Science.gov

Sample records for acid soybean oil

  1. MATERNAL EFFECTS FOR FATTY ACID COMPOSITION IN SOYBEAN SEED OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) oil accounts for nearly half of the edible vegetable oil production worldwide. The fatty acid composition of soybean seed oil affects its nutritional value and physical and chemical characteristics. In recent years, there has been an increasing demand to produce soy...

  2. Increasing the Oleic Acid in Soybean Oil with Plant Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing the oleic acid content along with decrease in linolenic acid can improve the oxidative stability of soybean oil. Genetic changes in soybean using standard plant breeding practices has resulted in a publicly released a mid-oleic breeding line, N98-4445A, with oil that averages 57% oleic ac...

  3. Maternal Effects on Fatty Acid Composition of Soybean Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition of soybean (Glycine max (L.) Merr.) seed oil affects its nutritional value and physical and chemical characteristics. The success of developing soybean lines with genetically altered seed oil is greatly determined by the rate of genetic gain through selection. Maternal effec...

  4. Soybean seed protein oil fatty acids and mineral composition as influenced by soybean-corn rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of crop rotation on soybean (Glycine max (L) Merr.) seed composition have yet to be thoroughly investigated. This study investigated the effects of soybean-corn (Zea mays L.) rotations on seed protein, oil, fatty acids, and mineral nutrient composition on soybean. The cultivar DBK 4651 was g...

  5. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other...

  6. Enviromental Effects on Oleic Acid in Soybean Seed Oil of Plant Introductions with Elevated Oleic Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil with oleic acid content >500 g per kg is desirable for a broader role in food and industrial uses. Seed oil in commercially grown soybean genotypes averages about 230 g per kg oleic acid (18:1). Some maturity group (MG) II to V plant introductions (PIs) have el...

  7. Molecular analysis of soybean lines with low palmitic acid content in the seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid is the major saturated fatty acid found in soybean oil, accounting for approximately 11% of the seed oil content. Reducing the palmitic acid levels of the oil is desirable because of the negative health effects specifically associated with this fatty acid. One of the genetic loci known...

  8. Searching for a One-Step Bioprocess for the Production of Hydroxyl Fatty Acids and Hydroxyl Oils from Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  9. Genetics and Breeding for Modified Fatty Acid Profile in Soybean Seed Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil is versatile and used in many products. Modifying the fatty acid profile would make soy oil more functional in food and other products. The ideal oil with the most end uses would have saturates (palmitic + stearic acids) reduced from 15 to < 7%, oleic acid increa...

  10. Mid-oleic/ultra low linolenic acid soybean oil - a healthful new alternative to hydrogenated oils for frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the frying stability of mid-oleic/ultra low linolenic acid soybean oil (MO/ULLSBO) and the storage stability of food fried in it, tortilla chips were fried in MO/ULLSBO, soybean oil (SBO), hydrogenated SBO (HSBO) and ultra low linolenic SBO (ULLSBO). Intermittent batch frying tests wer...

  11. Oxidative and Flavor Stability of Tortilla Chips Fried in Expeller Pressed Low Linolenic Acid Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous pilot plant frying studies were conducted for potato chips using five oils: expeller pressed soybean oil (SBO); low linolenic acid expeller pressed SBO (EPLLSBO); high oleic sunflower oil (HOSUN); corn oil and hydrogenated SBO (HSBO) for 9 h of frying. The chips were aged at 25 deg C. A...

  12. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  13. Incorporation of Palmitic Acid or Stearic Acid into Soybean Oils Using Enzymatic Interesterification.

    PubMed

    Teh, Soek Sin; Voon, Phooi Tee; Hock Ong, Augustine Soon; Choo, Yuen May

    2016-09-01

    Incorporations of nature fatty acids which were palmitic acid and stearic acid into the end positions of soybean oils were done using sn-1,3 specific immobilised lipase from Rhizomucor miehei at different ratios in order to produce symmetrical triglycerides without changing the fatty acids at sn-2 position. The optimum ratio for the process was 25:75 w/w. There were 19.2% increase of SFA for P25 and 16% increase for S25 at the sn-1,3 positions. The research findings indicated that the structured lipids produced from enzymatic interesterification possessed a higher oxidative stability than soybean oil. The newly formed structured lipids (SUS type) could be good sources for various applications in food industry. PMID:27477075

  14. Lipase-catalyzed interesterification of soybean oil with an omega-3 polyunsaturated fatty acid concentrate prepared from sardine oil.

    PubMed

    Akimoto, Masamichi; Izawa, Maki; Hoshino, Kazumi; Abe, Ken-Ichi; Takahashi, Hiromi

    2003-02-01

    To reduce the content of linoleoyl moiety in soybean oil, soybean oil that contains 53.0% linoleoyl moiety as molar acyl moiety composition was interesterified with an omega-3 polyunsaturated fatty acid (PUFA) concentrate (24.0 mol% eicosapentaenoic acid [EPA], 40.4 mol% docosahexaenoic acid [DHA]) prepared from sardine oil, using an immobilized sn-1,3-specific lipase from Rhizomucor miehei (Lipozyme IM). The reaction was carried out in a batch reactor at 37 degrees C under the following conditions: 500 micromol of soybean oil, molar ratio of omega-3 PUFA concentrate to soybean oil = 1.0-6.0,5.0 mL of heptane, and 30 batch interesterification units of enzyme. After the reaction time of 72 h, modified soybean oil, which contains 34.9% linoleoyl, 10.1% eicosapentaenoyl, and 14.2% docosahexaenoyl moieties, was produced at the molar reactant ratio of 6.0. In this oil, the total omega-3 acyl moiety composition reached 34.1%; the molar ratio of omega-3 to omega-6 acyl moieties was enhanced by five times compared with soybean oil. Compared with palmitic acid, DHA was kinetically six times less reactive, although the EPA was by 16% more reactive. PMID:12603099

  15. Catalyzed ring-opening polymerization of epoxidized soybean oil by hydrated and anhydrous fluoroantimonic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), and the anhydrous form (HSbF6) in ethyl acetate was conducted in an effort to develop useful biodegradable polymers. The resulting polymerized ESO (SA-RPESO and SAA-...

  16. Soybean seed protein, oil, fatty acids, and isoflavones altered by potassium fertilizer rates in the midsouth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that the effect of potassium fertilizer on soybean ([Glycine max (L.) Merr.] seed composition (protein, oil, fatty acids, and isoflavones) is still largely unknown. Therefore, the objective of this research was to investigate the effects of potassium application on seed p...

  17. Nitrogen Derivatives of Soybean Oil and Fatty Acid Methyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil based products are eco-friendly and non-toxic in nature, which is increasing their utilization in lot of applications. The presence of double bonds in some of the fatty acids, are attractive sites for functionalization. In this study we have used these sites for functionalization usi...

  18. Heritability of Oleic Acid Seed Content in Soybean Oil and its Genetic Correlation with Fatty Acid and Agronomic Traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid seed content is an important determinant of the nutritional value and the oxidative stability of soybean oil. Breeding for higher oleate content mandates the estimation of the heritability and the genetic correlations between oleate and fatty acid traits and between oleate and agronomic t...

  19. Omega-3 fatty acids enriched chocolate spreads using soybean and coconut oils.

    PubMed

    Jeyarani, T; Banerjee, T; Ravi, R; Krishna, A G Gopala

    2015-02-01

    Chocolate spreads were developed by incorporating two different soybean oil margarines, fat phases prepared using 85 % soybean oil (M1) and 1:1 blend of soybean oil and coconut oil (M2) with commercial palm stearin. Eight formulations were tried by varying skim milk powder (SMP)/fluid skimmed milk (FSM), type of fats (M1, M2, a commercial margarine and a table spread), sugar and cocoa powder and their quality characteristics were compared with a commercial hazelnut cocoa spread. The moisture and fat content were 5-6.1 % and 31.4-32.8 % for formulations with SMP and 21.5-24.7 % and 15.6-21.4 % respectively for those with FSM. Rheological studies of FSM spreads showed higher G″ value (loss modulus) than G' (storage modulus) indicating better spreadability. Descriptive sensory analysis revealed that the products had acceptability score of 8.3 to 10.5 (maximum score: 15). Fat extracted from spreads prepared using M1 and M2 was found to contain 43.9 and 22.3 % linoleic acid and 2.1 and 4.4 % linolenic acid respectively, were free from trans fat while the commercial hazelnut spread had 9.8 % linoleic acid but did not contain linolenic acid. Hence, the developed chocolate spreads have the potential to overcome ω-3 deficiency, ω-6/ω-3 imbalance and to enhance the health standard of people. PMID:25694722

  20. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    PubMed

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored. PMID:24996268

  1. Effect of replacing dietary menhaden oil with pollock or soybean oil on muscle fatty acid composition and growth performance of juvenile pacific threadfin (polyactylus sexfilis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study compared the nutritional values of menhaden fish oil and pollock oil; and studied the potential of replacing dietary pollock oil by soybean oil based on the effect of pollock oil on growth performance, body composition, and muscle fatty acid profiles of juvenile Pacific threadfin. All te...

  2. Food uses for soybean oil and alternatives to trans fatty acids in foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The approximately 20% oil in the soybean seed is considered a co-product of the protein fraction; however, that oil fraction is a valuable commodity itself. In the United States, soybean oil products account for approximately 80% of the 18 billion pounds of edible oils used every year. Home consum...

  3. Agricultural practices altered soybean seed protein, oil, fatty acids, sugars, and minerals in the Midsouth USA

    PubMed Central

    Bellaloui, Nacer; Bruns, H. Arnold; Abbas, Hamed K.; Mengistu, Alemu; Fisher, Daniel K.; Reddy, Krishna N.

    2015-01-01

    Information on the effects of management practices on soybean seed composition is scarce. Therefore, the objective of this research was to investigate the effects of planting date (PD) and seeding rate (SR) on seed composition (protein, oil, fatty acids, and sugars) and seed minerals (B, P, and Fe) in soybean grown in two row-types (RTs) on the Mississippi Delta region of the Midsouth USA. Two field experiments were conducted in 2009 and 2010 on Sharkey clay and Beulah fine sandy loam soil at Stoneville, MS, USA, under irrigated conditions. Soybean were grown in 102 cm single-rows and 25 cm twin-rows in 102 cm centers at SRs of 20, 30, 40, and 50 seeds m-2. The results showed that in May and June planting, protein, glucose, P, and B concentrations increased with increased SR, but at the highest SRs (40 and 50 seeds m-2), the concentrations remained constant or declined. Palmitic, stearic, and linoleic acid concentrations were the least responsive to SR increases. Early planting resulted in higher oil, oleic acid, sucrose, B, and P on both single and twin-rows. Late planting resulted in higher protein and linolenic acid, but lower oleic acid and oil concentrations. The changes in seed constituents could be due to changes in environmental factors (drought and temperature), and nutrient accumulation in seeds and leaves. The increase of stachyose sugar in 2010 may be due to a drier year and high temperature in 2010 compared to 2009; suggesting the possible role of stachyose as an environmental stress compound. Our research demonstrated that PD, SR, and RT altered some seed constituents, but the level of alteration in each year dependent on environmental factors such as drought and temperature. This information benefits growers and breeders for considering agronomic practices to select for soybean seed nutritional qualities under drought and high heat conditions. PMID:25741347

  4. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    PubMed

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. PMID:24851712

  5. IMPACT OF SOYBEAN OILS VARYING IN FATTY ACID PROFILE ON T CELL PROLIFERATION OF MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Linoleic acid and alpha linolenic acid are essential fatty acids, which play an important role in modulation of T cell proliferation. We studied the effects of feeding selectively bred and genetically modified soybean oils distinguished by altered fatty acid profiles, resulting in varied linoleic/li...

  6. Effects of chelating agents on protein, oil, fatty acid amd seed mineral concentrations in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed is a major source of protein and oil for human diet. Since not much information is available on the effects of chelating agents on soybean seed composition constituents, the current study aimed to investigate the effects of various chelating agents on soybean [(Glycine max (L.) Merr.)] ...

  7. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect. PMID:26641978

  8. Soybean seed protein oil fatty acids sugars and minerals as affected by seeding rates and row spacing in the Midsouth USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on the effects of seeding rates (SDR) and row spacing (RS) on soybean seed composition is almost non-existent. The objective of this research was to investigate the effect of SDR and RS on soybean seed protein, oil, fatty acids, sugars, and minerals using two soybean cultivars, P 93M90 (ear...

  9. Creating Conventional Soybeans with the High Oleic Acid Seed Oil Trait

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commodity soybeans are poised to undergo a revolutionary change. Major shifts in market expectations for the nutritional quality of the oil, brought about in part through food labeling requirements and the suitability for biodiesel, are driving the commodity soybean to embrace new seed compositiona...

  10. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil

  11. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    PubMed Central

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  12. Effect of foliar and soil application of potassium fertilizer on soybean seed protein, oil, fatty acids, and minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and minerals). Soybean cultivar (Pioneer 95470) of maturity group 5.7 was grown in a repeat...

  13. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  14. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect

    Tom Clemente; Jon Van Gerpen

    2007-11-30

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may

  15. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High oleic acid soybeans were produced by combining a mutant FAD2-1A and a mutant FAD2-1B gene. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6%. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high ...

  16. Environmental stability of oleic acid concentration in seed oil for soybean lines with FAD2-1A and FAD2-1B mutant genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevating oleic acid (18:1) in seed oil content improves oxidative stability and is desirable for expanding edible and industrial uses of soybean [Glycine max (L.) Merr.]. Soybean lines with up to 800 g kg-1 oleic acid (18:1) concentration were developed by combining a recessive mutant allele at th...

  17. Lewis Acid Catalyzed Ring-opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3•OEt2), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, diff...

  18. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.

    PubMed

    Xie, Wenlei; Yang, Dong

    2011-10-01

    The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability. PMID:21871795

  19. Characterization of stearidonic acid soybean oil enriched with palmitic acid produced by solvent-free enzymatic interesterification.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-09-14

    Stearidonic acid soybean oil (SDASO) is a plant source of n-3 polyunsaturated fatty acids (n-3 PUFAs). Solvent-free enzymatic interesterification was used to produce structured lipids (SLs) in a 1 L stir-batch reactor with a 1:2 substrate mole ratio of SDASO to tripalmitin, at 65 °C for 18 h. Two SLs were synthesized using immobilized lipases, Novozym 435 and Lipozyme TL IM. Free fatty acids (FFAs) were removed by short-path distillation. SLs were characterized by analyzing FFA and FA (total and positional) contents, iodine and saponification values, melting and crystallization profiles, tocopherols, and oxidative stability. The SLs contained 8.15 and 8.38% total stearidonic acid and 60.84 and 60.63% palmitic acid at the sn-2 position for Novozym 435 SL and Lipozyme TL IM SL, respectively. The SLs were less oxidatively stable than SDASO due to a decrease in tocopherol content after purification of the SLs. The saponification values of the SLs were slightly higher than that of the SDASO. The melting profiles of the SLs were similar, but crystallization profiles differed. The triacylglycerol (TAG) molecular species of the SLs were similar to each other, with tripalmitin being the major TAG. SDASO's major TAG species comprised stearidonic and oleic acids or stearidonic, α-linolenic, and γ-linolenic acids. PMID:21830790

  20. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. PMID:26776004

  1. Psyllium husk fibre supplementation to soybean and coconut oil diets of humans: effect on fat digestibility and faecal fatty acid excretion.

    PubMed

    Ganji, V; Kies, C V

    1994-08-01

    The effects of psyllium fibre supplementation to polyunsaturated fatty acid rich soybean oil and saturated fatty acid rich coconut oil diets on fat digestibility and faecal fatty acid excretion were investigated in healthy humans. The study consisted of four 7-day experimental periods. Participants consumed soybean oil (SO), soybean oil plus psyllium fibre (20 g/day) (SO+PF), coconut oil (CO) and coconut oil plus psyllium fibre (20 g/day) (CO+PF) diets. Laboratory diet provided 30% calories from fat (20% from test oils and 10% from basal diet), 15% calories from protein and 55% calories from carbohydrate. Fat digestibility was significantly lower and faecal fat excretion was significantly higher with SO+PF diet than SO diet and with CO+PF diet than CO diet. Faecal excretion of myristic and lauric acids was not affected by test diets. Percent faecal palmitic acid excretion was significantly higher during psyllium supplementation periods. Higher faecal linoleic acid excretion was observed with soybean oil diets compared with coconut oil diets. Increased faecal fat loss, decreased fat digestibility and increased faecal palmitic acid excretion with psyllium supplementation may partly explain the hypocholesterolaemic action of psyllium fibre. PMID:7957006

  2. Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Jiang, Junqing; Zhang, Yanwu; Yan, Liwei; Jiang, Pingkai

    2012-06-01

    {PO4[W(O)(O2)2]4}3- was supported onto modified halloysite nanotubes (HNTs) to prepare heterogeneous catalysts and these catalysts were applied in epoxidation of soybean oil. To enhance the cohesive force between {PO4[W(O)(O2)2]4}3- and HNTs, quaternary amino groups were anchored onto HNTs through silylation of N-(2-aminoethyl)-3-aminopropyl trimethoxysilane and alkylation of amino groups. Further {PO4[W(O)(O2)2]4}3- was supported onto HNTs by ion exchange. The heterogeneous catalysts were characterized by FTIR, TGA, XRF and TEM-EDS. Then the catalytic behaviour to epoxidation of soybean oil was studied in detail. The results show that the introduction of phase transfer agent during preparation of the catalysts is very effective to improve catalytic activity and mechanical agitation combining with ultrasonic agitation is the best agitation way. The catalytic reactivity increased as reaction time increased. Moreover, the catalysts can be easily recovered from the reaction system by centrifugation as deposit and recycled three times without obviously decreasing the catalytic activity. Through re-exchange of {PO4[W(O)(O2)2]4}3-, the heterogeneous catalyst can be regenerated without catalytic activity loss.

  3. Ring-opening polymerization of epoxidized soybean oil catalyzed by the superacid, Fluroantimonic acid hexahydrate (HSbF6-6H2O)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by the super acid, fluroantimonic acid hexahydrate (HSbF6-6H2O), in ethyl acetate was conducted. The resulting polymers, SA-RPESO, were characterized using infrared spectroscopy, differential scanning calorimetry, thermogravimetri...

  4. Detailed Dimethylacetal and Fatty Acid Composition of Rumen Content from Lambs Fed Lucerne or Concentrate Supplemented with Soybean Oil

    PubMed Central

    Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024

  5. Identification of the molecular genetic basis of the low palmitic acid seed oil trait in soybean mutant line RG3 and association analysis of molecular markers with elevated seed stearic acid and reduced seed palmitic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid composition of vegetable oil is becoming increasingly critical for the ultimate functionality and utilization in foods and industrial products. Partial chemical hydrogenation of soybean oil increases oxidative stability and shelf life but also results in the introduction of trans fats...

  6. Microbial screening and analytical methods for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to develop a new useful method including microbial screening and product identification for a bioprocess to produce polyol oils from soybean oil. Methods for separating of product polyol oils from soybean oil substrate and free fatty acid byproducts using HPLC and TLC...

  7. Enzymatic Products from Modified Soybean Oil Containing Hydrazinoester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We use soybean oil to produce new, non-petroleum based products. The starting material is the ene reaction product of soybean oil and diethyl azodicarboxylate (DEAD), which can then be hydrolyzed chemically and enzymatically. Chemical hydrolysis gives hydrazino-fatty acids, whereas enzymatic hydro...

  8. Effect of dietary soybean oil addition on the odd-numbered and branched-chain fatty acids in rabbit meat.

    PubMed

    Papadomichelakis, George; Karagiannidou, Areti; Anastasopoulos, Vasilios; Fegeros, Konstantinos

    2010-10-01

    The effect of dietary soybean oil (SO) inclusion (20g/kg) on the odd-numbered (ONFA) and branched-chain (BCFA) fatty acids (FA) of two muscles, differing in fatness (Longissimus lumborum and Biceps femoris), was studied in 24 New ZealandxCalifornian rabbits. The increased muscle fatness in Biceps femoris (P<0.001) was related to higher saturated (P<0.01) and monounsaturated (P<0.01) fatty acids. Intramuscular ONFA and BCFA contents were not affected, but their proportions were reduced (P<0.01 and P<0.001) by SO addition, suggesting a dilution effect of the dietary polyunsaturates accumulated in both muscles, except for 17:0i which decreased only in Longissimus lumborum due to significant (P<0.05) soybean oilxmuscle interaction. The higher (P<0.05) BCFA contents and the FA profile in Biceps femoris were not affected by fatness, indicating an association with other muscle properties. The present study supplies new information on ONFA and BCFA in rabbit meat. PMID:20493641

  9. Automotive gear oil lubricant from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  10. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on channel catfish performance, body composition,...

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish consumption is a common method of obtaining beneficial n-3 highly unsaturated fatty acids (HUFAs), but increased use of vegetable oils in fish diets to reduce dependence on fish oil dilutes these HUFAs. Conjugated linoleic acids (CLA) are also considered beneficial for human health. Therefore,...

  11. Lignans as antioxidants for soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignans including nordihydroguaiaretic acid, (+)-pinoresinol, (-)-secoisolariciresinol, enterodiol, two sesame lignans (sesamol, sesamin), and four model compounds were investigated for their antipolymerization activities for soybean oil at frying temperature (180 °C). GPC (gel permeation chromatogr...

  12. Stearidonic acid soybean oil enriched with palmitic acid at the sn-2 position by enzymatic interesterification for use as human milk fat analogues.

    PubMed

    Teichert, Sarah A; Akoh, Casimir C

    2011-05-25

    Stearidonic acid (SDA, C18:4n-3) enriched soybean oil may be added to the diet to increase intake of omega-3 fatty acids (FAs). Human milk fat has ≥60% of palmitic acid (PA), by weight, esterified at the sn-2 position to improve absorption of fat and calcium in infants. Enzymatic interesterification of SDA soybean oil and tripalmitin produced structured lipids (SLs) enriched with PA at the sn-2 position of the triacylglycerol. Reactions were catalyzed by Novozym 435 or Lipozyme TL IM under various conditions of time, temperature, and substrate mole ratio. Response surface methodology was used to design the experiments. Model optimization conditions were predicted to be 1:2 substrate mole ratio at 50 °C for 18 h with 10% (by weight) Lipozyme TL IM resulting in 6.82 ± 1.87% total SDA and 67.19 ± 9.59% PA at sn-2; 1:2 substrate mole ratio at 50 °C for 15.6 h resulting in 8.01 ± 2.41% total SDA and 64.43 ± 13.69% PA at sn-2 with 10% (by weight) Novozym 435 as the biocatalyst. The SLs may be useful as human milk fat analogues for infant formula formulation with health benefits of the omega-3 FAs. PMID:21517012

  13. Low Trans Spread and Shortening Oils via Hydrogenation of Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil and cottonseed oil were hydrogenated under selective conditions to yield oils with low iodine values, lowered trans fatty acids and increased stearic acid contents. Oils hydrogenated at 175 deg C, 15 psi hydrogen in the presence of nickel catalyst showed a maximum content of trans fatty...

  14. Low trans spread and shortening oils via hydrogenation of soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil and cottonseed oil were hydrogenated under selective conditions to yield oils with low iodine values, lowered trans fatty acids and increased stearic acid contents. Oils hydrogenated at 175 deg C, 15 psi hydrogen in the presence of nickel catalyst showed a maximum content of trans fatty...

  15. STRUCTURES AND PHYSICOCHEMICAL PROPERTIES OF STARCH FROM IMMATURE SEEDS OF SOYBEAN VARIETIES (GLYCINE MAX (L.) MERR.) EXHIBITING NORMAL, LOW-LINOLENIC OR LOW-SATURATED FATTY ACID OIL PROFILES AT MATURITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean variety exhibiting at maturity, normal (NM), low-linolenic (LL) or low-saturate (LS) fatty acid seed oil composition had starch structure and functional properties studied from seeds collected 20 days prior to harvest. Soybean starch had small granules (0.4-4.5 micrometers diameter), and CB...

  16. Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration.

    PubMed

    Song, Cai; Horrobin, David

    2004-06-01

    Proinflammatory cytokine interleukin (IL)-1beta can cause cognitive impairment, activate the hypothalamic-pituitary-adrenal axis and impair monoaminergic neurotransmission in the rat. IL-1beta has also been shown to increase the concentration of the inflammatory mediator prostaglandin E2 (PGE2) in the blood. Omega (n)-3 fatty acids, such as eicosapentaenoic acid (EPA), which are components of fish oil, have been shown to reduce both the proinflammatory cytokines and the synthesis of PGE2. The purpose of this study was to determine whether dietary supplements of EPA would attenuate the inflammation-induced impairment of spatial memory by centrally administered IL-1beta. Rats were fed with a diet of coconut oil (contained a negligible quantity of fatty acids), soybean oil (contained mainly n-6 fatty acids), or a diet of coconut oil enriched with ethyl-EPA (E-EPA). The rats were then injected intracerebroventricularly with IL-1beta or saline. The results of this study demonstrated that the IL-1-induced deficit in spatial memory was correlated with an impairment of central noradrenergic and serotonergic (but not dopaminergic) function and an increase in the serum corticosterone concentration. IL-1beta also caused an increase in the hippocampal PGE2 concentration. These effects of IL-1 were attenuated by the chronic administration of E-EPA. By contrast, rats fed with the soybean oil diet showed no effect on the changes induced by the IL-1 administration. PMID:15060086

  17. Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Shin, Jung-Ah; Lee, Ki-Teak

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage. PMID:26492097

  18. Liquid hydrocarbon fuels obtained by the pyrolysis of soybean oils.

    PubMed

    Junming, Xu; Jianchun, Jiang; Yanju, Lu; Jie, Chen

    2009-10-01

    The pyrolysis reactions of soybean oils have been studied. The pyrolytic products were analyzed by GC-MS and FTIR and show the formation of olefins, paraffins, carboxylic acids and aldehydes. Several kinds of catalysts were compared. It was found that the amounts of carboxylic acids and aldehydes were significantly decreased by using base catalysts such as Na(2)CO(3) and K(2)CO(3). The low acid value pyrolytic products showed good cold flow properties and good solubility in diesel oil at low temperature. The results presented in this work have shown that the pyrolysis of soybean oils generates fuels that have chemical composition similar to petroleum based fuels. PMID:19464169

  19. High-throughput and functional SNP detection assays for oleic and linolenic acids in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a primary source of vegetable oil, accounting for 53% of the total vegetable oil consumption in the USA in 2013. Soybean oil with high oleic acid and low linolenic acid content is desired, because it not only improves the oxidative stability of the oil, but also reduces the amount of unde...

  20. Detection of genetically modified soybean in crude soybean oil.

    PubMed

    Nikolić, Zorica; Vasiljević, Ivana; Zdjelar, Gordana; Ðorđević, Vuk; Ignjatov, Maja; Jovičić, Dušica; Milošević, Dragana

    2014-02-15

    In order to detect presence and quantity of Roundup Ready (RR) soybean in crude oil extracted from soybean seed with a different percentage of GMO seed two extraction methods were used, CTAB and DNeasy Plant Mini Kit. The amplifications of lectin gene, used to check the presence of soybean DNA, were not achieved in all CTAB extracts of DNA, while commercial kit gave satisfactory results. Comparing actual and estimated GMO content between two extraction methods, root mean square deviation for kit is 0.208 and for CTAB is 2.127, clearly demonstrated superiority of kit over CTAB extraction. The results of quantification evidently showed that if the oil samples originate from soybean seed with varying percentage of RR, it is possible to monitor the GMO content at the first stage of processing crude oil. PMID:24128586

  1. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM.

    PubMed

    Zhao, Man-Li; Tang, Liang; Zhu, Xue-Mei; Hu, Jiang-Ning; Li, Hong-Yan; Luo, Li-Ping; Lei, Lin; Deng, Ze-Yuan

    2013-02-13

    In the present study, zero-trans α-linolenic acid (ALA) and medium-chain fatty acids (MCFA)-enriched plastic fats were synthesized through enzymatic interesterification reactions from highly hydrogenated soybean oil (HSO), Cinnamomum camphora seed oil (CCSO), and perilla oil (PO). The reactions were performed by incubating the blending mixtures of HSO, CCSO, and PO at different weight ratios (60:40:100, 70:30:100, 80:20:100) using 10% (total weight of substrate) of Lipozyme TL IM at 65 °C for 8 h. After reaction, the physical properties (fatty acids profile, TAG composition, solid fat content, slip melting point, contents of tocopherol, polymorphic forms, and microstructures) of the interesterified products and their physical blends were determined, respectively. Results showed that the fatty acid compositions of the interesterified products and physical blends had no significant changes, while the content of MCFA in both interesterified products and physical blends increased to 8.58-18.72%. Several new types of TAG species were observed in interesterified products (SSL/SLS, PLO/LLS, and OLLn/LnLO/LOLn). It should be mentioned that no trans fatty acids (TFA) were detected in all products. As the temperature increased, the solid fat content (SFC) of interesterified products was obviously lower than that of physical blends. The SFCs of interesterified products (60:40:100, 70:30:100, and 80:20:100, HSO:CCSO:PO) at 25 °C were 6.5%, 14.6%, and 16.5%, respectively, whereas the counterparts of physical blends were 32.5%, 38.5%, and 43.5%, respectively. Meanwhile, interesterified products showed more β' polymorphs than physical blends, in which β' polymorph is a favorite form for production of margarine and shortening. Such zero-trans ALA and MCFA-enriched fats may have desirable physical and nutritional properties for shortenings and margarines. PMID:23350869

  2. Cold Flow Properties of Soybean Oil Fatty Acid Monoalkyl Ester Admixtures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel made from transesterification of vegetable oil or animal fat with an alcohol that has many attractive fuel characteristics. However, biodiesel is more prone than petrodiesel to start-up and operability problems during cold weather. The present study investigates ef...

  3. Feruloylated Soybean Oil: Novel Soy-Based Cosmeceuticals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have synthesized novel, lipid-based cosmeceutical ingredients by incorporating ferulic acid onto the glycerol backbone of soybean oil. Ferulic acid is present in nature esterified to other plant components, such as the hemicellulose and lignin fractions of plant cell walls, as well as in the wax...

  4. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming. PMID:25776459

  5. Effect of soybean oil fatty acid composition and selenium application on biodiesel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel consisting of principally monounsaturated fatty acid methyl esters (FAME) has been reported to strike the best balance between cold flow properties and oxidative stability, therefore producing a superior fuel. In addition, treating biodiesel with antioxidants such as selenium also increas...

  6. Hydroxyl Fatty Acids and Hydroxyl Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  7. Screening of microbes for the production of polyol oils from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. More than 30.6 million tons of soybean oil were produced worldwide annually and the major use of this oil is for food products. Triacylglycerols (TAG) containing hydroxy fatty acids (FA), e.g., castor oil, have many industrial uses such as the manufacture of aviation lubricant, plasti...

  8. QTL analysis of unsaturated fatty acids in a recombinant inbred population of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] is an important oilseed crop which produces around 30% of the world’s edible vegetable oil. The quality of soybean oil is determined by its fatty acid composition. Vegetable oils high in oleic and low in linolenic fatty acids are desirable for human consumption and...

  9. Effect of shade on seed protein oil fatty acids and minerals in soybean lines varying in seed germinability in the Early Soybean Production System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cause of poor seed quality (germination) of soybean produced in the Early Soybean Production System in the midsouth U.S.A. is still not completely understood. Temperature, solar radiation, and soybean genotype may all be important factors involved. The objective of this research was to evaluate...

  10. Oil, fatty acid, and protein content of seeds harvested from soybeans exposed to O sub 3 and/or SO sub 2

    SciTech Connect

    Grunwald, C. ); Endress, A.G. )

    1988-09-01

    In a series of greenhouse experiments, we exposed soybean plant (Corsoy-79) to low levels of O{sub 3} and SO{sub 2}, singly and in combination. Exposure to O{sub 3} and SO{sub 2} alone increased the oil content of the harvested seeds, but the protein content was essentially unchanged. The seed oil: protein ratio increased with increasing pollutant concentration in both experiments. These responses, however, were not observed in seeds harvested from plants exposed to mixtures of O{sub 3} and SO{sub 2}. Differences in fatty acid content and composition were also noted. Ozone alone caused an increase in seed fatty acid content as a result of increased linoleic and stearic acids coupled with decreased oleic acid. After exposure to SO{sub 2} alone, no significant alterations of the fatty acid composition were observed. No statistically significant pattern could be identified for the content of fatty acids in seeds harvested from plants exposed to the O{sub 3} + SO{sub 2} mixtures, although the accumulation of linoleic acid appeared to be depressed.

  11. Synethesis of cyclic ketal from soybean oil and fatty esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we have shown a facile and environmentally friendly reaction to form a cyclic ketal out of soybean oil, methyl soyate, methyl linoleate, and methyl oleate. There are many advantages of this reaction. First, the ketal reaction produces a branched fatty acid moiety and is reversible. S...

  12. Study of soybean oil-based polymers for controlled release anticancer drugs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...

  13. Organogel formation of soybean oil with waxes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many waxes including plant waxes and animal waxes were evaluated for the gelation ability toward soybean oil (SBO) and compared with hydrogenated vegetable oils, petroleum waxes and commercial non-edible gelling agents to understand factors affecting the gelation ability of a gelator. Sunflower wax...

  14. Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a c...

  15. New alleles of FATB-1A to reduce palmitic acid levels in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wild-type soybeans, palmitic acid typically constitutes 10% of the total seed oil. Palmitic acid is a saturated fat linked to increased cholesterol levels, and reducing levels of saturated fats in soybean oil has been a breeding target. To identify novel and useful variation that could help in re...

  16. The effects of diets containing standard soybean oil, soybean oil enhanced with conjugated linoleic acids, menhaden fish oil, or an algal docosahexaenoic acid supplement on juvenile channel catfish performance, hematology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current commercial diets for Channel Catfish contain little or no marine fish oil to reduce diet cost and address environmental concerns. However, there is conflicting data on the effects of fish oil and other lipid sources in juvenile Channel Catfish, and some novel lipids have not been tested agai...

  17. Metabolisable energy and amino acid digestibility of high-oil maize, low-phytate maize and low-phytate soybean meal for White Pekin ducks.

    PubMed

    Adeola, O

    2005-10-01

    1. Two experiments were conducted to determine the metabolisable energy and amino acid digestibilities of high-oil maize (HOM), low-phytate maize (LPM) and low-phytate soybean meal (LPSBM) as compared with normal maize (NM) and normal soybean meal (NSBM) using male White Pekin ducks. 2. In the first experiment, the TMEN (kJ/g) value of HOM (16.58) was higher than that of NM (16.05), but that of LPM (16.11) did not differ from those of HOM or NM. The true digestibility coefficients for methionine (0.874, 0.871 or 0.876), lysine (0.805, 0.816 or 0.813) and tryptophan (0.946, 0.959 or 0.960) did not differ among NM, LPM and HOM, respectively. The average true digestibility coefficients for all amino acids in NM, LPM or HOM (0.886, 0.890 or 0.900, respectively) did not differ among the three ingredients. 3. In the second experiment, the TMEN value of LPSBM (12.39) was approximately 8% higher than that of NSBM (11.46). The true digestibility coefficients for most amino acids were higher for LPSBM than for NSBM, except in the case of histidine, cysteine and tyrosine, which were not different. The average true digestibility coefficient for all amino acids in LPSBM (0.945) was higher than in NSBM (0.924). 4. Results of the two experiments indicate that the energy and amino acids in the feed ingredients evaluated were well utilised by ducks and that LPSBM has a higher energy value as well as digestible essential amino acid concentration than NSBM for ducks. PMID:16359116

  18. Non-destructive determination of high oleic acid content in single soybean seeds by near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean with increased oleic acid is desirable to improve oxidative stability and functionality of soybean seed oil. Recently, soybean genotypes with high oleic acid (= 70%) were developed by conventional breeding and molecular genetic selection of mutant fatty acid desaturase alleles. Determination...

  19. Propylsulfonic and arenesulfonic functionalized SBA-15 silica as an efficient and reusable catalyst for the acidolysis of soybean oil with medium-chain fatty acids.

    PubMed

    Xie, Wenlei; Zhang, Chi

    2016-11-15

    The objective of this work was to develop a feasible ecofriendly process to produce medium-chain fatty acid (MCFA)-enriched structured lipids (SLs) in heterogeneous manners. For this purpose, the propyl-SO3H or arene-SO3H-modified SBA-15 materials were prepared through a surface functionalization of SBA-15 silica with propyl-SO3H and arene-SO3H groups. The organosulfonic acid-functionalized SBA-15 materials were characterized by Brönsted acidity determination, elemental analysis, XRD, C(13) MAS NMR, FT-IR, SEM, TG, TEM, and N2 adsorption-desorption techniques. Results showed that the propyl-SO3H and arene-SO3H groups were successfully tethered on the SBA-15 support, and the ordered mesoporous structure of SBA-15 silica was well retained after the organofunctionalization. This organic-inorganic hybrid material displayed high surface acidities and high activities in the acidolysis of soybean oil with caprylic or capric acid to produce SLs containing MCFAs. The influences of processing parameters on the reaction were investigated. The two studied catalysts showed an excellent recyclability for the reaction. PMID:27283609

  20. "Green" composites and nanocomposites from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we report preparation of epoxidized soybean oil (ESO) based "green" composites and nanocomposites. The high strength and stiffness composites and nanocomposites are formed through flax fiber and organoclay reinforcement. The epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl...

  1. Waxes as organogelator for soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research reveals that a small amount of a food grade plant wax may replace a large amount of the hardstock containing trans-fat or saturated fat. Natural waxes including plant waxes and animal waxes were evaluated for the gelation ability toward soybean oil (SBO) and compared with hydrogenated ...

  2. Structural effect of lignans and sesamol on polymerization of soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antipolymerization activities of lignans including nordihydroguaiaretic acid, (+)-pinoresinol, (-)-secoisolariciresinol, enterodiol, two sesame lignans (sesamol, sesamin), and four model compounds were investigated for soybean oil at frying temperature (180 °C). The heated samples were analyzed by G...

  3. Development of a novel controlled-release nanocomposite based on poly(lactic acid) to increase the oxidative stability of soybean oil.

    PubMed

    Almasi, Hadi; Ghanbarzadeh, Babak; Dehghannya, Jalal; Entezami, Ali Akbar; Khosrowshahi Asl, Asghar

    2014-01-01

    A poly(lactic acid) (PLA)-based nanocomposite active packaging was developed for the controlled release of tert-butylhydroquinone (TBHQ) antioxidant. The PLA-based active films were loaded with only TBHQ (3% wt) or a mixture of modified cellulose nanofibre (MCNF) (8% wt) and TBHQ (3% wt) to obtain active and nanocomposite active films, respectively. Release studies indicated that the release rate of TBHQ in 95% ethanol simulant was significantly decreased by the addition of MCNF. Moreover, the presence of MCNF diminished the increasing effect of temperature on the release rate as when storage temperature increased from 4°C to 40°C. The diffusion coefficient (D) for PLA-TBHQ and PLA-MCNF-TBHQ films increased from 6.75 and 4.34 × 10(-8) cm(2) s(-1) to 19.85 and 8.49 × 10(-8) cm(2) s(-1), respectively. Diffusion of TBHQ to soybean oil was enough to delay the induction of the oxidation of soybean oil stored for 6 months in contact with PLA-based films. Antioxidative activity of PLA-based active films considerably increased with increasing storage time as indicated by the increase in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and the oxidative stability index (p < 0.05). This study demonstrates that effective controlled release antioxidant packaging could be obtained by using MCNF nanofiller, which leads to prolonged activity and an extended shelf-life in fatty foods. PMID:25013987

  4. Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

    PubMed Central

    Mao, H. L.; Wang, J. K.; Lin, J.; Liu, J. X.

    2012-01-01

    This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a 2×2 factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression. PMID:25049609

  5. Agricultural practices altered soybean seed protein, oil, fattyacids,sugars, and minerals in the Midsouth USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices such as seeding rate (SR), planting date (PD), and row-type (RT: single- and twin-rows) may alter seed nutrition in soybean. The objective of this research was to investigate the effects of SR and PD on soybean seed composition (protein, oil, fatty acids, and sugars) and mineral...

