Science.gov

Sample records for acid strong base

  1. Weak vs Strong Acids and Bases: The Football Analogy

    NASA Astrophysics Data System (ADS)

    Silverstein, Todd P.

    2000-07-01

    An important topic in any introductory chemistry course is that of acids and bases. Students generally have no trouble learning the Brønsted-Lowry definition of an acid as a proton donor and a base as a proton acceptor. Problems often arise, however, when chemistry teachers attempt to explain the difference between weak and strong acids, and between weak and strong bases. For acids in aqueous solution, discussing complete in contrast to partial ionization works well for those with a strong grasp of the equilibrium concept, but for many students it does not seem to do the trick. Partial ionization may not evoke much in the mind of a "visual learner". Accordingly, I have developed a football analogy for acids and bases in which acids are compared to quarterbacks, whose job is to get rid of the ball (H+). A strong acid, like an excellent quarterback, delivers the ball effectively; a weak acid, like a poor quarterback, is often left holding the ball. Furthermore, bases may be likened to wide receivers, whose job is to catch and hold onto the ball (H+). A strong base, like an excellent wide receiver, holds onto the ball; a weak base, like a poor receiver, often drops the ball. The concept of throwing and catching a ball is easy to visualize and the analogy to acids and bases can help even students unfamiliar with the mores of the gridiron to comprehend the mores of aqueous protons.

  2. Carbon-based strong solid acid for cornstarch hydrolysis

    SciTech Connect

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  3. Strong Relationships in Acid-Base Chemistry – Modeling Protons Based on Predictable Concentrations of Strong Ions, Total Weak Acid Concentrations, and pCO2

    PubMed Central

    Kellum, John A.

    2016-01-01

    Understanding acid-base regulation is often reduced to pigeonholing clinical states into categories of disorders based on arterial blood sampling. An earlier ambition to quantitatively explain disorders by measuring production and elimination of acid has not become standard clinical practice. Seeking back to classical physical chemistry we propose that in any compartment, the requirement of electroneutrality leads to a strong relationship between charged moieties. This relationship is derived in the form of a general equation stating charge balance, making it possible to calculate [H+] and pH based on all other charged moieties. Therefore, to validate this construct we investigated a large number of blood samples from intensive care patients, where both data and pathology is plentiful, by comparing the measured pH to the modeled pH. We were able to predict both the mean pattern and the individual fluctuation in pH based on all other measured charges with a correlation of approximately 90% in individual patient series. However, there was a shift in pH so that fitted pH in general is overestimated (95% confidence interval -0.072–0.210) and we examine some explanations for this shift. Having confirmed the relationship between charged species we then examine some of the classical and recent literature concerning the importance of charge balance. We conclude that focusing on the charges which are predictable such as strong ions and total concentrations of weak acids leads to new insights with important implications for medicine and physiology. Importantly this construct should pave the way for quantitative acid-base models looking into the underlying mechanisms of disorders rather than just classifying them. PMID:27631369

  4. Influence of anionic species on uranium separation from acid mine water using strong base resins.

    PubMed

    Ladeira, Ana Claudia Queiroz; Gonçalves, Carlos Renato

    2007-09-30

    The presence of uranium and other elements in high concentrations in acid mine drainage at Poços de Caldas Uranium Mine (Brazil) is a matter of concern. The acid water pH is around 2.7, the uranium concentration is in the range of 6-14 mg L(-1), sulfate concentration near 1400 mg L(-1), fluoride 140 mg L(-1) and iron 180 mg L(-1). In this solution, where sulfate is present in elevated concentrations, uranium is basically in the form of UO(2)(SO(4))(3)(4-). This study investigated the separation of uranium from the other anions present in the acid water under batch and column mode using ion exchange technique. The pH studied was 2.7 and 3.9. Two strong base anionic resins were tested. The influence of ions, commonly found in acid waters like sulfate and fluoride, on ion exchange process was also assessed. Equilibrium studies were carried out to determine the maximum adsorption capacities of the resins. The resins showed a significant capacity for uranium uptake which varied from 66 to 108 mg g(-1) for IRA 910U and 53 to 79 mg g(-1) for Dowex A. The results also showed that SO(4)(2-) is the most interfering ion and it had a deleterious effect on the recovery in the pH range studied. Fluoride did not affect uranium removal.

