from each replicate were used for meat quality evaluation. With the exception of 3 responses [breast meat lightness (L*) at 1 and 2 d, and redness (a*) at 5 d], there were no interactions between fat source and level. Breast meat pH at 15 min was not significantly affected by the dietary treatments. However, breast meat pH at 24 h postmortem was decreased (P < 0.01) in broilers fed the NSS. Breast meat cooking loss, shear force, and color did not differ between fat sources. Breast meat cooking loss decreased (P < 0.05) when the dietary levels of fat increased. Thigh meat TBA reactive substances were not different due to dietary fat source and level. Breast meat and skin L* value significantly decreased when the dietary levels of fat increased. Breast meat a* value was highest for the 6% fat fed birds on d 2 (P < 0.05) and d 5 (P < 0.01). Higher dietary fat levels decreased the b* values of breast meat except d 5. Breast skin yellowness (b*) value was higher (P < 0.01) for the SO-fed birds compared with NSS-fed birds. Thigh meat of the birds fed the NSS was lighter (P < 0.05) than that of the birds fed SO diets except d 5. Overall, data suggest that NSS can be used as an alternative fat source to SO with little effect on meat quality.

  9. Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane.

    PubMed

    Muhamad, Ida Idayu; Quin, Chang Hui; Selvakumaran, Suguna

    2016-04-01

    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle. PMID:27413211

  10. Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane.

    PubMed

    Muhamad, Ida Idayu; Quin, Chang Hui; Selvakumaran, Suguna

    2016-04-01

    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle.

  11. Water Deficit-Induced Changes in Abscisic Acid, Growth, Polysomes, and Translatable RNA in Soybean Hypocotyls

    PubMed Central

    Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1988-01-01

    Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite (water potential = −0.01 megapascal) for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite (water potential = −0.30 megapascal). A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level: 3.7 nanograms per milligram dry weight (74-fold increase). A comparison of the polyA+ RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional (isoelectric focusing-sodium dodecyl sulfate) polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar (±) abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content. Images Fig. 4 PMID:16666297

  12. [Combined injured effects of acid rain and lanthanum on growth of soybean seedling].

    PubMed

    Liang, Chan-juan; Pan, Dan-yun; Xu, Qiu-rong; Zhou, Qing

    2010-07-01

    Combined effects of acid rain and lanthanum on growth of soybean seedling (Glycine max) and its inherent mechanism were studied in this paper. Compared with treatments by simulated acid rain (pH 3.0, 3.5, 4.5) or rare earth La(III) (60, 100 and 300 mg x L(-1)), the decrease degree of growth parameters in combined treatments was higher, indicating that there were a synergistic effects between acid rain and La. Moreover,the inhibition effects of acid rain and La(III) were more obvious when pH value of acid rain was lower or the concentration of La(III) was higher. The changes of photosynthetic parameters were similar to those of growth, but the decrease degree of each parameter was not same in the same treatment group. The decrease degree of optimal PSII photochemical efficiency (Fv/Fm) and chlorophyll content (Chl) were 9.35%-22.75% and 9.14%-24.53%, respectively, lower than that of photosynthetic rate Pn (22.78%-84.7%), Hill reaction rate (15.52%-73.38%) and Mg2+ -ATPase activity (14.51%-71.54%), showing that the sensitivity of photosynthetic parameters to the combined factors was different. Furthermore, relative analysis showed that the change of Pn were mainly affected by Hill reaction rate and Mg2+ -ATPase activity, and was less influenced by Chl and Fv/Fm. It indicates that the effect of acid rain and La on each reaction in photosynthesis was different, and the inhibition of combined treatments on photosynthesis in plants was one of the main factors affecting growth of plant.

  13. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.

    PubMed

    King, C Andy; Purcell, Larry C

    2005-04-01

    Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation.

  14. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  15. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production?

    PubMed Central

    Torrecillas, Silvia; Montero, Daniel; Caballero, Maria José; Pittman, Karin A.; Custódio, Marco; Campo, Aurora; Sweetman, John; Izquierdo, Marisol

    2015-01-01

    The main objective of this study was to assess the effects of 4 g kg−1 dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced

  16. Novel branched-chain fatty acids in certain fish oils.

    PubMed

    Ratnayake, W M; Olsson, B; Ackman, R G

    1989-07-01

    Methyl-branched fatty acids, which are usually minor components (equal or less than 0.1%) in fish oils, were concentrated in the non-urea-complexing fraction along with polyunsaturated fatty acids during the enrichment of omega-3 fatty acids from certain fish oils via the urea complexation process. The methyl-branched fatty acids in the omega-3 polyunsaturated fatty acid concentrates, which were prepared from three fish body oils, were characterized by gas chromatography and gas chromatography/mass spectrometry. Among the major branched-chain fatty acids expected and identified were the known isoprenoid acids--mainly 4,8,12-trimethyltridecanoic, pristanic, and phytanic--and the well-known iso and anteiso structures. Two novel phytol-derived multimethyl-branched fatty acids, 2,2,6,10,14-pentamethylpentadecanoic and 2,3,7,11,15-pentamethylhexadecanoic, were identified in redfish (Sebastes sp.) oil. These two fatty acids were absent in oils from menhaden (Brevoortia tyrannus) and Pacific salmon (mixed, but mostly from sockeye, Oncorhynchus nerka). The major branched-chain fatty acid in the salmon oil, 7-methyl-7-hexadecenoic acid, was also present to a moderate extent in menhaden oil. A novel vicinal dimethyl-branched fatty acid, 7,8-dimethyl-7-hexadecenoic was detected in all of the fish oils examined, but was most important in the salmon oil. Three monomethyl-branched fatty acids, 11-methyltetradecanoic acid, and 11- and 13-methylhexadecanoic, hitherto undescribed in fish lipids, were also detected in salmon, redfish and menhaden oils. PMID:2779367

  17. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    PubMed

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods. PMID:24518344

  18. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    PubMed

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods.

  19. Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs.

    PubMed

    Aloisio, Carolina; Longhi, Marcela R; De Oliveira, Anselmo Gomes

    2015-10-01

    The aim of this work was the development and characterization of a biocompatible microemulsion (ME) containing soybean oil (O), phosphatidylcholine/sodium oleate/Eumulgin®HRE40 as the surfactant mixture (S) and water or buffer solution as the aqueous phase (W), for oral delivery of the poorly water-soluble drugs sulfamerazine (SMR) and indomethacin (INM). A wide range of combinations to obtain clear oil-in-water (o/w) ME was observed from pseudo-ternary phase diagrams, which was greater after the incorporation of both drugs, suggesting that they acted as stabilizers. Drug partition studies indicated a lower affinity of the drugs for the oil domain when they were ionized and with increased temperature, explained by the fact that both drugs were introduced inside the oil domain, determined by nuclear magnetic resonance. High concentrations of SMR and INM were able to be incorporated (22.0 and 62.3 mg/mL, respectively). The ME obtained presented an average droplet size of 100 nm and a negative surface charge. A significant increase in the release of SMR was observed with the ME with the highest percentage of O, because of the solubilizing properties of the ME. Also, a small retention effect was observed for INM, which may be explained by the differences in the partitioning properties of the drugs. PMID:26149419

  20. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  1. Determination of the fatty acid composition of saponified vegetable oils using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Ayorinde, F O; Garvin, K; Saeed, K

    2000-01-01

    A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils

  2. Enhanced level of n-3 fatty acid in membrane phospholipids induces lipid peroxidation in rats fed dietary docosahexaenoic acid oil.

    PubMed

    Song, J H; Miyazawa, T

    2001-03-01

    The effect of dietary docosahexaenoic acid (DHA, 22:6n-3) oil with different lipid types on lipid peroxidation was studied in rats. Each group of male Sprague-Dawley rats was pair fed 15% (w/w) of either DHA-triglycerides (DHA-TG), DHA-ethyl esters (DHA-EE) or DHA-phospholipids (DHA-PL) for up to 3 weeks. The palm oil (supplemented with 20% soybean oil) diet without DHA was fed as the control. Dietary DHA oils lowered plasma triglyceride concentrations in rats fed DHA-TG (by 30%), DHA-EE (by 45%) and DHA-PL (by 27%), compared to control. The incorporation of dietary DHA into plasma and liver phospholipids was more pronounced in the DHA-TG and DHA-EE group than in the DHA-PL group. However, DHA oil intake negatively influenced lipid peroxidation in both plasma and liver. Phospholipid peroxidation in plasma and liver was significantly higher than control in rats fed DHA-TG or DHA-EE, but not DHA-PL. These results are consistent with increased thiobarbituric acid reactive substances (TBARS) and decreased alpha-tocopherol levels in plasma and liver. In addition, liver microsomes from rats of each group were exposed to a mixture of chelated iron (Fe(3+)/ADP) and NADPH to determine the rate of peroxidative damage. During NADPH-dependent peroxidation of microsomes, the accumulation of phospholipid hydroperoxides, as well as TBARS, were elevated and alpha-tocopherol levels were significantly exhausted in DHA-TG and DHA-EE groups. During microsomal lipid peroxidation, there was a greater loss of n-3 fatty acids (mainly DHA) than of n-6 fatty acids, including arachidonic acid (20:4n-6). These results indicate that polyunsaturation of n-3 fatty acids is the most important target for lipid peroxidation. This suggests that the ingestion of large amounts of DHA oil enhances lipid peroxidation in the target membranes where greater amounts of n-3 fatty acids are incorporated, thereby increasing the peroxidizability and possibly accelerating the atherosclerotic process.