  6. Short communication: Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Fehrmann-Cartes, K; Íñiguez-González, G; Toro-Mujica, P; Garnsworthy, P C

    2015-01-01

    Lipid supplements can be used to alter fatty acid (FA) profiles of dairy products. For Chanco cheese, however, little information is available concerning effects of lipid supplements on sensorial properties. The objective of this study was to examine effects of supplementation of dairy cow diets with soybean (SO) and hydrogenated vegetable (HVO) oils on chemical and FA composition of milk and cheese and sensory characteristics of cheese. Nine multiparous Holstein cows averaging 169±24d in milk at the beginning of the study were used in a replicated (n=3) 3×3 Latin square design that included 3 periods of 21d. All cows received a basal diet formulated with a 56:44 forage:concentrate ratio. Dietary treatments consisted of the basal diet (control; no fat supplement), and the basal diet supplemented with SO (unrefined oil; 500g/d per cow) and HVO (manufactured from palm oil; 500g/d per cow). Milk fat yield was lower with HVO compared with control and SO. Cheese chemical composition and sensory profile were not affected by dietary treatment. Vaccenic (C18:1 trans-11) and oleic (C18:1 cis-9) acids were higher for SO than for control and HVO. Compared with control and HVO, SO decreased saturated FA and increased monounsaturated FA. The thrombogenic index of milk and cheese produced when cows were fed SO was lower than when cows were fed on control and HVO. The outcome of this study showed that, compared with control and HVO, supplementing dairy cow diets with SO improves milk and cheese FA profile without detrimental effects on the chemical composition of milk and cheese and the sensory characteristics of cheese. PMID:25465558

  7. Mutations in a novel 9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2-4 % of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process...

  8. Soybean oil biosynthesis: role of diacylglycerol acyltransferases.

    PubMed

    Li, Runzhi; Hatanaka, Tomoko; Yu, Keshun; Wu, Yongmei; Fukushige, Hirotada; Hildebrand, David

    2013-03-01

    Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation. PMID:23322364

  9. New insights into the antioxidant activity and components in crude oat oil and soybean oil.

    PubMed

    Chen, Hao; Qiu, Shuang; Gan, Jing; Li, Zaigui; Nirasawa, Satoru; Yin, Lijun

    2016-01-01

    Developing new antioxidants and using natural examples is of current interest. This study evaluated the antioxidant activities and the ability to inhibit soybean oil oxidation of oat oil obtained with different solvents. Oat oil extract obtained by ethanol extraction gave the highest antioxidant activity with a DPPH radical (1,1-diphenyl-2-picrylhydrazyl) scavenging activity of 88.2 % and a reducing power (A 700) of 0.83. Oat oil extracted by ethanol contained the highest polyphenol and α-tocopherol content. Significant correlation was observed between the total polyphenol contents, individual phenolic acid, α-tocopherol, and DPPH radical scavenging activity. Soybean oil with 2 % added oat oil showed low malondialdehyde content (8.35 mmol mL(-1)), suggesting that the added oat oil inhibited oxidation. Oat oil showed good antioxidant activity, especially when extracted with ethanol which could also retard the oxidation of soybean oil . DPPH radical scavenging activity was the best method to evaluate the antioxidant activity and components of oat oil. PMID:26788002

  10. Comparative Study of Soybean Oil and the Mixed Fatty Acids as Acyl Donors for Enzymatic Preparation of Feruloylated Acylglycerols in Ionic Liquids.

    PubMed

    Sun, Shangde; Hu, Bingxue; Qin, Fei; Bi, Yanlan

    2015-08-19

    Feruloylated acylglycerols (FAGs) are the lipophilic derivatives of ferulic acid. In this work, soybean oil (SBO) and the mixed fatty acids (MFA) were selected as fatty acyl donors, and reacted with glyceryl monoferulate (GMF) to prepare FAGs in ionic liquids (ILs). Effect of various reaction parameters (time, temperature, enzyme concentration, and substrate ratio) and ILs on the GMF conversion and the reaction selectivity for FAGs formation were investigated. Response surface methodology (RSM) based on a 3-level-4-factor Box-Behnken experimental design was employed to evaluate the inactive effect of reaction parameters. For the esterification of GMF with MFA, the maximum GMF conversion (98.9 ± 0.9%) and FAG yield (88.9 ± 0.6%) were achieved in [C10mim]PF6. However, for the transesterification of GMF with SBO, the maximum GMF conversion (94.3 ± 0.7%) and FAG yield (83.8 ± 1.0%) were obtained in [C12mim]PF6. High FAG selectivities (∼0.90) were also obtained using SBO or MFA as acyl donors. PMID:26194470

  11. Comparison of soybean and cottonseed oils upon hydrogenation with nickel, palladium and platinum catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is current interest in reducing the trans fatty acids (TFA) in hydrogenated vegetable oils because consumption of foods high in TFA has been linked to increased serum cholesterol content. In this work, hydrogenation was carried out on soybean oil and cottonseed oil at two pressures (2 and 5 b...

  12. Complex role of monoacylglycerols in the oxidation of vegetable oils: different behaviors of soybean monoacylglycerols in different oils.

    PubMed

    Paradiso, Vito Michele; Caponio, Francesco; Bruno, Giuseppina; Pasqualone, Antonella; Summo, Carmine; Gomes, Tommaso

    2014-11-01

    The relationship between fatty acid composition of oils and their oxidative stability in the presence of monoacylglycerols was investigated. Purified vegetable oils were added at increasing amounts (0.5, 1, 2, and 3%) of monoacylglycerols obtained from purified soybean oil and submitted to an oven test (60 °C for 18 days). The obtained results showed a generally antioxidant effect of monoacylglycerols, with remarkable differences among oils. The antioxidant effect was significantly higher in less unsaturated oils, such as palm and olive oils. Among the more unsaturated vegetable oils, peanut and sunflower oils showed an almost linear slowdown of oxidation, slightly less pronounced in sunflower oil, which was the most susceptible to oxidation due to its high content of linoleic acid. A peculiar trend was highlighted for soybean oil, where the antioxidant effect of high amounts of monoacylglycerols was opposed to a pro-oxidant effect observed up to 1%. PMID:25310182

  13. Synthesis of lubrication fluids and surfactant precursors from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting with soybean oil or soybean oil derived methyl oleate, a variety of compounds have been synthesized. The epoxidation of oleochemicals is a simple way to use the unsaturation naturally available in the vegetable oil and convert it into a variety of other useful chemicals. Epoxidized methyl...

  14. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  15. A new low linolenic acid allele of GmFAD3A gene in soybean PE1690

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relative fatty acid content of soybean oil is about 12 % palmitic acid, 4 % stearic acid, 23 % oleic acid, 54 % linoleic acid, and 8 % linolenic acid. To improve oxidative stability and quality of oil, breeding programs have mainly focused on reducing saturated fatty acids, increasing oleic acid, an...

  16. Composition and antioxidant activities of Iranian Pulicaria gnaphalodes essential oil in Soybean oil.

    PubMed

    Shariatifar, Nabi; Kamkar, Abolfazl; Shamse-Ardekani, Mohammad Reza; Misagi, Ali; Akhonzade, Afshin; Jamshidi, Amir Hossein

    2014-07-01

    The essential oil from aerial parts of Pulicaria gnaphalodes was studied in soybean oil. The aim of this study was to evaluate the antioxidant activitiey of Iranian Pulicaria gnaphalodes essential oil in soybean oil during the storage period. The essential oil obtained from Pulicaria gnaphalodes by hydrodistillation and analyzed by GC/Mass. Fifty-eight compounds representing 90.7% of total was identified. Main ingredient in the oil were involved α -Pinene (30.2%), 1,8-Cineole (12.1%), Beta-Citronellol (9.6%), Mertenol (6.6%), α-Terpineol (6.1%), 4-Terpineol (5.9%) and Chrysanthenone (2.9%). Different concentrations (0.200, 400 and 800 ppm) of essential oil and β hydroxyl toluene (BHT; 100 and 200 ppm) was added to soybean oil and incubated for 35 days at 65°C. Peroxide values (PVs) and thiobarbitoric acid-reactive substances (TBARs) levels were measured every week during the time period of the study. Moreover, antioxidant capacity of the essential oil was determined using 1,1 diphenyl-2- picryl hydrazyl (DPPH) and β-carotene-linoleic acid methods. Values were compared among groups in each incubation time using ANOVA test. Results revealed that DPPH β-carotene-linolic acid assay findings on the P. gnaphalodes essential oil were lower than these of synthetic antioxidant, BHT. Moreover, during the incubation time, P. gnaphalodes essential oil lowered PVs and TBARs levels when compared to the control (p<0.001). According to our results essential oil was less effective than synthetic antioxidant. Therefore it may be used as a food flavor, natural antioxidant and a preventive agent for many diseases caused by free radicals. PMID:25015444

  17. Synthesis of diethylamine-functionalized soybean oil.

    PubMed

    Biswas, Atanu; Adhvaryu, Atanu; Gordon, Sherald H; Erhan, Sevim Z; Willett, Julious L

    2005-11-30

    Specialty chemicals based on renewable resources are desirable commodities due to their eco-friendly nature and "green" product characteristics. These chemicals can demonstrate physical and chemical properties comparable to those of conventional petroleum-based products. Suitably functionalized amines in the triacylglycerol structure can function as an antioxidant, as well as an antiwear/antifriction agent. In addition, the amphiphilic nature of seed oils makes them an excellent candidate as base fluid. The reaction of amine and epoxidized seed oils in the presence of a catalyst almost always leads to different intra/intermolecular cross-linked products. In most cases, the triacylglycerol structure is lost due to disruption of the ester linkage. Currently, there is no reported literature describing the aminolysis of vegetable oil without cross-linking. Here the epoxy group of the epoxidized soybean oil has been selectively reacted with amines to give amine-functionalized soybean oil. The optimization procedure involved various amines and catalysts for maximum aminolysis, without cross-linking and disruption of the ester linkage. Diethylamine and ZnCl2 were found to be the best. NMR, IR, and nitrogen analysis were used to characterize the products. PMID:16302766

  18. Identification of quantitative trait loci (QTL) controlling protein, oil, and five major fatty acids’ contents in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved seed composition in soybean (Glycine max L. Merr.) for protein and oil quality is one of the major goals of soybean breeders. A group of genes that act as quantitative traits with their effects can alter protein, oil, palmitic, stearic, oleic, linoleic, and linolenic acids percentage in soy...

  19. Performance of Regular and Modified Canola and Soybean Oils in Rotational Frying.

    PubMed

    Przybylski, Roman; Gruczynska, Eliza; Aladedunye, Felix

    2013-01-01

    Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1-2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment. PMID:23976786

  20. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC.

    PubMed

    Jabeur, Hazem; Zribi, Akram; Makni, Jamel; Rebai, Ahmed; Abdelhedi, Ridha; Bouaziz, Mohamed

    2014-05-28

    Fatty acid composition as an indicator of purity suggests that linolenic acid content could be used as a parameter for the detection of extra/virgin olive oil fraud with 5% of soybean oil. The adulteration could also be detected by the increase of the trans-fatty acid contents with 3% of soybean oil, 2% of corn oil, and 4% of sunflower oil. The use of the ΔECN42 proved to be effective in Chemlali extra-virgin olive oil adulteration even at low levels: 1% of sunflower oil, 3% of soybean oil, and 3% of corn oil. The sterol profile is almost decisive in clarifying the adulteration of olive oils with other cheaper ones: 1% of sunflower oil could be detected by the increase of Δ7-stigmastenol and 4% of corn oil by the increase of campesterol. Linear discriminant analysis could represent a powerful tool for faster and cheaper evaluation of extra-virgin olive oil adulteration. PMID:24811341

  1. VISCOELASTIC PROPERTIES OF A BIOLOGICAL HYDROGEL PRODUCED FROM SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogels formed from biopolymers or natural sources have special advantages because of their biodegradable and biocompatible properties. The viscoelastic properties of a newly developed biological hydrogel made from modified vegetable oil, epoxidized soybean oil (ESO) were investigated. The mater...

  2. Biological Networks Underlying Soybean Seed Oil Composition and Content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is the most important oil crop in the United States. Production of soybean seed oil requires coordinated expression of many biological components and pathways, which is further regulated by seed development and phyto-hormones. A new research project is initiated in my laboratory to delineat...

  3. PREPARATION OF SOYBEAN OIL-BASED GREASES: EFFECT OF COMPOSITION AND STRUCTURE ON PHYSICAL PROPERTIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The paper reports the preparation of soybean oil based lithium greases using a variety of fatty acids in the soap structure. The purpose of this investigation is to show the effect of soap composition and base oil amount on the physical and chemical properties of greases as well as the hardness and...

  4. Dust suppression in swine feed using soybean oil.

    PubMed

    Mankell, K O; Janni, K A; Walker, R D; Wilson, M E; Pettigrew, J E; Jacobson, L D; Wilcke, W F

    1995-04-01

    Dust generation from swine feed (corn-soybean meal diet) treated with soybean oil was investigated using a cement mixer in a plywood box. Airborne total dust concentrations in the box were measured gravimetrically using a vacuum pump and filters while 12-kg feed samples were constantly mixed. The treatment factors were soybean oil concentration (0, 1, and 3%), corn bulk density (normal, 730 kg/m3 and low, 600 kg/m3), time of oil addition (before vs after grinding the corn), and storage time (0, 7, and 14 d). The feed was a mixture of soybean meal, base mix, and adjusted amounts of ground corn and soybean oil. Adding soybean oil after grinding at 1 and 3% levels to feed made with normal-bulk density corn suppressed total dust generation (3.39 and .99 mg/m3, respectively) (P < .001) compared with the no oil treatment (29.1 mg/m3). The 3% soybean oil treatment suppressed dust generation (.99 mg/m3) more than the 1% soybean oil treatment (3.39 mg/m3) (P < .001). Adding soybean oil after grinding the corn suppressed dust generation more than adding the oil to the corn before grinding for every oil level (P < .001). More dust was generated by feed made from low-bulk density corn than by feed made with normal-bulk density corn at every oil level (P < .001). There was no evidence of any storage time or treatment x storage time interactions. PMID:7628976

  5. Effect of Deep-Fat Frying on Phytosterol Content in Oils with Differing Fatty Acid Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine the fate of phytosterols in vegetable oils with varying fatty acid composition used for frying. High oleic sunflower (HOSun), corn (Corn), hydrogenated soybean (HSBO), expeller pressed soybean (ESBO), and expeller pressed low-linolenic acid soybean oil (...

  6. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans[OPEN

    PubMed Central

    Shen, Bo; Damude, Howard G.; Everard, John D.; Booth, John R.

    2016-01-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae. Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm. Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  7. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans.

    PubMed

    Roesler, Keith; Shen, Bo; Bermudez, Ericka; Li, Changjiang; Hunt, Joanne; Damude, Howard G; Ripp, Kevin G; Everard, John D; Booth, John R; Castaneda, Leandro; Feng, Lizhi; Meyer, Knut

    2016-06-01

    Kinetically improved diacylglycerol acyltransferase (DGAT) variants were created to favorably alter carbon partitioning in soybean (Glycine max) seeds. Initially, variants of a type 1 DGAT from a high-oil, high-oleic acid plant seed, Corylus americana, were screened for high oil content in Saccharomyces cerevisiae Nearly all DGAT variants examined from high-oil strains had increased affinity for oleoyl-CoA, with S0.5 values decreased as much as 4.7-fold compared with the wild-type value of 0.94 µm Improved soybean DGAT variants were then designed to include amino acid substitutions observed in promising C. americana DGAT variants. The expression of soybean and C. americana DGAT variants in soybean somatic embryos resulted in oil contents as high as 10% and 12%, respectively, compared with only 5% and 7.6% oil achieved by overexpressing the corresponding wild-type DGATs. The affinity for oleoyl-CoA correlated strongly with oil content. The soybean DGAT variant that gave the greatest oil increase contained 14 amino acid substitutions out of a total of 504 (97% sequence identity with native). Seed-preferred expression of this soybean DGAT1 variant increased oil content of soybean seeds by an average of 3% (16% relative increase) in highly replicated, single-location field trials. The DGAT transgenes significantly reduced the soluble carbohydrate content of mature seeds and increased the seed protein content of some events. This study demonstrated that engineering of the native DGAT enzyme is an effective strategy to improve the oil content and value of soybeans. PMID:27208257

  8. Detection and quantification of hogwash oil in soybean oils using low-cost spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Cichelli, A.; Xing, J.; Yang, X.; Sun, W.; Yuan, L.

    2013-05-01

    This paper presents the detection and quantification of hogwash oil in soybean oils by means of absorption spectroscopy. Three types of soybean oils were adulterated with different concentrations of hogwash oil. The spectra were measured in the visible band using a white LED and a low-cost spectrometer. The measured spectra were processed by means of multivariate analysis to distinguish the adulteration and, for each soybean oil, to quantify the adulterant concentration. Then the visible spectra were sliced into two bands for modeling a simple setup made of two LEDs only. The successful results indicate potentials for implementing a smartphone-compatible device for self-assessment of soybean oil quality.

  9. Physical properties study on partially bio-based lubricant blends: Thermally modified soybean oil with popular commercial esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An initial evaluation of several oils, including: soybean oil (SBO), high oleic SBO, and thermally modified SBO, compared their acid values and viscosities over 28 days stored at 85 deg C. As expected, the acid values and viscosities increased and the high oleic oil demonstrated a smaller effect. ...

  10. Soybean oil in water-borne coatings and latex film formation study by AC impedance

    NASA Astrophysics Data System (ADS)

    Jiratumnukul, Nantana

    Conventional coalescing agents such as butyl cellosolve, butyl carbitol, and TexanolRTM are widely use in the latex coatings industry to facilitate film formation at ambient temperature. Coalescent aids are composed of solvents with low evaporation rates. After water evaporates, coalescent aids would help soften polymer molecules and form continuous films, then gradually evaporates from the film. Coalescent aids, therefore, are considered as volatile organic compounds (VOC), which are of environmental concern. The main purpose of this research project was to prepare a fatty acid glycol ester from soybean oil and glycol (polyols). The soybean oil glycol ester can be used as a coalescent aid in latex paint formulation. The soybean oil glycol ester not only lowered the minimum film formation temperature of latex polymers and continuous film formed at ambient temperature, but also after it has facilitated film formation, does not substantially evaporate, but becomes part of the film. Soybean oil glycol esters, therefore, can reduce the VOC levels and facilitate film formation of latex paints. In the second part of this research AC-Impedance was used to investigate the efficiency of soybean oil coalescent aid in latex film formation relative to the conventional ones. The coating resistance showed that the efficiency of film formation was increased as a function of dry time. The coating resistance also exhibited the effect of soybean oil ester in latex film formation in the same fashion as a conventional coalescent aid, TexanolRTM.

  11. Evaluation of a novel soybean oil-based surfactant for fine emulsion preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is currently the world’s second largest source of vegetable oil. The growth in soybean oil production and the concerns over petrochemical surfactants have promoted the development of soybean oil-based surfactants. In this paper, we briefly describe the synthesis and properties of soybean...

  12. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  13. Determination and comparison of seed oil triacylglycerol composition of various soybeans (Glycine max (L.)) using ¹H-NMR spectroscopy.

    PubMed

    Kim, Won Woo; Rho, Ho Sik; Hong, Yong Deog; Yeom, Myung Hun; Shin, Song Seok; Yi, Jun Gon; Lee, Min-Seuk; Park, Hye Yoon; Cho, Dong Ha

    2013-01-01

    Seed oil triacylglycerol (TAG) composition of 32 soybean varieties were determined and compared using ¹H-NMR. The contents of linolenic (Ln), linoleic (L), and oleic (O) ranged from 10.7% to 19.3%, 37.4%-50.1%, and 15.7%-34.1%, respectively. As is evident, linoleic acid was the major fatty acid of soybean oil. Compositional differences among the varieties were observed. Natural oils containing unsaturated groups have been regarded as important nutrient and cosmetic ingredients because of their various biological activities. The TAG profiles of the soy bean oils could be useful for distinguishing the origin of seeds and controlling the quality of soybean oils. To the best of our knowledge, this is the first study in which the TAG composition of various soybean oils has been analyzed using the ¹H-NMR method. PMID:24284494

  14. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    PubMed

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to <3 %) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts. PMID:24652150

  15. Effects of distillers' dried grains with solubles and soybean oil on dietary lipid, fiber, and amino acid digestibility in corn-based diets fed to growing pigs.

    PubMed

    Gutierrez, N A; Serão, N V L; Patience, J F

    2016-04-01

    The use of corn coproducts increases the concentration of fiber and, often, the use of supplemental lipids in swine diets, which may affect energy and nutrient digestibility. An experiment was conducted to determine the effects of reduced-oil distillers' dried grains with solubles (DDGS) and soybean oil (SBO) on dietary AA, acid hydrolyzed ether extract (AEE), and NDF digestibility in corn-based diets fed to growing pigs. Eighteen growing pigs (33.8 ± 2.2 kg BW) were surgically fitted with a T-cannula in the distal ileum and allocated to 1 of 6 dietary treatment groups in a 3-period incomplete Latin square design, with 9 observations per treatment. Six dietary treatments were obtained by adding 0, 20, and 40% DDGS to corn-casein diets formulated with 2 and 6% SBO. Ileal digesta and fecal samples were collected and the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of AEE and NDF and the AID of AA were determined. Apparent values were corrected for endogenous losses of lipids, and true ileal (TID) and true total tract digestibility (TTTD) values of lipids were calculated. Results showed that the AID of Lys decreased ( < 0.001) with the inclusion of DDGS but was not affected ( = 0.63) by the inclusion of SBO. An interaction between DDGS and SBO on the AID ( = 0.002) and ATTD ( = 0.009) of NDF was observed, where the AID and ATTD of NDF decreased with DDGS at 6% SBO but no effect was observed at 2% SBO. The AID of NDF increased with SBO at 0% DDGS, but no effect was observed at 20 or 40% DDGS. An interaction between DDGS and SBO on the AID ( = 0.011) and ATTD ( = 0.008) of AEE was observed, where the AID and ATTD of AEE increased with SBO. The AID and ATTD of AEE increased with DDGS at 2% SBO, but no effect was observed at 6% SBO. Correction by ileal and fecal endogenous loss of AEE (9.5 and 13.6 g/kg of DMI, respectively) showed that increasing dietary AEE had no effect on the TID and TTD of AEE ( > 0.05). In conclusion, the AID of

  16. New mutation in Delta-9-Stearoyl-Acyl Carrier Protein desaturase gene associated with enhanced stearic acid levels in soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr] oil from conventional cultivars typically contains ~3% stearic acid of the total seed oil. Increased stearic acid concentration in the seed oil of soybeans is desirable from both food and industrial use stand-points. To date a small number of mutants have been develop...

  17. Production of polyol oils from soybean oil by Pseudomonas aeruginosa E03-12.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyols are important starting materials for the manufacture of polymers such as polyurethane. We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus ...

  18. Production of polyol oils from soybean oil by bioprocess and Philippines edible medicinal wild mushrooms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have been trying to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier the polyol products produced from soybean oil by Acinetobacter haemolyticus A01-35 (NRRL B-59985) (Hou and Lin, 2013). The objective of this study is to identify the chemical ...

  19. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  20. Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production.

    PubMed

    de Oliveira, Débora; Di Luccio, Marco; Faccio, Carina; Dalla Rosa, Clarissa; Bender, João Paulo; Lipke, Nádia; Amroginski, Cristiana; Dariva, Cláudio; de Oliveira, José Vladimir

    2005-01-01

    This article reports experimental data on the production of fatty acid ethyl esters from refined and degummed soybean oil and castor oil using NaOH as catalyst. The variables investigated were temperature (30-70 degrees C), reaction time (1-3 h), catalyst concentration (0.5-1.5 w/wt%), and oil-to-ethanol molar ratio (1:3-1:9). The effects of process variables on the reaction conversion as well as the optimum experimental conditions are presented. The results show that conversions >95% were achieved for all systems investigated. In general, an increase in reaction temperature, reaction time, and in oil-to-ethanol molar ratio led to an enhancement in reaction conversion, whereas an opposite trend was verified with respect to catalyst concentration. PMID:15920262

  1. Mapping the low palmitate fap1 mutation and validation of its effects on soybean oil and agronomic traits in three soybean populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil with reduced palmitic acid content is desirable to reduce the risks of coronary diseases and; breast, colon, and prostate cancer incidence associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mut...

  2. Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...

  3. Changes in Oleic Acid Content of Transgenic Soybeans by Antisense RNA Mediated Posttranscriptional Gene Silencing

    PubMed Central

    Zhang, Ling; Yang, Xiang-dong; Zhang, Yuan-yu; Yang, Jing; Qi, Guang-xun; Guo, Dong-quan; Xing, Guo-jie; Yao, Yao; Xu, Wen-jing; Li, Hai-yun; Li, Qi-yun; Dong, Ying-shan

    2014-01-01

    The Delta-12 oleate desaturase gene (FAD2-1), which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of seed oil. In this study, we inhibited the expression of endogenous Delta-12 oleate desaturase GmFad2-1b gene by using antisense RNA in soybean Williams 82. By employing the soybean cotyledonary-node method, a part of the cDNA of soybean GmFad2-1b 801 bp was cloned for the construction of a pCAMBIA3300 vector under the soybean seed promoter BCSP. Leaf painting, LibertyLink strip, PCR, Southern blot, qRT-PCR, and fatty acid analysis were used to detect the insertion and expression of GmFad2-1b in the transgenic soybean lines. The results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 51.71%) and a reduction in palmitic acid (to <3%) in their seed oil content. No structural differences were observed between the fatty acids of the transgenic and the nontransgenic oil extracts. PMID:25197629

  4. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  5. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  6. A MUTATION IN A 3-KETO-ACYL-ACP SYNTHASE II GENE IS ASSOCIATED WITH ELEVATED PALMITIC ACID LEVELS IN SOYBEAN SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid is the major saturated fatty acid component of soybean [Glycine max, (L.) Merr.] oil, typically accounting for ~11 % of total seed oil content. Several genetic loci have been shown to control the seed palmitate content of soybean. One such locus, fap2, mediates an elevated seed palmit...

  7. Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...

  8. Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify novel sources of genetic variation for the high oleic acid seed trait, soybean lines containing a higher fraction than normal of oleic acid were identified through a forward-genetic screen of a chemically mutagenized population. Mutant lines contained 30%- 40% of the oil fraction as olei...

  9. Preparation of microemulsions with soybean oil-based surfactants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  10. Soybean seed protein oil and fatty acids as influenced by S and S+N fertilizers under irrigated or non-irrigated environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on the effect of sulfur (S) or sulfur+nitrogen (S+N) on soybean seed composition is almost non-existent. The objective of this study was to investigate the effects of S, and S+N fertilizers on soybean [(Glycine max (L.) Merr.)] seed composition in the Early Soybean Production System (ESP...

  11. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation

    PubMed Central

    Navarro-Xavier, Roberta Araujo; de Barros, Karina Vieira; de Andrade, Iracema Senna; Palomino, Zaira; Casarini, Dulce Elena; Flor Silveira, Vera Lucia

    2016-01-01

    Background The increased prevalence of asthma and allergic diseases in westernized societies has been associated with increased intake of diets rich in n-6 fatty acids (FAs) and poor in n-3 FAs. This study aimed to analyze the prophylactic effects of treatment with a soybean oil-rich diet (rich in n-6) or fish oil (rich in n-3) in an allergic airway inflammation model on lung inflammation score, leukocyte migration, T-helper cell (Th)-2 (interleukin [IL]-4, IL-5) and Th1 (interferon [IFN]-γ, tumor necrosis factor-α) cytokines, lipoxin A4, nitric oxide, bradykinin, and corticosterone levels in bronchoalveolar lavage (BAL) or lungs. Methods Male Wistar rats fed with soybean oil- or fish oil-rich diet or standard rat chow were sensitized twice with ovalbumin–alumen and challenged twice with ovalbumin aerosol. The BAL and lungs were examined 24 hours later. Results Both diets, rich in n-6 or n-3 FAs, impaired the allergic lung inflammation and reduced leukocyte migration, eosinophil and neutrophil percentages, and IL-4/IL-5/bradykinin levels in BAL and/or lungs, as well as increased the nitric oxide levels in BAL. The soybean oil-rich diet additionally increased the levels of lipoxin A4 and corticosterone in the lungs. Conclusion Data presented demonstrated that the n-6 FA-rich diet had protective effect upon allergic airway inflammation and was as anti-inflammatory as the n-3 FA-rich diet, although through different mechanisms, suggesting that both diets could be considered as complementary therapy or a prophylactic alternative for allergic airway inflammation. PMID:27274303

  12. Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO 4

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Jeong, Ji Hwa; Kim, Ick-Jun; Kim, Hyun-Soo

    Kitchen oils (olive, soybean and butter) are selected for carbon coatings on LiFePO 4. The surface properties of LiFePO 4 are unknown or vary depending on synthetic methods. The multi-functional groups of fatty acids in the oils can orient properly to cope with the variable surface properties of LiFePO 4, which can lead to dense carbon coatings. The low price and low toxicity of kitchen oils are other advantages of the coating process. LiFePO 4 (D 50 = 121 nm)combined with the carbon coating enhances the rate capability. Capacities at the 2 C rate reach 150 mAh g -1 or higher. The charge retention values of 2.0 C/0.2 C are between 94.4 and 98.9%.

  13. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content

    PubMed Central

    2014-01-01

    Background Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. Results In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. Conclusions As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality. PMID:24755115

  14. [Determination of epoxidized soybean oil in bottled foods].

    PubMed

    Kawamura, Yoko; Kanno, Shinji; Mutsuga, Motoh; Tanamoto, Kenichi

    2006-12-01

    A determination method for epoxidized soybean oil (ESBO) in bottled foods was developed and used to survey bottled foods on the Japanese market. The amount of sample required was decreased to 20 g and the standard addition method was adopted for the quantification, because lipid in foods interrupted the hydrolysis of ESBO. The recoveries were 87.1 and 98.9% and the determination limit was 5.0 microg/g for a 20 g sample, be cause lipid in foods interupted the hydrolysis of ESBO. The recoveries using the internal standard method varied widely, because hydrolysis of the internal standard, cis-11,14-eicosadienoic acid ethyl ester, was affected more than that of ESBO by coexisting lipid in the sample. ESBO was not detected in any of the bottled baby food samples examined (14 samples), though it had been frequently detected in previous European surveys. This difference may be related to the low fat content and low fluidity of the bottled baby foods retailed in Japan. On the other hand, ESBO was detected at levels of 25.7-494.0 microg/g in liver paste, pasta sauce, Sungan in spicy oil, and spicy oil. These foods had higher fat content and higher fluidity. However, ESBO intake from these foods appears unlikely to exceed the TDI in the EU (1 mg/kg bw/day). PMID:17228787

  15. Effect of Supplementing Diets of Anglo-Nubian Goats with Soybean and Flaxseed Oils on Lactational Performance.

    PubMed

    Kholif, Ahmed E; Morsy, Tarek A; Abd El Tawab, Ahmed M; Anele, Uchenna Y; Galyean, Michael L

    2016-08-10

    We studied the effect of soybean or flaxseed oil feeding in the diets of lactating Anglo-Nubian goats. A total of 20 goats (33.6 ± 0.6 kg) were divided into four treatments and fed a basal diet of berseem clover and concentrates (40:60 DM basis; control) or the control diet supplemented with either 20 mL/day of flaxseed oil or soybean oil or 10 mL of soybean oil plus 10 mL of flaxseed oil per day for 12 weeks (i.e., 22 to 23 g per kg of DM intake). Oil inclusion decreased ruminal pH (P < 0.05), and acetate but increased (P < 0.05) total volatile fatty acids and molar proportion of propionate and blood glucose (P < 0.01). In addition, increased milk yield and decreased milk-fat contents were evident (P < 0.05) with oil supplementation. Diets containing oil increased (P < 0.05) unsaturated fatty acids (FA), conjugated linoleic acid, and the athrogenicity index of milk fat but decreased saturated FA concentrations. It is concluded that soybean-oil or flaxseed-oil supplementation of goats at 20 mL/day increased feed utilization and milk production. PMID:27415418

  16. Biotechnology for Fats and Oils: New Oxygenated Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among the three groups of natural products (starch, protein and fat), fat and oil are the most under-investigated. The US has a large amount of surplus soybean oil annually, and using vegetable oils or their component fatty acids as starting material provides a new opportunity for bioindustry. Veg...

  17. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized,...

  18. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Soybean oil, epoxidized,...

  19. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Soybean oil, epoxidized,...

  20. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN P-09... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Soybean oil, epoxidized,...

  1. Effect of sprouting and roasting processes on some physico-chemical properties and mineral contents of soybean seed and oils.

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2014-07-01

    Free fatty acid contents of sprouted soybean oil were found between 1.26% (Adasoy) and 4.20% (Nazlıcan and Türksoy). Peroxide values (PV) of sprouted soybean oils were found between 1.52meq/kg (Adasoy) and 3.85meq/kg (A3935), while peroxide values of roasted seed oils were determined between 2.52meq/kg (Adasoy) and 4.03meq/kg (Nova). Palmitic, oleic and linoleic acids were found as major fatty acids of soybean genotypes. Oleic acid contents of samples were found between 19.07% (roasted Adasoy) and 35.31% (roasted A3935), linoleic contents of oils ranged between 42.17% (roasted Nazlican) and 54.76% (sprouted A3127). Macro and micro element contents of sprouted, oven roasted and raw (untreated) soybean seeds were determined by Inductively Coupled Plasma Atomic Emission Spectrometry. The potassium contents of soybean seeds ranged between 16,375mg/kg (raw Adasoy) and 20,357mg/kg (sprouted A3127, while phosphorus contents of seeds varied from 5427mg/kg (oven roasted Türksoy) to 7759mg/kg (sprouted Nova). The micro element contents of samples were found to be different depending on the processing procedures and soybean genotypes. PMID:24518351

  2. Starch-Soybean Oil Composites with High Oil: Starch Ratios Prepared by Steam Jet Cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aqueous mixtures of soybean oil and starch were jet cooked at oil:starch ratios ranging from 0.5:1 to 4:1 to yield dispersions of micron-sized oil droplets that were coated with a thin layer of starch at the oil-water interface. The jet cooked dispersions were then centrifuged at 2060 and 10,800 x ...

  3. Comparison of Formulas Based on Lipid Emulsions of Olive Oil, Soybean Oil, or Several Oils for Parenteral Nutrition: A Systematic Review and Meta-Analysis.

    PubMed

    Dai, Yu-Jie; Sun, Li-Li; Li, Meng-Ying; Ding, Cui-Ling; Su, Yu-Cheng; Sun, Li-Juan; Xue, Sen-Hai; Yan, Feng; Zhao, Chang-Hai; Wang, Wen

    2016-03-01

    Many studies have reported that olive oil-based lipid emulsion (LE) formulas of soybean oil, medium-chain triglycerides, olive oil, and fish oil (SMOF) may be a viable alternative for parenteral nutrition. However, some randomized controlled clinical trials (RCTs) have raised concerns regarding the nutritional benefits and safety of SMOFs. We searched principally the MEDLINE, Cumulative Index to Nursing and Allied Health Literature, Scopus, EMBASE, and Cochrane Central Register of Controlled Trials databases from inception to March 2014 for the relevant literature and conducted a meta-analysis of 15 selected RCTs that 1) compared either olive oil- or SMOF-based LEs with soybean oil-based LEs and 2) reported plasma concentrations of α-tocopherol, oleic acid, and ω-6 (n-6) and ω-3 (n-3) long-chain polyunsaturated fatty acids (PUFAs) and liver concentrations of total bilirubin and the enzymes alanine transaminase, aspartate transaminase, alkaline phosphatase, and γ-glutamyl transferase. The meta-analysis suggested that SMOF-based LEs were associated with higher plasma concentrations of plasma α-tocopherol, oleic acid, and the ω-3 PUFAs eicosapentaenoic and docosahexaenoic acid. Olive oil- and SMOF-based LEs correlated with lower plasma concentrations of long-chain ω-6 PUFAs and were similar to soybean oil-based LEs with regard to their effects on liver function indicators. In summary, olive oil- and SMOF-based LEs have nutritional advantages over soybean oil-based LEs and are similarly safe. However, their performance in clinical settings requires further investigation. PMID:26980811

  4. Effect of Delta 9–Stearoyl-ACP-Desaturase-C mutants in a high oleic background on soybean seed oil composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil typically contains 2-4% stearic acid. Oil with at least 20% stearic acid is desirable because of its baking properties and health profile. This study identifies two new sources of high stearic acid and evaluates the interaction of high stearic and oleic acid al...

  5. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  6. Toughening of epoxy resins by epoxidized soybean oil

    SciTech Connect

    Frischinger, I.; Dirlikov, S.

    1993-12-31

    Homogeneous mixtures of a liquid rubber based on prepolymers of epoxidized soybean oil with amines, diglycidyl ether of bisphenol A epoxy resins, and commercial diamines form, under certain conditions, two-phase thermosetting materials that consist of a rigid epoxy matrix and randomly distributed small rubbery soybean particles (0.1-5 {mu}m). These two-phase thermosets have improved toughness, similar to that of other rubber-modified epoxies, low water absorption, and low sodium content. In comparison to the unmodified thermosets, the two-phase thermosets exhibit slightly lower glass-transition temperatures and Young`s moduli, but their dielectric properties do not change. The epoxidized soybean oil is available at a price below that of commercial epoxy resins and appears very attractive for epoxy toughening on an industrial scale. 15 refs., 17 figs., 6 tabs.

  7. RESPONSE OF LOW SEED PHYTIC ACID SOYBEANS TO INCREASES IN EXTERNAL P SUPPLY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial development of soybean (Glycine max L. Merr.) varieties with low seed phytic acid concentrations will depend on both the stability of the trait when grown in soils with a wide range of phosphorus (P) availabilities, and on the impact of genetically altered P composition on protein and oil...

  8. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  9. Soybean Oil: Powering a High School Investigation of Biodiesel

    ERIC Educational Resources Information Center

    De La Rosa, Paul; Azurin, Katherine A.; Page, Michael F. Z.

    2014-01-01

    This laboratory investigation challenges students to synthesize, analyze, and compare viable alternative fuels to Diesel No. 2 using a renewable resource, as well as readily available reagents and supplies. During the experiment, students synthesized biodiesel from soybean oil in an average percent yield of 83.8 ± 6.3%. They then prepared fuel…

  10. Margarine from organogels of plant wax and soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organogels obtained from plant wax and soybean oil tested for suitability for incorporation into margarine. Sunflower wax, rice bran wax and candelilla wax were evaluated. Candelilla wax showed phase separation after making the emulsion with the formulation used in this study. Rice bran wax showe...

  11. Evaluation of Partially Hydrogenated Methyl Ethers of Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specifications mandating biodiesel quality, most notably in the EU (EN 14214) and the USA (ASTM D 6751), have emerged that influence feedstock choice in the production of biodiesel fuel. For instance, EN 14214 contains a specification for iodine value (IV, 120) that eliminates soybean oil (SBO) as ...

  12. Low Temperature Properties and Thermal Stability of Oligomerized Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil polymers with lower molecular weight prepared in supercritical carbon dioxide (scCO2) by cationic polymerization were investigated for their applications as lubricants and hydraulic fluids. The low-temperature properties were studied by measuring their cloud and pour points; while therm...

  13. Ring-opening Polymerization of Epoxidized Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate, (BF3•OEt2), in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scan...

  14. Evaluation of Partially Hydrogenated Methyl Esters of Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specifications mandating biodiesel quality, most notably in the EU (EN 14214) and the USA (ASTM D 6751), have emerged that influence feedstock choice in the production of biodiesel fuel. For instance, EN 14214 contains a specification for iodine value (IV, 120) that eliminates soybean oil (SBO) as ...

  15. Preparation of soybean oil polymers with high molecular weight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cationic polymerization of soybean oils was initiated by boron trifluoride diethyl etherate BF3.O(C2H5)2 in supercritical carbon dioxide (scCO2) medium. The resulting polymers had molecular weight ranging from 21,842 to 118,300 g/mol. Nuclear magnetic resonance spectroscopy (NMR) and gel perme...

  16. SOLID FREEFORM FABRICATION OF SOYBEAN OIL-BASED COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid Freeforming Fabrication is a method of making shapes without molds. It is best known in its stereo lithography forms as a method of rapid prototyping. In stereo lithography a laser photopolymerizes successive thin layers of monomer to build up a solid object. Epoxidized soybean oil and epox...

