Science.gov

Sample records for acid stress induced

  1. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized.

  2. Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke.

    PubMed

    Moglia, Andrea; Lanteri, Sergio; Comino, Cinzia; Acquadro, Alberto; de Vos, Ric; Beekwilder, Jules

    2008-09-24

    Leaf extracts from globe artichoke ( Cynara cardunculus L. var. scolymus) have been widely used in medicine as hepatoprotectant and choleretic agents. Globe artichoke leaves represent a natural source of phenolic acids with dicaffeoylquinic acids, such as cynarin (1,3-dicaffeoylquinic acid), along with its biosynthetic precursor chlorogenic acid (5-caffeoylquinic acid) as the most abundant molecules. This paper reports the development of an experimental system to induce caffeoylquinic acids. This system may serve to study the regulation of the biosynthesis of (poly)phenolic compounds in globe artichoke and the genetic basis of this metabolic regulation. By means of HPLC-PDA and accurate mass LC-QTOF MS and MS/MS analyses, the major phenolic compounds in globe artichoke leaves were identified: four isomers of dicaffeoylquinic acid, three isomers of caffeoylquinic acid, and the flavone luteolin 7-glucoside. Next, plant material was identified in which the concentration of phenolic compounds was comparable in the absence of particular treatments, with the aim to use this material to test the effect of stress application on the regulation of biosynthesis of caffeoylquinic acids. Using this material, the effect of UV-C, methyl jasmonate, and salicylic acid treatments on (poly)phenolic compounds was tested in different globe artichoke genotypes. UV-C exposure consistently increased the levels of dicaffeoylquinic acids in all genotypes, whereas the effect on compounds from the same biosynthetic pathway, for example, chlorogenic acid and luteolin-7-glucoside, was much less pronounced and was not statistically significant. No effect of methyl jasmonate or salicylic acid was found. Time-response experiments indicated that the level of dicaffeoylquinic acids reached a maximum at 24 h after UV radiation. On the basis of these results a role of dicaffeoylquinic acids in UV protection in globe artichoke is hypothesized. PMID:18710252

  3. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  4. Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata.

    PubMed

    Shimakawa, Aya; Shiraya, Takeshi; Ishizuka, Yuta; Wada, Kaede C; Mitsui, Toshiaki; Takeno, Kiyotoshi

    2012-07-01

    The short-day plant, Lemna paucicostata (synonym Lemna aequinoctialis), was induced to flower when cultured in tap water without any additional nutrition under non-inductive long-day conditions. Flowering occurred in all three of the tested strains, and strain 6746 was the most sensitive to the starvation stress conditions. For each strain, the stress-induced flowering response was weaker than that induced by short-day treatment, and the stress-induced flowering of strain 6746 was completely inhibited by aminooxyacetic acid and l-2-aminooxy-3-phenylpropionic acid, which are inhibitors of phenylalanine ammonia-lyase. Significantly higher amounts of endogenous salicylic acid (SA) were detected in the fronds that flowered under the poor-nutrition conditions than in the vegetative fronds cultured under nutrition conditions, and exogenously applied SA promoted the flowering response. The results indicate that endogenous SA plays a role in the regulation of stress-induced flowering.

  5. Stability of sublethal acid stress adaptation and induced cross protection against lauric arginate in Listeria monocytogenes.

    PubMed

    Shen, Qian; Soni, Kamlesh A; Nannapaneni, Ramakrishna

    2015-06-16

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced in pH 5.0 tryptic soy broth supplemented with 0.6% yeast extract (TSB-YE) at 37 °C. Subsequently, the stability of acid stress adaptation, which was defined as the capacity to maintain its acquired acid adaptation after induction in the absence of sublethal acid stress, was determined at 37 °C, 22 °C or 4 °C in broth and in different food substrates. Then, the acid stress adaptation induced cross protection against lauric arginate (LAE) and its stability was investigated in TSB-YE, milk and carrot juice. Our findings show that the acid stress adaptation was stable at 4 °C up to 24h but was reversed at 37 °C or 22 °C within 2h. In the cross protection assay with LAE, the acid stress adapted cells had approximately 2 log CFU/ml greater survival than non-adapted cells in broth at 22 °C or in milk and carrot juice at 4 °C. The acid adaptation induced cross protection against LAE in L. monocytogenes was reversible within 1h at 4 °C in the absence of sublethal acid stress. Our findings suggest that the stability of acid adaptation in L. monocytogenes under cold conditions should be taken into account when the risk analysis is performed during food processing.

  6. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.

    PubMed Central

    Moons, A; Prinsen, E; Bauw, G; Van Montagu, M

    1997-01-01

    Abscisic acid (ABA) and jasmonates have been implicated in responses to water deficit and wounding. We compared the molecular and physiological effects of jasmonic acid (JA) (< or = 10 microM), ABA, and salt stress in roots of rice. JA markedly induced a cationic peroxidase, two novel 32- and 28-kD proteins, acidic PR-1 and PR-10 pathogenesis-related proteins, and the salt stress-responsive SalT protein in roots. Most JA-responsive proteins (JIPs) from roots also accumulated when plants were subjected to salt stress. None of the JIPs accumulated when plants were treated with ABA. JA did not induce an ABA-responsive group 3 late-embryogenesis abundant (LEA) protein. Salt stress and ABA but not JA induced oslea3 transcript accumulation. By contrast, JA, ABA, and salt stress induced transcript accumulation of salT and osdrr, which encodes a rice PR-10 protein. However, ABA also negatively affected salT transcript accumulation, whereas JA negatively affected ABA-induced oslea3 transcript levels. Endogenous root ABA and methyl jasmonate levels showed a differential increase with the dose and the duration of salt stress. The results indicate that ABA and jasmonates antagonistically regulated the expression of salt stress-inducible proteins associated with water deficit or defense responses. PMID:9437865

  7. Ascorbic acid protects against cadmium-induced endoplasmic reticulum stress and germ cell apoptosis in testes.

    PubMed

    Ji, Yan-Li; Wang, Zhen; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Meng, Xiu-Hong; Xu, De-Xiang

    2012-11-01

    Cadmium (Cd) is a testicular toxicant which induces endoplasmic reticulum (ER) stress and germ cell apoptosis in testes. This study investigated the effects of ascorbic acid on Cd-evoked ER stress and germ cell apoptosis in testes. Male mice were intraperitoneally injected with CdCl(2) (2.0 mg/kg). As expected, a single dose of Cd induced testicular germ cell apoptosis. Interestingly, Cd-triggered testicular germ cell apoptosis was almost completely inhibited in mice treated with ascorbic acid. Interestingly, ascorbic acid significantly attenuated Cd-induced upregulation of GRP78 in testes. In addition, ascorbic acid significantly attenuated Cd-triggered testicular IRE1α and eIF2α phosphorylation and XBP-1 activation, indicating that this antioxidant counteracts Cd-induced unfolded protein response (UPR) in testes. Finally, ascorbic acid significantly attenuated Cd-evoked upregulation of CHOP and JNK phosphorylation, two components in ER stress-mediated apoptotic pathway. In conclusion, ascorbic acid protects mice from Cd-triggered germ cell apoptosis via inhibiting ER stress and UPR in testes. PMID:22569276

  8. Role of ellagic acid against cisplatin-induced nephrotoxicity and oxidative stress in rats.

    PubMed

    Ateşşahín, Ahmet; Ceríbaşi, Ali Osman; Yuce, Abdurrauf; Bulmus, Ozgür; Cikim, Gürkan

    2007-02-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with ellagic acid on cisplatin-induced nephrotoxicity using biochemical and histopatological approaches. Adult male Sprague-Dawley rats were randomly divided into four groups. The control group received 0.9% saline; animals in the ellagic acid group received only ellagic acid (10 mg/kg); animals in the cisplatin group received only cisplatin (7 mg/kg); animals in the cisplatin + ellagic acid group received ellagic acid for 10 days after cisplatin. The effects of ellagic acid on cisplatin-induced nephrotoxicity were evaluated by plasma creatinine, urea, sodium and calcium concentrations; kidney tissue malondialdehyde, reduced glutathione (GSH), glutathione peroxidase (GSH peroxidase) and catalase activities and histopatological examinations. Administration of cisplatin to rats induced a marked renal failure, characterized by significant increases in plasma creatinine, urea and calcium concentrations. Cisplatin also induced oxidative stress, as indicated by increased kidney tissue concentrations of malondialdehyde, and reduced activities of GSH peroxidase and catalase. Furthermore, treatment with cisplatin caused a marked tubular necrosis, degeneration and desquamation, luminal cast formation, karyomegaly, tubular dilatation, interstitial mononuclear cell infiltration and inter-tubular haemorrhagia. Ellagic acid markedly reduced elevated plasma creatinine, urea and calcium levels and counteracted the deleterious effects of cisplatin on oxidative stress markers. In the same way, ellagic acid ameliorated cisplatin-induced pathological changes including tubular necrosis, degeneration, karyomegaly, tubular dilatation when compared to the cisplatin alone group. These results indicate that the antioxidant ellagic acid might have a protective effect against cisplatin-induced nephrotoxicity and oxidative stress in rat, but not enough to inhibit cisplatin-induced renal dysfunction.

  9. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  10. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-01

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug.

  11. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  12. MNL1 regulates weak acid-induced stress responses of the fungal pathogen Candida albicans.

    PubMed

    Ramsdale, Mark; Selway, Laura; Stead, David; Walker, Jan; Yin, Zhikang; Nicholls, Susan M; Crowe, Jonathan; Sheils, Emma M; Brown, Alistair J P

    2008-10-01

    MNL1, the Candida albicans homologue of an orphan Msn2-like gene (YER130c in Saccharomyces cerevisiae) has no known function. Here we report that MNL1 regulates weak acid stress responses. Deletion of MNL1 prevents the long-term adaptation of C. albicans cells to weak acid stresses and compromises their global transcriptional response under these conditions. The promoters of Mnl1-dependent genes contain a novel STRE-like element (SLE) that imposes Mnl1-dependent, weak acid stress-induced transcription upon a lacZ reporter in C. albicans. The SLE (HHYYCCCCTTYTY) is related to the Nrg1 response element (NRE) element recognized by the transcriptional repressor Nrg1. Deletion of NRG1 partially restores the ability of C. albicans mnl1 cells to adapt to weak acid stress, indicating that Mnl1 and Nrg1 act antagonistically to regulate this response. Molecular, microarray, and proteomic analyses revealed that Mnl1-dependent adaptation does not occur in cells exposed to proapoptotic or pronecrotic doses of weak acid, suggesting that Ras-pathway activation might suppress the Mnl1-dependent weak acid response in dying cells. Our work defines a role for this YER130c orthologue in stress adaptation and cell death. PMID:18653474

  13. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney.

    PubMed

    Li, Chunling; Lin, Yu; Luo, Renfei; Chen, Shaoming; Wang, Feifei; Zheng, Peili; Levi, Moshe; Yang, Tianxin; Wang, Weidong

    2016-03-01

    Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid. PMID:26672616

  14. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  15. Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy.

    PubMed

    Roncal-Jimenez, Carlos; García-Trabanino, Ramón; Barregard, Lars; Lanaspa, Miguel A; Wesseling, Catharina; Harra, Tamara; Aragón, Aurora; Grases, Felix; Jarquin, Emmanuel R; González, Marvin A; Weiss, Ilana; Glaser, Jason; Sánchez-Lozada, Laura G; Johnson, Richard J

    2016-01-01

    Mesoamerican nephropathy (MeN), an epidemic in Central America, is a chronic kidney disease of unknown cause. In this article, we argue that MeN may be a uric acid disorder. Individuals at risk for developing the disease are primarily male workers exposed to heat stress and physical exertion that predisposes to recurrent water and volume depletion, often accompanied by urinary concentration and acidification. Uric acid is generated during heat stress, in part consequent to nucleotide release from muscles. We hypothesize that working in the sugarcane fields may result in cyclic uricosuria in which uric acid concentrations exceed solubility, leading to the formation of dihydrate urate crystals and local injury. Consistent with this hypothesis, we present pilot data documenting the common presence of urate crystals in the urine of sugarcane workers from El Salvador. High end-of-workday urinary uric acid concentrations were common in a pilot study, particularly if urine pH was corrected to 7. Hyperuricemia may induce glomerular hypertension, whereas the increased urinary uric acid may directly injure renal tubules. Thus, MeN may result from exercise and heat stress associated with dehydration-induced hyperuricemia and uricosuria. Increased hydration with water and salt, urinary alkalinization, reduction in sugary beverage intake, and inhibitors of uric acid synthesis should be tested for disease prevention.

  16. Inhibitory effects of acidic xylooligosaccharide on stress-induced gastric inflammation in mice.

    PubMed

    Yoshino, Kyoji; Higashi, Naoki; Koga, Kunimasa

    2006-12-01

    The preventive effects of acidic xylooligosaccharide prepared from xylan of corncobs and related sugars on stress-induced gastric inflammation in mice were investigated. Oral administration of acidic xylooligosaccharide and hydrocortisone at doses of 100 and 200 mg/kg body weight significantly reduced the number of bleeding points in the gastric mucosa of mice loaded with cold-restraint stress. Acidic xylooligosaccharide showed concentration-dependent superoxide anion radical-scavenging activity at concentrations of 3.3-4.3 mg/mL and its IC50 was 3.5 mg/mL, although this value is approximately six times that of quercetin. The antioxidant activity of acidic xylooligosaccharide could contribute, in part, to its suppressive activities on stress-induced mouse gastritis. Xylose, xylobiose, xylan, and glucuronic acid showed no significant suppressive activities on mouse gastric inflammation at a dose of 100 mg/kg body weight. These results suggest that an appropriate degree of polymerization of xylan (larger than trimer) is necessary for the activities of acidic xylooligosaccharide.

  17. Nordihydroguaiaretic Acid Attenuates the Oxidative Stress-Induced Decrease of CD33 Expression in Human Monocytes

    PubMed Central

    Guzmán-Beltrán, Silvia; Pedraza-Chaverri, José; Gonzalez-Reyes, Susana; Juarez-Figueroa, Ulises E.; Gonzalez, Yolanda

    2013-01-01

    Nordihydroguaiaretic acid (NDGA) is a natural lignan with recognized antioxidant and beneficial properties that is isolated from Larrea tridentata. In this study, we evaluated the effect of NDGA on the downregulation of oxidant stress-induced CD33 in human monocytes (MNs). Oxidative stress was induced by iodoacetate (IAA) or hydrogen peroxide (H2O2) and was evaluated using reactive oxygen species (ROS) production, and cell viability. NDGA attenuates toxicity, ROS production and the oxidative stress-induced decrease of CD33 expression secondary to IAA or H2O2 in human MNs. It was also shown that NDGA (20 μM) attenuates cell death in the THP-1 cell line that is caused by treatment with either IAA or H2O2. These results suggest that NDGA has a protective effect on CD33 expression, which is associated with its antioxidant activity in human MNs. PMID:23533689

  18. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  19. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus.

    PubMed

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-15

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  20. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus.

    PubMed

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-15

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell. PMID:25791881

  1. LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus

    NASA Astrophysics Data System (ADS)

    Choi, Yong-Keun; Kumaran, Rangarajulu Senthil; Jeon, Hyeon Jin; Song, Hak-Jin; Yang, Yung-Hun; Lee, Sang Hyun; Song, Kyung-Guen; Kim, Kwang Jin; Singh, Vijay; Kim, Hyung Joo

    2015-06-01

    Microbial algal system can serve as a potential source for the production of much high value bioproducts and biofuels. The quality and intensity of light are the key elements to optimize the production of algal biomass and fatty acid contents. This study presents the effect of differential LED flashing light conditions on the growth of microalgae, Acutodesmus obliquus. The induced light stress was optimized for its biomass and fatty acid content. The microalgae are exposed to various frequency of intermittent LED flashing light (blue and red lights) at three different phases in the 18 day cell growth (log, lag and stationary phase). The frequency of light flashing rate was adjusted to 120, 10, 5, 3.75, and 1 times per min. The effect of light stress on growth and fatty acids composition of A. obliquus induced an increase in algae growth and fatty acid production. Different optimal timing for light stress was subjected to elucidate the effect of light stress on algae growth and fatty acid production. The results showed an increase in the algae growth (1.2 mg/L of chl a content) under light stress condition at FT10 (flashing time, 10 times per min) from the initial day (log phase) compared with the control experiment (0.4 mg/L of chl a content). However, the total fatty acids (71 mg/g) and volumetric FAME production (9.4 ml/l) level was found to be significant under FT5 (flashing time, 5 times per min), adopting flashing light from day 10 (stationary phase). TEM studies also revealed the deposition of lipid to be largest in the 18 day old cells under flashing light (FT5) condition, representing maximum accumulation of lipids bodies (up to 770 nm diameter in particle size) occupying approximately 42% of the total area of the cell.

  2. Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense.

    PubMed

    Chen, R D; Yu, L X; Greer, A F; Cheriti, H; Tabaeizadeh, Z

    1994-10-28

    We have identified one osmotic stress- and abscisic acid-responsive member of the endochitinase (EC 3.2.1.14) gene family from leaves of drought-stressed Lycopersicon chilense plants, a natural inhabitant of extremely arid regions in South America. The 966-bp full-length cDNA (designated pcht28) encodes an acidic chitinase precursor with an amino-terminal signal peptide. The mature protein is predicted to have 229 amino acid residues with a relative molecular mass of 24,943 and pI value of 6.2. Sequence analysis revealed that pcht28 has a high degree of homology with class II chitinases (EC 3.2.1.14) from tomato and tobacco. Expression of the pcht28 protein in Escherichia coli verified that it is indeed a chitinase. Northern blot analysis indicated that this gene has evolved a different pattern of expression from that of other family members reported thus far. It is highly induced by both osmotic stress and the plant hormone abscisic acid. Southern blot analysis of genomic DNA suggested that the pcht28-related genes may form a small multigene family in this species. The efficiency of induction of the gene by drought stress, in leaves and stems, is significantly higher in L. chilense than in the cultivated tomato. It is speculated that, besides its general defensive function, the pcht28-encoded chitinase may play a particular role in plant development or in protecting plants from pathogen attack during water stress. PMID:7816027

  3. Rosmarinic acid mitigates signs of systemic oxidative stress in streptozotocin-induced diabetes in rats.

    PubMed

    Sotnikova, Ruzena; Kaprinay, Barbara; Navarova, Jana

    2015-10-01

    The aim of the work was to study the effect of rosmarinic acid (RA) on markers of oxidative stress in rats with diabetes. Diabetes was induced by streptozotocin (STZ), RA was administered orally for ten weeks. Water consumption was measured daily. Ten weeks after the first RA administration, urine was collected over 15 hours. N-acetyl-β-D-glucosaminidase (NAGA) activity, levels of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) were determined in the pancreas, kidney, and plasma. RA administration to diabetic rats ameliorated markers of oxidative stress, as well as water consumption and urination. We assume that RA may mitigate STZ-induced diabetic manifestations by protecting rat tissues against damaging effect of free radicals. PMID:26374995

  4. Ascorbic acid combats arsenic-induced oxidative stress in mice liver.

    PubMed

    Banerjee, Pathikrit; Bhattacharyya, Soumya Sundar; Bhattacharjee, Nandini; Pathak, Surajit; Boujedaini, Naoual; Belon, Philippe; Khuda-Bukhsh, Anisur Rahman

    2009-02-01

    Repeated injections of arsenic trioxide induced oxidative stress and hepatotoxicity in mice as revealed from elevated levels of glutamate oxaloacetate transaminases, glutamate pyruvate transaminases, acid and alkaline phosphatases, lipid peroxidation along with reduction of superoxide dismutase, catalase, reduced glutathione content, glutathione reductase and succinate dehydrogenase activities. The present investigation was undertaken to test whether simultaneous feeding of vitamin C can combat hepatotoxicity in arsenic intoxicated mice. Hepatoprotective potential of vitamin C was indicated by its ability to restore GSH, SOD, CAT, AcP, AlkP and GRD levels towards near normal. Electron microscopic studies further supported the biochemical findings confirming the hepatoprotective potential of ascorbic acid. Besides, cytogenetical endpoints (chromosome aberrations, micronuclei, mitotic index and sperm head anomaly) were also analyzed. Administration of vitamin C alone did not show any sign of toxicity of its own. Based on the present findings, ascorbic acid appears to have protective effects against arsenic toxicity and oxidative stress.

  5. Salubrinal, ER stress inhibitor, attenuates kainic acid-induced hippocampal cell death.

    PubMed

    Kim, Jung Soo; Heo, Rok Won; Kim, Hwajin; Yi, Chin-Ok; Shin, Hyun Joo; Han, Jong Woo; Roh, Gu Seob

    2014-10-01

    Kainic acid (KA)-induced neuronal death is closely linked to endoplasmic reticulum (ER) and mitochondrial dysfunction. Parkin is an ubiquitin E3 ligase that mediates the ubiquitination of the Bcl-2 family of proteins and its mutations are associated with neuronal apoptosis in neurodegenerative diseases. We investigated the effect of salubrinal, an ER stress inhibitor, on the regulation of ER stress and mitochondrial apoptosis induced by KA, in particular, by controlling parkin expression. We showed that salubrinal significantly reduced seizure activity and increased survival rates of mice with KA-induced seizures. We found that salubrinal protected neurons against apoptotic death by reducing expression of mitochondrial apoptotic factors and elF2α-ATF4-CHOP signaling proteins. Interestingly, we showed that salubrinal decreased the KA-induced parkin expression and inhibited parkin translocation to mitochondria, which suggests that parkin may regulate a cross-talk between ER and mitochondria. Collectively, inhibition of ER stress attenuates mitochondrial apoptotic and ER stress pathways and controls parkin-mediated neuronal death following KA-induced seizures. PMID:24728926

  6. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  7. Tauroursodeoxycholic acid dampens oncogenic apoptosis induced by endoplasmic reticulum stress during hepatocarcinogen exposure

    PubMed Central

    Vandewynckel, Yves-Paul; Laukens, Debby; Devisscher, Lindsey; Paridaens, Annelies; Bogaerts, Eliene; Verhelst, Xavier; Van den Bussche, Anja; Raevens, Sarah; Van Steenkiste, Christophe; Van Troys, Marleen; Ampe, Christophe; Descamps, Benedicte; Vanhove, Chris; Govaere, Olivier; Geerts, Anja; Van Vlierberghe, Hans

    2015-01-01

    Hepatocellular carcinoma (HCC) is characterized by the accumulation of unfolded proteins in the endoplasmic reticulum (ER), which activates the unfolded protein response (UPR). However, the role of ER stress in tumor initiation and progression is controversial. To determine the impact of ER stress, we applied tauroursodeoxycholic acid (TUDCA), a bile acid with chaperone properties. The effects of TUDCA were assessed using a diethylnitrosamine-induced mouse HCC model in preventive and therapeutic settings. Cell metabolic activity, proliferation and invasion were investigated in vitro. Tumor progression was assessed in the HepG2 xenograft model. Administration of TUDCA in the preventive setting reduced carcinogen-induced elevation of alanine and aspartate aminotransferase levels, apoptosis of hepatocytes and tumor burden. TUDCA also reduced eukaryotic initiation factor 2α (eIf2α) phosphorylation, C/EBP homologous protein expression and caspase-12 processing. Thus, TUDCA suppresses carcinogen-induced pro-apoptotic UPR. TUDCA alleviated hepatic inflammation by increasing NF-κB inhibitor IκBα. Furthermore, TUDCA altered the invasive phenotype and enhanced metabolic activity but not proliferation in HCC cells. TUDCA administration after tumor development did not alter orthotopic tumor or xenograft growth. Taken together, TUDCA attenuates hepatocarcinogenesis by suppressing carcinogen-induced ER stress-mediated cell death and inflammation without stimulating tumor progression. Therefore, this chemical chaperone could represent a novel chemopreventive agent. PMID:26293671

  8. Fusaric acid induces mitochondrial stress in human hepatocellular carcinoma (HepG2) cells.

    PubMed

    Sheik Abdul, Naeem; Nagiah, Savania; Chuturgoon, Anil A

    2016-09-01

    Fusarium spp are common contaminants of maize and produce many mycotoxins, including the fusariotoxin fusaric acid (FA). FA is a niacin related compound, chelator of divalent cations, and mediates toxicity via oxidative stress and possible mitochondrial dysregulation. Sirtuin 3 (SIRT3) is a stress response deacetylase that maintains proper mitochondrial function. We investigated the effect of FA on SIRT3 and oxidative and mitochondrial stress pathways in the hepatocellular carcinoma (HepG2) cell line. We determined FA toxicity (24 h incubation; IC50 = 104 μg/ml) on mitochondrial output, cellular and mitochondrial stress responses, mitochondrial biogenesis and markers of cell death using spectrophotometry, luminometry, qPCR and western blots. FA caused a dose dependent decrease in metabolic activity along with significant depletion of intracellular ATP. FA induced a significant increase in lipid peroxidation, despite up-regulation of the antioxidant transcription factor, Nrf2. FA significantly decreased expression of SIRT3 mRNA with a concomitant decrease in protein expression. Lon protease was also significantly down-regulated. FA induced aberrant mitochondrial biogenesis as evidenced by significantly decreased protein expressions of: PGC-1α, p-CREB, NRF1 and HSP70. Finally, FA activated apoptosis as noted by the significantly increased activity of caspases 3/7 and also induced cellular necrosis. This study provides insight into the molecular mechanisms of FA (a neglected mycotoxin) induced hepatotoxicity. PMID:27390038

  9. Exacerbation of Alcohol-Induced Oxidative Stress in Rats by Polyunsaturated Fatty Acids and Iron Load

    PubMed Central

    Patere, S. N.; Majumdar, A. S.; Saraf, M. N.

    2011-01-01

    The hypothesis that excessive intake of vegetable oil containing polyunsaturated fatty acids and iron load precipitate alcohol-induced liver damage was investigated in a rat model. In order to elucidate the mechanism underlying this synergism, the serum levels of iron, total protein, serum glutamate pyruvate transaminase, liver thiobarbituric acid reactive substances, and activities of antioxidant enzymes superoxide dismutase, catalase in liver of rats treated with alcohol, polyunsaturated fatty acids and iron per se and in combination were examined. Alcohol was fed to the rats at a level of 10-30% (blood alcohol was maintained between 150-350 mg/dl by using head space gas chromatography), polyunsaturated fatty acids at a level of 15% of diet and carbonyl iron 1.5-2% of diet per se and in combination to different groups for 30 days. Hepatotoxicity was assessed by measuring serum glutamate pyruvate transaminase, which was elevated and serum total protein, which was decreased significantly in rats fed with a combination of alcohol, polyunsaturated fatty acids and iron. It was also associated with increased lipid peroxidation and disruption of antioxidant defense in combination fed rats as compared to rats fed with alcohol or polyunsaturated fatty acids or iron. The present study revealed significant exacerbation of the alcohol-induced oxidative stress in presence of polyunsaturated fatty acids and iron. PMID:22303057

  10. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  11. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic.

    PubMed

    Kaya, Armagan; Doganlar, Zeynep Banu

    2016-02-01

    Jasmonic acid (JA) is one of the important phytohormones, regulating the stress responses as well as plant growth and development. The aim of this study is to determine the effects of exogenous JA application on stress responses of tobacco plant exposed to imazapic. In this study, phytotoxic responses resulting from both imazapic and imazapic combined with JA treatment are investigated comparatively for tobacco plants. For plants treated with imazapic at different concentrations (0.030, 0.060 and 0.120mM), antioxidant enzyme activities (catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), carotenoids, glutathione and malondialdehyte (MDA) contents, jasmonic acid, abscisic acid and indole-3-acetic acid levels as well as herbicide residue amounts on leaves increased in general compared to the control group. In the plants treated with 45µM jasmonic acid, pigment content, antioxidant activity and phytohormone level increased whereas MDA content and the amount of herbicidal residue decreased compared to the non-treated plants. Our findings show that imazapic treatment induces some phytotoxic responses on tobacco leaves and that exogenous jasmonic acid treatment alleviates the negative effects of herbicide treatment by regulating these responses. PMID:26629659

  12. Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae.

    PubMed

    Iwaki, Aya; Izawa, Shingo

    2012-09-01

    The stress response of eukaryotic cells often causes an attenuation of bulk translation activity and the accumulation of non-translating mRNAs into cytoplasmic mRNP (messenger ribonucleoprotein) granules termed cytoplasmic P-bodies (processing bodies) and SGs (stress granules). We examined effects of acidic stress on the formation of mRNP granules compared with other forms of stress such as glucose deprivation and a high Ca²⁺ level in Saccharomyces cerevisiae. Treatment with lactic acid clearly caused the formation of P-bodies, but not SGs, and also caused an attenuation of translation initiation, albeit to a lesser extent than glucose depletion. P-body formation was also induced by hydrochloric acid and sulfuric acid. However, lactic acid in SD (synthetic dextrose) medium with a pH greater than 3.0, propionic acid and acetic acid did not induce P-body formation. The results of the present study suggest that the assembly of yeast P-bodies can be induced by external conditions with a low pH and the threshold was around pH 2.5. The P-body formation upon acidic stress required Scd6 (suppressor of clathrin deficiency 6), a component of P-bodies, indicating that P-bodies induced by acidic stress have rules of assembly different from those induced by glucose deprivation or high Ca²⁺ levels.

  13. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Alexopoulos, Eftichia; Zhao, Boyu; El Bakkouri, Majida; Thibault, Guillaume; Liu, Kaiyin; Ramachandran, Shaliny; Snider, Jamie; Pai, Emil F; Houry, Walid A

    2011-03-01

    The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses. PMID:21278708

  14. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes.

    PubMed

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  15. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens.

    PubMed

    Pittman, Joseph R; Kline, La'Kesha C; Kenyon, William J

    2015-10-26

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H₂O₂). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  16. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth.

  17. Carbon-Starvation Induces Cross-Resistance to Thermal, Acid, and Oxidative Stress in Serratia marcescens

    PubMed Central

    Pittman, Joseph R.; Kline, La’Kesha C.; Kenyon, William J.

    2015-01-01

    The broad host-range pathogen Serratia marcescens survives in diverse host and non-host environments, often enduring conditions in which the concentration of essential nutrients is growth-limiting. In such environments, carbon and energy source starvation (carbon-starvation) is one of the most common forms of stress encountered by S. marcescens. Related members of the family Enterobacteriaceae are known to undergo substantial changes in gene expression and physiology in response to the specific stress of carbon-starvation, enabling non-spore-forming cells to survive periods of prolonged starvation and exposure to other forms of stress (i.e., starvation-induced cross-resistance). To determine if carbon-starvation also results in elevated levels of cross-resistance in S. marcescens, both log-phase and carbon-starved cultures, depleted of glucose before the onset of high cell-density stationary-phase, were grown in minimal media at either 30 °C or 37 °C and were then challenged for resistance to high temperature (50 °C), low pH (pH 2.8), and oxidative stress (15 mM H2O2). In general, carbon-starved cells exhibited a higher level of resistance to thermal stress, acid stress, and oxidative stress compared to log-phase cells. The extent of carbon-starvation-induced cross-resistance was dependent on incubation temperature and on the particular strain of S. marcescens. In addition, strain- and temperature-dependent variations in long-term starvation survival were also observed. The enhanced stress-resistance of starved S. marcescens cells could be an important factor in their survival and persistence in many non-host environments and within certain host microenvironments where the availability of carbon sources is suboptimal for growth. PMID:27682115

  18. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    PubMed

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions. PMID:25191831

  19. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    PubMed

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P < .05), and reduced kainic acid-induced increases in TBARS values. In contrast to no significant neuroprotection by butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or

  20. Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress.

    PubMed

    Si, Pei-Pei; Zhen, Jun-Li; Cai, Yun-Lei; Wang, Wen-Jing; Wang, Wei-Ping

    2016-04-01

    There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.

  1. Acid back-diffusion and mucosal H+ handling in the rat stomach under normal and stress-induced conditions.

    PubMed

    Takeuchi, K; Okabe, S

    1983-02-01

    We determined acid back-diffusion and pepsin output simultaneously in vagotomized rats after instillation of HCl into the stomach under normal and stress-induced conditions. With exposure to 6 ml of 100 mM HCl, spontaneous acid back-diffusion increased with the duration of the experiment under both conditions, and the magnitude of the acid back-diffusion was decreased significantly by stress. There was no change in the output of pepsin. While disappearance of luminal acid caused by aspirin or taurocholic acid was not altered by stress, the pepsin output in response to H+ increased significantly in the stressed rats. With exposure to various concentrations of HCl for 3 hr, disappearance of the luminal acid increased linearly with the grade of HCl under both conditions. Except for the concentration of 300 mM, the magnitude of the acid back-diffusion was triple in the normal condition, and the ratio of pepsin output/net flux of H+ was significantly increased by stress. Thus, (1) spontaneous acid back-diffusion decreased with stress, while diffusion induced by chemical barrier breakers remained the same; (2) the action of H+ diffused back into the mucosa did not always parallel the amount of diffusion determined from the loss of H+ in the lumen; (3) intramucosal H+ may be largely dissipated in normal mucosa; and (4) the initiation or aggravation of drug-induced mucosal damages by stress may be related to insufficiency of the H+ dissipating mechanisms. PMID:6410110

  2. Cytoprotective mechanism of ferulic acid against high glucose-induced oxidative stress in cardiomyocytes and hepatocytes

    PubMed Central

    Song, Yuan; Wen, Luona; Sun, Jianxia; Bai, Weibin; Jiao, Rui; Hu, Yunfeng; Peng, Xichun; He, Yong; Ou, Shiyi

    2016-01-01

    Background Ferulic acid (FA), a phenolic acid, is a potential therapy for diabetes mellitus. FA has been shown to protect against hepatic and myocardial injury and oxidative stress in obese rats with late-stage diabetes, but the mechanism of the antioxidative activity of FA is still unclear. Objective The aim of this study was to elucidate whether FA can prevent damage to cardiomyocytes and hepatocytes caused by high glucose (HG)-induced oxidative stress and whether the protection effects of FA on these cells are related to the Keap1-Nrf2-ARE signaling pathways. Design Cells were divided into four groups: a control group (cultured with normal medium), an HG group (medium containing 80 mmol/L glucose), an FA+HG group (medium containing 80 mmol/L glucose and 1, 5, or 10 µg/mL FA), and a dimethylbiguanide (DMBG)+HG group (medium containing 80 mmol/L glucose and 50 µg/mL DMBG). Results FA treatment significantly increased cell viability and significantly decreased cell apoptosis compared with the HG-treated group. Moreover, FA down-regulated the expression of Keap1 protein and up-regulated the expression of Nrf2 protein and gene transcription of HO-1 and glutathione S-transferase (GST) in a dose-dependent manner. Conclusion FA alleviated the HG-induced oxidative stress and decreased cell apoptosis in hepatocytes and cardiomyocytes. These effects were associated with the Keap1-Nrf2-ARE signaling pathway. PMID:26869273

  3. 5-Aminosalicylic acid attenuates allergen-induced airway inflammation and oxidative stress in asthma.

    PubMed

    Raju, K Rama Satyanarayana; Kumar, M N Sathish; Gupta, Saurabh; Naga, Srinivas T; Shankar, Jaya K; Murthy, Vishakantha; Madhunapanthula, Subba Rao V; Mulukutla, Shashank; Ambhore, Nilesh S; Tummala, Shashank; Vishnuvarthan, V J; Azam, Afzal; Elango, Kannan

    2014-12-01

    Pro-inflammatory cytokines regulate the magnitude of allergic reactions during asthma. Tumor necrosis factor--alpha (TNF-α), interleukin-6 (IL-6) and interleukin-13 (IL-13) play a crucial role in aggravating the inflammatory conditions during allergic asthma. In addition, oxidative stress contributes to the pathogenesis of asthma by altering the physiological condition resulting in the development of status asthmaticus. Anti-inflammatory corticosteroids are being widely used for treating allergic asthma. In the present study 5-aminosalicylic acid (5-ASA), a salicylic acid derivative, was evaluated, in vivo for its potential to suppress TNF-α, IL-6 and IL-13 using ovalbumin (OVA) induced allergic asthma in Balb/C mice. Oral administration of 65, 130 and 195 mg/kg 5-ASA significantly reduced the OVA induced total and differential leucocyte count, TNF-α, IL-6, IL-13, nitrite, nitrate, MDA, MPO and TPL levels in the lung lavage samples. Collectively, these findings suggest that 5-ASA is a potent immunomodulator and suppresses key Th2 cytokines production and oxidative stress in OVA-induced asthma.

  4. Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress.

    PubMed

    de Lucena, Rodrigo Mendonça; Elsztein, Carolina; de Barros Pita, Will; de Souza, Rafael Barros; de Sá Leitão Paiva Júnior, Sérgio; de Morais Junior, Marcos Antonio

    2015-11-01

    In bioethanol production plants, yeast cells are generally recycled between fermentation batches by using a treatment with sulphuric acid at a pH ranging from 2.0 to 2.5. We have previously shown that Saccharomyces cerevisiae cells exposed to sulphuric acid treatment induce the general stress response pathway, fail to activate the protein kinase A signalling cascade and requires the mechanisms of cell wall integrity and high osmolarity glycerol pathways in order to survive in this stressful condition. In the present work, we used transcriptome-wide analysis as well as physiological assays to identify the transient metabolic responses of S. cerevisiae under sulphuric acid treatment. The results presented herein indicate that survival depends on a metabolic reprogramming of the yeast cells in order to assure the yeast cell viability by preventing cell growth under this harmful condition. It involves the differential expression of a subset of genes related to cell wall composition and integrity, oxidation-reduction processes, carbohydrate metabolism, ATP synthesis and iron uptake. These results open prospects for application of this knowledge in the improvement of industrial processes based on metabolic engineering to select yeasts resistant to acid treatment. PMID:26362331

  5. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    PubMed

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress.

  6. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    PubMed

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress. PMID:27468465

  7. PTEN Phosphorylation and Nuclear Export Mediate Free Fatty Acid-Induced Oxidative Stress

    PubMed Central

    Wu, Yong; Zhou, Hillary; Wu, Ke; Lee, Sangkyu; Li, Ruijin

    2014-01-01

    Abstract Aim: Oxidative stress induced by free fatty acids (FFA) contributes to metabolic syndrome-associated development of cardiovascular diseases, yet molecular mechanisms remain poorly understood. This study aimed at establishing whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and its subcellular location play a role in FFA-induced endothelial oxidative stress. Results: Exposing human endothelial cells (ECs) with FFA activated mammalian target of rapamycin (mTOR)/S6K pathway, and upon activation, S6K directly phosphorylated PTEN at S380. Phosphorylation of PTEN increased its interaction with its deubiquitinase USP7 in the nucleus, leading to PTEN deubiquitination and nuclear export. The reduction of PTEN in the nucleus, in turn, decreased p53 acetylation and transcription, reduced the expression of the p53 target gene glutathione peroxidase-1 (GPX1), resulting in reactive oxygen species (ROS) accumulation and endothelial damage. Finally, C57BL/6J mice fed with high-fat atherogenic diet (HFAD) showed PTEN nuclear export, decreased p53 and GPX1 protein expressions, elevated levels of ROS, and significant lesions in aortas. Importantly, inhibition of mTOR or S6K effectively blocked these effects, suggesting that mTOR/S6K pathway mediates HFAD-induced oxidative stress and vascular damage via PTEN/p53/GPX1 inhibition in vivo. Innovation: Our study demonstrated for the first time that S6K directly phosphorylated PTEN at S380 under high FFA conditions, and this phosphorylation mediated FFA-induced endothelial oxidative stress. Furthermore, we showed that S380 phosphorylation affected PTEN monoubiquitination and nuclear localization, providing the first example of coordinated regulation of PTEN nuclear localization via phosphorylation and ubiquitination. Conclusion: Our studies provide a novel mechanism by which hyperlipidemia causes vascular oxidative damage through the phosphorylation of PTEN, blocking of PTEN nuclear function, and inhibition

  8. 3-Nitropropionic acid induces ovarian oxidative stress and impairs follicle in mouse.

    PubMed

    Zhang, Jia-Qing; Shen, Ming; Zhu, Cheng-Cheng; Yu, Feng-Xiang; Liu, Ze-Qun; Ally, Nazim; Sun, Shao-Chen; Li, Kui; Liu, Hong-Lin

    2014-01-01

    Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)-induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes--total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT)--in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GP X) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants. PMID:24505260

  9. 3-Nitropropionic Acid Induces Ovarian Oxidative Stress and Impairs Follicle in Mouse

    PubMed Central

    Zhang, Jia-Qing; Shen, Ming; Zhu, Cheng-Cheng; Yu, Feng-Xiang; Liu, Ze-Qun; Ally, Nazim; Sun, Shao-Chen; Li, Kui; Liu, Hong-Lin

    2014-01-01

    Oxidative stress induces many serious reproductive diseases in female mammals and thus poses a serious threat to reproductive health. However, the relationship between reactive oxygen species (ROS)—induced oxidative stress and follicular development, oocyte and embryo quality is not clear. The aim of this study was to investigate the effect of ovarian oxidative stress on the health of follicle and oocyte development. Female ICR mice were dosed with 3-nitropropionic acid (3-NPA) at three different concentrations (6.25, 12.5 and 25 mg/kg) and saline (control) via continuous intraperitoneal injection for 7 days. The treatment with 12.5 mg/kg reduced the weight of mouse ovaries, and significantly increased ROS levels and the activities of antioxidant enzymes—total superoxide dismutase (T-SOD), glutathione peroxidase (GPx) and catalase (CAT) — in granulosa cells and ovarian tissues, but not in other tissues (brain, liver, kidney and spleen). The same treatment significantly increased the percentage of atretic large follicles, and reduced the number of large follicles, the number of ovulated oocytes, and the capacity for early embryonic development compared with controls. It also significantly decreased the ratio of Bcl-2 to Bax, while causing an increase in the mRNA expression of (SOD2, CAT and GPX) and ROS levels in granulosa cells. Collectively, these data indicate that 3-NPA induces granulosa cell apoptosis, large follicle atresia, and an increase of ROS levels in the ovary. Therefore, we have established an in vivo model of ovarian oxidative stress for studying the mechanism of resulting damage induced by free radicals and for the screening of novel antioxidants. PMID:24505260

  10. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity.

    PubMed

    Gerin, Fethullah; Erman, Hayriye; Erboga, Mustafa; Sener, Umit; Yilmaz, Ahsen; Seyhan, Hatice; Gurel, Ahmet

    2016-08-01

    This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters.

  11. Effect of Paclobutrazol on Water Stress-Induced Abscisic Acid in Apple Seedling Leaves

    PubMed Central

    Wang, Shiow Y.; Sun, Tung; Ji, Zuo L.; Faust, Miklos

    1987-01-01

    Abscisic acid (ABA) was quantitated by enzyme-linked immunosorbent assay (ELISA) in water-stressed leaves from control apple seedlings, and also from apple seedlings treated for 28 days with paclobutrazol ([2RS, 3RS]-1-[4-chlorophenyl]-4,4-dimethyl-2-[1,2,4-triazol-1-yl] pentan-3-ol). The ELISA quantitative estimates were also validated by gas chromatography-electron capture detector and lettuce seed germination inhibition bioassay. Paclobutrazol treatment reduced endogenous ABA levels by about one-third, and prevented the marked accumulation of water-stress-induced ABA that occurred in untreated seedlings. The presence of ABA in the apple leaf extracts was confirmed by gas chromatography-mass spectrometry. PMID:16665559

  12. The intracellular Ca(2+)-pump inhibitors thapsigargin and cyclopiazonic acid induce stress proteins in mammalian chondrocytes.

    PubMed

    Cheng, T C; Benton, H P

    1994-07-15

    Primary cultures of mammalian articular chondrocytes respond to treatment with the intracellular Ca(2+)-pump inhibitors thapsigargin (TG) and cyclopiazonic acid by specific changes in protein synthesis consistent with a stress response. Two-dimensional gel electrophoresis of newly synthesized proteins confirmed that the response was consistent with the induction of glucose-regulated proteins. The effects of low-dose TG (10 nM), measured by changes in [35S]methionine labelling of newly synthesized proteins, can first be observed by 10 h and are maximal by 24 h. The pattern of changes induced by TG is shared with cyclopiazonic acid, but effects of both perturbants differ significantly from changes induced by heat shock. Upon removal of TG, normal protein synthesis is restored by 48 h. Immunoblots showed increased concentrations of the stress proteins HSP90, HSP72/73 and HSP60 in chondrocytes treated with TG, but induction of newly synthesized heat-shock proteins by TG was not apparent on [35S]methionine-labelled gels. The alterations in protein synthesis induced by Ca(2+)-pump inhibitors were unaffected by BAPTA-AM loading, which clamped cytosolic Ca2+ at resting levels. We conclude that inhibition of intracellular Ca(2+)-pump activity can elicit a stress response, which has important implications for the interpretation of chronic use of Ca(2+)-pump inhibitors. In particular, the activation of the cellular shock response should be considered in interpreting the regulation of protein synthesis and cell survival by Ca(2+)-pump inhibitors such as TG. PMID:8043004

  13. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.

    PubMed

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-02-28

    Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2).

  14. Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats

    PubMed Central

    2014-01-01

    Chlorambucil (4-[4-[bis(2-chloroethyl)amino]phenyl]butanoic acid) is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV), a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA) are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g) were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w.), III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P < 0.05) in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat. PMID:25309592

  15. Efficacy of trans-2-hydroxycinnamic Acid against trichlorfon-induced oxidative stress in wistar rats.

    PubMed

    Sharma, Poonam; Singh, Rambir

    2012-09-01

    Trichlorfon is an organophosphate insecticide used to control cockroaches, crickets, silverfish, bedbugs, fleas, cattle grubs, flies, ticks, leaf miners, and leaf-hoppers. It is also used to treat domestic animals for control of internal parasites. Trans-2-hydroxycinnamic acid (T2HCA) is a hydroxyl derivative of cinnamic acid. The present study highlights trichlorofon-induced toxicity and the protective role of T2HCA in the liver, kidney, and brain of female Wistar rats. The rats were given a single dose of trichlorofon (150 mg / kg bw) and pre- and post-treatment T2HCA (50 mg / kg bw) for seven days. Trichlorofon enhanced oxidative stress in liver, kidney, and brain of the rats, which was evident from the elevation of lipid peroxidation (LPO). The reduced level of non-enzymatic antioxidant glutathione (GSH) also indicated the presence of an oxidative insult. The activity of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) was significantly decreased on trichlorfon administration. Pre and post treatment with T2HCA decreased the LPO level and increased SOD, CAT, GST, GR, GPx, and GSH in the brain, liver, and kidney. Trichlorfon-induced reduction in acelylcholinestrase was also ameliorated with T2HCA treatment. In conclusion, trichlorfon-mediated induction in the reactive oxygen species and disturbance in the antioxidant enzymes' defense system was moderately ameliorated by antioxidant trans-2-hydroxycinnamic acid. PMID:23293469

  16. Efficacy of Trans-2-Hydroxycinnamic Acid Against Trichlorfon-Induced Oxidative Stress in Wistar Rats

    PubMed Central

    Sharma, Poonam; Singh, Rambir

    2012-01-01

    Trichlorfon is an organophosphate insecticide used to control cockroaches, crickets, silverfish, bedbugs, fleas, cattle grubs, flies, ticks, leaf miners, and leaf-hoppers. It is also used to treat domestic animals for control of internal parasites. Trans-2-hydroxycinnamic acid (T2HCA) is a hydroxyl derivative of cinnamic acid. The present study highlights trichlorofon-induced toxicity and the protective role of T2HCA in the liver, kidney, and brain of female Wistar rats. The rats were given a single dose of trichlorofon (150 mg / kg bw) and pre- and post-treatment T2HCA (50 mg / kg bw) for seven days. Trichlorofon enhanced oxidative stress in liver, kidney, and brain of the rats, which was evident from the elevation of lipid peroxidation (LPO). The reduced level of non-enzymatic antioxidant glutathione (GSH) also indicated the presence of an oxidative insult. The activity of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) was significantly decreased on trichlorfon administration. Pre and post treatment with T2HCA decreased the LPO level and increased SOD, CAT, GST, GR, GPx, and GSH in the brain, liver, and kidney. Trichlorfon-induced reduction in acelylcholinestrase was also ameliorated with T2HCA treatment. In conclusion, trichlorfon-mediated induction in the reactive oxygen species and disturbance in the antioxidant enzymes’ defense system was moderately ameliorated by antioxidant trans-2-hydroxycinnamic acid. PMID:23293469

  17. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy.