  5. Determination of component concentrations in mixtures of weak and strong acids and bases by linear algebraic methods.

    PubMed

    Ivaska, A; Nagypál, I

    1980-09-01

    A general expression for transforming potentiometric titration curves of mixtures of weak acids into a system of linear equations is derived. The solution of the linear equations gives directly the concentrations of the components. This linear transformation method is illustrated by the analysis of mixtures of weak acids with overlapping dissociation equilibria. The possible presence of a strong acid or strong base in the mixture can also be detected and its concentration simultaneously determined. The method can also be used for analysis of an ampholyte and solutions containing a weak acid and its conjugate base. For example a mixture of hydroxyacetic acid (pK approximately 3.6), acetic acid (pK approximately 4.6) and hydroxylamine hydrochloride (pK approximately 6) was analysed in the presence of strong acid with an average relative error of approximately 2%.

  6. Canadian Tire Money: An Analogy for Use When Discussing Weak Acid Strong Base Titrations

    NASA Astrophysics Data System (ADS)

    Last, Arthur M.

    2003-12-01

    A simple analogy can often provide an instructor with a means of helping students to understand an unfamiliar concept. An analogy involving money can be particularly helpful as most students have experience in dealing with a range of financial transactions in their everyday lives. In this article, use is made of the practice of one well-known Canadian retail chain in returning to its customers a small percentage of an item's purchase price in the form of imitation bank notes that can subsequently be spent in the chain's stores. An analogy is drawn between this practice and the determination of the pKa of a weak acid by titrating it with a strong base, taking into account the hydrolysis of the anion produced.

  7. A strategy for the preparation of thioantimonates based on the concept of weak acids and corresponding strong bases.

    PubMed

    Anderer, Carolin; Delwa de Alarcón, Natalie; Näther, Christian; Bensch, Wolfgang

    2014-12-15

    By following a new synthetic approach, which is based on the in situ formation of a basic medium by the reaction between the strong base Sb(V)S4 (3-) and the weak acid H2 O, it was possible to prepare three layered thioantimonate(III) compounds of composition [TM(2,2'-bipyridine)3 ][Sb6 S10 ] (TM=Ni, Fe) and [Ni(4,4'-dimethyl-2,2'-bipyridine)3 ][Sb6 S10 ] under hydrothermal conditions featuring two different thioantimonate(III) network topologies. The antimony source, Na3 SbS4 ⋅ 9 H2 O, undergoes several decomposition reactions and produces the Sb(III) S3 species, which condenses to generate the layered anion. The application of transition-metal complexes avoids crystallization of dense phases. The reactions are very fast compared to conventional hydrothermal/solvothermal syntheses and are much less sensitive to changes of the reaction parameters.

  8. Photoinduced strong acid-weak base reactions in a polar aprotic solvent

    NASA Astrophysics Data System (ADS)

    Lee, Young Min; Park, Sun-Young; Kim, Heesu; Gyum Kim, Taeg; Kwon, Oh-Hoon

    2016-06-01

    The excited-state proton transfer (ESPT) of the strong photoacid, N-methyl-7-hydroxyquinolinium, was studied in the presence of different weak bases such as methanol, ethanol, and dimethyl sulfoxide in an aprotic solvent of acetonitrile. Here, we present chemical kinetics analysis of the ESPT mechanism to explain biphasic fluorescence decay of the parent photoacid and the sign reversal of the rise and decay of the resulting conjugate-base fluorescence. The ESPT of the free photoacid showed a molecularity of 2 with reacting alcohol molecules. In the ground state, it was found that a fraction of the photoacid formed 1 : 2 hydrogen-bonded complexes with the residual water present in the aprotic solvent or 1 : 1 complexes with the additive alcohols. In the excited state, these adducts underwent proton transfer when complexed further with diffusing alcohol molecules.

  9. Why is BCl3 a stronger Lewis acid with respect to strong bases than BF3?

    PubMed

    Bessac, Fabienne; Frenking, Gernot

    2003-12-01

    Geometries and bond dissociation energies of the complexes Cl(3)B[bond]NH(3) and F(3)B[bond]NH(3) have been calculated using DFT (PW91) and ab initio methods at the MP2 and CCSD(T) levels using large basis sets. The calculations give a larger bond dissociation energy for Cl(3)B[bond]NH(3) than for F(3)B[bond]NH(3). Calculations of the deformation energy of the bonded fragments reveal that the distortion of BCl(3) and BF(3) from the equilibrium geometry to the pyramidal form in the complexes requires nearly the same energy. The higher Lewis acid strength of BCl(3) in X(3)B[bond]H(3) compared with BF(3) is an intrinsic property of the molecule. The energy partitioning analysis of Cl(3)B[bond]NH(3) and F(3)B[bond]NH(3) shows that the stronger bond in the former complex comes from enhanced covalent interactions between the Lewis acid and the Lewis base which can be explained with the energetically lower lying LUMO of BCl(3).