  17. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  18. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in s...

  19. Food use and health effects of soybean and sunflower oils.

    PubMed

    Meydani, S N; Lichtenstein, A H; White, P J; Goodnight, S H; Elson, C E; Woods, M; Gorbach, S L; Schaefer, E J

    1991-10-01

    This review provides a scientific assessment of current knowledge of health effects of soybean oil (SBO) and sunflower oil (SFO). SBO and SFO both contain high levels of polyunsaturated fatty acids (PUFA) (60.8 and 69%, respectively), with a PUFA:saturated fat ratio of 4.0 for SBO and 6.4 for SFO. SFO contains 69% C18:2n-6 and less than 0.1% C18:3n-3, while SBO contains 54% C18:2n-6 and 7.2% C18:3n-3. Thus, SFO and SBO each provide adequate amounts of C18:2n-6, but of the two, SBO provides C18:3n-3 with a C18:2n-6:C18:3n-3 ratio of 7.1. Epidemiological evidence has suggested an inverse relationship between the consumption of diets high in vegetable fat and blood pressure, although clinical findings have been inconclusive. Recent dietary guidelines suggest the desirability of decreasing consumption of total and saturated fat and cholesterol, an objective that can be achieved by substituting such oils as SFO and SBO for animal fats. Such changes have consistently resulted in decreased total and low-density-lipoprotein cholesterol, which is thought to be favorable with respect to decreasing risk of cardiovascular disease. Also, decreases in high-density-lipoprotein cholesterol have raised some concern. Use of vegetable oils such as SFO and SBO increases C18:2n-6, decreases C20:4n-6, and slightly elevated C20:5n-3 and C22:6n-3 in platelets, changes that slightly inhibit platelet generation of thromboxane and ex vivo aggregation. Whether chronic use of these oils will effectively block thrombosis at sites of vascular injury, inhibit pathologic platelet vascular interactions associated with atherosclerosis, or reduce the incidence of acute vascular occlusion in the coronary or cerebral circulation is uncertain. Linoleic acid is needed for normal immune response, and essential fatty acid (EFA) deficiency impairs B and T cell-mediated responses. SBO and SFO can provide adequate linoleic acid for maintenance of the immune response. Excess linoleic acid has supported tumor

  20. Gene expression profiling of soybean near-isogenic lines contrasting in seed protein and oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean profitability is affected by protein and oil content. Thus, an understanding of the genetic controls on protein and oil yield is important for future soybean improvement. In this study, we used Affymetrix soybean genome arrays with >37,500 Glycine max probe sets to compare gene expression pr...

  1. Fatty acid profiling of soybean cotyledons by NIR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The research was conducted to quantify the five fatty acids in soybean (Glycine max) cotyledons using near-infrared (NIR) spectroscopy. Soybean cotyledon samples were dried and ground. A 250-mg sample was scanned in the visible and NIR regions (400 to 2500 nm), and diffuse reflectance was recorded...

  2. Short-Term Use of Parenteral Nutrition With a Lipid Emulsion Containing a Mixture of Soybean Oil, Olive Oil, Medium-Chain Triglycerides, and Fish Oil

    PubMed Central

    Devlieger, Hugo; Jochum, Frank; Allegaert, Karel

    2012-01-01

    Background: For premature neonates needing parenteral nutrition (PN), a balanced lipid supply is crucial. The authors hypothesized that a lipid emulsion containing medium-chain triglycerides (MCTs) and soybean, olive, and fish oils would be as safe and well tolerated as a soybean emulsion while beneficially influencing the fatty acid profile. Methods: Double-blind, controlled study in 53 neonates (<34 weeks’ gestation) randomized to receive at least 7 days of PN containing either an emulsion of MCTs and soybean, olive, and fish oils or a soybean oil emulsion. Target lipid dosage was 1.0 g fat/kg body weight [BW]/d on days 1–3, 2 g/kg BW/d on day 4, 3 g/kg BW/d on day 5, and 3.5 g/kg BW/d on days 6–14. Results: Test emulsion vs control, mean ± SD: baseline triglyceride concentrations were 0.52 ± 0.16 vs 0.54 ± 0.19 mmol/L and increased similarly in both groups to 0.69 ± 0.38 vs 0.67 ± 0.36 on day 8 of treatment (P = .781 for change). A significantly higher decrease in total and direct bilirubin vs baseline was seen in the test group compared with the control group P < .05 between groups). In plasma and red blood cell phospholipids, eicosapentaenoic acid and docosahexaenoic acid were higher, and the n-6/n-3 fatty acid ratio was lower in the test group (P < .05 vs control). Conclusions: The lipid emulsion, based on a mixture of MCTs and soybean, olive, and fish oils, was safe and well tolerated by preterm infants while beneficially modulating the fatty acid profile. PMID:22237883

  3. Antioxidative effect of loquat (Eriobotrya japonica Lindl.) fruit skin extract in soybean oil

    PubMed Central

    Delfanian, Mojtaba; Esmaeilzadeh Kenari, Reza; Sahari, Mohammad Ali

    2015-01-01

    The aim of this study was to compare the effects of solvent and ultrasound-assisted extraction methods with supercritical fluid extraction on antioxidant activity of loquat (Eriobotrya japonica Lindl.) fruit skin extract in stability of soybean oil at 25°C. Oxidative stability alterations of soybean oils containing 400 (SEA) and 1000 ppm (SEB) of ethanol extract, 400 (SSA) and 1000 ppm (SSB) of supercritical CO2 extract, 400 (SUA) and 1000 ppm (SUB) of ultrasound-assisted extract, and 100 ppm of tertiary butylhydroquinone (TBHQ) were monitored by measuring the peroxide value, thiobarbituric acid value, free fatty acids, conjugated dienes and trienes values. Oxidative changes in SEA were lower than that of oils treated with other extracts, but the best protection was observed in soybean oil consisting TBHQ. The solvent extraction method produces the maximum amount of phenolic and tocopherol compounds from loquat fruit skin. Therefore, solvent extraction method had a better effect on antioxidant activity of the loquat fruit skin extract. PMID:25648044

  4. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01.

    PubMed

    Partovi, Maryam; Lotfabad, Tayebe Bagheri; Roostaazad, Reza; Bahmaei, Manochehr; Tayyebi, Shokoufe

    2013-06-01

    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals. Unexpectedly, wastes could stimulate the biodegradation activity of MR01 bacterial cells and thus biosurfactant synthesis beyond that of the refined soybean oil. This is evident from higher yields of biodegradation and production, as revealed in the waste cultures (Ydeg|(Soybean oil) = 53.9 % < Ydeg|(wastes) and YP/S|(wastes) > YP/S|(Soybean oil) = 0.31 g g(-1), respectively). Although production yields were approximately the same in the three waste cultures (YP/S|(wastes) =/~ 0.5 g g(-1)), microbial activity resulted in higher yields of biodegradation (96.5 ± 1.13 %), maximum specific growth rate (μ max = 0.26 ± 0.02 h(-1)), and biosurfactant purity (89.6 %) with a productivity of 14.55 ± 1.10 g l(-1), during the bioconversion of soapstock into biosurfactant. Consequently, applying soybean oil soapstock as a substrate for the production of biosurfactant with commercial value has the potential to provide a combination of economical production with environmental protection through the biosynthesis of an environmentally friendly (green) compound and reduction of waste load entering the environment. Moreover, this work inferred spectrophotometry as an easy method to detect rhamnolipids in the biosurfactant products. PMID:23361970

  5. Anti-oxidative effect of turmeric on frying characteristics of soybean oil.

    PubMed

    Banerjee, Anindita; Ghosh, Santinath; Ghosh, Mahua

    2015-03-01

    Curcumin, the active principle of turmeric, is known to act as an anti-oxidant, anti-mutagen and anti-carcinogen. This study aimed to find out the thermal and oxidative stability of soybean oil when potatoes marinated with turmeric were deep fried in the oil. Two sets of experiment were carried out. In one set, 1 L of oil was heated for 24 h (8 h daily for 3 consecutive days) and 200 g of potato chips without any marination were fried each time twice daily. Foods were fried in batches to replicate the commercial practice of the food industries. The temperature maintained during the whole experiment was at 180-190 °C i.e. at the frying temperature. About 50 ml of the oil sample was collected after every 4 h. In the second set, another 1 L of soybean oil was heated for 24 h in the similar manner and potato chips marinated with turmeric was fried twice daily. Oil samples were collected as before and comparative studies were done. The chemical parameters like acid value, peroxide value, content of 4-hydroxy-2-trans-nonenal (HNE) and fatty acid composition for all the oil samples of each set were determined. The comparative studies on peroxide value and content of HNE revealed that the antioxidant property of curcumin in turmeric helped in reducing the oxidation of the oil initially, but with increase in duration of time, the antioxidant potency got gradually reduced. The loss of unsaturated fatty acids were calculated from the fatty acid composition and it was found that loss of unsaturation in soybean oil where turmeric marinated potatoes were fried was 6.37 % while the controlled one showed 7.76 % loss after 24 h of heating. These results indicated higher thermal and oxidative stability of the soybean oil in presence of turmeric. However, the antioxidant effect gradually decreased with increase in duration of heating. PMID:25745253

  6. Use of ultrasound to monitor physical properties of soybean oil

    NASA Astrophysics Data System (ADS)

    Baêsso, R. M.; Oliveira, P. A.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    The study of the monitoring physical properties of soybean oil was performed. The pulse-echo method allowed measuring the density and viscosity of the oil in real time and accurately. The physical property values were related to the acoustic time of flight ratio, dimensionless parameter that can be obtained from any reference. In our case, we used the time of flight at 20°C as reference and a fixed distance between the transducer and the reflector. Ultrasonic monitoring technique employed here has shown promising in the analysis of edible oils.

  7. The Effect of Fish Oil-Based Lipid Emulsion and Soybean Oil-Based Lipid Emulsion on Cholestasis Associated with Long-Term Parenteral Nutrition in Premature Infants

    PubMed Central

    Wang, Leilei; Zhang, Jing; Gao, Jiejin; Qian, Yan; Ling, Ya

    2016-01-01

    Purpose. To retrospectively study the effect of fish oil-based lipid emulsion and soybean oil-based lipid emulsion on cholestasis associated with long-term parenteral nutrition in premature infants. Methods. Soybean oil-based lipid emulsion and fish oil-based lipid emulsion had been applied in our neonatology department clinically between 2010 and 2014. There were 61 qualified premature infants included in this study and divided into two groups. Soybean oil group was made up of 32 premature infants, while fish oil group was made up of 29 premature infants. Analysis was made on the gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, age at which feeding began, usage of lipid emulsions, and incidence of cholestasis between the two groups. Results. There were no statistical differences in terms of gender, feeding intolerance, infection history, birth weight, gestational age, duration of parenteral nutrition, total dosage of amino acid, and age at which feeding began. Besides, total incidence of cholestasis was 21.3%, and the days of life of occurrence of cholestasis were 53 ± 5.0 days. Incidence of cholestasis had no statistical difference in the two groups. Conclusion. This study did not find the different role of fish oil-based lipid emulsions and soybean oil-based lipid emulsions in cholestasis associated with long-term parenteral nutrition in premature infants. PMID:27110237

  8. Comparing biofuels obtained from pyrolysis, of soybean oil or soapstock, with traditional soybean biodiesel: Density, kinematic viscosity, and surface tensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A product with diesel like properties was synthesized by a pyrolysis method, from either edible soybean oil, or an inedible soybean soapstock starting material (PD and SD, respectively). Some physical properties of the material were studied, neat, and in blends; with both high sulfur and low sulfur...

  9. Production of Oxygenated Fatty Acids from Vegetable Oils by Flavobacterium sp. Strain DS5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium sp. strain DS5 (NRRL B-14859) was used to convert two vegetable oils, olive oil and soybean oil, directly to oxygenated fatty acids such as 10-ketostearic acid (10-KSA) and 10-hydroxystearic acid (10-HSA). Lipase addition to the culture was required because strain DS5 did not induce ...

  10. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.

    PubMed

    Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie

    2010-12-01

    Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. PMID:20696566

  11. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver

    PubMed Central

    Deol, Poonamjot; Evans, Jane R.; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S.; Spindler, Stephen; Sladek, Frances M.

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659

  12. Soybean Oil Is More Obesogenic and Diabetogenic than Coconut Oil and Fructose in Mouse: Potential Role for the Liver.

    PubMed

    Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M

    2015-01-01

    The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil. PMID:26200659

  13. Biobased composites from cross-linked soybean oil and thermoplastic polyurethane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle and the incorporation of thermoplastic polyurethane improves its toughness. The hydrophilic functional groups from both oil and polyurethane contribute to the adhesion of the blend compon...

  14. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  15. Systems Characterization of Gene Reuglatory Networks Underlying Seed Maturation for Soybean Oil Improvement.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed oil composition and content are important agronomic traits, and are also determining factors for soybean oil nutritional values and its use in biodiesel production and other industrial applications. Production of seed storage oil requires concerted activity of many genes and biological ...

  16. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate.

    PubMed

    Ju, Yi-Hsu; Huynh, Lien-Huong; Gunawan, Setiyo; Chern, Yaw-Terng; Kasim, Novy S

    2012-01-01

    Aliphatic hydrocarbons (HCs) can be used as a fingerprint of a given seed oil. Only by characterization of aliphatic HCs could contamination by mineral oil in that seed oil be confirmed. During the isolation of squalene from soybean oil deodorizer distillate, a significant amount of unknown HCs, ca. 44 wt%, was obtained. These seemingly-easy-to-identify HCs turned out to be much more difficult to elucidate due to the presence of an irresolvable complex mixture (ICM). The objective of this study was to purify and identify the unknown ICM of aliphatic HCs from soybean oil deodorizer distillate. Purification of the ICM was successfully achieved by using modified Soxhlet extraction, followed by modified preparative column chromatography, and finally by classical preparative column chromatography. FT-IR, TLC, elemental analysis, GC/FID, NMR and GC-MS analyses were then performed on the purified HCs. The GC chromatogram detected the presence of ICM peaks comprising two major peaks and a number of minor peaks. Validation methods such as IR and NMR justified that the unknowns are saturated HCs. This work succeeded in tentatively identifying the two major peaks in the ICM as cycloalkane derivatives. PMID:22162261

  17. Production of Diacylglycerol-enriched Oil by Glycerolysis of Soybean Oil using a Bubble Column Reactor in a Solvent-free System.

    PubMed

    Zhang, Ning; Yang, Xue; Fu, Junning; Chen, Qiong; Song, Ziliang; Wang, Yong

    2016-03-01

    In this study, diacylglycerol-enriched soybean oil (DESO) was synthesized through Lipozyme 435-catalyzed glycerolysis of soybean oil (SO) in a solvent-free system using a modified bubble column reactor. The effects of enzyme load, mole ratio of glycerol to soybean oil, reaction temperature, gas flow and reaction time on DAG production were investigated. The selected conditions were established as being enzyme load of 4 wt% (mass of substrates), glycerol/soybean oil mole ratio of 20:1, reaction temperature of 80°C, gas flow of 10.6 cm/min, and a reaction time of 2.5 h, obtaining the DAG content of 49.4±0.5 wt%. The reusability of Lipozyme 435 was evaluated by monitoring the contents of DAG, monoacylglycerol (MAG) and triacylglycerol (TAG) in 10 consecutive runs. After purified by one-step molecular distillation, the DAG content of 63.5±0.3 wt% was achieved in DESO. The mole ratio of 1, 3-DAG to 1, 2-DAG was 2:1 and the fatty acid composition had no significant difference from that of soybean oil. However, the thermal properties of DESO and SO had considerable differences. Polymorphic form of DESO were mainly the β form and minor amounts of the β' form. Granular aggregation and round-shaped crystals were detected in DESO. PMID:26876674

  18. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for soybean [Glycine max (L.) Merr.] meal has increased worldwide and soybean importers often offer premiums for soybean containing higher contents of protein and oil. Objectives were to detect quantitative trait loci (QTL) associated with soybean seed protein, oil, and seed weight in a soyb...

  19. Preparation of soybean oil-based greases: effect of composition and structure on physical properties.

    PubMed

    Adhvaryu, Atanu; Erhan, Sevim Z; Perez, Joseph M

    2004-10-20

    Vegetable oils have significant potential as a base fluid and a substitute for mineral oil in grease formulation. Preparation of soybean oil-based lithium greases using a variety of fatty acids in the soap structure is discussed in this paper. Soy greases with lithium-fatty acid soap having C12-C18 chain lengths and different metal to fatty acid ratios were synthesized. Grease hardness was determined using a standard test method, and their oxidative stabilities were measured using pressurized differential scanning calorimetry. Results indicate that lithium soap composition, fatty acid types, and base oil content significantly affect grease hardness and oxidative stability. Lithium soaps prepared with short-chain fatty acids resulted in softer grease. Oxidative stability and other performance properties will deteriorate if oil is released from the grease matrix due to overloading of soap with base oil. Performance characteristics are largely dependent on the hardness and oxidative stability of grease used as industrial and automotive lubricant. Therefore, this paper discusses the preparation methods, optimization of soap components, and antioxidant additive for making soy-based grease. PMID:15479006

  20. Biodiesel production from soybean oil by quaternized polysulfone alkali-catalyzed membrane.

    PubMed

    Shi, Wenying; Li, Hongbin; Zhou, Rong; Zhang, Haixia; Du, Qiyun

    2016-06-01

    A series of alkalized polysulfones (APSF) were synthesized by several chemical reactions (chloromethylation, quaternization and alkalization). Among these reactions, chloromethylation and quaternization are two key reactions and have been studied in detail regarding the optimization of both chloromethylation and quaternization. FTIR and (1)H NMR spectrum confirmed the successful preparation of chloromethylated polysulfone. The best IEC of APSF was obtained for 1.68meqg(-1) under reaction time of 10h and reaction temperature of 45°C. The APSF membrane as a heterogeneous catalyst for the transesterification of soybean oil with methanol was prepared through the method of solvent evaporation phase inversion. The effects of co-solvent types, mass ratios of soybean oil/co-solvent, water content and free fatty acids (FFAs) content in soybean oil on the conversions using the APSF membrane during transesterification were studied. The reusability of the APSF membrane and the kinetics of the reaction catalyzed by the APSF membrane were also investigated. PMID:26783142

  1. Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating.

    PubMed

    Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto

    2012-08-01

    Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample. PMID:22659463

  2. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0 mg L(-1)) or acid rain (pH ≥3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6 mg L(-1)) or acid rain at pH 2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain. PMID:21479540

  3. Biodiesel Derived from a Source Enriched in Palmitoleic Acid, Macadamia Nut Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative diesel fuel commonly produced from commodity vegetable oils such as palm, rapeseeed (canola) and soybean. These oils generally have fatty acid profiles that vary within the range of C16 and C18 fatty acids. Thus, the biodiesel fuels derived from these oils possess the c...

  4. Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the molecular and genetic mechanisms underlying variation in seed composition and contents among different genotypes is important for soybean oil quality improvement. We designed a bioinformatics approach to compare seed transcriptomes of 9 soybean genotypes varying in oil composition ...

  5. Milk and cheese from cows fed calcium salts of palm and fish oil alone or in combination with soybean products.

    PubMed

    Allred, S L; Dhiman, T R; Brennand, C P; Khanal, R C; McMahon, D J; Luchini, N D

    2006-01-01

    Twenty cows were used in a randomized block design experiment for 6 wk to determine the influence of feeding partial ruminally inert Ca salts of palm and fish oil (Ca-PFO), alone or in combination with extruded full-fat soybeans or soybean oil, on milk fatty acid (FA) methyl esters composition and consumer acceptability of milk and Cheddar cheese. Cows were fed either a diet containing 44% forage and 56% concentrate (control) or a diet supplemented with 2.7% Ca-PFO (FO), 5% extruded full-fat soybeans + 2.7% Ca-PFO (FOESM), or 0.75% soybean oil + 2.7% Ca-PFO (FOSO). Total dietary FA content in the control, FO, FOESM, and FOSO diets were 4.61, 6.28, 6.77, and 6.62 g/100 g, respectively. There was no difference in nutrient intake, milk yield, or milk composition among treatments. Conjugated linoleic acid (CLA) C(18:2) cis-9, trans-11 isomer, C(18:1) trans-11 (VA), and total n-3 FA in milk from cows on the control, FO, FOESM, and FOSO treatments were 0.56, 1.20, 1.36, and 1.74; 3.29, 4.66, 6.34, and 7.81; 0.62, 0.69, 0.69, and 0.67 g/100 g of FA, respectively. Concentrations of CLA, VA, and total n-3 FA in cheese were similar to milk. A trained sensory panel detected no difference in flavors of milk and cheese, except for acid flavor below a slightly perceptible level in cheese from all treatments. Results suggest that feeding Ca-PFO alone or in combination with extruded full-fat soybeans or soybean oil enhanced the CLA, VA, total unsaturated and n-3 FA in milk and cheese without negatively affecting cow performance and consumer acceptability characteristics of milk and cheese. PMID:16357287

  6. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions.

    PubMed

    Nguyen, Quoc Thien; Kisiala, Anna; Andreas, Peter; Neil Emery, R J; Narine, Suresh

    2016-06-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  7. Molecular Interactions between a Novel Soybean Oil-Based Polymer and Doxorubicin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel soybean oil-based polymer, hydrolyzed polymers of epoxidized soybean oil (HPESO), was developed and investigated for drug delivery. This work was aimed at determining the molecular interactions between HPESO and doxorubicin (DOX), an anticancer drug. Powder X-ray diffraction, ATR-FTIR and ...

  8. Effect of Phytosterol Structure on Thermal Polymerization of Heated Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effect of phytosterol structure, including the degree of unsaturation and the presence of an ethylidene group in the side chain, on the thermal polymerization of heated soybean oil. Indigenous tocopherols and phytosterols were removed from soybean oil by molecular distilla...

  9. Phase Transition Behavior of Novel Soybean Oil-based Thermosensitive Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermal phase transition behavior of novel soybean oil-based polymers, i.e., hydrolyzed polymers of (epoxidized) soybean oil, was studied. The phase transition temperatures (cloud points) were determined from the inflection points of the light transmittance vs. temperature curves. The effect o...

  10. Oxidation and low temperature stability of polymerized soybean oil-based lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation and low temperature stability of polymerized soybean oil (PSO)-based lubricants have been investigated by the pressurized differential scanning calorimetry (PDSC) method. It was found that PSO samples have lower oxidative stability than their precursor, soybean oil. The main reason for the...

  11. PROTEIN AND OIL CONCENTRATION RESPONSE TO GLUTAMINE IN SOYBEAN SEEDS CULTURED IN VITRO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oil and protein are the most valuable components of soybean seed. To examine whether oil and protein concentration are affected by the supply of nitrogen to the seed, immature soybean seeds [Glycine max (L.) Merr. cv. Williams 82] were grown in vitro in nutrient solutions containing 20, 40, 60, or 8...

  12. Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...

  13. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  14. Investigation of conjugated soybean oil as drying oils and CLA sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A promising pound-scale production method for the conjugation of soybean oil (SBO) using iodine under photochemical reaction conditions is reported. Variations in catalyst loading, SBO concentration, light source, free radical catalyst source, solvent, and temperature were studied. A quantitative ...

  15. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and

  16. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

  17. Stability of soybean oil degumming using immobilized phospholipase A(2).

    PubMed

    Yu, Dianyu; Ma, Ying; Jiang, Lianzhou; Walid, Elfalleh; He, Shenghua; He, Yanming; Xiaoyu, Zhou; Zhang, Jianing; Hu, Lizhi

    2014-01-01

    The aim of this study was evaluation of stability of immobilized phospholipase A2 (PLA2) for soybean oil degumming. Also, the effect of reaction time on residual phosphorus levels was investigated according to the optimum pH and temperature. The free PLA2 and three immobilized PLA2 demonstrated significant differences in optimum operation conditions. pH, temperature and reaction time increased upon immobilization for three different immobilized PLA2 (PLA2-CA, PLA2-CAC and PLA2-CAG). Immobilized PLA2 showed enhanced thermal stability and retained more than 74% of relative activity after 1 h of incubation at 60°C, while the free PLA2 retained only 33%. The three immobilized PLA2 retained 30% to 60% of initial activities after 7 recycles. In particular, PLA2-CAC has more significant profiles in pH, temperature, reaction time and showed the highest remaining activity, thermal stability, reusability. Therefore, PLA2-CAC is a suitable immobilized enzyme for soybean oil degumming process. PMID:24371193

  18. A modified colorimetric method for phytic acid analysis in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantitative, reproducible, and efficient phytic acid assay procedure is needed to screen breeding populations and support genetic studies in soybeans. The objective of this study was to modify the colorimetric Wade reagent method and compare the accuracy and applicability of this new method in de...

  19. Mutations in a delta9-Stearoyl-ACP-Desaturase Gene Are Associated with Enhanced Stearic Acid Levels in Soybean Seeds

    SciTech Connect

    Zhang, P.; Shanklin, J.; Burton, J. W.; Upchurch, R. G.; Whittle, E.; Dewey, R. E.

    2008-11-01

    Stearic acid (18:0) is typically a minor component of soybean [Glycine max (L.) Merr.] oil, accounting for only 2 to 4% of the total fatty acid content. Increasing stearic acid levels of soybean oil would lead to enhanced oxidative stability, potentially reducing the need for hydrogenation, a process leading to the formation of undesirable trans fatty acids. Although mutagenesis strategies have been successful in developing soybean germplasm with elevated 18:0 levels in the seed oil, the specific gene mutations responsible for this phenotype were not known. We report a newly identified soybean gene, designated SACPD-C, that encodes a unique isoform of {Delta}{sup 9}-stearoyl-ACP-desaturase, the enzyme responsible for converting stearic acid to oleic acid (18:1). High levels of SACPD-C transcript were only detected in developing seed tissue, suggesting that the encoded desaturase functions to enhance oleic acid biosynthetic capacity as the immature seed is actively engaged in triacylglycerol production and storage. The participation of SACPD-C in storage triacylglycerol synthesis is further supported by the observation of mutations in this gene in two independent sources of elevated 18:0 soybean germplasm, A6 (30% 18:0) and FAM94-41 (9% 18:0). A molecular marker diagnostic for the FAM94-41 SACPD-C gene mutation strictly associates with the elevated 18:0 phenotype in a segregating population, and could thus serve as a useful tool in the development of cultivars with oils possessing enhanced oxidative stability.

  20. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  1. Mutations in SACPD-C Result in a Range of Elevated Stearic Acid Concentration in Soybean Seed

    PubMed Central

    Carrero-Colón, Militza; Abshire, Nathan; Sweeney, Daniel; Gaskin, Erik; Hudson, Karen

    2014-01-01

    Soybean oil has a wide variety of uses, and stearic acid, which is a relatively minor component of soybean oil is increasingly desired for both industrial and food applications. New soybean mutants containing high levels of the saturated fatty acid stearate in seeds were recently identified from a chemically mutagenized population. Six mutants ranged in stearate content from 6–14% stearic acid, which is 1.5 to 3 times the levels contained in wild-type seed of the Williams 82 cultivar. Candidate gene sequencing revealed that all of these lines carried amino acid substitutions in the gene encoding the delta-9-stearoyl-acyl-carrier protein desaturase enzyme (SACPD-C) required for the conversion of stearic acid to oleic acid. Five of these missense mutations were in highly conserved residues clustered around the predicted di-iron center of the SACPD-C enzyme. Co-segregation analysis demonstrated a positive association of the elevated stearate trait with the SACPD-C mutation for three populations. These missense mutations may provide additional alleles that may be used in the development of new soybean cultivars with increased levels of stearic acid. PMID:24846334

  2. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  3. Sonication-assisted production of biodiesel using soybean oil and supercritical methanol.

    PubMed

    Gobikrishnan, Sriramulu; Park, Jae-Hee; Park, Seok-Hwan; Indrawan, Natarianto; Rahman, Siti Fauziyah; Park, Don-Hee

    2013-06-01

    High temperature and pressure are generally required to produce biodiesel using supercritical methanol. We reduced the harsh reaction conditions by means of sonicating the reaction mixture prior to transesterification using supercritical methanol. Soybean oil was selected as the raw material for transesterification. As soybean oil contains more unsaturated fatty acid triglycerides, the biodiesel degraded more at high temperature. The reactants were sonicated for 60 min at 35 °C prior to transesterification to avoid degradation of the product and to enhance biodiesel yield at temperatures <300 °C. The process parameters were optimized using central composite design. The variables selected for optimization were temperature, time, and the oil to methanol molar ratio. The temperature and oil to methanol molar ratios were varied from 250 to 280 °C and 1:40-1:50, respectively. The reaction time was tested between 4 and 12 min. The biodiesel was analyzed for any possible degradation by gas chromatography-mass spectroscopy and for the wt% of fatty acid methyl esters (FAME) obtained. The maximum FAME yield (84.2 wt%) was obtained at a temperature of 265.7 °C, an oil to alcohol molar ratio of 1:44.7, and a time of 8.8 min. The optimum yield was obtained at a pressure of 1,500 psi. The pressure and optimum temperature used to obtain the maximum yield were the lowest reported so far without the use of a co-solvent. Thus, the severity of the supercritical reactions was reduced by adding sonication prior to the reaction. PMID:23380939

  4. Production of polyol oils from soybean oil through bioprocess

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produced by a two-step chemical process involving epoxidation and then the subsequent opening of the oxirane ring. The objective of this study is to d...

  5. Analyzing the Effects of Climate Factors on Soybean Protein, Oil Contents, and Composition by Extensive and High-Density Sampling in China.

    PubMed

    Song, Wenwen; Yang, Ruping; Wu, Tingting; Wu, Cunxiang; Sun, Shi; Zhang, Shouwei; Jiang, Bingjun; Tian, Shiyan; Liu, Xiaobing; Han, Tianfu

    2016-05-25

    From 2010 to 2013, 763 soybean samples were collected from an extensive area of China. The correlations between seed compositions and climate data were analyzed. The contents of crude protein and water-soluble protein, total amount of protein plus oil, and most of the amino acids were positively correlated with an accumulated temperature ≥15 °C (AT15) and the mean daily temperature (MDT) but were negatively correlated with hours of sunshine (HS) and diurnal temperature range (DTR). The correlations of crude oil and most fatty acids with climate factors were opposite to those of crude protein. Crude oil content had a quadratic regression relationship with MDT, and a positive correlation between oil content and MDT was found when the daily temperature was <19.7 °C. A path analysis indicated that DTR was the main factor that directly affected soybean protein and oil contents. The study illustrated the effects of climate factors on soybean protein and oil contents and proposed agronomic practices for improving soybean quality in different regions of China. The results provide a foundation for the regionalization of high-quality soybean production in China and similar regions in the world. PMID:27022763

  6. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  7. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  8. SEED PROTEIN QUANTITIES OF FIELD-GROWN SOYBEANS EXPOSED TO SIMULATED ACIDIC RAIN

    EPA Science Inventory

    Analysis of seeds harvested from field-grown soybeans demonstrated that simulated acidic rainfalls from two experimental protocols can significantly decrease total protein contents of soybeans. Statistically significant differences in protein content per seed mass were obtained i...

  9. Safety assessment of SDA soybean oil: results of a 28-day gavage study and a 90-day/one generation reproduction feeding study in rats.

    PubMed

    Hammond, Bruce G; Lemen, Joan K; Ahmed, Gulam; Miller, Kathleen D; Kirkpatrick, Jeannie; Fleeman, Tammye

    2008-12-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) in the diet reduce risk of cardiac mortality. Fish oils are a dietary source of LC-PUFAs (EPA, DHA) but intake is low in Western diets. Adding beneficial amounts of LC-PUFAs to foods is limited by their instability and potential to impart off-flavors. Stearidonic acid (SDA), a precursor of EPA in man, is more stable than EPA/DHA in food matrices. SDA is present in fish oils (0.5-4%) and in nutraceuticals (echium, borage oil). Genes for Delta6, Delta15 desaturases were introduced into soybeans that convert linoleic and alpha-linolenic acid to SDA (15-30% fatty acids). Since addition of SDA soybean oil into human foods increases SDA intake, toxicology studies were undertaken to assess its safety. In a 28-day pilot study, rats were gavaged with SDA soybean oil at dosages up to 3g/kg body weight/day; no treatment-related adverse effects were observed. A 90-day/one generation rat reproduction study was subsequently conducted where SDA soybean oil was added to diets to provide daily doses of 1.5 and 4 g/kg body weight. There were no treatment-related adverse effects on parental animals or on reproductive performance and progeny development. PMID:18804141

  10. Optimizing dietary levels of menhaden and soybean oils and soybean lecithin for pre-gonadal somatic growth in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Gibbs, Victoria K.; Heflin, Laura E.; Jones, Warren T.; Powell, Mickie L.; Lawrence, Addison L.; Makowsky, Robert; Watts, Stephen A.

    2015-01-01

    Dietary lipids serve as important sources of energy and essential fatty acids for aquatic animals. Sources of animal and plant oils are increasingly limited as well as expensive, and dietary requirements associated with the inclusion of these oils must be carefully evaluated to facilitate sustainable and affordable formulations. In this study, we investigated quantities of menhaden oil (MO) with and without soybean lecithin or soybean oil (SO) to determine appropriate levels for optimal somatic growth for pre-gonadal juvenile Lytechinus variegatus. We prepared semi-purified diets that varied in neutral lipid content (0, 2, 4, or 8% dry matter) and soy lecithin (0 or 2%) and exchanged lipids reciprocally with purified starch while holding constant all other nutrients. We maintained laboratory-reared juvenile L. variegatus (average initial wet weight 82 ± 0.7 mg, mean ± SE , n = 9 treatment−1) in recirculating seawater systems and fed each daily a sub-satiation ration for five weeks. We assessed wet weights and test diameters every two weeks and at the end of the experiment (5 wk). Level of MO with or without soybean lecithin did not significantly affect wet weight gain; however, increasing levels of SO in the diet reduced wet weight gain and dry matter production efficiency and increased feed conversion ratio. Dry gut weight was positively correlated with level of MO. Lipid level in the gut increased with increasing dietary lipid level, regardless of source. These data suggest the composition of the SO is inhibitory for either nutrient absorption or metabolic processes associated with growth at this life stage. Diets containing total lipid levels of approximately 5 to 6% that include sources of n-3 fatty acids may support optimal growth for pre-gonadal juvenile L. variegatus. PMID:26146422

  11. Production of polyol oils from soybean oil by bioprocess: results of microbial screening and identification of positive cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently we reported methods for microbial screening and production of polyol oils from soybean oil through bioprocessing (Hou and Lin, 2013). Soy-polyol oils (oxygenated acylglycerols) are important starting materials for the manufacture of polymers such as polyurethane. Currently, they are produce...

  12. Preparation of Soypolymers by Ring-opening Polymerization of Epoxdized Soybean Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scanning calorime...

  13. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  14. Thermophysical properties of conjugated soybean oil/corn stover biocomposites.

    PubMed

    Pfister, Daniel P; Larock, Richard C

    2010-08-01

    Novel "green composites" have been prepared using a conjugated soybean oil-based resin and corn stover as a natural fiber. Corn stover is the residue remaining after grain harvest and it is estimated that approximately 75 million tons are available annually in the United States. The effect of the amount of filler, the length of the fiber, and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Young's moduli and tensile strengths of the composites prepared range from 291 to 1398 MPa and 2.7 to 7.4 MPa, respectively. Water uptake data indicate that increasing the amount and fiber length of the corn stover results in significant increases in the absorption of water by the composites. The composites, containing 20 to 80 wt.% corn stover and a resin composed of 50 wt.% natural oil, contain 60 to 90 wt.% renewable materials and should find applications in the construction, automotive, and furniture industries. PMID:20227274

  15. Cinnamic acid increases lignin production and inhibits soybean root growth.

    PubMed

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  16. Identify and validate a quantitative trait locus underlying stearic acid on chromosome 14 in a soybean landrace using recombinant inbred lines and resident heterozygous lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearic acid (ST) is one of the saturated fatty acids (FAs) in soybean oil and great efforts have been made to elevate ST content through plant breeding. Improving ST content will be helpful to reduce the health risk of coronary heart diseases and breast, colon and prostate cancer. In this study, re...

  17. Using the candidate gene approach for detecting genes underlying seed oil concentration and yield in soybean.

    PubMed

    Eskandari, Mehrzad; Cober, Elroy R; Rajcan, Istvan

    2013-07-01

    Increasing the oil concentration in soybean seeds has been given more attention in recent years because of demand for both edible oil and biodiesel production. Oil concentration in soybean is a complex quantitative trait regulated by many genes as well as environmental conditions. To identify genes governing seed oil concentration in soybean, 16 putative candidate genes of three important gene families (GPAT: acyl-CoA:sn-glycerol-3-phosphate acyltransferase, DGAT: acyl-CoA:diacylglycerol acyltransferase, and PDAT: phospholipid:diacylglycerol acyltransferase) involved in triacylglycerol (TAG) biosynthesis pathways were selected and their sequences retrieved from the soybean database ( http://www.phytozome.net/soybean ). Three sequence mutations were discovered in either coding or noncoding regions of three DGAT soybean isoforms when comparing the parents of a 203 recombinant inbreed line (RIL) population; OAC Wallace and OAC Glencoe. The RIL population was used to study the effects of these mutations on seed oil concentration and other important agronomic and seed composition traits, including seed yield and protein concentration across three field locations in Ontario, Canada, in 2009 and 2010. An insertion/deletion (indel) mutation in the GmDGAT2B gene in OAC Wallace was significantly associated with reduced seed oil concentration across three environments and reduced seed yield at Woodstock in 2010. A mutation in the 3' untranslated (3'UTR) region of GmDGAT2C was associated with seed yield at Woodstock in 2009. A mutation in the intronic region of GmDGAR1B was associated with seed yield and protein concentration at Ottawa in 2010. The genes identified in this study had minor effects on either seed yield or oil concentration, which was in agreement with the quantitative nature of the traits. However, the novel gene-specific markers designed in the present study can be used in soybean breeding for marker-assisted selection aimed at increasing seed yield and oil

  18. Microencapsulation of soybean oil by spray drying using oleosomes

    NASA Astrophysics Data System (ADS)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  19. Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80.

    PubMed

    Ma, Qiumin; Davidson, P Michael; Zhong, Qixin

    2016-06-01

    It was previously found that blending soybean oil with cinnamon bark oil (CBO), eugenol or thyme oil, Tween 80, and equal masses of water and propylene glycol could be used to prepare microemulsions. In the present study, the objective was to determine the antimicrobial activity of the microemulsions in tryptic soy broth (TSB) and 2% reduced fat milk. In TSB, the minimum inhibitory concentration (MIC) of CBO solubilized in microemulsions was up to 625 ppm against cocktails of Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7, which was equal to or higher in concentration than free CBO dissolved in ethanol. However, MICs of eugenol or thyme oil in microemulsions were much higher than that of free antimicrobials. Therefore, microemulsions of CBO were chosen to do further study. Inactivation curves of L. monocytogenes or E. coli O157:H7 in TSB or 2% reduced fat milk were tested and fitted using the Weibull model. In TSB, a gradual decrease in cell viability of L. monocytogenes and E. coli O157:H7 was observed with the microemulsion treatments at 625 ppm CBO, which was in contrast to the more rapid and greater inactivation by free CBO. Gradual inactivation of L. monocytogenes in 2% reduced fat milk was also observed in the treatment with 10,000 ppm free or microemulsified CBO. When fitted using the Weibull model, the predicted time to obtain a 3-log decrease of L. monocytogenes and E. coli O157:H7 in TSB or 2% reduced fat milk increased with an increased amount of soybean oil in microemulsions. Additionally, increasing the amount of Tween 80 in mixtures with different mass ratios of Tween 80 and essential oils significantly decreased the log reductions of L. monocytogenes in TSB. Our study showed that microemulsions can be used to dissolve EOs and control the rate of inactivating bacteria, but the composition of microemulsions is to be carefully chosen to minimize the reduction of antimicrobial activities. PMID:27016636

  20. Preparation of Interesterified Plastic Fats from Fats and Oils Free of Trans Fatty Acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interesterified plastic fats were produced with trans-free substrates of fully hydrogenated soybean oil, extra virgin olive oil, and palm stearin in a weight ratio of 10:20:70, 10:40:50, and 10:50:40, respectively, by lipase catalysis. The major fatty acids of the products were palmitic (32.2-47.4%)...