    PubMed

    Cao, Ai-Li; Wang, Li; Chen, Xia; Wang, Yun-Man; Guo, Heng-Jiang; Chu, Shuang; Liu, Cheng; Zhang, Xue-Mei; Peng, Wen

    2016-06-01

    Endoplasmic reticulum (ER) stress, resulting from the accumulation of misfolded and/or unfolded proteins in ER membranes, is involved in the pathogenesis of diabetic nephropathy (DN). The aim of this study was to investigate the role of ER stress inhibitors ursodeoxycholic acid (UDCA) and 4-phenylbutyrate (4-PBA) in the treatment of DN in db/db mice. Findings have revealed that diabetic db/db mice were more hyperglycemic than their non-diabetic controls, and exhibited a marked increase in body weight, water intake, urine volume, fasting plasma glucose, systolic blood pressure, glucose and insulin tolerance. UDCA (40 mg/kg/day) or 4-PBA (100 mg/kg/day) treatment for 12 weeks resulted in an improvement in these biochemical and physical parameters. Moreover, UDCA or 4-PBA intervention markedly decreased urinary albuminuria and attenuated mesangial expansion in diabetic db/db mice, compared with db/db mice treated with vehicle. These beneficial effects of UDCA or 4-PBA on DN were associated with the inhibition of ER stress, as evidenced by the decreased expression of BiP, phospho-IRE1α, phospho-eIF2α, CHOP, ATF-6 and spliced X-box binding protein-1 in vitro and in vivo. UDCA or 4-PBA prevented hyperglycemia-induced or high glucose (HG)-induced apoptosis in podocytes in vivo and in vitro via the inhibition of caspase-3 and caspase-12 activation. Autophagy deficiency was also seen in glomeruli in diabetic mice and HG-incubated podocytes, exhibiting decreased expression of LC3B and Beclin-1, which could be restored by UDCA or 4-PBA treatment. Taken together, our results have revealed an important role of ER stress in the development of DN, and UDCA or 4-PBA treatment may be a potential novel therapeutic approach for the treatment of DN. PMID:26999661

  18. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    PubMed

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  19. Protective effect of alpha-lipoic acid on cypermethrin-induced oxidative stress in Wistar rats.

    PubMed

    Mignini, F; Nasuti, C; Fedeli, D; Mattioli, L; Cosenza, M; Artico, M; Gabbianelli, R

    2013-01-01

    Cypermethrin (CY), a class II pyrethroid pesticide, is globally used to control insects in the household and in agriculture. Despite beneficial roles, its uncontrolled and repetitive application leads to unintended effects in non-target organisms. In light of the relevant anti-oxidant properties of alpha-lipoic acid (ALA), in the work described herein we tested the effect of a commercially available ALA formulation on cypermethrin CY)-induced oxidative stress in Wistar rats. The rats were orally administered with 53.14 mg/kg of ALA and 35.71 mg/kg of CY for 60 days. The treatment with CY did not induce changes in either locomotor activities or in body weight. Differences were observed on superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation that were re-established by ALA treatment at similar levels of the placebo group. Furthermore, ALA formulation increased glutathione (GSH) level and glutathione peroxidase (GPx) activity. Because of the widespread use of CY, higher amounts of pesticide residues are present in food, and a diet supplementation with ALA could be an active free radical scavenger protecting against diseases associated with oxidative stress.

  20. The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil.

    PubMed

    Hatayama, Tomomi; Takeno, Kiyotoshi

    2003-05-01

    We examined the involvement of chlorogenic acid (CGA) and salicylic acid (SA) in the stress-induced flowering of Pharbitis nil (synonym Ipomoea nil). The incorporation efficiency of exogenously applied CGA and the deactivation rate of incorporated CGA were determined in cotyledons by high-performance liquid chromatography. The assay plants could not incorporate a sufficient amount of CGA via roots. The perfusion technique by which the assay solution was forced into the plant from the cut end of the hypocotyl improved the efficiency of CGA incorporation. However, no flower-inducing activity was detected, indicating that CGA was not involved in flowering. It was concluded that the close correlation between CGA content and flowering response is merely coincidence or a parallelism. Flowering under long-day conditions induced by low-temperature stress was completely inhibited by aminooxyacetic acid (AOA), an inhibitor of phenylalanine ammonialyase. The flower-inhibiting effect of AOA was nullified by co-applied t-cinnamic acid and by benzoic acid. This indicates that the metabolic pathway from t-cinnamic acid to SA via benzoic acid is involved in the stress-induced flowering. The results indicate that the metabolic pathway of SA is involved in the stress-induced flowering of P. nil not the metabolic pathway of CGA.

  1. Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

    PubMed Central

    Chung, Jihwa; Kim, Kyoung Hwa; Lee, Seok Cheol; An, Shung Hyun; Kwon, Kihwan

    2015-01-01

    Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis. PMID:26442866

  2. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    PubMed

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized.

  3. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  4. Acute acidic exposure induces p53-mediated oxidative stress and DNA damage in tilapia (Oreochromis niloticus) blood cells.

    PubMed

    Mai, Wei-jun; Yan, Jun-lun; Wang, Lei; Zheng, Ying; Xin, Yu; Wang, Wei-na

    2010-11-01

    Acid rain and inputs of acidic effluent can result in increased acidity in aquatic ecosystems, where it is known to have a significant impact and possibly, to cause the decline of some populations of aquatic organisms. In previous studies, intracellular acid-induced oxidative stress has been shown to cause DNA damage, and cooperatively activate the expression of the p53 gene. The acute effects of acidic environments on shrimp and fish have been widely studied. However, the molecular mechanism of acid-induced injury remains largely unknown. In this study, we examined the cellular responses of tilapia to acidic exposure-induced oxidative stress and antioxidant enzyme gene expression. Furthermore, we determined how acute acid stress activates the ATM-p53 signal pathway. We measured the upregulation of reactive oxygen species (ROS) production, the intracellular Ca(2)(+) concentration ([Ca(2)(+)](i)), the tail DNA values, the malondialdehyde (MDA) level in the blood cells and the percentage of dead and damaged blood cells. Our results suggest that oxidative stress and DNA damage occurred in tilapia in conditions where the pH was 5.3. Apoptosis was detected by Hoechst staining, which was mainly associated with changes in cell viability. The parameters that we measured were related to acid-induced DNA damage, and all parameters changed in the blood cells through time. The effects of acute acid exposure (pH 5.3) on the expression of ATM, p53, p21, Bax, manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) were investigated in tilapia blood cells. The results showed that acute acid stress induced upregulation of ATM, p53 and p21, associated with increasing of DNA damage and apoptosis in blood cells. Additionally, the expression of Bax was slightly increased. Moreover, consensus p53-binding sequences were identified in tilapia MnSOD and GPx gene promoter regions and increased levels of ROS in the blood cells coincided with increased mRNA expression of p53, Mn

  5. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  6. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid

    SciTech Connect

    Manna, Prasenjit; Ghosh, Jyotirmoy; Das, Joydeep

    2010-04-15

    Present study investigates the beneficial role of arjunolic acid (AA) against the alteration in the cytokine levels and simultaneous activation of oxidative stress responsive signaling pathways in spleen under hyperglycemic condition. Diabetes was induced by injection of streptozotocin (STZ) (at a dose of 70 mg/kg body weight, injected in the tail vain). STZ administration elevated the levels of IL-2 as well as IFN-gamma and attenuated the level of TNF-alpha in the sera of diabetic animals. In addition, hyperglycemia is also associated with the increased production of intracellular reactive intermediates resulting with the elevation in lipid peroxidation, protein carbonylation and reduction in intracellular antioxidant defense. Investigating the oxidative stress responsive cell signaling pathways, increased expressions (immunoreactive concentrations) of phosphorylated p65 as well as its inhibitor protein phospho IkappaBalpha and phosphorylated mitogen activated protein kinases (MAPKs) have been observed in diabetic spleen tissue. Studies on isolated splenocytes revealed that hyperglycemia caused disruption of mitochondrial membrane potential, elevation in the concentration of cytosolic cytochrome c as well as activation of caspase 3 leading to apoptotic cell death. Histological examination revealed that diabetic induction depleted the white pulp scoring which is in agreement with the reduced immunological response. Treatment with AA prevented the hyperglycemia and its associated pathogenesis in spleen tissue. Results suggest that AA might act as an anti-diabetic and immunomodulatory agent against hyperglycemia.

  7. Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress

    PubMed Central

    Lanaspa, Miguel A.; Sanchez-Lozada, Laura G.; Choi, Yea-Jin; Cicerchi, Christina; Kanbay, Mehmet; Roncal-Jimenez, Carlos A.; Ishimoto, Takuji; Li, Nanxing; Marek, George; Duranay, Murat; Schreiner, George; Rodriguez-Iturbe, Bernardo; Nakagawa, Takahiko; Kang, Duk-Hee; Sautin, Yuri Y.; Johnson, Richard J.

    2012-01-01

    Metabolic syndrome represents a collection of abnormalities that includes fatty liver, and it currently affects one-third of the United States population and has become a major health concern worldwide. Fructose intake, primarily from added sugars in soft drinks, can induce fatty liver in animals and is epidemiologically associated with nonalcoholic fatty liver disease in humans. Fructose is considered lipogenic due to its ability to generate triglycerides as a direct consequence of the metabolism of the fructose molecule. Here, we show that fructose also stimulates triglyceride synthesis via a purine-degrading pathway that is triggered from the rapid phosphorylation of fructose by fructokinase. Generated AMP enters into the purine degradation pathway through the activation of AMP deaminase resulting in uric acid production and the generation of mitochondrial oxidants. Mitochondrial oxidative stress results in the inhibition of aconitase in the Krebs cycle, resulting in the accumulation of citrate and the stimulation of ATP citrate lyase and fatty-acid synthase leading to de novo lipogeneis. These studies provide new insights into the pathogenesis of hepatic fat accumulation under normal and diseased states. PMID:23035112

  8. Combined Low-Intensity Exercise and Ascorbic Acid Attenuates Kainic Acid-Induced Seizure and Oxidative Stress in Mice.

    PubMed

    Kim, Hee-Jae; Song, Wook; Jin, Eun Hee; Kim, Jongkyu; Chun, Yoonseok; An, Eung Nam; Park, Sok

    2016-05-01

    Physical exercise and vitamins such as ascorbic acid (ASC) have been recognized as an effective strategy in neuroprotection and neurorehabilitatioin. However, there is a need to find an efficient treatment regimen that includes ASC and low-intensity exercise to diminish the risk of overtraining and nutritional treatment by attenuating oxidative stress. In the present study, we investigated the combined effect of low-intensity physical exercise (EX) and ASC on kainic acid (KA)-induced seizure activity and oxidative stress in mice. The mice were randomly assigned into groups as follows: "KA only" (n = 11), "ASC + KA" (n = 11), "Ex + KA" (n = 11), "ASC + Ex + KA" (n = 11). In the present study, low intensity of swimming training period lasted 8 weeks and consisted of 30-min sessions daily (three times per week) without tail weighting. Although no preventive effect of low-intensity exercise or ASC on KA seizure occurrence was evident, there was a decrease of seizure activity, seizure development (latency to first seizures), and mortality in "ASC + Ex + KA" compared to "ASC + KA", "Ex + KA", and "KA only" group. In addition, a preventive synergistic coordination of low-intensity exercise and ASC was evident in glutathione peroxidase and superoxide dismutase activity compared to separate treatment. These results suggest that low-intensity exercise and ASC treatment have preventive effects on seizure activity and development with alternation of oxidative status. PMID:26646003

  9. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts of Oryza sativa L.

    PubMed

    Wang, Renlei; Liu, Shaohua; Zhou, Feng; Ding, Chunxia; Hua, Chun

    2014-01-01

    The effects of exogenous ascorbic acid (AsA) and reduced glutathione (GSH) on antioxidant enzyme activities [superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the contents of malondialdehyde (MDA) and H2O2, as well as of endogenous AsA and GSH, in the chloroplasts of two rice cultivars, the salt-tolerant cultivar Pokkali and the salt-sensitive cultivar Peta, were investigated. Exogenous AsA and GSH enhanced SOD, APX, and GR activities, increased endogenous AsA and GSH contents, and reduced those of H2O2 and MDA in the chloroplasts of both cultivars under salt stress (200 mM NaCl), but the effects were significantly more pronounced in cv. Pokkali. GSH acted more strongly than AsA on the plastidial reactive oxygen scavenging systems. These results indicated that exogenous AsA and GSH differentially enhanced salinity tolerance and alleviated salinity-induced damage in the two rice cultivars.

  10. Ascorbic acid ameliorates oxidative stress and inflammation in dextran sulfate sodium-induced ulcerative colitis in mice

    PubMed Central

    Yan, Haiyan; Wang, Hongjuan; Zhang, Xiaoli; Li, Xiaoqin; Yu, Jing

    2015-01-01

    Ascorbic acid (AA) has been shown to exert beneficial effects, including mitigating oxidative stress and inhibiting inflammation. However, the preventative effect of vitamin C in chronic inflammatory diseases such as inflammatory bowel disease (IBD) remains unclear. In our study, we investigated the anti-inflammatory effects of AA and possible mechanism involved in inhibiting dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Male C57BL/6 mice were randomly divided to three groups: control group, DSS group, and DSS plus ascorbic acid treated group. Several clinical and inflammatory parameters as well as oxidative stress were evaluated. The results demonstrated that ascorbic acid significantly reduced clinical signs, inflammatory cytokines, myeloperoxidase (MPO) and malonaldehyde (MDA) activities, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) were increased in DSS-induced mice. In addition, ascorbic acid was capable of inhibiting NF-κB, COX-2 and iNOS expression in the colonic. Taken together, these findings suggest that ascorbic acid contributes to the reduction of oxidative stress and inflammatory response in DSS-induced colitis and exerts the potential to prevent and clinical treatment of inflammatory bowel disease. PMID:26884937

  11. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo

    PubMed Central

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague–Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  12. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    PubMed

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction. PMID:26894689

  13. Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress.

    PubMed

    Cheng, Shujie; Swanson, Kristen; Eliaz, Isaac; McClintick, Jeanette N; Sandusky, George E; Sliva, Daniel

    2015-01-01

    Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.

  14. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging

    PubMed Central

    Chen, Chunye

    2016-01-01

    Sinapic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is an orally bioavailable phytochemical, extensively found in spices, citrus and berry fruits, vegetables, cereals, and oilseed crops and is known to exhibit antioxidant, anti-inflammatory, anticancer, antimutagenic, antiglycemic, neuroprotective, and antibacterial activities. The literature reveals that sinapic acid is a bioactive phenolic acid and has the potential to attenuate various chemically induced toxicities. This minireview is an effort to summarize the available literature about pharmacokinetic, therapeutic, and protective potential of this versatile molecule in health related areas. PMID:27069529

  15. An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes.

    PubMed

    Petruk, Ganna; Raiola, Assunta; Del Giudice, Rita; Barone, Amalia; Frusciante, Luigi; Rigano, Maria Manuela; Monti, Daria Maria

    2016-10-01

    UVA radiations contribute up to 95% of the total UV exposure and are known to induce cell damage, leading to apoptosis. Since the benefic effects of ascorbic acid on human health are well known, a new tomato genotype (named DHO4), highly rich in ascorbic acid, has been recently obtained. Here, we compared the effects of ascorbic acid and hydrophilic DHO4 extracts in protecting human keratinocytes exposed to UVA stress. Keratinocytes were pre-incubated with ascorbic acid or with extracts from the ascorbic acid enriched tomato genotype and irradiated with UVA light. Then, ROS production, intracellular GSH and lipid peroxidation levels were quantified. Western blots were carried out to evaluate mitogen-activated protein kinases cascade, activation of caspase-3 and inflammation levels. We demonstrated that ROS, GSH and lipid peroxidation levels were not altered in cell exposed to UVA stress when cells were pre-treated with ascorbic acid or with tomato extracts. In addition, no evidence of apoptosis and inflammation were observed in irradiated pre-treated cells. Altogether, we demonstrated the ability of an ascorbic acid enriched tomato genotype to counteract UVA-oxidative stress on human keratinocytes. This protective effect is due to the high concentration of vitamin C that acts as free radical scavenger. This novel tomato genotype may be used as genetic material in breeding schemes to produce improved varieties with higher antioxidant levels.

  16. An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes.

    PubMed

    Petruk, Ganna; Raiola, Assunta; Del Giudice, Rita; Barone, Amalia; Frusciante, Luigi; Rigano, Maria Manuela; Monti, Daria Maria

    2016-10-01

    UVA radiations contribute up to 95% of the total UV exposure and are known to induce cell damage, leading to apoptosis. Since the benefic effects of ascorbic acid on human health are well known, a new tomato genotype (named DHO4), highly rich in ascorbic acid, has been recently obtained. Here, we compared the effects of ascorbic acid and hydrophilic DHO4 extracts in protecting human keratinocytes exposed to UVA stress. Keratinocytes were pre-incubated with ascorbic acid or with extracts from the ascorbic acid enriched tomato genotype and irradiated with UVA light. Then, ROS production, intracellular GSH and lipid peroxidation levels were quantified. Western blots were carried out to evaluate mitogen-activated protein kinases cascade, activation of caspase-3 and inflammation levels. We demonstrated that ROS, GSH and lipid peroxidation levels were not altered in cell exposed to UVA stress when cells were pre-treated with ascorbic acid or with tomato extracts. In addition, no evidence of apoptosis and inflammation were observed in irradiated pre-treated cells. Altogether, we demonstrated the ability of an ascorbic acid enriched tomato genotype to counteract UVA-oxidative stress on human keratinocytes. This protective effect is due to the high concentration of vitamin C that acts as free radical scavenger. This novel tomato genotype may be used as genetic material in breeding schemes to produce improved varieties with higher antioxidant levels. PMID:27599115

  17. Alleviative effects of α-lipoic acid supplementation on acute heat stress-induced thermal panting and the level of plasma nonesterified fatty acids in hypothyroid broiler chickens.

    PubMed

    Hamano, Y

    2012-01-01

    1. The present study was conducted to examine the effects of α-lipoic acid on hypothyroidism-induced negative growth performance and whether α-lipoic acid alleviates acute heat stress in relation to hypothyroid status. 2. Female broiler chickens (14 d-old) were fed diets supplemented with α-lipoic acid (100 mg/kg) and an antithyroid substance, propylthiouracil (200 mg/kg), for 20 d under thermoneutral conditions (25°C). At 42 d of age, chickens were exposed to a high ambient temperature (36°C, 60% RH) for 4 h. 3. Under the thermoneutral condition, propylthiouracil administration decreased feed efficiency and concomitantly increased adipose tissue and thyroid gland weights. Plasma nonesterified fatty acids and triacylglycerol were also increased by propylthiouracil administration. However, α-lipoic acid supplementation did not affect the hypothyroidism-induced effects. 4. In hypothyroid chickens, the rise in respiratory rate induced by heat exposure was greatly inhibited by α-lipoic acid administration at 1 h, but this effect had disappeared at 4 h. In addition, a similar inhibitory effect on the concentrations of plasma nonesterified fatty acids was subsequently observed at 4 h. 5. Therefore, the present study suggested that α-lipoic acid alleviates acute heat stress if chickens are in a hypothyroid status.

  18. Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric mucosal damage induced by intensive stress

    PubMed Central

    Akinci, Aysin; Cetin, Asli; Ates, Burhan

    2015-01-01

    Introduction Oxidative stress has been considered to play a primary role in the pathogenesis of stress-induced gastric damage. The aim of this study was to investigate the effects of melatonin, ascorbic acid and β-carotene on stress-induced gastric mucosal damage. Material and methods Fifty-six male Wistar albino rats were divided into control, stress, stress + standard diet, stress + saline, stress + melatonin, stress + ascorbic acid and stress + β-carotene groups. The rats from stress groups were exposed to starvation, immobilization and cold by immobilizing for 8 h at +4°C following 72-hour food restriction. Following stress application, melatonin, ascorbic acid and β-carotene were administered for 7 days. Specimens of gastric tissue were prepared for microscopic and biochemical examinations. Results Mean histopathological damage scores and mean tissue malondialdehyde levels were significantly decreased but mean tissue glutathione levels and glutathione peroxidase and superoxide dismutase activities were increased in treatment groups vs. stress groups in general. Mean histopathological damage scores of the stress + Mel group was lower than those of stress + D, stress + S, stress + β-car (p < 0.05) and stress + Asc groups (p < 0.005). Additionally, mean tissue catalase activity of the stress + Mel group was higher than that of stress + S (p < 0.005), stress + D (p < 0.05) and stress + β-car groups (p < 0.05). Conclusions Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric damage induced by intensive stress. We suggest that as well as the direct antioxidant and free radical scavenging potency of melatonin, its indirect effect via the brain-gut axis might account for its greater beneficial action against stress-induced gastric damage. PMID:26528359

  19. A Stress-Activated Transposon in Arabidopsis Induces Transgenerational Abscisic Acid Insensitivity

    PubMed Central

    Ito, Hidetaka; Kim, Jong-Myong; Matsunaga, Wataru; Saze, Hidetoshi; Matsui, Akihiro; Endo, Takaho A.; Harukawa, Yoshiko; Takagi, Hiroki; Yaegashi, Hiroki; Masuta, Yukari; Masuda, Seiji; Ishida, Junko; Tanaka, Maho; Takahashi, Satoshi; Morosawa, Taeko; Toyoda, Tetsuro; Kakutani, Tetsuji; Kato, Atsushi; Seki, Motoaki

    2016-01-01

    Transposable elements (TEs), or transposons, play an important role in adaptation. TE insertion can affect host gene function and provides a mechanism for rapid increases in genetic diversity, particularly because many TEs respond to environmental stress. In the current study, we show that the transposition of a heat-activated retrotransposon, ONSEN, generated a mutation in an abscisic acid (ABA) responsive gene, resulting in an ABA-insensitive phenotype in Arabidopsis, suggesting stress tolerance. Our results provide direct evidence that a transposon activated by environmental stress could alter the genome in a potentially positive manner. Furthermore, the ABA-insensitive phenotype was inherited when the transcription was disrupted by an ONSEN insertion, whereas ABA sensitivity was recovered when the effects of ONSEN were masked by IBM2. These results suggest that epigenetic mechanisms in host plants typically buffered the effect of a new insertion, but could selectively “turn on” TEs when stressed. PMID:26976262

  20. Effects of diets high in unsaturated Fatty acids on socially induced stress responses in Guinea pigs.

    PubMed

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope

  1. Effects of Diets High in Unsaturated Fatty Acids on Socially Induced Stress Responses in Guinea Pigs

    PubMed Central

    Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard

    2014-01-01

    Unsaturated fatty acids (UFAs), such as omega-3 and omega-6 poly- and omega-9 monounsaturated fatty acids are important nutrients and major components of neuronal cell membranes. They play a major role in modulating brain functions and physiology and may therefore diminish behavioral and physiological stress reactions in corroboration with decreased cortisol concentrations. Functionally, cortisol itself can modulate several behaviors and also the fatty acid metabolism in the long term. But only little is known about the behavioral and physiological influences of dietary UFAs in a social group, where individuals are regularly exposed to stressful situations. Therefore, the aim of this study was to determine the effects of dietary UFAs on saliva cortisol concentrations and behavioral responses in socially confronted guinea pigs. Three groups of animals were additionally supplemented with 500 mg chia seeds (high in omega-3), walnuts (high in omega-6), or peanuts (high in omega-9) per kg bodyweight each day and compared to a control group. During social confrontation saliva cortisol concentrations significantly increased in all groups, which was accompanied by a loss in bodyweight. However, cortisol levels remained lower in the chia and walnut groups compared to controls. Additionally, the walnut group displayed significantly increased locomotion, while no differences between groups were detected in socio-positive, sexual, or aggressive behaviors. Total plasma omega-3, omega-6, and omega-9 fatty acids were significantly increased in the corresponding groups, due to the dietary supplementations. However, a significant decrease in plasma omega-3 and an increase in plasma n-6 fatty acids were detected in the chia group when comparing the measurements before and after social confrontation. We conclude that both omega-3 and omega-6 polyunsaturated fatty acids can diminish behavioral and physiological stress responses to the social environment, enabling individuals to cope

  2. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. PMID:26998941

  3. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  4. Apoptosis induced by t10,c12-conjugated linoleic acid is mediated by an atypical endoplasmic reticulum stress response*

    PubMed Central

    Ou, Lihui; Wu, Yue; Ip, Clement; Meng, Xiaojing; Hsu, Yung-Chun; Ip, Margot M.

    2008-01-01

    Conjugated linoleic acid (CLA) inhibits rat mammary carcinogenesis, in part by inducing apoptosis of preneoplastic and neoplastic mammary epithelial cells. The current study focused on the mechanism by which apoptosis is induced. In TM4t mammary tumor cells, trans-10,cis-12 (t10,c12)-CLA induced proapoptotic C/EBP-homologous protein (CHOP) concurrent with the cleavage of poly(ADP-ribose) polymerase. Knockdown of CHOP attenuated t10,c12-CLA-induced apoptosis. Furthermore, t10,c12-CLA induced the cleavage of endoplasmic reticulum (ER)-resident caspase-12, and a selective inhibitor of caspase-12 significantly alleviated t10,c12-CLA-induced apoptosis. Using electron microscopy, we observed that t10,c12-CLA treatment resulted in marked dilatation of the ER lumen. Together, these data suggest that t10,c12-CLA induces apoptosis through ER stress. To further explore the ER stress pathway, we examined the expression of the following upstream ER stress signature markers in response to CLA treatment: X-box binding protein 1 (XBP1) mRNA (unspliced and spliced), phospho-eukaryotic initiation factor (eIF) 2α, activating transcription factor 4 (ATF4), and BiP proteins. We found that t10,c12-CLA induced the expression and splicing of XBP1 mRNA as well as the phosphorylation of eIF2α. In contrast, ATF4 was induced modestly, but not significantly, and BiP was not altered. In summary, our data demonstrate that apoptosis induced by t10,c12-CLA is mediated, at least in part, through an atypical ER stress response that culminates in the induction of CHOP and the cleavage of caspase-12. PMID:18263853

  5. Long-term ω-3 fatty acid supplementation induces anti-stress effects and improves learning in rats.

    PubMed

    Pérez, Miguel Á; Terreros, Gonzalo; Dagnino-Subiabre, Alexies

    2013-06-14

    Chronic stress leads to secretion of the adrenal steroid hormone corticosterone, inducing hippocampal atrophy and dendritic hypertrophy in the rat amygdala. Both alterations have been correlated with memory impairment and increased anxiety. Supplementation with ω-3 fatty acids improves memory and learning in rats. The aim of this study was to evaluate the effects of ω-3 supplementation on learning and major biological and behavioral stress markers. Male Sprague-Dawley rats were randomly assigned to three experimental groups: 1) Control, 2) Vehicle, animals supplemented with water, and 3) ω-3, rats supplemented with ω-3 (100 mg of DHA+25 mg of EPA). Each experimental group was divided into two subgroups: one of which was not subjected to stress while the other was subjected to a restraint stress paradigm. Afterwards, learning was analyzed by avoidance conditioning. As well, plasma corticosterone levels and anxiety were evaluated as stress markers, respectively by ELISA and the plus-maze test. Restraint stress impaired learning and increased both corticosterone levels and the number of entries into the open-arm (elevated plus-maze). These alterations were prevented by ω-3 supplementation. Thus, our results demonstrate that ω-3 supplementation had two beneficial effects on the stressed rats, a strong anti-stress effect and improved learning.

  6. Effects of ascorbic acid and alpha-tocopherol on arsenic-induced oxidative stress.

    PubMed

    Ramanathan, K; Balakumar, B S; Panneerselvam, C

    2002-12-01

    Arsenic is an ubiquitous element in the environment causing oxidative burst in the exposed individuals leading to tissue damage. Antioxidants have long been known to reduce the free radical-mediated oxidative stress. Therefore, the present study was designed to determine whether supplementation of alpha-tocopherol (400 mg/kg body weight) and ascorbic acid (200 mg/kg body weight) to arsenic-intoxicated rats (100 ppm in drinking water) for 30 days affords protection against the oxidative stress caused by the metalloid. The arsenic-treated rats showed elevated levels of lipid peroxide, decreased levels of non-enzymatic antioxidants and activities of enzymatic antioxidants. Administration of alpha-tocopherol and ascorbic acid to arsenic-exposed rats showed a decrease in the level of lipid peroxidation (LPO) and enhanced levels of total sulfhydryls, reduced glutathione, ascorbic acid and alpha-tocopherol and so do the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase to near normal. These findings suggest that alpha-tocopherol and ascorbic acid prevent LPO and protect the antioxidant system in arsenic-intoxicated rats.

  7. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress.

    PubMed

    Su, Zu-Qing; Mo, Zhi-Zhun; Liao, Jin-Bin; Feng, Xue-Xuan; Liang, Yong-Zhuo; Zhang, Xie; Liu, Yu-Hong; Chen, Xiao-Ying; Chen, Zhi-Wei; Su, Zi-Ren; Lai, Xiao-Ping

    2014-10-01

    Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.

  8. Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Nurul Islam, M; Ng, Carl K-Y

    2012-07-01

    • Physcomitrella patens is a bryophyte belonging to early diverging lineages of land plants following colonization of land in the Ordovician period. Mosses are typically found in refugial habitats and can experience rapidly fluctuating environmental conditions. The acquisition of dehydration tolerance by bryophytes is of fundamental importance as they lack water-conducting tissues and are generally one cell layer thick. • Here, we show that dehydration induced oscillations in the steady-state transcript abundances of two group 3 late embryogenesis abundant (LEA) protein genes in P. patens protonemata, and that the amplitudes of these oscillations are reflective of the severity of dehydration stress. • Dehydration stress also induced elevations in the concentrations of abscisic acid (ABA), and ABA alone can also induce dosage-dependent oscillatory increases in the steady-state abundance of LEA protein transcripts. Additionally, removal of ABA resulted in rapid attenuation of these oscillatory increases. • Our data demonstrate that dehydration stress-regulated expression of LEA protein genes is temporally dynamic and highlight the importance of oscillations as a robust mechanism for optimal responses. Our results suggest that dehydration stress-induced oscillations in the steady-state abundance of LEA protein transcripts may constitute an important cellular strategy for adaptation to life in a constantly changing environment. PMID:22591374

  9. Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Nurul Islam, M; Ng, Carl K-Y

    2012-07-01

    • Physcomitrella patens is a bryophyte belonging to early diverging lineages of land plants following colonization of land in the Ordovician period. Mosses are typically found in refugial habitats and can experience rapidly fluctuating environmental conditions. The acquisition of dehydration tolerance by bryophytes is of fundamental importance as they lack water-conducting tissues and are generally one cell layer thick. • Here, we show that dehydration induced oscillations in the steady-state transcript abundances of two group 3 late embryogenesis abundant (LEA) protein genes in P. patens protonemata, and that the amplitudes of these oscillations are reflective of the severity of dehydration stress. • Dehydration stress also induced elevations in the concentrations of abscisic acid (ABA), and ABA alone can also induce dosage-dependent oscillatory increases in the steady-state abundance of LEA protein transcripts. Additionally, removal of ABA resulted in rapid attenuation of these oscillatory increases. • Our data demonstrate that dehydration stress-regulated expression of LEA protein genes is temporally dynamic and highlight the importance of oscillations as a robust mechanism for optimal responses. Our results suggest that dehydration stress-induced oscillations in the steady-state abundance of LEA protein transcripts may constitute an important cellular strategy for adaptation to life in a constantly changing environment.

  10. Relationship between the effects of stress induced by human bile juice and acid treatment in Vibrio cholerae.

    PubMed

    Alvarez, Genoveva; Heredia, Norma; García, Santos

    2003-12-01

    The effects of low pH and human bile juice on Vibrio cholerae were investigated. A mild stress condition (exposure to acid shock at pH 5.5 or exposure to 3 mg of bile per ml for 20 min) slightly decreased (by < or = 1 log unit) V. cholerae cell viability. However, these treatments induced tolerance to subsequent exposures to more severe stress. In the O1 strain, four proteins were induced in response to acid shock (ca. 101, 94, 90, and 75 kDa), whereas only one protein (ca. 101 kDa) was induced in response to acid shock in the O139 strain. Eleven proteins were induced in response to bile shock in the O1 strain (ca. 106, 103, 101, 96, 88, 86, 84, 80, 66, 56, and 46 kDa), whereas only one protein was induced in response to bile shock in the O139 strain (ca. 88 kDa). V. cholerae O1 and O139 cells that had been preexposed to mild acid shock were twofold more resistant to pH 4.5 (with times required to inactivate 90% of the cell population [D-values] of 59 to 73 min) than were control cells (with D-values of 24 to 27 min). Likewise, cells that were preexposed to mild bile shock (3 mg/ml) were almost twofold more tolerant of severe bile shock (30 mg/ml; D-values, 68 to 87 min) than were control cells (with D-values of 37 to 43 min). These protective effects persisted for at least 1 h after the initial shock but were abolished when chloramphenicol was added to the culture during the shock. Cells preexposed to acid shock exhibited cross-protection against subsequent bile shock. However, cells preexposed to bile shock exhibited no changes in acid tolerance. Bile shock induced a modest reduction (0 to 20%) in enterotoxin production in V. cholerae, whereas acid shock had no effect on enterotoxin levels. Adaptation to acid and bile juice and protection against bile shock in response to preexposure to acid shock would be predicted to enhance the survival of V. cholerae in hosts and in foods. Thus, these adaptations may play an important role in the development of cholera

  11. A Combined Supplementation of Omega-3 Fatty Acids and Micronutrients (Folic Acid, Vitamin B12) Reduces Oxidative Stress Markers in a Rat Model of Pregnancy Induced Hypertension

    PubMed Central

    Kemse, Nisha G.; Kale, Anvita A.; Joshi, Sadhana R.

    2014-01-01

    Objectives Our earlier studies have highlighted that an altered one carbon metabolism (vitamin B12, folic acid, and docosahexaenoic acid) is associated with preeclampsia. Preeclampsia is also known to be associated with oxidative stress and inflammation. The current study examines whether maternal folic acid, vitamin B12 and omega-3 fatty acid supplementation given either individually or in combination can ameliorate the oxidative stress markers in a rat model of pregnancy induced hypertension (PIH). Materials and Methods Pregnant Wistar rats were assigned to control and five treatment groups: PIH; PIH + vitamin B12; PIH + folic acid; PIH + Omega-3 fatty acids and PIH + combined micronutrient supplementation (vitamin B12 + folic acid + omega-3 fatty acids). L-Nitroarginine methylester (L-NAME; 50 mg/kg body weight/day) was used to induce hypertension during pregnancy. Blood Pressure (BP) was recorded during pregnancy and dams were dissected at d20 of gestation. Results Animals from the PIH group demonstrated higher (p<0.01 for both) systolic and diastolic BP; lower (p<0.01) pup weight; higher dam plasma homocysteine (p<0.05) and dam and offspring malondialdehyde (MDA) (p<0.01), lower (p<0.05) placental and offspring liver DHA and higher (p<0.01) tumor necrosis factor–alpha (TNF–ά) levels as compared to control. Individual micronutrient supplementation did not offer much benefit. In contrast, combined supplementation lowered systolic BP, homocysteine, MDA and placental TNF-ά levels in dams and liver MDA and protein carbonyl in the offspring as compared to PIH group. Conclusion Key constituents of one carbon cycle (folic acid, vitamin B12 and DHA) may play a role in reducing oxidative stress and inflammation in preeclampsia. PMID:25405347

  12. Reduced Oxidative Stress Contributes to the Lipid Lowering Effects of Isoquercitrin in Free Fatty Acids Induced Hepatocytes

    PubMed Central

    Rongyin, Gao; Daoud, Abdelkader; Ding, Lin; Wang, Lulu; Liu, Jun

    2014-01-01

    Oxidative stress interferes with hepatic lipid metabolism at various levels ranging from benign lipid storage to so-called second hit of inflammation activation. Isoquercitrin (IQ) is widely present flavonoid but its effects on hepatic lipid metabolism remain unknown. We used free fatty acids (FFA) induced lipid overload and oxidative stress model in two types of liver cells and measured cell viability, intracellular lipids, and reactive oxygen species (ROS) within hepatocytes. In addition, Intracellular triglycerides (TG), superoxide dismutase (SOD), and malondialdehyde (MDA) were examined. A novel in vitro model was used to evaluate correlation between lipid lowering and antioxidative activities. Furthermore, 34 major cytokines and corresponding ROS levels were analyzed in FFA/LPS induced coculture model between hepatocytes and Kupffer cells. At molecular level AMPK pathway was elucidated. We showed that IQ attenuated FFA induced lipid overload and ROS within hepatocytes. Further, IQ reversed FFA induced increase in intracellular TG SOD and MDA. It was shown that antioxidative activity of IQ correlates with its lipid lowering potentials. IQ reversed major proinflammatory cytokines and oxidative stress in FFA/LPS induced coculture model. Finally, AMPK pathway was found responsible for metabolic benefits at molecular level. IQ strikingly manifests antioxidative and related lipid lowering activities in hepatocytes. PMID:25404990

  13. Adsorption-induced coal swelling and stress: Implications for methane production and acid gas sequestration into coal seams

    NASA Astrophysics Data System (ADS)

    Cui, Xiaojun; Bustin, R. Marc; Chikatamarla, Laxmi

    2007-10-01

    Sequestration of CO2 and H2S into deep unminable coal seams is an attractive option to reduce their emission into atmosphere and at the same time displace preadsorbed CH4 which is a clean energy resource. High coal seam permeability is required for efficient and practical sequestration of CO2 and H2S and recovery of CH4. However, adsorption of CO2 and H2S into coals induces strong swelling of the coal matrix (volumetric strain) and thus reduces significantly coal permeability by narrowing and even closing fracture apertures. Our experimental data on three western Canadian coals show that the adsorption-induced volumetric strain is approximately linearly proportional to the volume of adsorbed gas, and for the same gas, different coals have very similar volumetric strain coefficient. Impacts of adsorption-induced swelling on stress and permeability around wellbores were analytically investigated using our developed stress and permeability models. Our model results indicate that adsorption-induced volumetric strain has significant controls on stress and permeability of producing and sequestrating coal seams and consequently the potential of acid gas sequestration. Coal seams may undergo >10 times enhancement of permeability around CH4-producing wellbores due to a reduction in effective stress as a result of coal shrinking caused by methane desorption accompanying a reduction in reservoir pressure. Injection of H2S and CO2 on the other hand results in strong sorption-induced swelling and a marked increase in effective stress which in turn leads to a reduction of coal seam permeability of up to several orders of magnitude. Injection of mixtures of N2 and CO2 such as found in flue gas results in weaker swelling, the amount of which varies with gas composition, and provides the greatest opportunity of sequestering CO2 and secondary recovery of CH4 for most coals. Because of the marked swelling of coal in the presence of H2S, even minor amounts of H2S result in a marked

  14. Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    PubMed Central

    2013-01-01

    This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1), interferon gamma (IFN-γ), programmed cell death-receptor (Fas) and Tumor necrosis factor-alpha (TNF-α) mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA), cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH) and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals. PMID:23374533

  15. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress

    PubMed Central

    Yun, Jung-Mi; Surh, Jeonghee

    2012-01-01

    This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078

  16. Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid.

    PubMed

    Calderón Guzmán, David; Brizuela, Norma Osnaya; Ortíz Herrera, Maribel; Hernández García, Ernestina; Barragán Mejía, Gerardo; Juárez Olguín, Hugo; Valenzuela Peraza, Armando; Attilus, Jonas; Labra Ruíz, Norma

    2016-09-01

    The study tested the hypothesis that cerebrolysin protects the brain from free radicals in rats treated with 3-nitropropionic acid (3-NPA). To address this hypothesis, the levels of dopamine (DA) and some oxidative stress biomarkers were measured after administration of 3-NPA. Young male Fischer rats were treated for three days with cerebrolysin, 3-NPA or both substances. Their brains were extracted, and DA, lipid peroxidation (LP), glutathione (GSH), calcium, and H2O2 were measured using validated methods. In the cortex, hemispheres and cerebellum/medulla oblongata of the group treated with cerebrolysin and 3-NPA, the levels of DA and LP decreased. In addition, calcium and H2O2 levels decreased in the hemispheres of the same group, while GSH increased in cortex. The increased dopamine metabolism due to the administration of cerebrolysin led to increased formation of radical species and oxidative stress, especially when free radicals were generated by 3-NPA.

  17. Ameliorative effects of ferulic Acid against lead acetate-induced oxidative stress, mitochondrial dysfunctions and toxicity in prepubertal rat brain.

    PubMed

    Lalith Kumar, Venkareddy; Muralidhara

    2014-12-01

    Epidemiological evidence has shown higher susceptibility of Children to the adverse effects of lead (Pb) exposure. However, experimental studies on Pb-induced neurotoxicity in prepubertal (PP) rats are limited. The present study aimed to examine the propensity of ferulic acid (FA), a commonly occurring phenolic acid in staple foods (fruits, vegetables, cereals, coffee etc.) to abrogate Pb-induced toxicity. Initially, we characterized Pb-induced adverse effects among PP rats exposed to Pb acetate (1,000-3,000 ppm in drinking water) for 5 weeks in terms of locomotor phenotype, activity of 5-aminolevulinic acid dehydratase (ALAD) in the blood, blood Pb levels and oxidative stress in brain regions. Further, the ameliorative effects of oral supplements of FA (25 mg/kg bw/day) were investigated in PP rats exposed to Pb (3,000 ppm). Pb intoxication increased the locomotor activity and FA supplements partially reversed the phenotype, while the reduced ALAD activity was also restored. FA significantly abrogated the enhanced oxidative stress in cerebellum (Cb) and hippocampus (Hc) as evidenced in terms of ROS generation, lipid peroxidation and protein carbonyls. Further, Pb-mediated perturbations in the glutathione levels and activity of enzymic antioxidants were also markedly restored. Furthermore, the protective effect of FA was discernible in striatum in terms of reduced oxidative stress, restored cholinergic activity and dopamine levels. Interestingly, reduced activity levels of mitochondrial complex I in Cb and enhanced levels in Hc among Pb-intoxicated rats were ameliorated by FA supplements. FA also decreased the number of damaged cells in cornu ammonis area CA1 and dentate gyrus as reflected by the histoarchitecture of Hc among Pb intoxicated rats. Collectively, our findings in the PP model allow us to hypothesize that ingestion of common phenolics such as FA may significantly alleviate the neurotoxic effects of Pb which may be largely attributed to its ability

  18. The Effects of α-Lipoic Acid on Liver Oxidative Stress and Free Fatty Acid Composition in Methionine–Choline Deficient Diet-Induced NAFLD

    PubMed Central

    Stanković, Milena N.; Mladenović, Dušan; Ninković, Milica; Ðuričić, Ivana; Šobajić, Slađana; Jorgačević, Bojan; de Luka, Silvio; Vukicevic, Rada Jesic

    2014-01-01

    Abstract Development of nonalcoholic fatty liver disease (NAFLD) occurs through initial steatosis and subsequent oxidative stress. The aim of this study was to examine the effects of α-lipoic acid (LA) on methionine–choline deficient (MCD) diet-induced NAFLD in mice. Male C57BL/6 mice (n=21) were divided into three groups (n=7 per group): (1) control fed with standard chow, (2) MCD2 group—fed with MCD diet for 2 weeks, and (3) MCD2+LA group—2 weeks on MCD receiving LA i.p. 100 mg/kg/day. After the treatment, liver samples were taken for pathohistology, oxidative stress parameters, antioxidative enzymes, and liver free fatty acid (FFA) composition. Mild microvesicular hepatic steatosis was found in MCD2 group, while it was reduced to single fat droplets evident in MCD2+LA group. Lipid peroxidation and nitrosative stress were increased by MCD diet, while LA administration induced a decrease in liver malondialdehyde and nitrates+nitrites level. Similary, LA improved liver antioxidative capacity by increasing total superoxide dismutase (tSOD), manganese SOD (MnSOD), and copper/zinc-SOD (Cu/ZnSOD) activity as well as glutathione (GSH) content. Liver FFA profile has shown a significant decrease in saturated acids, arachidonic, and docosahexaenoic acid (DHA), while LA treatment increased their proportions. It can be concluded that LA ameliorates lipid peroxidation and nitrosative stress in MCD diet-induced hepatic steatosis through an increase in SOD activity and GSH level. In addition, LA increases the proportion of palmitic, stearic, arachidonic, and DHA in the fatty liver. An increase in DHA may be a potential mechanism of anti-inflammatory and antioxidant effects of LA in MCD diet-induced NAFLD. PMID:24325457

  19. Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain.

    PubMed

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2008-02-01

    Arsenic, a notoriously poisonous metalloid, is ubiquitous in the environment, and it affects nearly all organ systems of animals including humans. The present study was designed to investigate the preventive role of a triterpenoid saponin, arjunolic acid against arsenic-induced oxidative damage in murine brain. Sodium arsenite was selected as a source of arsenic for this study. The free-radical-scavenging activity and the in vivo antioxidant power of arjunolic acid were determined from its 2,2-diphenyl-1-picryl hydrazyl radical scavenging ability and ferric reducing/antioxidant power assay, respectively. Oral administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly decreased the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase and glutathione peroxidase, the level of cellular metabolites, reduced glutathione, total thiols and increased the level of oxidized glutathione. In addition, it enhanced the levels of lipid peroxidation end products and protein carbonyl content. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration almost normalized above indices. Histological findings due to arsenic intoxication and arjunolic acid treatment supported the other biochemical changes in murine brains. Results of 2,2-diphenyl-1-picryl hydrazyl radical scavenging and ferric reducing/antioxidant power assays clearly showed the in vitro radical scavenging as well as the in vivo antioxidant power of arjunolic acid, respectively. The effect of a well-established antioxidant, vitamin C, has been included in the study as a positive control. Combining all, results suggest that arjunolic acid possessed the ability to ameliorate arsenic-induced oxidative insult in murine brain and is probably due to its antioxidant activity.

  20. Nonesterified Fatty Acid-Induced Endoplasmic Reticulum Stress in Cattle Cumulus Oocyte Complexes Alters Cell Metabolism and Developmental Competence.

    PubMed

    Sutton-McDowall, Melanie L; Wu, Linda L Y; Purdey, Malcolm; Abell, Andrew D; Goldys, Ewa M; MacMillan, Keith L; Thompson, Jeremy G; Robker, Rebecca L

    2016-01-01

    Reduced oocyte quality has been associated with poor fertility of high-performance dairy cows during peak lactation, due to negative energy balance. We examined the role of nonesterified fatty acids (NEFAs), known to accumulate within follicular fluid during under- and overnutrition scenarios, in causing endoplasmic reticulum (ER) stress of in vitro maturated cattle cumulus-oocyte complexes (COCs). NEFA concentrations were: palmitic acid (150 μM), oleic acid (200 μM), and steric acid (75 μM). Abattoir-derived COCs were randomly matured for 24 h in the presence of NEFAs and/or an ER stress inhibitor, salubrinal. Total and hatched blastocyst yields were negatively impacted by NEFA treatment compared with controls, but this was reversed by salubrinal. ER stress markers, activating transcription factor 4 (Atf4) and heat shock protein 5 (Hspa5), but not Atf6, were significantly up-regulated by NEFA treatment within whole COCs but reversed by coincubation with salubrinal. Likewise, glucose uptake and lactate production, measured in spent medium samples, showed a similar pattern, suggesting that cumulus cell metabolism is sensitive to NEFAs via an ER stress-mediated process. In contrast, while mitochondrial DNA copy number was recovered in NEFA-treated oocytes, oocyte autofluorescence of the respiratory chain cofactor, FAD, was lower following NEFA treatment of COCs, and this was not reversed by salubrinal, suggesting the negative impact was via reduced mitochondrial function. These results reveal the significance of NEFA-induced ER stress on bovine COC developmental competence, revealing a potential therapeutic target for improving oocyte quality during peak lactation. PMID:26658709

  1. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli.