  10. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  11. Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids.

    PubMed

    Anstey, Chris M

    2005-06-01

    Currently, three strong ion models exist for the determination of plasma pH. Mathematically, they vary in their treatment of weak acids, and this study was designed to determine whether any significant differences exist in the simulated performance of these models. The models were subjected to a "metabolic" stress either in the form of variable strong ion difference and fixed weak acid effect, or vice versa, and compared over the range 25 < or = Pco(2) < or = 135 Torr. The predictive equations for each model were iteratively solved for pH at each Pco(2) step, and the results were plotted as a series of log(Pco(2))-pH titration curves. The results were analyzed for linearity by using ordinary least squares regression and for collinearity by using correlation. In every case, the results revealed a linear relationship between log(Pco(2)) and pH over the range 6.8 < or = pH < or = 7.8, and no significant difference between the curve predictions under metabolic stress. The curves were statistically collinear. Ultimately, their clinical utility will be determined both by acceptance of the strong ion framework for describing acid-base physiology and by the ease of measurement of the independent model parameters.

  12. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  13. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    SciTech Connect

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  14. Rapid determination of the equivalence volume in potentiometric acid-base titrations to a preset pH-II Standardizing a solution of a strong base, graphic location of equivalence volume, determination of stability constants of acids and titration of a mixture of two weak acids.

    PubMed

    Ivaska, A

    1974-06-01

    A newly proposed method of titrating weak acids with strong bases is applied to standardize a solution of a strong base, to graphic determination of equivalence volume of acetic acid with an error of 0.2%, to calculate the stability constants of hydroxylammonium ion, boric acid and hydrogen ascorbate ion and to analyse a mixture of acetic acid and ammonium ion with an error of 0.2-0.7%.

  15. Mechanism of general acid-base catalysis in transesterification of an RNA model phosphodiester studied with strongly basic catalysts.

    PubMed

    Corona-Martínez, David O; Taran, Olga; Yatsimirsky, Anatoly K

    2010-02-21

    Using 80% vol aqueous DMSO as the reaction medium for transesterification of an RNA model substrate 2-hydroxypropyl 4-nitrophenyl phosphate allows one to observe catalysis in buffer mixtures composed of highly basic components such as guanidines, amidines or alkylamines, which provide up to 10(3)-fold accelerations over the background reaction in the 0.01-0.1 M concentration range. The rate law k(obs) = k(1)[B] + k(2)[B][BH(+)] was established indicating contributions from both simple general base catalysis and the reaction involving concerted action of neutral (B) and protonated (BH(+)) forms of the buffer. The catalytic efficiency of guanidinium and amidinium cations is 10 times larger than that of more acidic ammonium cations. Rate constants k(1) and k(2) obey the Brønsted equations with the slopes 0.77 and 0.69 respectively. Proton inventory for k(2) (B = guanidine) in D(2)O/H(2)O mixtures gives two fractionation factors phi(1) = 0.48 and phi(2) = 1.26 for normal and inverse isotope effects respectively. The former results from the proton transfer to B and the latter from the binding of guanidinium cation to the phosphate group as follows from observation of an inverse solvent isotope effect for the binding of guanidinium and amidinium cations to a phosphodiester anion. The results of kinetic studies together with analysis of transition state stabilization free energies for guanidinium and amidinium cations show that the protonated buffer component acts via electrostatic transition state stabilization rather than proton transfer, which may be possible for a guanidinium assisted hydroxide catalyzed reaction.

  16. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+).

  17. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  18. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong base in capillary electrophoresis: II. Experiments.

    PubMed

    Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si; Li, Shan; Cao, Chengxi

    2011-04-15

    To demonstrate the theoretic method on the stacking of zwitterion with moving reaction boundary (MRB) in the accompanying paper, the relevant experiments were performed. The experimental results quantitatively show that (1) MRB velocity, including the comparisons between MRB and zwitterionic velocities, possesses key importance to the design of MRB stacking; (2) a much long front alkaline plug without sample should be injected before the sample injection for a complete stacking of zwitterion if sample buffer is prepared with strong base, conversely no such plug is needed if using a weak base as the sample buffer with proper concentration and pH value; (3) the presence of salt in MRB system holds dramatic effect on the MRB stacking if sample solution is a strong base, but has no effect if a weak alkali is used as sample solution; (4) all of the experiments of this paper, including the previous work, quantitatively manifest the theory and predictions shown in the accompanying paper. In addition, the so-called derivative MRB-induced re-stacking and transient FASI-induced re-stacking were also observed during the experiments, and the relevant mechanisms were briefly demonstrated with the results. The theory and its calculation procedures developed in the accompanying paper can be well used for the predictions to the MRB stacking of zwitterion in CE.