  1. ACID RECYCLING TO OPTIMIZE CITRIC ACID-MODIFIED SOYBEAN HULL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were 1) to develop a wash procedure to remove non-reacted or residual citric acid after soybean hull modification in order to maximize the amount of non- reacted acid removed but minimize the subsequent effect on the product's ability to adsorb copper ion (Cu2+) and 2) t...

  2. Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean.

    PubMed

    Eckert, Helene; La Vallee, Brad; Schweiger, Bruce J; Kinney, Anthony J; Cahoon, Edgar B; Clemente, Tom

    2006-10-01

    Two relatively rare fatty acids, gamma-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, alpha-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Delta(6) desaturase and an Arabidopsis Delta(15) desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Delta(6) desaturase event with the Delta(15) desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean beta-conglycinin promoter. Soybean events that carried only the Delta(15 )desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids. PMID:16718484

  3. Biodiesel Fuel Production by the Transesterification Reaction of Soybean Oil Using Immobilized Lipase

    NASA Astrophysics Data System (ADS)

    Bernardes, Otávio L.; Bevilaqua, Juliana V.; Leal, Márcia C. M. R.; Freire, Denise M. G.; Langone, Marta A. P.

    The enzymatic alcoholysis of soybean oil with methanol and ethanol was investigated using a commercial, immobilized lipase (Lipozyme RM IM). The effect of alcohol (methanol or ethanol), enzyme concentration, molar ratio of alcohol to soybean oil, solvent, and temperature on biodiesel production was determined. The best conditions were obtained in a solvent-free system with ethanol/oil molar ratio of 3.0, temperature of 50°C, and enzyme concentration of 7.0% (w/w). Three-step batch ethanolysis was most effective for the production of biodiesel. Ethyl esters yield was about 60% after 4 h of reaction.

  4. Stacking of a stearoyl-ACP thioesterase with a dual-silenced palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase in transgenic soybean.

    PubMed

    Park, Hyunwoo; Graef, George; Xu, Yixiang; Tenopir, Patrick; Clemente, Tom E

    2014-10-01

    Soybean (Glycine max (L.) Merr) is valued for both its protein and oil, whose seed is composed of 40% and 20% of each component, respectively. Given its high percentage of polyunsaturated fatty acids, linoleic acid and linolenic acid, soybean oil oxidative stability is relatively poor. Historically food processors have employed a partial hydrogenation process to soybean oil as a means to improve both the oxidative stability and functionality in end-use applications. However, the hydrogenation process leads to the formation of trans-fats, which are associated with negative cardiovascular health. As a means to circumvent the need for the hydrogenation process, genetic approaches are being pursued to improve oil quality in oilseeds. In this regard, we report here on the introduction of the mangosteen (Garcinia mangostana) stearoyl-ACP thioesterase into soybean and the subsequent stacking with an event that is dual-silenced in palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase expression in a seed-specific fashion. Phenotypic analyses on transgenic soybean expressing the mangosteen stearoyl-ACP thioesterase revealed increases in seed stearic acid levels up to 17%. The subsequent stacked with a soybean event silenced in both palmitoyl-ACP thioesterase and ∆12 fatty acid desaturase activity, resulted in a seed lipid phenotype of approximately 11%-19% stearate and approximately 70% oleate. The oil profile created by the stack was maintained for four generations under greenhouse conditions and a fifth generation under a field environment. However, in generation six and seven under field conditions, the oleate levels decreased to 30%-40%, while the stearic level remained elevated. PMID:24909647

  5. Rheological Properties of a Biological Thermo-Hydrogel Produced from Soybean Oil Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG exhibited viscoelastic behavior above 2% (wt.%) at room temperature and viscous fluid b...

  6. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  7. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-VI is a hydrolytic product of polymerized soybean oil (PSO). HPSO-VI exhibited viscoelastic behavior above 2% (wt. %) at room temperature and viscous fluid ...

  8. Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified using methanol, ethanol, and various mixtures of methanol and ethanol at a constant mole ratio of alcohol to oil of 12:1 in the presence of 1 wt % potassium hydroxide (KOH) catalyst at 30 deg C for 60 minutes. The effect of mixtures of methanol and ethanol on percent...

  9. Properties of a Soybean Oil-based Surfactant and Its Application in Microbubble Preparation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since microbubbles are thermodynamically unstable, surfactants are usually added to improve their stability. Demand for the use of vegetable oil-based surfactants has been increasing due to safety and environmental concerns. This work investigates a soybean oil-based surfactant and its application...

  10. Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified using various mixtures of methanol and ethanol at a constant molar ratio of alcohol to oil of 12:1 in the presence of 1 wt% potassium hydroxide catalyst at 30 degrees C for 60 min. The effect of mixtures of methanol and ethanol on percentage yields and fuel propertie...

  11. Vitamin A is rapidly degraded in retinyl palmitate-fortified soybean oil stored under household conditions.

    PubMed

    Pignitter, Marc; Dumhart, Bettina; Gartner, Stephanie; Jirsa, Franz; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-07-30

    Oil fortification with retinyl palmitate is intended to lower the prevalence of vitamin A deficiency in populations at risk. Although the stability of vitamin A in vegetable oil has been shown to depend on environmental factors, very little information is known about the stability of vitamin A in preoxidized vegetable oils. The present study investigated the stability of retinyl palmitate in mildly oxidized (peroxide value < 2 mequiv O2/kg) and highly oxidized (peroxide value > 10 mequiv O2/kg) soybean oil stored under domestic and retail conditions. Soybean oil was filled in transparent bottles, which were exposed to cold fluorescent light at 22 or 32 °C for 56 days. Periodic oil sampling increased the headspace, thereby mimicking consumer handling. Loss of retinyl palmitate in soybean oil by a maximum of 84.8 ± 5.76% was accompanied by a decrease of vitamin E by 53.3 ± 0.87% and by an increase of the peroxide value from 1.20 ± 0.004 to 24.3 ± 0.02 mequiv O2/kg. Fortification of highly oxidized oil with 31.6 IU/g retinyl palmitate led to a doubling of the average decrease of retinol per day compared to fortification of mildly oxidized oil. In conclusion, oil fortification programs need to consider the oxidative status of the oil used for retinyl palmitate fortification. PMID:25003735

  12. A survey of the agronomic and end-use characteristics of low phytic acid soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With unique high protein and oil contents, soybean (Glycine max L. merr.) is one of the most widely grown agronomic crops in the United States. Around 98% of those soybeans are used in animal feeds ranging from swine and cattle to domestic animals and aquaculture. This chapter will introduce phytic ...

  13. Overexpression of a soybean salicylic acid methlyltransferase gene confers resistance to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean cyst nematode (Heterodera glycines Ichinohe, SCN) is the most pervasive pest of soybean [Glycine max (L.) Merr.] in the USA and worldwide. SCN reduced soybean yields worldwide by an estimated billion dollars annually. These losses remained stable with the use of resistant cultivars but over ...

  14. Gene expression profiles of soybeans with mid-oleic acid seed phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of the mid-oleic acid soybean mutant M23 accumulate higher levels of oleic acid (50-60% oleate) by virtue of a deletion of GmFAD2-1A, an isoform of the microsomal omega-6 oleate desaturase gene. In other less well characterized natural soybean varieties that are phenotypically mid-oleic, litt...

  15. Identification of genes/loci and functional markers for seed oil quality improvement by exploring soybean genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The difference in seed oil composition and content among soybean genotypes can be attributed mostly to variations in transcript sequences and/or transcript accumulation of oil-related genes expressed in seeds. We applied the Illumina HiSeq 2000 system to sequence RNA populations in soybean seeds fro...

  16. Competitive transesterification of soybean oil with mixed methanol/ethanol over heterogeneous catalysts.

    PubMed

    Kim, M; Yan, S; Salley, S O; Ng, K Y S

    2010-06-01

    Methylesters and ethylesters of fatty acids were synthesized using homogeneous CH(3)ONa and CH(3)CH(2)ONa, anion exchanged resin, and CaO-La(2)O(3) catalysts. Methanol, ethanol, and methanol/ethanol mixtures were used as the alcohol feed for transesterification of soybean oil. With a homogeneous catalyst (CH(3)ONa) there was essentially no difference in conversion rates between methanolysis and ethanolysis in batch reactions. However, with a heterogeneous resin and CaO-La(2)O(3) catalysts, significant differences in the conversion rates between the methanolysis and ethanolysis were observed. The formation rate of methylesters over a CaO-La(2)O(3) catalyst was higher than that of ethylesters, which may be attributable to a steric hindrance effect. Conversely, with a heterogeneous resin catalyst, the conversion rate of ethylester was higher than that of methylesters which may be attributable to the surface hydrophobicity of the anion exchanged resin. When the transesterification of soybean oil was carried out with an equimolar methanol/ethanol mixture, the yield ratio of methylester to ethylester formed within the first 30 min was 2.6 for the homogeneous catalyst (0.3% CH(3)ONa), and 3.4 for the heterogeneous CaO-La(2)O(3)catalyst. These differences in selectivity are likely due to both the higher reactivity of methoxide and to a steric hindrance effect of ethoxide on the catalyst surface. In addition, the transformation of methylester to ethylester was observed when a methanol/ethanol mixture was used. PMID:20153166

  17. Red imported fire ant (Hymenoptera: Formicidae) control with a corn grit bait of fenoxycarb without soybean oil.

    PubMed

    Williams, D F; Banks, W A; Vander Meer, R K; Lofgren, C S

    1991-06-01

    The standard fenoxycarb fire ant bait formulation (Logic), composed of pregel defatted corn grits and soybean oil toxicant, was modified by eliminating the soybean oil. This formulation without soybean oil contained greater than 2 times more fenoxycarb and was as effective as the standard bait formulation against laboratory colonies of red imported fire ant, Solenopsis invicta Buren. In field tests, the modified and standard baits were equally effective in controlling fire ants after 6, 12, and 18 wk. Individual worker ants obtained from plots treated with fenoxycarb baits without soybean oil had greater than 47 times less fenoxycarb than did workers from the plots treated with the standard fenoxycarb baits containing soybean oil. PMID:1885843

  18. Speed of sound as a function of temperature for ultrasonic propagation in soybean oil

    NASA Astrophysics Data System (ADS)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.

  19. Extraction and characterization of oil bodies from soy beans: a natural source of pre-emulsified soybean oil.

    PubMed

    Iwanaga, Daigo; Gray, David A; Fisk, Ian D; Decker, Eric Andrew; Weiss, Jochen; McClements, David Julian

    2007-10-17

    Soybeans contain oil bodies that are coated by a layer of oleosin proteins. In nature, this protein coating protects the oil bodies from environmental stresses and may be utilized by food manufacturers for the same purpose. In this study, oil bodies were extracted from soybean using an aqueous extraction method that involved blending, dispersion (pH 8.6), filtration, and centrifugation steps. The influence of NaCl (0-250 mM), thermal processing (30-90 degrees C, 20 min) and pH (2-8) on the properties and stability of the oil bodies was analyzed using zeta-potential, particle size, and creaming stability measurements. The extracted oil bodies were relatively small ( d 32 approximately 250 nm), and their zeta-potential went from around +12 mV to -20 mV as the pH was increased from 2 to 8, with an isoelectric point around pH 4. The oil bodies were stable to aggregation and creaming at low (pH = 2) and high (pH >/= 6) pH values but were unstable at intermediate values (3 oil bodies were stable to aggregation and creaming at relatively low salt concentrations (NaCl oil bodies were stable to thermal processing from 30 to 90 degrees C (0 mM NaCl, pH 7), but there appeared to be a change in their interfacial properties (decrease in zeta-potential) at temperatures exceeding 60 degrees C. These results suggest that oil bodies extracted from soybeans have similar or improved stability compared to soybean oil emulsions produced from bulk ingredients and may provide a new way of creating functional soy products for the food industry. PMID:17880158

  20. Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary vulnerability of soybean production to climate change is likely to be from the effects of drought, which may be exacerbated by high temperature events. Technological adaptation can likely take advantage of warming in some production areas and rising concentrations of atmospheric carbon ...

  1. [Fast analysis of common fatty acids in edible vegetable oils by ultra-performance convergence chromatography-mass spectrometry].

    PubMed

    Lin, Chunhua; Xie, Xianqing; Fan, Naili; Tu, Yuanhong; Chen, Yan; Liao, Weilin

    2015-04-01

    A fast analytical method for five common fatty acids in six edible vegetable oils was developed by ultra-performance convergence chromatography-mass spectrometry (UPC2-MS). The five fatty acids are palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. Their contents in the corn oil, sunflower oil, soybean oil, tea oil, rapeseed oil and peanut oil were compared. The chromatographic separation was performed on an ACQUITY UPC2 BEH 2-EP column (100 mm x 2.1 mm, 1.7 µm) using the mobile phases of carbon dioxide and methanol/acetonitrile (1:1, v/v) with gradient elution. The separated compounds were detected by negative electrospray ionization ESF-MS. The results showed that the reasonable linearities were achieved for all the analytes over the range of 0.5-100 mg/L with the correlation coefficients (R2) of 0.9985-0.9998. The limits of quantification (S/N ≥ 10) of the five fatty acids were 0.15-0.50 mg/L. The recoveries of the five fatty acids at three spiked levels were in the range of 89.61%-108.50% with relative standard deviations of 0.69%-3.01%. The developed method showed high performance, good resolution and fast analysis for the underivatized fatty acids. It has been successfully used to detect the five fatty acids from corn oil, sunflower oil, soybean oil, tea oil rapeseed oil and peanut oil. PMID:26292410

  2. New soybean variants in oil composition identified by large scale mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify loci involved in the determination of fatty acid content in mature soybean seeds, we subject 3400 seed samples to fatty acid profiling by gas chromatography. In the mutagenized population, a wide range of variation in the content of each of the five major fatty acids was observed. 74 mu...

  3. Testing the influence of various conditions on the migration of epoxidised soybean oil from polyvinylchloride gaskets.

    PubMed

    Hanušová, Kristýna; Rajchl, Aleš; Votavová, Lenka; Dobiáš, Jaroslav; Steiner, Ingrid

    2013-01-01

    Epoxidised soybean oil (ESBO) is widely used as a plasticiser and stabiliser mainly in food contact materials on the base of polyvinylchloride (PVC), especially in the gaskets of jar lids. PVC gaskets containing 10-37% of ESBO were prepared by the baking of PVC plastisols at various process temperatures (180-240°C) in the laboratory. ESBO migration into olive oil and 3% acetic acid was studied at various temperatures (4°C, 25°C, 40°C and 60°C) during a storage time up to 12 months. ESBO released into food simulants was transmethylated, derivatised and analysed by gas chromatography-mass spectrometry (GC/MS). The effect of food processing, i.e. pasteurisation (80°C and 100°C) and sterilisation (125°C) on ESBO migration was also evaluated. The results were critically assessed with respect to the test conditions of specific migration in accordance with the current European Union legislation (Regulation (EU) No. 10/2011). The levels of ESBO migration found confirmed that the test conditions (i.e. 40°C or 60°C, 10 days) representing contact in the worst foreseeable use scenario seem to be insufficient for the simulation of ESBO migration during long-term storage and thus do not provide satisfactory objective results. PMID:23978228

  4. Soybean root growth in acid subsoils in relation to magnesium additions and soil solution ionic strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroponic studies with soybean [Glycine max (L.) Merr.] have shown that µM additions of Mg2+ were as effective in ameliorating Al rhizotoxicity as additions of Ca2+ in the mM concentration range. The objectives of this study were to assess ameliorative effects of Mg on soybean root growth in acidic...

  5. Soybean fatty acid desaturase pathway: reponses to temperature changes and pathogen infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stearoyl-acyl carrier protein-desaturase, omega-6 desaturase, and omega-3 fatty acid desaturase genes are present as multiple copies in the soybean genome as expected given the evidence from cytogenetics, genetic mapping, and genomic sequencing that soybean is a paleopolyploid species that underwent...

  6. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL

    PubMed Central

    Reinprecht, Yarmilla; Pauls, K. Peter

    2016-01-01

    High levels of linolenic acid (80 g kg−1) are associated with the development of off-flavors and poor stability in soybean oil. The development of low linolenic acid lines such as RG10 (20 g kg−1 linolenic acid) can reduce these problems. The level of linolenic acid in seed oil is determined by the activities of microsomal omega-3 fatty acid desaturases (FAD3). A major linolenic acid QTL (>70% of variation) on linkage group B2 (chromosome Gm14) was previously detected in a recombinant inbred line population from the RG10 × OX948 cross. The objectives of this study were to validate the major linolenic acid QTL in an independent population and characterize all the soybean FAD3 genes. Four FAD3 genes were sequenced and localized in RG10 and OX948 and compared to the genes in the reference Williams 82 genome. The FAD3A gene sequences mapped to the locus Glyma.14g194300 [on the chromosome Gm14 (B2)], which is syntenic to the FAD3B gene (locus Glyma.02g227200) on the chromosome Gm02 (D1b). The location of the FAD3A gene is the same as was previously determined for the fan allele, that conditions low linolenic acid content and several linolenic acid QTL, including Linolen 3-3, mapped previously with the RG10 × OX948 population and confirmed in the PI 361088B × OX948 population as Linolen-PO (FAD3A). The FAD3B gene-based marker, developed previously, was mapped to the chromosome Gm02 (D1b) in a region containing a newly detected linolenic acid QTL [Linolen-RO(FAD3B)] in the RG10 × OX948 genetic map and corresponds well with the in silico position of the FAD3B gene sequences. FAD3C and FAD3D gene sequences, mapped to syntenic regions on chromosomes Gm18 (locus Glyma.18g062000) and Gm11 (locus Glyma.11g227200), respectively. Association of linolenic acid QTL with the desaturase genes FAD3A and FAD3B, their validation in an independent population, and development of FAD3 gene-specific markers should simplify and accelerate breeding for low linolenic acid soybean

  7. Temperature Effects on Compressive Properties of Soybean Oil Based Polymers at Various Loading Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) has recently been reacted with diamine compounds to produce new polymers which are potential to be utilized in many engineering applications. Among these applications, the components utilizing the polymers may be subjected to different loading and temperature conditions...

  8. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  9. Boron Trifluoride Catalized Ring-Opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3.OEt2) catalyzed ring-opening polymerization of epoxidized soybean oil (ESO), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, differ...

  10. Potential Large-Scale Production of Conjugated Soybean Oil Catalyzed by Photolyzed Iodine in Hexanes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A laboratory apparatus is described for the production of conjugated soybean oil (SBO) in pound quantities via irradiation with visible-light. Under our reaction conditions, quantitative conversions (determined by NMR spectroscopy) of SBO to conjugated SBO, in hexanes at reflux temperatures, were a...

  11. Acyl migration kinetics of 2-monoacylglycerols from soybean oil via 1 hour Nuclear Magnetic Resonance (NMR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acyl migration kinetics of neat 2-monoacylglycerol (2-MAG) to form 1-monoacylglycerol (1-MAG) was determined using proton NMR spectroscopy to monitor the beta-proton integration ratios of the two species over time. 2-MAG was synthesized by the Novozym 435-catalyzed alcoholysis of soybean oil an...

  12. Soybean Oil Based Biobarriers Remove Atrazine from Contaminated Water: Laboratory Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the US almost 35 million kg of atrazine are used annually. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes atrazine a frequent groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil, inoculated...

  13. A GENOMIC PERSPECTIVE ON THE SOYBEAN PROTEIN(+)/OIL(-)YIELD(-)ENIGMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybeans [Glycine max(L>) Merrill] seed protein is negatively correlated with seed oil and yield. A number of QTL mapping studies have been conducted to date involving matings of a high-protein (less than 48 percent) low-yield parents with high-yield parents exhibiting ordinary protein (less t...

  14. Phase Transition Behavior of Novel Soybean Oil-based Thermosensitive Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermal phase transition behavior of novel soybean oil-based polymers was studied. The effect of polymer concentration on the cloud points was investigated. The light transmittance increased sharply with increasing temperature suggesting dissociation of polymer aggregates. The cloud points we...

  15. Additives increasing antioxidant activity of sesamol in soybean oil at frying temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sesamol has drawn a considerable interest as an alternative to synthetic antioxidants due to its excellent radical scavenging ability at room temperature, low cost and additional health-promoting benefits. However, when it was evaluated for its antioxidant activity in soybean oil at frying temperatu...

  16. Characterization of a Soybean Oil-based Biosurfactant and Evaluation of its Ability to Form Microbubbles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper characterizes the physio-chemical properties of the soybean oil (SBO)-based polymeric surfactant, Palozengs R-004 (hereafter referred to as R-004). The surface activity of R-004 is comparable to the reported activities of biosurfactants produced by microorganisms and higher than some of ...

  17. Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Biomass alternative fuels program. Final report

    SciTech Connect

    Not Available

    1981-11-01

    The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons. An engine test plan was developed and implemented in this project. Data provide a preliminary indication that the blend containing one-third degummed soybean oil and two-thirds No. 2 diesel oil performed satisfactorily. Long term operation on the 50-50 blend is questionable. Detailed data and observations appear in the body of the report. The study also presents detailed engineering, financial, marketing, management and implementation plans for production of the proposed fuel blend, as well as a complete analysis of impacts. 4 references, 55 figures, 56 tables.

  18. Adaptability and phenotypic stability of soybean cultivars for grain yield and oil content.

    PubMed

    Silva, K B; Bruzi, A T; Zuffo, A M; Zambiazzi, E V; Soares, I O; de Rezende, P M; Fronza, V; Vilela, G D L; Botelho, F B S; Teixeira, C M; de O Coelho, M A

    2016-01-01

    The aim of this study was to verify the adaptability and stability of soybean cultivars with regards to yield and oil content. Data of soybean yield and oil content were used from experiments set up in six environments in the 2011/12 and 2012/13 crop seasons in the municipalities of Patos de Minas, Uberaba, Lavras, and São Gotardo, Minas Gerais, Brazil, testing 36 commercial soybean cultivars of both conventional and transgenic varieties. The Wricke method and GGE biplot analysis were used to evaluate adaptability and stability of these cultivars. Large variations were observed in grain yield in relation to the different environments studied, showing that these materials are adaptable. The cultivars exhibited significant differences in oil content. The cultivars BRSGO204 (Goiânia) and BRSMG (Garantia) exhibited the greatest average grain yield in the different environments studied, and the cultivar BRSMG 760 SRR had the greatest oil content among the cultivars evaluated. Ecovalence was adopted to identify the most stable cultivars, and the estimates were nearly uniform both for grain yield and oil content, showing a variation of 0.07 and 0.01%, respectively. The GGE biplot was efficient at identifying cultivars with high adaptability and phenotype stability. PMID:27173225

  19. Using near infrared spectroscopy to classify soybean oil according to expiration date.

    PubMed

    da Costa, Gean Bezerra; Fernandes, David Douglas Sousa; Gomes, Adriano A; de Almeida, Valber Elias; Veras, Germano

    2016-04-01

    A rapid and non-destructive methodology is proposed for the screening of edible vegetable oils according to conservation state expiration date employing near infrared (NIR) spectroscopy and chemometric tools. A total of fifty samples of soybean vegetable oil, of different brands andlots, were used in this study; these included thirty expired and twenty non-expired samples. The oil oxidation was measured by peroxide index. NIR spectra were employed in raw form and preprocessed by offset baseline correction and Savitzky-Golay derivative procedure, followed by PCA exploratory analysis, which showed that NIR spectra would be suitable for the classification task of soybean oil samples. The classification models were based in SPA-LDA (Linear Discriminant Analysis coupled with Successive Projection Algorithm) and PLS-DA (Discriminant Analysis by Partial Least Squares). The set of samples (50) was partitioned into two groups of training (35 samples: 15 non-expired and 20 expired) and test samples (15 samples 5 non-expired and 10 expired) using sample-selection approaches: (i) Kennard-Stone, (ii) Duplex, and (iii) Random, in order to evaluate the robustness of the models. The obtained results for the independent test set (in terms of correct classification rate) were 96% and 98% for SPA-LDA and PLS-DA, respectively, indicating that the NIR spectra can be used as an alternative to evaluate the degree of oxidation of soybean oil samples. PMID:26593525

  20. Enrichment of erucic acid from pennycress (Thlaspi arvense L.) seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress (Thlaspi arvense) is a winter annual that has a wide geographic distribution and a growth habitat that makes it suitable for an off-season rotation between corn and soybeans in much of the Midwestern United States. Pennycress seed contains 36% oil with 36.6% erucic acid content. There are...

  1. Variation in Oil Content and Fatty Acid Composition in the US Castor Bean Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor has potential as a feedstock for biodiesel production. The oil content and fatty acid composition of castor bean seeds are therefore important factors determining the price and quality of castor bean biodiesel. Forty-eight castor bean and two soybean accessions were selected from the US germp...

  2. Amine Hydroxy Derivative of Soybean Oil as Lubricant Additive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amphiphilic character of vegetable oils makes them an excellent candidate as lubricants and as specialty chemicals. Additional advantages of vegetable oils are that they are renewable resources, environmentally friendly non toxic fluids, and readily biodegradable. Industrial application of veg...

  3. Classification of rapeseed and soybean oils by use of unsupervised pattern-recognition methods and neural networks.

    PubMed

    Wesołowski, M; Suchacz, B

    2001-10-01

    Unsupervised pattern-recognition methods and Kohonen neural networks have been applied to the classification of rapeseed and soybean oil samples according to their type and quality by use of chemical and physical properties (density, refractive index, saponification value, and iodine and acid numbers) and thermal properties (thermal decomposition temperatures) as variables. A multilayer feed-forward (MLF) neural network (NN) has been used to select the most important variables for accurate classification of edible oils. To accomplish this task different neural networks architectures trained by back propagation of error method, using chemical, physical, and thermal properties as inputs, were employed. The network with the best performance and the smallest root mean squared (RMS) error was chosen. The results of MLF network sensitivity analysis enabled the identification of key properties, which were again used as variables in principal components analysis (PCA), cluster analysis (CA), and in Kohonen self-organizing feature maps (SOFM) to prove their reliability. PMID:11688644

  4. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean-maize blends.

    PubMed

    Ng'ong'ola-Manani, Tinna Austen; Ostlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-11-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean-maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  5. Characterization of the fan1 locus in soybean line A5 and development of molecular assays for high-throughput genotyping of FAD3 genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is one of the most important oil crops in the world, and reduced linolenic acid content of soybean oil will provide increased stability of the oil to consumers and food manufacturers and limit the amount of trans-fat to be used in the processed foods. The linolenic content in soybean seeds i...

  6. Recovery of phytosterols from waste residue of soybean oil deodorizer distillate.

    PubMed

    Yang, Haojun; Yan, Feng; Wu, Daogeng; Huo, Ming; Li, Jianxin; Cao, Yuping; Jiang, Yiming

    2010-03-01

    This study describes a catalytic decomposition and crystallization process to recover phytosterols from the waste residue of soybean oil deodorizer distillate (WRSODD). Various solvents were used for the crystallization of phytosterols. The effect of different solvents on the purity and yield of recovered phytosterols was investigated. The composition of WRSODD was analyzed by silica gel column chromatography and FT-IR spectrum. Gas chromatography (GC), GC-MS, and FT-IR were adopted to determine the purity and structure of phytosterols. Results showed the total amount of phytosterols, in the form of fatty acid steryl esters, was up to 20 wt.% of WRSODD. Through orthogonal experiments, the optimized crystallization conditions were obtained. It's found the mixed solvent of acetone and ethanol (4/1, v/v) could generate good crystallization. The yield of recovered phytosterols was 22.95 wt.% after the 1st crystallization. The purity of phytosterols reached 91.82, 92.73, and 97.17 wt.% after the 1st, 2nd, and 3rd crystallization, respectively. PMID:19800221

  7. Preparation and Characterization of Polymeric Surfactants Based on Epoxidized Soybean Oil Grafted Hydroxyethyl Cellulose.

    PubMed

    Huang, Xujuan; Liu, He; Shang, Shibin; Rao, Xiaoping; Song, Jie

    2015-10-21

    Epoxidized soybean oil (ESO) grafted hydroxyethyl cellulose (HEC) was prepared via ring-opening polymerization, in which the hydroxyl groups of HEC acted as initiators and the polymeric ESO were covalently bonded to the HEC. Hydrolysis of ESO-grafted HEC (ESO-HEC) was performed with sodium hydroxide, and the hydrolyzed ESO-HEC (H-ESO-HEC) products were characterized via Fourier transform infrared (FT-IR) and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopies, high-temperature gel permeation chromatography (HT-GPC), and differential scanning calorimetry (DSC). The results indicated that ring-opening polymerization of ESO occurred with the hydroxyl groups of HEC as initiators. The molecular weights of the H-ESO-HEC products were varied by adjusting the mass ratio of HEC and ESO. Through neutralizing the carboxylic acid of H-ESO-HEC with sodium hydroxide, novel polymeric surfactants (H-ESO-HEC-Na) were obtained, and the effects of polymeric surfactants on the surface tension of water were investigated as a function of concentration of H-ESO-HEC-Na. The H-ESO-HEC-Na was effective at lowering the surface tension of water to 26.33 mN/m, and the critical micelle concentration (CMC) value decreased from 1.053 to 0.157 g/L with increases in molecular weights of the polymeric surfactants. Rheological measurements indicated that the H-ESO-HEC-Na solutions changed from pseudoplastic property to Newtonian with increasing shear rate. PMID:26416659

  8. Evaluation of the inclusion of soybean oil and soybean processing by-products to soybean meal on nutrient composition and digestibility in swine and poultry.

    PubMed

    Bruce, K J; Karr-Lilienthal, L K; Zinn, K E; Pope, L L; Mahan, D C; Fastinger, N D; Watts, M; Utterback, P L; Parsons, C M; Castaneda, E O; Ellis, M; Fahey, G C

    2006-06-01

    This experiment was designed to evaluate the effects of selected soybean (SB) processing byproducts (gums, oil, soapstock, weeds/trash) when added back to soybean meal (SBM) during processing on the resulting nutrient composition, protein quality, nutrient digestibility by swine, and true metabolizable energy (TMEn) content and standardized AA digestibility by poultry. To measure ileal DM and nutrient digestibility, pigs were surgically fitted with a T-cannula in the distal ileum. The concentration of TMEn and the standardized AA digestibility by poultry were determined using the precision fed cecectomized rooster assay. Treatments in the swine experiment included SBM with no by-products; SBM with 1% gum; SBM with 3% gum; SBM with 0.5% soapstock; SBM with 1.5% soapstock; SBM with 2% weeds/trash; SBM with a combination of 3% gum, 1.5% soapstock, and 2% weeds/trash; SBM with 5.4% soybean oil; and roasted SB. A 10 x 10 Latin square design was utilized. The experiment was conducted at the University of Illinois, Urbana-Champaign, and at The Ohio State University, Columbus. In the swine experiment, apparent ileal DM, OM, CP, and AA digestibilities were reduced (P < 0.05) when pigs consumed the combination by-product diet compared with the diet containing no by-products. Apparent ileal digestibilities of DM, CP, and total essential, total nonessential, and total AA were lower (P < 0.05) for any diet containing by-products compared with the diet with no by-products. Apparent ileal digestibilities of DM, OM, CP, and AA were lower (P < 0.05) for the roasted SB-compared with the SB oil-containing diet. In the rooster experiment, TMEn values were greater (P < 0.05) for roasted SB compared with SBM with no by-products and increased linearly as the addition of soapstock increased. Individual, total essential, total nonessential, and total AA digestibilities were lower (P < 0.05) for roosters fed roasted SB versus SBM devoid of by-products. Gums, soapstock, and weeds

  9. Stabilization of soybean oil bodies using protective pectin coatings formed by electrostatic deposition.

    PubMed

    Iwanaga, Daigo; Gray, David; Decker, Eric Andrew; Weiss, Jochen; McClements, David Julian

    2008-03-26

    Soybeans contain oil bodies that are naturally coated by a layer of phospholipids and proteins. In nature, this coating protects the oil bodies from environmental stresses and could be utilized by food manufacturers for the same purpose. However, natural oil bodies are physically unstable to aggregation because of the relatively weak electrostatic repulsion between them, which limits their application in many foods. In this study, oil bodies were extracted from soybean using an aqueous extraction method and then coated by a pectin layer using electrostatic deposition. The influence of NaCl (0-500 mM), pH (2-8), and freeze-thaw cycling (-20 degrees C, 22 h/40 degrees C, 2 h) on the properties and stability of the oil bodies coated by the pectin layer was analyzed using zeta-potential, particle size, and creaming stability measurements. These results suggest that pectin-coated oil bodies have similar or improved stability compared to uncoated oil bodies and may provide a new way of creating functional soy products for use in the food and other industries. PMID:18303824

  10. Expression of Umbelopsis ramanniana DGAT2A in Seed Increases Oil in Soybean1[OA

    PubMed Central

    Lardizabal, Kathryn; Effertz, Roger; Levering, Charlene; Mai, Jennifer; Pedroso, M.C.; Jury, Tom; Aasen, Eric; Gruys, Ken; Bennett, Kristen

    2008-01-01

    Oilseeds are the main source of lipids used in both food and biofuels. The growing demand for vegetable oil has focused research toward increasing the amount of this valuable component in oilseed crops. Globally, soybean (Glycine max) is one of the most important oilseed crops grown, contributing about 30% of the vegetable oil used for food, feed, and industrial applications. Breeding efforts in soy have shown that multiple loci contribute to the final content of oil and protein stored in seeds. Genetically, the levels of these two storage products appear to be inversely correlated with an increase in oil coming at the expense of protein and vice versa. One way to overcome the linkage between oil and protein is to introduce a transgene that can specifically modulate one pathway without disrupting the other. We describe the first, to our knowledge, transgenic soy crop with increased oil that shows no major impact on protein content or yield. This was achieved by expressing a codon-optimized version of a diacylglycerol acyltransferase 2A from the soil fungus Umbelopsis (formerly Mortierella) ramanniana in soybean seed during development, resulting in an absolute increase in oil of 1.5% (by weight) in the mature seed. PMID:18633120

  11. Quantitative trait locus analysis of seed sulfur containing amino acids in two recombinant inbred line populations of soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max (L.) Merr.) is a major source of plant protein for humans and livestock. Low levels of sulfur containing amino acids (cysteine and methionine) in soybean protein is the main limitation of soybean meal as animal food. The objectives of this study were to identify and validate Q...

  12. Glyphosate and boron application effects on seed composition and seed boron in glyphosate-resistant soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed is a major source of protein and oil in the world. Seed quality is determined by the content of protein and oil. Soybean seed contains five major fatty acids, saturated fatty acids (stearic and palmitic), and unsaturated fatty acids (oleic, linoleic, and linolenic). Both linoleic and li...

  13. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas. PMID:17206812

  14. PALM AND PARTIALLY HYDROGENATED SOYBEAN OILS ADVERSELY ALTER LIPOPROTEIN PROFILES COMPARED WITH SOYBEAN AND CANOLA OILS IN MODERATELY HYPERLIPIDEMIC SUBJECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Partially-hydrogenated fat has an unfavorable effect on cardiovascular disease risk. Palm oil has reemerged as a potential substitute due to favorable physical characteristics. Objective: To assess the effect of palm oil relative to both partially-hydrogenated fat and oils high in mon...

  15. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean-maize blends.

    PubMed

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Ostlie, Hilde M; Wicklund, Trude

    2014-03-01

    Fermented pastes of soybeans and soybean-maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  16. Crystal morphology of sunflower wax in soybean oil organogel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...

  17. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our mission is to develop new, value-added uses for commodity crops and oils. We chose to fulfill this mission while adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycerols (FSG) from the biocatalytic transester...

  18. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our mission is to develop new, value-added uses for commodity crops and their oils. We strive to fulfill this mission with the self imposed responsibility of adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycer...

  19. Inositol metabolism and phytase activity in normal and low phytic acid soybean seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic basis for the low seed phytic acid trait in soybean lines derived from the low phytic acid line (CX1834) of Wilcox et al (2000) is under investigation in several laboratories. Our objective was to measure metabolite levels associated with the phytic acid and raffinosaccharide biosyntheti...

  20. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  1. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  2. Enzymatic coproduction of biodiesel and glycerol carbonate from soybean oil and dimethyl carbonate.

    PubMed

    Seong, Pil-Je; Jeon, Byoung Wook; Lee, Myunggu; Cho, Dae Haeng; Kim, Duk-Ki; Jung, Kwang S; Kim, Seung Wook; Han, Sung Ok; Kim, Yong Hwan; Park, Chulhwan

    2011-05-01

    The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved. PMID:22113023

  3. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  4. Cell wall, lignin and fatty acid-related transcriptome in soybean: Achieving gene expression patterns for bioenergy legume

    PubMed Central

    Pestana-Calsa, Maria Clara; Pacheco, Cinthya Mirella; de Castro, Renata Cruz; de Almeida, Renata Rodrigues; de Lira, Nayara Patrícia Vieira; Junior, Tercilio Calsa

    2012-01-01

    Increasing efforts to preserve environmental resources have included the development of more efficient technologies to produce energy from renewable sources such as plant biomass, notably through biofuels and cellulosic residues. The relevance of the soybean industry is due mostly to oil and protein production which, although interdependent, results from coordinated gene expression in primary metabolism. Concerning biomass and biodiesel, a comprehensive analysis of gene regulation associated with cell wall components (as polysaccharides and lignin) and fatty acid metabolism may be very useful for finding new strategies in soybean breeding for the expanding bioenergy industry. Searching the Genosoja transcriptional database for enzymes and proteins directly involved in cell wall, lignin and fatty acid metabolism provides gene expression datasets with frequency distribution and specific regulation that is shared among several cultivars and organs, and also in response to different biotic/abiotic stress treatments. These results may be useful as a starting point to depict the Genosoja database regarding gene expression directly associated with potential applications of soybean biomass and/or residues for bioenergy-producing technologies. PMID:22802717

  5. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    PubMed

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil. PMID:11460320

  6. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    PubMed

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. PMID:25062659

  7. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    PubMed

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-01-01

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content. PMID:27050959

  8. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings. PMID:25069575

  9. Modification of egg yolk fatty acids profile by using different oil sources

    PubMed Central

    Omidi, Mohsen; Rahimi, Shaban; Karimi Torshizi, Mohammad Ali

    2015-01-01

    The study was conducted to evaluate the effects of different dietary oil sources supplementation on laying hens’ performance and fatty acids profile of egg yolks. Seventy-two 23-week-old laying hens (Tetra-SL) divided into six experimental diets (four replicates and three birds per replication) in a completely randomized design for nine weeks. Experimental diets were included: 1) control (no oil), 2) 3.00% fish oil, 3) 3.00% olive oil, 4) 3.00% grape seed oil, 5) 3.00% canola oil, and 6) 3.00% soybean oil. The diets were similar in terms of energy and protein. Egg production, egg mass, egg weight, feed intake, feed conversion ratio and fatty acid composition of egg yolk were determined at the end of the trial. The results indicated that the performance parameters were not significantly different between treatments in the entire period (p > 0.05). However, fatty acids profiles of yolk were affected by experimental diets (p < 0.05). Fish oil significantly reduced omega-6 fatty acids and increased docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in egg yolk. Also canola oil increased linolenic acid content in the egg yolk. In conclusion, fish oil increased omega-3 long-chain fatty acids and decreased omega-6 to omega-3 ratio in eggs which may have beneficial effects on human health. PMID:26261709

  10. Soybean oil and methyl oleate adsorption onto a steel surface investigated using a quartz crystal microbalance with dissipation monitoring and atomic force microscopy**1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States’ 2010 annual production of soybean oil exceeded 8 million metric tons, making a significant vegetable oil surplus available for new uses, particularly as a lubricant. Investigation of soybean oil and methyl oleate adsorption onto steel using a quartz crystal microbalance with diss...

  11. Investigation into photostability of soybean oils by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Savi, E. L.; Malacarne, L. C.; Baesso, M. L.; Pintro, P. T. M.; Croge, C.; Shen, J.; Astrath, N. G. C.