    SciTech Connect

    Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don Ruwan; Wittkopp, Tyler M.; Marner II, Wesley D.; Pfleger, Brian F.

    2011-11-01

    Microbially produced fatty acids are potential precursors to high energy density biofuels, including alkanes and alkyl ethyl esters by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversions of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium chain length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long chain unsaturated fatty acid content greatly increased and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability, however little to no change in FFA titers was observed after 24 h cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli.

  2. Exogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress

    PubMed Central

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  3. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.

    PubMed

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  4. Chronic noise stress-induced alterations of glutamate and gamma-aminobutyric acid and their metabolism in the rat brain.

    PubMed

    Kazi, Amajad Iqbal; Oommen, Anna

    2014-01-01

    Chronic stress induces neurochemical changes that include neurotransmitter imbalance in the brain. Noise is an environmental factor inducing stress. Chronic noise stress affects monoamine neurotransmitter systems in the central nervous system. The effect on other excitatory and inhibitory neurotransmitter systems is not known. The aim was to study the role of chronic noise stress on the glutamatergic and gamma-aminobutyric acid (GABA)ergic systems of the brain. Female Wistar rats (155 ± 5 g) were unintentionally exposed to noise due to construction (75-95 db, 3-4 hours/day, 5 days a week for 7-8 weeks) in the vicinity of the animal care facility. Glutamate/GABA levels and their metabolic enzymes were evaluated in different rat brain regions (cortex, hippocampus, striatum, and cerebellum) and compared with age and gender matched nonexposed rats. Chronic noise stress decreased glutamate levels and glutaminase activity 27% and 33% in the cortex, 15% and 24% in the cerebellum. Glutamate levels increased 10% in the hippocampus, 28% in striatum and glutaminase activity 15% in striatum. Glutamine synthetase activity increased significantly in all brain regions studied, that is, cortex, hippocampus, striatum, and cerebellum (P < 0.05). Noise stress-increased GABA levels and glutamate alpha decarboxylase activity 20% and 45% in the cortex, 13% and 28% in the hippocampus respectively. GABA levels and glutamate alpha decarboxylase activity decreased 15% and 14%, respectively in the striatum. GABA transaminase activity was significantly reduced in the cortex (55%), hippocampus (17%), and cerebellum (33%). Chronic noise stress differentially affected glutamatergic and GABAergic neurotransmitter systems in the rat brain, which may alter glutamate and GABA neurotransmission.

  5. The role of abscisic acid and water stress in root herbivore-induced leaf resistance.

    PubMed

    Erb, Matthias; Köllner, Tobias G; Degenhardt, Jörg; Zwahlen, Claudia; Hibbard, Bruce E; Turlings, Ted C J

    2011-01-01

    • Herbivore-induced systemic resistance occurs in many plants and is commonly assumed to be adaptive. The mechanisms triggered by leaf-herbivores that lead to systemic resistance are largely understood, but it remains unknown how and why root herbivory also increases resistance in leaves. • To resolve this, we investigated the mechanism by which the root herbivore Diabrotica virgifera induces resistance against lepidopteran herbivores in the leaves of Zea mays. • Diabrotica virgifera infested plants suffered less aboveground herbivory in the field and showed reduced growth of Spodoptera littoralis caterpillars in the laboratory. Root herbivory did not lead to a jasmonate-dependent response in the leaves, but specifically triggered water loss and abscisic acid (ABA) accumulation. The induction of ABA by itself was partly responsible for the induction of leaf defenses, but not for the resistance against S. littoralis. Root-herbivore induced hydraulic changes in the leaves, however, were crucial for the increase in insect resistance. • We conclude that the induced leaf resistance after root feeding is the result of hydraulic changes, which reduce the quality of the leaves for chewing herbivores. This finding calls into question whether root-herbivore induced leaf-resistance is an evolved response.

  6. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  7. Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa

    PubMed Central

    Shen, Wenbiao

    2012-01-01

    This work examines the involvement of haem oxygenase-1 (HO-1) in salicylic acid (SA)-induced alleviation of oxidative stress as a result of cadmium (Cd) stress in alfalfa (Medicago sativa L.) seedling roots. CdCl2 exposure caused severe growth inhibition and Cd accumulation, which were potentiated by pre-treatment with zinc protoporphyrin (ZnPPIX), a potent HO-1 inhibitor. Pre-treatment of plants with the HO-1 inducer haemin or SA, both of which could induce MsHO1 gene expression, significantly reduced the inhibition of growth and Cd accumulation. The alleviation effects were also evidenced by a decreased content of thiobarbituric acid-reactive substances (TBARS). The antioxidant behaviour was confirmed by histochemical staining for the detection of lipid peroxidation and the loss of plasma membrane integrity. Furthermore, haemin and SA pre-treatment modulated the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), and guaiacol peroxidase (POD), or their corresponding transcripts. Significant enhancement of the ratios of reduced/oxidized homoglutathione (hGSH), ascorbic acid (ASA)/dehydroascorbate (DHA), and NAD(P)H/NAD(P)+, and expression of their metabolism genes was observed, consistent with a decreased reactive oxygen species (ROS) distribution in the root tips. These effects are specific for HO-1, since ZnPPIX blocked the above actions, and the aggravated effects triggered by SA plus ZnPPIX were differentially reversed when carbon monoxide (CO) or bilirubin (BR), two catalytic by-products of HO-1, was added. Together, the results suggest that HO-1 is involved in the SA-induced alleviation of Cd-triggered oxidative stress by re-establishing redox homeostasis. PMID:22915740

  8. Characterization of an Acidic-pH-Inducible Stress Protein (hsp70), a Putative Sulfatide Binding Adhesin, from Helicobacter pylori

    PubMed Central

    Huesca, Mario; Goodwin, Avery; Bhagwansingh, Arianna; Hoffman, Paul; Lingwood, Clifford A.

    1998-01-01

    The in vitro glycolipid binding specificity of the gastric pathogen Helicobacter pylori is altered to include sulfated glycolipids (sulfatides) following brief exposure of the organism to acid pH typical of the stomach. This change is prevented by anti-hsp70 antibodies, suggesting that hsp70 may be a stress-induced surface adhesin, mediating sulfatide recognition. To facilitate investigation of the role of hsp70 in attachment, we have cloned and sequenced the H. pylori hsp70 gene (dnaK). The hsp70 gene was identified by probing a cosmid DNA library made from H. pylori 439 with a PCR amplicon generated with oligonucleotides synthesized to highly conserved regions of dnaK. The 1.9-kb H. pylori hsp70 gene encodes a product of 616 amino acids. Primer extension analysis revealed a single transcription start site, while Northern blot analysis established that hsp70 was preferentially induced by low pH rather than by heat shock. The ability of H. pylori to alter its glycolipid binding specificity following exposure to low pH by upregulating hsp70 and by expressing hsp70 on the bacterial surface may provide a survival advantage during periods of high acid stress. PMID:9712748

  9. Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol.

    PubMed

    Ayala, Pedro; Montenegro, José; Vivar, Raúl; Letelier, Alan; Urroz, Pablo Aránguiz; Copaja, Miguel; Pivet, Deisy; Humeres, Claudio; Troncoso, Rodrigo; Vicencio, José Miguel; Lavandero, Sergio; Díaz-Araya, Guillermo

    2012-02-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress is involved in various diseases. In the human heart, ischemia/reperfusion has been correlated to ER stress, and several markers of the unfolded protein response (UPR) participate during cardiac remodeling and fibrosis. Here, we used isoproterenol (ISO) injection as a model for in vivo cardiac fibrosis. ISO induced significant cardiomyocyte loss and collagen deposition in the damaged areas of the endocardium. These responses were accompanied by an increase in the protein levels of the luminal ER chaperones BIP and PDI, as well as an increase in the UPR effector CHOP. The use of the chemical chaperone 4-phenylbutyric acid (4-PBA) prevented the activation of the UPR, the increase in luminal chaperones and also, leads to decreased collagen deposition, cardiomyocyte loss into the damaged zones. Our results suggest that cardiac damage and fibrosis induced in vivo by the beta-adrenergic agonist ISO are tightly related to ER stress signaling pathways, and that increasing the ER luminal folding capacity with exogenously administrated 4-PBA is a powerful strategy for preventing the development of cardiac fibrosis. Additionally, 4-PBA might prevent the loss of cardiomyocytes. Our data suggests that the attenuation of ER stress pathways with pharmacological compounds such as the chemical chaperone 4-PBA can prevent the development of cardiac fibrosis and adverse remodeling. PMID:22101259

  10. Docosahexanoic acid antagonizes TNF-α-induced necroptosis by attenuating oxidative stress, ceramide production, lysosomal dysfunction, and autophagic features

    PubMed Central

    Pacheco, Fabio J.; Almaguel, Frankis G.; Evans, Whitney; Rios-Colon, Leslimar; Filippov, Valery; Leoh, Lai S.; Rook-Arena, Elizabeth; Mediavilla-Varela, Melanie; De Leon, Marino

    2014-01-01

    Objective It was previously reported that docosahexanoic acid (DHA) reduces TNF-α-induced necrosis in L929 cells. However, the mechanisms underlying this reduction have not been investigated. The present study was designed to investigate cellular and biochemical mechanisms underlying the attenuation of TNF-α-induced necroptosis by DHA in L929 cells. Methods L929 cells were pre-treated with DHA prior to exposure to TNF-α, zVAD, or Necrostatin-1 (Nec-1). Cell death and survival were assessed by MTT and caspase activity assays, and microscopic visualization. Reactive oxygen species (ROS) were measured by flow cytometry. C16- and C18-ceramide were measured by mass spectrometry. Lysosomal membrane permeabilization (LMP) was evaluated by fluorescence microscopy and flow cytometry using Acridine Orange. Cathepsin L activation was evaluated by immunoblotting and fluorescence microscopy. Autophagy was assessed by immunoblotting of LC3-II and Beclin. Results Exposure of L929 cells to TNF-α alone for 24 h induced necroptosis, as evidenced by inhibition of cell death by Nec-1, absence of caspase-3 activity and lamin B cleavage, and morphological analysis. DHA attenuated multiple biochemical events associated with TNF-α-induced necroptosis, including ROS generation, ceramide production, lysosomal dysfunction, cathepsin L activation, and autophagic features. DHA also attenuated zVAD-induced necroptosis but did not attenuate the enhanced apoptosis and necrosis induced by combination of TNF-α with Actinomycin D or zVAD, respectively, suggesting that its protective effects might be limited by the strength of the cell death insult induced by TNF-α. Conclusions DHA effectively attenuates TNF-α-induced necroptosis and autophagy, most likely via its ability to inhibit TNF-α-induced sphingolipid metabolism and oxidative stress. These results highlight the role of this Omega-3 fatty acid in antagonizing inflammatory cell death. PMID:25095742

  11. Protection against butyl p-hydroxybenzoic acid induced oxidative stress by Ocimum sanctum extract in mice liver.

    PubMed

    Shah, Komal; Verma, Ramtej J

    2012-01-01

    Prime focus of the present investigation was to evaluate hepatoprotective potency of Ocimum sanctum (O. sanctum) aqueous extract against butyl p-hydroxybenzoic acid (butylparaben) toxicity in mice. Oral treatment of butylparaben (1320 mg/kg b.w./day) to mice for 30 days resulted in significant (p < 0.05) elevation in hepatic lipid peroxidation, which could be due to significant (p < 0.05) reduction in non-enzymatic (glutathione and total ascorbic acid) antioxidant contents and enzymatic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase) antioxidants activities. Co-treatment of O. sanctum extracts in three different doses (100, 200 and 300 mg/kg b.w./day) resulted in significant (p < 0.05) reduction in butylparaben-induced hepatic changes. Oral administration of O. sanctum with butylparaben resulted in dose-dependent and significant (p < 0.05) reduction in lipid peroxidation as compared to butylparaben alone treated group. Similarly, all three doses of O. sanctum reduced butylparaben-induced changes in non-enzymatic and enzymatic antioxidants. The effect was significant (p < 0.05) and dose-dependent. All three doses of O. sanctum ameliorated butylparaben-induced changes, showing maximum protection at 300 mg/kg b.w./day dose. Results of present study indicate that butylparaben-induced hepatotoxicity involves its ability to induce oxidative stress, whereas antihepatotoxic effect of O. sanctum was mainly due to its antioxidative potency. PMID:23061282

  12. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli▿†

    PubMed Central

    Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don R.; Wittkopp, Tyler M.; Marner, Wesley D.; Pfleger, Brian F.

    2011-01-01

    Microbially produced fatty acids are potential precursors to high-energy-density biofuels, including alkanes and alkyl ethyl esters, by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversion of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium-chain-length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA-overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long-chain unsaturated fatty acid content greatly increased, and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability; however, little to no change in FFA titer was observed after 24 h of cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli. PMID:21948837

  13. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis.

    PubMed

    Wada, Kaede C; Mizuuchi, Kaori; Koshio, Aya; Kaneko, Kentaro; Mitsui, Toshiaki; Takeno, Kiyotoshi

    2014-07-01

    The involvement of salicylic acid (SA) in the regulation of stress-induced flowering in the short-day plant pharbitis (also called Japanese morning glory) Ipomoea nil (formerly Pharbitis nil) was studied. Pharbitis cv. Violet was induced to flower when grown in 1/100-strength mineral nutrient solution under non-inductive long-day conditions. All fully expanded true leaves were removed from seedlings, leaving only the cotyledons, and flowering was induced under poor-nutrition stress conditions. This indicates that cotyledons can play a role in the regulation of poor-nutrition stress-induced flowering. The expression of the pharbitis homolog of PHENYLALANINE AMMONIA-LYASE, the enzyme activity of phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) and the content of SA in the cotyledons were all up-regulated by the stress treatment. The Violet was also induced to flower by low-temperature stress, DNA demethylation and short-day treatment. Low-temperature stress enhanced PAL activity, whereas non-stress factors such as DNA demethylation and short-day treatment decreased the activity. The PAL enzyme activity was also examined in another cultivar, Tendan, obtaining similar results to Violet. The exogenously applied SA did not induce flowering under non-stress conditions but did promote flowering under weak stress conditions in both cultivars. These results suggest that stress-induced flowering in pharbitis is induced, at least partly, by SA, and the synthesis of SA is promoted by PAL.

  14. Stress-induced increases in brainstem amino acid levels are prevented by chronic sodium hydrosulfide treatment.

    PubMed

    Warenycia, M W; Kombian, S B; Reiffenstein, R J

    1990-01-01

    Neurotransmitter amino acid levels were measured in select brain regions of rats and mice after chronic treatment with sublethal doses of sodium hydrosulfide (NaHS). Brainstem aspartate, glutamate, glutamine, taurine and GABA levels increased in chronically but not acutely saline-treated rats. These increases may have been due to stress from frequent handling, and were prevented by chronic NaHS treatment (7.5 mg/kg ip every 8 hr for 3 consecutive days). In contrast, aspartate, glutamate and glutamine increased in female but not in male ICR mouse brainstems after once daily treatment with 7.0 mg/kg NaHS for 5 consecutive days. These effects of NaHS may indicate chronic low level H2S neurotoxicity. Differences between chronic and acute treatments, female and male responses, and treatment paradigms may complicate interpretations of such toxicity studies.

  15. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

    PubMed

    Šeme, H; Gjuračić, K; Kos, B; Fujs, Š; Štempelj, M; Petković, H; Šušković, J; Bogovič Matijašić, B; Kosec, G

    2015-01-01

    Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application. PMID:25380802

  16. Acid resistance and response to pH-induced stress in two Lactobacillus plantarum strains with probiotic potential.

    PubMed

    Šeme, H; Gjuračić, K; Kos, B; Fujs, Š; Štempelj, M; Petković, H; Šušković, J; Bogovič Matijašić, B; Kosec, G

    2015-01-01

    Two new Lactobacillus plantarum strains, KR6-DSM 28780 and M5 isolated from sour turnip and traditional dried fresh cheese, respectively, were evaluated for species identity, antibiotic susceptibility, resistance to gastrointestinal conditions and adaptive response to low pH. Resistance mechanisms involved in the adaptation to acid-induced stress in these two strains were investigated by quantitative PCR of the atpA, cfa1, mleS and hisD genes. In addition to absence of antibiotic resistance, the two L. plantarum strains showed excellent survival rates at pH values as low as 2.4. Adaptive response to low pH was clearly observed in both strains; strain KR6 was superior to M5, as demonstrated by its ability to survive during 3 h incubation at pH 2.0 upon adaptation to moderately acidic conditions. In contrast, acid adaptation did not significantly affect the survival rate during simulated passage through the gastrointestinal tract. In both strains, induction of histidine biosynthesis (hisD) was upregulated during the acid adaptation response. In addition, significant upregulation of the cfa1 gene, involved in modulation of membrane fatty acid composition, was observed during the adaptation phase in strain KR6 but not in strain M5. Cells adapted to moderately acidic conditions also showed a significantly increased viability after the lyophilisation procedure, a cross-protection phenomenon providing additional advantage in probiotic application.

  17. Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression.

    PubMed

    Wu, Di; Xu, Jiao; Song, Erbao; Tang, Shu; Zhang, Xiaohui; Kemper, N; Hartung, J; Bao, Endong

    2015-07-01

    We investigated whether acetyl salicylic acid (ASA) protects chicken myocardial cells from heat stress-mediated damage in vivo and whether the induction of Hsp27 expression is connected with this function. Pathological changes, damage-related enzyme levels, and Hsp27 expression were studied in chickens following heat stress (40 ± 1 °C for 0, 1, 2, 3, 5, 7, 10, 15, or 24 h, respectively) with or without ASA administration (1 mg/kg BW, 2 h prior). Appearance of pathological lesions such as degenerations and karyopyknosis as well as the myocardial damage-related enzyme activation indicated that heat stress causes considerable injury to the myocardial cells in vivo. Myocardial cell injury was most serious in chickens exposed to heat stress without prior ASA administration; meanwhile, ASA pretreatment acted protective function against high temperature-induced injury. Hsp27 expression was induced under all experimental conditions but was one-fold higher in the ASA-pretreated animals (0.3138 ± 0.0340 ng/mL) than in untreated animals (0.1437 ± 0.0476 ng/mL) 1 h after heat stress exposure, and such an increase was sustained over the length of the experiment. Our findings indicate that pretreatment with ASA protects chicken myocardial cells from acute heat stress in vivo with almost no obvious side effects, and this protection may involve an enhancement of Hsp27 expression. However, the detailed mechanisms underlying this effect require further investigation.

  18. Neuroprotective effects of trans-caryophyllene against kainic acid induced seizure activity and oxidative stress in mice.

    PubMed

    Liu, Hao; Song, Zhi; Liao, Daguang; Zhang, Tianyi; Liu, Feng; Zhuang, Kai; Luo, Kui; Yang, Liang

    2015-01-01

    Trans-caryophyllene (TC), a component of essential oil found in many flowering plants, has shown its neuroprotective effects in various neurological disorders. However, the effects of TC on epilepsy haven't been reported before. In this study, we investigated the effect of TC on kainic acid-induced seizure activity caused by oxidative stress and pro-inflammation. We found that TC pretreatment significantly decreased seizure activity score compared to kainic acid treated group. Importantly, TC pretreatment leads to lowering the mortality in kainic acid treated mice. In addition, TC was found to significantly inhibit KA-induced generation of malondialdehyde. TC pretreatment also preserved the activity of GPx, SOD, and CAT. Notably, our data shows that an important property of TC is its capacity to exert cerebral anti-inflammatory effects by mitigating the expression of proinflammatory cytokines, such as TNF-α and IL-1β. These data suggest that TC has a potential protective effect on chemical induced seizure and brain damage. PMID:25417010

  19. The salt stress-induced LPA response in Chlamydomonas is produced via PLA₂ hydrolysis of DGK-generated phosphatidic acid.

    PubMed

    Arisz, Steven A; Munnik, Teun

    2011-11-01

    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A₂ (PLA₂) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo ³²P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential ³²P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA₂-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA₂-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor.

  20. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  1. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation.

    PubMed

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  2. Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia.

    PubMed

    Bai, Ru; Ma, Fengwang; Liang, Dong; Zhao, Xin

    2009-04-01

    Apple replant is a widespread agricultural problem documented in all of the major fruit-growing regions of the world. In order to better understand the phytotoxic mechanisms induced by allelochemicals involved with this problem, Malus prunifolia plants were grown hydroponically to the six-leaf-stage in the presence of phthalic acid (0 or 1 mM) for 5, 10, or 15 days. Apple plants were evaluated for: shoot and root length, fresh and dry weight, malondialdehyde (MDA) content, hydrogen peroxide (H(2)O(2)) content, superoxide radical (O(2) (*-)) generation rate, and antioxidant enzyme activities. Shoot and root lengths and fresh and dry weights of M. prunifolia decreased in plants exposed to phthalic acid. MDA and H(2)O(2) content increased in phthalic acid-treated plants as did the generation rate of O(2) (*-) in M. prunifolia roots. The activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1), and monodehydroascorbate reductase (EC 1.6.5.4) increased in phthalic acid-stressed roots compared with control roots. These results suggest that activation of the antioxidant system by phthalic acid led to the formation of reactive oxygen species that resulted in cellular damage and the decrease of M. prunifolia growth. PMID:19352774

  3. Effect of Induced Oxidative Stress and Herbal Extracts on Acid Phosphatase Activity in Lysosomal and Microsomal Fractions of Midgut Tissue of the Silkworm, Bombyx mori

    PubMed Central

    Gaikwad, Y. B.; Gaikwad, S. M.; Bhawane, G. P.

    2010-01-01

    Lysosomal and microsomal acid phosphatase activity was estimated in midgut tissue of silkworm larvae, Bombyx mori L. (Lepidoptera: Bombycidae), after induced oxidative stress by D-galactose. The larvae were simultaneously were treated with ethanolic extracts of Bacopa monniera and Lactuca sativa to study their antioxidant properties. Lipid peroxidation and fluorescence was measured to analyze extent of oxidative stress. The ethanolic extract of Lactuca sativa was found to be more effective in protecting membranes against oxidative stress than Bacopa monniera. PMID:20874583

  4. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.

  5. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats.

    PubMed

    Mushtaq, Nadia; Schmatz, Roberta; Ahmed, Mushtaq; Pereira, Luciane Belmonte; da Costa, Pauline; Reichert, Karine Paula; Dalenogare, Diéssica; Pelinson, Luana Paula; Vieira, Juliano Marchi; Stefanello, Naiara; de Oliveira, Lizielle Souza; Mulinacci, Nadia; Bellumori, Maria; Morsch, Vera Maria; Schetinger, Maria Rosa

    2015-12-01

    In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models. PMID:26452500

  6. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells

    SciTech Connect

    Deshpande, Vaidehee S. . E-mail: vaidehee@hotmail.com; Kehrer, James P.

    2006-08-01

    Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 {mu}M)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 {mu}M) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.

  7. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    PubMed

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.

  8. Pyruvate Remediation of Cell Stress and Genotoxicity Induced by Haloacetic Acid Drinking Water Disinfection By-Products

    PubMed Central

    Dad, Azra; Jeong, Clara H.; Pals, Justin A.; Wagner, Elizabeth D.; Plewa, Michael J.

    2014-01-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) >> chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. PMID:23893730

  9. The salt stress-induced LPA response in Chlamydomonas is produced via PLA2 hydrolysis of DGK-generated phosphatidic acid[S

    PubMed Central

    Arisz, Steven A.; Munnik, Teun

    2011-01-01

    The unicellular green alga Chlamydomonas has frequently been used as a eukaryotic model system to study intracellular phospholipid signaling pathways in response to environmental stresses. Earlier, we found that hypersalinity induced a rapid increase in the putative lipid second messenger, phosphatidic acid (PA), which was suggested to be generated via activation of a phospholipase D (PLD) pathway and the combined action of a phospholipase C/diacylglycerol kinase (PLC/DGK) pathway. Lysophosphatidic acid (LPA) was also increased and was suggested to reflect a phospholipase A2 (PLA2) activity based on pharmacological evidence. The question of PA's and LPA's origin is, however, more complicated, especially as both function as precursors in the biosynthesis of phospho- and galactolipids. To address this complexity, a combination of fatty acid-molecular species analysis and in vivo 32P-radiolabeling was performed. Evidence is provided that LPA is formed from a distinct pool of PA characterized by a high α-linolenic acid (18:3n-3) content. This molecular species was highly enriched in the polyphosphoinositide fraction, which is the substrate for PLC to form diacylglycerol. Together with differential 32P-radiolabeling studies and earlier PLD-transphosphatidylation and PLA2-inhibitor assays, the data were consistent with the hypothesis that the salt-induced LPA response is primarily generated through PLA2-mediated hydrolysis of DGK-generated PA and that PLD or de novo synthesis [via endoplasmic reticulum - or plastid-localized routes] is not a major contributor. PMID:21900174

  10. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    PubMed

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. PMID:25046754

  11. lspA gene of Mycobacterium tuberculosis co-transcribes with Rv1540 and induced by surface and acidic stress.

    PubMed

    Pathak, Rakesh; Rathor, Nisha; Garima, Kushal; Sharma, Naresh Kumar; Singh, Pooja; Varma-Basil, Mandira; Bose, Mridula

    2015-04-10

    Lipoprotein signal peptidase, lspA (Rv1539), is the only known gene in mycobacterial genome for cleaving the signal sequence from prolipoprotein to form mature lipoprotein. It has been implicated in maintaining the virulence of Mycobacterium tuberculosis. The regulation of lspA had not been studied so far. Here, we identify a novel operon lspA-Rv1540 in M. tuberculosis. We detected co-transcription of the open reading frames of lspA-Rv1540 in in-vitro as well as in ex-vivo conditions. Analysis of the sequence upstream to lspA revealed a strong promoter activity that was shown to be induced significantly by surface stress and acidic environment.

  12. Protection of Nicotinic Acid against Oxidative Stress-Induced Cell Death in Hepatocytes Contributes to Its Beneficial Effect on Alcohol-induced Liver Injury in Mice

    PubMed Central

    Dou, Xiaobing; Shen, Chen; Wang, Zhigang; Li, Songtao; Zhang, Ximei; Song, Zhenyuan

    2013-01-01

    Oxidative stress plays a pathological role in the development of alcoholic liver disease. In this study, we investigated the effects of nicotinic acid (NA) supplementation on H2O2-induced cell death in hepatocytes and alcohol-induced liver injury in mice. Hepatocytes were exposed to H2O2 (0–0.4 mM) for 16 hours after a 2-hour pretreatment with NA (0–100 µM). Cell viability, intracellular glutathione and total NAD contents were determined. In animal experiments, male C57 BL/6 mice were exposed to Lieber-De Carli liquid diet (+/− ethanol with/without NA supplementation (0.5%, w/v) for 4 weeks. Nicotinic acid phosphoribosyltransferase (NaPRT) is the first enzyme participated in the NA metabolism, converting NA to nicotinic acid mononucleotide (NaMN). In NaPRT-expressing Hep3B cells, H2O2-induced cell death was attenuated by NA, whereas in NaPRT-lost HepG2 cells, only NaMN conferred protective effect, suggesting that NA metabolism is required for its protective action against H2O2. In Hep3B cells, NA supplementation prevented H2O2-inudced declines in intracellular total NAD and GSH/GSSG ratios. Further mechanistic investigations revealed that conservation of Akt activity contributed to NA’s protective effect against H2O2-inudced cell death. In alcohol-fed mice, NA supplementation attenuated liver injury induced by chronic alcohol exposure, which was associated with alleviated hepatic lipid peroxidation and increased liver GSH concentrations. In conclusion, our findings indicate that exogenous NA supplementation may be an ideal choice for the treatment of liver diseases involved oxidative stress. PMID:23465591

  13. Stress-induced cervical lesions.

    PubMed

    Braem, M; Lambrechts, P; Vanherle, G

    1992-05-01

    The increasing occurrence of dental lesions at the cervical surfaces requires more knowledge of the causes of the process. Acidic and abrasive mechanisms have clearly been documented as causes but the stress theory by Lee and Eakle is still controversial. This report describes several incidences of possible stress-induced lesions according to the characteristics described by Lee and Eakle. The occurrences of subgingival lesions lend credence to the stress-induction theory by exclusion of other superimposing etiologic factors. With the current concepts, a perceptive approach to the treatment of cervical lesions can be executed. PMID:1527763

  14. Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension.

    PubMed

    Koyama, Masayuki; Furuhashi, Masato; Ishimura, Shutaro; Mita, Tomohiro; Fuseya, Takahiro; Okazaki, Yusuke; Yoshida, Hideaki; Tsuchihashi, Kazufumi; Miura, Tetsuji

    2014-05-01

    Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling of the pulmonary artery (PA). Recently, endoplasmic reticulum (ER) stress and inappropriate adaptation through the unfolded protein response (UPR) have been disclosed in various types of diseases. Here we examined whether ER stress is involved in the pathogenesis of PAH. Four weeks of chronic normobaric hypoxia increased right ventricular (RV) systolic pressure by 63% compared with that in normoxic controls and induced RV hypertrophy and medial thickening of the PA in C57BL/6J mice. Treatment with 4-phenylbutyric acid (4-PBA), a chemical chaperone, significantly reduced RV systolic pressure by 30%, attenuated RV hypertrophy and PA muscularization, and increased total running distance in a treadmill test by 70% in hypoxic mice. The beneficial effects of 4-PBA were associated with suppressed expression of inflammatory cytokines and ER stress markers, including Grp78 and Grp94 in the activating transcription factor-6 branch, sXbp1 and Pdi in the inositol-requiring enzyme-1 branch and Atf4 in the PKR-like ER kinase branch, and reduced phosphorylation of c-Jun NH2-terminal kinase and eukaryotic translation initiation factor-2α in the lung. The pattern of changes in ER stress and inflammatory markers by 4-PBA in the lung of the PAH model was reproduced in PA smooth muscle cells by chronic stimulation of platelet-derived growth factor-BB or hypoxia. Furthermore, knockdown of each UPR branch sensor activated other branches and promoted proliferation of PA smooth muscle cells. The findings indicate that activation of all branches of the UPR and accompanying inflammation play a major role in the pathogenesis of PAH, and that chemical chaperones are potentially therapeutic agents for PAH.

  15. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    PubMed

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation. PMID:25874349

  16. NPR1-dependent salicylic acid signaling is not involved in elevated CO2-induced heat stress tolerance in Arabidopsis thaliana.

    PubMed

    Ahammed, Golam Jalal; Li, Xin; Yu, Jingquan; Shi, Kai

    2015-01-01

    Elevated CO2 can protect plants from heat stress (HS); however, the underlying mechanisms are largely unknown. Here, we used a set of Arabidopsis mutants such as salicylic acid (SA) signaling mutants nonexpressor of pathogenesis-related gene 1 (npr1-1 and npr1-5) and heat-shock proteins (HSPs) mutants (hsp21 and hsp70-1) to understand the requirement of SA signaling and HSPs in elevated CO2-induced HS tolerance. Under ambient CO2 (380 µmol mol(-1)) conditions, HS (42°C, 24 h) drastically decreased maximum photochemical efficiency of PSII (Fv/Fm) in all studied plant groups. Enrichment of CO2 (800 µmol mol(-1)) with HS remarkably increased the Fv/Fm value in all plant groups except hsp70-1, indicating that NPR1-dependent SA signaling is not involved in the elevated CO2-induced HS tolerance. These results also suggest an essentiality of HSP70-1, but not HSP21 in elevated CO2-induced HS mitigation.

  17. Pollen selection under acid rain stress

    SciTech Connect

    Zhang, Y.

    1994-01-01

    To investigate whether acid rain stress induces pollen selection in nature, three different approaches were used, based on the assumption that the response of pollen grains to acid rain is controlled by an acid sensitive gene product. Germination of pollen from homozygous and heterozygous individuals under acid rain stress was examined to detect any differences in rate of germination between populations of homogeneous and heterogeneous pollen grains. In vitro and in vivo bulked segregant analysis using RAPDs was used to search for differences in DNA constitution between the survivors of acid rain stressed and non-acid rain stressed pollen populations in vitro and between the progenies of acid rain stressed and non-acid rain stressed populations during pollination, respectively. No evidence for the pollen selection under acid rain stress was obtained in any of the test systems. Inhibition of protein synthesis using cycloheximide led to significant reduction of tube elongation at 4 hr and had no effect on pollen germination at any time interval tested. Total proteins extracted from control and acid rain stressed pollen grain populations exhibited no differences. The reduction of corn pollen germination in vitro under acid rain stress was mainly due to pollen rupture. The present data indicates the reduction of pollen germination and tube growth under acid rain stress may be a physiological response rather than a genetic response. A simple, nontoxic, and effective method to separate germinated from ungerminated pollen grains has been developed using pollen from corn (Zea mays, L. cv. Pioneer 3747). The separated germinated pollen grains retained viability and continued tube growth when placed in culture medium.

  18. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  19. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity.

  20. Protective effect of ellagic acid against cyclosporine A-induced histopathological, ultrastructural changes, oxidative stress, and cytogenotoxicity in albino rats.

    PubMed

    Abdul-Hamid, Manal; Abdella, Ehab M; Galaly, Sanaa R; Ahmed, Rania H

    2016-01-01

    Cyclosporine A (CsA) is an immunosuppressor agent, which is most frequently used in transplant surgeries and in the treatment of autoimmune diseases. This study was undertaken to investigate the protective effects of ellagic acid (EA) against CsA-induced testicular histopathology and ultrastructure changes, oxidative stress, and cytogenotoxicity in male albino rats. Rats were divided into six groups; the first group was used as a control, the second group received a subcutaneous injection of slightly alkaline solution, the third group received olive oil orally, the fourth group was injected subcutaneously with EA at a dose of 10 mg/kg b. wt./day, the fifth group was treated with CsA as oral solution at a dose of 15 mg/kg b. wt for 30 days, and the sixth group was treated with CsA simultaneously with EA. Treatment with EA simultaneously with CsA resulted in significant protection. The positive control animals taking CsA alone showed marked histopathological, ultrastructure, and genetic manifestations accompanied by an elevated content of lipid peroxidation and marked reduction of catalase (CAT), peroxidase (Px) activity, and glutathione concentration in the homogenate of testis tissues. The toxic side effects in testis and bone marrow tissues were greatly ablated with a significant reduction in lipid peroxidation level and elevation in CAT and Px activities and glutathione concentration when using EA. Thus, EA may be used in combination with CsA to improve the histopathological, oxidative stress, and cytogenotoxicity parameters of testicular toxicity induced by CsA due to its antioxidant effects. PMID:27430433

  1. Grape seeds proanthocyanidin extract as a hepatic-reno-protective agent against gibberellic acid induced oxidative stress and cellular alterations.

    PubMed

    Hassan, Hanaa A; Al-Rawi, Maisaa M

    2013-08-01

    The present study aims to investigate the heptonephro-protective effect of grape seeds proanthocyanidin extract (GSPE) against the risks induced by gibberellic acid (GA3) in male rats. The results recorded that GA3 caused a significant increase in total lipids, total cholesterol, triglycerides and LDL-C levels in serum, concomitant with a significant decrease in serum HDL-C. A significant increase in serum AST, ALT, urea and creatinine, while, a significant decrease in total protein content in serum was observed in rats given GA3. Hepatic and renal lipid peroxidation product (MDA) was significantly increased, meanwhile, total antioxidant capacity (TAC), glutathione, and catalase levels were significantly decreased. In addition, there was a negative change in liver structure including dilatation in the central veins with degeneration of endothelium cells and cellular injury around the veins as well as in the kidney structure such as lesion in both glomeruli and tubules, detachment of the Malpighian corpuscles from the Bowman's capsule's epithelium, shrinkage in the glomerular capillary network. However, almost all of these adverse effects seemed to be ameliorated by oral administration of GSPE with GA3 to rats for 2 month indicating the protective effect of grape seeds GSPE on GA3 induced oxidative stress in rats. PMID:23135702

  2. Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress.

    PubMed

    Choudhary, Sikander Pal; Bhardwaj, Renu; Gupta, Bishan Datt; Dutt, Prabhu; Gupta, Rajinder Kumar; Biondi, Stefania; Kanwar, Mukesh

    2010-11-01

    In the present study, the effects of epibrassinolide (EBL) on indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamine (PA) tissue concentrations and antioxidant potential of 7-day-old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cu stress were investigated. EBL treatment alone or in combination with Cu enhanced free and bound IAA titers when compared with the metal alone. Modest increases in free and bound ABA contents were observed for EBL treatment alone. However, the combination of EBL with Cu caused major increases in both forms of ABA, over Cu alone. Among the PAs analyzed, only putrescine and cadaverine concentrations were enhanced by EBL treatment alone. By contrast, a significant decline in putrescine and spermine contents was found in seedlings treated with EBL plus Cu. EBL treatments alone or in combination with Cu enhanced activities of guaiacol peroxidase (EC1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) and protein contents in comparison with metal and control treatments. A major decrease in malondialdehyde content was also recorded for EBL treatments with or without Cu. An increase in phytochelatin content was also observed in seedlings treated with EBL alone or in combination with Cu. Major improvement in radical scavenging activities, as attested by the antioxidant activity assay using DPPH (1,1-diphenylpicrylhydrazyl), and elevated deoxyribose and reducing powers, along with increased contents of ascorbic acid, total phenols and proline, also suggest a major influence of EBL application in mitigating copper-induced oxidative stress in radish seedlings.

  3. Alpha-lipoic acid attenuates endoplasmic reticulum stress-induced insulin resistance by improving mitochondrial function in HepG2 cells.

    PubMed

    Lei, Lin; Zhu, Yiwei; Gao, Wenwen; Du, Xiliang; Zhang, Min; Peng, Zhicheng; Fu, Shoupeng; Li, Xiaobing; Zhe, Wang; Li, Xinwei; Liu, Guowen

    2016-10-01

    Alpha-lipoic acid (ALA) has been reported to have beneficial effects for improving insulin sensitivity. However, the underlying molecular mechanism of the beneficial effects remains poorly understood. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are considered causal factors that induce insulin resistance. In this study, we investigated the effect of ALA on the modulation of insulin resistance in ER-stressed HepG2 cells, and we explored the potential mechanism of this effect. HepG2 cells were incubated with tunicamycin (Tun) for 6h to establish an ER stress cell model. Tun treatment induced ER stress, mitochondrial dysfunction and insulin resistance. Interestingly, ALA had no significant effect on ER stress signals. Pretreatment of the ER stress cell model with ALA for 24h improved insulin sensitivity, restored the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and increased intracellular ATP production. Moreover, ALA augmented the β-oxidation capacity of the mitochondria. Importantly, ALA treatment could decrease oligomycin-induced mitochondrial dysfunction and then improved insulin resistance. Taken together, our data suggest that ALA prevents ER stress-induced insulin resistance by enhancing mitochondrial function.

  4. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-09-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.

  5. Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats.

    PubMed

    Abarikwu, Sunny O; Durojaiye, Mojisola; Alabi, Adenike; Asonye, Bede; Akiri, Oghenetega

    2016-01-01

    Curcumin (Cur) and gallic acid (Gal) are major food additives. Cur has well-known antioxidant properties, whereas Gal has both antioxidant and pro-oxidant effects. The present study investigated the effects of oral administration of Gal with or without Cur on antioxidant enzymes activities, glutathione (GSH) and the enzymes in its metabolism in rat liver in vivo and markers of tissue damage in the serum. Results showed that the increase in serum creatinine level, alkaline phosphatase and lactate dehydrogenase activities by Gal treatment were inhibited by combined administration of Gal and Cur. The decrease in GSH-peroxidase, GSH-S-transferase, superoxide dismutase and GSH-reductase activities by Gal treatment were inhibited when both Gal and Cur were administered together. The malondialdehyde concentration and catalase activity were significantly increased following administration of Gal but not when the administration of Gal was combined with Cur. Finally, the increase in GSH level was seen following administration of Cur alone or in combination with Gal but not with Gal alone. These results suggest that Gal might induce oxidative stress in the rat liver and affect renal function that can be inhibited by the combined administration of Gal and Cur. PMID:26707166

  6. Determination of Gibberellic Acid (GA3)-Induced Oxidative Stress in a Model Organism Galleria mellonella L. (Lepidoptera: Pyralidae).

    PubMed

    Altuntaş, H

    2015-02-01

    The plant growth regulator gibberellic acid (GA3) is known to negatively impact growth and development of insects. In this study, larvae of Galleria mellonella L. (Lepidoptera: Pyralidae) were fed a diet with varying dosages of GA3 to investigate how antioxidant enzymes are influenced. Activity levels in last instars reared in laboratory at 25 ± 2°C, 60 ± 5% relative humidity, and a photoperiod of 12:12 (L:D) h were measured for superoxide dismutase (SOD), glutathione S-transferase (GST), and catalase (CAT). Treatment with GA3 in diet resulted in a remarkable increase in the activities of both SOD and GST at lower GA3 doses (50-1,000 ppm) with respect to control and higher doses. The activity of CAT in the hemolymph of last instars significantly increased at all doses when compared with that in the hemolymph of untreated larvae. This trend in the increase of CAT was not dose-wise, except for the significant increases at 2,000 and 5,000 ppm when compared with that of untreated and all treated groups. Consequently, our results showed that GA3 is effective at activating the antioxidant defense system of insects as a source of free radical and can be toxic for larvae in a dose-dependent manner. Therefore, we suggest that the increase in the activity of GST, SOD, and CAT in larvae may indicate a physiological adaptability to compensate for GA3-induced stress.

  7. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver.

    PubMed

    Perez, Maria J; Velasco, Elena; Monte, Maria J; Gonzalez-Buitrago, Jose M; Marin, Jose J G

    2006-08-15

    Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.

  8. Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells

    PubMed Central

    Bo, Liang; Jiang, Shuo; Xie, Yuquan; Kan, Haidong; Song, Weimin; Zhao, Jinzhuo

    2016-01-01

    Although the mechanisms linking cardiopulmonary diseases to ambient fine particles (PM2.5) are still unclear, inflammation and oxidative stress play important roles in PM2.5-induced injury. It is well known that inflammation and oxidative stress could be restricted by vitamin E (Ve) or omega-3 fatty acids (Ω-3 FA) consumption. This study investigated the effects of Ve and Ω-3 FA on PM2.5-induced inflammation and oxidative stress in vascular endothelial cells. The underlying mechanisms linking PM2.5 to vascular endothelial injury were also explored. Human umbilical vein endothelial cells (HUVECs) were treated with 50 μg/mL PM2.5 in the presence or absence of different concentrations of Ve and Ω-3 FA. The inflammatory cytokines and oxidative stress markers were determined. The results showed that Ve induced a significant decrease in PM2.5-induced inflammation and oxidative stress. Malondialdehyde (MDA) in supernatant and reactive oxygen species (ROS) in cytoplasm decreased by Ve, while the superoxide dismutase (SOD) activity elevated. The inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) also reduced by Ve. Moreover, Ω-3 FA played the same role on decreasing the inflammation and oxidative stress. IL-6 and TNF-α expressions were significantly lower in combined Ve with Ω-3 FA than treatment with Ve or Ω-3 FA alone. The Ve and Ω-3 FA intervention might abolish the PM2.5-induced oxidative stress and inflammation in vascular endothelial cells. There might be an additive effect of these two nutrients in mediating the PM2.5-induced injury in vascular endothelial cells. The results suggested that inflammation and oxidative stress might be parts of the mechanisms linking PM2.5 to vascular endothelial injury. PMID:27007186

  9. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.

    PubMed

    Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J

    2015-06-01

    Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity.

  10. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  11. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation.

    PubMed

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation.

  12. Low Temperature-Induced 30 (LTI30) positively regulates drought stress resistance in Arabidopsis: effect on abscisic acid sensitivity and hydrogen peroxide accumulation

    PubMed Central

    Shi, Haitao; Chen, Yinhua; Qian, Yongqiang; Chan, Zhulong

    2015-01-01

    As a dehydrin belonging to group II late embryogenesis abundant protein (LEA) family, Arabidopsis Low Temperature-Induced 30 (LTI30)/XERO2 has been shown to be involved in plant freezing stress resistance. However, the other roles of AtLTI30 remain unknown. In this study, we found that the expression of AtLTI30 was largely induced by drought stress and abscisic acid (ABA) treatments. Thereafter, AtLTI30 knockout mutants and overexpressing plants were isolated to investigate the possible involvement of AtLTI30 in ABA and drought stress responses. AtLTI30 knockout mutants were less sensitive to ABA-mediated seed germination, while AtLTI30 overexpressing plants were more sensitive to ABA compared with wild type (WT). Consistently, the AtLTI30 knockout mutants displayed decreased drought stress resistance, while the AtLTI30 overexpressing plants showed improved drought stress resistance compared with WT, as evidenced by a higher survival rate and lower leaf water loss than WT after drought stress. Moreover, manipulation of AtLTI30 expression positively regulated the activities of catalases (CATs) and endogenous proline content, as a result, negatively regulated drought stress-triggered hydrogen peroxide (H2O2) accumulation. All these results indicate that AtLTI30 is a positive regulator of plant drought stress resistance, partially through the modulation of ABA sensitivity, H2O2 and proline accumulation. PMID:26539205

  13. IMB-6G, a novel N-substituted sophoridinic acid derivative, induces endoplasmic reticulum stress-mediated apoptosis via activation of IRE1α and PERK signaling

    PubMed Central

    Zhang, Na; Bi, Chongwen; Liu, Lu; Dou, Yueying; Tang, Sheng; Pang, Weiqiang; Deng, Hongbin; Song, Danqing

    2016-01-01

    Sophoridinic acid derivatives have received considerable attentions for their potencies in cancer therapy. IMB-6G is a novel N-substituted sophoridinic acid derivative with potent cytotoxicity against tumor cells. In the present study, we explored the antitumor abilities of IMB-6G in human hepatocellular carcinoma (HCC) cells and investigated the underlying mechanisms. We found that IMB-6G inhibited cell growth and induced mitochondrial-dependent apoptosis in HepG2 and SMMC7721 cells. Analyses of the molecular mechanism of IMB-6G-induced apoptosis indicated IMB-6G induced endoplasmic reticulum (ER) stress activation. Incubation of HCC cells with IMB-6G induced increase in Bip and CHOP levels, which precede induction of apoptosis. Further study showed IMB-6G activated IRE1α and PERK pathways but did not stimulated ATF6 pathway in HCC cells. Moreover, silencing of IRE1α dramatically abrogated IMB-6G-induced pro-apoptotic ASK1-JNK signaling. Importantly, interruption of CHOP rendered HCC cells sensitive to IMB-6G-induced apoptosis via inactivation of Bim, PUMA and Bax. Thus, the IRE1α-ASK1 and PERK-CHOP pathways may be a novel molecular mechanism of IMB-6G-induced apoptosis. Collectively, our study demonstrates that IMB-6G induces ER stress-mediated apoptosis by activating IRE1α and PERK pathways. Our findings provide a rationale for the potential application of IMB-6G in HCC therapy. PMID:27009865

  14. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-01-01

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction. PMID:25402647

  15. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula.

    PubMed

    Planchet, Elisabeth; Verdu, Isabelle; Delahaie, Julien; Cukier, Caroline; Girard, Clément; Morère-Le Paven, Marie-Christine; Limami, Anis M

    2014-05-01

    Nitric oxide (NO) production and amino acid metabolism modulation, in particular abscisic acid (ABA)-dependent proline accumulation, are stimulated in planta by most abiotic stresses. However, the relationship between NO production and proline accumulation under abiotic stress is still poorly understood, especially in the early phases of plant development. To unravel this question, this work investigated the tight relationship between NO production and proline metabolism under water-deficit stress during seedling establishment. Endogenous nitrate reductase-dependent NO production in Medicago truncatula seedlings increased in a time-dependent manner after short-term water-deficit stress. This water-deficit-induced endogenous NO accumulation was mediated through a ABA-dependent pathway and accompanied by an inhibition of seed germination, a loss of water content, and a decrease in elongation of embryo axes. Interestingly, a treatment with a specific NO scavenger (cPTIO) alleviated these water-deficit detrimental effects. However, the content of total amino acids, in particular glutamate and proline, as well as the expression of genes encoding enzymes of synthesis and degradation of proline were not affected by cPTIO treatment under water-deficit stress. Under normal conditions, exogenous NO donor stimulated neither the expression of P5CS2 nor the proline content, as observed after PEG treatment. These results strongly suggest that the modulation of proline metabolism is independent of NO production under short-term water-deficit stress during seedling establishment.