  19. Titration of strong and weak acids by sequential injection analysis technique.

    PubMed

    Maskula, S; Nyman, J; Ivaska, A

    2000-05-31

    A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.

  20. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions.

    PubMed

    Ohno, Masaki; Ito, Masataka; Ohkura, Ryouichi; Mino A, Esteban R; Kose, Tomohiro; Okuda, Tetsuji; Nakai, Satoshi; Kawata, Kuniaki; Nishijima, Wataru

    2014-03-15

    The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe(3+) ion. Although Fe(3+) ion is consumed and is transformed to Fe(2+) ion by photochemical decomposition of PFOA and its intermediates, the produced Fe(2+) ion will change to Fe(3+) ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH)(2+). At pH 3.7 or higher pH, Fe(3+) ion will only be produced from the oxidation of Fe(2+) ion by hydroxyl radical produced by Fe(OH)(2+) under UV irradiation. These different mechanisms of Fe(3+) regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  1. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids

    USGS Publications Warehouse

    Lawrence, G.B.; Sutherland, J.W.; Boylen, C.W.; Nierzwicki-Bauer, S. W.; Momen, B.; Baldigo, Barry P.; Simonin, H.A.

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg 2+, Na+, and K+, minus SO42-, NO3-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and NO 3-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects. ?? 2007 American Chemical Society.

  2. Acid rain effects on aluminum mobilization clarified by inclusion of strong organic acids.

    PubMed

    Lawrence, G B; Sutherland, J W; Boylen, C W; Nierzwicki-Bauer, S W; Momen, B; Baldigo, B P; Simonin, H A

    2007-01-01

    Assessments of acidic deposition effects on aquatic ecosystems have often been hindered by complications from naturally occurring organic acidity. Measurements of pH and ANCG, the most commonly used indicators of chemical effects, can be substantially influenced by the presence of organic acids. Relationships between pH and inorganic Al, which is toxic to many forms of aquatic biota, are also altered by organic acids. However, when inorganic Al concentrations are plotted against ANC (the sum of Ca2+, Mg2+, Na+, and K+, minus S042-, N03-, and Cl-), a distinct threshold for Al mobilization becomes apparent. If the concentration of strong organic anions is included as a negative component of ANC, the threshold occurs at an ANC value of approximately zero, the value expected from theoretical charge balance constraints. This adjusted ANC is termed the base-cation surplus. The threshold relationship between the base-cation surplus and Al was shown with data from approximately 200 streams in the Adirondack region of New York, during periods with low and high dissolved organic carbon concentrations, and for an additional stream from the Catskill region of New York. These results indicate that (1) strong organic anions can contribute to the mobilization of inorganic Al in combination with SO42- and N03-, and (2) the presence of inorganic Al in surface waters is an unambiguous indication of acidic deposition effects.

  3. Facile preparation of acid-resistant magnetite particles for removal of Sb(Ⅲ) from strong acidic solution

    PubMed Central

    Wang, Dong; Guan, Kaiwen; Bai, Zhiping; Liu, Fuqiang

    2016-01-01

    Abstract A new facile coating strategy based on the hydrophobicity of methyl groups was developed to prevent nano-sized magnetite particles from strong acid corrosion. In this method, three steps of hydrolysis led to three layers of protection shell coating Fe3O4 nanoparticles. Filled with hydrophobic methyl groups, the middle layer mainly prevented the magnetic core from strong acid corrosion. These magnetite particles managed to resist 1 M HCl solution and 2.5 M H2SO4 solution. The acid resistant ability was higher than those reported previously. After further modification with amino-methylene-phosphonic groups, these magnetite particles successfully adsorbed Sb(III) in strong acid solution. This new strategy can also be applied to protect other materials from strong acid corrosion. PMID:27877860

  4. Analysis of aqueous solutions by near-infrared spectrometry (NIRS) II. Titrations of weak and very weak acids with strong bases

    NASA Astrophysics Data System (ADS)

    Molt, K.; Niemöller, A.; Cho, Y. J.

    1997-06-01

    The titrations of acetic and phosphoric acid with NaOH were observed by NIR-spectrometry. The measured spectra can be evaluated quantitatively for calibration of the H +-and OH --concentration. The NIRS errors with respect to the prediction of the pH and the equivalence point are discussed.