    2015-06-01

    Assessment of photochemical stability is essential for evaluating quality and the shelf life of vegetable oils, which are very important aspects of marketing and human health. Most of conventional methods used to investigate oxidative stability requires long time experimental procedures with high consumption of chemical inputs for the preparation or extraction of sample compounds. In this work we propose a time-resolved thermal lens method to analyze photostability of edible oils by quantitative measurement of photoreaction cross-section. An all-numerical routine is employed to solve a complex theoretical problem involving photochemical reaction, thermal lens effect, and mass diffusion during local laser excitation. The photostability of pure oil and oils with natural and synthetic antioxidants is investigated. The thermal lens results are compared with those obtained by conventional methods, and a complete set of physical properties of the samples is presented.

  12. Investigation into photostability of soybean oils by thermal lens spectroscopy.

    PubMed

    Savi, E L; Malacarne, L C; Baesso, M L; Pintro, P T M; Croge, C; Shen, J; Astrath, N G C

    2015-06-15

    Assessment of photochemical stability is essential for evaluating quality and the shelf life of vegetable oils, which are very important aspects of marketing and human health. Most of conventional methods used to investigate oxidative stability requires long time experimental procedures with high consumption of chemical inputs for the preparation or extraction of sample compounds. In this work we propose a time-resolved thermal lens method to analyze photostability of edible oils by quantitative measurement of photoreaction cross-section. An all-numerical routine is employed to solve a complex theoretical problem involving photochemical reaction, thermal lens effect, and mass diffusion during local laser excitation. The photostability of pure oil and oils with natural and synthetic antioxidants is investigated. The thermal lens results are compared with those obtained by conventional methods, and a complete set of physical properties of the samples is presented. PMID:25770935

  13. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  14. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds.

    PubMed

    Momma, M; Haraguchi, K; Saito, M; Chikuni, K; Harada, K

    1997-08-01

    Whey proteins from soybean seeds of Japanese varieties were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Among 11 varieties of soybean, three green and one black soybeans lacked a 26-kDa band that was found in all yellow soybeans. In this paper, the 26-kDa protein was named AS26k (acid soluble 26-kDa protein) temporarily. The AS26k protein was purified from Glycine max cv. Nattosyoryu, which is yellow soybean, through four purification steps: 30-35% saturated ammonium sulfate fractionation, ion exchange chromatography on S Sepharose Fast Flow, gel filtration on Sephadex G-100, and hydrophobic chromatography on phenyl Sepharose CL-4B. Purified AS26k was cleaved with V8 proteinase from Staphylococcus aureus or CNBr. The cleaved polypeptide contained two typical dehydrin motif sequences: DEYGNPV and (M)DKIKEKLPG, and a 19 amino acids sequence similar to a pea dehydrin. Native AS26k had a molecular mass of 32 kDa on gel filtration and a pl of 7.2 on two-dimensional PAGE. Similarly to other dehydrins and late embryogenesis abundant (LEA) proteins, AS26k was rich in hydrophilic amino acids, and highly heat stable. These results showed that AS26k was a dehydrin, a group II LEA protein in soybean seeds. PMID:9301109

  15. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    PubMed

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. PMID:25312008

  16. Evaluation of antioxidant activity of loquat fruit (Eriobotrya japonica lindl.) skin and the feasibility of their application to improve the oxidative stability of soybean oil.

    PubMed

    Delfanian, Mojtaba; Kenari, Reza Esmaeilzadeh; Sahari, Mohammad Ali

    2016-05-01

    The effects of ultrasound-assisted, supercritical CO2 and solvent extraction techniques on antioxidant activity of loqua (Eriobotrya japonica Lindl.) skin extract in oxidation stability of soybean oil was evaluated. The antioxidant efficacy of extracts was determined using 2, 2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging capacity, β-carotene/linoleic acid, and Rancimat test system. Results showed that solvent extract of loquat fruit skin at 400 ppm had the highest antioxidant activity compared to ultrasound-assisted and supercritical CO2 extracts. Further, solvent extraction was the most effective method for extraction of phenolic compounds. Protective effects of extracts in stabilization of soybean oil during both frying and storage conditions were tested and compared to tert-butyl hydroquinone (TBHQ) by measuring their peroxide value, free fatty acids, conjugated dienes and trienes value. During frying process solvent extract of skin at 400 ppm (SOEA) exhibited stronger antioxidant activity in oil compared to other oil samples, but this antioxidant potential was lower than TBHQ in storage conditions. Present study showed that loquat fruit skin is a good source of natural antioxidant compounds, and has the potential to be used as a substitute for synthetic antioxidants in vegetable oils. PMID:27407190

  17. Amino acids as antioxidants for frying oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  18. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  19. METABOLIC REDESIGN OF VITAMIN E BIOSYNTHESIS IN SOYBEAN FOR ENHANCED ANTIOXIDANT CONTENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidative stability of soybean oil is determined by its fatty acid composition and antioxidant content. Oxidative stability is a critical factor for the use of vegetable oils in food processing and industrial lubricant applications. The primary antioxidants in soybean oil are tocopherols. Toc...

  20. Effects of age and dietary soybean oil level on eggshell quality, bone strength and blood biochemistry in laying hens.

    PubMed

    Jiang, S; Cui, L Y; Hou, J F; Shi, C; Ke, X; Yang, L C; Ma, X P

    2014-01-01

    The objective of the study was to investigate the differences in eggshell quality, bone quality and serum bone biochemistry markers associated with changes in age and dietary soybean oil levels in laying hens. A total of 54, 19-week-old Hy-Line Brown laying hens were housed in 18 battery cages (3 birds/cage) and randomly divided into three diet treatments for 90 d: control-fat (CF, 1.9% soybean oil), moderate-fat (MF, 7% soybean oil) and high-fat (HF, 10% soybean oil). The hens' body weights (BW), egg production, egg weights, eggshell thickness and femoral diameter were higher at d 90 than at d 60 or d 30. Meanwhile, feed intake, relative bone weights, all bone strength parameters and serum Ca were lower at d 90 or 60 than at d 30. Compared to the CF hens, the feed intake, BW, abdominal fat pad weights and serum alkaline phosphatase activity were elevated in MF or HF hens. The eggshell thickness, relative femoral and tibial weight, femoral stiffness, femoral modulus, tibial mixed force and serum calcium and phosphorus levels were lower in MF or HF hens than CF hens. These findings suggest that bone loss in caged hens starts from an early stage of the laying period, and dietary oil (particularly with diets over 10% soybean oil) has harmful effects on eggshell quality, bone strength and bone mineralisation from an early stage of the laying period. PMID:25109942

  1. Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer

    DOE PAGESBeta

    Mauck, Sheli C.; Wang, Shu; Ding, Wenyue; Rohde, Brian J.; Fortune, C. Karen; Yang, Guozhen; Robertson, Megan L.; Ahn, Suk -Kyun

    2016-02-26

    Polylactide (PLA), a commercially available thermoplastic derived from plant sugars, finds applications in consumer products, disposable packaging, and textiles, among others. The widespread application of this material is limited by its brittleness, as evidenced by low tensile elongation at break, impact strength, and fracture toughness. Herein, a multifunctional vegetable oil, acrylated epoxidized soybean oil (AESO), was investigated as a biodegradable, renewable additive to improve the toughness of PLA. AESO was found to be a highly reactive oil, providing a dispersed phase with tunable properties in which the acrylate groups underwent cross-linking at the elevated temperatures required for processing the blends.more » Additionally, the presence of hydroxyl groups on AESO provided two routes for compatibilization of PLA/AESO blends: (1) reactive compatibilization through the transesterification of AESO and PLA and (2) synthesis of a PLA star polymer with an AESO core. The morphological, thermal, and mechanical behaviors of PLA/oil blends were investigated, in which the dispersed oil phase consisted of AESO, soybean oil (SYBO), or a 50/50 mixture of AESO/SYBO. The oil additives were found to toughen the PLA matrix, with significant enhancements in the elongation at break and tensile toughness values, while maintaining the glass transition temperature of neat PLA. Specifically, the blend containing PLA, AESO, SYBO, and the PLA star polymer was found to exhibit a uniform oil droplet size distribution with small average droplet size and interparticle distance, resulting in the greatest enhancements of PLA tensile properties with no observable plasticization.« less

  2. Soybean oil-based lubricants: a search for synergistic antioxidants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can contribute towards the goal of energy independence and security due to their naturally renewable resource. They are promising candidates as base fluid for eco-friendly lubricants because of their excellent lubricity, biodegradability, superior viscosity-temperature characteristic...

  3. EFFECTS OF SIMULATED ACID RAIN ON YIELD RESPONSE OF TWO SOYBEAN CULTIVARS

    EPA Science Inventory

    An important component of the effects of acid rain on our ecosystem is its impact on the yield of agricultural crops. ield experiments were conducted for 3 yr to determine the effects of simulated acid rain on seed yield of two soybean [Glycine max (L.) Merr.] cultivars. 'Amsoy 7...

  4. Efficient free fatty acid production in engineered Escherichia coli strains using soybean oligosaccharides as feedstock.

    PubMed

    Wang, Dan; Wu, Hui; Thakker, Chandresh; Beyersdorf, Jared; Bennett, George N; San, Ka-Yiu

    2015-01-01

    To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. PMID:25919701

  5. Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance

    NASA Astrophysics Data System (ADS)

    Simencio Otero, Rosa L.; Canale, Lauralice C. F.; Said Schicchi, Diego; Agaliotis, Eliana; Totten, George E.; Sánchez Sarmiento, Gustavo

    2013-07-01

    Vegetable and animal oils as a class of fluids have been used for hundreds of years, if not longer, as quenchants for hardening steel. However, when petroleum oils became available in the late 1800s and early 1900s, the use of these fluids as quenchants, in addition to their use in other industrial oil applications, quickly diminished. This was primarily, but not exclusively, due to their generally very poor thermal-oxidative instability and the difficulty for formulating fluid analogs with varying viscosity properties. Interest in the use of renewable fluids, such as vegetable oils, has increased dramatically in recent years as alternatives to the use of relatively non-biodegradable and toxic petroleum oils. However, the relatively poor thermal-oxidative stability has continued to be a significant reason for their general non-acceptance in the marketplace. Soybean oil (SO) is one of the most highly produced vegetable oils in Brazil. Currently, there are commercially produced epoxidized versions of SO which are available. The objective of this paper is to discuss the potential use of epoxidized SO and its heat transfer properties as a viable alternative to petroleum oils for hardening steel.

  6. 21 CFR 172.723 - Epoxidized soybean oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 5 U.S.C 552(a) and 1 CFR part 51. Copies are available from the American Oil Chemists' Society, P. O... incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. The availability of this... in the control), which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR...

  7. Roselle (Hibiscus sabdariffa L.) and soybean oil effects on quality characteristics of pork patties studied by response surface methodology.

    PubMed

    Jung, Eunkyung; Joo, Nami

    2013-07-01

    Response surface methodology was used to investigate the effect and interactions of processing variables such as roselle extract (0.1-1.3%), soybean oil (5-20%) on physicochemical, textural and sensory properties of cooked pork patties. It was found that reduction in thickness, pH, L* and b* values decreased; however, water-holding capacity, reduction in diameter and a* values increased, respectively, as the amount of roselle increased. Soybean oil addition increased water-holding capacity, reduction in thickness, b* values of the patties. The hardness depended on the roselle and soybean oil added, as its linear effect was negative at p<0.01. The preference of color, tenderness, juiciness, and overall quality depend on the addition of roselle and soybean oil. The maximum overall quality score (5.42) was observed when 12.5 g of soybean oil and 0.7 g of roselle extract was added. The results of this optimization study would be useful for meat industry that tends to increase the product yield for patties using the optimum levels of ingredients by RSM. PMID:23567142

  8. Soybean Root Elongation Response to Magnesium Additions to Acid Subsoil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additions of micromolar concentrations of Mg2+ to hydroponic solutions enhance Al tolerance of soybean [Glycine max (L.) Merr.] by increasing citrate secretion from roots and external complexation of toxic Al species in solution. The objective of this study was to assess the ameliorative effect of M...

  9. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    PubMed

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. PMID:25740001

  10. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production. PMID:25152056

  11. Inoculation with Bradyrhizobium japonicum enhances the organic and fatty acids content of soybean (Glycine max (L.) Merrill) seeds.

    PubMed

    Silva, Luís R; Pereira, Maria J; Azevedo, Jessica; Mulas, Rebeca; Velazquez, Encarna; González-Andrés, Fernando; Valentão, Patrícia; Andrade, Paula B

    2013-12-15

    Soybean (Glycine max (L.) Merrill) is one of the most important food crops for human and animal consumption, providing oil and protein at relatively low cost. The least expensive source of nitrogen for soybean is the biological fixation of atmospheric nitrogen by the symbiotic association with soil bacteria, belonging mainly to the genus Bradyrhizobium. This study was conducted to assess the effect of the inoculation of G. max with Bradyrhizobium japonicum on the metabolite profile and antioxidant potential of its seeds. Phenolic compounds, sterols, triterpenes, organic acids, fatty acids and volatiles profiles were characterised by different chromatographic techniques. The antioxidant activity was evaluated against DPPH, superoxide and nitric oxide radicals. Inoculation with B. japonicum induced changes in the profiles of primary and secondary metabolites of G. max seeds, without affecting their antioxidant capacity. The increase of organic and fatty acids and volatiles suggest a positive effect of the inoculation process. These findings indicate that the inoculation with nodulating B. japonicum is a beneficial agricultural practice, increasing the content of bioactive metabolites in G. max seeds owing to the establishment of symbiosis between plant and microorganism, with direct effects on seed quality. PMID:23993531

  12. Synergy of licorice extract and pea protein hydrolysate for oxidative stability of soybean oil-in-water emulsions.

    PubMed

    Zhang, Xin; Xiong, Youling L; Chen, Jie; Zhou, Lirong

    2014-08-13

    Previously developed radical-scavenging pea protein hydrolysates (PPHs) prepared with Flavourzyme (Fla-PPH) and Protamex (Pro-PPH) were used as cosurfactants with Tween 20 to produce soybean oil-in-water (O/W) emulsions, and the suppression of lipid oxidation was investigated. Both PPHs significantly retarded oxidation (P < 0.05) of the emulsions when stored at 37 °C for 14 days. Electron microscopy revealed an interfacial peptidyl membrane around oil droplets, which afforded steric restrictions to oxidation initiators. When licorice extract (LE) was also used in emulsion preparation, a remarkable synergistic oxidation inhibition was observed with both PPHs. LE adsorbed onto oil droplets either directly or through associating with PPH to produce a thick and compact interfacial membrane enabling the defense against oxygen species. Liquiritin apioside, neolicuroside, glabrene, and 18β-glycyrrhetic acid were the predominant phenolic derivatives partitioning at the interface and most likely the major contributors to the notable synergistic antioxidant activity when coupled with PPHs. PMID:25058384

  13. Quantitative Proteomics Reveals the Flooding-Tolerance Mechanism in Mutant and Abscisic Acid-Treated Soybean.

    PubMed

    Yin, Xiaojian; Nishimura, Minoru; Hajika, Makita; Komatsu, Setsuko

    2016-06-01

    Flooding negatively affects the growth of soybean, and several flooding-specific stress responses have been identified; however, the mechanisms underlying flooding tolerance in soybean remain unclear. To explore the initial flooding tolerance mechanisms in soybean, flooding-tolerant mutant and abscisic acid (ABA)-treated plants were analyzed. In the mutant and ABA-treated soybeans, 146 proteins were commonly changed at the initial flooding stress. Among the identified proteins, protein synthesis-related proteins, including nascent polypeptide-associated complex and chaperonin 20, and RNA regulation-related proteins were increased in abundance both at protein and mRNA expression. However, these proteins identified at the initial flooding stress were not significantly changed during survival stages under continuous flooding. Cluster analysis indicated that glycolysis- and cell wall-related proteins, such as enolase and polygalacturonase inhibiting protein, were increased in abundance during survival stages. Furthermore, lignification of root tissue was improved even under flooding stress. Taken together, these results suggest that protein synthesis- and RNA regulation-related proteins play a key role in triggering tolerance to the initial flooding stress in soybean. Furthermore, the integrity of cell wall and balance of glycolysis might be important factors for promoting tolerance of soybean root to flooding stress during survival stages. PMID:27132649

  14. DL-β-Aminobutyric Acid-Induced Resistance in Soybean against Aphis glycines Matsumura (Hemiptera: Aphididae)

    PubMed Central

    Zhong, Yunpeng; Wang, Biao; Yan, Junhui; Cheng, Linjing; Yao, Luming; Xiao, Liang; Wu, Tianlong

    2014-01-01

    Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA) against Aphis glycines Matsumura, the soybean aphid (SA) was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), chitinase (CHI), and β-1, 3-glucanase (GLU) in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA. PMID:24454805

  15. Effects of simulated acid rain on yield response of two soybean cultivars

    SciTech Connect

    Porter, P.M.; Banwart, W.L.; Hassett, J.J.; Finke, R.L.

    1987-01-01

    Field experiments were conducted for 3 yrs. to determine the effects of simulated acid rain on seed yield of two soybean (Glycine max (L.) Merr.) cultivars, 'Amsoy 71' and 'Williams 82'. Plants were treated biweekly with simulated rain of pH 5.6, 4.6, 4.2, 3.8, 3.4, and 3.0. For Amsoy 71 there was a linear decrease in yield with increasing rainfall acidity for 1 of 3 yrs but no significant effects for the other two. Thus, acid rain appears to reduce the yield of some soybean cultivars slightly, but this effect is not consistent from year to year. Amsoy 71 and Williams 82 soybean treated with the most-acidic rain, pH 3.0, resulted in average yields for the 3 yrs of the study of approximately 3% and 4% lower than the average yields for the other treatments, respectively. However, calculations from the response functions developed have shown that, at current levels of rainfall acidities, the effects on yield are very small. With an increase in rainfall acidity of 50% in Illinois, the predicted yield decrease for Amsoy 71 and Williams 82 soybean would be less than 1%. Similarly, the expected increase in yield of these cultivars would be 1% or less if acidity in the rainfall were reduced by 50%. While there may be beneficial effects of reduced S and N oxide emissions, these results suggest the resultant lower rainfall acidities are not likely to produce noticeable changes in soybean yields.

  16. Combustion analysis of esters of soybean oil in a diesel engine

    SciTech Connect

    Zhang, Y.; Van Gerpen, J.H.

    1996-09-01

    The alkyl esters of plant oils and animal fats are receiving increasing attention as renewable fuels for diesel engines. These esters have come to be known as biodiesel. One objection to the use of the methyl and ethyl esters of soybean oil as a fuel in diesel engines is their high crystallization temperature. One solution to this problem is to use the isopropyl esters of soybean oil which have significantly lower crystallization temperatures. Another method to improve the cold flow properties of esters is to winterize them to subambient temperature. This is accomplished by cooling the esters and filtering out the components that crystallize most readily. Previous work has shown that when methyl, isopropyl and winterized ester blends were compared with No. 2 diesel fuel, the isopropyl and winterized methyl esters had at least the same emission reduction potential as the methyl esters, with similar engine performance. This paper discusses those results using heat release analysis that shows all of the blends have shorter ignition delays, and lower premixed burn fractions than No. 2 diesel fuel. All tested fuels except the isopropyl ester blends had similar combustion behavior. However, blends with isopropyl ester showed some abnormal combustion behavior, possibly due to high levels of monoglycerides.

  17. Optimization of Tocopherol Concentration Process From Soybean Oil Deodorized Distillate Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ito, Vanessa Mayumi; Batistella, César Benedito; Wolf Maciel, Maria Regina; Filho, Rubens Maciel

    Soybean oil deodorized distillate is a product derived from the refining process and it is rich in high value-added products. The recovery of these unsaponifiable fractions is of great commercial interest, because of the fact that in many cases, the "valuable products" have vitamin activities such as tocopherols (vitamin E), as well as anticarcinogenic properties such as sterols. Molecular distillation has large potential to be used in order to concentrate tocopherols, as it uses very low temperatures owing to the high vacuum and short operating time for separation, and also, it does not use solvents. Then, it can be used to separate and to purify thermosensitive material such as vitamins.

  18. Influence of Tunisian aromatic plants on the prevention of oxidation in soybean oil under heating and frying conditions.

    PubMed

    Saoudi, Salma; Chammem, Nadia; Sifaoui, Ines; Bouassida-Beji, Maha; Jiménez, Ignacio A; Bazzocchi, Isabel L; Silva, Sandra Diniz; Hamdi, Moktar; Bronze, Maria Rosário

    2016-12-01

    The aim of this study was to improve the oxidative stability of soybean oil by using aromatic plants. Soybean oil flavored with rosemary (ROS) and soybean oil flavored with thyme (THY) were subjected to heating for 24h at 180°C. The samples were analyzed every 6h for their total polar compounds, anisidine values, oxidative stability and polyphenols content. The tocopherols content was determined and volatile compounds were also analyzed. After 24h of heating, the incorporation of these plants using a maceration process reduced the polar compounds by 69% and 71% respectively, in ROS and THY compared to the control. Until 6h of heating, the ROS kept the greatest oxidative stability. The use of the two extracts preserves approximately 50% of the total tocopherols content until 18h for the rosemary and 24h for the thyme flavored oils. Volatile compounds known for their antioxidant activity were also detected in the formulated oils. Aromatic plants added to the soybean oil improved the overall acceptability of potato crisps (p<0.05) until the fifteenth frying. PMID:27374561

  19. Comparative Biochemical and Proteomic Analyses of Soybean Seed Cultivars Differing in Protein and Oil Content.

    PubMed

    Min, Chul Woo; Gupta, Ravi; Kim, So Wun; Lee, So Eui; Kim, Yong Chul; Bae, Dong Won; Han, Won Young; Lee, Byong Won; Ko, Jong Min; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2015-08-19

    This study develops differential protein profiles of soybean (Glycine max) seeds (cv. Saedanbaek and Daewon) varying in protein (47.9 and 39.2%) and oil (16.3 and 19.7%) content using protamine sulfate (PS) precipitation method coupled with a 2D gel electrophoresis (2DGE) approach. Of 71 detected differential spots between Daewon and Saedanbaek, 48 were successfully identified by MALDI-TOF/TOF. Gene ontology analysis revealed that up-regulated proteins in Saedanbaek were largely associated with nutrient reservoir activity (42.6%), which included mainly seed-storage proteins (SSPs; subunits of glycinin and β-conglycinin). Similar results were also obtained in two cultivars of wild soybean (G. soja cv. WS22 and WS15) differing in protein content. Western blots confirmed higher accumulation of SSPs in protein-rich Saedanbaek. Findings presented and discussed in this study highlight a possible involvement of the urea cycle for increased accumulation of SSPs and hence the higher protein content in soybean seeds. PMID:26237057

  20. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    PubMed Central

    2014-01-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field. PMID:25170329

  1. Assessment of Fatty Acid Profile and Seed Mineral Nutrients of Two Soybean (Glycine max L.) Cultivars Under Elevated Ultraviolet-B: Role of ROS, Pigments and Antioxidants.

    PubMed

    Choudhary, Krishna Kumar; Agrawal, Shashi Bhushan

    2016-01-01

    Current scenarios under global climate change envisage a considerable increase in ultraviolet B (UV-B) radiation in near future which may affect the productivity and yield quality of major agricultural crops. Present investigation was conducted to examine various defense strategies adopted against elevated UV-B (ambient + 7.2 kJ m-(2) day-(1) ) and their impact on seed nutrients, content and quality of oil including fatty acid profile of two soybean cultivars (JS-335 and PS-1042). Elevated UV-B (eUV-B) exposure leads toward higher unsaturation of fatty acids and changes in other oil quality parameters (acid, iodine and saponification value) indicated that eUV-B favored the synthesis of long-chain fatty acids with fewer carboxylic acid groups, making the oil rancid, with undesirable flavor and low nutritional value. The effect was more severe in JS-335 as compared to PS-1042. Negative effects were also seen on nutrients of soybean seeds. Adverse effects resulted due to insufficient quenching of ROS (superoxide radical and hydrogen peroxide) by the defense system and thus unable to overcome the imposed oxidative stress. Credit of better performance by PS-1042 against eUV-B may be given to the adoption of efficient defense strategies like higher wax deposition, increase in lignin and flavonoids (quercetin and kaempferol) contents. PMID:26489397

  2. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  3. Phytic acid and inorganic phosphate composition in soybean lines with independent IPK1 mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr] seeds contain a large amount of phosphorus (P), which is stored as phytic acid (PA). PA is indigestible by nonruminent livestock and considered an anti-nutritional factor because PA chelates divalent cations and prevents the uptake of essential nutrients. Interest in...

  4. PRODUCTIVITY OF FIELD-GROWN SOYBEANS EXPOSED TO SIMULATED ACIDIC RAIN

    EPA Science Inventory

    Two experiments were performed during the summer of 1981 to determine the effects of simulated acidic rain on seed yields of soybeans grown using standard agronomic practices. In one experiment, plants were shielded from all ambient rainfall and exposed to simulated rainfall in q...

  5. EFFECTS OF SIMULATED ACIDIC RAIN ON YIELDS OF FIELD-GROWN SOYBEANS

    EPA Science Inventory

    An experiment was performed during the summer of 1982 to determine the effects of simulated acidic rain on seed yields on two commercial cultivars of soybeans grown according to standard agronomic practices. Plants were shielded from all ambient rainfalls automatically by two mov...

  6. Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

    PubMed Central

    Wang, Jianhong; Wang, Xiaoxiao; Li, Juntao; Chen, Yiqiang; Yang, Wenjun; Zhang, Liying

    2015-01-01

    This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers. PMID:25557818

  7. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  8. Production of biodiesel via enzymatic ethanolysis of the sunflower and soybean oils: modeling.

    PubMed

    Pessoa, Fernando L P; Magalhães, Shayane P; Falcão, Pedro Wagner de Carvalho

    2010-05-01

    Biodiesel has become attractive due to its environmental benefits compared with conventional diesel. Although the enzymatic synthesis of biodiesel requires low thermal energy, low conversions of enzymatic transesterification with ethanol (ethanolysis) of oils to produce biodiesel are reported as a result of deactivation of the enzyme depending on the reaction conditions. The synthesis of biodiesel via enzymatic ethanolysis of sunflower and soybean oils was investigated. Kinetic parameters for the overall reactions were fitted to experimental data available in the literature with the Ping Pong Bi-Bi mechanism including the inhibition effect of the ethanol on the activity of lipase Novozyme 435. The model was applied to a batch reactor and the experimental conversions were successfully reproduced. The modeling of a semibatch reactor with continuous addition of ethanol was also performed and the results showed a reduction of roughly 3 h in the reaction time in comparison with the batch-wise operation. PMID:20033350

  9. Characterization of soluble soybean polysaccharide film incorporated essential oil intended for food packaging.

    PubMed

    Salarbashi, Davoud; Tajik, Sima; Ghasemlou, Mehran; Shojaee-Aliabadi, Saeedeh; Shahidi Noghabi, Mostafa; Khaksar, Ramin

    2013-10-15

    This study examines the development of new bio-active polysaccharide-based bioplastics through casting and solvent-evaporation. Soluble soybean polysaccharide (SSPS) films incorporated with Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at various concentrations were prepared and characterized. The presence of ZEO and MEO improved polysaccharide interactions, reducing the films' water solubility and water vapor barrier properties, but did not markedly modify their moisture content or thickness. Differing amounts of ZEO or MEO had no significant effect on mechanical behavior, with the exception of 3% oil concentration, which decreased tensile strength and significantly increased elongation at break. DMTA curves revealed a single Tg, which may indicate the compatibility of essential oil and SSPS. The electron scanning micrograph for the composite film was homogeneous, without signs of phase separation between the components. These results suggest that ZEO and MEO can potentially be directly incorporated into SSPS to prepare active biodegradable films for food-packaging applications. PMID:23987454

  10. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Esfanjani, Afshin Faridi; Akhavan, Sahar

    2016-01-01

    Our objective was to evaluate the antioxidant activity of olive leave extract (OLE) encapsulated by nano-emulsions in soybean oil. The average droplet size one day after production was 6.16 nm for primary W/O nano-emulsion and, 675 nm and 1443 nm for multiple emulsions stabilized by WPC alone and complex of WPC-pectin, respectively. The antioxidant activity of these emulsions containing three concentrations of 100, 200 and 300 mg OLE during storage was evaluated in soybean oil by peroxide value, TBA value and rancimat thermal stability test and was compared with blank (non-encapsulated) OLE and synthetic TBHQ antioxidant. Nano-encapsulated OLE was capable of controlling peroxide value better than unencapsulated OLE. But because of blocking phenolic compounds within dispersed emulsions droplets, thermal stability of encapsulated OLE was lower. To summarize, with increased solubility and controlled release of olive leaf phenolic compounds through their nano-encapsulation, a higher antioxidant activity was achieved. PMID:26213004

  11. Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram; Shokrgozar, Mohammad Ali; Yari, Abbas; Saeedi-Eslami, Seyyed Nasirodin

    2013-01-01

    In this study, a simple and versatile synthetic approach was developed to prepare bactericidal polyurethane coatings. For this purpose, introduction of both quaternary ammonium salts (QASs), with well-known antibacterial activity, and reactive hydroxyl groups on to the backbone of soybean oil was considered. Epoxidized soybean oil was reacted with diethylamine and the intermediate tertiary amine containing polyol was reacted with two different alkylating agents, methyl iodide and benzyl chloride, to produce MQAP and BQAP, respectively. These functional polyols were reacted with different diisocyanate monomers to prepare polyurethane coatings. Depending on the structure of monomers used for the preparation of polyurethane coatings, initial modulus, tensile strength and elongation at break of samples were in the ranges of 122-339 MPa, 4.6-12.4 MPa and 8.4-46%, respectively. Polyurethane coatings based on isophorone diisocyanate showed proper mechanical properties and adhesion strength (0.41 MPa) for coating application. Study of fibroblast cells interaction with prepared polyurethanes showed promising cells viability in the range of 78-108%. Meanwhile, MQAP based samples with higher concentration of QASs showed better adhesion strength, surface hydrophilicity and antibacterial activity (about 95% bacterial reduction). Therefore, these materials can find applications as bactericidal coating for biomedical devices and implants. PMID:25428057

  12. Influence of natural and synthetic antioxidants on the degradation of Soybean oil at frying temperature.

    PubMed

    Ravi Kiran, Challa; Sasidharan, Indu; Soban Kumar, D R; Sundaresan, A

    2015-08-01

    The effect of several natural and synthetic antioxidants to retard the formation of polar compounds and thermo-oxidation at prolonged frying temperatures was studied. Antioxidants, including butyl hydroxyl toluene (BHT), ter-butyl hydroxyquinone (TBHQ), α- and γ-tocopherols, tocopherol mixture (α, β, γ and δ), sesamol, β-sitosterol, β-sitostanol, γ-oryzanol, curcumin, rosemary extract and sucrose acetate isobutyrate (SAIB) were tested in refined soybean oil without added any additives recovered from refinery. Rosemary extract and SAIB were showed a considerable effect on both polar compound formation and secondary oxidation. These compounds increased the oxidative stability of oil for more than 30 % compared to conventional synthetic antioxidants. Oils treated with SAIB showed higher color retention after 6 h heating compared to the oils added with BHT, TBHQ and tocopherols. Curcumin, sesamol and γ-oryzanol showed higher antioxidant potential compared to other antioxidants. Preliminary results obtained from this study have clearly demonstrated that SAIB and rosemary extracts are more commercially viable antioxidants to increase the stability of frying oils. PMID:26243968

  13. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid a metabolite of glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that o...

  14. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress. PMID:24702262

  15. Fatty acid profile of kenaf seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  16. Fermentation of soybean oil deodorizer distillate with Candida tropicalis to concentrate phytosterols and to produce sterols-rich yeast cells.

    PubMed

    Zhao, Guoqun; Hu, Tao; Zhao, Lihua

    2014-03-01

    Phytosterols have been recovered from the deodorizer distillate produced in the final deodorization step of vegetable oil refining by various processes. The deodorizer distillate contains mainly free fatty acids (FFAs), phytosterols, and tocopherols. The presence of FFAs hinders recovery of phytosterols. In this study, fermentation of soybean oil deodorizer distillate (SODD) with Candida tropicalis 1253 was carried out. FFAs were utilized as carbon source and converted into cellular components as the yeast cells grew. Phytosterols concentration in SODD increased from 15.2 to 28.43 % after fermentation. No significant loss of phytosterols was observed during the process. Microbial fermentation of SODD is a potential approach to concentrate phytosterols before the recovery of phytosterols from SODD. During SODD fermentation, sterols-rich yeast cells were produced and the content of total sterols was as high as 6.96 %, but its major sterol was not ergosterol, which is the major sterol encountered in Saccharomyces cerevisiae. Except ergosterol, other sterols synthesized in the cells need to be identified. PMID:24297326

  17. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer.

    PubMed

    Dizge, Nadir; Aydiner, Coskun; Imer, Derya Y; Bayramoglu, Mahmut; Tanriseven, Aziz; Keskinler, Bülent

    2009-03-01

    This study aims at carrying out lipase-catalyzed synthesis of fatty acid methyl esters (biodiesel) from various vegetable oils using lipase immobilized onto a novel microporous polymeric matrix (MPPM) as a low-cost biocatalyst. The research is focused on three aspects of the process: (a) MPPM synthesis (monolithic, bead, and powder forms), (b) microporous polymeric biocatalyst (MPPB) preparation by immobilization of lipase onto MPPM, and (c) biodiesel production by MPPB. Experimental planning of each step of the study was separately carried out in accordance with design of experiment (DoE) based on Taguchi methodology. Microporous polymeric matrix (MPPM) containing aldehyde functional group was synthesized by polyHIPE technique using styrene, divinylbenzene, and polyglutaraldehyde. Thermomyces lanuginosus lipase was covalently attached onto MPPM with 80%, 85%, and 89% immobilization efficiencies using bead, powder, and monolithic forms, respectively. Immobilized enzymes were successfully used for the production of biodiesel using sunflower, soybean, and waste cooking oils. It was shown that immobilized enzymes retain their activities during 10 repeated batch reactions at 25 degrees C, each lasting 24h. Since the developed novel method is simple yet effective, it could have a potential to be used industrially for the production of chemicals requiring immobilized lipases. PMID:19028094

  18. Yields of field-grown soybeans exposed to simulated acidic rainfalls

    SciTech Connect

    Evans, L.S.; Lewin, K.F.; Hendrey, G.R.

    1986-06-01

    Effects of simulated acidic rainfalls on seed yields of several cultivars of field grown soybean (Glycine max Merrill) were studied under automatically moveable rainfall exclusion shelters. In the five growing seasons (1981-1985) statistically significant effects of rain pH on yield occurred each year with the Amsoy 71 cultivar. In almost all bases, the seed yields from Amsoy plants treated with pH 5.6 rain were significantly greater than yields from plants receiving more acidic treatments. 1982 and 1983 experiments did not show any statistically significant reduction in seed yields of the Williams cultivar at acidity levels between pH 5.6 and pH 2.7. Altering the frequency and duration of the simulated rainfall did alter the yield of the Amsoy and Williams soybean cultivars, while treatment acidity did not. In 1984 and 1985, the Asgrow 3127, Corsoy 79, and Hobbit cultivars were studied along with Amsoy 71. The seed yields tended to be reduced when treated with rain simulants with acidity levels between pH 4.4 and pH 3.3, when compared to plants exposed to pH 5.6 rain simulant, but the observed reductions were not always statistically significant at the 95% confidence level. Studies examining the flowering and pod filling of soybean plants exposed to simulated acid rain were inconclusive for determining the cause of decrease in pod number per plant. (PSB)

  19. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control. PMID:22324875

  20. Multi-population selective genotyping to identify soybean (Glycine max (L.) Merr.) seed protein and oil QTLs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which in soybean [Glycine max (L.) Merr.] is seed protein and oil. Identification of genetic loci governing those two traits would facilitate that effort, and though genome-wide asso...

  1. A Convenient Low-Resolution NMR Method for the Determination of the Molecular Weight of Soybean Oil-Based Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By studying a series of soybean oil based polymers, using low resolution nuclear magnetic resonance (NMR) spectroscopy, an easy method to study molecular weight was developed. The relationship between a polymer’s molecular weight and the instrument’s response can be correlated in a linear relations...

  2. Synthesis of soybean oil-based polymeric surfactants in supercritical carbon dioxide and investigation of their surface properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the preparation of polymeric surfactants (HPSO) via a two-step synthetic procedure: polymerization of soybean oil (PSO) in supercritical carbon dioxide and followed by hydrolysis of PSO with a base. HPSO was characterized and identified by using a combination of FTIR, 1H NMR, 13C...

  3. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  4. Quartz Crystal Microbalance Investigation of the Structure of Adsorbed Soybean Oil and Methyl Oleate onto Steel Surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adsorption of soybean oil (SBO) and methyl oleate (MO) onto steel was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). Adsorption of both SBO and MO increased with increasing concentrations. At full surface coverage, SBO and MO formed rigid thin films and ach...

  5. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  6. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORMS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows). (a) Specifications. Each 10 milliliters of suspension contains penicillin G...

  7. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  8. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  9. 21 CFR 526.1696b - Penicillin G procaine-dihydrostreptomycin in soybean oil for intramammary infusion (dry cows).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin G procaine-dihydrostreptomycin in... INTRAMAMMARY DOSAGE FORM NEW ANIMAL DRUGS § 526.1696b Penicillin G procaine-dihydrostreptomycin in soybean oil... penicillin G procaine equivalent to 200,000 units of penicillin G and dihydrostreptomycin sulfate...

  10. Comparing the Lubricity of Biofuels Obtained from Pyrolysis and Alcoholysis of Soybean Oil and their Blends with Petroleum Diesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diesel-like fuel was synthesized by a pyrolysis method using only an edible soybean oil as starting material (PD). Some physical properties of the material were studied, neat, and in blends with both high sulfur (HSD) and low sulfur (LSD) diesel fuels, and compared with blends of biodiesel (BD) w...

  11. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  12. Yield Responses of Field-Grown Soybeans Exposed to Simulated Acid Rain

    SciTech Connect

    Evans, L. S.; Conway, C. A.; Lewin, K. F.

    1980-03-01

    An important area of interest is to determine the effects of acid precipitation on the yield of agronomic crops under field conditions. Experiments described herein were performed with field-grown soybeans at Brookhaven National Laboratory during the summer of 1979. A preliminary experiment was performed the preceding year at the same site to estimate the most appropriate plot design and statistical analyses. Soybeans were seeded to provide six Latin Squares. Five treatments (no rain, simulated rainfalls of pH levels of 4.0, 3.1, 2.7, and 2.3) replicated five times in each Latin Square were used to produce a total of 30 plots per treatment. These results show that additions of small amounts of simulated acid rain to soybeans decreased the number of pods per plant. This decrease in the number of pods per plant produced a small but significant decrease in seed mass. The decreases (3, 5 and 8% at simulated rain pH levels of 4.0, 3.1, and 2.7) were present in soybeans already exposed to rainfalls at Brookhaven National Laboratory with an average H+ concentration of about pH 4.0 over the period of this experiment.

  13. Psyllium husk fiber supplementation to the diets rich in soybean or coconut oil: hypocholesterolemic effect in healthy humans.