  16. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  17. Endoplasmic reticulum stress involved in high-fat diet and palmitic acid-induced vascular damages and fenofibrate intervention

    SciTech Connect

    Lu, Yunxia; Cheng, Jingjing; Chen, Li; Li, Chaofei; Chen, Guanjun; Gui, Li; Shen, Bing; Zhang, Qiu

    2015-02-27

    Fenofibrate (FF) is widely used to lower blood lipids in clinical practice, but whether its protective effect on endothelium-dependent vasodilatation (EDV) in thoracic aorta is related with endoplasmic reticulum (ER) stress remains unknown. In this study, female Sprauge Dawley rats were divided into standard chow diets (SCD), high-fat diets (HFD) and HFD plus FF treatment group (HFD + FF) randomly. The rats of latter two groups were given HFD feeding for 5 months, then HFD + FF rats were treated with FF (30 mg/kg, once daily) via gavage for another 2 months. The pathological and tensional changes, protein expression of eNOS, and ER stress related genes in thoracic aorta were measured. Then impacts of palmitic acid (PA) and FF on EDV of thoracic aorta from normal female SD rats were observed. Ultimately the expression of ER stress related genes were assessed in primary mouse aortic endothelial cells (MAEC) treated by fenofibric acid (FA) and PA. We found that FF treatment improved serum lipid levels and pathological changes in thoracic aorta, accompanied with decreased ER stress and increased phosphorylation of eNOS. FF pretreatment also improved EDV impaired by different concentrations of PA treatment. The dose- and time-dependent inhibition of cell proliferation by PA were inverted by FA pretreatment. Phosphorylation of eNOS and expression of ER stress related genes were all inverted by FA pretreatment in PA-treated MAEC. Our findings show that fenofibrate recovers damaged EDV by chronic HFD feeding and acute stimulation of PA, this effect is related with decreased ER stress and increased phosphorylation of eNOS. - Highlights: • Fenofibrate treatment improved pathological changes in thoracic aorta by chronic high-fat-diet feeding. • Fenofibrate pretreatment improved endothelium-dependent vasodilation impaired by different concentrations of palmitic acid. • The inhibition of proliferation in endothelial cells by palmitic acid were inverted by fenofibric

  18. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis1[OPEN

    PubMed Central

    Wang, Zhen-Yu; Gehring, Chris; Zhu, Jianhua; Li, Feng-Min; Zhu, Jian-Kang; Xiong, Liming

    2015-01-01

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1. PMID:25416474

  19. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse.

    PubMed

    Pachauri, Vidhu; Flora, Sjs

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study.

  20. Combined Efficacy of Gallic Acid and MiADMSA with Limited Beneficial Effects Over MiADMSA Against Arsenic-induced Oxidative Stress in Mouse

    PubMed Central

    Pachauri, Vidhu; Flora, SJS

    2015-01-01

    Gallic acid is an organic acid known for its antioxidant and anticancer properties. The present study is focused on evaluating the role of gallic acid in providing better therapeutic outcomes against arsenic-induced toxicity. Animals pre-exposed to arsenic were treated with monoisoamyl meso-2,3-dimercaptosuccinic acid (MiADMSA), a new chelating drug, alone and in combination with gallic acid, consecutively for 10 days. The study suggests that (1) gallic acid in presence of MiADMSA is only moderately beneficial against arsenic, (2) monotherapy with gallic acid is more effective than in combination with MiADMSA after arsenic exposure in reducing oxidative injury, and (3) MiADMSA monotherapy as reported previously provides significant therapeutic efficacy against arsenic. Thus, based on the present results, we conclude that gallic acid is effective against arsenic-induced oxidative stress but provides limited additional beneficial effects when administered in combination with MiADMSA. We still recommend that lower doses of gallic acid be evaluated both individually and in combination with MiADMSA, as it might not exhibit the shortcomings we observed with higher doses in this study. PMID:26339189

  1. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress.

  2. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress. PMID:25867895

  3. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  4. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway

    PubMed Central

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-01-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti-inflammatory and anti-atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)-induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2-induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6) and IL-1β. Furthermore, TA pretreatment prevented nuclear factor-κB (NF-κB) subunit p65 phosphorylation and NF-κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF-κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis. PMID:27572426

  5. Tormentic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NF-κB signaling pathway.

    PubMed

    Wang, Yu-Lun; Sun, Gen-Yi; Zhang, Ying; He, Jia-Jun; Zheng, Shen; Lin, Jing-Na

    2016-10-01

    Tormentic acid (TA) is a triterpene isolated from the stem bark of the plant Vochysia divergens and has been reported to exhibit anticancer, anti‑inflammatory and anti‑atherogenic properties. However, the functions of TA in hydrogen peroxide (H2O2)‑induced oxidative stress and inflammation in rat vascular smooth muscle cells (RVSMCs) remain unclear. Therefore, the present study aimed to investigate whether TA suppressed H2O2‑induced oxidative stress and inflammation in RVSMCs, and to determine its molecular mechanisms. The present study demonstrated that TA inhibited reactive oxygen species (ROS) generation, induced H2O2 in RVSMCs, and inhibited H2O2-induced expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX) in RVSMCs. In addition, TA significantly decreased the production of tumor necrosis factor‑α (TNF‑α), interleukin 6 (IL‑6) and IL‑1β. Furthermore, TA pretreatment prevented nuclear factor‑κB (NF‑κB) subunit p65 phosphorylation and NF‑κB inhibitor α (IκBα) degradation induced by H2O2 in RVSMCs. TA is, therefore, suggested to inhibit H2O2-induced oxidative stress and inflammation in RVSMCs via inhibition of the NF‑κB signaling pathway. TA may have potential as a pharmacological agent in the prevention or treatment of atherosclerosis.

  6. CYP2C8-derived epoxyeicosatrienoic acids decrease oxidative stress-induced endothelial apoptosis in development of atherosclerosis: Role of Nrf2 activation.

    PubMed

    Liu, Wan-jun; Wang, Tao; Wang, Bei; Liu, Xin-tian; He, Xing-wei; Liu, Yu-jian; Li, Zhu-xi; Tan, Rong; Zeng, He-song

    2015-10-01

    The aim of the present study is to investigate how cytochrome P450 enzymes (CYP) 2C8-derived epoxyeicosatrienoic acids (EETs) regulate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and protect against oxidative stress-induced endothelial injuries in the development and progression of atherosclerosis. In this study, cultured human umbilical vein endothelial cells (HUVECs) were transfected with CYP2C8 or pretreated with exogenous EETs (1 μmol/L) before TNF-α (20 ng/mL) stimulation. Apoptosis and intracellular ROS production were determined by flow cytometry. The expression levels of ROS-associated NAD(P)H subunits gp91 and p47, the anti-oxidative enzyme catalase (CAT), Nrf2, heme oxygenase-1 (HO-1) and endothelial nitric oxide synthase (eNOS) were detected by Western blotting. The results showed that CYP2C8-derived EETs decreased apoptosis of HUVECs treated with TNF-α. Pretreatment with 11, 12-EET also significantly blocked TNF-α-induced ROS production. In addition, 11, 12-EET decreased oxidative stress-induced apoptosis. Furthermore, the ability of 11, 12-EET to protect cells against TNF-α-induced apoptosis via oxidative stress was abrogated by transient transfection with Nrf2-specific small interfering RNA (siRNA). In conclusion, CYP2C8-derived EETs prevented TNF-α-induced HUVECs apoptosis via inhibition of oxidative stress associated with the Nrf2 signaling. PMID:26489615

  7. A Fluorescence-Coupled Assay for Gamma Aminobutyric Acid (GABA) Reveals Metabolic Stress-Induced Modulation of GABA Content in Neuroendocrine Cancer

    PubMed Central

    Ippolito, Joseph E.; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies. PMID:24551133

  8. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    PubMed

    Ippolito, Joseph E; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  9. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.

  10. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. PMID:25732953

  11. Effect of folic acid on oxidative stress and behavioral changes in the animal model of schizophrenia induced by ketamine.

    PubMed

    Zugno, Alexandra I; Canever, Lara; Heylmann, Alexandra S; Wessler, Patrícia G; Steckert, Amanda; Mastella, Gustavo A; de Oliveira, Mariana B; Damázio, Louyse S; Pacheco, Felipe D; Calixto, Octacílio P; Pereira, Flávio P; Macan, Tamires P; Pedro, Thayara H; Schuck, Patrícia F; Quevedo, João; Budni, Josiane

    2016-10-01

    Recent studies have shown benefits for the supplementation of folic acid in schizophrenic patients. The aim of this study was to evaluate the effects of folic acid addition on adult rats, over a period of 7 or 14 days. It also sets out to verify any potential protective action using an animal model of schizophrenia induced by ketamine, in behavioral and biochemical parameters. This study used two protocols (acute and chronic) for the administration of ketamine at a dose of 25 mg/kg (i.p.). The folic acid was given by oral route in doses of 5, 10 and 50 mg/kg, once daily, for 7 and/or 14 days in order to compare the protective effects of folic acid. Thirty minutes after the last administration of ketamine, the locomotor and social interaction activities were evaluated, and immediately the brain structure were removed for biochemical analysis. In this study, ketamine was administered in a single dose or in doses over the course of 7 days increasing the animal's locomotion. This study showed that the administration of folic acid over 7 days was unable to prevent hyper locomotion. In contrast, folic acid (10 and 50 mg/kg) administrated over a period of 14 days, was able to partially prevent the hyper locomotion. Our data indicates that both acute and chronic administrations of ketamine increased the time to first contact between the animals, while the increased latency for social contact was completely prevented by folic acid (5, 10 and 50 mg/kg). Chronic and acute administrations of ketamine also increased lipid peroxidation and protein carbonylation in brain. Folic acid (10 and 50 mg/kg) supplements showed protective effects on the oxidative damage found in the different brain structures evaluated. All together, the results indicate that nutritional supplementation with folic acid provides promising results in an animal model of schizophrenia induced by ketamine.

  12. Effect of folic acid on oxidative stress and behavioral changes in the animal model of schizophrenia induced by ketamine.

    PubMed

    Zugno, Alexandra I; Canever, Lara; Heylmann, Alexandra S; Wessler, Patrícia G; Steckert, Amanda; Mastella, Gustavo A; de Oliveira, Mariana B; Damázio, Louyse S; Pacheco, Felipe D; Calixto, Octacílio P; Pereira, Flávio P; Macan, Tamires P; Pedro, Thayara H; Schuck, Patrícia F; Quevedo, João; Budni, Josiane

    2016-10-01

    Recent studies have shown benefits for the supplementation of folic acid in schizophrenic patients. The aim of this study was to evaluate the effects of folic acid addition on adult rats, over a period of 7 or 14 days. It also sets out to verify any potential protective action using an animal model of schizophrenia induced by ketamine, in behavioral and biochemical parameters. This study used two protocols (acute and chronic) for the administration of ketamine at a dose of 25 mg/kg (i.p.). The folic acid was given by oral route in doses of 5, 10 and 50 mg/kg, once daily, for 7 and/or 14 days in order to compare the protective effects of folic acid. Thirty minutes after the last administration of ketamine, the locomotor and social interaction activities were evaluated, and immediately the brain structure were removed for biochemical analysis. In this study, ketamine was administered in a single dose or in doses over the course of 7 days increasing the animal's locomotion. This study showed that the administration of folic acid over 7 days was unable to prevent hyper locomotion. In contrast, folic acid (10 and 50 mg/kg) administrated over a period of 14 days, was able to partially prevent the hyper locomotion. Our data indicates that both acute and chronic administrations of ketamine increased the time to first contact between the animals, while the increased latency for social contact was completely prevented by folic acid (5, 10 and 50 mg/kg). Chronic and acute administrations of ketamine also increased lipid peroxidation and protein carbonylation in brain. Folic acid (10 and 50 mg/kg) supplements showed protective effects on the oxidative damage found in the different brain structures evaluated. All together, the results indicate that nutritional supplementation with folic acid provides promising results in an animal model of schizophrenia induced by ketamine. PMID:27367209

  13. Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis.

    PubMed

    Liu, Yamin; Shen, Shengnan; Li, Zongyang; Jiang, Yumao; Si, Jianyong; Chang, Qi; Liu, Xinmin; Pan, Ruile

    2014-12-01

    It has been reported that high corticosterone level could damage the normal hippocampal neurons both in vitro and in vivo. Furthermore, high concentration of corticosterone induced impair in PC12 cells has been widely used as in vitro model to screen neuroprotective agents. Cajaninstilbene acid (CSA), a natural stilbene isolated from Cajanus cajan leaves, has various activities. In present study, we investigated the effect of CSA on corticosterone-induced cell apoptosis and explored its possible signaling pathways in PC12 cells. We demonstrated that pretreatment with CSA at the concentrations of 1-8 μmol/L remarkably reduced the cytotoxicity induced by 200 μmol/L of corticosterone in PC12 cells by MTT, and further confirmed the neuroprotection by Hoechst 33342 and PI double staining and lactate dehydrogenase release (LDH) assay at the concentration of 8 μmol/L. Moreover, the cytoprotection of CSA was proved to be associated with the homeostasis of intracellular Ca(2+), relieving corticosterone-induced oxidative stress by decreasing the contents of ROS and malondialdehyde (MDA), increasing the activities of superoxide dismutase (SOD) and catalase (CAT), and the stabilization of ER stress via down-regulating the expression of ER chaperone protein glucose-regulated protein 78 (GRP78), ER stress associated transcription factor C/EBP homologous protein (CHOP/GADD153), and the X box-binding protein-1 (XBP-1), as well as the expression of ER stress-specific protein caspase-12 and its downstream protein caspase-9. Considering all the findings, it is suggested that the neuroprotective activity of CSA against the impairment induced by corticosterone in PC12 cells was through the inhibition of oxidative stress and ER stress-mediated pathway. PMID:25193317

  14. Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells.

    PubMed

    Henderson, Kimberly A; Kobylewski, Sarah E; Yamada, Kristin E; Eckhert, Curtis D

    2015-02-01

    Dietary boron intake is associated with reduced prostate and lung cancer risk and increased bone mass. Boron is absorbed and circulated as boric acid (BA) and at physiological concentrations is a reversible competitive inhibitor of cyclic ADP ribose, the endogenous agonist of the ryanodine receptor calcium (Ca(+2)) channel, and lowers endoplasmic reticulum (ER) [Ca(2+)]. Low ER [Ca(2+)] has been reported to induce ER stress and activate the eIF2α/ATF4 pathway. Here we report that treatment of DU-145 prostate cells with physiological levels of BA induces ER stress with the formation of stress granules and mild activation of eIF2α, GRP78/BiP, and ATF4. Mild activation of eIF2α and its downstream transcription factor, ATF4, enables cells to reconfigure gene expression to manage stress conditions and mild activation of ATF4 is also required for the differentiation of osteoblast cells. Our results using physiological levels of boric acid identify the eIF2α/ATF pathway as a plausible mode of action that underpins the reported health effects of dietary boron.

  15. 5-caffeoylquinic acid and caffeic acid down-regulate the oxidative stress- and TNF-alpha-induced secretion of interleukin-8 from Caco-2 cells.

    PubMed

    Zhao, Zhaohui; Shin, Hee Soon; Satsu, Hideo; Totsuka, Mamoru; Shimizu, Makoto

    2008-05-28

    Although chlorogenic acid (CHA) easily reaches a millimolar level in the gastrointestinal tract because of its high concentration in coffee and fruits, its effects on intestinal epithelial cells have been little reported. We investigated in this study the down-regulative effects of 5-caffeoylquinic acid (CQA), the predominant isomer of CHA, on the H(2)O(2-) or TNF-alpha-induced secretion of interleukin (IL)-8, a central pro-inflammatory chemokine involved in the pathogenesis of inflammatory bowel diseases, in human intestinal epithelial Caco-2 cells. After the cells had been pre- and simultaneously treated with CQA, the oversecretion of IL-8 and overexpression of its mRNA induced by H(2)O(2) were significantly suppressed in a dose-dependent manner in the range of 0.25-2.00 mmol/L. We further found that a metabolite of CQA, caffeic acid (CA), but not quinic acid, significantly inhibited the H(2)O(2)-induced IL-8 secretion and its mRNA expression in the same dose-dependent manner. Both CQA and CA suppressed the TNF-alpha-induced IL-8 secretion as well. Caffeic acid at 2.00 mmol/l was able to absolutely block the H(2)O(2)- or TNF-alpha-induced oversecretion of IL-8 in Caco-2 cells. However, CQA and CA did not suppress the TNF-alpha-induced increase in the IL-8 mRNA expression, indicating that the suppressive mechanisms are different between TNF-alpha-induced and H(2)O(2)-induced IL-8 production models. These results suggest that the habit of drinking coffee and/or eating fruits with a high CHA content may be beneficial to humans in preventing the genesis of inflammatory bowel diseases.

  16. Aspartate protects Lactobacillus casei against acid stress.

    PubMed

    Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian

    2013-05-01

    The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics. PMID:23292549

  17. Accumulation of brachycerine, an antioxidant glucosidic indole alkaloid, is induced by abscisic acid, heavy metal, and osmotic stress in leaves of Psychotria brachyceras.

    PubMed

    do Nascimento, Naíla Cannes; Menguer, Paloma Koprovski; Henriques, Amélia Teresinha; Fett-Neto, Arthur Germano

    2013-12-01

    Psychotria brachyceras Muell. Arg. produces the antioxidant monoterpene indole alkaloid (MIA) brachycerine, which, besides retaining a glucose residue, has its terpenoid moiety derived not from secologanin, but probably from epiloganin, representing a new subclass of MIAs. In this work we showed that osmotic stress agents, such as sodium chloride, sorbitol and polyethylene glycol (PEG), induced brachycerine accumulation in leaf disks of P. brachyceras. Other oxidative stress inducers, such as exposure to aluminum and silver, also increased brachycerine content. Abscisic acid (ABA) treatment was shown to increase brachycerine yield, suggesting its involvement in brachycerine induction during osmotic stress. Ascorbate peroxidase activity was induced in PEG-treated leaf disks, whereas superoxide dismutase (SOD) activity remained unaltered. Assays with specific inhibitors of the cytosolic mevalonate (MVA) and plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways showed that the terpenoid moiety of brachycerine derived predominantly from the MEP pathway. These results suggest a potential involvement of brachycerine in plant defense against osmotic/oxidative stress damage, possibly contributing to detoxification of hydroxyl radical and superoxide anion as a SOD-like molecule.

  18. Recovery of oxidative stress-induced damage in Cisd2-deficient cardiomyocytes by sustained release of ferulic acid from injectable hydrogel.

    PubMed

    Cheng, Yung-Hsin; Lin, Feng-Huei; Wang, Chien-Ying; Hsiao, Chen-Yuan; Chen, Hung-Ching; Kuo, Hsin-Yu; Tsai, Ting-Fen; Chiou, Shih-Hwa

    2016-10-01

    Aging-related oxidative stress is considered a major risk factor of cardiovascular diseases (CVD) and could be associated with mitochondrial dysfunction and reactive oxygen species (ROS) overproduction. Cisd2 is an outer mitochondrial membrane protein and plays an important role in controlling the lifespan of mammals. Ferulic acid (FA), a natural antioxidant, is able to improve cardiovascular functions and inhibit the pathogenetic CVD process. However, directly administering therapeutics with antioxidant molecules is challenging because of stability and bioavailability issues. In the present study, thermosensitive chitosan-gelatin-based hydrogel containing FA was used to treat Cisd2-deficient (Cisd2(-/-)) cardiomyocytes (CM) derived from induced pluripotent stem cells of Cisd2(-/-) murine under oxidative stress. The results revealed that the developed hydrogel could provide a sustained release of FA and increase the cell viability. Post-treatment of FA-loaded hydrogel effectively decreased the oxidative stress-induced damage in Cisd2(-/-) CM via increasing catalase activity and decreasing endogenous reactive oxygen species (ROS) production. The in vivo biocompatibility of FA-loaded hydrogel was confirmed in subcutaneously injected rabbits and intramyocardially injected Cisd2(-/-) mice. These results suggest that the thermosensitive FA-loaded hydrogel could rescue Cisd2(-/-) CM from oxidative stress-induced damage and may have potential applications in the future treatment of CVD.

  19. Humic Acid Increases Amyloid β-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells

    PubMed Central

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  20. Humic Acid Increases Amyloid β-Induced Cytotoxicity by Induction of ER Stress in Human SK-N-MC Neuronal Cells.

    PubMed

    Li, Hsin-Hua; Lu, Fung-Jou; Hung, Hui-Chih; Liu, Guang-Yaw; Lai, Te-Jen; Lin, Chih-Li

    2015-01-01

    Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer's disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury. PMID:25961951

  1. The Protective Effects of Isoliquiritigenin and Glycyrrhetinic Acid against Triptolide-Induced Oxidative Stress in HepG2 Cells Involve Nrf2 Activation

    PubMed Central

    Cao, Ling-Juan; Li, Huan-De; Yan, Miao; Li, Zhi-Hua; Gong, Hui; Jiang, Pei; Deng, Yang; Fang, Ping-Fei; Zhang, Bi-Kui

    2016-01-01

    Triptolide (TP), an active ingredient of Tripterygium wilfordii Hook f., possesses a wide range of biological activities. Oxidative stress likely plays a role in TP-induced hepatotoxicity. Isoliquiritigenin (ISL) and glycyrrhetinic acid (GA) are potent hepatoprotection agents. The aim of the present study was to investigate whether Nrf2 pathway is associated with the protective effects of ISL and GA against TP-induced oxidative stress or not. HepG2 cells were treated with TP (50 nM) for 24 h after pretreatment with ISL and GA (5, 10, and 20 μM) for 12 h and 24 h, respectively. The results demonstrated that TP treatment significantly increased ROS levels and decreased GSH levels. Both ISL and GA pretreatment decreased ROS and meanwhile enhanced intracellular GSH content. Additionally, TP treatment obviously decreased the protein expression of Nrf2 and its target genes including HO-1 and MRP2 except NQO1. Moreover, both ISL and GA displayed activities as inducers of Nrf2 and increased the expression of HO-1, NQO1, and MRP2. Taken together the current data confirmed that ISL and GA could activate the Nrf2 antioxidant response in HepG2 cells, increasing the expression of its target genes which may be partly associated with their protective effects in TP-induced oxidative stress. PMID:26904149

  2. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production

    PubMed Central

    Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  3. Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

    PubMed

    Mizokami, Sandra S; Hohmann, Miriam S N; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Zarpelon, Ana C; Possebon, Maria I; de Souza, Anderson R; Veneziani, Rodrigo C S; Arakawa, Nilton S; Casagrande, Rubia; Verri, Waldiceu A

    2016-01-01

    Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation. PMID:26895409

  4. Neuroprotective effect of caffeoylquinic acids from Artemisia princeps Pampanini against oxidative stress-induced toxicity in PC-12 cells.

    PubMed

    Lee, Sang Gil; Lee, Hyungjae; Nam, Tae Gyu; Eom, Seok Hyun; Heo, Ho Jin; Lee, Chang Yong; Kim, Dae-Ok

    2011-03-01

    Phenolics in dry Artemisia princeps Pampanini, an herbal plant traditionally consumed as food ingredients in Korea was extracted, fractionated, and quantified as well as evaluated for its neuroprotection for PC-12 cells. Whole extract had 5,852 mg gallic acid equivalents/100 g of total phenolics and 6,274 mg and 9,698 mg vitamin C equivalents/100 g of antioxidant capacities assayed by DPPH and ABTS radicals, respectively. The fraction extracted with n-butanol had the highest levels of total phenolics and antioxidant capacity than the other fractions (n-hexane, chloroform, ethyl acetate, and water). Using a reversed-phase HPLC system, caffeoylquinic acid (CQA) and its derivatives such as 3-CQA, 4-CQA, 5-CQA, 1,5-diCQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA were isolated and quantified. The whole extract and its n-butanol fraction yielded 3,5-diCQA with the highest amount, which consisted of approximately 36.8% and 33.5%, respectively. The whole extract, the n-butanol fraction, and 3,5-diCQA showed neuroprotective effect on PC-12 cells under the insult of amyloid ß peptide in a dose-dependent manner. Treatments of the whole extract and the n-butanol fraction for PC-12 cells under oxidative stress increased approximately 1.6 and 2.4 times higher cell viability, compared with the control without treatments. For PC-12 cells treated with 3,5-diCQA, intracellular oxidative stress decreased by 51.3% and cell viability increased up to 2.8 times compared to the control with oxidative insult of amyloid ß peptide only. These results indicate that phenolics from A. princeps Pampanini alleviated the oxidative stress and enhanced the viability of PC-12 cells, suggesting that it may be applied as a dietary antineurodegenerative agent in functional foods.

  5. Combined administration of oxalic acid, succimer and its analogue for the reversal of gallium arsenide-induced oxidative stress in rats.

    PubMed

    Flora, Swaran J S; Kannan, Gurusamy M; Pant, Bhagwat P; Jaiswal, Devendra K

    2002-06-01

    Gallium arsenide (GaAs), a group III-VA intermetallic semiconductor, possesses superior electronic and optical properties and has a wide application in the electronics industry. Exposure to GaAs in the semiconductor industry is a potential occupational hazard because cleaning and slicing GaAs ingots to yield the desired wafer could generate GaAs particles. The ability of GaAs to induce oxidative stress has not yet been reported. The present study reports the role of oxidative stress in GaAs-induced haematological and liver disorders and its possible reversal overturn by administration of meso-2,3-dimercaptosuccinic acid (DMSA) and one of its analogue, monoisoamyl DMSA (MiADMSA), either individually or in combination with oxalic acid. While DMSA and MiADMSA are potential arsenic chelators, oxalic acid is reported to be an effective gallium chelator. Male rats were exposed to 10 mg/kg GaAs orally, 5 days a week for 8 weeks. GaAs exposure was then stopped and rats were given a 0.5 mmol/kg dose of succimers (DMSA or MiADMSA), oxalic acid or a combination of the two, intraperitoneally once daily for 5 consecutive days. We found a significant fall in blood delta-aminolevulinic acid dehydratase (ALAD) activity and blood glutathione (GSH) level, and an increased urinary excretion of delta-aminolevulinic acid (ALA) and an increased malondialdehyde (MDA) level in erythrocytes of rats exposed to GaAs. Hepatic GSH levels decreased, whereas there was an increase in GSSG and MDA levels. The results suggest a role of oxidative stress in GaAs-induced haematological and hepatic damage. Administration of DMSA and MiADMSA produced effective recovery in most of the above variables. However, a greater effectiveness of the chelation treatment (i.e. removal of both gallium and arsenic from body organs) could be achieved by combined administration of succimer (DMSA) with oxalic acid since, after MiADMSA administration, a marked loss of essential metals (copper and zinc) is of concern.

  6. Enrichment of caffeic acid in peanut sprouts and evaluation of its in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis.

    PubMed

    Wang, Guang; Lei, Zhuogui; Zhong, Qing; Wu, Wenjia; Zhang, Hong; Min, Tian; Wu, Hui; Lai, Furao

    2017-02-15

    The profile of caffeic acid in tissues of peanut sprouts and its antioxidant activity in erythrocyte-based assays were investigated. Caffeic acid was found to accumulate in the epicotyl-plumule (reached 2097.13±96μg/g DW on day 10 after peanut germination). It was purified by semipreparative high-performance liquid chromatography. The purified caffeic acid showed noticeable protective effects on human erythrocytes against 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis. It also contributed to maintenance of normal morphological features and inhibited malondialdehyde formation and the lactate dehydrogenase release in erythrocytes under oxidative stress. Further analysis revealed that caffeic acid effectively inhibited AAPH-induced free-radical production and maintained the normal metabolism of the erythrocytic redox system, including superoxide dismutase, glutathione peroxidase, and glutathione. Our work showed that caffeic acid, which is greatly enriched in peanut sprout, can effectively protect erythrocytes from oxidative damage. These results provide valuable information for the use of peanut sprouts as a functional food. PMID:27664642

  7. Linoleic acid derivative DCP-LA protects neurons from oxidative stress-induced apoptosis by inhibiting caspase-3/-9 activation.

    PubMed

    Yaguchi, Takahiro; Fujikawa, Hirokazu; Nishizaki, Tomoyuki

    2010-05-01

    The present study aimed at understanding the effect of the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) on oxidative stress-induced neuronal death. Sodium nitroprusside (SNP; 1 mM) reduced viability of cultured rat cerebral cortical neurons to 50% of basal levels, but DCP-LA significantly prevented the SNP effect in a concentration (1-100 nM)-dependent manner. In addition, DCP-LA (100 nM) rescued neurons from SNP-induced degradation. SNP (1 mM) activated caspase-3 and -9 in cultured rat cerebral cortical neurons, but DCP-LA (100 nM) abolished the caspase activation. For a mouse model of middle cerebral artery occlusion, oral administration with DCP-LA (1 mg/kg) significantly diminished degraded area due to cerebral infarction. The results of the present study, thus, demonstrate that DCP-LA protects neurons at least in part from oxidative stress-induced apoptosis by inhibiting activation of caspase-3/-9.

  8. Aluminum-induced oxidative stress in rat brain: response to combined administration of citric acid and HEDTA.

    PubMed

    Flora, Swaran J S; Mehta, Ashish; Satsangi, Kiran; Kannan, Gurusamy M; Gupta, Manju

    2003-03-01

    Aluminum, a known neurotoxic substance, has been suggested as a contributing factor in the pathogenesis of Alzheimer's disease. Therapeutic efficacy of combined administration of citric acid (CA) and N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA) was evaluated in decreasing blood and brain aluminum concentration and parameters indicative of hematological disorders and brain oxidative stress. Adult male wistar rats were exposed to drinking water containing 0.2% aluminum nitrate for 8 months and treated once daily for 5 consecutive days with CA (50 mg/kg, orally) or HEDTA (50 mg/kg, intraperitoneally) either individually or in combination. Aluminum exposure significantly inhibited blood delta-aminolevulinic acid dehydratase while increased zinc protoporphyrin confirming changed heme biosynthesis. Significant decrease in the level of glutathione S-transferase in various brain regions and an increase in whole brain thiobarbituric acid reactive substance, and oxidized glutathione (GSSG) levels were also observed. Glutathione peroxidase activity showed a significant increase in cerebellum of aluminum exposed rats. Most of the above parameters responded moderately to the individual treatment with CA and HEDTA, but significantly reduced blood and brain aluminum burden. However, more pronounced beneficial effects on some of the above described parameters were observed when CA and HEDTA were administered concomitantly. Blood and brain aluminum concentration however, showed no further decline on combined treatment over the individual effect with HEDTA or CA. We conclude that in order to achieve an optimum effect of chelation, combined administration of CA and HEDTA might be preferred. However, further work is needed before a final recommendation could be made.

  9. Targeting oxidative stress attenuates trinitrobenzene sulphonic acid induced inflammatory bowel disease like symptoms in rats: Role of quercetin

    PubMed Central

    Dodda, Dilip; Chhajed, Ruchi; Mishra, Jitendriya; Padhy, Monalisa

    2014-01-01

    Objective: This study was aimed to investigate the beneficial effects of quercetin (QCT) against trinitrobenzene sulfonic acid (TNBS) induced clinical, morphological, and biochemical alterations in rats. Materials and Methods: Colitis in rats was induced by administration of TNBS (25 mg dissolved in 0.25 ml of 30% ethanol) 8 cm into the rectum of the rat using a catheter. The animals were divided into six experimental groups (n = 6); naive (saline only without TNBS administration), control (saline + TNBS), standard (sulfasalazine 25 mg/kg + TNBS), QCT (25) (QCT 25 mg/kg + TNBS), QCT (50) (QCT 50 mg/kg + TNBS), QCT (100) (QCT 100 mg/kg + TNBS). Sulfasalazine (25 mg/kg) and QCT (25, 50 and 100 mg/kg) were administered per oral for 11 days and the colonic damage was evaluated in terms of macroscopical (body weight, stool consistency, rectal bleeding, and ulcer index) and biochemical parameters (myeloperoxidase activity, lipid peroxidation, nitrite, and glutathione). Results: Treatment with QCT (50, 100 mg/kg) for 10 days following TNBS administration significantly attenuated the clinical, morphological, and biochemical alterations induced by TNBS, whereas it was found to be not effective at its lower dose (25 mg/kg) throughout the experimental protocol. Conclusion: QCT attenuates the clinical, morphological and biochemical alterations induced by TNBS possibly via its antioxidant mechanism. PMID:24987175

  10. The secreted protein acidic and rich in cysteine (SPARC) induces endoplasmic reticulum stress leading to autophagy-mediated apoptosis in neuroblastoma.

    PubMed

    Sailaja, G S; Bhoopathi, Praveen; Gorantla, Bharathi; Chetty, Chandramu; Gogineni, Venkateswara Rao; Velpula, Kiran Kumar; Gondi, Christopher S; Rao, Jasti S

    2013-01-01

    Our previous studies showed that overexpression of secreted protein acidic and rich in cysteine (SPARC) induced autophagy-mediated apoptosis in PNET cells. In the present study, we attempted to elucidate the molecular mechanisms and signaling cascades associated with SPARC overexpression in combination with radiation therapy that eventually leads to autophagy-mediated apoptosis in neuroblastoma. SPARC expression in SK-N-AS and NB-1691 cells demonstrated the activation of caspase 3, cleavage of PARP and induction of apoptosis. The experiments to unravel the mechanisms associated with autophagy-apoptosis illustrated that SPARC overexpression triggered endoplasmic reticulum (ER) stress and thereby unfolded protein response (UPR). This was apparent with the activation of stress receptors, inositol-requiring enzyme (IRE 1α), RNA-dependent protein kinase (PKR)-like ER kinase (PERK) and BiP. This study further demonstrated the induction of transcription factor CHOP as a result of IRE-JNK activation in response to increased SPARC levels. Inhibition of ER stress and JNK activation led to inhibition of autophagy-mediated apoptosis. Further, the apparent expression of ER stress molecules among the orthotopic tumors treated by SPARC overexpression plasmids substantiated our in vitro observations. Taken together, these results illustrate the critical role of ER stress in regulating autophagy-mediated apoptosis in SPARC-overexpressed neuroblastoma cells and radiation treatment.

  11. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance. PMID:27466284

  12. Stress Physiology of Lactic Acid Bacteria.

    PubMed

    Papadimitriou, Konstantinos; Alegría, Ángel; Bron, Peter A; de Angelis, Maria; Gobbetti, Marco; Kleerebezem, Michiel; Lemos, José A; Linares, Daniel M; Ross, Paul; Stanton, Catherine; Turroni, Francesca; van Sinderen, Douwe; Varmanen, Pekka; Ventura, Marco; Zúñiga, Manuel; Tsakalidou, Effie; Kok, Jan

    2016-09-01

    Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.

  13. Role of Inflammatory and Oxidative Stress, Cytochrome P450 2E1, and Bile Acid Disturbance in Rat Liver Injury Induced by Isoniazid and Lipopolysaccharide Cotreatment.

    PubMed

    Hassan, Hozeifa Mohamed; Guo, Hongli; Yousef, Bashir Alsiddig; Guerram, Mounia; Hamdi, Aida Mejda; Zhang, Luyong; Jiang, Zhenzhou

    2016-09-01

    Isoniazid (INH) remains the core drug in tuberculosis management, but serious hepatotoxicity and potentially fatal liver injury continue to accompany INH consumption. Among numerous theories that have been established to explain INH-induced liver injury, an inflammatory stress theory has recently been widely used to explain the idiosyncrasy. Inflammatory stress usually sensitizes tissues to a drug's toxic consequences. Therefore, the present study was conducted to verify whether bacterial lipopolysaccharide (LPS)-induced inflammation may have a role in enhancing INH hepatotoxicity. While single INH or LPS administration showed no major toxicity signs, INH-LPS cotreatment intensified liver toxicity. Both blood biomarkers and histological evaluations clearly showed positive signs of severe liver damage accompanied by massive necrosis, inflammatory infiltration, and hepatic steatosis. Furthermore, elevated serum levels of bile acid associated with the repression of bile acid synthesis and transport regulatory parameters were observed. Moreover, the principal impact of cytochrome P450 2E1 (CYP2E1) on INH toxicity could be anticipated, as its protein expression showed enormous increases in INH-LPS-cotreated animals. Furthermore, the crucial role of CYP2E1 in the production of reactive oxygen species (ROS) was clearly obvious in the repression of hepatic antioxidant parameters. In summary, these results confirmed that this LPS-induced inflammation model might prove valuable in revealing the hepatotoxic mechanisms of INH and the crucial role played by CYP2E1 in the initiation and propagation of INH-induced liver damage, information which could be very useful to clinicians in understanding the pathogenesis of drug-induced liver injury.

  14. Role of Inflammatory and Oxidative Stress, Cytochrome P450 2E1, and Bile Acid Disturbance in Rat Liver Injury Induced by Isoniazid and Lipopolysaccharide Cotreatment.

    PubMed

    Hassan, Hozeifa Mohamed; Guo, Hongli; Yousef, Bashir Alsiddig; Guerram, Mounia; Hamdi, Aida Mejda; Zhang, Luyong; Jiang, Zhenzhou

    2016-09-01

    Isoniazid (INH) remains the core drug in tuberculosis management, but serious hepatotoxicity and potentially fatal liver injury continue to accompany INH consumption. Among numerous theories that have been established to explain INH-induced liver injury, an inflammatory stress theory has recently been widely used to explain the idiosyncrasy. Inflammatory stress usually sensitizes tissues to a drug's toxic consequences. Therefore, the present study was conducted to verify whether bacterial lipopolysaccharide (LPS)-induced inflammation may have a role in enhancing INH hepatotoxicity. While single INH or LPS administration showed no major toxicity signs, INH-LPS cotreatment intensified liver toxicity. Both blood biomarkers and histological evaluations clearly showed positive signs of severe liver damage accompanied by massive necrosis, inflammatory infiltration, and hepatic steatosis. Furthermore, elevated serum levels of bile acid associated with the repression of bile acid synthesis and transport regulatory parameters were observed. Moreover, the principal impact of cytochrome P450 2E1 (CYP2E1) on INH toxicity could be anticipated, as its protein expression showed enormous increases in INH-LPS-cotreated animals. Furthermore, the crucial role of CYP2E1 in the production of reactive oxygen species (ROS) was clearly obvious in the repression of hepatic antioxidant parameters. In summary, these results confirmed that this LPS-induced inflammation model might prove valuable in revealing the hepatotoxic mechanisms of INH and the crucial role played by CYP2E1 in the initiation and propagation of INH-induced liver damage, information which could be very useful to clinicians in understanding the pathogenesis of drug-induced liver injury. PMID:27324775

  15. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice.

    PubMed

    Shinomol, George K; Muralidhara

    2008-11-01

    Despite the increasing popularity of Centella asiatica (a well known plant in ayurvedic medicine) globally, evidence demonstrating its protective efficacy against neurotoxicants in animal models is limited. 3-Nitropropionic acid (3-NPA), a fungal toxin is a well known neurotoxicant which induces selective striatal pathology similar to that seen in Huntington's disease. The present study aimed to understand the neuroprotective efficacy of a standardized aqueous extract of C. asiatica (CA) against 3-NPA-induced early oxidative stress and mitochondrial dysfunctions in striatum and other brain regions. We determined the extent of oxidative stress in cytosol and mitochondria of brain regions of male mice (4wk old) given CA prophylaxis (5mg/kgbw) for 10 days followed by 3-NPA administration (i.p., 75mg/kgbw/d) on the last 2 days. The neurotoxicant elicited marked oxidative stress in the untreated mice as evidenced by elevated levels of malondialdehyde, ROS levels and hydroperoxides in the striatum (cytosol and mitochondria), while CA prophylaxis completely attenuated the 3-NPA-induced oxidative stress. 3-NPA also caused significant oxidative stress and protein oxidation in cytosol/mitochondria of other brain regions as well which were predominantly abolished by CA prophylaxis. Significant depletion of GSH levels, total thiols and perturbations in antioxidant enzymic defences in striatum and other brain regions discernible among 3-NPA administered mice were also protected with CA prophylaxis. Interestingly, CA prophylaxis offered varying degree of protection against 3-NPA-induced mitochondrial dysfunctions viz., reduction in the activity of succinic dehydrogenase, ETC enzymes and decreased mitochondrial viability. Collectively these findings clearly suggest that short-term oral intake of a standardized aqueous extract of CA confers marked resistance against the 3-NPA-induced oxidative stress and mitochondrial dysfunctions in brain. Although the precise mechanism

  16. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism.

    PubMed

    Martínez-Vega, Raquel; Garrido, Francisco; Partearroyo, Teresa; Cediel, Rafael; Zeisel, Steven H; Martínez-Álvarez, Concepción; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A

    2015-02-01

    Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.

  17. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    PubMed

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment. PMID:23132407

  18. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    PubMed

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  19. Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks.

    PubMed

    Yoto, A; Murao, S; Motoki, M; Yokoyama, Y; Horie, N; Takeshima, K; Masuda, K; Kim, M; Yokogoshi, H

    2012-09-01

    γ-Aminobutyric acid (GABA) is a kind of amino acid contained in green tea leaves and other foods. Several reports have shown that GABA might affect brain protein synthesis, improve many brain functions such as memory and study capability, lower the blood pressure of spontaneously hypertensive rats, and may also have a relaxation effect in humans. However, the evidence for its mood-improving function is still not sufficient. In this study, we investigated how the oral intake of GABA influences human adults psychologically and physiologically under a condition of mental stress. Sixty-three adults (28 males, 35 females) participated in a randomized, single blind, placebo-controlled, crossover-designed study over two experiment days. Capsules containing 100 mg of GABA or dextrin as a placebo were used as test samples. The results showed that EEG activities including alpha band and beta band brain waves decreased depending on the mental stress task loads, and the condition of 30 min after GABA intake diminished this decrease compared with the placebo condition. That is to say, GABA might have alleviated the stress induced by the mental tasks. This effect also corresponded with the results of the POMS scores. PMID:22203366

  20. A potent inhibition of oxidative stress induced gene expression in neural cells by sustained ferulic acid release from chitosan based hydrogel.

    PubMed

    Dong, Guo-Chung; Kuan, Che-Yung; Subramaniam, Sadhasivam; Zhao, Jiong-Yao; Sivasubramaniam, Savitha; Chang, Hwan-You; Lin, Feng-Huei

    2015-04-01

    Traumatic brain injury (TBI) is an extremely cataclysmic neurological disorder and the inhibition of oxidative stress following TBI could effectively protect the brain from further impairments. An injectable thermosensitive chitosan/gelatin/β-Glycerol phosphate (C/G/GP) hydrogel for the controlled release of the phenolic antioxidant ferulic acid (FA) to inhibit the neurological oxidative stress was demonstrated. The C/G/GP hydrogel ensures an excellent clinical expediency with a gelation temperature of 32.6°C and gelation time of 75.58s. In-vitro cytotoxicity assays of C/G/GP hydrogel and FA have revealed an excellent biocompatibility with the Neuro-2a cells. 500μM of FA was considered to be an effective concentration to reduce the oxidative stress in Neuro-2a cells. TUNEL staining images evidenced that the H2O2 induced DNA fragmentation was comprehensively controlled after FA treatment. The mRNA gene expression profiles markedly authenticate the neuroprotectivity of FA by down-regulating ROS, inflammatory and apoptosis related markers. The outcomes of this study suggest that, C/G/GP hydrogel carrying ferulic acid could effectively protect further secondary traumatic brain injury associated impairments.

  1. Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks.

    PubMed

    Yoto, A; Murao, S; Motoki, M; Yokoyama, Y; Horie, N; Takeshima, K; Masuda, K; Kim, M; Yokogoshi, H

    2012-09-01

    γ-Aminobutyric acid (GABA) is a kind of amino acid contained in green tea leaves and other foods. Several reports have shown that GABA might affect brain protein synthesis, improve many brain functions such as memory and study capability, lower the blood pressure of spontaneously hypertensive rats, and may also have a relaxation effect in humans. However, the evidence for its mood-improving function is still not sufficient. In this study, we investigated how the oral intake of GABA influences human adults psychologically and physiologically under a condition of mental stress. Sixty-three adults (28 males, 35 females) participated in a randomized, single blind, placebo-controlled, crossover-designed study over two experiment days. Capsules containing 100 mg of GABA or dextrin as a placebo were used as test samples. The results showed that EEG activities including alpha band and beta band brain waves decreased depending on the mental stress task loads, and the condition of 30 min after GABA intake diminished this decrease compared with the placebo condition. That is to say, GABA might have alleviated the stress induced by the mental tasks. This effect also corresponded with the results of the POMS scores.

  2. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  3. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells.

    PubMed

    El Gaafary, Menna; Büchele, Berthold; Syrovets, Tatiana; Agnolet, Sara; Schneider, Bernd; Schmidt, Christoph Q; Simmet, Thomas

    2015-01-01

    Here we provide evidence that αATA(8,24) (3α-acetyloxy-tir-8,24-dien-21-oic acid) inhibits Akt/mammalian target of rapamycin (mTOR) signaling. αATA(8,24) and other tirucallic acids were isolated from the acetylated extract of the oleo gum resin of Boswellia serrata to chemical homogeneity. Compared with related tirucallic acids, αATA(8,24) was the most potent inhibitor of the proliferation of androgen-insensitive prostate cancer cells in vitro and in vivo, in prostate cancer xenografted onto chick chorioallantoic membranes. αATA(8,24) induced loss of cell membrane asymmetry, caspase-3 activation, and DNA fragmentation in vitro and in vivo. These effects were selective for cancer cells, because αATA(8,24) exerted no overt toxic effects on peripheral blood mononuclear cells or the chick embryo. At the molecular level, αATA(8,24) inhibited the Akt1 kinase activity. Prior to all biochemical signs of cellular dysfunction, αATA(8,24) induced inhibition of the Akt downstream target mTOR as indicated by dephosphorylation of S6K1. This event was followed by decreased expression of cell cycle regulators, such as cyclin D1, cyclin E, and cyclin B1, as well as cyclin-dependent kinases CDK4 and CDK2 and phosphoretinoblastoma protein, which led to inhibition of the cell-cycle progression. In agreement with the mTOR inhibition, αATA(8,24) and rapamycin increased the volume of acidic vesicular organelles. In contrast to rapamycin, αATA(8,24) destabilized lysosomal and mitochondrial membranes and induced reactive oxygen species production in cancer cells. The ability of αATA(8,24) to inhibit Akt/mTOR signaling and to induce simultaneously oxidative stress could be exploited for the development of novel antitumor therapeutics with a lower profile of toxic side effects.

  4. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  5. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.

  6. Protective Effect of Carnosic Acid, a Pro-Electrophilic Compound, in Models of Oxidative Stress and Light-Induced Retinal Degeneration

    PubMed Central

    Rezaie, Tayebeh; McKercher, Scott R.; Kosaka, Kunio; Seki, Masaaki; Wheeler, Larry; Viswanath, Veena; Chun, Teresa; Joshi, Rabina; Valencia, Marcos; Sasaki, Shunsuke; Tozawa, Terumasa; Satoh, Takumi; Lipton, Stuart A.