  3. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  4. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract.

    PubMed

    Park, Ki-Bum; Oh, Suk-Heung

    2007-05-01

    Yogurt with high levels of gamma-aminobutyric acid (GABA), free amino acids and isoflavones was developed using lactic acid bacteria (LAB) and germinated soybean extract. Fermented soya milk (GABA soya yogurt) produced with starter and substrate had the GABA concentration of 424.67 microg/gDW, whereas fermented milk produced by a conventional method had GABA less than 1.5 microg/gDW. The GABA soya yogurt also contained significantly high levels of free amino acids and isoflavones compared with other conventional yogurts. The results suggested that the Lactobacillus brevis OPY-1 and germinated soybean possessed a prospect to be applied in dairy and other health products with high nutritive values and functional properties.

  5. Partial amino acid sequences around sulfhydryl groups of soybean beta-amylase.

    PubMed

    Nomura, K; Mikami, B; Morita, Y

    1987-08-01

    Sulfhydryl (SH) groups of soybean beta-amylase were modified with 5-(iodoaceto-amidoethyl)aminonaphthalene-1-sulfonate (IAEDANS) and the SH-containing peptides exhibiting fluorescence were purified after chymotryptic digestion of the modified enzyme. The sequence analysis of the peptides derived from the modification of all SH groups in the denatured enzyme revealed the existence of six SH groups, in contrast to five reported previously. One of them was found to have extremely low reactivity toward SH-reagents without reduction. In the native state, IAEDANS reacted with 2 mol of SH groups per mol of the enzyme (SH1 and SH2) accompanied with inactivation of the enzyme owing to the modification of SH2 located near the active site of this enzyme. The selective modification of SH2 with IAEDANS was attained after the blocking of SH1 with 5,5'-dithiobis-(2-nitrobenzoic acid). The amino acid sequences of the peptides containing SH1 and SH2 were determined to be Cys-Ala-Asn-Pro-Gln and His-Gln-Cys-Gly-Gly-Asn-Val-Gly-Asp-Ile-Val-Asn-Ile-Pro-Ile-Pro-Gln-Trp, respectively.

  6. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  7. [Fatty acid profile of mero (Epinephelus morio) raw and processed oil captured in the Yucatan Peninsula, Mexico].

    PubMed

    Segura-Campos, Maira; González-Barrios, Gisela; Acereto-Escoffié, Pablo; Rosado-Rubio, Gabriel; Chel-Guerrero, Luis; Betancur-Ancona, David

    2014-11-01

    Unsaturated fatty acids are of current interest for their potential to reduce cardiovascular disease, the first cause of death worldwide. By its content of essential fatty acids, fish is one of the food products most in demand among the population. One of the most popular processes for fish consumption in Yucatan Peninsula, Mexico is frying. However, studies show that frying food causes changes in the composition generating trans fatty acids. The objective of this study was to evaluate the fatty acid profile of Mero (Epinephelus morio) crude and processed with different types of commercial oil. The results showed a fat content in raw E. morio of 1.68%. The percentage of oil extracted and absorbed by the product to be fried with corn oil, sunflower/canola, soybean and safflower was found in a range of 2.3-3.93 and 26.95-57.25%, respectively. The lipid profile obtained by GC-MS suggested the formation of trans fatty acids by isomerization and effect of temperature frying. However essential fatty acids such as oleic and linoleic acids were absorbed by E. morio being fried in sunflower oil and safflower/ canola, respectively.

  8. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  9. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)).

  10. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  11. Novel alpha-hydroxy phosphonic acids via castor oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from materials to pharmaceuticals. Castor oil has served as a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor oil and has been modified extensively for a number of applica...

  12. QSAR study for the soybean 15-lipoxygenase inhibitory activity of organosulfur compounds derived from the essential oil of garlic.