    PubMed

    Ganji, V; Kies, C V

    1996-03-01

    The objective of this study was to investigate the effect of psyllium husk fiber supplementation to the diets of soybean and coconut oil on serum lipids in normolipidemic humans. A 28-day study was divided into four 7-day experimental periods. Dietary periods were soybean oil (SO), soybean oil plus psyllium fiber (SO + PF), coconut oil (CO) and coconut oil plus psyllium fiber (CO + PF), and were arranged to a randomized cross over design. Ten subjects consumed controlled diet containing 30% fat calories (20% from test oils and 10% from controlled diet) and 20 g per day of psyllium during fiber supplementation periods. SO + PF diet significantly reduced serum cholesterol compared with SO diet (P < 0.001). CO + PF diet significantly reduced serum cholesterol compared with CO diet (P < 0.014). Hypocholesterolemic response was greater with SO + PF compared with CO + PF (0.36 mmol 1(-1) vs 0.31 mmol 1(-1)). Reductions in low-density lipoprotein (LDL) cholesterol and apolipoprotein (apo) B were parallel to reductions of serum cholesterol. SO diet decreased, while CO diet increased serum cholesterol, LDL cholesterol and apo B. Very-low density lipoprotein cholesterol, high-density lipoprotein cholesterol and apo A-1 were unaffected by psyllium fiber and saturation of fat. Reduction of serum cholesterol was due to reduction of LDL cholesterol. Psyllium fiber supplementation lowered serum cholesterol regardless of saturation level of dietary fat. PMID:8833174

  14. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions

    PubMed Central

    Zhang, Li-Wen; Al-Suwayeh, Saleh A; Hung, Chi-Feng; Chen, Chih-Chieh; Fang, Jia-You

    2011-01-01

    The study evaluated the potential of nanoemulsions for the topical delivery of 5-aminolevulinic acid (ALA) and methyl ALA (mALA). The drugs were incorporated in oil-in-water (O/W) and water-in-oil (W/O) formulations obtained by using soybean oil or squalene as the oil phase. The droplet size, zeta potential, and environmental polarity of the nanocarriers were assessed as physicochemical properties. The O/W and W/O emulsions showed diameters of 216–256 and 18–125 nm, which, respectively, were within the range of submicron- and nano-sized dispersions. In vitro diffusion experiments using Franz-type cells and porcine skin were performed. Nude mice were used, and skin fluorescence derived from protoporphyrin IX was documented by confocal laser scanning microscopy (CLSM). The loading of ALA or mALA into the emulsions resulted in slower release across cellulose membranes. The release rate and skin flux of topical drug application were adjusted by changing the type of nanocarrier, the soybean oil O/W systems showing the highest skin permeation. This formulation increased ALA flux via porcine skin to 180 nmol/cm2/h, which was 2.6-fold that of the aqueous control. The CLSM results showed that soybean oil systems promoted mALA permeation to deeper layers of the skin from ∼100 μm to ∼140 μm, which would be beneficial for treating subepidermal and subcutaneous lesions. Drug permeation from W/O systems did not surpass that from the aqueous solution. An in vivo dermal irritation test indicated that the emulsions were safe for topical administration of ALA and mALA. PMID:21556344

  15. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  16. Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound.

    PubMed

    Yin, Xiulian; You, Qinghong; Ma, Haile; Dai, Chunhua; Zhang, Henan; Li, Kexin; Li, Yunliang

    2015-03-01

    Biodiesel production from soybean oil deodorizer distillate enhanced by counter-current pulsed ultrasound was studied. Effect of static probe ultrasonic enhanced transesterification (SPUE) and counter-current probe ultrasonic enhanced transesterification (CCPUE) on the biodiesel conversion were compared. The results indicated that CCPUE was a better method for enhancing transesterification. The working conditions of CCPUE were studied by single-factor experiment design and the results showed that the optimal conditions were: initial temperature 25 °C, methanol to triglyceride molar ratio 10:1, flow rate 200 mL/min, catalyst content 1.8%, ultrasound working on-time 4 s, off-time 2 s, total working time 50 min. Under these conditions, the average biodiesel conversion of three experiments was 96.1%. PMID:25199445

  17. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study.

    PubMed

    Wiggers, V R; Meier, H F; Wisniewski, A; Chivanga Barros, A A; Wolf Maciel, M R

    2009-12-01

    The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 degrees C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical-chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process. PMID:19692230

  18. Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

    PubMed Central

    Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-01-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

  19. Induction of systemic resistance of benzothiadiazole and humic Acid in soybean plants against fusarium wilt disease.

    PubMed

    Abdel-Monaim, Montaser Fawzy; Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-12-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

  20. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  1. In Vitro assessment of the nutritive value of expanded soybean meal for dairy cattle

    PubMed Central

    2012-01-01

    Little information is available about the nutritive value of expanded soybean meal, which is produced by expansion of soybeans prior to solvent extraction of the oil. During processing, expanded soybean meal is subjected to additional heat, which might increase the concentration of ruminally undegraded protein. Processing of soybeans with heat during oil extraction could affect lysine availability by increasing ruminally undegraded protein or by impairing intestinal digestion. Our objective was to compare solvent and expanded soybeans with regard to chemical composition and nutritive value for dairy cattle. Samples of expanded soybean meal (n = 14) and solvent-extracted soybean meal (n = 5) were obtained from People's Republic of China to study effects of the expansion process on nutritive value for dairy cattle. Solvent-extracted soybean meal (n = 2) and mechanically extracted (heated) soybean meal (n = 2) from the United States served as references for comparison. Samples were analyzed for crude fat, long-chain fatty acids, crude protein, amino acids, chemically available lysine, in situ ruminal protein degradation, and in vitro intestinal digestibility. No differences were found between solvent-extracted soybean meals from China and expanded soybean meals from China for crude fat, crude protein, amino acids, or chemically available lysine. In situ disappearance of nitrogen, ruminally undegraded protein content, and in vitro intestinal digestion of the ruminally undegraded protein were generally similar between solvent-extracted soybean meals made in China and expanded soybean meals made in China; variation among soybean meals was small. Results indicate that the additional heat from the expansion process was not great enough to affect the nutritive value of soybean meal protein for ruminants. Although expansion may improve the oil extraction process, the impact on the resulting soybean meal is minimal and does not require consideration when formulating ruminant

  2. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils. PMID:26239443

  3. Synthesis of alpha-hydroxyphosphonic acids from Lesquerella oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella oil has been a substance of growing chemical interest, due to the ease with which it is produced and its similarity in structure to castor oil. The primary fatty acid in Lesquerella oil, lesquerolic acid, is very similar to the principal component of castor oil, ricinoleic acid, and may ...

  4. Characterization of new types of mannosylerythritol lipids as biosurfactants produced from soybean oil by a basidiomycetous yeast, Pseudozyma shanxiensis.

    PubMed

    Fukuoka, Tokuma; Morita, Tomotake; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2007-01-01

    Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These show not only the excellent surface-active properties but also versatile biochemical actions. In course of MEL production from soybean oil by P. shanxiensis, new extracellular glycolipids (more hydrophilic than the previously reported MELs) were found in the culture medium. As a result of the structural characterization, the glycolipids were identified as a mixture of 4-O-[(2', 4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol. Interestingly, the new MELs possessed a much shorter chain (C(2) or C(4)) at the C-2' position of the mannose moiety compared to the MELs hitherto reported, which mainly possess a medium-chain acid (C(10)) at the position. They would thus show higher hydrophilicity and/or water-solubility, and expand the development of the environmentally advanced yeast biosurfactants. PMID:17898510

  5. High-Temperature Natural Antioxidant Improves Soy Oil for Frying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine the frying stability of soybean oil (SBO) treated with a natural citric acid-based antioxidant, EPT-OILShield able to withstand high temperatures and to establish the oxidative stability of food fried in the treated oil. Soybean oil with 0.05% and 0.5%...

  6. Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...

  7. Soybean extract showed modulation of retinoic acid-related gene expression of skin and photo-protective effects in keratinocytes.

    PubMed

    Park, N-H; Park, J-S; Kang, Y-G; Bae, J-H; Lee, H-K; Yeom, M-H; Cho, J-C; Na, Y J

    2013-04-01

    Soy extracts are well known as medicinal and nutritional ingredients, and exhibit benefits towards human skin including depigmenting or anti-ageing effects. Despite the wrinkle decreasing effects of retinoids on skin as an anti-ageing ingredient, retinoid application can causes photo-sensitive responses such as skin irritation. Thus, their daytime usage is not recommended. The aim of this study is the investigation into the activities of soybean extract as an anti-ageing ingredient and their comparison to retinoids in this respect. Soybean extract decreased the relative ratio of MMP-1/TIMP-1 mRNA to the same degree as retinoic acid in normal human fibroblasts. It also affected mRNA levels of HAS2 and CRABP2 in normal human keratinocytes. Furthermore, we investigated its effect on mRNA expression of histidase, an enzyme that converts histidine into urocanic acid, the main UV light absorption factor of the stratum corneum. Unlike the complete inhibition of histidase exhibited by the mRNA expression of retinoic acid, the effect of soybean extract on histidase gene expression was weaker in normal human keratinocytes. Also, soybean extract pretreatment inhibited UVB-induced cyclobutane pyrimidine dimer formation dose-dependently in normal human keratinocytes. In this study, we found that soybean extract modulated retinoic acid-related genes and showed photo-protective effects. Our findings suggest that soybean extract could be an anti-ageing ingredient that can be safely used under the sunlight. PMID:23075113

  8. Impact of diacylglycerol and monoacylglycerol on the physical and chemical properties of stripped soybean oil.

    PubMed

    Chen, Bingcan; McClements, David Julian; Decker, Eric Andrew

    2014-01-01

    In this study, we determined the effect of diacylglycerol (DAG) and monoacylglycerol (MAG) on the oxidative stability of stripped soybean oil (SSO) and on the antioxidative effectiveness of α-tocopherol in SSO. We also examined the influence of DAG and MAG on the physical properties of SSO. DAG (0-2.5wt%) had little effect on the chemical stability of SSO and on the antioxidative activity of 40μM α-tocopherol in SSO (55°C). MAG (0-2.5wt%) had no remarkable impact on the chemical stability of SSO. The addition of MAG (0.5wt%) suppressed the effectiveness of α-tocopherol (40μM) in SSO. The addition of DAG did not cause an appreciable change in the interfacial tension (IFT) of SSO, indicating that it was not strongly surface active. MAG significantly decreased the interfacial tension of SSO, due to its strong surface active properties. Wide angle X-ray scattering (WAXS) analysis showed that DAG did not alter the structured organisation of SSO, which remained in an amorphous form, whereas MAG led to strong scattering, indicating the formation of crystals. The physical properties of DAG and MAG in the SSO may be related to the chemical stability of SSO and the effectiveness of antioxidants incorporated. These results can be used to better understand the physicochemical mechanisms by which minor components impact oxidation of bulk oils. PMID:24001854

  9. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: preparation and characterization.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-10-01

    Biocompatible and biodegradable nanocomposites comprising epoxidized soybean oil (ESO) as matrix, zinc oxide (ZnO) nanoparticles as reinforcements, and 4-dimethylaminopyridine (DMAP) as a catalyst have been successfully prepared via epoxidization of the double bonds of the vegetable oil, ultrasonication, and curing without the need for interfacial modifiers. Their morphology, water uptake, thermal, mechanical, barrier, tribological, and antibacterial properties have been investigated. FT-IR analysis revealed the existence of strong ESO-ZnO hydrogen-bonding interactions. The nanoparticles acted as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process and leading to higher thermal stability, and also reduced the water absorption and gas permeability of the bioresin. Significant improvements in the static and dynamic mechanical properties, such as storage and Young's moduli, tensile strength, toughness, hardness, glass transition, and heat distortion temperature, were attained on reinforcement. A small drop in the nanocomposite stiffness and strength was found after exposure to several cycles of steam sterilization or to simulated body fluid (SBF) at physiological temperature. Extraordinary reductions in the coefficient of friction and wear rate were detected under both dry and SBF conditions, confirming the potential of these nanoparticles for improving the tribological performance of ESO. The nanocomposites displayed antimicrobial action against human pathogen bacteria with and without UV illumination, which increased progressively with the ZnO content. These sustainable, ecofriendly, and low-cost biomaterials are very promising for use in biomedical applications, like structural tissue engineering scaffolds. PMID:25222018

  10. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    PubMed Central

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol. PMID:24031810

  11. Short communication: A nanoemulsified form of oil blends positively affects the fatty acid proportion in ruminal batch cultures.

    PubMed

    El-Sherbiny, M; Cieslak, A; Pers-Kamczyc, E; Szczechowiak, J; Kowalczyk, D; Szumacher-Strabel, M

    2016-01-01

    Two consecutive rumen batch cultures were used to study the effect of nanoemulsified oils as a new type of supplement, on the in vitro fatty acid proportion and vaccenic acid formation. Three levels (3, 5, and 7%) of 2 different oil blends [soybean:fish oil (SF) or rapeseed-fish oil (RF)] were used. Both oil blends were used either in the raw form (SF or RF, respectively) or in the nanoemulsified form (NSF or NRF, respectively). The diets were the control (0%), which consisted of a dry total mixed ration without any supplements, the control plus 3, 5, or 7% of the SF or RF oil blend in appropriate form (raw or nanoemulsified). For each treatment, 6 incubation vessels were used. Each batch culture was incubated for 24h and conducted twice in 2 consecutive days. All supplements were calculated as a percentage of the substrate dry matter (400mg). Nanoemulsified supplements were recalculated to make sure the oil amount was equal to the raw oil supplementation levels. The results from both experiments indicated that the proportions of vaccenic acid and cis-9,trans-11 C18:2 increased when a raw oil blend was supplemented; on the other hand, no influence of nanoemulsified form of oil blend was observed on the proportion cis-9,trans-11 C18:2. Generally, supplementation with the nanoemulsified oil blends had less effect on biohydrogenation intermediates than the raw form of oil blends. However, the nanoemulsified form had a greater effect on the increase of n-3 and n-6 fatty acids. Nanoemulsified oil blends had a positive effect on decreasing the transformation rate of polyunsaturated fatty acids to saturated fatty acids in the biohydrogenation environment. Supplements of nanoemulsified oil blends tended to be more effective than supplements of raw oils in preserving a greater proportion of polyunsaturated fatty acids in the fermentation culture. PMID:26547647

  12. EFFECT OF OIL CONTENT AND PH ON THE PHYSICOCHEMICAL PROPERTIES OF CORNSTARCH-SOYBEAN OIL COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch-lipid composites (SLC), new types of fat replacers, are prepared by passing an aqueous suspension of starch and lipid through excess steam in a jet cooker. SLC are added to foods as dispersions from the jet cooker or as water reconstituted dried dispersions. The effect of oil content and pH...

  13. Effect of gluten on soybean oil droplets in jet-cooked starch-oil composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jet cooked starch-lipid composites have been developed as a technology for suspending micron-size lipid droplets in an aqueous cooked starch dispersion. Normally oil droplets are independent and freely mobile in such liquid composites. When wheat flour was used as the starch source, unusual behavi...

  14. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  15. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  16. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  17. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  18. A genome-wide association study of seed protein and oil content in soybean

    PubMed Central

    2014-01-01

    Background Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. Results A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r 2 ) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. Conclusions This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome

  19. Preparation of Zirconia Supported Basic Nanocatalyst: A Physicochemical and Kinetic Study of Biodiesel Production from Soybean Oil.

    PubMed

    Patil, Pramod; Pratap, Amit

    2016-01-01

    Zirconia supported cadmium oxide basic nanocatalyst was prepared by simple co-precipitation method using aq. ammonia as precipitating reagent. The catalyst was characterised by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy technique (TEM), Brunauer-Emmet-Teller surface area measurement (BET), temperature program desorption (TPD-CO2) etc. The transesterificaton of soybean oil with methanol into biodiesel was catalysed by employing zirconia supported nanocatalyst. Kinetics of transesterificaton of oil was studied and obeyed the pseudo first order equation. While, the activation energy (Ea) for the transesterification of oil was found to be 41.18 kJ mol(-1). The 97% yield of biodiesel was observed using 7% catalyst loading (with respect of oil), 1:40 molar ratio of oil to methanol at 135°C. PMID:26972461

  20. Molecular mapping of genes encoding microsomal omega-6 desaturase enzymes and their cosegregation with QTL affecting oleic acid content in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsomal omega-6 desaturase enzymes, which catalyze the desaturation of oleic acid to linoleic acid during fatty acid biosynthesis, are encoded by the FAD2-1 and FAD2-2 genes in soybeans. Breeders aim to incorporate the high oleate trait into soybean germplasm in order to improve the nutrition...

  1. Quaternary ammonium salt containing soybean oil: an efficient nanosize gene delivery carrier for halophile green microalgal transformation.

    PubMed

    Akbari, Fariba; Yari Khosroushahi, Ahmad; Yeganeh, Hamid

    2015-01-01

    Dunaliella salina, a halophile green microalga, is considered a robust photobioreactor and a remarkable cost beneficial system for the production of therapeutic recombinant proteins. In this study, with low overall cost, a proper cationic lipid was synthesized from renewable soybean oil as an efficient gene delivery carrier for D. salina cells to create appropriate protein-producing transformed cell lines. To obtain an effective carrier, quaternary ammonium salt containing soybean oil (QASSO) was synthesized through the ring opening reaction of the epoxy groups of epoxidized soybean oil with diethylamine. QASSO was characterized using nuclear magnetic resonance and Fourier-transform infrared instruments. QASSO was used to prepare nanolipoplex construct using plasmid DNA molecules containing green fluorescent protein (GFP) as reporter gene. These nanolipoplexes (QASSO-pGFP, N/P=3) and QASSO had diameter of 63.62 and 110.63 nm, and zeta potential of -68.89 and 48.25 mV at pH 7.0, respectively. Results indicated the GFP gene expression and cytoplasmic accumulation of GFP protein in the transformants after incubation under desirable conditions for 48 h and 1 week. The transformation efficiency was quantitatively assayed by flow cytometry, which yielded transformations of 58.87% and 48.34% for QASSO and 38.32% and a negligible percentage for Polyfect® after 48 h and 1 week incubation, respectively. PMID:25451567

  2. Synthesis and evaluation of antibacterial polyurethane coatings made from soybean oil functionalized with dimethylphenylammonium iodide and hydroxyl groups.

    PubMed

    Bakhshi, Hadi; Yeganeh, Hamid; Mehdipour-Ataei, Shahram

    2013-06-01

    Preparation of antibacterial polyurethane coatings from novel functional soybean oil was considered in this work. First, epoxidized soybean oil (ESBO) as a low price and widely available renewable resource raw material was subjected to the reaction with aniline using an ionic liquid as a green catalyst. The intermediate phenylamine containing polyol (SAP) was then methylated by reaction with methyl iodide to produce a polyol (QAP) with pendant dimethylphenylammonium iodide groups. To regulate the physical and mechanical properties as well as biological characteristics of final coatings, QAP was mixed with different portions of a similar soybean oil-based polyol (MSP) without quaternary ammonium groups. The mixtures were reacted with isophorone diisocyanate to produce crosslinked polyurethane coatings. Evaluation of viscoelastic properties by DMA method revealed single phase structure with Tg in the range of 50-82°C. Stress-strain analysis of the prepared polyurethanes showed initial modulus, tensile strength, and elongation at break in the ranges of 13-299 MPa, 4.5-13.8 MPa, and 16-109%, respectively. Additionally, the coatings showed good adherence to aluminum and PVC substrates. The solvent extracted samples showed excellent biocompatibility as determined by monitoring L929 fibroblast cells morphology and MTT assay. Meanwhile, very promising antibacterial properties against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with bacterial reduction in the range of 83-100% was observed. PMID:23172859

  3. A unique quantitative method of acid value of edible oils and studying the impact of heating on edible oils by UV-Vis spectrometry.

    PubMed

    Zhang, Wenle; Li, Na; Feng, Yuyan; Su, Shujun; Li, Tao; Liang, Bing

    2015-10-15

    UV-Vis spectroscopy coupled with chemometrics was used effectively to study the impact of heating on edible oils (corn oil, sunflower oil, rapeseed oil, peanut oil, soybean oil and sesame oil) and determine their acid value. Analysis of their first derivative spectra showed that the peak at 370 nm was a common indicator of the heated oils. Partial least squares regression (PLS) and principle component regression (PCR) were applied to building individual quantitative models of acid value for each kind of oil, respectively. The PLS models had a better performance than PCR models, with determination coefficients (R(2)) of 0.9904-0.9977 and root mean square errors (RMSE) of 0.0230-0.0794 for the prediction sets of each kind of oil, respectively. An integrate quantitative model built by support vector regression for all the six kinds of oils was also developed and gave a satisfactory prediction with a R(2) of 0.9932 and a RMSE of 0.0656. PMID:25952875

  4. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  5. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  6. Soybean, palm kernel, and animal-vegetable oils and vitamin E supplementation effect on lipid oxidation stability of sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Bailey, C A; Miller, R K; Smith, S B; Leyva-Ovalle, O R; Sánchez-Plata, M X

    2010-04-01

    There is an increasing demand in precooked chicken meat products for restaurants and catering services. Because cooked chicken meat develops lipid oxidation relatively fast, sous vide chicken meat was studied to assess its shelf-life. Six hundred Cobb x Ross broilers were fed for 6 wk with a basal corn-soybean meal diet including soybean, palm kernel, or animal-vegetable oil, each supplemented with 33 or 200 mg/kg of dl-alpha-tocopheryl acetate. Broilers were randomly assigned into 6 treatments and 4 repetitions with 25 birds each. Boneless breast or thigh muscle pieces were dissected into 5 x 5 x 5 cm cubes, vacuum-packed, cooked in water bath (until 74 degrees C internal temperature), chilled, and stored at 4 degrees C for 1, 5, 10, 25, and 40 d. For each storage day, each pouch contained 3 pieces of meat, either breast or thigh. Thiobarbituric acid reactive substances analysis, to quantify malonaldehyde (MDA) values, was conducted to estimate the lipid oxidation development. Nonheme iron values of cooked meat were analyzed. Fatty acid methyl esters analysis was performed in chicken muscle to determine its fatty acid composition. There was no interaction between dietary fat and vitamin E level in all of the variables studied except in nonheme iron. Dietary fat significantly influenced the fatty acid composition of the muscle (P < 0.01), but it did not affect the MDA values, regardless of differences in the muscle fatty acid composition between treatments. Supplementation of the high level of vitamin E significantly reduced the MDA values in both breast and thigh meat (P < 0.01). The maximum MDA values were observed at d 40 of storage in thigh and breast meat in animal-vegetable and soybean oil treatments with the low levels of vitamin E, 0.91 and 0.70 mg/kg, respectively. Nonheme iron values in thigh meat differed between treatments at 1 or 25 d of storage but not in breast meat. In conclusion, refrigerated sous vide chicken meat has a prolonged shelf-life, which

  7. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean.

    PubMed

    Duke, Stephen O; Rimando, Agnes M; Pace, Patrick F; Reddy, Krishna N; Smeda, Reid J

    2003-01-01

    The estrogenic isoflavones of soybeans and their glycosides are products of the shikimate pathway, the target pathway of glyphosate. This study tested the hypothesis that nonphytotoxic levels of glyphosate and other herbicides known to affect phenolic compound biosynthesis might influence levels of these nutraceutical compounds in glyphosate-resistant soybeans. The effects of glyphosate and other herbicides were determined on estrogenic isoflavones and shikimate in glyphosate-resistant soybeans from identical experiments conducted on different cultivars in Mississippi and Missouri. Four commonly used herbicide treatments were compared to a hand-weeded control. The herbicide treatments were (1) glyphosate at 1260 g/ha at 3 weeks after planting (WAP), followed by glyphosate at 840 g/ha at 6 WAP; (2) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied preemergence (PRE), followed by glyphosate at 1260 g/ha at 6 WAP; (3) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by glyphosate at 1260 g/ha at full bloom; and (4) sulfentrazone at 168 g/ha plus chlorimuron at 34 g/ha applied PRE, followed by acifluorfen at 280 g/ha plus bentazon at 560 g/ha plus clethodim at 140 g/ha at 6 WAP. Soybeans were harvested at maturity, and seeds were analyzed for daidzein, daidzin, genistein, genistin, glycitin, glycitein, shikimate, glyphosate, and the glyphosate degradation product, aminomethylphosphonic acid (AMPA). There were no remarkable effects of any treatment on the contents of any of the biosynthetic compounds in soybean seed from either test site, indicating that early and later season applications of glyphosate have no effects on phytoestrogen levels in glyphosate-resistant soybeans. Glyphosate and AMPA residues were higher in seeds from treatment 3 than from the other two treatments in which glyphosate was used earlier. Intermediate levels were found in treatments 1 and 2. Low levels of glyphosate and AMPA were found in treatment 4 and a

  8. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    PubMed

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction. PMID:19570674

  9. Lipase-Catalyzed Glycerolysis of Soybean and Canola Oils in a Free Organic Solvent System Assisted by Ultrasound.

    PubMed

    Remonatto, Daniela; Santin, Claudia M Trentin; Valério, Alexsandra; Lerin, Lindomar; Batistella, Luciane; Ninow, Jorge Luiz; de Oliveira, J Vladimir; de Oliveira, Débora

    2015-06-01

    This work shows new and promising experimental data of soybean oil and canola oil glycerolysis using Novozym 435 enzyme as catalyst in a solvent-free system using ultrasound bath for the emulsifier, monoglyceride (MAG), and diacylglycerol (DAG) production. The experiments were conducted in batch mode to study the influence of process variables as temperature (40 to 70 °C), immobilized enzyme content (2.5 to 10 wt%, relative to substrates), molar ratio glycerol/oil (0.8:1 to 3:1), agitation (0 to 1200 rpm) and ultrasound intensity (0 to 132 W cm(-2)). Highest yields of DAG+MAG (75 wt%) were obtained with molar ratio glycerol/canola oil 0.8:1, 70 °C, 900 rpm, 120 min of reaction time, 10 wt% of enzyme concentration, and 52.8 W cm(-2) of ultrasound intensity. When soybean oil was used, the best results in terms of DAG+MAGs (65 wt%) were using molar ratio of glycerol/soybean oil 0.8:1, 70 °C, 900 rpm, 90 min of reaction time, 10 wt% of enzyme content, and 40 % of ultrasound intensity (52.8 W cm(-2)). The results showed that the lipase-catalyzed glycerolysis in a solvent-free system with ultrasound bath can be a potential route for high content production of DAGs and MAGs. PMID:25875788

  10. Mechanism of Calcium Lactate Facilitating Phytic Acid Degradation in Soybean during Germination.

    PubMed

    Hui, Qianru; Yang, Runqiang; Shen, Chang; Zhou, Yulin; Gu, Zhenxin

    2016-07-13

    Calcium lactate facilitates the growth and phytic acid degradation of soybean sprouts, but the mechanism is unclear. In this study, calcium lactate (Ca) and calcium lactate with lanthanum chloride (Ca+La) were used to treat soybean sprouts to reveal the relevant mechanism. Results showed that the phytic acid content decreased and the availability of phosphorus increased under Ca treatment. This must be due to the enhancement of enzyme activity related to phytic acid degradation. In addition, the energy metabolism was accelerated by Ca treatment. The energy status and energy metabolism-associated enzyme activity also increased. However, the transmembrane transport of calcium was inhibited by La(3+) and concentrated in intercellular space or between the cell wall and cell membrane; thus, Ca+La treatment showed reverse results compared with those of Ca treatment. Interestingly, gene expression did not vary in accordance with their enzyme activity. These results demonstrated that calcium lactate increased the rate of phytic acid degradation by enhancing growth, phosphorus metabolism, and energy metabolism. PMID:27324823

  11. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.

    PubMed

    Komatsu, Setsuko; Han, Chao; Nanjo, Yohei; Altaf-Un-Nahar, Most; Wang, Kun; He, Dongli; Yang, Pingfang

    2013-11-01

    Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin. PMID:23808807

  12. Characterization of mannosylerythritol lipids containing hexadecatetraenoic acid produced from cuttlefish oil by Pseudozyma churashimaensis OK96.

    PubMed

    Morita, Tomotake; Kawamura, Daisuke; Morita, Naoki; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2013-01-01

    Biosurfactants are surface-active compounds produced by microorganisms. Mannosylerythritol lipids (MEL) are promising biosurfactants produced by Ustilaginomycetes, and their physicochemical and biochemical properties differ depending on the chemical structure of their hydrophilic and/or hydrophobic moieties. To further develop MEL derivatives and expand their potential applications, we focused our attention on the use of cuttlefish oil, which contains polyunsaturated fatty acids (e.g., docosahexaenoic acid, C₂₂:₆, and eicosapentaenoic acid, C₂₀:₅, as the sole carbon source. Among the microorganisms capable of producing MEL, only nine strains were able to produce them from cuttlefish oil. On gas chromatography-mass spectrometry (GC/MS) analysis, we observed that Pseudozyma churashimaensis OK96 was particularly suitable for the production of MEL-A, a MEL containing hexadecatetraenoic acid (C₁₆:₄) (23.6% of the total unsaturated fatty acids and 7.7% of the total fatty acids). The observed critical micelle concentration (CMC) and surface tension at CMC of the new MEL-A were 5.7×10⁻⁶ M and 29.5 mN/m, respectively, while those of MEL-A produced from soybean oil were 2.7×10⁻⁶ M and 27.7 mN/m, respectively. With polarized optical and confocal laser scanning microscopies, the self-assembling properties of MEL-A were found to be different from those of conventional MEL. Furthermore, based on the DPPH radical-scavenging assay, the anti-oxidative activity of MEL-A was found to be 2.1-fold higher than that of MEL-A produced from soybean oil. Thus, the newly identified MEL-A is attractive as a new functional material with excellent surface-active and antioxidative properties. PMID:23648407

  13. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  14. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  15. Choline for neutralizing naphthenic acid in fuel and lubricating oils

    SciTech Connect

    Ries, D.G.; Roof, G.L.

    1986-07-15

    A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

  16. Green processing for commercial production of feruloylated vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Covalent incorporation of ferulic acid into vegetable oils produces a desirable product for cosmetic applications. Current practice involves the biocatalytic transesterification of ethyl ferulate with soybean oil, followed by a molecular distillation step to remove unconsumed ethyl ferulate and the...

  17. Influence of Lentinus edodes and Agaricus blazei extracts on the prevention of oxidation and retention of tocopherols in soybean oil in an accelerated storage test.

    PubMed

    da Silva, Ana Carolina; Jorge, Neuza

    2014-06-01

    This study aimed to evaluate the influence of the methanol extracts of mushrooms Lentinus edodes and Agaricus blazei on the retention of tocopherols in soybean oil, when subjected to an accelerated storage test. The following treatments were subjected to an accelerated storage test in an oven at 60 °C for 15 days: Control (soybean oil without antioxidants), TBHQ (soybean oil + 100 mg/kg of TBHQ), BHT (soybean oil + 100 mg/kg of BHT), L. edodes (soybean oil + 3,500 mg/kg of L. edodes extract) and A. blazei (soybean oil + 3,500 mg/kg of A. blazei extract). The samples were analyzed for tocopherols naturally present in soybean oil and mass gain. The results showed, the time required to reach a 0.5% increase in mass was 13 days for TBHQ and 15 days for A. blazei. The content of tocopherols for TBHQ was 457.50 mg/kg and the A. blazei, 477.20 mg/kg. PMID:24876658

  18. Monitoring biodiesel reactions of soybean oil and sunflower oil using ultrasonic parameters

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. K. K.; Silva, C. E. R.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2015-01-01

    Biodiesel is an innovation that attempts to substitute diesel oil with biomass. The aim of this paper is to show the development of a real-time method to monitor transesterification reactions by using low-power ultrasound and pulse/echo techniques. The results showed that it is possible to identify different events during the transesterification process by using the proposed parameters, showing that the proposed method is a feasible way to monitor the reactions of biodiesel during its fabrication, in real time, and with relatively low- cost equipment.

  19. Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC-FID.

    PubMed

    Vicente, Juarez; de Carvalho, Mario Geraldo; Garcia-Rojas, Edwin E

    2015-08-15

    This study aimed at the characterization of blends of Sacha Inchi oil (SIO) with different ratios of SO (soybean oil) and CO (corn oil) by nuclear magnetic resonance ((1)H NMR), compared with the data obtained by gas chromatography with a flame ionization detector (GC-FID). The (1)H NMR and GC-FID data from different ratios of SIO were adjusted by a second order polynomial equation. The two techniques were highly correlated (R(2) values ranged from 0.995 to 0.999), revealing that (1)H NMR is an efficient methodology for the quantification of omega-3 fatty acids in oils rich in omega-6 fatty acids or vice versa such as SO and CO and, on the other hand, can be used to quantify ω-6 in oils rich in ω-3, such as SIO. PMID:25794742

  20. Differential molecular regulation of bile acid homeostasis by soy lipid induced phytosterolemia and fish oil lipid emulsions in TPN-fed preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prolonged total parenteral nutrition (PN) may lead to cholestasis and liver disease (PNALD). The soybean oil-based lipid emulsion (Intralipid) and its constituent phytosterols have been implicated in PNALD. Phytosterols may induce cholestasis by antagonism of the nuclear bile-acid receptor, FXR, lea...

  1. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  2. Effect of alginate coatings with cinnamon bark oil and soybean oil on quality and microbiological safety of cantaloupe.

    PubMed

    Zhang, Yue; Ma, Qiumin; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2015-12-23

    The quality and microbiological safety of cantaloupes can potentially be improved using antimicrobial coatings that are able to maintain effectiveness throughout storage. The objective of this work was to study the effect of coating mixtures containing sodium alginate and cinnamon bark oil (CBO) on the quality of cantaloupes and the survival of inoculated bacterial pathogens and naturally occurring yeasts and molds during ambient storage at 21 °C. Cantaloupes were dipped in mixtures containing 1% sodium alginate with or without 2% CBO and 0 or 0.5% soybean oil (SBO). Weight loss and total soluble solids content of the flesh were not significantly different among coating treatments. However, changes in color and firmness of cantaloupes were delayed to different extents after coating, most significantly for the CBO+SBO treatment. Cocktails of Salmonella enterica, Escherichia coli O157:H7, or Listeria monocytogenes inoculated on cantaloupes were reduced to the detection limit (1.3 log CFU/cm(2)) and completely inhibited during the 15-day storage by the CBO+SBO treatment, while L. monocytogenes and S. enterica reached populations of 2.9 log CFU/cm(2) and 2.4 log CFU/cm(2), respectively, on cantaloupes coated with CBO alone. Antimicrobial coatings, especially with SBO, also reduced yeast and mold counts on cantaloupes by 2.6 log CFU/cm(2). SBO improved the retention of CBO during storage suggesting it is related to the enhancement of quality and microbiological safety. Findings demonstrated the potential of the antimicrobial coating system studied to improve microbiological safety and quality of cantaloupes. PMID:26318410

  3. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. PMID:27374582

  4. Use of Fly Ash as a Liming Material for Corn and Soybean Production on an Acidic Sandy Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fly ash (FA) produced from subbituminous coal combustion can potentially serve as a lime material for crop production in acidic soils in areas. A five-year study was conducted to determine if FA can be used as a liming material in an acid sandy soil under corn and soybean grain production. Fly ash...

  5. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil

    PubMed Central

    Terés, S.; Barceló-Coblijn, G.; Benet, M.; Álvarez, R.; Bressani, R.; Halver, J. E.; Escribá, P. V.

    2008-01-01

    Numerous studies have shown that high olive oil intake reduces blood pressure (BP). These positive effects of olive oil have frequently been ascribed to its minor components, such as α-tocopherol, polyphenols, and other phenolic compounds that are not present in other oils. However, in this study we demonstrate that the hypotensive effect of olive oil is caused by its high oleic acid (OA) content (≈70–80%). We propose that olive oil intake increases OA levels in membranes, which regulates membrane lipid structure (HII phase propensity) in such a way as to control G protein-mediated signaling, causing a reduction in BP. This effect is in part caused by its regulatory action on G protein-associated cascades that regulate adenylyl cyclase and phospholipase C. In turn, the OA analogues, elaidic and stearic acids, had no hypotensive activity, indicating that the molecular mechanisms that link membrane lipid structure and BP regulation are very specific. Similarly, soybean oil (with low OA content) did not reduce BP. This study demonstrates that olive oil induces its hypotensive effects through the action of OA. PMID:18772370

  6. Consumption of Oxidized Soybean Oil Increased Intestinal Oxidative Stress and Affected Intestinal Immune Variables in Yellow-feathered Broilers.

    PubMed

    Liang, Fangfang; Jiang, Shouqun; Mo, Yi; Zhou, Guilian; Yang, Lin

    2015-08-01

    This study investigated the effect of oxidized soybean oil in the diet of young chickens on growth performance and intestinal oxidative stress, and indices of intestinal immune function. Corn-soybean-based diets containing 2% mixtures of fresh and oxidized soybean oil provided 6 levels (0.15, 1.01, 3.14, 4.95, 7.05, and 8.97 meqO2/kg) of peroxide value (POV) in the diets. Each dietary treatment, fed for 22 d, had 6 replicates, each containing 30 birds (n = 1,080). Increasing POV levels reduced average daily feed intake (ADFI) of the broilers during d 1 to 10, body weight and average daily gain at d 22 but did not affect overall ADFI. Concentrations of malondialdehyde (MDA) increased in plasma and jejunum as POV increased but total antioxidative capacity (T-AOC) declined in plasma and jejunum. Catalase (CAT) activity declined in plasma and jejunum as did plasma glutathione S-transferase (GST). Effects were apparent at POV exceeding 3.14 meqO2/kg for early ADFI and MDA in jejunum, and POV exceeding 1.01 meqO2/kg for CAT in plasma and jejunum, GST in plasma and T-AOC in jejunum. Relative jejunal abundance of nuclear factor kappa B (NF-κB) P50 and NF-κB P65 increased as dietary POV increased. Increasing POV levels reduced the jejunal concentrations of secretory immunoglobulin A and cluster of differentiation (CD) 4 and CD8 molecules with differences from controls apparent at dietary POV of 3.14 to 4.95 meqO2/kg. These findings indicated that growth performance, feed intake, and the local immune system of the small intestine were compromised by oxidative stress when young broilers were fed moderately oxidized soybean oil. PMID:26104529

  7. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the fatty acid profiles of the seed oils of Albizia lebbeck and Albizia saman (Samanea saman) are reported. The oils were analyzed by GC, GC-MS, and NMR. The most prominent fatty acid in both oils is linoleic acid (30-40%), followed by palmitic acid and oleic acid for A. lebbeck and ol...

  8. Effect of heat treatment of digestion-resistant fraction from soybean on retarding of bile acid transport in vitro

    PubMed Central

    Han, Sung-Hee; Lee, Seog-Won

    2009-01-01

    In this study, we investigated the heat effect of digestion-resistant fraction (RF) from soybean on retarding bile acid transport in vitro. The RFs from soybean retarded bile acid transport. A raw, unheated RF of soybean (RRF-SOY) was significantly more effective than the heated RF of soybean (HRF-SOY). The RS1 which physically trapped in milled grains and inaccessible to digestive enzyme after 18 hrs incubation level of content in RRF-SOY was found to be as high as 24.1% and after heating the RS1 of HRF-SOY was significantly reduced to 16.8%. The X-ray diffraction pattern of RF from soybean was altered after heat treatment. The RFs from soybean were characterized by peak at diffraction angles of 12.0° and 20.0° corresponding to RS content. Cellulose contents of RRF-SOY was 5% higher than that of HRF-SOY and pentosan contents of RRF-SOY was 5% higher than that of HRF-SOY, too. Whereas the hemicellulose content of RRF-SOY was 13% lower than HRF-SOY.

  9. Reduction in uptake by rice and soybean of aromatic arsenicals from diphenylarsinic acid contaminated soil amended with activated charcoal.

    PubMed

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2011-10-01

    Activated charcoal (AC) amendment has been suggested as a promising method to immobilize organic contaminants in soil. We performed pot experiments with rice and soybean grown in agricultural soil polluted by aromatic arsenicals (AAs). The most abundant AA in rice grains and soybean seeds was methylphenylarsinic acid (MPAA). MPAA concentration in rice grains was significantly reduced to 2% and 3% in 0.2% AC treated soil compared to untreated soil in the first year of rice cultivation. In the second year, MPAA concentration in rice grains was significantly reduced to 15% in 0.2% AC treated soil compared to untreated soil. MPAA concentration in soybean seeds was significantly reduced to 44% in 0.2% AC treated soil compared to untreated soil. AC amendment was effective in reducing AAs in rice and soybean. PMID:21782301

  10. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean

    PubMed Central

    Andreu, Vanesa; Alfonso, Miguel

    2012-01-01

    This study analysed the contribution of each omega-3 desaturase to the cold response in soybean. Exposure to cold temperatures (5 °C) did not result in great modifications of the linolenic acid content in leaf membrane lipids. However, an increase in the GmFAD3A transcripts was observed both in plant leaves and soybean cells whereas no changes in GmFAD3B or GmFAD3C expression levels were detected. This increase was reversible and accompanied by the accumulation of an mRNA encoding a truncated form of GmFAD3A (GmFAD3A-T), which originated from alternative splicing of GmFAD3A in response to cold. When the expression of plastidial omega-3 desaturases was analysed, a transient accumulation of GmFAD7-2 mRNA was detected upon cold exposure in mature soybean trifoliate leaves while GmFAD7-1 transcripts remained unchanged. No modification of the GmFAD8-1 and GmFAD8-2 transcripts was observed. The functionality of GmFAD3A, GmFAD3B, GmFAD3C and GmFAD3A-T was examined by heterologous expression in yeast. No activity was detected with GmFAD3A-T, consistent with the absence of one of the His boxes necessary for desaturase activity. The linolenic acid content of Sacharomyces cerevisiae cells overexpressing GmFAD3A or GmFAD3B was higher when the cultures were incubated at cooler temperatures, suggesting that reticular desaturases of the GmFAD3 family, and more specifically GmFAD3A, may play a role in the cold response, even in leaves. The data point to a regulatory mechanism of omega-3 fatty acid desaturases in soybean affecting specific isoforms in both the plastid and the endoplasmic reticulum to maintain appropriate levels of linolenic acid under low temperature conditions. PMID:22865909

  11. Vitamins as radioprotectors in vivo II. protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides

    SciTech Connect

    Harapanhalli, R.S.; Narra, V.R.; Yaghmai, V.; Azure, M.T.; Goddu, M.; Howell, R.W.; Rao, D.V.