    2012-01-01

    Purpose. The herb rosemary has been reported to have antioxidant and anti-inflammatory activity. We have previously shown that carnosic acid (CA), present in rosemary extract, crosses the blood–brain barrier to exert neuroprotective effects by upregulating endogenous antioxidant enzymes via the Nrf2 transcriptional pathway. Here we investigated the antioxidant and neuroprotective activity of CA in retinal cell lines exposed to oxidative stress and in a rat model of light-induced retinal degeneration (LIRD). Methods. Retina-derived cell lines ARPE-19 and 661W treated with hydrogen peroxide were used as in vitro models for testing the protective activity of CA. For in vivo testing, dark-adapted rats were given intraperitoneal injections of CA prior to exposure to white light to assess protection of the photoreceptor cells. Retinal damage was assessed by measuring outer nuclear layer thickness and by electroretinogram (ERG). Results. In vitro, CA significantly protected retina-derived cell lines (ARPE-19 and 661W) against H2O2-induced toxicity. CA induced antioxidant phase 2 enzymes and reduced formation of hyperoxidized peroxiredoxin (Prx)2. Similarly, we found that CA protected retinas in vivo from LIRD, producing significant improvement in outer nuclear layer thickness and ERG activity. Conclusions. These findings suggest that CA may potentially have clinical application to diseases affecting the outer retina, including age-related macular degeneration and retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression. PMID:23081978

  7. Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Neri-Cruz, Nadia; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra

    2014-11-01

    Toxicity in natural ecosystems is usually not due to exposure to a single substance, but is rather the result of exposure to mixtures of toxic substances. Knowing the effects of contaminants as a mixture compared to their effects in isolated form is therefore important. This study aimed to evaluate the oxidative stress induced by binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and by these nonsteroidal anti-inflammatory drugs (NSAIDs) in isolated form, using Hyalella azteca as a bioindicator. The median lethal concentration (LC50) and the lowest observed adverse effect level (LOAEL) of each NSAID were obtained. Amphipods were exposed for 72 h to the latter value in isolated form and as binary mixtures. The following biomarkers were evaluated: lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Significant increases in LPX and PCC with respect to the control group (p ≤ 0.05) were induced by NSAIDs both in isolated form and as binary mixtures. Changes in SOD, CAT, and GPx activity likewise occurred with NSAIDs in isolated form and as binary mixtures. In conclusion, NSAIDs used in this study induce oxidative stress on H. azteca both in isolated form and as binary mixtures, and the interactions occurring between these pharmaceuticals are probably antagonistic in type.

  8. Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Neri-Cruz, Nadia; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra

    2014-11-01

    Toxicity in natural ecosystems is usually not due to exposure to a single substance, but is rather the result of exposure to mixtures of toxic substances. Knowing the effects of contaminants as a mixture compared to their effects in isolated form is therefore important. This study aimed to evaluate the oxidative stress induced by binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and by these nonsteroidal anti-inflammatory drugs (NSAIDs) in isolated form, using Hyalella azteca as a bioindicator. The median lethal concentration (LC50) and the lowest observed adverse effect level (LOAEL) of each NSAID were obtained. Amphipods were exposed for 72 h to the latter value in isolated form and as binary mixtures. The following biomarkers were evaluated: lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Significant increases in LPX and PCC with respect to the control group (p ≤ 0.05) were induced by NSAIDs both in isolated form and as binary mixtures. Changes in SOD, CAT, and GPx activity likewise occurred with NSAIDs in isolated form and as binary mixtures. In conclusion, NSAIDs used in this study induce oxidative stress on H. azteca both in isolated form and as binary mixtures, and the interactions occurring between these pharmaceuticals are probably antagonistic in type. PMID:25004860

  9. Suberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.

    PubMed

    You, Bo Ra; Park, Woo Hyun

    2014-05-01

    Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PARP, caspase-3 activation and loss of mitochondrial membrane potential (MMP; ∆ψ(m)). All the tested caspase inhibitors prevented HeLa cell death induced by SAHA whereas TNF-α intensified apoptotic cell death in SAHA-treated HeLa cells. With respect to ROS and glutathione (GSH) levels, SAHA increased ROS levels, especially mitochondrial O(2)•- in HeLa cells and also induced GSH depletion. Caspase inhibitors reduced the levels of ROS and GSH depletion in SAHA-treated HeLa cells whereas TNF-α enhanced the levels in these cells. The well-known antioxidant N-acetyl cysteine (NAC) attenuated cell death and an increase in ROS levels was caused by SAHA. Moreover, SAHA decreased the levels of thioredoxin 1 (Trx1) in HeLa cells. While the downregulation of Trx1 enhanced cell death and ROS levels in SAHA-treated HeLa cells, the overexpression of Trx1 attenuated the levels in these cells. In conclusion, SAHA inhibited the growth of HeLa cell via caspase-dependent apoptosis, which was influenced by the mitochondrial O(2)•- and Trx1 levels.

  10. Long Chain Omega-3 Polyunsaturated Fatty Acid Supplementation Alleviates Doxorubicin-Induced Depressive-Like Behaviors and Neurotoxicity in Rats: Involvement of Oxidative Stress and Neuroinflammation.

    PubMed

    Wu, Yan-Qin; Dang, Rui-Li; Tang, Mi-Mi; Cai, Hua-Lin; Li, Huan-De; Liao, De-Hua; He, Xin; Cao, Ling-Juan; Xue, Ying; Jiang, Pei

    2016-04-23

    Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use can cause neurobiological side-effects associated with depression. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs), the essential fatty acids found in fish oil, possess neuroprotecitve and antidepressant activities. Thus, the aim of this study was to explore the potential protective effects of ω-3 PUFAs against DOX-induced behavioral changes and neurotoxicity. ω-3 PUFAs were given daily by gavage (1.5 g/kg) over three weeks starting seven days before DOX administration (2.5 mg/kg). Open-field test (OFT) and forced swimming test (FST) were conducted to assess exploratory activity and despair behavior, respectively. Our data showed that ω-3 PUFAs supplementation significantly mitigated the behavioral changes induced by DOX. ω-3 PUFAs pretreatment also alleviated the DOX-induced neural apoptosis. Meanwhile, ω-3 PUFAs treatment ameliorated DOX-induced oxidative stress in the prefrontal cortex and hippocampus. Additionally, gene expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, and the protein levels of NF-κB and iNOS were significantly increased in brain tissues of DOX-treated group, whereas ω-3 PUFAs supplementation significantly attenuated DOX-induced neuroinflammation. In conclusion, ω-3 PUFAs can effectively protect against DOX-induced depressive-like behaviors, and the mechanisms underlying the neuroprotective effect are potentially associated with its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  11. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress.

    PubMed

    Kharroubi, Ilham; Ladrière, Laurence; Cardozo, Alessandra K; Dogusan, Zeynep; Cnop, Miriam; Eizirik, Décio L

    2004-11-01

    Apoptosis is probably the main form of beta-cell death in both type 1 diabetes mellitus (T1DM) and T2DM. In T1DM, cytokines contribute to beta-cell destruction through nuclear factor-kappaB (NF-kappaB) activation. Previous studies suggested that in T2DM high glucose and free fatty acids (FFAs) are beta-cell toxic also via NF-kappaB activation. The aims of this study were to clarify whether common mechanisms are involved in FFA- and cytokine-induced beta-cell apoptosis and determine whether TNFalpha, an adipocyte-derived cytokine, potentiates FFA toxicity through enhanced NF-kappaB activation. Apoptosis was induced in insulinoma (INS)-1E cells, rat islets, and fluorescence-activated cell sorting-purified beta-cells by oleate, palmitate, and/or cytokines (IL-1beta, interferon-gamma, TNFalpha). Palmitate and IL-1beta induced a similar percentage of apoptosis in INS-1E cells, whereas oleate was less toxic. TNFalpha did not potentiate FFA toxicity in primary beta-cells. The NF-kappaB-dependent genes inducible nitric oxide synthase and monocyte chemoattractant protein-1 were induced by IL-1beta but not by FFAs. Cytokines activated NF-kappaB in INS-1E and beta-cells, but FFAs did not. Moreover, FFAs did not enhance NF-kappaB activation by TNFalpha. Palmitate and oleate induced C/EBP homologous protein, activating transcription factor-4, and immunoglobulin heavy chain binding protein mRNAs, X-box binding protein-1 alternative splicing, and activation of the activating transcription factor-6 promoter in INS-1E cells, suggesting that FFAs trigger an endoplasmic reticulum (ER) stress response. We conclude that apoptosis is the main mode of FFA- and cytokine-induced beta-cell death but the mechanisms involved are different. Whereas cytokines induce NF-kappaB activation and ER stress (secondary to nitric oxide formation), FFAs activate an ER stress response via an NF-kappaB- and nitric oxide-independent mechanism. Our results argue against a unifying hypothesis for the

  12. Cr (VI) induced oxidative stress and toxicity in cultured cerebellar granule neurons at different stages of development and protective effect of Rosmarinic acid.

    PubMed

    Dashti, Abolfazl; Soodi, Maliheh; Amani, Nahid

    2016-03-01

    Chromium (Cr) is a widespread metal ion in the workplace, industrial effluent, and water. The toxicity of chromium (VI) on various organs including the liver, kidneys, and lung were studied, but little is known about neurotoxicity. In this study, neurotoxic effects of Cr (VI) have been investigated by cultured cerebellar granule neurons (CGNs). Immature and mature neurons were exposed to different concentrations of potassium dichromate for 24 h and cytotoxicity was measured by MTT assay. In addition, immature neurons were exposed for 5 days as regards cytotoxic effect in development stages. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the protective effect of Rosmarinic acid on mature and immature neurons exposed to potassium dichromate, were measured. Furthermore, lipid peroxidation, glutathione peroxidase (GPx), and acetylcholinesterase activity in mature neurons were assessed following exposure to potassium dichromate. The results indicate that toxicity of Cr (VI) dependent on maturation steps. Cr (VI) was less toxic for immature neurons. Also, Cr (VI) induced MMP reduction and ROS production in both immature and mature neurons. In Cr (VI) treated neurons, increased lipid peroxidation and GPx activity but not acetylcholinesterase activity was observed. Interestingly, Rosmarinic acid, as a natural antioxidant, could protect mature but not immature neurons against Cr (VI) induced toxicity. Our findings revealed vulnerability of mature neurons to Cr (VI) induced toxicity and oxidative stress.

  13. Lead induced testicular hypersensitivity in stressed rats.

    PubMed

    Saxena, D K; Lal, B; Srivastava, R S; Chandra, S V

    1990-01-01

    Rats were immobilized for 2 h and treated i.p. with lead Pb2+ (8 mg/kg/day) for 45 d to investigate the testicular effects of lead on rats kept under immobilization stress. Marked alteration in SDH. G6PDH activity, cholesterol and ascorbic acid contents and reduced sperm counts associated with marked pathological changes in the testis of rats were observed after combined treatment with lead and immobilization stress in comparison to either alone. An increase in the disturbances of testicular androgen synthesis seems to be responsible for enhanced testicular injury in lead induced stressed rats. PMID:2401350

  14. Lead induced testicular hypersensitivity in stressed rats.

    PubMed

    Saxena, D K; Lal, B; Srivastava, R S; Chandra, S V

    1990-01-01

    Rats were immobilized for 2 h and treated i.p. with lead Pb2+ (8 mg/kg/day) for 45 d to investigate the testicular effects of lead on rats kept under immobilization stress. Marked alteration in SDH. G6PDH activity, cholesterol and ascorbic acid contents and reduced sperm counts associated with marked pathological changes in the testis of rats were observed after combined treatment with lead and immobilization stress in comparison to either alone. An increase in the disturbances of testicular androgen synthesis seems to be responsible for enhanced testicular injury in lead induced stressed rats.

  15. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: streptozotocin-induced diabetic rats.

    PubMed

    Govindaraj, Jayanthy; Sorimuthu Pillai, Subramanian

    2015-06-01

    Persistent hyperglycemia and elevated levels of free fatty acids (FFA) contribute to oxidative stress, a proximate cause for the onset and progression of diabetes and its complications. The present study was hypothesized to evaluate the anti-diabetic potential of Rosmarinic acid (RA) during high-fat diet (HFD)-streptozotocin (STZ)-induced type 2 Diabetes (T2D) in wistar albino rats. Oral administration of RA (100 mg/kg b.w) significantly (p < 0.05) increased the insulin sensitivity index (ISI0,120), while the levels of blood glucose, HbA1c, advanced glycation end products (AGE), TNF-α, IL-1β, IL 6, NO, p-JNK, P38 MAPK and NF-κB were significantly reduced, with a concomitant elevation in the plasma insulin levels in diabetic rats. Furthermore, RA treatment significantly (p < 0.05) reduced the levels of triglycerides, FFA and cholesterol in serum, and reduced the levels of lipid peroxides, AOPP's and protein carbonyls in the plasma and pancreas of diabetic rats. The diminished activities of pancreatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) and the decreased levels of plasma ceruloplasmin, vitamin C, vitamin E and reduced glutathione (GSH) in diabetic rats were also significantly (p < 0.05) recovered upon RA treatment denoting its antioxidant potential which was confirmed by Nrf-2, hemeoxyenase (HO-1) levels. Histological, ultrastructural and immunohistochemical data demonstrate that oral administration of RA protects pancreatic β-cells from oxidative niche in HFD-STZ-induced experimental diabetes. Our findings suggest that the oral treatment with RA alleviates pancreatic β-cell dysfunction and glucolipotoxicity-mediated oxidative stress during HFD-STZ-induced T2DM, perhaps through its antioxidant potential.

  16. The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats

    PubMed Central

    2011-01-01

    Background Trans-fatty acids (TFA) are known as a risk factor for coronary artery diseases, insulin resistance and obesity accompanied by systemic inflammation, the features of metabolic syndrome. Little is known about the effects on the liver induced by lipids and also few studies are focused on the effect of foods rich in TFAs on hepatic functions and oxidative stress. This study investigates whether high-fat diets with different TFA levels induce oxidative stress and liver dysfunction in rats. Methods Male Wistar rats were divided randomly into four groups (n = 12/group): C receiving standard-chow; Experimental groups that were fed high-fat diet included 20% fresh soybean oil diet (FSO), 20% oxidized soybean oil diet (OSO) and 20% margarine diet (MG). Each group was kept on the treatment for 4 weeks. Results A liver damage was observed in rats fed with high-fat diet via increase of liver lipid peroxidation and decreased hepatic antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase). The intake of oxidized oil led to higher levels of lipid peroxidation and a lower concentration of plasma antioxidants in comparison to rats fed with FSO. The higher inflammatory response in the liver was induced by MG diet. Liver histopathology from OSO and MG groups showed respectively moderate to severe cytoplasm vacuolation, hypatocyte hypertrophy, hepatocyte ballooning, and necroinflammation. Conclusion It seems that a strong relationship exists between the consumption of TFA in the oxidized oils and lipid peroxidation and non alcoholic fatty liver disease (NAFLD). The extent of the peroxidative events in liver was also different depending on the fat source suggesting that feeding margarine with higher TFA levels may represent a direct source of oxidative stress for the organism. The present study provides evidence for a direct effect of TFA on NAFLD. PMID:21943357

  17. Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: Regulation of endoplasmic reticulum stress-oxidative activation

    SciTech Connect

    Luo Zhifeng; Feng Bing; Mu Jiao; Qi Wei; Zeng Wei; Guo Yanhong; Pang Qi; Ye Zilin; Liu Li; Yuan Fahuan

    2010-07-15

    Oxidative stress may contribute to the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Recent reports have shown that chemical molecular chaperone 4-phenylbutyric acid (4-PBA) can suppress oxidative stress by attenuating endoplasmic reticulum (ER) stress. We therefore hypothesized that 4-PBA could provide renoprotection through the suppression of oxidative stress in DN rats. Male Sprague-Dawley (SD) rats were randomly divided into three groups: a normal control (NC) group, a streptozotocin (STZ)-induced DN model group, and a DN plus 4-PBA (1 g/kg) treatment group. At the end of 4, 8, and 12 weeks, hydroxyproline content, NADPH oxidase activity and the expression of phosphorylation of inositol-requiring enzyme-1{alpha} (p-IRE1{alpha}), p47phox, nitrotyrosine (NT) and NF-E2-related factor 2 (Nrf2) in the kidneys of all rats were determined; malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in serum and urine were also detected; renal nuclear factor {kappa}B (NF-{kappa}B) activity in all of the rats was examined at the end of 12 weeks. Compared with the NC group, the DN rats showed a significant increase in hydroxyproline content, NADPH oxidase activity, NF-{kappa}B activity, the expression of p-IRE1{alpha}, p47phox, NT and Nrf2 in renal tissue; markedly, MDA levels were higher and SOD activity was lower in serum and urine of DN rats than in NC rats for the indicated time. These alterations were inhibited by the administration of 4-PBA. These findings first demonstrated that treatment with 4-PBA significantly inhibits the process and development of diabetic nephropathy in rats through the regulation of ER stress-oxidative activation.

  18. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    PubMed Central

    Rahman, Shakilur; Ansari, Rizwan Ahmed; Rehman, Hasibur; Parvez, Suhel; Raisuddin, Sheikh

    2011-01-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC) Coville (creosote bush). It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer. PMID:19861506

  19. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress.

    PubMed

    Lu, Jun; Wu, Dong-mei; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-04-01

    The C/EBP β is a basic leucine zipper transcription factor that regulates a variety of biological processes, including metabolism, cell proliferation and differentiation, and immune response. Recent findings show that C/EBP β-induced inflammatory responses mediate kainic acid-triggered excitotoxic brain injury. In this article, we show that protein kinase C ζ enhances K-ras expression and subsequently activates the Raf/MEK/ERK1/2 pathway in the hippocampus of domoic acid (DA)-treated mice, which promotes C/EBP β expression and induces inflammatory responses. Elevated production of TNF-α impairs mitochondrial function and increases the levels of reactive oxygen species by IκB kinase β/NF-κB signaling. The aforementioned inflammation and oxidative stress lead to memory deficits in DA-treated mice. However, troxerutin inhibits cyclin-dependent kinase 1 expression, enhances type 1 protein phosphatase α dephosphorylation, and abolishes MEK/ERK1/2/C/EBP β activation, which subsequently reverses the memory impairment observed in the DA-treated mice. Thus, troxerutin is recommended as a potential candidate for the prevention and therapeutic treatment of cognitive deficits resulting from excitotoxic brain damage and other brain disorders. PMID:23420885

  20. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress.

    PubMed

    Lu, Jun; Wu, Dong-mei; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-04-01

    The C/EBP β is a basic leucine zipper transcription factor that regulates a variety of biological processes, including metabolism, cell proliferation and differentiation, and immune response. Recent findings show that C/EBP β-induced inflammatory responses mediate kainic acid-triggered excitotoxic brain injury. In this article, we show that protein kinase C ζ enhances K-ras expression and subsequently activates the Raf/MEK/ERK1/2 pathway in the hippocampus of domoic acid (DA)-treated mice, which promotes C/EBP β expression and induces inflammatory responses. Elevated production of TNF-α impairs mitochondrial function and increases the levels of reactive oxygen species by IκB kinase β/NF-κB signaling. The aforementioned inflammation and oxidative stress lead to memory deficits in DA-treated mice. However, troxerutin inhibits cyclin-dependent kinase 1 expression, enhances type 1 protein phosphatase α dephosphorylation, and abolishes MEK/ERK1/2/C/EBP β activation, which subsequently reverses the memory impairment observed in the DA-treated mice. Thus, troxerutin is recommended as a potential candidate for the prevention and therapeutic treatment of cognitive deficits resulting from excitotoxic brain damage and other brain disorders.

  1. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death.

    PubMed

    Liu, Gesheng; Zhang, Shuai; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-07-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L(-1), respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs. PMID:27155098

  2. Caffeic acid phenethyl ester attenuates ionize radiation-induced intestinal injury through modulation of oxidative stress, apoptosis and p38MAPK in rats.

    PubMed

    Jin, Liu-Gen; Chu, Jian-Jun; Pang, Qing-Feng; Zhang, Fu-Zheng; Wu, Gang; Zhou, Le-Yuan; Zhang, Xiao-Jun; Xing, Chun-Gen

    2015-07-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. This study aimed to investigate the radioprotective effects of CAPE on X-ray irradiation induced intestinal injury in rats. Rats were intragastrically administered with 10 μmol/kg/d CAPE for 7 consecutive days before exposing them to a single dose of X-ray irradiation (9Gy) to abdomen. Rats were sacrificed 72 h after exposure to radiation. We found that pretreatment with CAPE effectively attenuated intestinal pathology changes, apoptosis, oxidative stress, bacterial translocation, the content of nitric oxide and myeloperoxidase as well as the concentration of plasma tumor necrosis factor-α. Pretreatment with CAPE also reversed the activation of p38MAPK and the increased expression of intercellular cell adhesion molecule-1 induced by radiation in intestinal mucosa. Taken together, these results suggest that pretreatment with CAPE could be a promising candidate for treating radiation-induced intestinal injury. PMID:26122083

  3. An α-acetoxy-tirucallic acid isomer inhibits Akt/mTOR signaling and induces oxidative stress in prostate cancer cells.

    PubMed

    El Gaafary, Menna; Büchele, Berthold; Syrovets, Tatiana; Agnolet, Sara; Schneider, Bernd; Schmidt, Christoph Q; Simmet, Thomas

    2015-01-01

    Here we provide evidence that αATA(8,24) (3α-acetyloxy-tir-8,24-dien-21-oic acid) inhibits Akt/mammalian target of rapamycin (mTOR) signaling. αATA(8,24) and other tirucallic acids were isolated from the acetylated extract of the oleo gum resin of Boswellia serrata to chemical homogeneity. Compared with related tirucallic acids, αATA(8,24) was the most potent inhibitor of the proliferation of androgen-insensitive prostate cancer cells in vitro and in vivo, in prostate cancer xenografted onto chick chorioallantoic membranes. αATA(8,24) induced loss of cell membrane asymmetry, caspase-3 activation, and DNA fragmentation in vitro and in vivo. These effects were selective for cancer cells, because αATA(8,24) exerted no overt toxic effects on peripheral blood mononuclear cells or the chick embryo. At the molecular level, αATA(8,24) inhibited the Akt1 kinase activity. Prior to all biochemical signs of cellular dysfunction, αATA(8,24) induced inhibition of the Akt downstream target mTOR as indicated by dephosphorylation of S6K1. This event was followed by decreased expression of cell cycle regulators, such as cyclin D1, cyclin E, and cyclin B1, as well as cyclin-dependent kinases CDK4 and CDK2 and phosphoretinoblastoma protein, which led to inhibition of the cell-cycle progression. In agreement with the mTOR inhibition, αATA(8,24) and rapamycin increased the volume of acidic vesicular organelles. In contrast to rapamycin, αATA(8,24) destabilized lysosomal and mitochondrial membranes and induced reactive oxygen species production in cancer cells. The ability of αATA(8,24) to inhibit Akt/mTOR signaling and to induce simultaneously oxidative stress could be exploited for the development of novel antitumor therapeutics with a lower profile of toxic side effects. PMID:25316122

  4. Light and abiotic stresses regulate the expression of GDP-L-galactose phosphorylase and levels of ascorbic acid in two kiwifruit genotypes via light-responsive and stress-inducible cis-elements in their promoters.

    PubMed

    Li, Juan; Liang, Dong; Li, Mingjun; Ma, Fengwang

    2013-09-01

    Ascorbic acid (AsA) plays an essential role in plants by protecting cells against oxidative damage. GDP-L-galactose phosphorylase (GGP) is the first committed gene for AsA synthesis. Our research examined AsA levels, regulation of GGP gene expression, and how these are related to abiotic stresses in two species of Actinidia (kiwifruit). When leaves were subjected to continuous darkness or light, ABA or MeJA, heat, or a hypoxic environment, we found some correlation between the relative levels of GGP mRNA and AsA concentrations. In transformed tobacco plants, activity of the GGP promoter was induced by all of these treatments. However, the degree of inducibility in the two kiwifruit species differed among the GGP promoter deletions. We deduced that the G-box motif, a light-responsive element, may have an important function in regulating GGP transcripts under various light conditions in both A. deliciosa and A. eriantha. Other elements such as ABRE, the CGTCA motif, and HSE might also control the promoter activities of GGP in kiwifruit. Altogether, these data suggest that GGP expression in the two kiwifruit species is regulated by light or abiotic stress via the relative cis-elements in their promoters. Furthermore, GGP has a critical role in modulating AsA concentrations in kiwifruit species under abiotic stresses.

  5. Oral administration of diphenylarsinic acid, a degradation product of chemical warfare agents, induces oxidative and nitrosative stress in cerebellar Purkinje cells.

    PubMed

    Kato, Koichi; Mizoi, Mutsumi; An, Yan; Nakano, Masayuki; Wanibuchi, Hideki; Endo, Ginji; Endo, Yoko; Hoshino, Mikio; Okada, Shoji; Yamanaka, Kenzo

    2007-11-10

    A new clinical syndrome with prominent cerebellar symptoms in patients living in Kamisu City, Ibaraki Prefecture, Japan, is described. Since the patients ingested drinking water containing diphenylarsinic acid (DPA), a stable degradation product of both diphenylcyanoarsine and diphenylchloroarsine, which were developed for use as chemical weapons and cause severe vomiting and sneezing, DPA was suspected of being responsible for the clinical syndrome. The purpose of the present study was to elucidate prominent cerebellar symptoms due to DPA. The aim of the study was to determine if single (15 mg/kg) or continuous (5 mg/kg/day for 5 weeks) oral administration of DPA to ICR-strain mice induced oxidative and/or nitrosative stress in their brain. Significantly positive staining with malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) was observed in the cerebellar Purkinje cells by repeated administration (5 mg/kg/day) with DPA for 5 weeks that led to the cerebellar symptoms from a behavioral pharmacology standpoint and by single administration of DPA (15 mg/kg). Furthermore, it is possible that the production of 3-NT was not caused by peroxynitrite formation. The present results suggest the possibility that arsenic-associated novel active species may be a factor underlying the oxidative and nitrosative stress in Purkinje cells due to exposure to DPA, and that the damage may lead to the cerebellar symptoms.

  6. Salt stress-induced protein phosphorylation

    SciTech Connect

    Godoy, J.A.; Torres-Schumann, S.; Llobell, A.; Pintor-Toro, J.A.

    1989-04-01

    Protein phosphorylation induced by salt stress in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 32}P)-Phosphate. NaCl induced the phosphorylation of a 14 Kd polypeptide. Pulse-chase experiments revealed that the phosphorylated molecules of this polypeptide are only stable while the stress is present. Phosphorylated 14 Kd polypeptides could be detected in radicles of salt-shocked seedlings after 6 hours stress period. 14 Kd polypeptide phosphorylation was also observed in seeds germinating in the presence of abscisic acid (ABA). The amount of phosphorylated 14 Kd polypeptide was significantly increased in seeds treated simultaneously with NaCl and ABA.

  7. Antidepressant-Like Activity of 10-Hydroxy-Trans-2-Decenoic Acid, a Unique Unsaturated Fatty Acid of Royal Jelly, in Stress-Inducible Depression-Like Mouse Model

    PubMed Central

    Ito, Satoru; Nitta, Yuji; Fukumitsu, Hidefumi; Soumiya, Hitomi; Ikeno, Kumiko; Nakamura, Tadashi; Furukawa, Shoei

    2012-01-01

    Symptoms of depression and anxiety appeared in mice after they had been subjected to a combination of forced swimming for 15 min followed by being kept in cages that were sequentially subjected to leaning, drenching, and rotation within 1-2 days for a total of 3 weeks. The animals were then evaluated by the tail-suspension test, elevated plus-maze test, and open-field test at 1 day after the end of stress exposure. Using these experimental systems, we found that 10-hydroxy-trans-2-decenoic acid (HDEA), an unsaturated fatty acid unique to royal jelly (RJ), protected against the depression and anxiety when intraperitoneally administered once a day for 3 weeks simultaneously with the stress loading. Intraperitoneally administered RJ, a rich source of HDEA, was also protective against the depression, but RJ given by the oral route was less effective. Our present results demonstrate that HDEA and RJ, a natural source of it, were effective in ameliorating the stress-inducible symptoms of depression and anxiety. PMID:21799699

  8. Precision-cut liver slices from diet-induced obese rats exposed to ethanol are susceptible to oxidative stress and increased fatty acid synthesis

    PubMed Central

    Willis, Monte S.; Schaffert, Courtney S.; Reidelberger, Roger D.; Dusad, Anand; Anderson, Daniel R.; Klassen, Lynell W.; Thiele, Geoffrey M.

    2013-01-01

    Oxidative stress from fat accumulation in the liver has many deleterious effects. Many believe that there is a second hit that causes relatively benign fat accumulation to transform into liver failure. Therefore, we evaluated the effects of ethanol on ex vivo precision-cut liver slice cultures (PCLS) from rats fed a high-fat diet resulting in fatty liver. Age-matched male Sprague-Dawley rats were fed either high-fat (obese) (45% calories from fat, 4.73 kcal/g) or control diet for 13 mo. PCLS were prepared, incubated with 25 mM ethanol for 24, 48, and 72 h, harvested, and evaluated for ethanol metabolism, triglyceride production, oxidative stress, and cytokine expression. Ethanol metabolism and acetaldehyde production decreased in PCLS from obese rats compared with age-matched controls (AMC). Increased triglyceride and smooth muscle actin production was observed in PCLS from obese rats compared with AMC, which further increased following ethanol incubation. Lipid peroxidation, measured by thiobarbituric acid reactive substances assay, increased in response to ethanol, whereas GSH and heme oxygenase I levels were decreased. TNF-α and IL-6 levels were increased in the PCLS from obese rats and increased further with ethanol incubation. Diet-induced fatty liver increases the susceptibility of the liver to toxins such as ethanol, possibly by the increased oxidative stress and cytokine production. These findings support the concept that the development of fatty liver sensitizes the liver to the effects of ethanol and leads to the start of liver failure, necrosis, and eventually cirrhosis. PMID:24284960

  9. Precision-cut liver slices from diet-induced obese rats exposed to ethanol are susceptible to oxidative stress and increased fatty acid synthesis.

    PubMed

    Duryee, Michael J; Willis, Monte S; Schaffert, Courtney S; Reidelberger, Roger D; Dusad, Anand; Anderson, Daniel R; Klassen, Lynell W; Thiele, Geoffrey M

    2014-02-01

    Oxidative stress from fat accumulation in the liver has many deleterious effects. Many believe that there is a second hit that causes relatively benign fat accumulation to transform into liver failure. Therefore, we evaluated the effects of ethanol on ex vivo precision-cut liver slice cultures (PCLS) from rats fed a high-fat diet resulting in fatty liver. Age-matched male Sprague-Dawley rats were fed either high-fat (obese) (45% calories from fat, 4.73 kcal/g) or control diet for 13 mo. PCLS were prepared, incubated with 25 mM ethanol for 24, 48, and 72 h, harvested, and evaluated for ethanol metabolism, triglyceride production, oxidative stress, and cytokine expression. Ethanol metabolism and acetaldehyde production decreased in PCLS from obese rats compared with age-matched controls (AMC). Increased triglyceride and smooth muscle actin production was observed in PCLS from obese rats compared with AMC, which further increased following ethanol incubation. Lipid peroxidation, measured by thiobarbituric acid reactive substances assay, increased in response to ethanol, whereas GSH and heme oxygenase I levels were decreased. TNF-α and IL-6 levels were increased in the PCLS from obese rats and increased further with ethanol incubation. Diet-induced fatty liver increases the susceptibility of the liver to toxins such as ethanol, possibly by the increased oxidative stress and cytokine production. These findings support the concept that the development of fatty liver sensitizes the liver to the effects of ethanol and leads to the start of liver failure, necrosis, and eventually cirrhosis.

  10. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts

    PubMed Central

    Baek, Beomyeol; Lee, Su Hee; Lim, Hye-Won

    2016-01-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  11. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis.

  12. Ellagic acid plays a protective role against UV-B-induced oxidative stress by up-regulating antioxidant components in human dermal fibroblasts.

    PubMed

    Baek, Beomyeol; Lee, Su Hee; Kim, Kyunghoon; Lim, Hye-Won; Lim, Chang-Jin

    2016-05-01

    Ellagic acid (EA), an antioxidant polyphenolic constituent of plant origin, has been reported to possess diverse pharmacological properties, including anti-inflammatory, anti-tumor and immunomodulatory activities. This work aimed to clarify the skin anti-photoaging properties of EA in human dermal fibroblasts. The skin anti-photoaging activity was evaluated by analyzing the reactive oxygen species (ROS), matrix metalloproteinase-2 (MMP-2), total glutathione (GSH) and superoxide dismutase (SOD) activity levels as well as cell viability in dermal fibroblasts under UV-B irradiation. When fibroblasts were exposed to EA prior to UV-B irradiation, EA suppressed UV-B-induced ROS and proMMP-2 elevation. However, EA restored total GSH and SOD activity levels diminished in fibroblasts under UV-B irradiation. EA had an up-regulating activity on the UV-B-reduced Nrf2 levels in fibroblasts. EA, at the concentrations used, was unable to interfere with cell viabilities in both non-irradiated and irradiated fibroblasts. In human dermal fibroblasts, EA plays a defensive role against UV-B-induced oxidative stress possibly through an Nrf2-dependent pathway, indicating that this compound has potential skin antiphotoaging properties. PMID:27162481

  13. Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells.

    PubMed

    Raza, Haider; John, Annie; Benedict, Sheela

    2011-10-01

    It is widely accepted that non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin, reduce the risk of cancer. The anti-cancer and anti-inflammatory effects of NSAIDs are associated with the inhibition of prostaglandin synthesis and cyclooxygenase-2 activity. Several other mechanisms which contribute to the anti-cancer effect of these drugs in different cancer models both in vivo and in vitro are also presumed to be involved. The precise molecular mechanism, however, is still not clear. We investigated, therefore, the effects of acetylsalicylic acid (ASA, aspirin) on multiple cellular and functional targets, including mitochondrial bioenergetics, using human hepatoma HepG2 cancer cells in culture. Our results demonstrate that ASA induced G0/G1 cell cycle arrest and apoptosis in HepG2 cells. ASA increased the production of reactive oxygen species, reduced the cellular glutathione (GSH) pool and inhibited the activities of the mitochondrial respiratory enzyme complexes, NADH-ubiquinone oxidoreductase (complex I), cytochrome c oxidase (complex IV) and the mitochondrial matrix enzyme, aconitase. Apoptosis was triggered by alteration in mitochondrial permeability transition, inhibition of ATP synthesis, decreased expression of the anti-apoptotic protein Bcl-2, release of cytochrome c and activation of pro-apoptotic caspase-3 and the DNA repairing enzyme, poly (-ADP-ribose) polymerase (PARP). These findings strongly suggest that ASA-induced toxicity in human hepatoma HepG2 cells is mediated by increased metabolic and oxidative stress, accompanied by mitochondrial dysfunction which result in apoptosis. PMID:21722632

  14. Reproductive hormones, hepatic deiodinase messenger ribonucleic acid, and vasoactive intestinal polypeptide-immunoreactive cells in hypothalamus in the heat stress-induced or chemically induced hypothyroid laying hen.

    PubMed

    Elnagar, S A; Scheideler, S E; Beck, M M

    2010-09-01

    Heat stress (HS) effects on reproductive and thyroid hormones have been well documented; however, mechanisms of action are not well understood. Two studies were conducted to determine whether HS-induced and hypothyroid-induced effects are similar in the laying hen, with regard to reproductive hormones and vasoactive intestinal polypeptide (VIP)-immunoreactive cells in the hypothalamus. In study 1, thirty 32-wk-old Hy-Line W-36 laying hens, housed at 22 degrees C, were cannulated. On d 0 and then on d 1 to 5 of HS (35 degrees C, 50% RH), a daily blood sample was obtained and assayed for triiodothyronine (T(3)), thyroxine (T(4)), 17beta-estradiol (E(2)), progesterone (P(4)), prolactin (PRL), and VIP, and T(3):T(4)was calculated. On d 0, 1, 3, and 5, livers were obtained for hepatic type I deiodinase mRNA (cDI-1) determination. In study 2, eighty 32-wk-old hens were randomly assigned to 4 treatments of 20 birds each: 1) HS (36.5 degrees C, 50% RH), 2) thiouracil-induced hypothyroidism (HY), 3) HY + T(4) administration, and 4) control (22 degrees C). Beginning on d 1 of the 5-d study, daily blood samples (3.0 mL) were removed and assayed as in study 1. On d 5, brains were removed from 3 hens/treatment and immunoreactivity of VIP cells was determined. In study 1, HS reduced E(2), P(4), T(3) (P = 0.0001), T(3):T(4) ratio (P = 0.0078), and hepatic type I deiodinase mRNA (P = 0.0204) and increased T(4) (P = 0.0013); there was no effect on VIP or PRL. In study 2, HS and HY reduced T(3), T(3):T(4) ratio, and E(2) (P = 0.0001) and increased PRL (P = 0.0045); HS alone decreased P(4) (P = 0.0001). In HY + T(4), plasma E(2) and PRL were similar to control. Vasoactive intestinal polypeptide increased in plasma of HY birds, but there was no effect of HS or HY + T(4). Immunoreactive VIP cells increased (P = 0.0036) in nucleus inferior hypothalami of HS and HY brains. In HY + T(4), VIP immunoreactive cell numbers were similar to control. It appears that HY induced chemically or by

  15. Antioxidant-Induced Stress

    PubMed Central

    Villanueva, Cleva; Kross, Robert D.

    2012-01-01

    Antioxidants are among the most popular health-protecting products, sold worldwide without prescription. Indeed, there are many reports showing the benefits of antioxidants but only a few questioning the possible harmful effects of these “drugs”. The normal balance between antioxidants and free radicals in the body is offset when either of these forces prevails. The available evidence on the harmful effects of antioxidants is analyzed in this review. In summary, a hypothesis is presented that “antioxidant-induced stress” results when antioxidants overwhelm the body’s free radicals. PMID:22408440

  16. Amino acid concentrations in hypothalamic and caudate nuclei during microwave-induced thermal stress: Analysis by microdialysis

    SciTech Connect

    Mason, P.A.; Doyle, J.M.; Escarciga, R.; Romano, W.F.; Donnellan, J.P.; Berger, R.E.

    1997-05-01

    Exposure to radiofrequency radiation (RFR) may produce thermal responses. Extracellular amino acid concentrations in the hypothalamus (Hyp) and caudate nucleus (CN) were measured by using in vivo microdialysis before and during exposure to RFR. Under urethane anesthetic, each rat was implanted stereotaxically with a nonmetallic microdialysis probe and temperature probe guides and then placed in the exposure chamber. The rat laid on its right side with its head and neck placed directly under the wave guide. Temperature probes were placed in the lift brain, right brain, face, left tympanum, and rectum. Each microdialysis sample was collected over a 20 min period. The microdialysis probe was perfused for 2 h before the rat was exposed to 5.02 GHz radiation. The right and left sides of the brain were maintained at approximately 41.2 and 41.7 C, respectively, throughout a 40 min exposure period. Initially when the brain was being heated to these temperatures, the time-averaged specific absorption rates (SARs) for the right and left sides of the brain were 29 and 40 W/kg, respectively. Concentrations of aspartic acid, glutamic acid, serine, glutamine, and glycine in dialysate were determined by using high-pressure liquid chromatography with electrochemical detection. In the Hyp and CN, the concentrations of aspartic acid, serine, and glycine increased significantly during RFR exposure.

  17. Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids.

    PubMed

    Zafari, Somaieh; Sharifi, Mohsen; Ahmadian Chashmi, Najmeh; Mur, Luis A J

    2016-02-01

    Lead (Pb) is a hazardous heavy metal present in the environment which elicits oxidative stress in plants. To characterize the physiological and biochemical basis of Pb tolerance, Prosopis farcta seedlings were exposed to Hoagland's solutions at six different Pb concentrations (0, 80, 160, 320, 400 and 480 μM) for different periods of time. As expected, application of Pb significantly increased hydrogen peroxide (H2O2) content. In response, P. farcta deployed the antioxidative defence mechanisms with significantly higher activities of superoxide dismutase (SOD), enzymes related to H2O2 removal, and also the increases in proline as a solute marker of stress. Increases were observed in nitric oxide (NO) production which could also act in triggering defense functions to detoxify Pb. Enhanced phenylalanine ammonia-lyase (PAL) activity at early days of exposure to Pb was correlated with increases in phenolic compounds. Significant increases in phenolic acids and flavonoids; daidzein, vitexin, ferulic acid and salicylic acid were observed with Pb treatment. Furthermore, the stress effects were followed by changes in free amino acid content and composition. Aspartic acid and glycine content was increased but glutamic acid significantly decreased. It is likely that stress signal transduction by NO and H2O2 mediated defence responses to Pb by coordination of antioxidative system and metabolic pathways of phenylpropanoid and amino acids.

  18. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  19. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells.

    PubMed

    An, Qiao; Sun, Chuanyu; Li, Dian; Xu, Ke; Guo, Jia; Wang, Changchun

    2013-12-26

    Ascorbic acid (AA) is capable of inhibiting cancer cell growth by perturbing the normal redox state of cells and causing toxic effects through the generation of abundant reactive-oxygen species (ROS). However, the clinical utility of AA at a tolerable dosage is plagued by a relatively low in vivo efficacy. This study describes the development of a peroxidase-like composite nanoparticle for use in an AA-mediated therapeutic strategy. On the basis of a high-throughput, one-pot solvothermal approach, Fe3O4@C nanoparticles (NPs) were synthesized and then modified with folic acid (FA) on the surface. Particular focus is concentrated on the assessment of peroxidase-like catalytic activity by a chromogenic reaction in the presence of H2O2. The carbon shell of Fe3O4@C NPs contains partially graphitized carbon and thus facilitates electron transfer in the catalytic decomposition of H2O2, leading to the production of highly reactive hydroxyl radicals. Along with magnetic responsiveness and receptor-binding specificity, the intrinsic peroxidase-like catalytic activity of Fe3O4@C-FA NPs pronouncedly promotes AA-induced oxidative stress in cancer cells and optimizes the ROS-mediated antineoplastic efficacy of exogenous AA. In vitro experiments using human prostate cancer PC-3 cells demonstrate that Fe3O4@C-FA NPs serve as a peroxidase mimic to create hydroxyl radicals from endogenous H2O2 that is yielded in response to exogenous AA via an oxidative stress process. The usage of a dual agent leads to the enhanced cytotoxicity of PC-3 cells, and, because of the synergistic effect of NPs, the administrated dosage of AA is reduced markedly. However, because normal cells (HEK 293T cells) appear to have a higher capacity to cope with additionally generated ROS than cancer cells, the NP-AA combination shows little damage in this case, proving that selective killing of cancer cells could be achieved owing to preferential accumulation of ROS in cancer cells. A possible ROS

  20. Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells.

    PubMed

    An, Qiao; Sun, Chuanyu; Li, Dian; Xu, Ke; Guo, Jia; Wang, Changchun

    2013-12-26

    Ascorbic acid (AA) is capable of inhibiting cancer cell growth by perturbing the normal redox state of cells and causing toxic effects through the generation of abundant reactive-oxygen species (ROS). However, the clinical utility of AA at a tolerable dosage is plagued by a relatively low in vivo efficacy. This study describes the development of a peroxidase-like composite nanoparticle for use in an AA-mediated therapeutic strategy. On the basis of a high-throughput, one-pot solvothermal approach, Fe3O4@C nanoparticles (NPs) were synthesized and then modified with folic acid (FA) on the surface. Particular focus is concentrated on the assessment of peroxidase-like catalytic activity by a chromogenic reaction in the presence of H2O2. The carbon shell of Fe3O4@C NPs contains partially graphitized carbon and thus facilitates electron transfer in the catalytic decomposition of H2O2, leading to the production of highly reactive hydroxyl radicals. Along with magnetic responsiveness and receptor-binding specificity, the intrinsic peroxidase-like catalytic activity of Fe3O4@C-FA NPs pronouncedly promotes AA-induced oxidative stress in cancer cells and optimizes the ROS-mediated antineoplastic efficacy of exogenous AA. In vitro experiments using human prostate cancer PC-3 cells demonstrate that Fe3O4@C-FA NPs serve as a peroxidase mimic to create hydroxyl radicals from endogenous H2O2 that is yielded in response to exogenous AA via an oxidative stress process. The usage of a dual agent leads to the enhanced cytotoxicity of PC-3 cells, and, because of the synergistic effect of NPs, the administrated dosage of AA is reduced markedly. However, because normal cells (HEK 293T cells) appear to have a higher capacity to cope with additionally generated ROS than cancer cells, the NP-AA combination shows little damage in this case, proving that selective killing of cancer cells could be achieved owing to preferential accumulation of ROS in cancer cells. A possible ROS

  1. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti

    PubMed Central

    Draghi, W. O.; Del Papa, M. F.; Hellweg, C.; Watt, S. A.; Watt, T. F.; Barsch, A.; Lozano, M. J.; Lagares, A.; Salas, M. E.; López, J. L.; Albicoro, F. J.; Nilsson, J. F.; Torres Tejerizo, G. A.; Luna, M. F.; Pistorio, M.; Boiardi, J. L.; Pühler, A.; Weidner, S.; Niehaus, K.; Lagares, A.

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  2. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    PubMed

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-07-11

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.

  3. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    PubMed

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  4. Inhibitory Effects of α-Lipoic Acid on Oxidative Stress-Induced Adipogenesis in Orbital Fibroblasts From Patients With Graves Ophthalmopathy.

    PubMed

    Hwang, Sena; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig

    2016-01-01

    A choice of the optimal treatment for Graves ophthalmopathy (GO) is a challenge due to the complexity of the pathogenesis. Alpha-lipoic acid (ALA) is well known as a multifunctional antioxidant, helping to protect cells against oxidative stress and inflammatory damage.The aim of this study was to investigate the effects of ALA on intracellular production of reactive oxygen species (ROS), inflammation, and adipogenesis using primary cultured orbital fibroblasts from patients with GO.Intracellular ROS levels and mRNA expressions of proinflammatory cytokines and chemokines including intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and regulated upon activation normal T cell expressed and presumably secreted (RANTES) were measured. After adipogenesis, the expressions of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT-enhancer-binding proteins (C/EBP)α and β, and heme oxygenase-1 (HO-1) were investigated.H2O2 dose-dependently stimulated ROS production and HO-1 expression. Addition of ALA strongly attenuated ROS production and further increased HO-1 expression. However, by pretreatment of zinc protoporphyrin (ZnPP), HO-1 inhibitor, ALA inhibition of ROS generation by H2O2 was abolished. Tumor necrosis factor (TNF)α-induced mRNA expressions of ICAM-1, IL-6, MCP-1, and RANTES were inhibited by ALA treatment. In this context, TNFα-induced phosphorylation of P65 was also inhibited. In addition, ALA dose-dependently inhibited H2O2-induced intracellular accumulation of lipid droplets. The expression of adipogenic transcription factors, including PPARγ, C/EBPα, and β, was also inhibited.ALA is a potential therapeutic agent for GO because of the inhibitory effects on ROS production and gene expression of proinflammatory cytokines and chemokines, resulting in prevention of adipose-tissue expansion. PMID:26765462

  5. Short-term supplementation with alpha-ketoglutaric acid and 5-hydroxymethylfurfural does not prevent the hypoxia induced decrease of exercise performance despite attenuation of oxidative stress.

    PubMed

    Gatterer, H; Greilberger, J; Philippe, M; Faulhaber, M; Djukic, R; Burtscher, M

    2013-01-01

    Reactive oxygen species are thought to partly be responsible for the hypoxia induced performance decrease. The present study evaluated the effects of a broad based antioxidant supplementation or the combined intake of alpha-ketoglutaric acid (α-KG) and 5-hydroxymethylfurfural (5-HMF) on the performance decrease at altitude. 18 healthy, well-trained males (age: 25±3 years; height: 179±6 cm; weight: 76.4±6.8 kg) were randomly assigned in a double-blind fashion to a placebo group (PL), a α-KG and 5-HMF supplementation group (AO1) or a broad based antioxidant supplementation group (AO2). Participants performed 2 incremental exercise tests to exhaustion on a cycle ergometer; the first test under normoxia and the second under hypoxia conditions (simulated altitude, FiO2=13% ~ 4 300 m). Supplementation started 48 h before the hypoxia test. Maximal oxygen uptake, maximal power output, power output at the ventilatory and lactate threshold and the tissue oxygenation index (NIRS) were measured under both conditions. Oxidative stress markers were measured before the supplementation and after the hypoxia test. Under hypoxia conditions all performance parameters decreased in the range of 19-39% with no differences between groups. A significant change from normoxia to hypoxia (p<0.001) and between groups (p=0.038) were found for the tissue oxygenation index. Post hoc test revealed significant differences between the PL and both, the AO1 and the AO2 group. The oxidative stress parameter carbonyl protein changed from normoxia to hypoxia in all participants and 4-hydroxynonenal decreased in the AO1 group only. In conclusion the results suggest that short-term supplementation with an antioxidant does not prevent the performance decrease at altitude. However, positive effects on muscle oxygen extraction, as indicated by the tissue oxygenation index, might indicate that mitochondrial functioning was actually influenced by the supplementation. PMID:22893323

  6. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  7. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic β cells.