    PubMed

    Camargo, Alejandra B; Marchevsky, Eduardo; Luco, Juan M

    2007-04-18

    In this study, multiple linear regression (MLR) and partial least-squares (PLS) techniques were used for modeling the soybean 15-lipoxygenase inhibitory activity of a varied group of mono-, di-, and trisulfides derived from the essential oil of garlic. The structures of the compounds under study were characterized by means of calculated physicochemical parameters and several nonempirical descriptors, such as topological, geometrical, and quantum chemical indices. The results obtained indicate that the inhibitory activity is strongly dependent on the ability of the compounds to participate in dispersive interactions with the enzyme, as expressed by the solvent-accessible surface area (SASA) and the average distance/distance degree descriptor (ADDD) index. On the other hand, the high contribution of the lowest unoccupied molecular orbit term (LUMO) in the PLS models derived for the di- and trisulfides suggests that the solute's electron-acceptor capacity plays a fundamental role in the inhibitory activity exhibited for these compounds. Finally, the geometric features as expressed by the shape parameters included in the models indicate a low but not negligible positive contribution of molecular linearity in the enzyme-inhibitor binding. In summary, the developed quantitative structure-activity relationship approach successfully accounts for the potencies of organosulfur compounds acting on soybean 15-lipoxygenase and thereby offers both a guide for the synthesis of new compounds and a hypothesis for the molecular basis of their activity. PMID:17367159

  13. Fungal arachidonic acid-rich oil: research, development and industrialization.

    PubMed

    Ji, Xiao-Jun; Ren, Lu-Jing; Nie, Zhi-Kui; Huang, He; Ouyang, Ping-Kai

    2014-09-01

    Fungal arachidonic acid (ARA)-rich oil is an important microbial oil that affects diverse physiological processes that impact normal health and chronic disease. In this article, the historic developments and technological achievements in fungal ARA-rich oil production in the past several years are reviewed. The biochemistry of ARA, ARA-rich oil synthesis and the accumulation mechanism are first introduced. Subsequently, the fermentation and downstream technologies are summarized. Furthermore, progress in the industrial production of ARA-rich oil is discussed. Finally, guidelines for future studies of fungal ARA-rich oil production are proposed in light of the current progress, challenges and trends in the field.

  14. Evaluation of glyphosate application on transgenic soybean and its relationship with shikimic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate [N-(phosphonomethyl)glycine]-resistant crops (GRC) are the transgenic crops most extensively grown worldwide, with soybean being the major GRC. It is important to evaluate the impact of glyphosate on the shikimate pathway, growth and yield of GR soybean in the field. Furthermore, whether...

  15. Effect of NaCl Concentration on the Emulsifying Properties of Myofibrilla Protein in the Soybean Oil and Fish Oil Emulsion

    PubMed Central

    Jo, Yeon-Ji; Kwon, Yun-Joong; Min, Sang-Gi

    2015-01-01

    The aim of the present work was to investigate the effect of NaCl concentration on the emulsifying and rheological properties of porcine myofibrillar protein (MF)-stabilized soybean oil and fish oil emulsion (SO-EMs and FO-EMs). Emulsions (EMs) were prepared from 1% MF with 10% SO or FO at various NaCl concentration (0-0.5 M). The emulsifying ability index (EAI) of the EMs increased with increasing NaCl concentration for both oil types. Conversely, increasing NaCl manifested decrease in the emulsion stability index (ESI). In addition, creaming index (CI) also increased with NaCl concentration. From the microscopic observation, droplets of the EMs were more aggregated at relatively higher NaCl concentrations, especially for FO-EMs. All EMs had a gel-like structure owing to G' > G" from the rheological analysis. Comparing the oil types, the emulsifying capacity of SO-EMs was more stable than that of FO-EMs at all NaCl concentrations as determined from the CI value and microscopic observation. Therefore, it can be concluded that SO-EMs and FO-EMs are more stable at relatively lower concentrations of NaCl. In addition, the dispersed stability of SO-EMs was better than that of FO-EMs at the same concentration of NaCl. PMID:26761845

  16. Wheat gluten-based renewable and biodegradable polymer materials with enhanced hydrophobicity by using epoxidized soybean oil as a modifier.

    PubMed

    Zhang, Xiaoqing; Do, My Dieu; Kurniawan, Lusiana; Qiao, Greg G

    2010-10-13

    Epoxidized soybean oil (ESO) was applied as an additive for wheat gluten (WG) to modify the properties of the renewable and biodegradable natural polymer materials. Optimum intermolecular interactions and crosslinking between ESO chains and the WG matrix were achieved under alkaline conditions. The WGESO materials were heterogeneous on a scale of 20-30 nm, but the homogeneity was improved upon increasing the amount of glycerol as a plasticizer in the materials. The combination of plasticization and crosslinking effects derived from ESO resulted in good retention in mechanical strength for the plasticized WGESO materials as compared to those without 10 wt% of mobile ESO additives. The hydrophobicity of the plasticized WG materials was also enhanced significantly by using the ESO additives.

  17. Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80.