    1994-07-01

    Tissue-incorporated radionuclides impart radiation energy over extended periods of time depending on their effective half-lives. The capacity of vitamin A dissolved in soybean oil to protect against the biological effects caused by internal radionuclides is investigated. The radiochemicals examined are DNA-binding {sup 125}IdU, cytoplasmically localized H{sup 125}IPDM and the {alpha}-particle emitter {sup 210}Po citrate. As in our previous studies, spermatogenesis in mice is used as the experimental model and spermatogonial cell survival is the biological end point. Surprisingly, soybean oil itself provides substantial and equal protection against the Auger effect of {sup 125}IdU, which is comparable to a high-LET radiation effect, as well as the low-LET effects of H{sup 125}IPDM, the dose modification factors (DMFs) being 3.6 {+-} 0.9 (SEM) and 3.4 {+-} 0.9, respectively. The protection afforded by the oil against the effects of 5.3 MeV {alpha} particles emitted by 210Po is also significant (DMF = 2.2 {+-} 0.4). The presence of vitamin A in the oil further enhanced the radioprotection against the effect of {sup 125}IdU (DMF = 4.8 {+-} 1.3) and H{sup 125}IKPDM (DMF = 5.1 {+-} 0.6); however, no enhancement is provided against the effects of {alpha} particles. These interesting results with soybean oil and vitamin A, together with data on the subcellular distribution of the protectors, provide clues regarding the mechanistic aspects of the protection. In addition, the data for vitamin A reaffirm our earlier conclusion that the mechanism by which DNA-bound Auger emitters impart biological damage is primarily indirect in nature. 29 refs., 7 figs., 2 tabs.

  12. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  13. "Green" films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films.

    PubMed

    Yang, Dong; Peng, Xinwen; Zhong, Linxin; Cao, Xuefei; Chen, Wei; Zhang, Xueming; Liu, Shijie; Sun, Runcang

    2014-03-15

    Epoxidized soybean oil (ESO), which is a biomass-derived resource, was first used as a novel plasticizer for ethyl cellulose (EC) film preparation. Surface morphologies, mechanical performances, thermal properties, oxygen and water vapor permeabilities of plasticized EC films were detected in detail to evaluate the plasticizing effect of ESO and explore the plastication mechanisms. Results showed that ESO was an effective plasticizer that outstripped conventional plasticizers, i.e. dibutyl phthalate (DBP) and triethyl citrate (TEC) in producing high-quality films. Especially, at plasticizer concentrations of 15-25%, ESO-EC films had preferable mechanical properties and better thermal stability, as well as non-flammability. In addition, the water vapor permeability of ESO-EC films was lower than that of traditional plasticized films. Their oxygen permeability was also remained in a low level. These outstanding performances were related to the relatively high molecular weight, hydrophobicity, chemical structure of ESO, and the intermolecular interactions between ESO and EC chains. PMID:24528720

  14. Gel Point Suppression in RAFT Polymerization of Pure Acrylic Cross-Linker Derived from Soybean Oil.

    PubMed

    Yan, Mengguo; Huang, Yuerui; Lu, Mingjia; Lin, Fang-Yi; Hernández, Nacú B; Cochran, Eric W

    2016-08-01

    Here we report the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylated epoxidized soybean oil (AESO), a cross-linker molecule, to high conversion (>50%) and molecular weight (>100 kDa) without macrogelation. Surprisingly, gelation is suppressed in this system far beyond the expectations predicated both on Flory-Stockmeyer theory and multiple other studies of RAFT polymerization featuring cross-linking moieties. By varying AESO and initiator concentrations, we show how intra- versus intermolecular cross-linking compete, yielding a trade-off between the degree of intramolecular linkages and conversion at gel point. We measured polymer chain characteristics, including molecular weight, chain dimensions, polydispersity, and intrinsic viscosity, using multidetector gel permeation chromatography and NMR to track polymerization kinetics. We show that not only the time and conversion at macrogelation, but also the chain architecture, is largely affected by these reaction conditions. At maximal AESO concentration, the gel point approaches that predicted by the Flory-Stockmeyer theory, and increases in an exponential fashion as the AESO concentration decreases. In the most dilute solutions, macrogelation cannot be detected throughout the entire reaction. Instead, cyclization/intramolecular cross-linking reactions dominate, leading to microgelation. This work is important, especially in that it demonstrates that thermoplastic rubbers could be produced based on multifunctional renewable feedstocks. PMID:27359245

  15. Enhancement of Rhamnolipid Production in Residual Soybean Oil by an Isolated Strain of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    de Lima, C. J. B.; França, F. P.; Sérvulo, E. F. C.; Resende, M. M.; Cardoso, V. L.

    In the present work, the production of rhamnolipid from residual soybean oil (RSO) from food frying facilities was studied using a strain of Pseudomonas aeruginosa of contaminated lagoon, isolated from a hydrocarbon contaminated soil. The optimization of RSO, amonium nitrate, and brewery residual yeast concentrations was accomplished by a central composite experimental design and surface response analysis. The experiments were performed in 500-mL Erlenmeyer flasks containing 50mL of mineral medium, at 170 rpm and 30±1°C, for a 48-h fermentation period. Rhamnolipid production has been monitored by measurements of surface tension, rhamnose concentration, and emulsifying activity. The best-planned results, located on the central point, have corresponded to 22g/L of RSO, 5.625 g/ L of NH4NO3' and 11.5 g/L of brewery yeast. At the maximum point the values for rhamnose and emulsifying index were 2.2g/L and 100%, respectively.

  16. Agronomic effects of mutations in two soybean Stearoyl-ACP-Desaturases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] oil normally contains 2-4% stearic acid. Oil with higher levels of stearic acid is desired for use in the baking industry, for both its chemical properties and human health benefits. Several lines with increased stearic acid have been identified; however, the agronom...

  17. Physiological responses of glyphosate-resistant and glyphosate-sensitive soybean to aminomethylphosphonic acid, a metabolite of glyphosate.

    PubMed

    Ding, Wei; Reddy, Krishna N; Zablotowicz, Robert M; Bellaloui, Nacer; Arnold Bruns, H

    2011-04-01

    Aminomethylphosphonic acid (AMPA) is formed in glyphosate-treated glyphosate-resistant (GR) and glyphosate-sensitive (GS) soybean [Glycine max (L.) Merr.] plants and is known to cause yellowing in soybean. Although, AMPA is less phytotoxic than glyphosate, its mode of action is different from that of glyphosate and is still unknown. Greenhouse studies were conducted at Stoneville, MS to determine the effects of AMPA on plant growth, chlorophyll content, photosynthesis, nodulation, nitrogenase activity, nitrate reductase activity, and shoot nitrogen content in GR and GS soybeans. AMPA was applied to one- to two-trifoliolate leaf stage soybeans at 0.1 and 1.0 kg ha(-1), representing a scenario of 10% and 100% degradation of glyphosate (1.0 kg ae ha(-1) use rate) to AMPA, respectively. Overall, AMPA effects were more pronounced at 1.0 kg ha(-1) than at 0.1 kg ha(-1) rate. Visual plant injury (18-27%) was observed on young leaves within 3d after treatment (DAT) with AMPA at the higher rate regardless of soybean type. AMPA injury peaked to 46-49% at 14 DAT and decreased to 17-18% by 28 DAT, in both soybean types. AMPA reduced the chlorophyll content by 37%, 48%, 66%, and 23% in GR soybean, and 17%, 48%, 57%, and 22% in GS soybean at 3, 7, 14, and 28 DAT, respectively. AMPA reduced the photosynthesis rate by 65%, 85%, and 77% in GR soybean and 59%, 88%, and 69% in GS soybean at 3, 7, and 14 DAT, respectively, compared to non-treated plants. Similarly, AMPA reduced stomatal conductance to water vapor and transpiration rates at 3, 7, and 14 DAT compared to non-treated plants in both soybean types. Photosynthesis rate, stomatal conductance, and transpiration rate recovered to the levels of non-treated plants by 28 DAT. Plant height and shoot dry weight at 28 DAT; nodulation, nitrogenase activity at 10 DAT, and nitrate reductase activity at 3 and 14 DAT were unaffected by AMPA. AMPA reduced root respiration and shoot nitrogen content at 10 DAT. These results suggest that a

  18. Optimization of biosurfactant production in soybean oil by rhodococcus rhodochrous and its utilization in remediation of cadmium-contaminated solution

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Hastuti, Sri; Andriani, Dewi

    2016-02-01

    Biosurfactant production by Rhodococcus rhodochrous in soybean oil was developed, where the effect of medium composition and fermentation time were evaluated. The optimum condition for biosurfactant production was achieved when a medium containing 30 g/L TSB (tryptic soy broth) and 20% v/v soybean oil was used as media with 7 days of fermentation. Biosurfactant was identified as glycolipids type biosurfactant which had critical micelle concentration (CMC) value of 896 mg/L. The biosurfactant had oil in water emulsion type and was able to reduce the surface tension of palm oil about 52% which could stabilize the emulsion up to 12 days. The batch removal of cadmium metal ion by crude and partially purified biosurfactants have been examined from synthetic aqueous solution at pH 6. The results exhibited that the crude biosurfactant had a much better adsorption ability of Cd(II) than that of partially purified biosurfactant. However, it was found that there was no significant difference in the adsorption of Cd(II) with 5 and 10 minutes of contact time. The results indicated that the biosurfactant could be used in remediation of heavy metals from contaminated aqueous solution.

  19. Antimicrobial activity of essential oils of Thymus vulgaris and Origanum vulgare on phytopathogenic strains isolated from soybean.

    PubMed

    Oliva, M de las M; Carezzano, M E; Giuliano, M; Daghero, J; Zygadlo, J; Bogino, P; Giordano, W; Demo, M

    2015-05-01

    The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re-isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml(-1) on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections. PMID:25359697

  20. Use of ATR-FTIR spectroscopy coupled with chemometrics for the authentication of avocado oil in ternary mixtures with sunflower and soybean oils.

    PubMed

    Jiménez-Sotelo, Paola; Hernández-Martínez, Maylet; Osorio-Revilla, Guillermo; Meza-Márquez, Ofelia Gabriela; García-Ochoa, Felipe; Gallardo-Velázquez, Tzayhrí

    2016-07-01

    Avocado oil is a high-value and nutraceutical oil whose authentication is very important since the addition of low-cost oils could lower its beneficial properties. Mid-FTIR spectroscopy combined with chemometrics was used to detect and quantify adulteration of avocado oil with sunflower and soybean oils in a ternary mixture. Thirty-seven laboratory-prepared adulterated samples and 20 pure avocado oil samples were evaluated. The adulterated oil amount ranged from 2% to 50% (w/w) in avocado oil. A soft independent modelling class analogy (SIMCA) model was developed to discriminate between pure and adulterated samples. The model showed recognition and rejection rate of 100% and proper classification in external validation. A partial least square (PLS) algorithm was used to estimate the percentage of adulteration. The PLS model showed values of R(2) > 0.9961, standard errors of calibration (SEC) in the range of 0.3963-0.7881, standard errors of prediction (SEP estimated) between 0.6483 and 0.9707, and good prediction performances in external validation. The results showed that mid-FTIR spectroscopy could be an accurate and reliable technique for qualitative and quantitative analysis of avocado oil in ternary mixtures. PMID:27314226

  1. Irrigation management: effects of soybean diseases on seed composition in genotypes differing in their disease resistance under irrigated and nonirrigated conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed is a major source of protein and oil in the world. Nutritional qualities of soybean seed are determined by the quantity and quality of seed composition components (protein, oil, fatty acids, isoflavones, and minerals). Charcoal rot is a disease caused by the fungus Macrophomina phaseol...

  2. Continuous lipase-catalyzed esterification of soybean fatty acids under ultrasound irradiation.

    PubMed

    Trentin, Claudia M; Scherer, Robison P; Dalla Rosa, C; Treichel, H; Oliveira, D; Oliveira, J Vladimir

    2014-05-01

    This work investigates the continuous production of alkyl esters from soybean fatty acid (FA) charges using immobilized Novozym 435 as catalyst. The experiments were performed in a packed-bed bioreactor evaluating the effects of FA charge to alcohol (methanol and ethanol) molar ratio, from 1:1 to 1:6, substrate flow rate in the range of 0.5-2.5 mL/min and output irradiation power up to 154 W, at fixed temperature of 65 °C, on the reaction conversion. Results showed that almost complete conversions to fatty acids ethyl esters were achieved at mild ultrasonic power (61.6 W), FA to ethanol molar ratio of 1:6, operating temperature (65 °C) and remained nearly constant for long-term reactions without negligible enzyme activity losses. PMID:24078183

  3. Comparison of experimental designs to determine effects of acidic precipitation on field-grown soybeans

    SciTech Connect

    Evans, L.S.; Lewin, K.F.; Patti, M.J.; Cunningham, E.A.

    1982-01-01

    Two experiments were performed to determine changes in seed yields of soybeans grown under standard agronomic practices exposed to simulated acidic rain during the summer of 1981. Seed yields of soybeans exposed twice weekly to simulated rainfalls of pH 4.1, 3.3, and 2.7 were decreased 10.7, 16.8, and 22.9%, respectively, compared with plants exposed to simulated rainfalls of pH 5.6. A treatment-response function of seed yield versus rainfall pH was y = 7.40 + 1.025 x and had a correlation coefficient of 0.997. In a second experiment, soybean plants were not shielded from ambient rainfalls (weighted mean hydrogen ion concentration equal to pH 4.04) and received only small volumes of simulated rainfalls three times weekly. Plants exposed to simulated rainfalls of pH 4.1, 3.3, and 2.7 exhibited yield reductions of 2.7, 7.0, and 7.6, respectively, below yields of plants exposed to simulated rainfalls of pH 5.6. By best fit analyses, the equation that fits this latter relationship is expressed by y = 9.68 + 0.318 x where y is seed mass per plant and x is the pH of the simulated rain. The correlation coefficient for this latter relationship was 0.97. The decrease in seed yield observed in both experiments was due to a decrease in number of pods per plant.

  4. Immobilization of tetramethylguanidine on mesoporous SBA-15 silica: a heterogeneous basic catalyst for transesterification of soybean oil.

    PubMed

    Xie, Wenlei; Fan, Mingliang

    2013-07-01

    An active heterogeneous catalyst, namely 1,1,3,3-tetramethylguanidine (TMG) immobilized on mesoporous SBA-15 silica (SBA-15-pr-TMG), was prepared and the catalytic activity was investigated for transesterification of soybean oil with methanol. The heterogeneous catalysts were characterized using Hammett titration method, Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, and X-ray photoelectron spectroscopy techniques. It is shown that the activity of the catalysts for the transesterification reaction is closely related to their basic properties. By using this catalyst, an environmentally benign process for biodiesel production in a heterogeneous manner was developed. When the reaction was carried out at reflux of methanol, with a molar ratio of methanol to soybean oil of 15:1, a reaction time 12h and a catalyst amount 5 wt%, the oil conversion of 91.7% was achieved. The catalyst could be recovered easily and reused without significant degradation in activity. PMID:23664065

  5. Enzyme-catalyzed production of biodiesel by ultrasound-assisted ethanolysis of soybean oil in solvent-free system.

    PubMed

    Trentin, Claudia M; Popiolki, Ariana S; Batistella, Luciane; Rosa, Clarissa Dalla; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir

    2015-03-01

    This work reports the transesterification of soybean oil with ethanol using a commercial immobilized lipase, Novozym 435, under the influence of ultrasound irradiation, in a solvent-free s. The experiments were performed in an ultrasonic water bath, following a sequence of experimental designs to evaluate the effects of temperature, enzyme and water concentrations, oil to ethanol molar ratio and output irradiation power on the reaction yield. Besides, a kinetic study varying the substrates molar ratio and enzyme concentration was also carried out. Results show that ultrasound-assisted lipase-catalyzed transesterification of soybean oil with ethanol in solvent-free system might be a potential alternative route to conventional alkali-catalyzed and/or traditional enzymatic methods, as high reaction yields (~78 wt%) were obtained at mild irradiation power supply (~132 W), and temperature (63 °C) in a relatively short reaction time, 1 h. Additionally, a study regarding the enzyme reuse was carried out at the experimental condition that afforded the best reaction yield. PMID:25362889

  6. Involvement of abscisic acid in correlative control of flower abscission in soybean

    SciTech Connect

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.

  7. Acidity of biomass fast pyrolysis bio-oils

    SciTech Connect

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

  8. Soybean plastidal omega-3 fatty acid desaturase genes GmFAD7 and GmFAD8: structure and expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genomic structure and deduced protein sequence of soybean FAD7 and FAD8 have features similar to higher plant plastidal '-3 desaturases: 8 exons and 7 introns, predicted proteins of 453 amino acid residues containing three conserved histidine motifs, amino terminal chloroplast transit peptides, ...

  9. Reactivity of soybean lipoxygenase-1 to linoleic acid entrapped in phosphatidylcholine vesicles.

    PubMed

    Kato, M; Nishiyama, J; Kuninori, T

    1998-08-01

    The linoleic acids embedded in the SUVs of soy-PC, DMPC, and DPPC served as substrate for soybean lipoxygenase-1 (L-1). The initial velocity of the catalytic reaction and the concentration of the substrate showed a hyperbolic relation. The Km values of L-1 for the linoleic acids in soy-PC, DMPC, and DPPC vesicles were 0.07, 0.09, and 0.11 mM, respectively, being comparable with that for Tween-20 micellar linoleic acid. Soy-PC and DMPC competitively inhibited the enzyme with Ki values of 0.20 and 0.13 mM, respectively, whereas DPPC had no effect. DSC analysis revealed the phase separation of linoleic acid and DPPC in vesicles in the temperature range in which the enzyme reaction was carried out. This may account for the lack of inhibitory effect of DPPC on the enzyme. From the temperature dependence of the specific activity of the enzyme, the Ea values of the catalytic reaction were estimated to be 26.7 and 35.3 kJ.mol-1 for soy-PC and DPPC vesicles, respectively. For linoleic acid-DMPC vesicles, a two-phase temperature dependence of the activity across the transition temperature of the mixed vesicles was suggested. PMID:9685717

  10. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection.

    PubMed

    Abeysekara, Nilwala S; Swaminathan, Sivakumar; Desai, Nalini; Guo, Lining; Bhattacharyya, Madan K

    2016-02-01

    The causal agent of the soybean sudden death syndrome (SDS), Fusarium virguliforme, remains in infected roots and secretes toxins to cause foliar SDS. In this study we investigated the xylem sap, roots, and leaves of F. virguliforme-infected and -uninfected soybean seedlings for any changes in a set of over 3,000 metabolites following pathogen infection by conducting GC/MS and LC/MS/MS, and detected 273 biochemicals. Levels of many intermediates of the TCA cycle were reduced suggesting suppression of this metabolic pathway by the pathogen. There was an increased accumulation of peroxidated lipids in leaves of F. virguliforme-infected plants suggesting possible involvement of free radicals and lipoxygenases in foliar SDS development. Levels of both isoflavone conjugates and isoflavonoid phytoalexins were decreased in infected roots suggesting degradation of these metabolites by the pathogen to promote root necrosis. The levels of the plant immunity inducer pipecolic acid (Pip) and the plant hormone salicylic acid (SA) were significantly increased in xylem sap (in case of Pip) and leaves (in case of both Pip and SA) of F. virguliforme-infected soybean plants compared to the control plants. This suggests a major signaling role of Pip in inducing host defense responses in above ground parts of the F. virguliforme-infected soybean. Increased accumulation of pipecolic acid in foliar tissues was associated with the induction of GmALD1, the soybean homolog of Arabidopsis ALD1. This metabolomics study generated several novel hypotheses for studying the mechanisms of SDS development in soybean. PMID:26795155

  11. Carbon source pulsed feeding to attain high yield and high productivity in poly(3-hydroxybutyrate) (PHB) production from soybean oil using Cupriavidus necator.

    PubMed

    Pradella, José Geraldo da Cruz; Ienczak, Jaciane Lutz; Delgado, Cecília Romero; Taciro, Marilda Keico

    2012-06-01

    Poly(3-hydroxybutyrate) (PHB) biosynthesis from soybean oil by Cupriavidus necator was studied using a bench scale bioreactor. The highest cell concentration (83 g l(-1)) was achieved using soybean oil at 40 g l(-1) and a pulse of the same concentration. The PHB content was 81% (w/w), PHB productivity was 2.5 g l(-1) h(-1), and the calculated Y(p/s) value was 0.85 g g(-1). Growth limitation and the onset of PHB biosynthesis took place due to exhaustion of P, and probably also Cu, Ca, and Fe. PMID:22315097

  12. Fatty acid composition of oil synthesized by Aspergillus nidulans.

    PubMed

    Sharma, N D; Mathur, J M; Saxena, B S; Sen, K

    1981-01-01

    The filamentous fungus Aspergillus nidulans Eidam strain 300 was found to be capable of synthesizing 24.9% oil or remarkably low free fatty acidity, in a chemically defined medium with 34% glucose as sole carbon source. although the total content of oil synthesized was less, utilization of the carbon source is better as shown by the high (8.4) fat coefficient. The major component fatty acids of the oil were palmitic, stearic, oleic and linoleic and are influenced by the source of carbon. Palmitoleic acid is present in traces, confirming thereby the general observation that high oil formers produce oil of low hexadecenoic acid content. The relatively high stearic acid content of the oil distinguishes it from those of other microorganisms and resembles the oil produced by certain tropical plants, such as Madhuca latifolia. PMID:7026394

  13. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  14. Sunflowers versus soybeans

    SciTech Connect

    Baldwin, J.D.C.

    1980-10-01

    While both soybeans and sunflowers provide oil and protein, sunflowers offer the higher potential yield of oil per hectare. Research to modify vegetable oils to improve their fuel properties is suggested, particularly on improving the characteristics of the oil as a fuel for diesel engines.

  15. Glymes as benign co-solvents for CaO-catalyzed transesterification of soybean oil to biodiesel.

    PubMed

    Tang, Shaokun; Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe

    2013-07-01

    The base (such as CaO)-catalyzed heterogeneous preparation of biodiesel encounters a number of obstacles including the need for CaO pretreatment and the reactions being incomplete (typically 90-95% yields). In this study, a number of glymes were investigated as benign solvents for the CaO-catalyzed transesterification of soybean oil into biodiesel with a high substrate loading (typically soybean oil >50% v/v). The triglyceride-dissolving capability of glymes led to a much faster reaction rate (>98% conversions in 4h) than in methanol alone (typically 24h) and minimized the saponification reaction when catalyzed by anhydrous CaO or commercial lime without pre-activation. The use of glyme (e.g. P2) as co-solvent also activates commercial lime to become an effective catalyst without calcination pretreatment. The SEM images suggest a dissolution-agglomeration process of CaO surface in the presence of P2, which could remove the CaCO3 and Ca(OH)2 layer coated on the surface of lime. PMID:23648759

  16. The effect of extra virgin olive oil and soybean on DNA, cytogenicity and some antioxidant enzymes in rats.

    PubMed

    El-Kholy, Thanaa A; Abu Hilal, Mohammad; Al-Abbadi, Hatim Ali; Serafi, Abdulhalim Salim; Al-Ghamdi, Ahmad K; Sobhy, Hanan M; Richardson, John R C

    2014-06-01

    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents' organs and warrants further investigation in humans. PMID:24959949

  17. Inhibition of N2 Fixation in Soybean Is Associated with Elevated Ureides and Amino Acids1

    PubMed Central

    King, C. Andy; Purcell, Larry C.

    2005-01-01

    Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous ureides and soil-water treatments for the cultivars Jackson and KS4895. Exogenous ureides applied to the soil and water-deficit treatments inhibited N2 fixation by 85% to 90%. Mn fertilization increased the apparent catabolism of ureides in leaves and hastened the recovery of N2 fixation following exogenous ureide application for both cultivars. Ureides and total free amino acids in leaves and nodules increased during water deficits and coincided with a decline in N2 fixation for both cultivars. N2 fixation recovered to 74% to 90% of control levels 2 d after rewatering drought-stressed plants, but leaf ureides and total nodule amino acids remained elevated in KS4895. Asparagine accounted for 82% of the increase in nodule amino acids relative to well-watered plants at 2 d after rewatering. These results indicate that leaf ureides and nodule asparagine do not feedback inhibit N2 fixation. Compounds whose increase and decrease in concentration mirrored the decline and recovery of N2 fixation included nodule ureides, nodule aspartate, and several amino acids in leaves, indicating that these are potential candidate molecules for feedback inhibition of N2 fixation. PMID:15778462

  18. Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1

    PubMed Central

    Muslih, Raad K.; Linscott, Dean L.

    1977-01-01

    The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173

  19. Biosynthesis of Fatty Acids by a Soluble Extract From Developing Soybean Cotyledons 1

    PubMed Central

    Rinne, R. W.

    1969-01-01

    Fractionation of developing soybean cotyledons into cellular components demonstrates that most of the activity necessary to incorporate acetate-1-14C into lipid remains in the supernatant from a 198,000g spin for 1 hr. The system studied is dependent upon ATP, CoA, and CO2. Concentrations of ATP greater than 4 × 10−3m are inhibitory, while 1 × 10−4m CoA is needed for optimal activity. Avidin inhibition of acetate incorporation into lipid could be reversed by biotin. Studies indicated that NADPH is a better source of reducing power than NADH. The system studied is inhibited by p-chloromercuribenzoic acid and this inhibition can be reversed by an excess of GSH. The system studied shows maximum activity in tris buffer at pH 8.6 or in glycine buffer, pH 9.4. The distribution of acetate into the various fatty acids is greatly influenced by the temperature of incubation. Cooler incubation temperatures favor the distribution of acetate into the more unsaturated fatty acids. PMID:16657038

  20. Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane.

    PubMed

    Muhamad, Ida Idayu; Quin, Chang Hui; Selvakumaran, Suguna

    2016-04-01

    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle. PMID:27413211

  1. Effects of fish oil, DHA oil and lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata)

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Ke; Wang, Wen-Qi; Li, Kui-Ran; Lei, Ji-Lin

    2002-12-01

    The effects of natural fish oil, DHA oil and soybean lecithin in microparticulate diets on stress tolerance of larval gilthead seabream ( Sparus aurata) were investigated after 15 days feeding trials. The tolerance of larval gilthead seabream to various stress factors such as exposure to air (lack of dissolved oxygen), changes in water temperature (low) and salinity (high) were determined. This study showed that microparticulate diet with natural fish oil and soybean lecithin was the most effective for increasing the tolerance of larval gilthead seabream to various stresses, and that microparticulate diet with natural fish oil and palmitic acid (16∶0) was more effective than microparticulate diet with DHA oil and soybean lecithin.

  2. Dietary Mannan Oligosaccharides: Counteracting the Side Effects of Soybean Meal Oil Inclusion on European Sea Bass (Dicentrarchus labrax) Gut Health and Skin Mucosa Mucus Production?

    PubMed Central

    Torrecillas, Silvia; Montero, Daniel; Caballero, Maria José; Pittman, Karin A.; Custódio, Marco; Campo, Aurora; Sweetman, John; Izquierdo, Marisol

    2015-01-01

    The main objective of this study was to assess the effects of 4 g kg−1 dietary mannan oligosaccharides (MOS) inclusion in soybean oil (SBO)- and fish oil (FO)-based diets on the gut health and skin mucosa mucus production of European sea bass juveniles after 8 weeks of feeding. Dietary MOS, regardless of the oil source, promoted growth. The intestinal somatic index was not affected, however dietary SBO reduced the intestinal fold length, while dietary MOS increased it. The dietary oil source fed produced changes on the posterior intestine fatty acid profiles irrespective of MOS dietary supplementation. SBO down-regulated the gene expression of TCRβ, COX2, IL-1β, TNFα, IL-8, IL-6, IL-10, TGFβ, and Ig and up-regulated MHCII. MOS supplementation up-regulated the expression of MHCI, CD4, COX2, TNFα, and Ig when included in FO-based diets. However, there was a minor up-regulating effect on these genes when MOS was supplemented in the SBO-based diet. Both dietary oil sources and MOS affected mean mucous cell areas within the posterior gut, however the addition of MOS to a SBO diet increased the mucous cell size over the values shown in FO fed fish. Dietary SBO also trends to reduce mucous cell density in the anterior gut relative to FO, suggesting a lower overall mucosal secretion. There are no effects of dietary oil or MOS in the skin mucosal patterns. Complete replacement of FO by SBO, modified the gut fatty acid profile, altered posterior gut-associated immune system (GALT)-related gene expression and gut mucous cells patterns, induced shorter intestinal folds and tended to reduce European sea bass growth. However, when combined with MOS, the harmful effects of SBO appear to be partially balanced by moderating the down-regulation of certain GALT-related genes involved in the functioning of gut mucous barrier and increasing posterior gut mucous cell diffusion rates, thus helping to preserve immune homeostasis. This denotes the importance of a balanced

  3. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line.

    PubMed

    Lin, Chuan-Chuan; Lin, Hung-Yin; Chi, Ming-Hung; Shen, Chin-Min; Chen, Hwan-Wen; Yang, Wen-Jen; Lee, Mei-Hwa

    2014-07-01

    The choice of surfactants and cosurfactants for preparation of oral formulation in microemulsions is limited. In this report, a curcumin-encapsulated phospholipids-based microemulsion (ME) using food-grade ingredients soybean oil and soybean lecithin to replace ethyl oleate and purified lecithin from our previous study was established and compared. The results indicated soybean oil is superior to ethyl oleate as the oil phase in curcumin microemulsion, as proven by the broadened microemulsion region with increasing range of surfactant/soybean oil ratio (approx. 1:1-12:1). Further preparation of two formula with different particle sizes of formula A (30nm) and B (80nm) exhibited differential effects on the cytotoxicity of hepatocellular HepG2 cell lines. At 15μM of concentration, curcumin-ME in formula A with smaller particle size resulted in the lowest viability (approx. 5%), which might be explained by increasing intake of curcumin, as observed by fluorescence microscopy. In addition, the cytotoxic effect of curcumin-ME is exclusively prominent on HepG2, not on HEK293, which showed over 80% of viability at 15μM. The results from this study might provide an innovative applied technique in the area of nutraceuticals and functional foods. PMID:24518344

  4. Polyamines in soybeans.

    PubMed

    Wang, L C

    1972-07-01

    Putrescine, spermidine, and spermine were three main polyamines isolated from soybeans and partially characterized. Occurrence of polyamines in soybeans was established by separating trichloroacetic acid extracts of soybeans by cationic exchange column chromatography, identification with thin layer chromatography, paper electrophoresis, mass spectral analysis, reactions with ninhydrin and Dragendorff reagents, and spectrophotometric characteristics. Soybeans contained a minimum of 29.0 micrograms of polyamines per gram of full-fat flour. The alcohol-soluble fraction of soybeans contained polyamines also. Resting seeds contained spermidine in higher concentration than either putrescine or spermine. Spermine appeared to be present in lowest concentration. Preliminary experiments suggested that some polyamines were possibly in bound forms. PMID:16658112

  5. Binding of water, oil, and bile acids to dietary fibers of the cellan type.

    PubMed

    Dongowski, G; Ehwald, R

    1999-01-01

    Dietary fibers (DF) of the "cellan" type (consisting mainly or exclusively of undestroyed cells) were prepared as ethanol-dried materials from apple, cabbage, sugar-beet, soybean hulls, wheat bran, and suspension cultures of Chenopodium album L. and investigated with respect to their interactions with water, water-oil dispersions, bile acids, and oil. Water binding and retention capacities were found to be especially high in cellans obtained from thin-walled raw material. Water damp sorption by dry cellans, when analyzed according to the GAB and BET equations, shows a considerable fraction of monolayer water. At a water activity of 0.98, the cell and capillary spaces outside the walls remained in the air-filled state but the cell wall pores are filled with water. When the water content of a concentrated aqueous cellan suspension was equal to or below the water binding capacity, its rheological behavior was found to be of pseudoplastic nature. At a given dry weight concentration, yield stress and viscosity of such concentrated suspensions were highest for cellans with the highest water binding capacity. Dry cellan particles absorbed fatty oils without swelling but swell in a detergent-stabilized oil/water emulsion with a similar liquid absorption capacity as in water. In contrast to the dry or alkane-saturated cell wall, the hydrated wall is not permeable to oils in the absence of a detergent. Oil droplets may be entrapped within the cells, yielding a stable dispersion of oil in water. As DF of the cellan type absorb bile acids, preferentially glycoconjugates, from diluted solutions, they may have a potential to decrease the serum cholesterol level. PMID:10194401

  6. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls.

    PubMed

    Jordan, E; Kenny, D; Hawkins, M; Malone, R; Lovett, D K; O'Mara, F P

    2006-09-01

    An experiment was conducted to establish the effects of feeding refined soy oil (RSO) or whole soybeans (WSB) containing soy oil on DMI, animal performance, and enteric methane (CH4) emissions in young bulls. Thirty-six Charolais and Limousin cross-bred, young beef bulls (338 +/- 27 kg of BW, 218 +/- 17 d of age at the beginning of the experiment) were blocked by BW, age, and breed before being assigned in a randomized complete block design to 1 of 3 experimental treatments (n = 12). The experimental period lasted for 103 d, with enteric CH4 output recorded for 2 periods of 5 consecutive days on d 37 to 41 and d 79 to 83. The 3 dietary treatments consisted of a barley/soybean meal-based concentrate with 0 g/d of RSO; oil from WSB as 6% of DMI (WSB treatment); and oil from RSO as 6% of DMI (RSO treatment). Each diet had a 10:90 forage:concentrate ratio, using barley straw as the forage source. Diet affected DMI (P < or = 0.001) and GE intake (P < 0.05 during the CH4 measurement periods), with the WSB treatment producing the lowest values. The addition of WSB decreased ADG (P < 0.05) compared with the RSO treatment. The WSB treatment also decreased (P < 0.05) average daily carcass gain (ADCG). Both the RSO and WSB concentrates decreased (P < 0.05 to P < 0.001) daily enteric CH4 output when expressed in terms of liters per day, liters per kilogram of DMI, percentage of GE intake, liters per kilogram of ADG, and liters per kilogram of ADCG. Diet had no effect (P = 0.557) on ruminal protozoal numbers. The reductions in enteric CH4 were achieved at relatively high oil inclusion levels. Such oil levels have previously been reported to decrease DMI of high-forage diets, although no effect on DMI was noted with the low-forage diets fed in this experiment. This impact on DMI of high-forage diets may limit the range of diets for which this CH4 reduction strategy may be applicable. The inclusion level of WSB in the current experiment (27%) was beyond the palatability threshold

  7. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  8. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  9. Novel alpha-hydroxy phosphonic acids via castor oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFAs) have found a number of uses in today’s market, with uses ranging from materials to pharmaceuticals. Castor oil has served as a versatile HFA; its principle component, ricinoleic acid, can be isolated from castor oil and has been modified extensively for a number of applica...

  10. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  11. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  12. Apparent ileal digestibility of nutrients and amino acids in soybean meal, fish meal, spray-dried plasma protein and fermented soybean meal to weaned pigs.

    PubMed

    Jeong, Jin Suk; Park, Jae Won; Lee, Sang In; Kim, In Ho

    2016-05-01

    This study sought to determine whether fermentation could increase apparent ileal digestibility (AID) of dry matter (DM), nitrogen (N), energy (E) and amino acids (AA) in fermented soybean meal (FSBM) greater than that of soybean meal (SBM) in weaned pigs. Four weaned pigs (10.00 ± 0.30 kg) were surgically equipped with T-cannulas and randomly followed a 4 × 4 Latin square design of treatments (SBM, FSBM, fish meal and spray-dried plasma protein). Overall, the fermentation process was able to reduce the amount of anti-nutritional factors (ANF), including trypsin inhibitors, raffinose and stachyose, in the FSBM diet, which were significantly reduced by 39.4, 92.2, and 92.9%, respectively, as compared to the SBM diet. As a consequence of ANF reduction in FSBM, the AID of DM, N and E as well as AA was significantly greater with FSBM than SBM. Taken all together, the fermentation process improved the nutritional quality of SBM, due to ANF reduction, leading to improvement of digestibility of AA. As such, FSBM can be potentially used as a specialized feed ingredient, especially for young animal diets in an attempt to reduce diet costs. PMID:26300306

  13. Sensory evaluation and consumer acceptance of naturally and lactic acid bacteria-fermented pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna A; Mwangwela, Agnes M; Schüller, Reidar B; Østlie, Hilde M; Wicklund, Trude

    2014-01-01

    Fermented pastes of soybeans and soybean–maize blends were evaluated to determine sensory properties driving consumer liking. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and lactic acid bacteria fermented (LFP). Lactic acid bacteria fermentation was achieved through backslopping using a fermented cereal gruel, thobwa. Ten trained panelists evaluated intensities of 34 descriptors, of which 27 were significantly different (P < 0.05). The LFP were strong in brown color, sourness, umami, roasted soybean-and maize-associated aromas, and sogginess while NFP had high intensities of yellow color, pH, raw soybean, and rancid odors, fried egg, and fermented aromas and softness. Although there was consumer (n = 150) heterogeneity in preference, external preference mapping showed that most consumers preferred NFP. Drivers of liking of NFP samples were softness, pH, fermented aroma, sweetness, fried egg aroma, fried egg-like appearance, raw soybean, and rancid odors. Optimization of the desirable properties of the pastes would increase utilization and acceptance of fermented soybeans. PMID:24804070

  14. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal.

    PubMed

    Chang, Chi-huan; Chen, Yi-sheng; Lee, Tzu-tai; Chang, Yu-chung; Yu, Bi

    2015-01-01

    A Gram-reaction-positive, catalase-negative, facultatively anaerobic, rod-shaped lactic acid bacterium, designated strain S215(T), was isolated from fermented soybean meal. The organism produced d-lactic acid from glucose without gas formation. 16S rRNA gene sequencing results showed that strain S215(T) had 98.74-99.60 % sequence similarity to the type strains of three species of the genus Lactobacillus (Lactobacillus farciminis BCRC 14043(T), Lactobacillus futsaii BCRC 80278(T) and Lactobacillus crustorum JCM 15951(T)). A comparison of two housekeeping genes, rpoA and pheS, revealed that strain S215(T) was well separated from the reference strains of species of the genus Lactobacillus. DNA-DNA hybridization results indicated that strain S215(T) had DNA related to the three type strains of species of the genus Lactobacillus (33-66 % relatedness). The DNA G+C content of strain S215(T) was 36.2 mol%. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type and the major fatty acids were C18 : 1ω9c, C16 : 0 and C19 : 0 cyclo ω10c/C19 : 1ω6c. Phenotypic and genotypic features demonstrated that the isolate represents a novel species of the genus Lactobacillus, for which the name Lactobacillus formosensis sp. nov. is proposed. The type strain is S215(T) ( = NBRC 109509(T) = BCRC 80582(T)). PMID:25281727

  15. Dietary omega-3 PUFA and health: stearidonic acid-containing seed oils as effective and sustainable alternatives to traditional marine oils.