    PubMed

    Zhang, Yongneng; Yamamoto, Tetsuya; Hisatome, Ichiro; Li, Youfeng; Cheng, Weijie; Sun, Ning; Cai, Bozhi; Huang, Tianliang; Zhu, Yuzhang; Li, Zhi; Jing, Xubin; Zhou, Rui; Cheng, Jidong

    2013-08-15

    Hyperuricaemia is a disorder of purine metabolism, and is strongly associated with insulin resistance and abnormal glucose metabolism. As the producer of insulin, pancreatic β cells might be affected by elevated serum uric acid levels and contribute to the disregulated glucose metabolism. In this study, we investigated the effect of high uric acid on rat pancreatic β cell function. Under high uric acid condition, proliferation of pancreatic β cells was inhibited, production of reactive oxygen species increased, and glucose stimulated insulin secretion was also compromised. Further examination on signal transduction pathways revealed that uric acid-induced ROS is involved in the activation of adenosine monophosphate-activated protein kinase (AMPK), and extracellular signal-regulated kinase (ERK). Pharmacological inhibition of ERK activation rescued β cells from growth inhibition. More importantly, activation of ERK induced by uric acid is significantly diminished by AMPK inhibitor, indicating ERK as a downstream target of AMPK in response to high uric acid condition. We also investigated the transportation channel for uric acid into pancreatic β cells. While major urate transporter URAT1 is not expressed in β cells, organic anion transporter (OAT) inhibitor successfully blocked the activation of ERK by uric acid. Our data indicate that high uric acid levels induce oxidative damage and inhibit growth of rat pancreatic β cells by activating the AMPK and ERK signal pathways. Hyperuricemia may contribute to abnormal glucose metabolism by causing oxidative damage and function inhibition of pancreatic β cells.

  8. An acid/alkaline stress and the addition of amino acids induce a prolonged viability of Lactobacillus plantarum loaded into alginate gel.

    PubMed

    Bevilacqua, Antonio; Sinigaglia, Milena; Corbo, Maria Rosaria

    2010-08-15

    This study reports on the investigation on the effects of the conditions used throughout the step of biomass production on the survival of Lactobacillus plantarum loaded into alginate gels. L. plantarum was grown under different conditions (MRS or a laboratory medium-LB(2)-at acidic or alkaline pHs, with NaCl, phenols, vitamins or amino acids) and immobilized in sodium alginate; cell number was evaluated throughout the storage and death (delta(stand)) and first-reduction times (delta) were calculated. The storage of alginate gels at 4 degrees C prolonged cell viability up to 60 days (ca. 20 days for cells produced in MRS and stored at 30 degrees C); however, a similar prolongation was achieved for cells produced in LB(2) adjusted to pH 5.0 and 9.0 or added with amino acids (death time>50-60 days).

  9. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats

    PubMed Central

    Jin, Yu; Yang, Jun; Lin, Lianjie; Lin, Yan; Zheng, Changqing

    2016-01-01

    Background: Oxidative stress (OS) has been regarded as one of the major pathogeneses of ulcerative colitis (UC) through damaging colon. It has been shown that Scutellariae radix (SR) extract has a beneficial effect for the prevention and treatment of UC. Objective: The aim of this study was to investigate whether SR had a potential capacity on oxidant damage for colon injury both in vivo and in vitro. Materials and Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce UC rats model while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage. Disease activity index (DAI) was determined to response the severity of colitis. The myeloperoxidase (MPO) activity in rat colon was also estimated. The 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid assay was performed to evaluate the total antioxidant capacity of SR. Furthermore, the activity of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation malondialdehyde (MDA) in cell supernatant and rat serum were detected by appropriate kits. In addition, an immunohistochemical assay was applied to examine transforming growth factor beta 1 (TGF-β1) protein expression in colon tissue. Results: The treatment with SR could significantly increase the activity of GSH-PX, CAT, and SOD associated with OS in LPS-induced RAW264.7 cell damage and TNBS-induced UC rats. However, the level of MDA was markedly reduced both in vitro and in vivo. Furthermore, SR significantly decreased DAI and reversed the increased MPO activity. Thus, SR could decrease the severity of acute TNBS-induced colitis in rats. Immunohistochemical assay showed that SR significantly downregulated TGF-β1 protein expression in colon tissue. Conclusion: Our data provided evidence to support this fact that SR attenuated OS in LPS-induced RAW264.7 cell and also in TNBS-induced UC rats. Thus, SR may be an interesting candidate drug for the management of UC. SUMMARY Scutellariae radix (SR

  10. Renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF‑κB activities.

    PubMed

    Peng, Jun; Ren, Xingfeng; Lan, Tianbiao; Chen, Yan; Shao, Ziyun; Yang, Cheng

    2016-10-01

    Ursolic acid, a pentacyclic triterpene compound with low toxicity and easy availability, has a variety of biological activities, including antitumor, antioxidant, antihepatitis, anti‑inflammatory and antibacterial effects. The present study aimed to investigate the renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury (I/R‑IAKI) in rats associated with its antioxidant and anti‑inflammatory effects, as well as interference with the signal transducer and activator of transcription (STAT)3/nuclear factor (NF)‑κB signaling pathway. The present study demonstrated that pre‑treatment with ursolic acid significantly increased renal functioning and attenuated increases of serum angiotensin II levels in rats subjected to I/R‑IAKI. In addition, I/R‑IAKI‑induced inflammation and oxidative stress were significantly reduced by pre‑treatment with ursolic acid. Furthermore, ursolic acid significantly suppressed the upregulation of STAT3, NF‑κB and caspase‑3 activities in rats following I/R‑IAKI. These results indicated that ursolic acid may be a potential drug for reducing I/R‑IAKI through suppression of inflammation and oxidative stress damage, as well as modulation of STAT3 and NF‑κB activities. PMID:27573738

  11. Renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF‑κB activities.

    PubMed

    Peng, Jun; Ren, Xingfeng; Lan, Tianbiao; Chen, Yan; Shao, Ziyun; Yang, Cheng

    2016-10-01

    Ursolic acid, a pentacyclic triterpene compound with low toxicity and easy availability, has a variety of biological activities, including antitumor, antioxidant, antihepatitis, anti‑inflammatory and antibacterial effects. The present study aimed to investigate the renoprotective effects of ursolic acid on ischemia/reperfusion‑induced acute kidney injury (I/R‑IAKI) in rats associated with its antioxidant and anti‑inflammatory effects, as well as interference with the signal transducer and activator of transcription (STAT)3/nuclear factor (NF)‑κB signaling pathway. The present study demonstrated that pre‑treatment with ursolic acid significantly increased renal functioning and attenuated increases of serum angiotensin II levels in rats subjected to I/R‑IAKI. In addition, I/R‑IAKI‑induced inflammation and oxidative stress were significantly reduced by pre‑treatment with ursolic acid. Furthermore, ursolic acid significantly suppressed the upregulation of STAT3, NF‑κB and caspase‑3 activities in rats following I/R‑IAKI. These results indicated that ursolic acid may be a potential drug for reducing I/R‑IAKI through suppression of inflammation and oxidative stress damage, as well as modulation of STAT3 and NF‑κB activities.

  12. Akt-dependent NF-kappaB activation is required for bile acids to rescue colon cancer cells from stress-induced apoptosis.

    PubMed

    Shant, Jasleen; Cheng, Kunrong; Marasa, Bernard S; Wang, Jian-Ying; Raufman, Jean-Pierre

    2009-02-01

    Conjugated secondary bile acids promote human colon cancer cell proliferation by activating EGF receptors (EGFR). We hypothesized that bile acid-induced EGFR activation also mediates cell survival by downstream Akt-regulated activation of NF-kappaB. Deoxycholyltaurine (DCT) treatment attenuated TNF-alpha-induced colon cancer cell apoptosis, and stimulated rapid and sustained NF-kappaB nuclear translocation and transcriptional activity (detected by NF-kappaB binding to an oligonucleotide consensus sequence and by activation of luciferase reporter gene constructs). Both DCT-induced NF-kappaB nuclear translocation and attenuation of TNF-alpha-stimulated apoptosis were dependent on EGFR activation. Inhibitors of nuclear translocation, proteosome activity, and IkappaBalpha kinase attenuated NF-kappaB transcriptional activity. Cell transfection with adenoviral vectors encoding a non-degradable IkappaBalpha 'super-repressor' blocked the actions of DCT on both NF-kappaB activation and TNF-alpha-induced apoptosis. Likewise, transfection with mutant akt and treatment with a chemical inhibitor of Akt attenuated effects of DCT on NF-kappaB transcriptional activity and TNF-alpha-induced apoptosis. Chemical inhibitors of Akt and NF-kappaB activation also attenuated DCT-induced rescue of H508 cells from ultraviolet radiation-induced apoptosis. Collectively, these observations indicate that, downstream of EGFR, bile acid-induced colon cancer cell survival is mediated by Akt-dependent NF-kappaB activation. These findings provide a mechanism whereby bile acids increase resistance of colon cancer to chemotherapy and radiation.

  13. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    PubMed

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  14. The effect of the menstrual cycle and of decompression stress on arachidonic acid-induced platelet aggregation and on intrinsic platelet thromboxane production in women compared with men.

    PubMed

    Markham, S M; Dubin, N H; Rock, J A

    1991-12-01

    Menstrual cycle variations in platelet aggregation and thromboxane production in association with sex steroids have been reported. External stimuli such as decompression sickness have been associated with clotting activity changes, specifically, increased platelet aggregation. Differences in response of platelets from women and men, when subjected to such a stress, have been observed. This study evaluated the ability of washed platelets from women in the proliferative and secretory phases of the menstrual cycle to aggregate in response to arachidonic acid and the aggregation difference between washed platelets from women and men in response to decompression stress and arachidonic acid. Additionally, platelet thromboxane production differences between the assessed platelet populations were compared. Our results indicate no difference in platelet aggregability between phases of the menstrual cycle. A significant aggregation difference between platelets from women and men was noted. Platelets from women were more sensitive to arachidonic acid aggregation. These differences were not affected by decompression stress. No difference in thromboxane B2 production was noted between the platelet populations evaluated.

  15. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice

    PubMed Central

    Zhang, Hong; Liu, Yanpei; Wen, Feng; Yao, Dongmei; Wang, Lu; Guo, Jin; Ni, Lan; Zhang, Aying; Tan, Mingpu; Jiang, Mingyi

    2014-01-01

    C2H2-type zinc finger proteins (ZFPs) have been shown to play important roles in the responses of plants to oxidative and abiotic stresses, and different members of this family might have different roles during stresses. Here a novel abscisic acid (ABA)- and hydrogen peroxide (H2O2)-responsive C2H2-type ZFP gene, ZFP36, is identified in rice. The analyses of ZFP36-overexpressing and silenced transgenic rice plants showed that ZFP36 is involved in ABA-induced up-regulation of the expression and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Overexpression of ZFP36 in rice plants was found to elevate the activities of antioxidant enzymes and to enhance the tolerance of rice plants to water stress and oxidative stress. In contrast, an RNA interference (RNAi) mutant of ZFP36 had lower activities of antioxidant enzymes and was more sensitive to water stress and oxidative stress. ABA-induced H2O2 production and ABA-activated mitogen-activated protein kinases (MAPKs) were shown to regulate the expression of ZFP36 in ABA signalling. On the other hand, ZFP36 also regulated the expression of NADPH oxidase genes, the production of H2O2, and the expression of OsMPK genes in ABA signalling. These results indicate that ZFP36 is required for ABA-induced antioxidant defence, for the tolerance of rice plants to water stress and oxidative stress, and for the regulation of the cross-talk between NADPH oxidase, H2O2, and MAPK in ABA signalling. PMID:25071223

  16. Dietary polyunsaturated fatty acids and heme iron induce oxidative stress biomarkers and a cancer promoting environment in the colon of rats.

    PubMed

    Guéraud, Françoise; Taché, Sylviane; Steghens, Jean-Paul; Milkovic, Lidija; Borovic-Sunjic, Suzana; Zarkovic, Neven; Gaultier, Eric; Naud, Nathalie; Héliès-Toussaint, Cécile; Pierre, Fabrice; Priymenko, Nathalie

    2015-06-01

    The end products of polyunsaturated fatty acid (PUFA) peroxidation, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE), and isoprostanes (8-iso-PGF2α), are widely used as systemic lipid oxidation/oxidative stress biomarkers. However, some of these compounds have also a dietary origin. Thus, replacing dietary saturated fat by PUFAs would improve health but could also increase the formation of such compounds, especially in the case of a pro-oxidant/antioxidant imbalanced diet. Hence, the possible impact of dietary fatty acids and pro-oxidant compounds was studied in rats given diets allowing comparison of the effects of heme iron vs. ferric citrate and of ω-6- vs. ω-3-rich oil on the level of lipid peroxidation/oxidative stress biomarkers. Rats given a heme iron-rich diet without PUFA were used as controls. The results obtained have shown that MDA and the major urinary metabolite of HNE (the mercapturic acid of dihydroxynonane, DHN-MA) were highly dependent on the dietary factors tested, while 8-iso-PGF2α was modestly but significantly affected. Intestinal inflammation and tissue fatty acid composition were checked in parallel and could only explain the differences we observed to a limited extent. Thus, the differences in biomarkers were attributed to the formation of lipid oxidation compounds in food or during digestion, their intestinal absorption, and their excretion into urine. Moreover, fecal extracts from the rats fed the heme iron or fish oil diets were highly toxic for immortalized mouse colon cells. Such toxicity can eventually lead to promotion of colorectal carcinogenesis, supporting the epidemiological findings between red meat intake and colorectal cancer risk. Therefore, the analysis of these biomarkers of lipid peroxidation/oxidative stress in urine should be used with caution when dietary factors are not well controlled, while control of their possible dietary intake is needed also because of their pro-inflammatory, toxic, and even

  17. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects. PMID:27392152

  18. Induction of aromatic amino acids and phenylpropanoid compounds in Scrophularia striata Boiss. cell culture in response to chitosan-induced oxidative stress.

    PubMed

    Kamalipourazad, Maryam; Sharifi, Mohsen; Maivan, Hassan Zare; Behmanesh, Mehrdad; Chashmi, Najmeh Ahmadian

    2016-10-01

    Manipulation of cell culture media by elicitors is one of most important strategies to inducing secondary metabolism for the production of valuable metabolites. In this investigation, inducing effect of chitosan on physiological, biochemical, and molecular parameters were investigated in cell suspension cultures of Scrophularia striata Boiss. The results showed that chitosan concentration and time of elicitation are determinants of the effectiveness of the elicitor. Accumulation of aromatic amino acids (phenylalanine [Phe] and tyrosine [Tyr]), phenylpropanoid compounds (phenolic acids [PAs] and echinacoside [ECH]), hydrogen peroxide (H2O2) production, phenylalanine ammonia-lyase (PAL) activity and gene expression, and antioxidant enzymes (superoxide dismutase [SOD], peroxidase [POX], catalase [CAT]) activities were altered by changing the exposure time of elicitation. Results showed that, upon elicitation with chitosan, oxidative events were induced, antioxidant responses of S. striata cells were boosted through enhanced activity of an effective series of scavenging enzymes (SOD, CAT, and POX), and biosynthesis of non-enzymatic antioxidants (ECH and PAs [cinnamic, p-coumaric and, caffeic acids]). The increase in amino acid content and PAL activity at early days of exposure to chitosan was related with rises in phenolic compounds. These results provide evidence that chitosan by up-regulation of PAL gene differentially improves the production of phenylpropanoid compounds, which are of medical commercial value with good biotechnological prospects.

  19. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress.

    PubMed

    Netting, A G

    2002-02-01

    continued export to the apoplast. K(+) is transferred from the vacuole to the apoplast, the K(+) being replaced by protons from the export of mitochondrial pyruvate. The maintenance of the tonoplast electrochemical gradient is thought to result in an increase in the pH of the apoplast which may cause the hydrolysis of abscisic acid precursors with the resulting abscisic acid opening Ca(2+) channels so that the above events are reinforced. (7) This mode is proposed to continue by the metabolism of glucose to four phosphoenolpyruvate, three of which are carboxylated to malate(1-) for continued export to the apoplast with K(+) from the vacuole, the 'stress-tolerant quiescent state'.

  20. Biochemical alterations during swimming induced stress.

    PubMed

    Aruj, N; Sharafatullah, T; Najam, R; Ahmed, S P; Ahmad, S I

    1994-07-01

    Stress can be defined as any stimulus that creates an imbalance in the internal environment. Hypothalamus has sensors that detect changes produced in the body. Stress can cause diseases by altering immune system, cardiovascular System neurotransmitter and neuroendocrine functions. Present study is designed to evaluate the effect of stress on few biochemical parameters during swimming induced stress. Significant changes have been observed especially in lipid profile. Corticosterone was also evaluated as reliable stress marker.

  1. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi.

    PubMed

    Li, Zhu-Hong; Alvarez, Vanina E; De Gaudenzi, Javier G; Sant'Anna, Celso; Frasch, Alberto C C; Cazzulo, Juan J; Docampo, Roberto

    2011-12-23

    The protist parasite Trypanosoma cruzi has evolved the ability to transit between completely different hosts and to replicate in adverse environments. In particular, the epimastigote form, the replicative stage inside the vector, is subjected to nutritional and osmotic stresses during its development. In this work, we describe the biochemical and global gene expression changes of epimastigotes under hyperosmotic conditions. Hyperosmotic stress resulted in cell shrinking within a few minutes. Depending on the medium osmolarity, this was followed by lack of volume recovery for at least 2 h or by slow recovery. Experiments with inhibitors, or with cells in which an aquaporin gene (TcAQP1) was knocked down or overexpressed, revealed its importance for the cellular response to hyperosmotic stress. Furthermore, the adaptation to this new environment was shown to involve the regulation of the polyphosphate polymerization state as well as changes in amino acid catabolism to generate compatible osmolytes. A genome-wide transcriptional analysis of stressed parasites revealed down-regulation of genes belonging to diverse functional categories and up-regulation of genes encoding trans-sialidase-like and ribosomal proteins. Several of these changes were confirmed by Northern blot analyses. Sequence analysis of the 3'UTRs of up- and down-regulated genes allowed the identification of conserved structural RNA motifs enriched in each group, suggesting that specific ribonucleoprotein complexes could be of great importance in the adaptation of this parasite to different environments through regulation of transcript abundance. PMID:22039054

  2. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

    PubMed Central

    Shu, Sheng; Gao, Pan; Li, Lin; Yuan, Yinghui; Sun, Jin; Guo, Shirong

    2016-01-01

    With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway. PMID:27746808

  3. Corrosion Product Film-Induced Stress Facilitates Stress Corrosion Cracking

    PubMed Central

    Wang, Wenwen; Zhang, Zhiliang; Ren, Xuechong; Guan, Yongjun; Su, Yanjing

    2015-01-01

    Finite element analyses were conducted to clarify the role of corrosion product films (CPFs) in stress corrosion cracking (SCC). Flat and U-shaped edge-notched specimens were investigated in terms of the CPF-induced stress in the metallic substrate and the stress in the CPF. For a U-shaped edge-notched specimen, the stress field in front of the notch tip is affected by the Young’s modulus of the CPF and the CPF thickness and notch geometry. The CPF-induced tensile stress in the metallic substrate is superimposed on the applied load to increase the crack tip strain and facilitate localized plasticity deformation. In addition, the stress in the CPF surface contributes to the rupture of the CPFs. The results provide physical insights into the role of CPFs in SCC. PMID:26066367

  4. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. PMID:26662863

  5. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    PubMed

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  6. Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: studies on oxidative stress, inflammation and apoptosis.

    PubMed

    Xia, Xiaomin; Su, Chuanyang; Fu, Juanli; Zhang, Pu; Jiang, Xiaoji; Xu, Demei; Hu, Lihua; Song, Erqun; Song, Yang

    2014-10-01

    This study investigated the protective effect of α-lipoic acid (LA) on lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced fulminant hepatic failure in mice. First, we found that LA markedly reduced LPS/d-GalN-induced increases in serum ALT and AST activities, which were supplemented with histopathological examination, suggested that LA has a protective effect on this model of hepatic damage. Livers challenged with LPS/d-GalN exhibited extensive areas of vacuolization with the disappearance of nuclei and the loss of hepatic architecture. On the contrary, these pathological alterations were ameliorated by LA treatment. Next, we found that ROS and TBARS levels were increased in LPS/d-GalN treated liver homogenates, which were attenuated by LA administration. Consistently, decreases in hepatic CAT and GPx activities were observed in LPS/d-GalN group and were significantly restored by LA administration. Moreover, pretreatment with LA markedly reduced LPS/d-GalN-induced iNOS, COX-2, TNF-α, NF-κB, IL-1β and IL-6 expressions. Furthermore, our data showed that TUNEL-positive cells increased in LPS/d-GalN-treated mice liver which was counteracted by LA administration. LPS/d-GalN induced apoptosis of hepatocytes, as estimated by caspase 3, caspase 8 and caspase 9 activations. Also, the increasing of Bax and the decreasing of Bcl-2 expressions also supported LPS/d-GalN induced apoptosis. Interestingly, LA marked relieved these apoptotic features. Taking together, our results indicated that LA plays an important role on LPS/d-GalN-induced fulminant hepatic failure through its antioxidant, anti-inflammatory and anti-apoptotic activities.

  7. Involvement of Abscisic Acid in the Coordinated Regulation of a Stress-Inducible Hexose Transporter (VvHT5) and a Cell Wall Invertase in Grapevine in Response to Biotrophic Fungal Infection[W

    PubMed Central

    Hayes, Matthew A.; Feechan, Angela; Dry, Ian B.

    2010-01-01

    Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::β-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens. PMID:20348211

  8. Acid stress management by Cronobacter sakazakii.

    PubMed

    Alvarez-Ordóñez, Avelino; Cummins, Conor; Deasy, Thérèse; Clifford, Tanya; Begley, Máire; Hill, Colin

    2014-05-16

    Cronobacter sakazakii is a foodborne pathogenic microorganism associated with sporadic cases of neonatal meningitis, necrotising enterocolitis, septicaemia, bloody diarrhoea and brain abscesses acquired through the consumption of contaminated powdered infant formula (PIF). This study aimed to investigate the growth of C. sakazakii DPC6529, a particularly stress tolerant clinical isolate, in acidified laboratory media and PIF. The possibility of a stationary-phase acid tolerance response (ATR) was also investigated. C. sakazakii DPC6529 grew in LB broth acidified to pH4.2 with hydrochloric acid (HCl) and was capable of relatively fast growth in PIF acidified to pH5.0 with HCl, representing the stomach pH reported for newborns and infants. Moreover, bacterial growth in LB broth supplemented with 1% (w/v) glucose gave rise to a stationary-phase ATR which resulted in enhanced survival against a subsequent acid challenge at pH3.0. A transposon mutagenesis approach was used to shed light on some of the molecular mechanisms involved in the response C. sakazakii DPC6529 to normally lethal acid exposures. The data suggests that repairing damage in proteins and nucleic acids, posttranscriptional modification of tRNA molecules and maintenance of the integrity of the cellular envelope are key processes in the defence against acid stress. Clones carrying transposon insertions in genes encoding the envelope stress response regulators CpxR and OmpR were identified as acid-sensitive mutants. Further analyses of the ompR defective mutant and its complemented counterpart evidenced that OmpR is a key player in the response of C. sakazakii to acid stress, although it was not essential to mount an active stationary-phase ATR, at least under the tested conditions. The ability of C. sakazakii DPC6529 to grow in acid environments and to develop an adaptive stationary-phase ATR may allow for its survival or even proliferation within the infant gastrointestinal tract after consumption of

  9. Effects of phenylalaninol on centrally induced gastric acid secretion.

    PubMed

    Hashizume, H; Miyamae, T; Morikawa, T; Hagiwara, M

    1992-11-01

    The effects of phenylalaninol (D-isomer) on gastric acid secretion and gastric ulcer were studied in rats. The compound reduced the gastric acid secretion stimulated by intracisternal thyrotropin releasing hormone and intravenous 2-deoxy-D-glucose, but not that stimulated by subcutaneous carbachol or histamine. Phenylalaninol prevented stress- and indomethacin-induced gastric ulcers. We conclude that phenylalaninol inhibits ulcer formation mainly by central inhibition of gastric acid secretion. PMID:1477931

  10. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  11. The Trier Social Stress Test protocol for inducing psychological stress.

    PubMed

    Birkett, Melissa A

    2011-10-19

    This article demonstrates a psychological stress protocol for use in a laboratory setting. Protocols that allow researchers to study the biological pathways of the stress response in health and disease are fundamental to the progress of research in stress and anxiety. Although numerous protocols exist for inducing stress response in the laboratory, many neglect to provide a naturalistic context or to incorporate aspects of social and psychological stress. Of psychological stress protocols, meta-analysis suggests that the Trier Social Stress Test (TSST) is the most useful and appropriate standardized protocol for studies of stress hormone reactivity. In the original description of the TSST, researchers sought to design and evaluate a procedure capable of inducing a reliable stress response in the majority of healthy volunteers. These researchers found elevations in heart rate, blood pressure and several endocrine stress markers in response to the TSST (a psychological stressor) compared to a saline injection (a physical stressor). Although the TSST has been modified to meet the needs of various research groups, it generally consists of a waiting period upon arrival, anticipatory speech preparation, speech performance, and verbal arithmetic performance periods, followed by one or more recovery periods. The TSST requires participants to prepare and deliver a speech, and verbally respond to a challenging arithmetic problem in the presence of a socially evaluative audience. Social evaluation and uncontrollability have been identified as key components of stress induction by the TSST. In use for over a decade, the goal of the TSST is to systematically induce a stress response in order to measure differences in reactivity, anxiety and activation of the hypothalamic-pituitary-adrenal (HPA) or sympathetic-adrenal-medullary (SAM) axis during the task. Researchers generally assess changes in self-reported anxiety, physiological measures (e.g. heart rate), and

  12. Stress induced obesity: lessons from rodent models of stress

    PubMed Central

    Patterson, Zachary R.; Abizaid, Alfonso

    2013-01-01

    Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the

  13. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic β-cells from apoptosis via mitochondrial dependent pathway.

    PubMed

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C

    2011-12-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications.

  14. K-Ras Activation Induces Differential Sensitivity to Sulfur Amino Acid Limitation and Deprivation and to Oxidative and Anti-Oxidative Stress in Mouse Fibroblasts

    PubMed Central

    De Sanctis, Gaia; Spinelli, Michela; Vanoni, Marco

    2016-01-01

    Background Cancer cells have an increased demand for amino acids and require transport even of non-essential amino acids to support their increased proliferation rate. Besides their major role as protein synthesis precursors, the two proteinogenic sulfur-containing amino acids, methionine and cysteine, play specific biological functions. In humans, methionine is essential for cell growth and development and may act as a precursor for cysteine synthesis. Cysteine is a precursor for the biosynthesis of glutathione, the major scavenger for reactive oxygen species. Methodology and Principal Findings We study the effect of K-ras oncogene activation in NIH3T3 mouse fibroblasts on transport and metabolism of cysteine and methionine. We show that cysteine limitation and deprivation cause apoptotic cell death (cytotoxic effect) in both normal and K-ras-transformed fibroblasts, due to accumulation of reactive oxygen species and a decrease in reduced glutathione. Anti-oxidants glutathione and MitoTEMPO inhibit apoptosis, but only cysteine-containing glutathione partially rescues the cell growth defect induced by limiting cysteine. Methionine limitation and deprivation has a cytostatic effect on mouse fibroblasts, unaffected by glutathione. K-ras-transformed cells–but not their parental NIH3T3—are extremely sensitive to methionine limitation. This fragility correlates with decreased expression of the Slc6a15 gene—encoding the nutrient transporter SBAT1, known to exhibit a strong preference for methionine—and decreased methionine uptake. Conclusions and Significance Overall, limitation of sulfur-containing amino acids results in a more dramatic perturbation of the oxido-reductive balance in K-ras-transformed cells compared to NIH3T3 cells. Growth defects induced by cysteine limitation in mouse fibroblasts are largely–though not exclusively–due to cysteine utilization in the synthesis of glutathione, mouse fibroblasts requiring an exogenous cysteine source for

  15. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat.

    PubMed

    Viau, Victor; Bingham, Brenda; Davis, Jennifer; Lee, Patricia; Wong, Margaret

    2005-01-01

    Individual variations in hypothalamic-pituitary-adrenal (HPA) function are most evident at or beyond the time of puberty, when marked changes in sex steroid release occur. To explore the nature by which gender differences in HPA function emerge we examined in prepubertal (approximately 30-d-old) and postpubertal (approximately 60-d-old) male and female rats HPA activity under basal conditions and in response to 30 min of restraint. Within the ACTH-regulating, medial parvocellular portion of the paraventricular nucleus, restraint-induced Fos protein and arginine vasopressin heteronuclear RNA were lower in 60- than in 30-d-old males. No such age-related shift in the response of these synaptic and transcriptional markers of cellular activation occurred in female rats. Basal CRH mRNA expression levels in the paraventricular nucleus increased with age in female but not male rats. Conversely, only male rats showed an age-related increase in basal CRH mRNA in the central amygdala, suggesting that neuronal and neurosecretory CRH-expressing cell types are subject to different pubertal and gender influences. We conclude that gonadal regulation of the HPA axis develops via distinct mechanisms in males and females. Puberty-related shifts in parvocellular neurosecretory function in males are emphasized by stress-induced shifts in neuronal activation, whereas biosynthetic alterations dominate in female rats.

  16. Omega-3-fatty acid adds to the protective effect of flax lignan concentrate in pressure overload-induced myocardial hypertrophy in rats via modulation of oxidative stress and apoptosis.

    PubMed

    Ghule, Arvindkumar E; Kandhare, Amit D; Jadhav, Suresh S; Zanwar, Anand A; Bodhankar, Subhash L

    2015-09-01

    Objective of the present investigation was to study the effect of the flax lignan concentrate (FLC) and Omega-3-fatty acid (O-3-FA) on myocardial apoptosis, left ventricular (LV) contractile dysfunction and electrocardiographic abnormalities in pressure overload-induced cardiac hypertrophy. The rats were divided into five groups such as sham, aortic stenosis (AS), AS+FLC, AS+O-3-FA and AS+FLC+O-3-FA. Cardiac hypertrophy was produced in rats by abdominal aortic constriction. The rats were treated with FLC (400mg/kg, p.o.), O-3-FA (400mg/kg, p.o.) and FLC+O-3-FA orally per day for four weeks. The LV function, myocardial apoptosis, and oxidative stress were quantified. FLC+O-3-FA treatment significantly reduced hemodynamic changes, improved LV contractile dysfunction, reduced cardiomyocyte apoptosis and cellular oxidative stress. Moreover, it significantly up-regulated the VEGF expression and decreased TNF-alpha level in serum. The histological analysis also revealed that FLC+O-3-FA treatment markedly preserved the cardiac structure and inhibited interstitial fibrosis. In conclusion, FLC+O-3-FA treatment improved LV dysfunction, inhibited cardiomyocyte apoptosis, improved myocardial angiogenesis, conserved activities of membrane-bound phosphatase enzymes and suppressed inflammation through reduced oxidative stress in an additive manner than FLC alone and O-3-FA alone treatment in pressure overload-induced cardiac hypertrophy.

  17. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  18. Targeting neuro-inflammatory cytokines and oxidative stress by minocycline attenuates quinolinic-acid-induced Huntington's disease-like symptoms in rats.

    PubMed

    Kalonia, Harikesh; Mishra, Jitendriya; Kumar, Anil

    2012-11-01

    Recent experimental and clinical reports support the fact that the minocycline exhibits significant neuroprotective activity in neurodegenerative diseases. However, its mechanism of neuroprotection is still far from our understanding. Besides, minocycline does not always produce neuroprotective effect. Therefore, this study has been designed to explore the possible mechanism of minocycline in experimental model of HD in rats. Intrastriatal administration of quinolinic acid caused a significant reduction in body weight, motor dysfunction (impaired locomotor activity, rotarod performance, and beam walk test), oxidative damage (as evidenced by increase in lipid peroxidation, nitrite concentration, and depletion of super oxide dismutase and catalase), increased TNF-α and IL-6 levels as compared to the sham-treated animals. Minocycline (25, 50, and 100 mg/kg) treatment (for 21 days) significantly improved body weight, locomotor activity, rotarod performance, balance beam walk performance, oxidative defense, attenuated TNF-α and IL-6 levels as compared to quinolinic-acid (QA)-treated animals. This study provides evidence that minocycline might have neuroprotective effect against QA-induced Huntington-like behavioral, biochemical alterations, and neuroinflammation in rats. PMID:22392362

  19. Transcriptional analysis of different stress response genes in Escherichia coli strains subjected to sodium chloride and lactic acid stress.

    PubMed

    Peng, Silvio; Stephan, Roger; Hummerjohann, Jörg; Tasara, Taurai

    2014-12-01

    Survival of Escherichia coli in food depends on its ability to adapt against encountered stress typically involving induction of stress response genes. In this study, the transcriptional induction of selected acid (cadA, speF) and salt (kdpA, proP, proW, otsA, betA) stress response genes was investigated among five E. coli strains, including three Shiga toxin-producing strains, exposed to sodium chloride or lactic acid stress. Transcriptional induction upon lactic acid stress exposure was similar in all but one E. coli strain, which lacked the lysine decarboxylase gene cadA. In response to sodium chloride stress exposure, proW and otsA were similarly induced, while significant differences were observed between the E. coli strains in induction of kdpA, proP and betA. The kdpA and betA genes were significantly induced in four and three strains, respectively, whereas one strain did not induce these genes. The proP gene was only induced in two E. coli strains. Interestingly, transcriptional induction differences in response to sodium chloride stress exposure were associated with survival phenotypes observed for the E. coli strains in cheese as the E. coli strain lacking significant induction in three salt stress response genes investigated also survived poorly compared to the other E. coli strains in cheese.

  20. α-Lipoic acid protects against the oxidative stress and cytotoxicity induced by cadmium in HepG2 cells through regenerating glutathione regulated by glutamate-cysteine ligase.

    PubMed

    Xu, Yuan; Zhou, Xue; Shi, Chunli; Wang, Jiachun; Wu, Zhigang

    2015-01-01

    Alpha-lipoic acid (α-LA) is an important antioxidant that is capable of regenerating other antioxidants, such as glutathione (GSH). In the present study, we examined the protective effects of α-LA against the oxidative stress and cytotoxicity induced by cadmium in human hepatoma cell lines (HepG2) and investigated if the process was mediated through regenerating GSH. Our results showed that after exposure to 25 μM cadmium for 16 h, there was a significant decrease in the cell viability and glutathione levels and a significant increase in lipid peroxidation (p<0.01) compared with untreated cells. The presence of α-LA significantly attenuated cadmium-induced cytotoxicity and lipid peroxidation, and reversed cellular GSH levels compared with cadmium-treated cells (p<0.05). Compared with the cells treated with cadmium, co-treatment with α-LA and cadmium significantly increased the activities of γ-glutamylcysteine ligase (γ-GCL), the rate limiting enzyme in GSH biosynthesis and the mRNA and the protein levels of γ-GCL catalytic subunit (GCLC) and a modifier subunit (GCLM). In conclusion, our results indicated that α-LA is an effective agent to reduce the oxidative stress and cytotoxicity induced by cadmium by regenerating GSH levels through increasing the activities and the expressions of γ-GCL.

  1. Bile acids but not acidic acids induce Barrett's esophagus.

    PubMed

    Sun, Dongfeng; Wang, Xiao; Gai, Zhibo; Song, Xiaoming; Jia, Xinyong; Tian, Hui

    2015-01-01

    Barrett's esophagus (BE) is associated with the development of esophageal adenocarcinoma (EAC). Bile acids (BAs) refluxing into the esophagus contribute to esophageal injury, which results in BE and subsequent EAC. We developed two animal models to test the role of BAs in the pathogenesis of BE. We surgically generated BA reflux, with or without gastric acid, in rats. In a second experiment, we fed animals separately with BAs and gastric acid. Pathologic changes were examined and the expression of Muc2 and Cdx2 in BE tissue was tested by immunostaining. Inflammatory factors in the plasma, as well as differentiation genes in BE were examined through highly sensitive ELISA and semi-quantitative RT-PCR techniques. We found that BAs are sufficient for the induction of esophagitis and Barrett's-like metaplasia in the esophagus. Overexpression of inflammatory cells, IL-6, and TNF-α was observed both in animals fed with BAs and surgically generated BA reflux. Furthermore, elevated levels of Cdx2, Muc2, Bmp4, Kit19, and Tff2 (differentiation genes in BE) were found in BA-treated rats. In conclusion, BAs, but not gastric acid, are a major causative factor for BE. We confirmed that BAs contribute to the development of BE by inducing the inflammatory response in the esophagus. Inhibiting BAs may be a promising therapy for BE.

  2. Entacapone is an Antioxidant More Potent than Vitamin C and Vitamin E for Scavenging of Hypochlorous Acid and Peroxynitrite, and the Inhibition of Oxidative Stress-Induced Cell Death

    PubMed Central

    Chen, Aaron Y.; Lü, Jian-Ming; Yao, Qizhi; Chen, Changyi

    2016-01-01

    Background Entacapone (ENT), a clinical drug for the treatment of Parkinson’s disease, has been shown to have antioxidant effects, but little is known about its antioxidant mechanisms. The objective of the current study was to determine the antioxidant activity of ENT against different species of oxidants and compared it with that of vitamin C and vitamin E. We also determined the effect of ENT on oxidative stress-induced cell death in human umbilical vein endothelial cells (HUVECs). Material/Methods The total antioxidant activities of ENT, vitamin C and vitamin E were determined with a standard DPPH-scavenging assay. Specific assays to determine ENT’s scavenging activity on hypochlorous acid (HOCl), peroxynitrite (ONOO−), and hydrogen peroxide (H2O2), and the chelating effect on Fe(II) were used. H2O2-induced cell death in HUVECs was determined with the MTT assay. Results ENT (10 and 20 μM) scavenged 60% and 83% of DPPH activity, respectively. These percentages were greater than those resulting from using the same concentrations of vitamin C and vitamin E. ENT’s HOCl-scavenging activity was concentration-dependent and 8 to 20 times stronger than those of vitamin C and vitamin E. ENT’s ONOO−-scavenging activity was 8% to 30% stronger than that of vitamin C. However, ENT, vitamin C, and vitamin E were not able to directly scavenge H2O2, and did not show any chelating effect on Fe(II). Importantly ENT, but not vitamin C or vitamin E, inhibited H2O2-induced cell death in HUVECs. Conclusions ENT is an antioxidant that can scavenge toxic HOCl and ONOO− species and inhibit oxidative stress-induced cell death more effectively than vitamin C and vitamin E. ENT may have new clinical applications as an antioxidant in the treatment of ROS-induced diseases including cardiovascular disease, cancer, and neurodegenerative diseases. PMID:26927838

  3. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress1[W

    PubMed Central

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-01-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion. PMID:24344171

  4. Gibberellic acid-induced aleurone layers responding to heat shock or tunicamycin provide insight into the N-glycoproteome, protein secretion, and endoplasmic reticulum stress.

    PubMed

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-02-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion.

  5. [Stress-induced Takotsubo cardiomyopathy].

    PubMed

    Høst, Ulla; Søgaard, Peter; Hansen, Peter Riis

    2009-09-14

    A case of Takotsubo cardiomyopathy is described in a postmenopausal woman admitted for suspected recent myocardial infarction, triggered by significant social stress during a family Christmas dinner. Coronary angiography showed no significant lesions. Acute echocardiography demonstrated apical ballooning and an ejection fraction of 30%. The clinical course was uneventful and after one month, echocardiography showed complete resolution of the apical ballooning and recovery of left ventricular systolic function.

  6. S-Allylcysteine prevents the rat from 3-nitropropionic acid-induced hyperactivity, early markers of oxidative stress and mitochondrial dysfunction.

    PubMed

    Herrera-Mundo, María N; Silva-Adaya, Daniela; Maldonado, Perla D; Galván-Arzate, Sonia; Andrés-Martínez, Leticia; Pérez-De La Cruz, Verónica; Pedraza-Chaverrí, José; Santamaría, Abel

    2006-09-01

    We investigated the effects of S-allylcysteine (SAC) on early behavioral alterations, striatal changes in superoxide dismutase (SOD) activity, lipid peroxidation (LP) and mitochondrial dysfunction induced by the systemic infusion of 3-nitropropionic acid (3-NPA) to rats. SAC (300 mg/kg, i.p.), given to animals 30 min before 3-NPA (30 mg/kg, i.p.), prevented the hyperkinetic pattern evoked by the toxin. In addition, 3-NPA alone produced decreased activities of manganese- (Mn-SOD) and copper/zinc-dependent superoxide dismutase (Cu,Zn-SOD), increased LP (evaluated as the formation of lipid fluorescent products) and produced mitochondrial dysfunction in the striatum (measured as decreased 3-(3,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction). In contrast, pretreatment of 3-NPA-injected rats with SAC resulted in a significant prevention of all these markers. Our findings suggest that the protective actions of SAC are related with its antioxidant properties, which in turn may be accounting for the preservation of SOD activity and primary mitochondrial tasks.

  7. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic-co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: a multi-parametric evaluation.

    PubMed

    Samadder, Asmita; Das, Sreemanti; Das, Jayeeta; Paul, Avijit; Khuda-Bukhsh, Anisur Rahman

    2012-12-01

    In South East Asia, groundwater arsenic contamination has become a great menace. Chronic arsenic intoxication leads to a hyperglycemic condition in animals and man. Because of undesirable side-effects and affordability, orthodox medicine, like insulin, is not preferred by many who like natural products instead. Unfortunately, such natural products mostly lack scientific validation. Therefore, we became interested in assessing the efficacy of the ethanolic seed extract of Syzygium jambolanum (SJ), traditionally used against diabetic conditions. We also formulated poly (lactic-co-glycolic) acid (PLGA)-encapsulated nano-SJ (NSJ) and tested whether the ameliorative potentials of SJ could be enhanced by nano-encapsulation. In this study, we conducted both in vitro (in L6 cells) and in vivo (in mice) experiments to assess the relative efficacy of SJ and NSJ. We characterized the physico-chemical features of NSJ by atomic force microscopy and critically analyzed several bio-markers and signal proteins associated with arsenic-induced stress and hyperglycemia. We also determined the relative ameliorative potentials of SJ and NSJ by using standard protocols. NSJ could cross the blood brain barrier in mice. Overall results suggested that NSJ had a greater potential than that of SJ, indicating the possibility of using NSJ in the future drug design and management of arsenic-induced hyperglycemia and stress.

  8. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  9. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount. PMID:26994613

  10. Stress Drops for Potentially Induced Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Beroza, G. C.; Ellsworth, W. L.

    2015-12-01

    Stress drop, the difference between shear stress acting across a fault before and after an earthquake, is a fundamental parameter of the earthquake source process and the generation of strong ground motions. Higher stress drops usually lead to more high-frequency ground motions. Hough [2014 and 2015] observed low intensities in "Did You Feel It?" data for injection-induced earthquakes, and interpreted them to be a result of low stress drops. It is also possible that the low recorded intensities could be a result of propagation effects. Atkinson et al. [2015] show that the shallow depth of injection-induced earthquakes can lead to a lack of high-frequency ground motion as well. We apply the spectral ratio method of Imanishi and Ellsworth [2006] to analyze stress drops of injection-induced earthquakes, using smaller earthquakes with similar waveforms as empirical Green's functions (eGfs). Both the effects of path and linear site response should be cancelled out through the spectral ratio analysis. We apply this technique to the Guy-Greenbrier earthquake sequence in central Arkansas. The earthquakes migrated along the Guy-Greenbrier Fault while nearby injection wells were operating in 2010-2011. Huang and Beroza [GRL, 2015] improved the magnitude of completeness to about -1 using template matching and found that the earthquakes deviated from Gutenberg-Richter statistics during the operation of nearby injection wells. We identify 49 clusters of highly similar events in the Huang and Beroza [2015] catalog and calculate stress drops using the source model described in Imanishi and Ellsworth [2006]. Our results suggest that stress drops of the Guy-Greenbrier sequence are similar to tectonic earthquakes at Parkfield, California (the attached figure). We will also present stress drop analysis of other suspected induced earthquake sequences using the same method.

  11. Catalase activity as a biomarker for mild-stress-induced robustness in Bacillus weihenstephanensis.

    PubMed

    den Besten, Heidy M W; Effraimidou, Styliani; Abee, Tjakko

    2013-01-01

    Microorganisms are able to survive and grow in changing environments by activating stress adaptation mechanisms which may enhance bacterial robustness. Stress-induced enhanced robustness complicates the predictability of microbial inactivation. Using psychrotolerant Bacillus weihenstephanensis strain KBAB4 as a model, we investigated the impact of the culturing temperature on mild-oxidative-stress-induced (cross-)protection toward multiple stresses, including severe oxidative, heat, and acid stresses. Culturing at a refrigeration temperature (7°C) compared to the optimal growth temperature (30°C) affected both the robustness level of B. weihenstephanensis and the oxidative stress adaptive response. Scavengers of reactive oxygen species have a crucial role in adaptation to oxidative stresses, and this points to a possible predictive role in mild-oxidative-stress-induced robustness. Therefore, the catalase activity was determined upon mild oxidative stress treatment and was demonstrated to be significantly correlated with the robustness level of mild-stress-treated cells toward severe oxidative and heat stresses but not toward severe acid stress for cells grown at both refrigeration and optimal temperatures. The quantified correlations supported the predictive quality of catalase activity as a biomarker and also underlined that the predictive quality is stress specific. Biomarkers that are able to predict stress-induced enhanced robustness can be used to better understand stress adaptation mechanisms and might allow the design of effective combinations of hurdles to control microbial behavior.