    PubMed

    Brandelero, Renata P Herrera; Grossmann, Maria Victória; Yamashita, Fabio

    2012-11-01

    Starch extruded in the presence of a plasticizer results in a material called thermoplastic starch (TPS). TPS mixed with poly(butylene adipate co-terephthalate) (PBAT), soybean oil (SO), and surfactant may result in films with improved mechanical properties due to greater hydrophobicity and compatibility among the polymers. This study characterized films produced from blends containing 65% TPS and 35% PBAT with SO added as compatibilizer. The Tween 80 was added to prevention of phase separation. The elongation and resistance were greater in the films with SO. The infrared spectra confirmed an increase in ester groups bonded to the PBAT and the presence of groups bonded to the starch ring, indicating TPS-SO and PBAT-SO interactions. The micrographs suggest that the films with SO were more homogenous. Thus, SO is considered to be a good compatibilizer for blends of TPS and PBAT.

  18. Unusual effects of some vegetable oils on the survival time of stroke-prone spontaneously hypertensive rats.

    PubMed

    Huang, M Z; Watanabe, S; Kobayashi, T; Nagatsu, A; Sakakibara, J; Okuyama, H

    1997-07-01

    Preliminary experiments have shown that a diet containing 10% rapeseed oil (low-erucic acid) markedly shortens the survival time of stroke-prone spontaneously hypertensive (SHRSP) rats under 1% NaCl loading as compared with diets containing perilla oil or soybean oil. High-oleate safflower oil and high-oleate sunflower oil were found to have survival time-shortening activities comparable to that of rapeseed oil; olive oil had slightly less activity. A mixture was made of soybean oil, perilla oil, and triolein partially purified from high-oleate sunflower oil to adjust the fatty acid composition to that of rapeseed oil. The survival time of this triolein/mixed oil group was between those of the rapeseed oil and soybean oil groups. When 1% NaCl was replaced with tap water, the survival time was prolonged by approximately 80%. Under these conditions, the rapeseed oil and evening primrose oil shortened the survival time by approximately 40% as compared with n-3 fatty acid-rich perilla and fish oil; lard, soybean oil, and safflower oil with relatively high n-6/n-3 ratios shortened the survival time by roughly 10%. The observed unusual survival time-shortening activities of some vegetable oils (rapeseed, high-oleate safflower, high-oleate sunflower, olive, and evening primrose oil) may not be due to their unique fatty acid compositions, but these results suggest that these vegetable oils contain factor(s) which are detrimental to SHRSP rats.

  19. Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils.

    PubMed

    Song, J H; Fujimoto, K; Miyazawa, T

    2000-12-01

    Docosahexaenoic acid [DHA, 22:6(n-3)], a major component of membrane phospholipids in brain and retina, is profoundly susceptible to oxidative stress in vitro. The extent of this peroxidation in organs when DHA is ingested in mammals, however, is not well elucidated. We investigated the effect of dietary DHA-containing oils (DHA 7.0-7.1 mol/100 mol total fatty acids), in the form of triacylglycerols (TG), ethyl esters (EE) and phospholipids (PL), on tissue lipid metabolism and lipid peroxidation in rats. Groups of Sprague-Dawley rats were fed semipurified diets containing 15 g/100 g test oils and were compared with those fed 80% palm oil and 20% soybean oil as the control (unsupplemented group) for 3 wk. The DHA oil diets markedly increased (P: < 0.05) the levels of DHA in the plasma, liver and kidney, 1.5-1.9, 2.5-3.8 and 2.2-2.5 times the control values, respectively, whereas there was a concomitant reduction (P: < 0.05) in arachidonic acid. All forms of DHA oil caused lower TG concentrations in plasma (P: < 0.05) and liver (P: < 0.05), but had no effect in kidney. The DHA oil-fed rats had greater phospholipid hydroperoxide accumulations in plasma (191-192% of control rats), liver (170-230%) and kidney (250-340%), whereas the alpha-tocopherol level was reduced concomitantly (21-73% of control rats). Consistent with these results, rats fed DHA-containing oils had more thiobarbituric reactive substances in these organs than the controls. Thus, high incorporation of (n-3) fatty acids (mainly DHA) into plasma and tissue lipids due to DHA-containing oil ingestion may undesirably affect tissues by enhancing susceptibility of membranes to lipid peroxidation and by disrupting the antioxidant system.

  20. Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit.