    PubMed

    Surette, Marc E

    2013-05-01

    The daily consumption of dietary omega-3 PUFA is recommended by governmental agencies in several countries and by a number of health organizations. The molecular mechanisms by which these dietary PUFA affect health involve the enrichment of cellular membranes with long-chain 20- and 22-carbon omega-3 PUFA that impacts tissues by altering membrane protein functions, cell signaling, and gene expression profiles. These changes are recognized to have health benefits in humans, especially relating to cardiovascular outcomes. Cellular membrane enrichment and health benefits are associated with the consumption of long-chain omega-3 PUFA found in marine oils, but are not generally linked with the consumption of alpha-linolenic acid, the 18-carbon omega-3 PUFA found in plant seed oils. However, the supply of omega-3 PUFA from marine sources is limited and may not be sustainable. New plant-derived sources of omega-3 PUFA like stearidonic acid-soy oil from genetically modified soybeans and Ahiflower oil from Buglossoides arvensis seeds that are enriched in the 18-carbon omega-3 PUFA stearidonic acid are being developed and show promise to become effective as well as sustainable sources of omega-3 PUFA. An example of changes in tissue lipid profiles associated with the consumption of Ahiflower oil is presented in a mouse feeding study. PMID:23417895

  16. Potential Link Between Contents of Fatty Acids and Soybean Seed Germination Rate Under Early Production System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed produced from the Early Soybean Production System (ESPS) in the Midsouth often has low germination with poor seed quality. The mechanism of this phenomenon is not clear. A field study was conducted in 2008 and 2009 on a silt-loam -soil at the Delta Research and Extension Center, Stonevi...

  17. QSAR study for the soybean 15-lipoxygenase inhibitory activity of organosulfur compounds derived from the essential oil of garlic.

    PubMed

    Camargo, Alejandra B; Marchevsky, Eduardo; Luco, Juan M

    2007-04-18

    In this study, multiple linear regression (MLR) and partial least-squares (PLS) techniques were used for modeling the soybean 15-lipoxygenase inhibitory activity of a varied group of mono-, di-, and trisulfides derived from the essential oil of garlic. The structures of the compounds under study were characterized by means of calculated physicochemical parameters and several nonempirical descriptors, such as topological, geometrical, and quantum chemical indices. The results obtained indicate that the inhibitory activity is strongly dependent on the ability of the compounds to participate in dispersive interactions with the enzyme, as expressed by the solvent-accessible surface area (SASA) and the average distance/distance degree descriptor (ADDD) index. On the other hand, the high contribution of the lowest unoccupied molecular orbit term (LUMO) in the PLS models derived for the di- and trisulfides suggests that the solute's electron-acceptor capacity plays a fundamental role in the inhibitory activity exhibited for these compounds. Finally, the geometric features as expressed by the shape parameters included in the models indicate a low but not negligible positive contribution of molecular linearity in the enzyme-inhibitor binding. In summary, the developed quantitative structure-activity relationship approach successfully accounts for the potencies of organosulfur compounds acting on soybean 15-lipoxygenase and thereby offers both a guide for the synthesis of new compounds and a hypothesis for the molecular basis of their activity. PMID:17367159

  18. Abdominal adiposity, insulin and bone quality in young male rats fed a high-fat diet containing soybean or canola oil

    PubMed Central

    da Costa, Carlos Alberto Soares; Carlos, Aluana Santana; de Sousa dos Santos, Aline; Monteiro, Alexandra Maria Vieira; de Moura, Egberto Gaspar; Nascimento-Saba, Celly Cristina Alves

    2011-01-01

    OBJECTIVES: A low ratio of omega-6/omega-3 polyunsaturated fatty acids is associated with healthy bone properties. However, fatty diets can induce obesity. Our objective was to evaluate intra-abdominal adiposity, insulin, and bone growth in rats fed a high-fat diet containing low ratios of omega-6/omega-3 provided in canola oil. METHODS: After weaning, rats were grouped and fed either a control diet (7S), a high-fat diet containing soybean oil (19S) or a high-fat diet of canola oil (19C) until they were 60 days old. Differences were considered to be significant if p<0.05. RESULTS: After 60 days, the 19S and 19C groups showed more energy intake, body density growth and intra-abdominal fat mass. However, the 19S group had a higher area (200%) and a lower number (44%) of adipocytes, while the 7S and 19C groups did not differ. The serum concentrations of glucose and insulin and the insulin resistance index were significantly increased in the 19C group (15%, 56%, and 78%, respectively) compared to the 7S group. Bone measurements of the 19S and 19C groups showed a higher femur mass (25%) and a higher lumbar vertebrae mass (11%) and length (5%). Computed tomography analysis revealed more radiodensity in the proximal femoral epiphysis and lumbar vertebrae of 19C group compared to the 7S and 19S groups. CONCLUSIONS: Our results suggest that the amount and source of fat used in the diet after weaning increase body growth and fat depots and affect insulin resistance and, consequently, bone health. PMID:22012056

  19. Profile and relative concentrations of fatty acids in corn and soybean seeds from transgenic and isogenic crops.

    PubMed

    Jiménez, J J; Bernal, J L; Nozal, M J; Toribio, L; Bernal, J

    2009-10-23

    In this work 44 fatty acids, which were analyzed as methyl esters by GC/MS in scan mode, have been determined in genetically modified corn and soybean seeds. Their relative concentrations have been compared with those of isogenic lines grown in the same conditions. Studied compounds comprised saturated and unsaturated fatty acids, including cis/trans isomers and minor fatty acids. A classical soxhlet extraction and an accelerated solvent extraction have been assayed to extract the fatty compounds from seeds and the GC separation has been carried out on a biscyanopropylpolysiloxane chromatographic column. Soxhlet extraction was selected as the most convenient and applied to compare the samples. Specific compounds, which could denote the origin of the crop have not been observed, but for some sample pairs, significant differences have been found in relation to the percentage of certain acids; the highest differences for major acids were 4.1% in corn and 4.8% in soybean. The concentrations of long chain acids such as 24:0, 26:0 and 28:0 were higher in some isogenic lines whereas the concentrations of short chain acids such as 6:0, 8:0, 9:0, 10:0 and 12:0 were higher in their transgenic counterparts. PMID:19716136

  20. Migration of epoxidized soybean oil (ESBO) and phthalates from twist closures into food and enforcement of the overall migration limit.

    PubMed

    Pedersen, G A; Jensen, L K; Fankhauser, A; Biedermann, S; Petersen, J H; Fabech, B

    2008-04-01

    Nineteen samples of food in glass jars with twist closures were collected by the national food inspectors at Danish food producers and a few importers, focusing on fatty food, such as vegetables in oil, herring in dressing or pickle, soft spreadable cheese, cream, dressings, peanut butter, sauces and infant food. The composition of the plasticizers in the gaskets was analysed by gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Epoxidized soybean oil (ESBO) and phthalates were determined in the homogenized food samples. ESBO was the principal plasticizer in five of the gaskets; in 14 it was phthalates. ESBO was found in seven of the food samples at concentrations from 6 to 100 mg kg(-1). The highest levels (91-100 mg kg(-1)) were in oily foods such as garlic, chilli or olives in oil. Phthalates, i.e. di-iso-decylphthalate (DIDP) and di-iso-nonylphthalates (DINP), were found in seven samples at 6-173 mg kg(-1). The highest concentrations (99-173 mg kg(-1)) were in products of garlic and tomatoes in oil and in fatty food products such as sauce béarnaise and peanut butter. For five of the samples the overall migration from unused lids to the official fatty food simulant olive oil was determined and compared with the legal limit of 60 mg kg(-1). The results ranged from 76 to 519 mg kg(-1) and as a consequence the products were withdrawn from the market. PMID:18348048

  1. Simultaneous determination of isoflavones and resveratrols for adulteration detection of soybean and peanut oils by mixed-mode SPE LC-MS/MS.

    PubMed

    Zhao, Xin; Ma, Fei; Li, Peiwu; Li, Guangming; Zhang, Liangxiao; Zhang, Qi; Zhang, Wen; Wang, Xiupin

    2015-06-01

    To ensure authenticity of vegetable oils, isoflavones (genistein, genistin, daidzein and daidzin) and resveratrols (cis-resveratrol and trans-resveratrol) were selected as the putative markers for adulteration of soybean and peanut oils. Firstly, mixed mode solid-phase extraction coupled with liquid chromatography tandem mass spectrometry (mixed-mode SPE LC-MS/MS) method was developed to analyze isoflavones and resveratrols in vegetable oils. The concentration of marker compounds in vegetable oils were 0.08-1.47mgkg(-1) for daidzein, ND-78.9μgkg(-1) for daidzin, 0.40-5.89mgkg(-1) for genistein, 1.2-114.9μgkg(-1) for genistin, 3.1-85.0μgkg(-1) for trans-resveratrol and 1.9-51.0μgkg(-1) for cis-resveratrol, which are compatible with the raw materials for oil press. Additionally, the applicability of this method has been successfully tested in thirteen vegetable oils from the market. Mixed-mode SPE LC-MS/MS method can simultaneously detect isoflavones and resveratrols in vegetable oils and assess adulteration and quality of soybean and peanut oils. PMID:25624257

  2. Effects and mechanisms of the combined pollution of lanthanum and acid rain on the root phenotype of soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2013-09-01

    Rare earth pollution and acid rain pollution are both important environmental issues worldwide. In regions which simultaneously occur, the combined pollution of rare earth and acid rain becomes a new environmental issue, and the relevant research is rarely reported. Accordingly, we investigated the combined effects and mechanisms of lanthanum ion (La(3+)) and acid rain on the root phenotype of soybean seedlings. The combined pollution of low-concentration La(3+) and acid rain exerted deleterious effects on the phenotype and growth of roots, which were aggravated by the combined pollution of high-concentration La(3+) and acid rain. The deleterious effects of the combined pollution were stronger than those of single La(3+) or acid rain pollution. These stronger deleterious effects on the root phenotype and growth of roots were due to the increased disturbance of absorption and utilization of mineral nutrients in roots. PMID:23726884

  3. Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean.

    PubMed

    Hossain, Zahed; Makino, Takahiro; Komatsu, Setsuko

    2012-07-16

    The present study highlights the protective role of β-aminobutyric acid (BABA) in alleviating cadmium (Cd) stress in soybean. Proteomic analyses revealed that out of 66 differentially abundant protein spots in response to Cd challenge, 17 were common in the leaves of BABA-primed and non-primed plants. Oxygen-evolving enhancer protein 1 and ribulose bisphosphate carboxylase small chain 1 were detected in increase abundance in both groups of leaves. Among the 15 commonly decreased protein spots, the relative intensity levels of heat shock cognate 70-kDa protein, carbonic anhydrase, methionine synthase, and glycine dehydrogenase were partially restored after BABA treatment. Moreover, BABA priming significantly enhanced the abundance of the defense-related protein peroxiredoxin and glycolytic enzymes in response to Cd exposure. Additionally, the impact of Cd on the physiological state of BABA-primed and non-primed plants was analyzed using a biophoton technique. The finding of comparatively low biophoton emission in BABA-primed leaves under Cd stress indicates that these plants experienced less oxidative damage than that of non-primed plants. Proteomic study coupled with biophoton analysis reveals that BABA pretreatment helps the plants to combat Cd stress by modulating plants' defence mechanism as well as activating cellular detoxification system to protect the cells from Cd induced oxidative stress damages. PMID:22652489

  4. Metabolite changes during natural and lactic acid bacteria fermentations in pastes of soybeans and soybean–maize blends

    PubMed Central

    Ng'ong'ola-Manani, Tinna Austen; Østlie, Hilde Marit; Mwangwela, Agnes Mbachi; Wicklund, Trude

    2014-01-01

    The effect of natural and lactic acid bacteria (LAB) fermentation processes on metabolite changes in pastes of soybeans and soybean–maize blends was studied. Pastes composed of 100% soybeans, 90% soybeans and 10% maize, and 75% soybeans and 25% maize were naturally fermented (NFP), and were fermented by lactic acid bacteria (LFP). LAB fermentation processes were facilitated through back-slopping using a traditional fermented gruel, thobwa as an inoculum. Naturally fermented pastes were designated 100S, 90S, and 75S, while LFP were designated 100SBS, 90SBS, and 75SBS. All samples, except 75SBS, showed highest increase in soluble protein content at 48 h and this was highest in 100S (49%) followed by 90SBS (15%), while increases in 100SBS, 90S, and 75S were about 12%. Significant (P < 0.05) increases in total amino acids throughout fermentation were attributed to cysteine in 100S and 90S; and methionine in 100S and 90SBS. A 3.2% increase in sum of total amino acids was observed in 75SBS at 72 h, while decreases up to 7.4% in 100SBS at 48 and 72 h, 6.8% in 100S at 48 h and 4.7% in 75S at 72 h were observed. Increases in free amino acids throughout fermentation were observed in glutamate (NFP and 75SBS), GABA and alanine (LFP). Lactic acid was 2.5- to 3.5-fold higher in LFP than in NFP, and other organic acids detected were acetate and succinate. Maltose levels were the highest among the reducing sugars and were two to four times higher in LFP than in NFP at the beginning of the fermentation, but at 72 h, only fructose levels were significantly (P < 0.05) higher in LFP than in NFP. Enzyme activities were higher in LFP at 0 h, but at 72 h, the enzyme activities were higher in NFP. Both fermentation processes improved nutritional quality through increased protein and amino acid solubility and degradation of phytic acid (85% in NFP and 49% in LFP by 72 h). PMID:25493196

  5. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  6. Various concentrations of erucic acid in mustard oil and mustard.

    PubMed

    Wendlinger, Christine; Hammann, Simon; Vetter, Walter

    2014-06-15

    Erucic acid is a typical constituent of mustard or rape. Foodstuff with a high content of erucic acid is considered undesirable for human consumption because it has been linked to myocardial lipidosis and heart lesions in laboratory rats. As a result, several countries have restricted its presence in oils and fats. In this study, the erucic acid content in several mustard oils and prepared mustard samples from Germany and Australia was determined. Seven of nine mustard oil samples exceeded the permitted maximum levels established for erucic acid (range: 0.3-50.8%, limit: 5%). The erucic acid content in mustard samples (n=15) varied from 14% to 33% in the lipids. Two servings (i.e. 20 g) of the mustards with the highest erucic acid content already surpassed the tolerable daily intake established by Food Standards Australia New Zealand. However, a careful selection of mustard cultivars could lower the nutritional intake of erucic acid. PMID:24491745

  7. Correlations between palmitate content and agronomic traits in soybean populations segregating for the fap1, fapnc, and fan alleles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Palmitic acid (16:0) is the predominant saturated fatty acid in soybean oil, which typically contains 110 to 120 g kg-1 palmitic acid. To reduce the health risks of coronary diseases and breast, colon, and prostate cancers associated with the consumption of this fatty acid, breeders have developed ...

  8. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  9. Effects of row-type, row-spacing, seeding rate, soil-type, and cultivar differences on soybean seed nutrition under US Mississippi Delta conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices such as seeding rate (SR), planting date (PD), and row-type (RT: single- and twin-rows) may alter seed nutrition in soybean. The objective of this research was to investigate the effects of SR and PD on soybean seed composition (protein, oil, fatty acids, and sugars) and mineral...

  10. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi.

    PubMed

    Svetaz, Laura; Tapia, Alejandro; López, Silvia N; Furlán, Ricardo L E; Petenatti, Elisa; Pioli, Rosanna; Schmeda-Hirschmann, Guillermo; Zacchino, Susana A

    2004-06-01

    The crude methanolic extract of Zuccagnia punctata was active toward the fungal pathogens of soybean Phomopsis longicolla and Colletotrichum truncatum. Assay guided fractionation led to the isolation of two chalcones, one flavanone and a new caffeoyl ester derivative as the compounds responsible for the antifungal activity. Another new caffeoyl ester derivative was isolated from the antifungal chloroform extract but proved to be inactive against the soybean infecting fungi up to 50 microg/mL PMID:15161186

  11. Productivity of field-grown soybeans exposed to acid rain and sulfur dioxide alone and in combination

    SciTech Connect

    Irving, P.M.; Miller, J.E.

    1981-10-01

    Sulfur dioxide (SO/sub 2/)-fumigated and unfumigated field plots of soybeans (Glycine max cv. Wells) were exposed to acid (pH 3.1) or control (pH approx. =5.3) precipitation simulants to determine effects on growth and productivity. The precipitation simulants were applied at approximately 5-day intervals in July and August with a total of 3.4 cm applied in 1977 and 4.5 cm in 1978. Sulfur dioxide fumigations of approx. =4-hour durations were performed 24 times in 1977 and 17 times in 1978, resulting in an average fumigation concentration of 0.79 ppm (89.6 ppmin equilibriumhour dose) SO/sub 2/ the 1st year and 0.19 ppm (13.5 ppmin equilibriumhour) the 2nd. The acid precipitation simulant produced no statistically significant effect on seed yield in either year and a 4% increase in seed size in 1978. The simulated acid rain may have contributed to the nutritional requirements of soybeans by providing S and N during the critical pod-filling stage. Sulfur dioxide exposure decreased seed yields in both 1977 and 1978 by >35 and 12%, respectively. Accelerated senescence, as suggested by increased leaf fall, may be responsible for the decreased yield in the SO/sub 2/-exposed plants. The SO/sub 2/ exposure appeared to negate the positive acid rain effect on seed size observed in 1978, when the two treatments were combined. Acid precipitation apparently increased the reduction in seed weight resulting from SO/sub 2/ exposure in 1977. Although visible injury was induced by acid rain exposure in a chamber study, only a small percentage (<1%) of tissue was affected and there was no apparent effect on plant growth. The results of these studies suggest that the possibility for harmful effects on soybean yield from acid precipitation of a magnitude used in this study are minimal; however, soybean yields may be decreased by SO/sub 2/ exposures

  12. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis

    SciTech Connect

    Guerinot, M.L.; Chelm, B.K.

    1986-03-01

    Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. The authors now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolated the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.

  13. Separation and purification of phosphatidylcholine and phosphatidylethanolamine from soybean degummed oil residues by using solvent extraction and column chromatography.

    PubMed

    Zhang, Weinong; He, Haibo; Feng, Yuqi; Da, Shilu

    2003-12-25

    Natural phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were separated and purified from soybean degummed oil residues in this work. Crude PC and PE were first separated from degummed oil residues by extraction with 95% ethanol, and then the crude PC and PE were used as raw materials to prepare high purity PC and PE by using column chromatography of silica gel (100-200 mesh) with different eluents and elution modes. The high purity PC (content > 90%) was obtained from the crude PC by using isocratic elution with methanol as eluent. Compared with the methods reported by using isocratic elution with mixed solvents as eluent or gradient elution, the procedure proposed exhibits low cost and industry potentialities because of some advantages, such as operation simplicity, cheap equipment and solvent to be recovered easily. The purity of the PE product prepared from the crude PE was more than 75%. The gradient elution was preferable to isocratic elution for reducing the elution time and eluent consumption when to prepare PE from the crude PE. The effects of loading amount and the flow-rate on separation efficiency were also investigated. For obtaining high separation efficiency, the loading amount should be less than 2.0 g crude PC or PE/100 g silica gel, and the flow-rate should be controlled under 4 ml/min for crude PC and 3 ml/min for crude PE, respectively. PMID:14643513

  14. Determination of epoxidized soybean oil by gas chromatography/single quadrupole and tandem mass spectrometry stable isotope dilution assay.

    PubMed

    Rothenbacher, Thorsten; Schwack, Wolfgang

    2007-01-01

    PVC lids of glass jars often contain epoxidized soybean oil (ESBO), able to migrate and contaminate food. To establish a stable isotope dilution assay (SIDA), the 13C18-labelled internal standard ethyl 9,10,12,13-diepoxyoctadecanoate (13C(18:2E)Et) was synthesized, providing after sample preparation the same retention time as methyl 9,10,12,13-diepoxyoctadecanoate ((18:2E)Me), commonly used as a marker for ESBO in gas chromatographic (GC) analysis. For eleven different food matrices, the GC capillary columns VF-17ms, DB1701 and DB1 were tested with single quadrupole (GC/MS) as well as tandem mass spectrometric detection (GC/MS/MS). Overall, the VF-17ms column coupled with MS/MS detection showed the best results in terms of separation and sensitivity. The method validation for the matrix spiked olive oil resulted in a limit of detection (LOD) of 5 mg kg-1, a limit of quantification (LOQ) of 11 mg kg-1, a mean recovery (n=5, c=106.5 mg kg-1) of 99.7+/-5.5%, with a repeatability (within-run precision) of 6.0%. By means of GC/MS an LOQ of 21 mg kg-1 and a mean recovery (n=5, c=106.5 mg kg-1) of 103.3+/-0.8% with a repeatability of 0.9% were determined. PMID:17510930

  15. Differential Impacts of Soybean and Fish Oils on Hepatocyte Lipid Droplet Accumulation and Endoplasmic Reticulum Stress in Primary Rabbit Hepatocytes

    PubMed Central

    Zhu, Xueping; Xiao, Zhihui; Xu, Yumin; Zhao, Xingli; Cheng, Ping; Cui, Ningxun; Cui, Mingling; Li, Jie; Zhu, Xiaoli

    2016-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a severe ailment associated with long-term parenteral nutrition. Soybean oil-based lipid emulsions (SOLE) are thought to promote PNALD development, whereas fish oil-based lipid emulsions (FOLE) are thought to protect against PNALD. This study aimed to investigate the effects of SOLE and FOLE on primary rabbit hepatocytes. The results reveal that SOLE caused significant endoplasmic reticulum (ER) and mitochondrial damage, ultimately resulting in lipid droplets accumulation and ER stress. While these deleterious events induce hepatocyte injury, FOLE at high doses cause only minor ER and mitochondrial damage, which has no effect on hepatic function. SOLE also significantly upregulated glucose-regulated protein 94 mRNA and protein expression. These data indicate that SOLE, but not FOLE, damage the ER and mitochondria, resulting in lipid droplets accumulation and ER stress and, finally, hepatocyte injury. This likely contributes to the differential impacts of SOLE and FOLE on PNALD development and progression. PMID:27057162

  16. Seed oil and fatty acid composition in Capsicum spp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oil content and fatty acid composition of seed of 233 genebank accessions (total) of nine Capsicum species, and a single accession of Tubocapsicum anomalum, were determined. The physicochemical characteristics of oil extracted from seed of C. annuum and C. baccatum were also examined. Significan...

  17. STARCH-SOYBEAN OIL BASED ULTRAVIOLET ABSORBING COMPOSITES. PREPARATION, CHEMISTY AND POTENTIAL USES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials can produce stable aqueous starch-oil composites from renewable resources. Herein, ferulate-based ultraviolet absorbing lipids were synthesized by the lipase catalyzed transesterification of soybea...

  18. FERULOYLATED SOYBEAN OIL-STARCH COMPOSITES: AQUEOUS DISPERSIONS OF A SOY-BASED SUNSCREEN ACTIVE INGREDIENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent National Center for Agricultural Utilization Research (NCAUR) technology can be utilized to produce stable aqueous starch-oil composites from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Herein, ultraviolet abso...

  19. Effects of Chlorinated Paraffin and ZDDP Concentrations on Boundary Lubrication Properties of Mineral and Soybean Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of chlorinated paraffin (CP) and zinc di-ethylhexyl dithio phosphate (ZDDP) concentration in polar and non-polar base fluids on boundary lubrication properties was investigated. The non-polar fluid was a solvent refined low sulfur heavy paraffinic mineral oil (150N oil); and the polar fl...

  20. Esterification of acidic oils over a versatile amorphous solid catalyst.

    PubMed

    Zaccheria, Federica; Brini, Simona; Psaro, Rinaldo; Scotti, Nicola; Ravasio, Nicoletta

    2009-01-01

    An amorphous SiO(2)-ZrO(2) catalyst shows high activity in the esterification of free fatty acids contained in vegetable oils while at the same time promoting the transesterification of triglycerides. The catalyst is hence a good candidate for a low-waste deacidification pretreatment or for a one-pot biodiesel production process starting from oils with a high acid content. PMID:19479893

  1. Ileal Digestibility of Amino Acids in Meat Meal and Soybean Meal Fed to Growing Pigs

    PubMed Central

    Kong, C.; Kang, H. G.; Kim, B. G.; Kim, K. H.

    2014-01-01

    The objective of this experiment was to determine the concentration and digestibility of crude protein (CP) and amino acid (AA) in meat meal (MM), and to compare these values with the respective values in soybean meal (SBM). Six barrows (initial body weight = 66.9±3.8 kg) surgically fitted with a T-cannula at the distal ileum were allotted to a replicated 3×3 balanced Latin square design with 3 diets and 3 periods. Two experimental diets containing test ingredients as the sole source of AA were prepared to estimate the apparent ileal digestibility (AID) for CP and AA by the direct method. An N-free diet was also prepared to estimate basal endogenous losses of CP and AA. All experimental diets contained 5% chromic oxide as an indigestible index. Each period consisted of a 5-d adaptation period and a 2-d of ileal digesta collection period. Ileal digesta samples were collected from 0900 to 1700 on d 6 and 7 of each period. The concentrations of CP, Lys, Met, and Trp in MM and SBM were analyzed to be 64.1, 3.5, 1.1 and 0.6, and 45.6, 2.8, 0.8, and 0.3%, respectively. The AID of all AA except Gly in MM was less (p<0.05) than in SBM. The AID of Lys, Met, and Trp in MM was estimated to be 56.0, 71.7, and 47.1%, respectively. The SID of all AA in MM was less (p<0.05) than in SBM. The SID of Lys, Met, and Trp was 65.1, 79.2, and 78.5%, respectively. In conclusion, the CP and AA contents in MM were greater than those in SBM whereas the ileal digestibility of all AA in MM was less than in SBM. PMID:25050041

  2. Relative oxidative stability of diacylglycerol and triacylglycerol oils.

    PubMed

    Qi, Jin F; Wang, Xiang Y; Shin, Jung-Ah; Lee, Young-Hwa; Jang, Young-Seok; Lee, Jeung Hee; Hong, Soon-Taek; Lee, Ki-Teak

    2015-03-01

    To compare the oxidative stability between diacylglycerol (DAG) oil and conventional triacylglycerol (TAG) oil (that is, soybean oil), the prepared stripped diacylglycerol oil (SDO) and soybean oil (SSBO) were stored at 60 °C in the dark for 144 h. During storage peroxide values (POVs), contents of aldehydes, unsaturated fatty acids were measured to evaluate the oxidative stabilities of the 2 oils. The results showed the content of C18:2, C18:3, and total unsaturated fatty acid decreased faster in DAG oil than in soybean oil, whereas the decreased rate of C18:1 was similar in 2 oils. Also, both rate constants (K1 and K2) obtained from POV (K1 ) and total aldehydes (K2 ) indicated that DAG oil (K1 = 3.22 mmol/mol FA h(-1) , K2 = 0.023 h(-1)) was oxidized more rapidly than soybean oil (K1 = 2.56 mmol/mol FA h(-1) , K2 = 0.021 h(-1)), which was mainly due to the difference of acylglycerol composition of the 2 oils along with higher C18:3 (9.6%) in SDO than SSBO (5.7%). It is concluded that DAG was more easily oxidized than soybean oil at 60 °C in the dark for 144 h. PMID:25678328

  3. Application of self-organising maps towards segmentation of soybean samples by determination of amino acids concentration.

    PubMed

    Silva, Lívia Ramazzoti Chanan; Angilelli, Karina Gomes; Cremasco, Hágata; Romagnoli, Érica Signori; Galão, Olívio Fernandes; Borsato, Dionisio; Moraes, Larissa Alexandra Cardoso; Mandarino, José Marcos Gontijo

    2016-09-01

    Soybeans are widely used both for human nutrition and animal feed, since they are an important source of protein, and they also provide components such as phytosterols, isoflavones, and amino acids. In this study, were determined the concentrations of the amino acids lysine, histidine, arginine, asparagine, glutamic acid, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine present in 14 samples of conventional soybeans and 6 transgenic, cultivated in two cities of the state of Paraná, Londrina and Ponta Grossa. The results were tabulated and presented to a self-organising map for segmentation according planting regions and conventional or transgenic varieties. A network with 7000 training epochs and a 10 × 10 topology was used, and it proved appropriate in the segmentation of the samples using the data analysed. The weight maps provided by the network, showed that all the amino acids were important in targeting the samples, especially isoleucine. Three clusters were formed, one with only Ponta Grossa samples (including transgenic (PGT) and common (PGC)), a second group with Londrina transgenic (LT) samples and the third with Londrina common (LC) samples. PMID:27213953

  4. Poly-γ-Glutamic Acid (PGA)-Producing Bacillus Species Isolated from Kinema, Indian Fermented Soybean Food

    PubMed Central

    Chettri, Rajen; Bhutia, Meera O.; Tamang, Jyoti P.

    2016-01-01

    Kinema, an ethnic fermented, non-salted and sticky soybean food is consumed in the eastern part of India. The stickiness is one of the best qualities of good kinema preferred by consumers, which is due to the production of poly-γ-glutamic acid (PGA). Average load of Bacillus in kinema was 107 cfu/g and of lactic acid bacteria was 103 cfu/g. Bacillus spp. were screened for PGA-production and isolates of lactic acid bacteria were also tested for degradation of PGA. Only Bacillus produced PGA, none of lactic acid bacteria produced PGA. PGA-producing Bacillus spp. were identified by phenotypic characterization and also by 16S rRNA gene sequencing as Bacillus subtilis, B. licheniformis and B. sonorensis. PMID:27446012

  5. Effect of tocopherols on the anti-polymerization activity of oryzanol and corn steryl ferulates in soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steryl ferulates (SF) are ferulic acid esters of phytosterols and/or triterpene alcohols which have potential as frying oil antioxidants. The objective of this study was to evaluate the anti-polymerization and antioxidant activity at frying temperatures of corn steryl ferulates (CSF), rice steryl f...

  6. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  7. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs

    PubMed Central

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L.; Song, Qijian; Cregan, Perry B.; Graef, George L.; Specht, James E.

    2016-01-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca. 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg–1 and R2 values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. PMID:27172185

  8. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs.

    PubMed

    Phansak, Piyaporn; Soonsuwon, Watcharin; Hyten, David L; Song, Qijian; Cregan, Perry B; Graef, George L; Specht, James E

    2016-01-01

    Plant breeders continually generate ever-higher yielding cultivars, but also want to improve seed constituent value, which is mainly protein and oil, in soybean [Glycine max (L.) Merr.]. Identification of genetic loci governing those two traits would facilitate that effort. Though genome-wide association offers one such approach, selective genotyping of multiple biparental populations offers a complementary alternative, and was evaluated here, using 48 F2:3 populations (n = ∼224 plants) created by mating 48 high protein germplasm accessions to cultivars of similar maturity, but with normal seed protein content. All F2:3 progeny were phenotyped for seed protein and oil, but only 22 high and 22 low extreme progeny in each F2:3 phenotypic distribution were genotyped with a 1536-SNP chip (ca 450 bimorphic SNPs detected per mating). A significant quantitative trait locus (QTL) on one or more chromosomes was detected for protein in 35 (73%), and for oil in 25 (52%), of the 48 matings, and these QTL exhibited additive effects of ≥ 4 g kg(-1) and R(2) values of 0.07 or more. These results demonstrated that a multiple-population selective genotyping strategy, when focused on matings between parental phenotype extremes, can be used successfully to identify germplasm accessions possessing large-effect QTL alleles. Such accessions would be of interest to breeders to serve as parental donors of those alleles in cultivar development programs, though 17 of the 48 accessions were not unique in terms of SNP genotype, indicating that diversity among high protein accessions in the germplasm collection is less than what might ordinarily be assumed. PMID:27172185

  9. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  10. EFFECTS OF ACIDITY OF SIMULATED RAIN AND ITS JOINT ACTION WITH AMBIENT OZONE ON MEASURES OF BIOMASS AND YIELD IN SOYBEAN

    EPA Science Inventory

    An experiment was performed to determine whether the presence of ozone modified the effects of acidity of simulated rain on growth and yield of soybean. Beeson, a type II cultivar, was grown in field chambers and exposed to simulated rain at 3 levels of acidity. Each level was ap...

  11. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale.

    PubMed

    Karp, Susan G; Igashiyama, Adriana H; Siqueira, Paula F; Carvalho, Júlio C; Vandenberghe, Luciana P S; Thomaz-Soccol, Vanete; Coral, Jefferson; Tholozan, Jean-Luc; Pandey, Ashok; Soccol, Carlos R

    2011-01-01

    Lactic acid is a product that finds several applications in food, cosmetic, pharmaceutical and chemical industries. The main objective of this work was the development of a bioprocess to produce L(+)-lactic acid using soybean vinasse as substrate. Among ten strains, Lactobacillus agilis LPB 56 was selected for fermentation, due to its ability to metabolize the complex oligosaccharides. Fermentation was conducted without need for supplementary inorganic nitrogen sources or yeast extract. Kinetic and yield parameters determined at laboratory scale were 0.864 and 0.0162 for YP/S and YX/S, 0.0145 g/L h (rx), 1.32 g/L h (rs) and 1.13 g/L h (rp). The use of vinasse enriched with soybean molasses provided higher lactic acid concentration (138 g/L), the best proportion of inoculum being 25% (v/v). After scale-up to a pilot plant, kinetic and yield parameters were 0.849 and 0.0353 for YP/S and YX/S, 0.0278 g/L h (rx), 0.915 g/L h (rs) and 0.863 g/L h (rp). PMID:20933391

  12. Fatty acid composition of Tilia spp. seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  13. Fatty and resinic acids extractions from crude tall oil

    SciTech Connect

    Nogueira, J.M.F.

    1996-11-01

    The separation of fatty and resinic acidic fractions from crude tall-oil soap solutions with n-heptane by the technique of dissociation extraction is discussed. The theory of the overall process is supported by a systematic study developed to cover the high selectivity demonstrated in the differential solubility and the aptness between fatty and diterpenic acids to both liquids phases. To study the main factors affecting those liquid-liquid extraction systems and the amphiphilic behavior of such molecules involved, sodium salts aqueous solutions of crude tall oil and synthetic mixtures as molecular acidic models were used.

  14. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows.

    PubMed

    Rafiee-Yarandi, H; Ghorbani, G R; Alikhani, M; Sadeghi-Sefidmazgi, A; Drackley, J K

    2016-07-01

    To evaluate the effect of soybeans roasted at different temperatures on milk yield and milk fatty acid composition, 8 (4 multiparous and 4 primiparous) mid-lactation Holstein cows (42.9±3 kg/d of milk) were assigned to a replicated 4×4 Latin square design. The control diet (CON) contained lignosulfonate-treated soybean meal (as a source of rumen-undegradable protein) and calcium salts of fatty acids (Ca-FA, as a source of energy). Diets 2, 3, and 4 contained ground soybeans roasted at 115, 130, or 145°C, respectively (as the source of protein and energy). Dry matter intake (DMI) tended to be greater for CON compared with the roasted soybean diets (24.6 vs. 23.3 kg/d). Apparent total-tract digestibilities of dry matter, organic matter, and crude protein were not different among the treatments. Actual and 3.5% fat-corrected milk yield were greater for CON than for the roasted soybean diets. Milk fat was higher for soybeans roasted at 130°C than for those roasted at either 115 or 145°C. No differences were observed between the CON and the roasted soybean diets, or among roasting temperatures, on feed efficiency and nitrogen concentrations in rumen, milk, and plasma. Milk from cows fed roasted soybeans had more long-chain fatty acids and fewer medium-chain fatty acids than milk from cows fed Ca-FA. Compared with milk from cows fed the CON diet, total milk fat contents of conjugated linoleic acid, cis-9,trans-11 conjugated linoleic acid, cis-C18:2, cis-C18:3, and C22:0 were higher for cows fed the roasted soybean diets. Polyunsaturated fatty acids and total unsaturated fatty acids were greater in milk from cows fed roasted soybean diets than in milk from cows fed CON. Concentrations of C16:0 and saturated fatty acids in milk fat were greater for CON than for the roasted soybean diets. Cows fed roasted soybean diets had lower atherogenic and thrombogenic indices than cows fed CON. Milk fatty acid composition did not differ among different roasting temperatures. In

  15. One-step production of biodiesel from oils with high acid value by activated Mg-Al hydrotalcite nanoparticles.

    PubMed

    Wang, Yi-Tong; Fang, Zhen; Zhang, Fan; Xue, Bao-Jin

    2015-10-01

    Activated Mg-Al hydrotalcite (HT-Ca) nanoparticles (<45 nm) were synthesized by co-precipitation and hydrothermal activation with aqueous Ca(OH)2 solution. They were characterized by various techniques including X-ray diffraction, inductively coupled plasma atomic-emission spectrometer, Brunauer-Emmett-Teller method, scanning electronic microscope-X-ray energy dispersive analysis and temperature programmed desorption method. HT-Ca presented both acidic and basic due to the formation of Mg4Al2(OH)14 · 3H2O, Mg2Al(OH)7 and AlO(OH) nanocrystals to esterify and transesterify oils with high acid value (AV). Under conditions of 5 wt% HT-Ca, 160 °C, 30/1 methanol/oil molar ratio and 4h, 93.4% Jatropha biodiesel yield was obtained at AV of 6.3 mg KOH/g with 4 cycles (biodiesel yield>86%). It was further found that it can resist free fatty acids, and biodiesel yield reached 92.9% from soybean oil with high AV of 12.1. HT-Ca catalyst showed a potential practical application for direct production of biodiesel from oils with high AV without pretreatment. PMID:26117239

  16. The Effect of Inclusion Level of Soybean Oil and Palm Oil on Their Digestible and Metabolizable Energy Content Determined with the Difference and Regression Method When Fed to Growing Pigs

    PubMed Central

    Su, Yongbo; She, Yue; Huang, Qiang; Shi, Chuanxin; Li, Zhongchao; Huang, Chengfei; Piao, Xiangshu; Li, Defa

    2015-01-01

    This experiment was conducted to determine the effects of inclusion level of soybean oil (SO) and palm oil (PO) on their digestible and metabolism energy (DE and ME) contents when fed to growing pigs by difference and regression method. Sixty-six crossbred growing barrows (Duroc×Landrace×Yorkshire and weighing 38.1±2.4 kg) were randomly allotted to a 2×5 factorial arrangement involving 2 lipid sources (SO and PO), and 5 levels of lipid (2%, 4%, 6%, 8%, and 10%) as well as a basal diet composed of corn and soybean meal. The barrows were housed in individual metabolism crates to facilitate separate collection of feces and urine, and were fed the assigned test diets at 4% of initial body weight per day. A 5-d total collection of feces and urine followed a 7-d diet adaptation period. The results showed that the DE and ME contents of SO and PO determined by the difference method were not affected by inclusion level. The DE and ME determined by the regression method for SO were greater compared with the corresponding respective values for PO (DE: 37.07, ME: 36.79 MJ/kg for SO; DE: 34.11, ME: 33.84 MJ/kg for PO, respectively). These values were close to the DE and ME values determined by the difference method at the 10% inclusion level (DE: 37.31, ME: 36.83 MJ/kg for SO; DE: 34.62, ME: 33.47 MJ/kg for PO, respectively). A similar response for the apparent total tract digestibility of acid-hydrolyzed ether extract (AEE) in lipids was observed. The true total tract digestibility of AEE in SO was significantly (p<0.05) greater than that for PO (97.5% and 91.1%, respectively). In conclusion, the DE and ME contents of lipid was not affected by its inclusion level. The difference method can substitute the regression method to determine the DE and ME contents in lipids when the inclusion level is 10%. PMID:26580443

  17. Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst.

    PubMed

    Koberg, Miri; Abu-Much, Riam; Gedanken, Aharon

    2011-01-01

    This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel. PMID:20833538

  18. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  19. Daily changes of amino acids in soybean leaflets are modified by C02 enrichment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of CO2 enrichment on plant growth and on nitrogen partitioning were examined using soybean [Glycine max (L.) Merr. cv. Clark] leaflets and wheat leaves (Triticum aestivum L. cv. Oxen). Both species were grown from single seeds in matching controlled environment chambers. Continuous amb...

  20. Pathogen growth in soybean seeds: relationships with fatty acid composition and defense gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature during seed development strongly modulates the oleate: linoleate content (O: L) in seeds of the soybean line N0304-303-3. We found that increased oleate in seeds grown at warmer temperatures was associated with higher expression of the stearoyl acyl carrier protein desaturase alleles Gm...