  12. Physiological responses of Daphnia pulex to acid stress

    PubMed Central

    Weber, Anna K; Pirow, Ralph

    2009-01-01

    Background Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO2 partial pressure (PCO2), circulation and ventilation, as well as the respiration rate of Daphnia pulex acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions. Results D. pulex had a remarkably high extracellular pH of 8.33 and extracellular PCO2 of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L-1 pH-1. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L-1 pH-1. The extracellular PCO2 of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress. Conclusion Chronic exposure to acidic conditions had a pervasive impact on Daphnia's physiology including acid-base balance, extracellular PCO2, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO2 transport raised the question of

  13. Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury

    PubMed Central

    Carvalho, Alysson Roncally S; Jandre, Frederico C; Pino, Alexandre V; Bozza, Fernando A; Salluh, Jorge; Rodrigues, Rosana; Ascoli, Fabio O; Giannella-Neto, Antonio

    2007-01-01

    Introduction Protective ventilatory strategies have been applied to prevent ventilator-induced lung injury in patients with acute lung injury (ALI). However, adjustment of positive end-expiratory pressure (PEEP) to avoid alveolar de-recruitment and hyperinflation remains difficult. An alternative is to set the PEEP based on minimizing respiratory system elastance (Ers) by titrating PEEP. In the present study we evaluate the distribution of lung aeration (assessed using computed tomography scanning) and the behaviour of Ers in a porcine model of ALI, during a descending PEEP titration manoeuvre with a protective low tidal volume. Methods PEEP titration (from 26 to 0 cmH2O, with a tidal volume of 6 to 7 ml/kg) was performed, following a recruitment manoeuvre. At each PEEP, helical computed tomography scans of juxta-diaphragmatic parts of the lower lobes were obtained during end-expiratory and end-inspiratory pauses in six piglets with ALI induced by oleic acid. The distribution of the lung compartments (hyperinflated, normally aerated, poorly aerated and non-aerated areas) was determined and the Ers was estimated on a breath-by-breath basis from the equation of motion of the respiratory system using the least-squares method. Results Progressive reduction in PEEP from 26 cmH2O to the PEEP at which the minimum Ers was observed improved poorly aerated areas, with a proportional reduction in hyperinflated areas. Also, the distribution of normally aerated areas remained steady over this interval, with no changes in non-aerated areas. The PEEP at which minimal Ers occurred corresponded to the greatest amount of normally aerated areas, with lesser hyperinflated, and poorly and non-aerated areas. Levels of PEEP below that at which minimal Ers was observed increased poorly and non-aerated areas, with concomitant reductions in normally inflated and hyperinflated areas. Conclusion The PEEP at which minimal Ers occurred, obtained by descending PEEP titration with a protective

  14. Diabetic Cardiovascular Disease Induced by Oxidative Stress.

    PubMed

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M; Tsao, Philip S

    2015-10-23

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  15. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    SciTech Connect

    Takeuchi-Yorimoto, Ayano; Noto, Takahisa; Yamada, Atsushi; Miyamae, Yoichi; Oishi, Yuji; Matsumoto, Masahiro

    2013-05-01

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  16. N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

    PubMed Central

    Abu El-Saad, Ahmed M; Al-Kahtani, Mohammed A; Abdel-Moneim, Ashraf M

    2016-01-01

    Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (orally administrated in a concentration of 2 mg/kg body weight [b.w.]); the other three groups were orally administrated sodium arsenite in a concentration of 2 mg/kg b.w. followed by either NAC (10 mg/kg b.w., intraperitoneally [i.p.]), DMSA (50 mg/kg b.w., i.p.) or NAC plus DMSA. Arsenic toxicity caused significant rise in serum aspartate aminotransferase, alanine aminotransferase and total bilirubin, and a significant decrease in total protein (TP) and albumin levels after 3 weeks of experimental period. In addition, arsenic-treated rats showed significantly higher arsenic content in liver and significant rise in hepatic malondialdehyde level. By contrast, sharp decreases in glutathione content and catalase and glutathione reductase activities were discernible. NAC and/or DMSA counteracted most of these physiologic and biochemical defects. NAC monotherapy was more effective than DMSA in increasing TP, while DMSA was more effective in decreasing alanine aminotransferase. The combined treatment was superior over monotherapies in recovery of TP and glutathione. Biochemical data were well supported by histopathological and ultrastructural findings. In conclusion, the combination therapy of NAC and DMSA may be an ideal choice against oxidative insult induced by arsenic poisoning. PMID:27799742

  17. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  18. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  19. Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids.

    PubMed

    Suresh, Y; Das, U N

    2003-03-01

    In a previous study, we showed that prior oral feeding of oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevent the development of alloxan-induced diabetes mellitus in experimental animals. We also observed that 99% pure omega-6 fatty acids gamma-linolenic acid and arachidonic acid protect against chemically induced diabetes mellitus. Here we report the results of our studies with omega-3 fatty acids. Alloxan-induced in vitro cytotoxicity and apoptosis in an insulin-secreting rat insulinoma cell line, RIN, was prevented by prior exposure of these cells to alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid. Prior oral supplementation with alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid prevented alloxan-induced diabetes mellitus. alpha-Linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid not only attenuated chemical-induced diabetes mellitus but also restored the anti-oxidant status to normal range in various tissues. These results suggested that omega-3 fatty acids can abrogate chemically induced diabetes in experimental animals and attenuate the oxidant stress that occurs in diabetes mellitus.

  20. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-01

    Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research. PMID:26794209

  1. Stress-Induced Mutagenesis in Bacteria

    PubMed Central

    Foster, Patricia L.

    2009-01-01

    Bacteria spend their lives buffeted by changing environmental conditions. To adapt to and survive these stresses, bacteria have global response systems that result in sweeping changes in gene expression and cellular metabolism. These responses are controlled by master regulators, which include: alternative sigma factors, such as RpoS and RpoH; small molecule effectors, such as ppGpp; gene repressors such as LexA; and, inorganic molecules, such as polyphosphate. The response pathways extensively overlap and are induced to various extents by the same environmental stresses. These stresses include nutritional deprivation, DNA damage, temperature shift, and exposure to antibiotics. All of these global stress responses include functions that can increase genetic variability. In particular, up-regulation and activation of error-prone DNA polymerases, down-regulation of error-correcting enzymes, and movement of mobile genetic elements are common features of several stress responses. The result is that under a variety of stressful conditions, bacteria are induced for genetic change. This transient mutator state may be important for adaptive evolution. PMID:17917873

  2. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  3. Stress induced changes in testis function.

    PubMed

    López-Calderón, A; Ariznavarreta, C; González-Quijano, M I; Tresguerres, J A; Calderón, M D

    1991-01-01

    The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids.

  4. Stress induced changes in testis function.

    PubMed

    López-Calderón, A; Ariznavarreta, C; González-Quijano, M I; Tresguerres, J A; Calderón, M D

    1991-01-01

    The mechanism through which chronic stress inhibits the hypothalamic-pituitary-testicular axis has been investigated. Chronic restraint stress decreases testosterone secretion, an effect that is associated with a decrease in plasma gonadotropin levels. In chronically stressed rats there was a decrease in hypothalamic luteinizing hormone-releasing hormone (LHRH) content and the response on plasma gonadotropins to LHRH administration was enhanced. Thus the inhibitory effect of chronic stress on plasma LH and FSH levels seems not to be due to a reduction in pituitary responsiveness to LHRH, but rather to a modification in LHRH secretion. It has been suggested that beta-endorphin might interfere with hypothalamic LHRH secretion during stress. Chronic immobilization did not modify hypothalamic beta-endorphin, while an increase in pituitary beta-endorphin secretion was observed. Since we cannot exclude that changes in beta-endorphin secreted by the pituitary or other opioids may play some role in the stress-induced decrease in LHRH secretion, the effect of naltrexone administration on plasma gonadotropin was studied in chronically stressed rats. Naltrexone treatment did not modify the decrease in plasma concentrations of LH or FSH. These findings suggest that the inhibitory effect of restraint on the testicular axis is exerted at hypothalamic level by some mechanism other than opioids. PMID:1958548

  5. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    PubMed Central

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.

    2016-01-01

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  6. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    PubMed

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. PMID:22366811

  7. [Serumconcentrations of non esterified fatty acids during operative stress and blockade of betaadrenergic receptors (author's transl)].

    PubMed

    Knitza, R; Clasen, R; Kunz, C

    1978-11-01

    Every stress reaction leads to an increased, hormonelly induced mobilisation of fatty acids, the extent of which may be considered as a parameter of the aggression mechanism. In 15 patients with idiopathic trigeminal neuralgia, who were operated under neurolepthypalgesia, the problem of quantitative alterations of the concentration pattern of fatty acids was investigated during the operation. In contrast to some reports of the literature, the increase of the concentration of total fatty acids was due to corresponding increases of all individual fatty acids. By preoperative administration of the beta-adrenergic blocking agent Pindolol the increase of fatty acids was reduced without a qualitative shifting of individual fatty acids. PMID:30855

  8. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  9. Proteomic study on usnic-acid-induced hepatotoxicity in rats.

    PubMed

    Liu, Qian; Zhao, Xiaoping; Lu, Xiaoyan; Fan, Xiaohui; Wang, Yi

    2012-07-25

    Usnic acid, a lichen metabolite, is used as a dietary supplement for weight loss. However, clinical studies have shown that usnic acid causes hepatotoxicity. The present study aims to investigate the mechanism of usnic acid hepatotoxicity in vivo. Two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to analyze the expression profiles of differentially regulated and expressed proteins in rat liver after usnic acid administration. The results reveal the differential expression of 10 proteins in usnic-acid-treated rats compared to the normal controls. These proteins are associated with oxidative stress, lipid metabolism, and several other molecular pathways. The endoplasmic reticulum and mitochondria may be the primary targets of usnic-acid-induced hepatotoxicity.

  10. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex.

    PubMed

    Martin, Kathryn P; Wellman, Cara L

    2011-10-01

    The development and relapse of many psychopathologies can be linked to both stress and prefrontal cortex dysfunction. Glucocorticoid stress hormones target medial prefrontal cortex (mPFC) and either chronic stress or chronic administration of glucocorticoids produces dendritic remodeling in prefrontal pyramidal neurons. Exposure to stress also causes an increase in the release of the excitatory amino acid glutamate, which binds to N-methyl-D-aspartate (NMDA) receptors, which are plentiful in mPFC. NMDA receptor activation is crucial for producing hippocampal dendritic remodeling due to stress and for dendritic reorganization in frontal cortex after cholinergic deafferentation. Thus, NMDA receptors could mediate stress-induced dendritic retraction in mPFC. To test this hypothesis, dendritic morphology of pyramidal cells in mPFC was assessed after blocking NMDA receptors with the competitive NMDA antagonist ±3-(2-carboxypiperazin-4yl)propyl-1-phosphonic acid (CPP) during restraint stress. Administration of CPP prevented stress-induced dendritic atrophy. Instead, CPP-injected stressed rats showed hypertrophy of apical dendrites compared with controls. These results suggest that NMDA activation is crucial for stress-induced dendritic atrophy in mPFC. Furthermore, NMDA receptor blockade uncovers a new pattern of stress-induced dendritic changes, suggesting that other neurohormonal changes in concert with NMDA receptor activation underlie the net dendritic retraction seen after chronic stress.

  11. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress.

    PubMed

    Chhillar, Ritu; Dhingra, Dinesh

    2013-08-01

    This study was designed to evaluate antidepressant-like activity of gallic acid in Swiss young male albino mice subjected to unpredictable chronic mild stress and to explore the possible underlying mechanisms for this activity. Gallic acid (5, 10, 20 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) per se were administered daily to unstressed mice and other groups of mice subjected to unpredictable mild stress, 30 min after the injection for 21 successive days. The antidepressant-like activity was evaluated using forced swim test (FST) and sucrose preference test. Stress significantly increased immobility period of mice in FST. Gallic acid (10 and 20 mg/kg, i.p.) and fluoxetine significantly decreased immobility period of unstressed and stressed mice in FST and prevented the stress-induced decrease in sucrose preference, indicating significant antidepressant-like activity. There was no significant effect on locomotor activity of the mice by the drugs. Gallic acid (10 and 20 mg/kg, i.p.) significantly decreased Monoamine oxidase-A (MAO-A) activity, malondialdehyde levels, and catalase activity in unstressed mice; and significantly prevented the stress-induced decrease in reduced glutathione and catalase activity; and also significantly prevented stress-induced increase in MAO-A activity, malondialdehyde levels, plasma nitrite, and corticosterone levels. Thus, gallic acid showed antidepressant-like activity in unstressed and stressed mice probably due to its antioxidant activity and through inhibition of MAO-A activity and decrease in plasma nitrite levels. In addition, gallic acid also showed antidepressant-like activity in stressed mice probably through decrease in plasma corticosterone levels.

  12. [Exudation and accumulation of citric acid in common bean in response to Al toxicity stress].

    PubMed

    Shen, Hong; Yan, Xiaolong; Zheng, Shaoling; Wang, Xiurong

    2002-03-01

    Significant differences in the exudation and accumulation of citric acid in common bean genotypes were observed in response to Al toxicity stress by hydroponic cultural experiments. Secreted citric acid increased with increasing external concentrations of Al3+ which ranged from 0 to 50 mumol.L-1, while ranged from 50 to 80 mumol.L-1, secreted citric acid decreased with increasing external concentrations of Al3+. Among different genotypic common beans, citric acid secreted in G19842 was the largest, while Al uptake per unit dry weight in G19842 was the least. No difference in the accumulation of citric acid in leaves was found among different genotypic common beans, while the size of the content of citric acid in roots was G19842 > AFR > ZPV > G5273. The amount of citric acid exuded was smaller induced by phosphorus deficiency than that induced by Al toxicity stress. Exposure to 50 mumol.L-1 LaCl3 could not induce the exudation of citric acid, and it implied that the exudation and accumulation of citric acid in common bean was an important physiological response of resistance to Al toxicity stress.

  13. Tauroursodeoxycholic acid suppresses endoplasmic reticulum stress in the chondrocytes of patients with osteoarthritis.

    PubMed

    Liu, Chao; Cao, Yongping; Yang, Xin; Shan, Pengcheng; Liu, Heng

    2015-10-01

    The main pathogenic events in osteoarthritis (OA) include loss and abnormal remodeling of cartilage extracellular matrix. The present study aimed to evaluate the protective effect of tauroursodeoxycholic acid on chondrocyte apoptosis induced by endoplasmic reticulum (ER) stress. Articular cartilage tissues were collected from 18 patients who underwent total knee arthroplasty and were analyzed histologically. Subsequently, chondrocyte apoptosis was assessed by TUNEL. Quantitative polymerase chain reaction and western blot analysis were employed to evaluate gene and protein expression, respectively, of ER stress markers, including glucose‑regulated protein 78 (GRP78), growth arrest and DNA‑damage‑inducible gene 153 (GADD153) and caspase‑12 along with type II collagen. Chondrocytes obtained from osteoarthritis patients at different stages were cultured in three conditions including: No treatment (CON group), tunicamycin treatment to induce ER stress (ERS group) and tauroursodeoxycholic acid treatment after 4 h of tunicamycin (TDA group); and cell proliferation, apoptosis, function and ER stress level were assessed. Degradation of cartilage resulted in histological damage with more apoptotic cartilage cells observed. Of note, GRP78, GADD153 and caspase‑12 mRNA and protein expression increased gradually from grade I to III cartilage tissue, while type II collagen expression decreased. Tunicamycin induced ER stress, as shown by a high expression of ER stress markers, reduced cell proliferation, increased apoptosis and decreased synthesis of type II collagen. Notably, tauroursodeoxycholic acid treatment resulted in the improvement of tunicamycin‑induced ER stress. These results indicated that ER stress is highly involved in the tunicamycin‑induced apoptosis in chondrocytes, which can be prevented by tauroursodeoxycholic acid. PMID:26238983

  14. Oxidative Stress Induced by Pt(IV) Pro-drugs Based on the Cisplatin Scaffold and Indole Carboxylic Acids in Axial Position

    PubMed Central

    Tolan, Dina; Gandin, Valentina; Morrison, Liam; El-Nahas, Ahmed; Marzano, Cristina; Montagner, Diego; Erxleben, Andrea

    2016-01-01

    The use of Pt(IV) complexes as pro-drugs that are activated by intracellular reduction is a widely investigated approach to overcome the limitations of Pt(II) anticancer agents. A series of ten mono- and bis-carboxylated Pt(IV) complexes with axial indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) ligands were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, 1H and 195Pt NMR spectroscopy. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. All the complexes are able to overcome cisplatin-resistance and the most potent complex, cis,cis,trans-[Pt(NH3)2Cl2(IPA)(OH)] was on average three times more active than cisplatin. Mechanistic studies revealed that the trend in cytotoxicity of the Pt(IV) complexes is primarily consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which in turn results in the loss of mitochondrial membrane potential and apoptosis induction. The role of the indole acid ligand as a redox modulator is discussed. PMID:27404565

  15. Oxidative Stress Induced by Pt(IV) Pro-drugs Based on the Cisplatin Scaffold and Indole Carboxylic Acids in Axial Position.

    PubMed

    Tolan, Dina; Gandin, Valentina; Morrison, Liam; El-Nahas, Ahmed; Marzano, Cristina; Montagner, Diego; Erxleben, Andrea

    2016-01-01

    The use of Pt(IV) complexes as pro-drugs that are activated by intracellular reduction is a widely investigated approach to overcome the limitations of Pt(II) anticancer agents. A series of ten mono- and bis-carboxylated Pt(IV) complexes with axial indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) ligands were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, (1)H and (195)Pt NMR spectroscopy. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. All the complexes are able to overcome cisplatin-resistance and the most potent complex, cis,cis,trans-[Pt(NH3)2Cl2(IPA)(OH)] was on average three times more active than cisplatin. Mechanistic studies revealed that the trend in cytotoxicity of the Pt(IV) complexes is primarily consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which in turn results in the loss of mitochondrial membrane potential and apoptosis induction. The role of the indole acid ligand as a redox modulator is discussed. PMID:27404565

  16. Oxidative Stress Induced by Pt(IV) Pro-drugs Based on the Cisplatin Scaffold and Indole Carboxylic Acids in Axial Position

    NASA Astrophysics Data System (ADS)

    Tolan, Dina; Gandin, Valentina; Morrison, Liam; El-Nahas, Ahmed; Marzano, Cristina; Montagner, Diego; Erxleben, Andrea

    2016-07-01

    The use of Pt(IV) complexes as pro-drugs that are activated by intracellular reduction is a widely investigated approach to overcome the limitations of Pt(II) anticancer agents. A series of ten mono- and bis-carboxylated Pt(IV) complexes with axial indole-3-acetic acid (IAA) and indole-3-propionic acid (IPA) ligands were synthesized and characterized by elemental analysis, ESI-MS, FT-IR, 1H and 195Pt NMR spectroscopy. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. All the complexes are able to overcome cisplatin-resistance and the most potent complex, cis,cis,trans-[Pt(NH3)2Cl2(IPA)(OH)] was on average three times more active than cisplatin. Mechanistic studies revealed that the trend in cytotoxicity of the Pt(IV) complexes is primarily consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which in turn results in the loss of mitochondrial membrane potential and apoptosis induction. The role of the indole acid ligand as a redox modulator is discussed.

  17. Cloning and Characterization of a Novel Drosophila Stress Induced DNase

    PubMed Central

    Seong, Chang-Soo; Varela-Ramirez, Armando; Tang, Xiaolei; Anchondo, Brenda; Magallanes, Diego; Aguilera, Renato J.

    2014-01-01

    Drosophila melanogaster flies mount an impressive immune response to a variety of pathogens with an efficient system comprised of both humoral and cellular responses. The fat body is the main producer of the anti-microbial peptides (AMPs) with anti-pathogen activity. During bacterial infection, an array of secreted peptidases, proteases and other enzymes are involved in the dissolution of debris generated by pathogen clearance. Although pathogen destruction should result in the release a large amount of nucleic acids, the mechanisms for its removal are still not known. In this report, we present the characterization of a nuclease gene that is induced not only by bacterial infection but also by oxidative stress. Expression of the identified protein has revealed that it encodes a potent nuclease that has been named Stress Induced DNase (SID). SID belongs to a family of evolutionarily conserved cation-dependent nucleases that degrade both single and double-stranded nucleic acids. Down-regulation of sid expression via RNA interference leads to significant reduction of fly viability after bacterial infection and oxidative stress. Our results indicate that SID protects flies from the toxic effects of excess DNA/RNA released by pathogen destruction and from oxidative damage. PMID:25083901

  18. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1 ▿

    PubMed Central

    Serrazanetti, Diana I.; Ndagijimana, Maurice; Sado-Kamdem, Sylvain L.; Corsetti, Aldo; Vogel, Rudi F.; Ehrmann, Matthias; Guerzoni, M. Elisabetta

    2011-01-01

    Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrients and precursors, and the expression of the genes involved in branched-chain amino acid (BCAA) catabolism were evaluated at pH 3.6 and 5.8. The novel application of the program XCMS to the solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) data allowed accurate separation and quantification of 2-methylbutanoic and 3-methylbutanoic acids, generally reported as a cumulative datum. The metabolites coming from BCAA catabolism increased up to seven times under acid stress. The gene expression analysis confirmed that some genes associated with BCAA catabolism were overexpressed under acid conditions. The experiment with labeled leucine showed that 2-methylbutanoic acid originated also from leucine. While the overproduction of 3-methylbutanoic acid under acid stress can be attributed to the need to maintain redox balance, the rationale for the production of 2-methylbutanoic acid from leucine can be found in a newly proposed biosynthesis pathway leading to 2-methylbutanoic acid and 3 mol of ATP per mol of leucine. Leucine catabolism to 3-methylbutanoic and 2-methylbutanoic acids suggests that the switch from sugar to amino acid catabolism supports growth in L. sanfranciscensis in restricted environments such as sourdough characterized by acid stress and recurrent carbon starvation. PMID:21335381

  19. Metabolomics analysis reveals the association between lipid abnormalities and oxidative stress, inflammation, fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy

    PubMed Central

    Zhao, Ying-Yong; Wang, Hui-Ling; Cheng, Xian-Long; Wei, Feng; Bai, Xu; Lin, Rui-Chao; Vaziri, Nosratola D.

    2015-01-01

    Alternative medicines are commonly used for the disease prevention and treatment worldwide. Aristolochic acid (AAI) nephropathy (AAN) is a common and rapidly progressive interstitial nephropathy caused by ingestion of Aristolochia herbal medications. Available data on pathophysiology and molecular mechanisms of AAN are limited and were explored here. SD rats were randomized to AAN and control groups. AAN group was treated with AAI by oral gavage for 12 weeks and observed for additional 12 weeks. Kidneys were processed for histological evaluation, Western blotting, and metabolomics analyses using UPLC-QTOF/HDMS. The concentrations of two phosphatidylcholines, two diglycerides and two acyl-carnitines were significantly altered in AAI treated rats at week 4 when renal function and histology were unchanged. Data obtained on weeks 8 to 24 revealed progressive tubulointerstitial fibrosis, inflammation, renal dysfunction, activation of NF-κB, TGF-β, and oxidative pathways, impaired Nrf2 system, and profound changes in lipid metabolites including numerous PC, lysoPC, PE, lysoPE, ceramides and triglycerides. In conclusion, exposure to AAI results in dynamic changes in kidney tissue fatty acid, phospholipid, and glycerolipid metabolisms prior to and after the onset of detectable changes in renal function or histology. These findings point to participation of altered tissue lipid metabolism in the pathogenesis of AAN. PMID:26251179

  20. Induced resistance in tomato by SAR activators during predisposing salinity stress

    PubMed Central

    Pye, Matthew F.; Hakuno, Fumiaki; MacDonald, James D.; Bostock, Richard M.

    2013-01-01

    Plant activators are chemicals that induce disease resistance. The phytohormone salicylic acid (SA) is a crucial signal for systemic acquired resistance (SAR), and SA-mediated resistance is a target of several commercial plant activators, including Actigard (1,2,3-benzothiadiazole-7-thiocarboxylic acid-S-methyl-ester, BTH) and Tiadinil [N-(3-chloro-4-methylphenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide, TDL]. BTH and TDL were examined for their impact on abscisic acid (ABA)-mediated, salt-induced disease predisposition in tomato seedlings. A brief episode of salt stress to roots significantly increased the severity of disease caused by Pseudomonas syringae pv. tomato (Pst) and Phytophthora capsici relative to non-stressed plants. Root treatment with TDL induced resistance to Pst in leaves and provided protection in both non-stressed and salt-stressed seedlings in wild-type and highly susceptible NahG plants. Non-stressed and salt-stressed ABA-deficient sitiens mutants were highly resistant to Pst. Neither TDL nor BTH induced resistance to root infection by Phytophthora capsici, nor did they moderate the salt-induced increment in disease severity. Root treatment with these plant activators increased the levels of ABA in roots and shoots similar to levels observed in salt-stressed plants. The results indicate that SAR activators can protect tomato plants from bacterial speck disease under predisposing salt stress, and suggest that some SA-mediated defense responses function sufficiently in plants with elevated levels of ABA. PMID:23653630

  1. Acrolein induces oxidative stress in brain mitochondria.

    PubMed

    Luo, Jian; Shi, Riyi

    2005-02-01

    Acrolein, a byproduct of lipid peroxidation, has been shown to inflict significant structural and functional damage to isolated guinea pig spinal cord. Reactive oxygen species (ROS) are thought to mediate such detrimental effects. The current study demonstrates that acrolein can directly stimulate mitochondrial oxidative stress. Specifically, exposure of purified brain mitochondria to acrolein resulted in a dose-dependent increase of ROS and decreases in glutathione content and aconitase activity. This effect was not accompanied by significant intramitochondrial calcium influx or mitochondrial permeability transition, but rather by impaired function of the mitochondrial electron transport system. As well, we detected a significant inhibition of mitochondrial adenine nucleotide translocase (ANT) in the presence of acrolein. This inhibition of ANT likely contributes to acrolein-induced ROS elevation since application of atractyloside, a specific ANT inhibitor, induced significant increase of ROS. We hypothesize that inhibition of ANT may mediate, in part, the acrolein-induced ROS increase in mitochondria.

  2. Co-administration of monoisoamyl dimercaptosuccinic acid and Moringa oleifera seed powder protects arsenic-induced oxidative stress and metal distribution in mice.

    PubMed

    Mishra, Deepshikha; Gupta, Richa; Pant, S C; Kushwah, Pramod; Satish, H T; Flora, S J S

    2009-02-01

    Arsenic contamination of groundwater in the West Bengal basin in India is unfolding as one of the worst natural geo-environmental disasters to date. Chelation therapy with chelating agents is considered to be the best known treatment against arsenic poisoning; however, they are compromised with certain serious drawbacks/side-effects. Efficacy of combined administration of Moringa oleifera (M. oleifera) (English: Drumstick tree) seed powder, a herbal extract, with a thiol chelator monoisoamyl DMSA (MiADMSA) post-arsenic exposure in mice was studied. Mice were exposed to 100 ppm arsenic in drinking water for 6 months, followed by 10-days treatment with M. oleifera seed powder (500 mg/kg, orally through gastric gavage, once daily), MiADMSA (50 mg/kg, intraperitoneally, once daily) either individually or in combination. Arsenic exposure caused significant decrease in blood glutathione, delta-aminolevulinic acid dehydratase (ALAD), accompanied by increased production of reactive oxygen species in blood and soft tissues. Significant inhibition of superoxide dismutase, catalase, and glutathione peroxidase activities in tissues (liver in particular) along with significant increase in thiobarbituric acid reactive substances and metallothionein levels in arsenic intoxicated mice was also noted. Combined administration of MiADMSA with M. oleifera proved better than all other treatments in the recovery of most of the above parameters accompanied by more pronounced depletion of arsenic. The results suggest that concomitant administration of M. oleifera during chelation treatment with MiADMSA might be a better treatment option than monotherapy with the thiol chelator in chronic arsenic toxicity.

  3. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    SciTech Connect

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  4. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway.

    PubMed

    Shi, Chunli; Zhou, Xue; Zhang, Jiayu; Wang, Jiachun; Xie, Hong; Wu, Zhigang

    2016-07-01

    α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway.

  5. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ARE signaling pathway.

    PubMed

    Shi, Chunli; Zhou, Xue; Zhang, Jiayu; Wang, Jiachun; Xie, Hong; Wu, Zhigang

    2016-07-01

    α-Lipoic acid (α-LA) is a potent natural antioxidant, which is capable of regenerating glutathione (GSH). However, the mechanisms by which α-LA regenerates reduced glutathione (rGSH) via the reduction of oxidized glutathione (GSSG) by glutathione reductase (GR) are still not well understood. In the present study, we investigated if α-LA replenished rGSH by GR via Nrf2/ARE signaling pathway in cadmium-treated HepG2 cells. We found that α-LA antagonized the oxidative damage and alleviated the cytotoxicity in cadmium-induced HepG2 cells by regeneration of rGSH. α-LA regenerated rGSH by activating Nrf2 signaling pathway via promoting the nuclear translocation of Nrf2, which upregulates the transcription of GR, and thus increased the activity of GR. Our results indicated that α-LA was an effective agent to antagonize the oxidative stress and alleviate the cytotoxicity in cadmium-treated HepG2 cells by regenerating rGSH through activating Nrf2 signaling pathway. PMID:27343752

  6. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress

    PubMed Central

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François

    2016-01-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  7. Acid stress suggests different determinants for polystyrene and HeLa cell adhesion in Lactobacillus casei.

    PubMed

    Haddaji, N; Khouadja, S; Fdhila, K; Krifi, B; Ben Ismail, M; Lagha, R; Bakir, K; Bakhrouf, A

    2015-07-01

    Adhesion has been regarded as one of the basic features of probiotics. The aim of this study was to investigate the influence of acid stress on the functional properties, such as hydrophobicity, adhesion to HeLa cells, and composition of membrane fatty acids, of Lactobacillus probiotics strains. Two strains of Lactobacillus casei were used. Adhesion on polystyrene, hydrophobicity, epithelial cells adhesion, and fatty acids analysis were evaluated. Our results showed that the membrane properties such as hydrophobicity and fatty acid composition of stressed strains were significantly changed with different pH values. However, we found that acid stress caused a change in the proportions of unsaturated and saturated fatty acid. The ratio of saturated fatty acid to unsaturated fatty acids observed in acid-stressed Lactobacillus casei cells was significantly higher than the ration in control cells. In addition, we observed a significant decrease in the adhesion ability of these strains to HeLa cells and to a polystyrene surface at low pH. The present finding could first add new insight about the acid stress adaptation and, thus, enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. Second, no relationship was observed between changes in membrane composition and fluidity induced by acid treatment and adhesion to biotic and abiotic surfaces. In fact, the decrease of cell surface hydrophobicity and the adhesion ability to abiotic surface and the increase of the capacity of adhesion to biotic surface demonstrate that adhesive characteristics will have little relevance in probiotic strain-screening procedures.

  8. Paternal Transmission of Stressed-Induced Pathologies

    PubMed Central

    Dietz, David M.; LaPlant, Quincey; Watts, Emily L.; Hodes, Georgia E.; Russo, Scott J.; Feng, Jian; Oosting, Ronald S.; Vialou, Vincent; Nestler, Eric J.

    2011-01-01

    Background There has been recent interest in the possibility that epigenetic mechanisms might contribute to the trans-generational transmission of stress-induced vulnerability. Here, we focused on possible paternal transmission using the social defeat stress paradigm. Methods Adult male mice exposed to chronic social defeat stress, or control non-defeated mice, were bred with normal female mice and their offspring were assessed behaviorally for depressive- and anxiety-like measures. Plasma levels of corticosterone and vascular endothelial growth factor (VEGF) were also assayed. To directly assess the role of epigenetic mechanisms, we used in vitro fertilization (IVF); behavioral assessments were conducted on offspring of mice from IVF-control and IVF-defeated fathers. Results We show that both male and female offspring from defeated fathers exhibit increased measures of several depression- and anxiety-like behaviors. The male offspring of defeated fathers also display increased baseline plasma levels of corticosterone and decreased levels of VEGF. However, most of these behavioral changes were not observed when offspring were generated through IVF. Conclusion These results suggest that, while behavioral adaptations that occur after chronic social defeat stress can be transmitted from the father to his male and female F1 progeny, only very subtle changes might be transmitted epigenetically under the conditions tested. PMID:21679926

  9. Studies on effect of stress preconditioning in restrain stress-induced behavioral alterations.

    PubMed

    Kaur, Rajneet; Jaggi, Amteshwar Singh; Singh, Nirmal

    2010-02-01

    Stress preconditioning has been documented to confer on gastroprotective effects on stress-induced gastric ulcerations. However, the effects of prior exposure of stress preconditioning episodes on stress-induced behavioral changes have not been explored yet. Therefore the present study was designed to investigate the ameliorative effects of stress preconditioning in immobilization stress-induced behavioral alterations in rats. The rats were subjected to restrain stress by placing in restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Stress preconditioning was induced by subjecting the rats to two cycles of restraint and restrain-free periods of 15 min each. Furthermore, a similar type of stress preconditioning was induced using different time cycles of 30 and 45 min. The extent and severity of the stress-induced behavioral alterations were assessed using different behavioral tests such as hole-board test, social interaction test, open field test, and actophotometer. Restrain stress resulted in decrease in locomotor activity, frequency of head dips and rearing in hole board, line crossing and rearing in open field, and decreased following and increased avoidance in social interaction test. Stress preconditioning with two cycles of 15, 30 or 45 min respectively, did not attenuate stress-induced behavioral changes to any extent. It may be concluded that stress preconditioning does not seem to confer any protective effect in modulating restrain stress-induced behavioral alterations.

  10. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis.

    PubMed

    Bhatia, Nitish; Jaggi, Amteshwar Singh; Singh, Nirmal; Anand, Preet; Dhawan, Ravi

    2011-07-01

    The present study was designed to investigate the role of curcumin in chronic stress and chronic unpredictable stress-induced memory deficits and alteration of functional homeostasis in mice. Chronic stress was induced by immobilizing the animal for 2 h daily for 10 days, whereas chronic unpredictable stress was induced by employing a battery of stressors of variable magnitude and time for 10 days. Curcumin was administered to drug-treated mice prior to induction of stress. Body weight, adrenal gland weight, ulcer index and biochemical levels of glucose, creatine kinase, cholesterol, corticosterone, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were evaluated to assess stress-induced functional changes. Memory deficits were evaluated using the elevated plus maze (EPM) model. Chronic stress and chronic unpredictable stress significantly increased the levels of corticosterone, glucose and creatine kinase and decreased cholesterol levels. Moreover, chronic stress and chronic unpredictable stress resulted in severe memory deficits along with adrenal hypertrophy, weight loss and gastric ulceration. Chronic stress and chronic unpredictable stress also increased oxidative stress assessed in terms of increase in TBARS and decrease in GSH levels. Pretreatment with curcumin (25 and 50 mg/kg p.o.) attenuated chronic stress and chronic unpredictable stress-associated memory deficits, biochemical alterations, pathological outcomes and oxidative stress. It may be concluded that curcumin-mediated antioxidant actions and decrease in corticosterone secretion are responsible for its adaptogenic and memory restorative actions in chronic and chronic unpredictable stress.

  11. Losartan abolishes oxidative stress induced by intermittent hypoxia in humans.

    PubMed

    Pialoux, Vincent; Foster, Glen E; Ahmed, Sofia B; Beaudin, Andrew E; Hanly, Patrick J; Poulin, Marc J

    2011-11-15

    The aim of this study was to assess the role of the type 1 angiotensin II (AT(1)) receptor in the increase of oxidative stress and NO metabolism during a single 6 h exposure to intermittent hypoxia (IH). Nine healthy young men were exposed, while awake, to sham IH, IH with placebo medication, and IH with the AT(1) receptor antagonist, losartan, using a double-blind, placebo-controlled, randomized, crossover study design. In addition to blood pressure, oxidative stress, peroxynitrite activity, uric acid, global antioxidant status and the end-products of NO (NOx) metabolism were measured in plasma before and after 6 h of IH. Oxidative stress and peroxynitrite activity increased and NOx decreased during IH with placebo. In contrast, neither sham IH nor IH with losartan affected these parameters. With respect to each condition, blood pressure had the same profile as oxidative stress. These results demonstrate that blockade of AT(1) receptors prevented the increase in oxidative stress and peroxynitrite activity and the decrease in NO metabolism induced by IH. Finally, this study suggests that the renin-angiotensin system may participate in the overproduction of reactive oxygen species associated with IH by upregulation of the actions of angiotensin II.

  12. Stress-induced mutagenesis and complex adaptation

    PubMed Central

    Ram, Yoav; Hadany, Lilach

    2014-01-01

    Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability—the ability to adapt—and adaptedness—the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)—the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies. PMID:25143032

  13. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host. PMID:15634847

  14. Symbiosis-induced adaptation to oxidative stress.

    PubMed

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  15. Asbestos-induced disruption of calcium homeostasis induces endoplasmic reticulum stress in macrophages.

    PubMed

    Ryan, Alan J; Larson-Casey, Jennifer L; He, Chao; Murthy, Shuhba; Carter, A Brent

    2014-11-28

    Although the mechanisms for fibrosis development remain largely unknown, recent evidence indicates that endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) may act as an important fibrotic stimulus in diseased lungs. ER stress is observed in lungs of patients with idiopathic pulmonary fibrosis. In this study we evaluated if ER stress and the UPR was present in macrophages exposed to chrysotile asbestos and if ER stress in macrophages was associated with asbestos-induced pulmonary fibrosis. Macrophages exposed to chrysotile had elevated transcript levels of several ER stress genes. Macrophages loaded with the Ca(2+)-sensitive dye Fura2-AM showed that cytosolic Ca(2+) increased significantly within minutes after chrysotile exposure and remained elevated for a prolonged time. Chrysotile-induced increases in cytosolic Ca(2+) were partially inhibited by either anisomycin, an inhibitor of passive Ca(2+) leak from the ER, or 1,2-bis(2-aminophenoxyl)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular Ca(2+) chelator known to deplete ER Ca(2+) stores. Anisomycin inhibited X-box-binding protein 1 (XBP1) mRNA splicing and reduced immunoglobulin-binding protein (BiP) levels, whereas BAPTA-AM increased XBP1 splicing and BiP expression, suggesting that ER calcium depletion may be one factor contributing to ER stress in cells exposed to chrysotile. To evaluate ER stress in vivo, asbestos-exposed mice showed fibrosis development, and alveolar macrophages from fibrotic mice showed increased expression of BiP. Bronchoalveolar macrophages from asbestosis patients showed increased expression of several ER stress genes compared with normal subjects. These findings suggest that alveolar macrophages undergo ER stress, which is associated with fibrosis development.

  16. Stress state in turbopump bearing induced by shrink fitting

    NASA Technical Reports Server (NTRS)

    Sims, P.; Zee, R.

    1991-01-01

    The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.

  17. Chlorogenic acid protects MSCs against oxidative stress by altering FOXO family genes and activating intrinsic pathway.

    PubMed

    Li, Shiyong; Bian, Hetao; Liu, Zhe; Wang, Ye; Dai, Jianghua; He, Wenfeng; Liao, Xingen; Liu, Rongrong; Luo, Jun

    2012-01-15

    Chlorogenic acid as an antioxidant exists widely in edible and medicinal plants, and can protect cell against apoptosis induced by oxidative stress. However, its molecular mechanisms remain largely unknown. Here, we showed that Chlorogenic acid suppressed reactive oxygen species increase by activation of Akt phosphorylation,and increased FOXO family genes and anti-apoptotic protein Bcl-2 expression in MSCs culturing under oxidative stress. In addition, PI-3Kinase Inhibitor (2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, LY294002) could suppress the Chlorogenic acid-induced: (1) the cellular protective role, (2) the increase of the FOXO family genes expression, (3) increased expression of Bcl-2. These results suggested that Chlorogenic acid protected MSCs against apoptosis via PI3K/AKT signal and FOXO family genes.

  18. Melamine Induces Oxidative Stress in Mouse Ovary

    PubMed Central

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathi-one peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway. PMID:26545251

  19. Melamine Induces Oxidative Stress in Mouse Ovary.

    PubMed

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  20. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress.

    PubMed

    Hillman, Angela R; Vince, Rebecca V; Taylor, Lee; McNaughton, Lars; Mitchell, Nigel; Siegler, Jason

    2011-10-01

    While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.

  1. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor.

    PubMed Central

    Zhao, J; Williams, C C; Last, R L

    1998-01-01

    The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated. PMID:9501110

  2. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels. PMID:26571019

  3. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  4. Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation.

    PubMed

    Bluett, R J; Gamble-George, J C; Hermanson, D J; Hartley, N D; Marnett, L J; Patel, S

    2014-07-08

    Stress is a major risk factor for the development of mood and anxiety disorders; elucidation of novel approaches to mitigate the deleterious effects of stress could have broad clinical applications. Pharmacological augmentation of central endogenous cannabinoid (eCB) signaling may be an effective therapeutic strategy to mitigate the adverse behavioral and physiological consequences of stress. Here we show that acute foot-shock stress induces a transient anxiety state measured 24 h later using the light-dark box assay and novelty-induced hypophagia test. Acute pharmacological inhibition of the anandamide-degrading enzyme, fatty acid amide hydrolase (FAAH), reverses the stress-induced anxiety state in a cannabinoid receptor-dependent manner. FAAH inhibition does not significantly affect anxiety-like behaviors in non-stressed mice. Moreover, whole brain anandamide levels are reduced 24 h after acute foot-shock stress and are negatively correlated with anxiety-like behavioral measures in the light-dark box test. These data indicate that central anandamide levels predict acute stress-induced anxiety, and that reversal of stress-induced anandamide deficiency is a key mechanism subserving the therapeutic effects of FAAH inhibition. These studies provide further support that eCB-augmentation is a viable pharmacological strategy for the treatment of stress-related neuropsychiatric disorders.

  5. DHEA administration modulates stress-induced analgesia in rats.

    PubMed

    Cecconello, Ana Lúcia; Torres, Iraci L S; Oliveira, Carla; Zanini, Priscila; Niches, Gabriela; Ribeiro, Maria Flávia Marques

    2016-04-01

    An important aspect of adaptive stress response is the pain response suppression that occurs during or following stress exposure, which is often referred to as acute stress-induced analgesia. Dehydroepiandrosterone (DHEA) participates in the modulation of adaptive stress response, changing the HPA axis activity. The effect of DHEA on the HPA axis activity is dependent on the state and uses the same systems that participate in the regulation of acute stress-induced analgesia. The impact of DHEA on nociception has been studied; however, the effect of DHEA on stress-induced analgesia is not known. Thus, the aim of the present study was to evaluate the effect of DHEA on stress-induced analgesia and determine the best time for hormone administration in relation to exposure to stressor stimulus. The animals were stressed by restraint for 1h in a single exposure and received treatment with DHEA by a single injection before the stress or a single injection after the stress. Nociception was assessed with a tail-flick apparatus. Serum corticosterone levels were measured. DHEA administered before exposure to stress prolonged the acute stress-induced analgesia. This effect was not observed when the DHEA was administered after the stress. DHEA treatment in non-stressed rats did not alter the nociceptive threshold, suggesting that the DHEA effect on nociception is state-dependent. The injection of DHEA had the same effect as exposure to acute stress, with both increasing the levels of corticosterone. In conclusion, acute treatment with DHEA mimics the response to acute stress indexed by an increase in activity of the HPA axis. The treatment with DHEA before stress exposure may facilitate adaptive stress response, prolonging acute stress-induced analgesia, which may be a therapeutic strategy of interest to clinics.

  6. DHEA administration modulates stress-induced analgesia in rats.

    PubMed

    Cecconello, Ana Lúcia; Torres, Iraci L S; Oliveira, Carla; Zanini, Priscila; Niches, Gabriela; Ribeiro, Maria Flávia Marques

    2016-04-01

    An important aspect of adaptive stress response is the pain response suppression that occurs during or following stress exposure, which is often referred to as acute stress-induced analgesia. Dehydroepiandrosterone (DHEA) participates in the modulation of adaptive stress response, changing the HPA axis activity. The effect of DHEA on the HPA axis activity is dependent on the state and uses the same systems that participate in the regulation of acute stress-induced analgesia. The impact of DHEA on nociception has been studied; however, the effect of DHEA on stress-induced analgesia is not known. Thus, the aim of the present study was to evaluate the effect of DHEA on stress-induced analgesia and determine the best time for hormone administration in relation to exposure to stressor stimulus. The animals were stressed by restraint for 1h in a single exposure and received treatment with DHEA by a single injection before the stress or a single injection after the stress. Nociception was assessed with a tail-flick apparatus. Serum corticosterone levels were measured. DHEA administered before exposure to stress prolonged the acute stress-induced analgesia. This effect was not observed when the DHEA was administered after the stress. DHEA treatment in non-stressed rats did not alter the nociceptive threshold, suggesting that the DHEA effect on nociception is state-dependent. The injection of DHEA had the same effect as exposure to acute stress, with both increasing the levels of corticosterone. In conclusion, acute treatment with DHEA mimics the response to acute stress indexed by an increase in activity of the HPA axis. The treatment with DHEA before stress exposure may facilitate adaptive stress response, prolonging acute stress-induced analgesia, which may be a therapeutic strategy of interest to clinics. PMID:26852948

  7. [Central Circuit Mechanism for Psychological Stress-Induced Hyperthermia].

    PubMed

    Nakamura, Kazuhiro

    2015-10-01

    Many types of psychological stress induce hyperthermia. The stress-induced elevation of body temperature is caused by sympathetic responses including brown adipose tissue thermogenesis, tachycardia, and cutaneous vasoconstriction as well as by neuroendocrine responses including stress hormone release via the hypothalamo-pituitary-adrenal (HPA) axis. Recent studies have revealed that the hypothalamic and medullary neural circuitry for driving these stress responses. In this circuitry, the dorsomedial hypothalamus serves as a hub for the central stress signaling: first, it connects the sympathetic efferents with medullary sympathetic premotor neurons to drive the sympathetic responses; second, it connects the neuroendocrine efferents with the HPA axis to drive the stress hormone release. The findings from the animal experiments would be relevant to understand the etiology of the chronic stress-induced hyperthermia "psychogenic fever", a psychosomatic symptom in humans. In this review, I describe the current understanding of the central circuit mechanism for the development of psychological stress-induced hyperthermia, incorporating recent important discoveries.

  8. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  9. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    PubMed

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  10. Quantification of jasmonic acid by SPME in tomato plants stressed by ozone.

    PubMed

    Zadra, Claudia; Borgogni, Andrea; Marucchini, Cesare

    2006-12-13

    Jasmonates are signalling molecules induced in plants as a response to various biotic and/or abiotic stresses. As ozone is known to activate defense responses in plants, we have monitored the concentration of jasmonic acid in tomato leaves during and after an acute exposure to this abiotic elicitor. In this experiment, we observed that the maximum induction of jasmonic acid in O3-fumigated plants occurred 9 h after the end of treatment and the concentration of jasmonic acid in stressed plants increased 13-fold. However, the level of endogenous methyl-jasmonate was constant during the observed period. The extraction and quantification of jasmonic acid as its methyl ester was performed by headspace-solid-phase microextraction (or HS-SPME) in combination with GC-FID and GC-MS. The sensitivity (LOD = 2 ng/g) of this method permitted the detection and quantification of jasmonic acid present in plant tissues at very low concentrations. PMID:17147413

  11. Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress.

    PubMed

    Sivaci, Aysel; Kaya, A; Duman, Sevcan

    2014-09-01

    In this study, the changes caused by chilling stress on some physiological parameters of pepino (Solanum muricatum Ait.) plant and the effects of ascorbic acid (100 mM) applied exogenously on these changes were examined. For this purpose, the photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophylls and carotenoids), ascorbic acid, total phenolic compounds, malondialdehyde and proline contents in leaves of pepino taken on 5th and 10th days were determined. As a result of chilling stress, it was found that while the photosynthetic pigments and proline contents decreased in pepino leaves, the ascorbic acid, total phenolic compounds and malondialdehyde contents increased. In plants which were subjected to pre-treatment of ascorbic acid on the 10th day of stress, ascorbic acid and proline contents increased while a decrease was observed in malondialdehyde content, compared to stress group without pre-treated. This study may be important for explaining resistance induced by treatment of exogenous ascorbic acid in pepino exposed to chilling stress.

  12. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  13. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  14. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes.

  15. Stress induced phase transitions in silicon

    NASA Astrophysics Data System (ADS)

    Budnitzki, M.; Kuna, M.

    2016-10-01

    Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.

  16. Stress-induced flowering: the third category of flowering response.

    PubMed

    Takeno, Kiyotoshi

    2016-09-01

    The switch from vegetative growth to reproductive growth, i.e. flowering, is the critical event in a plant's life. Flowering is regulated either autonomously or by environmental factors; photoperiodic flowering, which is regulated by the duration of the day and night periods, and vernalization, which is regulated by low temperature, have been well studied. Additionally, it has become clear that stress also regulates flowering. Diverse stress factors can induce or accelerate flowering, or inhibit or delay it, in a wide range of plant species. This article focuses on the positive regulation of flowering via stress, i.e. the induction or acceleration of flowering in response to stress that is known as stress-induced flowering - a new category of flowering response. This review aims to clarify the concept of stress-induced flowering and to summarize the full range of characteristics of stress-induced flowering from a predominately physiological perspective. PMID:27382113

  17. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance.