    PubMed

    Pedersen, G A; Jensen, L K; Fankhauser, A; Biedermann, S; Petersen, J H; Fabech, B

    2008-04-01

    Nineteen samples of food in glass jars with twist closures were collected by the national food inspectors at Danish food producers and a few importers, focusing on fatty food, such as vegetables in oil, herring in dressing or pickle, soft spreadable cheese, cream, dressings, peanut butter, sauces and infant food. The composition of the plasticizers in the gaskets was analysed by gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Epoxidized soybean oil (ESBO) and phthalates were determined in the homogenized food samples. ESBO was the principal plasticizer in five of the gaskets; in 14 it was phthalates. ESBO was found in seven of the food samples at concentrations from 6 to 100 mg kg(-1). The highest levels (91-100 mg kg(-1)) were in oily foods such as garlic, chilli or olives in oil. Phthalates, i.e. di-iso-decylphthalate (DIDP) and di-iso-nonylphthalates (DINP), were found in seven samples at 6-173 mg kg(-1). The highest concentrations (99-173 mg kg(-1)) were in products of garlic and tomatoes in oil and in fatty food products such as sauce béarnaise and peanut butter. For five of the samples the overall migration from unused lids to the official fatty food simulant olive oil was determined and compared with the legal limit of 60 mg kg(-1). The results ranged from 76 to 519 mg kg(-1) and as a consequence the products were withdrawn from the market. PMID:18348048

  1. Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit.

    PubMed

    Pedersen, G A; Jensen, L K; Fankhauser, A; Biedermann, S; Petersen, J H; Fabech, B

    2008-04-01

    Nineteen samples of food in glass jars with twist closures were collected by the national food inspectors at Danish food producers and a few importers, focusing on fatty food, such as vegetables in oil, herring in dressing or pickle, soft spreadable cheese, cream, dressings, peanut butter, sauces and infant food. The composition of the plasticizers in the gaskets was analysed by gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Epoxidized soybean oil (ESBO) and phthalates were determined in the homogenized food samples. ESBO was the principal plasticizer in five of the gaskets; in 14 it was phthalates. ESBO was found in seven of the food samples at concentrations from 6 to 100 mg kg(-1). The highest levels (91-100 mg kg(-1)) were in oily foods such as garlic, chilli or olives in oil. Phthalates, i.e. di-iso-decylphthalate (DIDP) and di-iso-nonylphthalates (DINP), were found in seven samples at 6-173 mg kg(-1). The highest concentrations (99-173 mg kg(-1)) were in products of garlic and tomatoes in oil and in fatty food products such as sauce béarnaise and peanut butter. For five of the samples the overall migration from unused lids to the official fatty food simulant olive oil was determined and compared with the legal limit of 60 mg kg(-1). The results ranged from 76 to 519 mg kg(-1) and as a consequence the products were withdrawn from the market.

  2. Effect of environment on the free and peptide amino acids in rice, wheat, and soybeans.

    PubMed

    Ahn, D J; Adeola, O; Nielsen, S S

    2001-01-01

    Controlled environments (CE) in which light, carbon dioxide, and nutrients are regulated are known to affect the chemical composition of plants. Controlled Ecological Life Support System (CELSS) environments are required for a Mars or lunar base where food resupply is both impractical and risky. Astronauts in a CELSS would need to grow and process edible biomass into foods. The complete nature of the changes in chemical composition of CE-grown plants is unknown but must be determined to ensure a safe and nutritionally adequate diet. In this article, we report the changes that occur in free and peptide-bound amino acids (AA) of select CELSS crops (rice, wheat, and soybean) grown in the field or in CE. The nonnitrate nonprotein nitrogen fraction was extracted and then analyzed for free and peptide AA. For grain or seeds, AA levels tended to increase from field to CE conditions; however, for vegetative material, AA levels remained the same or decreased from field to CE conditions. As such compositional changes are identified, researchers will be better able to design safe and nutritious diets for astronauts while minimizing needed energy and other resources.

  3. Effect of environment on the free and peptide amino acids in rice, wheat, and soybeans.

    PubMed

    Ahn, D J; Adeola, O; Nielsen, S S

    2001-01-01

    Controlled environments (CE) in which light, carbon dioxide, and nutrients are regulated are known to affect the chemical composition of plants. Controlled Ecological Life Support System (CELSS) environments are required for a Mars or lunar base where food resupply is both impractical and risky. Astronauts in a CELSS would need to grow and process edible biomass into foods. The complete nature of the changes in chemical composition of CE-grown plants is unknown but must be determined to ensure a safe and nutritionally adequate diet. In this article, we report the changes that occur in free and peptide-bound amino acids (AA) of select CELSS crops (rice, wheat, and soybean) grown in the field or in CE. The nonnitrate nonprotein nitrogen fraction was extracted and then analyzed for free and peptide AA. For grain or seeds, AA levels tended to increase from field to CE conditions; however, for vegetative material, AA levels remained the same or decreased from field to CE conditions. As such compositional changes are identified, researchers will be better able to design safe and nutritious diets for astronauts while minimizing needed energy and other resources. PMID:11676459

  4. Hematological and lipid changes in newborn piglets fed milk replacer diets containing vegetable oils with different levels of n-3 fatty acids.