    PubMed

    Hamayun, Muhammad; Khan, Sumera Afzal; Khan, Abdul Latif; Shin, Jae-Ho; Ahmad, Bashir; Shin, Dong-Hyun; Lee, In-Jung

    2010-06-23

    The agricultural industry is severely affected by salinity due to its high magnitude of adverse impacts and worldwide distribution. We observed the role of exogenous gibberellic acid (GA(3)) in salinity alleviation of soybean. We found that GA(3) application significantly promoted plant length and plant fresh/dry biomass while markedly hindered by NaCl induced salt stress. The adverse effect of salt stress was mitigated by GA(3), as growth attributes significantly recovered, when GA(3) was added to salt stressed soybean plants. Elevated GA(3) treatments increased daidzein and genistein contents (commonly known as phytoestrogens) of soybean leaves under control and salt stress conditions. Phytohormonal analysis of soybean showed that the level of bioactive gibberellins (GA(1) and GA(4)) and jasmonic acid increased in GA(3) treated plants, while the endogenous abscisic acid and salicylic acid contents declined under the same treatment. GA(3) mitigated the adverse effects of salt stress by regulating the level of phytohormones, thus aiding the plant in resuming its normal growth and development. The presence of GA(1) and GA(4) showed that both early-C13-hydroxylation and non-C13-hydroxylation pathways of GA biosynthesis are functional in soybean. It was concluded that GA(3) ameliorates the adverse effects of salt stress and restores normal growth and development of soybean.

  18. Protection of arsenic-induced hepatic disorder by arjunolic acid.

    PubMed

    Manna, Prasenjit; Sinha, Mahua; Sil, Parames C

    2007-11-01

    Arsenic is one of the ubiquitous environmental pollutants, which affects nearly all organ systems. The present study has been carried out to investigate the hepatoprotective role of arjunolic acid, a triterpenoid saponin, against arsenic-induced oxidative damages in murine livers. Administration of sodium arsenite at a dose of 10 mg/kg body weight for 2 days significantly reduced the activities of antioxidant enzymes, superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase and glutathione peroxidase as well as depleted the level of reduced glutathione and total thiols. In addition, sodium arsenite also increased the activities of serum marker enzymes, alanine transaminase and alkaline phosphatase, enhanced DNA fragmentation, protein carbonyl content, lipid peroxidation end-products and the level of oxidized glutathione. Studies with arjunolic acid show that in vitro it possesses free radical-scavenging and in vivo antioxidant activities. Treatment with arjunolic acid at a dose of 20 mg/kg body weight for 4 days prior to arsenic administration prevents the alterations of the activities of all antioxidant indices and levels of the other parameters studied. Histological studies revealed less centrilobular necrosis in the liver treated with arjunolic acid prior to arsenic intoxication compared to the liver treated with the toxin alone. Effects of a known antioxidant, vitamin C, have been included in the study as a positive control. In conclusion, the results suggest that arjunolic acid possesses the ability to attenuate arsenic-induced oxidative stress in murine liver probably via its antioxidant activity.

  19. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  20. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  1. Omeprazole induces altered bile acid metabolism

    PubMed Central

    Shindo, K; Machida, M; Fukumura, M; Koide, K; Yamazaki, R

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover on the tip and deconjugation was examined using thin layer chromatography. Fat malabsorption was detected by a triolein breath test. 
Results—In the bile acid breath test, expired breath samples from all patients and healthy volunteers showed significantly greater 14CO2 specific activity after omeprazole treatment (20 mg/day) than before treatment. Bacterial overgrowth was found in the jejunal fluid and gastric juice of both ulcer patients and healthy volunteers after omeprazole treatment. The following species were identified: Escherichia coli, Candida albicans, enterococcus, Lactobacillus bifidus, Bacteroides vulgatus, B uniformis, Eubacterium lentum, Eu parvum, and Corynebacterium granulosum. All of these species, except E coli and C albicans, deconjugate bile acids. There was a significant correlation between 14CO2 activity and gastric pH, both before and after omeprazole treatment in both groups. The triolein breath test revealed impaired fat absorption in both groups after omeprazole treatment. 
Conclusions—Both patients with gastric ulcer and healthy volunteers exhibited increased deconjugation of bile acids caused by bacterial overgrowth in the jejunum and fat malabsorption after omeprazole treatment. The bacterial overgrowth consisted of both anaerobes and aerobes with deconjugation ability and was probably associated with an omeprazole induced shift to neutral pH in the gastric juice. 

 Keywords: omeprazole; bacterial overgrowth; deconjugation; bile acid breath

  2. Stress-induced structural remodeling in hippocampus: Prevention by lithium treatment

    NASA Astrophysics Data System (ADS)

    Wood, Gwendolyn E.; Young, L. Trevor; Reagan, Lawrence P.; Chen, Biao; McEwen, Bruce S.

    2004-03-01

    Chronic restraint stress, psychosocial stress, as well as systemic or oral administration of the stress-hormone corticosterone induces a morphological reorganization in the rat hippocampus, in which adrenal steroids and excitatory amino acids mediate a reversible remodeling of apical dendrites on CA3 pyramidal cell neurons of the hippocampus. This stress-induced neuronal remodeling is accompanied also by behavioral changes, some of which can be prevented with selective antidepressant and anticonvulsive drug treatments. Lithium is an effective treatment for mood disorders and has neuroprotective effects, which may contribute to its therapeutic properties. Thus, we wanted to determine whether lithium treatment could prevent the effects of chronic stress on CA3 pyramidal cell neuroarchitecture and the associated molecular and behavioral measures. Chronic lithium treatment prevented the stress-induced decrease in dendritic length, as well as the stress-induced increase in glial glutamate transporter 1 (GLT-1) mRNA expression and the phosphorylation of cAMP-response element binding in the hippocampus. Lithium treatment, however, did not prevent stress effects on behavior in the open field or the plus-maze. These data demonstrate that chronic treatment with lithium can protect the hippocampus from potentially deleterious effects of chronic stress on glutamatergic activation, which may be relevant to its therapeutic efficacy in the treatment of major depressive disorder and bipolar disorder.

  3. Movement of abscisic acid into the apoplast in response to water stress in Xanthium strumarium L

    SciTech Connect

    Cornish, K.; Zeevaart, J.A.D.

    1985-07-01

    The effect of water stress on the redistribution of abscisic acid (ABA) in mature leaves of Xanthium strumarium L. was investigated using a pressure dehydration technique. In both turgid and stressed leaves, the ABA in the xylem exudate, the apoplastic ABA, increased before bulk leaf stress-induced ABA accumulation began. In the initially turgid leaves, the ABA level remained constant in both the apoplast and the leaf as a whole until wilting symptoms appeared. Following turgor loss, sufficient quantities of ABA moved into the apoplast to stimulate stomatal closure. Thus, the initial increase of apoplastic ABA may be relevant to the rapid stomatal closure seen in stressed leaves before their bulk leaf ABA levels rise. Following recovery from water stress, elevated levels of ABA remained in the apoplast after the bulk leaf contents had returned to their prestress values. This apoplastic ABA may retard stomatal reopening during the initial recovery period. 32 references, 5 figures.

  4. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  5. Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents.

    PubMed

    Rana, Tanmoy; Bera, Asit Kumar; Das, Subhashree; Pan, Diganta; Bandyopadhyay, Subhasish; Bhattacharya, Debasis; De, Sumanta; Sikdar, Sourav; Das, Subrata Kumar

    2010-04-01

    Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood. PMID:20122981

  6. Effect of ascorbic acid on blood oxidative stress in experimental chronic arsenicosis in rodents.

    PubMed

    Rana, Tanmoy; Bera, Asit Kumar; Das, Subhashree; Pan, Diganta; Bandyopadhyay, Subhasish; Bhattacharya, Debasis; De, Sumanta; Sikdar, Sourav; Das, Subrata Kumar

    2010-04-01

    Ascorbic acid is a sugar acid and an essential vital food nutrient found mainly in fruits and vegetables. The purpose of this study was to investigate the effects of ascorbic acid against arsenic induced oxidative stress in blood of rat. In rat, treatment with ascorbic acid prevented the increased serum enzymatic activity of AST, ALT, ALP, ACP and LDH. In addition, treatment with ascorbic acid prevented elevated production of LPO, PC and NO and restored the depletion of reduced SOD and CAT activities. Interestingly, ascorbic acid markedly upregulated lymphocytes relative mRNA expression of lymphocytes SOD2 gene corresponding to GAPDH, house keeping candidate gene in arsenic-treated rat, which might provide anti-oxidative activity in the blood.

  7. Salinity Stress Is Beneficial to the Accumulation of Chlorogenic Acids in Honeysuckle (Lonicera japonica Thunb.)

    PubMed Central

    Yan, Kun; Cui, Mingxing; Zhao, Shijie; Chen, Xiaobing; Tang, Xiaoli

    2016-01-01

    Honeysuckle (Lonicera japonica Thunb.) is a traditional medicinal plant in China that is particularly rich in chlorogenic acids, which are phenolic compounds with various medicinal properties. This study aimed to examine the effects of salinity stress on accumulation of chlorogenic acids in honeysuckle, through hydroponic experiments and field trials, and to examine the mechanisms underlying the effects. NaCl stress stimulated the transcription of genes encoding key enzymes in the synthesis of chlorogenic acids in leaves; accordingly, the concentrations of chlorogenic acids in leaves were significantly increased under NaCl stress, as was antioxidant activity. Specifically, the total concentration of leaf chlorogenic acids was increased by 145.74 and 50.34% after 30 days of 150 and 300 mM NaCl stress, respectively. Similarly, the concentrations of chlorogenic acids were higher in the leaves of plants in saline, compared with non-saline, plots, with increases in total concentrations of chlorogenic acids of 56.05 and 105.29% in October 2014 and 2015, respectively. Despite leaf biomass reduction, absolute amounts of chlorogenic acids per plant and phenylalanine ammonia-lyase (PAL) activity were significantly increased by soil salinity, confirming that the accumulation of chlorogenic acids in leaves was a result of stimulation of their synthesis under salinity stress. Soil salinity also led to elevated chlorogenic acid concentrations in honeysuckle flower buds, with significant increases in total chlorogenic acids concentration of 22.42 and 25.14% in May 2014 and 2015, respectively. Consistent with biomass reduction, the absolute amounts of chlorogenic acid per plant declined in flower buds of plants exposed to elevated soil salinity, with no significant change in PAL activity. Thus, salinity-induced chlorogenic acid accumulation in flower buds depended on an amplification effect of growth reduction. In conclusion, salinity stress improved the medicinal quality of

  8. Stability of free amino acid levels in stressed Abarenicola pacifica

    SciTech Connect

    Augenfeld, J.M.; Anderson, J.W.

    1980-01-01

    A change in the composition of the free amino acid (FAA) pool of pelecypod molluscs under stress has been described. This response consists of a significant decrease in the level of glycine, while the taurine level remains constant, leading to a decrease in the total free amino acid level and a decrease in the glycine:taurine ratio. It has been suggested that this alteration in FAA composition may be useful as an indicator of physiological stress in a wide variety of invertebrates. This suggestion has been tested by exposing a burrowing polychaete, Abarenicola pacifica, to sediment artificially contaminated with Prudhoe Bay crude oil (PBC).

  9. Drug-induced acid-base disorders.

    PubMed

    Kitterer, Daniel; Schwab, Matthias; Alscher, M Dominik; Braun, Niko; Latus, Joerg

    2015-09-01

    The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine).

  10. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.

  11. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  12. Different fatty acids inhibit apoB100 secretion by different pathways: unique roles for ER stress, ceramide, and autophagy

    PubMed Central

    Caviglia, Jorge Matias; Gayet, Constance; Ota, Tsuguhito; Hernandez-Ono, Antonio; Conlon, Donna M.; Jiang, Hongfeng; Fisher, Edward A.; Ginsberg, Henry N.

    2011-01-01

    Although short-term incubation of hepatocytes with oleic acid (OA) stimulates secretion of apolipoprotein B100 (apoB100), exposure to higher doses of OA for longer periods inhibits secretion in association with induction of endoplasmic reticulum (ER) stress. Palmitic acid (PA) induces ER stress, but its effects on apoB100 secretion are unclear. Docosahexaenoic acid (DHA) inhibits apoB100 secretion, but its effects on ER stress have not been studied. We compared the effects of each of these fatty acids on ER stress and apoB100 secretion in McArdle RH7777 (McA) cells: OA and PA induced ER stress and inhibited apoB100 secretion at higher doses; PA was more potent because it also increased the synthesis of ceramide. DHA did not induce ER stress but was the most potent inhibitor of apoB100 secretion, acting via stimulation of autophagy. These unique effects of each fatty acid were confirmed when they were infused into C57BL6J mice. Our results suggest that when both increased hepatic secretion of VLDL apoB100 and hepatic steatosis coexist, reducing ER stress might alleviate hepatic steatosis but at the expense of increased VLDL secretion. In contrast, increasing autophagy might reduce VLDL secretion without causing steatosis. PMID:21719579

  13. Advances in metal-induced oxidative stress and human disease.

    PubMed

    Jomova, Klaudia; Valko, Marian

    2011-05-10

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  14. Acid exposure induces multiplication of Salmonella enterica serovar Typhi.

    PubMed

    Ahirwar, Suneel Kumar; Pratap, Chandra Bhan; Patel, Saurabh Kumar; Shukla, Vijay K; Singh, Indarjeet Gambhir; Mishra, Om Prakash; Kumar, Kailash; Singh, Tej Bali; Nath, Gopal

    2014-12-01

    Salmonella enterica serovar Typhi faces several environmental stresses while going through the stomach (acidic pH) to the small intestine (basic pH) and intracellularly in macrophages (acidic pH) in humans. The acidic pH followed by alkaline pH in the small intestine might be responsible for expression of certain stress-induced genes, resulting in not only better survival but also induction of multiplication and invasion of the bacterium in the small intestine. Based on this hypothesis, we developed a process wherein we exposed the blood, urine, and stool specimens from 90 acute typhoid fever patients and 36 chronic typhoid carriers to acidic pH to see the effect on isolation rate of S. Typhi. About 5 g of freshly passed unpreserved stool, a centrifuged deposit of 15 ml of urine, and 5 ml of blood clot were subjected to 5 ml of Luria-Bertani (LB) broth (pH 3.5) for 20 min, followed by enrichment in bile broth-selenite F broth. When the combined isolation from all 3 specimens, i.e., blood, urine, and stool, after acid exposure was considered, a total of 77.7% of the acute typhoid patients were observed to be positive for the isolation of the S. Typhi serotype, compared to 8.8% by the conventional method. Similarly, 42% (15/36) of chronic carriers yielded positive for S. Typhi growth after acid exposure, compared to 5.5% (2/36) by the conventional method. It therefore can be concluded that acid shock triggers the multiplication of the bacteria, resulting in better isolation rates from blood clot, stool, and urine specimens.

  15. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  16. Brassinosteroid/Abscisic Acid Antagonism in Balancing Growth and Stress.

    PubMed

    Clouse, Steven D

    2016-07-25

    In this issue of Developmental Cell, Gui et al. (2016) show that an abscisic acid-inducible remorin protein in rice directly interacts with critical brassinosteroid signaling components to attenuate the brassinosteroid response, thus illuminating one aspect of the brassinosteroid/abscisic acid antagonism. PMID:27459060

  17. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis

    PubMed Central

    Arimoto-Matsuzaki, Kyoko; Saito, Haruo; Takekawa, Mutsuhiro

    2016-01-01

    Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells can be exposed to various stresses simultaneously in vivo, the regulation of SG assembly under multiple stress conditions is important but unknown. Here we report that reactive oxygen species (ROS) such as H2O2 oxidize the SG-nucleating protein TIA1, thereby inhibiting SG assembly. Thus, when cells are confronted with a SG-inducing stress such as ER stress caused by protein misfolding, together with ROS-induced oxidative stress, they cannot form SGs, resulting in the promotion of apoptosis. We demonstrate that the suppression of SG formation by oxidative stress may underlie the neuronal cell death seen in neurodegenerative diseases. PMID:26738979

  18. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    PubMed

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd. PMID:27417874

  19. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury

    PubMed Central

    Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu

    2016-01-01

    Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710

  20. Physiological responses to acid stress by Saccharomyces cerevisiae when applying high initial cell density

    PubMed Central

    Guo, Zhong-peng; Olsson, Lisbeth

    2016-01-01

    High initial cell density is used to increase volumetric productivity and shorten production time in lignocellulosic hydrolysate fermentation. Comparison of physiological parameters in high initial cell density cultivation of Saccharomyces cerevisiae in the presence of acetic, formic, levulinic and cinnamic acids demonstrated general and acid-specific responses of cells. All the acids studied impaired growth and inhibited glycolytic flux, and caused oxidative stress and accumulation of trehalose. However, trehalose may play a role other than protecting yeast cells from acid-induced oxidative stress. Unlike the other acids, cinnamic acid did not cause depletion of cellular ATP, but abolished the growth of yeast on ethanol. Compared with low initial cell density, increasing initial cell density reduced the lag phase and improved the bioconversion yield of cinnamic acid during acid adaptation. In addition, yeast cells were able to grow at elevated concentrations of acid, probable due to the increase in phenotypic cell-to-cell heterogeneity in large inoculum size. Furthermore, the specific growth rate and the specific rates of glucose consumption and metabolite production were significantly lower than at low initial cell density, which was a result of the accumulation of a large fraction of cells that persisted in a viable but non-proliferating state. PMID:27620460

  1. Laboratory stress corrosion cracking studies in polythionic acid

    SciTech Connect

    Baylor, V.B.; Newsome, J.F.

    1984-08-01

    Stress corrosion cracking caused by polythionic acid and/or chlorides is a problem in coal liquefaction pilot plants. This problem is also common in refineries and has been the subject of extensive research. This study examines (1) the relationship of the ASTM standard ferric sulfate-sulfuric acid test for determining sensitization to resistance to polythionic stress corrosion cracking, (2) the cracking resistance of higher-alloy Fe-Ni-Cr materials in addition to the common austenitic stainless steels, and (3) the effect of chloride concentrations up to 1% in polythionic acid solutions on cracking behavior. We found that the ferric sulfate-sulfuric acid test can be used as an acceptance test for materials resistant to polythionic acid stress corrosion cracking because of its severity. The more highly alloyed materials were more resistant to sensitization than most of the austenitic stainless steels and were virtually unattacked in polythionic acid solutions containing up to 1% chloride. Chloride increased the corrosion rate and caused localized pitting, but it did not affect significantly the number of failures or the failure mode.

  2. Glucagon orchestrates stress-induced hyperglycaemia.

    PubMed

    Harp, J B; Yancopoulos, G D; Gromada, J

    2016-07-01

    Hyperglycaemia is commonly observed on admission and during hospitalization for medical illness, traumatic injury, burn and surgical intervention. This transient hyperglycaemia is referred to as stress-induced hyperglycaemia (SIH) and frequently occurs in individuals without a history of diabetes. SIH has many of the same underlying hormonal disturbances as diabetes mellitus, specifically absolute or relative insulin deficiency and glucagon excess. SIH has the added features of elevated blood levels of catecholamines and cortisol, which are not typically present in people with diabetes who are not acutely ill. The seriousness of SIH is highlighted by its greater morbidity and mortality rates compared with those of hospitalized patients with normal glucose levels, and this increased risk is particularly high in those without pre-existing diabetes. Insulin is the treatment standard for SIH, but new therapies that reduce glucose variability and hypoglycaemia are desired. In the present review, we focus on the key role of glucagon in SIH and discuss the potential use of glucagon receptor blockers and glucagon-like peptide-1 receptor agonists in SIH to achieve target glucose control. PMID:27027662

  3. Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid.

    PubMed

    Seong, Yeong-Ae; Shin, Pyung-Gyun; Yoon, Jin-Soo; Yadunandam, Anandam Kasin; Kim, Gun-Do

    2014-03-01

    Anacardic acid (AA, 2-hydroxy-6-pentadecylbenzoic acid), a constituent of the cashew-nut shell, has a variety of beneficial effects on the treatment of cancer and tumors. However, the fact that AA induces ER stress and autophagy in cancer cell is not known. We investigated the effect of AA on ER-stress and autophagy-induced cell death in cancer cells. Because of our interest in lung cancer, we used the non-small cell lung adenocarcinoma A549 cells treated with 3.0 μg/ml of AA for this research. In this research we found that AA induces intracellular Ca(2+) mobilization and ER stress. AA induced the ER stress-inducing factors, especially IRE1α, and the hallmarks of UPR, Grp78/Bip and GADD153/CHOP. AA inhibited the expression of p-PERK and its downstream substrate, p-elF2α. We also demonstrated that AA induces autophagy. Up-regulation of autophagy-related genes and the appearance of autophagosome in transfected cells with green fluorescent protein (GFP)-LC3 and GFP-Beclin1 plasmids showed the induction of autophagy in AA-treated A549 cells. The morphological analysis of intracellular organelles by TEM also showed the evidence that AA induces ER stress and autophagy. For the first time, our research showed that AA induces ER stress and autophagy in cancer cells. PMID:23955513

  4. Differentiating stress to wheat fields induced by Diuraphis noxia from other stress causing factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop a method to differentiate two categories of stress to wheat fields, stress induced by the Russian wheat aphid, Diuraphis noxia (Mordvilko), and stress caused by other factors. The study used a set of 11 spatial pattern metrics derived from multispectral im...

  5. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    PubMed

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder. PMID:24385143

  6. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    SciTech Connect

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  7. Prenatal stress induces vulnerability to stress together with the disruption of central serotonin neurons in mice.

    PubMed

    Miyagawa, Kazuya; Tsuji, Minoru; Ishii, Daisuke; Takeda, Kotaro; Takeda, Hiroshi

    2015-01-15

    A growing body of evidence suggests that prenatal stress increases the vulnerability to neuropsychiatric disorders. On the other hand, the ability to adapt to stress is an important defensive function of a living body, and disturbance of this stress adaptability may be related, at least in part, to the pathophysiology of stress-related psychiatric disorders. The aim of the present study was to clarify the relationship between exposure to prenatal stress and the ability to adapt to stress in mice. Naive and prenatally stressed mice were exposed to repeated restraint stress for 60 min/day for 7 days. After the final exposure to restraint stress, the emotionality of mice was evaluated in terms of exploratory activity, i.e., total distance moved as well as the number and duration of rearing and head-dipping behaviors, using an automatic hole-board apparatus. A single exposure to restraint stress for 60 min induced a decrease in head-dipping behavior in the hole-board test. This acute emotional stress response disappeared in naive mice that had been exposed to repeated restraint stress for 60 min/day for 7 days, which confirmed the development of stress adaptation. In contrast, prenatally stressed mice did not develop this stress adaptation, and still showed a decrease in head-dipping behavior after the repeated exposure to restraint stress. Biochemical studies showed that the rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase, was increased in raphe obtained from stress-adapted mice. In contrast, a decrease in tryptophan hydroxylase was observed in stress-maladaptive mice. In addition, the transcription factor Lmx1b, which is essential for differentiation and the maintenance of normal functions in central 5-HT neurons, was decreased in the embryonic hindbrain and adult raphe of prenatally stressed mice. These findings suggest that exposure to excessive prenatal stress may induce a vulnerability to stress and disrupt the development of 5-HT neurons.

  8. Orexin A attenuates palmitic acid-induced hypothalamic cell death.

    PubMed

    Duffy, Cayla M; Nixon, Joshua P; Butterick, Tammy A

    2016-09-01

    Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health. PMID:27449757

  9. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  10. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance. PMID:27579593

  11. Stress- and Allostasis-Induced Brain Plasticity

    PubMed Central

    McEwen, Bruce S.; Gianaros, Peter J.

    2014-01-01

    The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms. PMID:20707675

  12. [Stress effects of simulant acid rain on three woody plants].

    PubMed

    Zhou, Qing; Huang, Xiaohua; Liu, Xiaolin

    2002-09-01

    Osmanthus fragrana, Chimonanthus praecox and Prunus persica were used as materials to investigate the effect of simulant acid rain on chlorophyll (Chl) content, cell membrane permeability(L%), the content of proline (Pro) and malondialdehyde (MDA) in three woody plants with different resistance, and effects of the light and dark conditions on acid rain injury. The results showed that the change degree of four kinds of physiological and biochemical indexes for these woody plants was as sequence: Osmanthus fragrana > Chimonanthus praecox > Prunus persica. The change of chlorophyll content in these woody plants was not obviously when acid rain stress was influenced by the light and dark.

  13. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    PubMed Central

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E.; Arellano-Buendía, Abraham S.; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Zazueta, Cecilia; Johnson, Richard J.; Sánchez Lozada, Laura-Gabriela

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident. PMID:25918583

  14. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension.

    PubMed

    Cristóbal-García, Magdalena; García-Arroyo, Fernando E; Tapia, Edilia; Osorio, Horacio; Arellano-Buendía, Abraham S; Madero, Magdalena; Rodríguez-Iturbe, Bernardo; Pedraza-Chaverrí, José; Correa, Francisco; Zazueta, Cecilia; Johnson, Richard J; Lozada, Laura-Gabriela Sánchez

    2015-01-01

    We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks) and short-term (3 weeks) effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW), OA+Allopurinol (AP, 150 mg/L drinking water), OA+Tempol (T, 15 mg/kg BW), or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase) and oxidative stress markers (lipid and protein oxidation) along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  15. Changes in free amino acids and polyamine levels in Satsuma leaves in response to Asian citrus psyllid infestation and water stress.

    PubMed

    Malik, Nasir S A; Perez, Jose L; Kunta, Madhurababu; Patt, Joseph M; Mangan, Robert L

    2014-12-01

    The effects of biotic and abiotic stresses on changes in amino acids and polyamine levels in Satsuma orange (Citrus unshiu; cultivar Owari) leaves were investigated. Asian citrus psyllids Diaphorina citri (Kuwayama) (ACP) infestation was used to induce biotic stress while a water deficit was imposed to induce abiotic stress. Potted trees were infested by placing 50 psyllids on 3 citrus leaves enclosed in nylon mesh bags for 5 d. A parallel set of plants were kept water stressed by maintaining the soil at 20% water holding capacity for 5 d. Levels of total free amino acids were higher in water stressed and ACP infested leaves. Polyamine putrescine increased in infested leaves but not in water stressed leaves. Proline was the most abundant amino acid and its levels significantly increased by both biotic and abiotic stresses. Proline levels in infested leaves were significantly higher than the water stressed leaves. Histidine, methionine, asparagine, arginine, serine, and leucine levels also increased significantly in infested leaves, but in water stressed leaves only leucine, methionine, and threonine increased. Levels of amino acids, such as tyrosine, isoleucine, phenylalanine, glutamic acid, and alanine, declined in infested leaves. Under water stress asparagine, phenylalanine, serine, and histidine also declined compared to controls. This indicates that while proteolysis occurred under both stresses, metabolic conversion of amino acids was different under the two stresses. In ACP infested leaves some amino acids may be used as feeding material and/or converted into secondary metabolites for defense. PMID:24178691

  16. Changes in free amino acids and polyamine levels in Satsuma leaves in response to Asian citrus psyllid infestation and water stress.

    PubMed

    Malik, Nasir S A; Perez, Jose L; Kunta, Madhurababu; Patt, Joseph M; Mangan, Robert L

    2014-12-01

    The effects of biotic and abiotic stresses on changes in amino acids and polyamine levels in Satsuma orange (Citrus unshiu; cultivar Owari) leaves were investigated. Asian citrus psyllids Diaphorina citri (Kuwayama) (ACP) infestation was used to induce biotic stress while a water deficit was imposed to induce abiotic stress. Potted trees were infested by placing 50 psyllids on 3 citrus leaves enclosed in nylon mesh bags for 5 d. A parallel set of plants were kept water stressed by maintaining the soil at 20% water holding capacity for 5 d. Levels of total free amino acids were higher in water stressed and ACP infested leaves. Polyamine putrescine increased in infested leaves but not in water stressed leaves. Proline was the most abundant amino acid and its levels significantly increased by both biotic and abiotic stresses. Proline levels in infested leaves were significantly higher than the water stressed leaves. Histidine, methionine, asparagine, arginine, serine, and leucine levels also increased significantly in infested leaves, but in water stressed leaves only leucine, methionine, and threonine increased. Levels of amino acids, such as tyrosine, isoleucine, phenylalanine, glutamic acid, and alanine, declined in infested leaves. Under water stress asparagine, phenylalanine, serine, and histidine also declined compared to controls. This indicates that while proteolysis occurred under both stresses, metabolic conversion of amino acids was different under the two stresses. In ACP infested leaves some amino acids may be used as feeding material and/or converted into secondary metabolites for defense.

  17. Induced stresses due to fluid extraction from axisymmetric reservoirs

    USGS Publications Warehouse

    Segall, P.

    1992-01-01

    Earthquakes can be induced by fluid extraction, as well as by fluid injection. Segall (1989) proposed that poroelastic stresses are responsible for inducing earthquakes associated with fluid extraction. Here, I present methods for computing poroelastic stress changes due to fluid extraction for general axisymmetric reservoir geometries. The results of Geertsma (1973) for a thin disk reservoir with uniform pressure drop are recovered as a special case. Predicted surface subsidence agrees very well with measured leveling changes over the deep Lacq gas field in southwestern France. The induced stresses are finite if the reservoir pressure changes are continuous. Computed stress changes are on the order of several bars, suggesting that the preexisting stress states in regions of extraction induced seismicity are very close to frictional instability prior to production. ?? 1992 Birkha??user Verlag.

  18. OGG1 is essential in oxidative stress induced DNA demethylation.

    PubMed

    Zhou, Xiaolong; Zhuang, Ziheng; Wang, Wentao; He, Lingfeng; Wu, Huan; Cao, Yan; Pan, Feiyan; Zhao, Jing; Hu, Zhigang; Sekhar, Chandra; Guo, Zhigang

    2016-09-01

    DNA demethylation is an essential cellular activity to regulate gene expression; however, the mechanism that triggers DNA demethylation remains unknown. Furthermore, DNA demethylation was recently demonstrated to be induced by oxidative stress without a clear molecular mechanism. In this manuscript, we demonstrated that 8-oxoguanine DNA glycosylase-1 (OGG1) is the essential protein involved in oxidative stress-induced DNA demethylation. Oxidative stress induced the formation of 8-oxoguanine (8-oxoG). We found that OGG1, the 8-oxoG binding protein, promotes DNA demethylation by interacting and recruiting TET1 to the 8-oxoG lesion. Downregulation of OGG1 makes cells resistant to oxidative stress-induced DNA demethylation, while over-expression of OGG1 renders cells susceptible to DNA demethylation by oxidative stress. These data not only illustrate the importance of base excision repair (BER) in DNA demethylation but also reveal how the DNA demethylation signal is transferred to downstream DNA demethylation enzymes.

  19. Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses.

    PubMed

    Micol-Ponce, Rosa; Sánchez-García, Ana Belén; Xu, Qian; Barrero, José María; Micol, José Luis; Ponce, María Rosa

    2015-11-01

    Epigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity. To better understand the global function of ICU2 in epigenetic regulation, here we performed a microarray analysis of icu2-1 mutant plants. We found that the genes up-regulated in the icu2-1 mutant included genes encoding transcription factors and targets of the Polycomb Repressive Complexes. The down-regulated genes included many known players in salicylic acid (SA) biosynthesis and accumulation, ABA signaling and ABA-mediated responses. In addition, we found that icu2-1 plants had reduced SA levels in normal conditions; infection by Fusarium oxysporum induced SA accumulation in the En-2 wild type but not in the icu2-1 mutant. The icu2-1 plants were also hypersensitive to salt stress and exogenous ABA in seedling establishment, post-germination growth and stomatal closure, and accumulated more ABA than the wild type in response to salt stress. The icu2-1 mutant also showed high tolerance to the oxidative stress produced by 3-amino-1,2,4-triazole (3-AT). Our results uncover a role for ICU2 in the regulation of genes involved in ABA signaling as well as in SA biosynthesis and accumulation.

  20. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  1. Oxalic acid-mediated stress responses in Brassica napus L.

    PubMed

    Liang, Yue; Strelkov, Stephen E; Kav, Nat N V

    2009-06-01

    Oxalic acid (OA) occurs extensively in nature and plays diverse roles, especially in pathogenic processes involving various plant pathogens. However, proteome changes and modifications of signaling and oxidative network of plants in response to OA are not well understood. In order to investigate the responses of Brassica napus toward OA, a proteome analysis was conducted employing 2-DE with MS/MS. A total of 37 proteins were identified as responding to OA stress, of which 13 were up-regulated and 24 were down-regulated. These proteins were categorized into several functional groups including protein processing, RNA processing, photosynthesis, signal transduction, stress response, and redox homeostasis. Investigation of the effect of OA on phytohormone signaling and oxidative responses revealed that jasmonic acid-, ethylene-, and abscisic acid-mediated signaling pathways appear to increase at later time points, whereas those pathways mediated by salicylic acid appear to be suppressed. Moreover, the activities of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and oxalic acid oxidase, but not NADPH oxidase, were suppressed by OA stress. Our findings are discussed within the context of the proposed role(s) of OA during infection by Sclerotinia sclerotiorum and subsequent disease progression. PMID:19526549

  2. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  3. Aluminum Induces Oxidative Stress Genes in Arabidopsis thaliana1

    PubMed Central

    Richards, Keith D.; Schott, Eric J.; Sharma, Yogesh K.; Davis, Keith R.; Gardner, Richard C.

    1998-01-01

    Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al. PMID:9449849

  4. Psychological stress, cocaine and natural reward each induce endoplasmic reticulum stress genes in rat brain.

    PubMed

    Pavlovsky, A A; Boehning, D; Li, D; Zhang, Y; Fan, X; Green, T A

    2013-08-29

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors activating transcription factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated is unknown. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative polymerase chain reaction (PCR) and RNA sequencing. Restraint stress and cocaine-induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components x-box binding protein 1 (XBP1) and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  5. Psychological Stress, Cocaine and Natural Reward Each Induce Endoplasmic Reticulum Stress Genes in Rat Brain

    PubMed Central

    Pavlovsky, Ashly A.; Boehning, Darren; Li, Dingge; Zhang, Yafang; Fan, Xiuzhen; Green, Thomas A.

    2013-01-01

    Our prior research has shown that the transcription of endoplasmic reticulum (ER) stress transcription factors Activating Transcription Factor 3 (ATF3) and ATF4 are induced by amphetamine and restraint stress in rat striatum. However, presently it is unknown the full extent of ER stress responses to psychological stress or cocaine, and which of the three ER stress pathways is activated. The current study examines transcriptional responses of key ER stress target genes subsequent to psychological stress or cocaine. Rats were subjected to acute or repeated restraint stress or cocaine treatment and mRNA was isolated from dorsal striatum, medial prefrontal cortex and nucleus accumbens brain tissue. ER stress gene mRNA expression was measured using quantitative PCR and RNA sequencing. Restraint stress and cocaine induced transcription of the classic ER stress-induced genes (BIP, CHOP, ATF3 and GADD34) and of two other ER stress components XBP1 and ATF6. In addition, rats living in an enriched environment (large group cage with novel toys changed daily) exhibited rapid induction of GADD34 and ATF3 after 30 min of exploring novel toys, suggesting these genes are also involved in normal non-pathological signaling. However, environmental enrichment, a paradigm that produces protective addiction and depression phenotypes in rats, attenuated the rapid induction of ATF3 and GADD34 after restraint stress. These experiments provide a sensitive measure of ER stress and, more importantly, these results offer good evidence of the activation of ER stress mechanisms from psychological stress, cocaine and natural reward. Thus, ER stress genes may be targets for novel therapeutic targets for depression and addiction. PMID:23644055

  6. Biotic and abiotic stress can induce cystatin expression in chestnut.

    PubMed

    Pernas, M; Sánchez-Monge, R; Salcedo, G

    2000-02-11

    A cysteine proteinase inhibitor (cystatin) from chestnut (Castanea sativa) seeds, designated CsC, has been previously characterized. Its antifungal, acaricide and inhibitory activities have allowed to involve CsC in defence mechanisms. The CsC transcription levels decreased during seed maturation and increased throughout germination, an opposite behavior to that shown by most phytocystatins. No inhibition of endogenous proteinase activity by purified CsC was found during the seed maturation or germination processes. CsC message accumulation was induced in chestnut leaves after fungal infection, as well as by wounding and jasmonic acid treatment. Induction in roots was also observed by the last two treatments. Furthermore, CsC transcript levels strongly raised, both in roots and leaves, when chestnut plantlets were subjected to cold- and saline-shocks, and also in roots by heat stress. All together, these data suggest that chestnut cystatin is not only involved in defence responses to pests and pathogen invasion, but also in those related to abiotic stress.

  7. Stress-induced changes in wheat grain composition and quality.

    PubMed

    Ashraf, M

    2014-01-01

    Abiotic stresses such as drought, salinity, waterlogging, and high temperature cause a myriad of changes in the metabolism of plants, and there is a lot of overlap in these changes in plants in response to different stresses such as drought and salinity. These stress-induced metabolic changes cause impaired crop growth thereby resulting in poor yield. The metabolic changes taking place in several plant species due to a particular abiotic stress have been revealed from the whole plant to the molecular level by researchers, but most studies have focused on organs such as leaf, stem, and root. Information on such stress-induced changes in seed or grains is infrequent in the literature. From the information that is available, it is now evident that abiotic stress can induce considerable changes in the composition and quality of cereal grains including those of wheat, the premier staple food crop in the world. Thus, the present review discusses how far different types of stresses, mainly salinity, drought, high temperature, and waterlogging, can alter the wheat grain composition and quality. By fully uncovering the stress-induced changes in the nutritional values of wheat grains it would be possible to establish whether balanced supplies of essential nutrients are available to the human population from the wheat crop grown on stress-affected areas.

  8. Changes in fatty acid composition in the giant clam Tridacna maxima in response to thermal stress

    PubMed Central

    Dubousquet, Vaimiti; Gros, Emmanuelle; Berteaux-Lecellier, Véronique; Viguier, Bruno; Raharivelomanana, Phila; Bertrand, Cédric; Lecellier, Gaël J.

    2016-01-01

    ABSTRACT Temperature can modify membrane fluidity and thus affects cellular functions and physiological activities. This study examines lipid remodelling in the marine symbiotic organism, Tridacna maxima, during a time series of induced thermal stress, with an emphasis on the morphology of their symbiont Symbiodinium. First, we show that the French Polynesian giant clams harbour an important proportion of saturated fatty acids (SFA), which reflects their tropical location. Second, in contrast to most marine organisms, the total lipid content in giant clams remained constant under stress, though some changes in their composition were shown. Third, the stress-induced changes in fatty acid (FA) diversity were accompanied by an upregulation of genes involved in lipids and ROS pathways. Finally, our microscopic analysis revealed that for the giant clam's symbiont, Symbiodinium, thermal stress led to two sequential cell death processes. Our data suggests that the degradation of Symbiodinium cells could provide an additional source of energy to T. maxima in response to heat stress. PMID:27543058

  9. Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome

    PubMed Central

    SOGUT, IBRAHIM; OGLAKCI, AYSEGUL; KARTKAYA, KAZIM; OL, KEVSER KUSAT; SOGUT, MELIS SAVASAN; KANBAK, GUNGOR; INAL, MINE ERDEN

    2015-01-01

    To the best of our knowledge, this is the first study concerning the effect of boric acid (BA) administration on fetal alcohol syndrome (FAS). In this study, the aim was to investigate prenatal alcohol-induced oxidative stress on the cerebral cortex of newborn rat pups and assess the protective and beneficial effects of BA supplementation on rats with FAS. Pregnant rats were divided into three groups, namely the control, alcohol and alcohol + boric acid groups. As markers of alcohol-induced oxidative stress in the cerebral cortex of the newborn pups, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels were measured. Although the MDA levels in the alcohol group were significantly increased compared with those in the control group (P<0.05), the MDA level in the alcohol + boric acid group was shown to be significantly decreased compared with that in the alcohol group (P<0.01). The CAT activity of the alcohol + boric acid group was significantly higher than that in the alcohol group (P<0.05). The GPx activity in the alcohol group was decreased compared with that in the control group (P<0.05). These results demonstrate that alcohol is capable of triggering damage to membranes of the cerebral cortex of rat pups and BA could be influential in antioxidant mechanisms against oxidative stress resulting from prenatal alcohol exposure. PMID:25667671

  10. Caffeine attenuated ER stress-induced leptin resistance in neurons.

    PubMed

    Hosoi, Toru; Toyoda, Keisuke; Nakatsu, Kanako; Ozawa, Koichiro

    2014-05-21

    Exposing the endoplasmic reticulum (ER) to stress causes the accumulation of unfolded proteins, and subsequently results in ER stress. ER stress may be involved in various disorders such as obesity, diabetes, and neurodegenerative diseases. Leptin is an important circulating hormone, that inhibits food intake and accelerates energy consumption, which suppresses body weight gain. Recent studies demonstrated that leptin resistance is one of the main factors involved in the development of obesity. We and other groups recently reported the role of ER stress in the development of leptin resistance. Therefore, identifying drugs that target ER stress may be a promising fundamental strategy for the treatment of obesity. In the present study, we investigated whether caffeine could affect ER stress and the subsequent development of leptin resistance. We showed that caffeine exhibited chaperone activity, which attenuated protein aggregation. Caffeine also inhibited the ER stress-induced activation of IRE1 and PERK, which suggested the attenuation of ER stress. Moreover, caffeine markedly improved ER stress-induced impairments in the leptin-induced phosphorylation of STAT3. Therefore, these results suggest caffeine may have pharmacological properties that ameliorate leptin resistance by reducing ER stress. PMID:24699176

  11. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  12. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. PMID:26551768

  13. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  14. Social factors modulate restraint stress induced hyperthermia in mice.

    PubMed

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress.

  15. Social factors modulate restraint stress induced hyperthermia in mice.

    PubMed

    Watanabe, Shigeru

    2015-10-22

    Stress-induced hyperthermia (SIH) was examined in three different social conditions in mice by thermographic measurement of the body surface temperature. Placing animals in cylindrical holders induced restraint stress. I examined the effect of the social factors in SIH using the thermograph (body surface temperature). Mice restrained in the holders alone showed SIH. Mice restrained in the holders at the same time as other similarly restrained cage mates (social equality condition) showed less hyperthermia. Interestingly, restrained mice with free moving cage mates (social inequality condition) showed the highest hyperthermia. These results are consistent with a previous experiment measuring the memory-enhancing effects of stress and the stress-induced elevation of corticosterone, and suggest that social inequality enhances stress. PMID:26232073

  16. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  17. Field evaluation of an acid rain-drought stress interaction.

    PubMed

    Banwart, W L

    1988-01-01

    Various methods have been proposed to simulate natural field conditions for growing agricultural crops while controlling conditions to study specific environmental effects. This report briefly describes the use of moveable rain exclusion shelters (10.4 x 40.9 m) to study the results of the interaction of acid rain and drought stress on corn and soybean yields. The rain exclusion shelters are constructed of galvanized pipe framing and covered with polyethylene film. Movement is automated by a rain switch to protect crops from ambient rainfall and to treat them with simulated acid rain The facility simulates a real environment with respect to variables such as solar exposure, wind movement, dew formation, and insect exposure, while allowing careful control of moisture regimes. Soybeans and corn were treated with average rainfall amounts, and with one-half and one-quarter of these rainfall amounts (drought stress) at two levels of rainfall acidity, pH 5.6 and 3.0. While drought stress resulted in considerable yield reduction for Amsoy and Williams soybeans, no additional reduction in yield was observed with rainfall of pH 3.0, as compared to rainfall of approximately pH 5.6. Similar results were observed for one corn cultivar, Pioneer 3377. For one year of the study however, yield of B73 x Mo17 (corn) was reduced 3139 kg ha(-1) by the most severe drought, and an additional 1883 kg ha(-1) by acid rain of pH 3.0, as compared to the control (pH 5.6). Yield reduction from acidic rain was considerably less at full water rates, resulting in a significant pH by drought stress interaction. However, during the second year of the experiment, no pH effect or drought by pH interaction was observed for this cultivar. The reason for the difference in the two years was not identified.

  18. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance.

  19. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  20. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  1. Endothelin-1-induced endoplasmic reticulum stress in disease.

    PubMed

    Jain, Arjun

    2013-08-01

    The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathologic conditions. Recent evidence implicates endothelin-1 (ET-1) in the induction of placental ER stress in pregnancy disorders. ER stress has previously also been implicated in various other disease states, including neurodegenerative disorders, diabetes, and cardiovascular diseases, as has ET-1 in the pathophysiology of these conditions. However, to date, there has been no investigation of the link between ET-1 and the induction of ER stress in these disease states. Based on recent evidence and mechanistic insight into the role of ET-1 in the induction of placental ER stress, the following review attempts to outline the broader implications of ET-1-induced ER stress, as well as strategies for therapeutic intervention based around ET-1. PMID:23740603

  2. Stress-Induced Tau Phosphorylation: Functional Neuroplasticity or Neuronal Vulnerability?

    PubMed Central

    Rissman, Robert A.

    2010-01-01

    Abnormally phosphorylated tau protein is a key component of the pathology seen in neurodegenerative tauopathies, such as Alzheimer's disease (AD). Despite its association with disease, tau phosphorylation (tau-P) also plays an important role in neuroplasticity, such as dendritic/synaptic remodeling seen in the hippocampus in response to environmental challenges, such as stress. To define the boundaries between neuroplasticity and neuropathology, studies have attempted to characterize the paradigms, stimuli, and signaling intermediates involved in stress-induced tau-P. Supporting an involvement of stress in AD are data demonstrating alterations in stress pathways and peptides in the AD brain and epidemiological data implicating stress exposure as a risk factor for AD. In this review, the question of whether stress-induced tau-P can be used as a model for examining the relationship between functional neuroplasticity and neuronal vulnerability will be discussed. PMID:19584431

  3. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    PubMed Central

    Gao, Lili; Tang, Haiying; He, Huanyu; Liu, Jia; Mao, Jingwei; Ji, Hong; Lin, Hongli; Wu, Taihua

    2015-01-01

    Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA), a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM)-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition, and activation of transforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis. PMID:26483688

  4. Exercise-induced stress response as an adaptive tolerance strategy.

    PubMed Central

    Sonneborn, J S; Barbee, S A

    1998-01-01

    Interaction between the quality of the environment and the health of the exposed population determines the survival response of living organisms. The phenomenon of induced tolerance by exposure to threshold levels of stressors to stimulate natural defense mechanisms has potential therapeutic value. The paucity of information on predictability of individual response and information on the operative fundamental mechanisms limit applicability of the adaptive tolerance strategy. A potential biomarker of the stress response includes members of the stress-inducible ubiquitin gene family. Transcript sizes detected with Northern blot analysis identify different classes of ubiquitin gene family members and the intensity of the radioactive signal allows abundance determinations. Using moderate exercise as the stressor, significant increase (p < 0.028) in abundance of inducible polyubiquitin genes was found in human blood. Both the potential of exercise as a model system of a natural stress inducer and polyubiquitin as a biomarker of stress were established in these studies. Images Figure 1 Figure 2 PMID:9539026

  5. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress

    PubMed Central

    López-Climent, María F.; Gómez-Cadenas, Aurelio

    2014-01-01

    The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain”) subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress. PMID:24977208

  6. Possible Biomarkers of Chronic Stress Induced Exhaustion - A Longitudinal Study

    PubMed Central

    Wallensten, Johanna; Åsberg, Marie; Nygren, Åke; Szulkin, Robert; Wallén, Håkan; Mobarrez, Fariborz; Nager, Anna

    2016-01-01

    Background Vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and monocyte chemotactic protein-1 (MCP-1) have previously been suggested to be potential biomarkers for chronic stress induced exhaustion. The knowledge about VEGF has increased during the last decades and supports the contention that VEGF plays an important role in stress and depression. There is scarce knowledge on the possible relationship of EGF and MCP-1 in chronic stress and depression. This study further examines the role of VEGF, EGF and MCP-1 in women with chronic stress induced exhaustion and healthy women during a follow-up period of two years. Methods and Findings Blood samples were collected f