    PubMed

    Kramer, J K; Sauer, F D; Farnworth, E R; Wolynetz, M S; Jones, G; Rock, G A

    1994-12-01

    To test if linolenic acid (18:3n-3) from vegetable oils would affect bleeding times and platelet counts in newborns, piglets were used as a model fed milk replacer diets containing 25% (by wt) vegetable oils or oil mixtures for 28 d and compared to sow-reared piglets. The oils tested included soybean, canola, olive, high oleic sunflower (HOAS), a canola/coconut mixture and a mixture of oils mimicking canola in fatty acid composition. All piglets fed the milk replacer diets showed normal growth. Bleeding times increased after birth from 4-6 min to 7-10 min by week 4 (P < 0.001), and were higher in pigs fed diets containing 18:3n-3, as well as in sow-reared piglets receiving n-3 polyunsaturated fatty acids (PUFA) in the milk, as compared to diets low in 18:3n-3. Platelet numbers increased within the first week in newborn piglets from 300 to 550 x 10(9)/L, and remained high thereafter. Milk replacer diets, containing vegetable oils, generally showed a transient delay in the rise of platelet numbers, which was partially associated with an increased platelet volume. The oils showed differences in the length of delay, but by the third week of age, all platelet counts were > 500 x 10(9)/L. The delay in rise in platelet counts appeared to be related to the fatty acid composition of the oil, as the effect was reproduced by a mixture of oils with a certain fatty acid profile, and disappeared upon the addition of saturated fatty acids to the vegetable oil. There were no alterations in the coagulation factors due to the dietary oils. Blood plasma, platelets and red blood cell membranes showed increased levels of 18:3n-3 and long-chain n-3 PUFA in response to dietary 18:3n-3. The level of saturated fatty acids in blood lipids was generally lower in canola and HOAS oil-fed piglets as compared to piglets fed soybean oil or reared with the sow. The results suggest that consumption of milk replacer diets containing vegetable oils rich in 18:3n-3 does not represent a bleeding risk

  5. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2013-09-01

    Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots.

  6. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2013-09-01

    Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots. PMID:23726884

  7. Comparative analysis of chemical compositions between non-transgenic soybean seeds and those from plants over-expressing AtJMT, the gene for jasmonic acid carboxyl methyltransferase.

    PubMed

    Nam, Kyong-Hee; Kim, Do Young; Pack, In-Soon; Park, Jung-Ho; Seo, Jun Sung; Choi, Yang Do; Cheong, Jong-Joo; Kim, Chung Ho; Kim, Chang-Gi

    2016-04-01

    Transgenic overexpression of the Arabidopsis gene for jasmonic acid carboxyl methyltransferase (AtJMT) is involved in regulating jasmonate-related plant responses. To examine its role in the compositional profile of soybean (Glycine max), we compared the seeds from field-grown plants that over-express AtJMT with those of the non-transgenic, wild-type (WT) counterpart. Our analysis of chemical compositions included proximates, amino acids, fatty acids, isoflavones, and antinutrients. Overexpression of AtJMT in the seeds resulted in decreased amounts of tryptophan, palmitic acid, linolenic acid, and stachyose, but increased levels of gadoleic acid and genistein. In particular, seeds from the transgenic soybeans contained 120.0-130.5% more genistein and 60.5-82.1% less stachyose than the WT. A separate evaluation of ingredient values showed that all were within the reference ranges reported for commercially available soybeans, thereby demonstrating the substantial equivalence of these transgenic and non-transgenic seeds.

  8. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  9. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean.

    PubMed

    Wang, Xianzhi; Jiang, Guo-Liang; Green, Marci; Scott, Roy A; Song, Qijian; Hyten, David L; Cregan, Perry B

    2014-10-01

    Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.

  10. Saturated fatty acids in vegetable oils. Council on Scientific Affairs.

    PubMed

    1990-02-01

    Concern has been expressed about the "atherogenicity" of coconut and/or palm oil in food products. Saturated fatty acids are found primarily in animal products and in "tropical oils" (coconut, palm, and palm kernel oils). Composition of the total diet over an extended period determines nutritional status and contribution to health. Specific foods and/or food ingredients need to be evaluated within the context of a person's total dietary pattern over time. Persons attempting to limit saturated fatty acid intake should be aware of the high content of saturated fatty acids in tropical oils. The American Medical Association is on record as supporting fatty acid labeling when cholesterol content is declared and cholesterol labeling when fatty acid content is declared. The American Medical Association has supported, and continues to support, voluntary efforts to increase public awareness of the composition and nutritional value of foods. PMID:2296125

  11. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  12. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    PubMed

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  13. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis

    SciTech Connect

    Guerinot, M.L.; Chelm, B.K.

    1986-03-01

    Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. The authors now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolated the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.

  14. FERULOYLATED SOYBEAN OIL-STARCH COMPOSITES: AQUEOUS DISPERSIONS OF A SOY-BASED SUNSCREEN ACTIVE INGREDIENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent National Center for Agricultural Utilization Research (NCAUR) technology can be utilized to produce stable aqueous starch-oil composites from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Herein, ultraviolet abso...

  15. STARCH-SOYBEAN OIL BASED ULTRAVIOLET ABSORBING COMPOSITES. PREPARATION, CHEMISTY AND POTENTIAL USES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials can produce stable aqueous starch-oil composites from renewable resources. Herein, ferulate-based ultraviolet absorbing lipids were synthesized by the lipase catalyzed transesterification of soybea...

  16. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  17. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  18. Dietary canola oil alters hematological indices and blood lipids in neonatal piglets fed formula.

    PubMed

    Innis, S M; Dyer, R A

    1999-07-01

    This study was undertaken to determine the effects of canola oil on platelet characteristics, blood lipids and growth in exclusively formula-fed piglets. Piglets were fed from birth to 10 or 18 d with formula containing 51% energy from fat, with 100% fat as canola or soybean oil; 26% soybean, 59% high oleic acid sunflower and 12% flax oil (canola mimic); or 26% canola (canola blend) or soybean (soybean blend) with high oleic acid sunflower, palm and coconut oil. The canola mimic provided similar carbon chain 16 and 18 fatty acids without the sterol or 20:1 and erucic acid (22:1) of canola oil. The oil blends provided formula resembling infant formulas but with higher 16:0 and lower unsaturated fatty acid levels than in canola or soybean oil. Body weight, weight gain and heart and liver weight were not different after 10 or 18 d feeding canola when compared to soybean oil alone or blended oil formulas. Piglets fed formulas with 100% canola oil had lower platelet counts than piglets fed formula soybean oil or the canola oil mimic. Platelet counts were lower, and platelet distribution width and volume were higher, when formulas with 100% canola or soybean rather than the blended oil formulas were fed. The results show that formula fat composition influences the developing hematological system and that canola oil suppresses the normal developmental increase in platelet count in piglets by a mechanism apparently unrelated to the formula 16:0, 18:1, 18:2(n-6) or 18:3(n-3), or plasma phospholipid 20:4(n-6) or 20:5(n-3).

  19. Fatty acid profile and meat quality of young bulls fed ground soybean or ground cottonseed and vitamin E.

    PubMed

    Machado Neto, O R; Chizzotti, M L; Ramos, E M; Oliveira, D M; Lanna, D P D; Ribeiro, J S; Lopes, L S; Descalzo, A M; Amorim, T R; Ladeira, M M

    2015-02-01

    The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339±15 kg, were allotted in a completely randomized design using a 2×2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464±15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P>0.05). Subcutaneous fat from animals fed CS diet had greater C12:0, C16:0 and C18:0 contents (P<0.03). In addition, CS diets reduced the C18:1 and C18:2 cis-9, trans-11 contents in subcutaneous fat (P<0.05). The muscle from animals fed CS tended to higher C16:0 and C18:0 contents (P<0.11), and decreased C18:1, C18:2 cis-9, trans-11 and C18:3 contents (P<0.05) compared with SB. The Δ9-desaturase index was greater in muscle from animals fed SB (P<0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P<0.05). Meat from animals fed SB diets had

  20. Fatty acid profile and meat quality of young bulls fed ground soybean or ground cottonseed and vitamin E.

    PubMed

    Machado Neto, O R; Chizzotti, M L; Ramos, E M; Oliveira, D M; Lanna, D P D; Ribeiro, J S; Lopes, L S; Descalzo, A M; Amorim, T R; Ladeira, M M

    2015-02-01

    The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339±15 kg, were allotted in a completely randomized design using a 2×2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464±15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P>0.05). Subcutaneous fat from animals fed CS diet had greater C12:0, C16:0 and C18:0 contents (P<0.03). In addition, CS diets reduced the C18:1 and C18:2 cis-9, trans-11 contents in subcutaneous fat (P<0.05). The muscle from animals fed CS tended to higher C16:0 and C18:0 contents (P<0.11), and decreased C18:1, C18:2 cis-9, trans-11 and C18:3 contents (P<0.05) compared with SB. The Δ9-desaturase index was greater in muscle from animals fed SB (P<0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P<0.05). Meat from animals fed SB diets had