  5. Comparison of the utility of the classic model (the Henderson-Hasselbach equation) and the Stewart model (Strong Ion Approach) for the diagnostics of acid-base balance disorders in dogs with right sided heart failure.

    PubMed

    Sławuta, P; Glińska-Suchocka, K

    2012-01-01

    Classically, the acid-base balance (ABB) is described by the Henderson-Hasselbach equation, where the blood pH is a result of a metabolic components--the HCO3(-) concentration and a respiratory component--pCO2. The Stewart model assumes that the proper understanding of the organisms ABB is based on an analysis of: pCO2, Strong Ion difference (SID)--the difference strong cation and anion concentrations in the blood serum, and the Acid total (Atot)--the total concentration of nonvolatile weak acids. Right sided heart failure in dogs causes serious haemodynamic disorders in the form of peripheral stasis leading to formation of transudates in body cavities, which in turn causes ABB respiratory and metabolic disorders. The study was aimed at analysing the ABB parameters with the use of the classic method and the Stewart model in dogs with the right sided heart failure and a comparison of both methods for the purpose of their diagnostic and therapeutic utility. The study was conducted on 10 dogs with diagnosed right sided heart failure. Arterial and venous blood was drawn from the animals. Analysis of pH, pCO2 and HCO3(-) was performed from samples of arterial blood. Concentrations of Na+, K+, Cl(-), P(inorganic), albumins and lactate were determined from venous blood samples and values of Strong Ion difference of Na+, K+ and Cl(-) (SID3), Strong Ion difference of Na+, K+, Cl(-) and lactate (SID4), Atot, Strong Ion difference effective (SIDe) and Strong Ion Gap (SIG4) were calculated. The conclusions are as follows: 1) diagnosis of ABB disorders on the basis of the Stewart model showed metabolic alkalosis in all dogs examined, 2) in cases of circulatory system diseases, methodology based on the Stewart model should be applied for ABB disorder diagnosis, 3) if a diagnosis of ABB disorders is necessary, determination of pH, pCO2 and HCO3(-) as well as concentrations of albumins and P(inorganic) should be determined on a routine basis, 4) for ABB disorder diagnosis, the

  6. Big, strong, neutral, twisted, and chiral π acids.

    PubMed

    Zhao, Yingjie; Huang, Guangxi; Besnard, Celine; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2015-04-13

    General synthetic access to expanded π-acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion-π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron-withdrawing substituents decreases and the high π acidity needed for strong anion-π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion-π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from -3.96 to -4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X-ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation-π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches -4.45 eV, whereas two sulfone moieties give a value of -4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion-π interactions, these conceptually innovative π-acidic surfaces are also of interest as electron transporters in conductive materials.

  7. General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C-H acids in aprotic media promoted by combination of strong bases and silylating agents.

    PubMed

    Wiȩcław, Michał; Bobin, Mariusz; Kwast, Andrzej; Bujok, Robert; Wróbel, Zbigniew; Wojciechowski, Krzysztof

    2015-11-01

    Carbanions of phenylacetonitriles, benzyl sulfones, and dialkyl benzylphosphonates add nitroarenes at the ortho-position to the nitro group to form [Formula: see text]-adducts that, upon treatment with trialkylchlorosilane and additional base (t-BuOK or DBU), transform into 3-aryl-2,1-benzisoxazoles in moderate-to-good yields.

  8. Dehydration polycondensation of dicarboxylic acids and diols using sublimating strong brønsted acids.

    PubMed

    Moyori, Takaya; Tang, Tang; Takasu, Akinori

    2012-05-14

    We investigated catalytic activities of strong brønsted acids for dehydration polycondensations of dicarboxylic acids and diols, which were carried out at low temperature (<100 °C) under reduced pressure (0.3-3 mmHg). Strong Brønsted acids, bis(perfluoroalkanesulfonyl)imide and perfluoroalkanesulfonic acid, showed higher activity than p-toluenesulfonic acid or rare-earth catalysts at 60 °C. In particular, bis(nonafluorobutanesulfonyl)imide (Nf(2)NH) showed the highest activity to synthesize not only aliphatic polyester (M(n) > 19000) but also aromatic polyester (M(n) > 7000). The used Nf(2)NH was sublimated from the reaction flask during polycondensation, and the sublimate, Nf(2)NH, was extra pure so that we can reuse the catalyst without loss of the activity in the dehydration polycondensations.

  9. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  10. Strong Motion Seismograph Based On MEMS Accelerometer

    NASA Astrophysics Data System (ADS)

    Teng, Y.; Hu, X.

    2013-12-01

    The MEMS strong motion seismograph we developed used the modularization method to design its software and hardware.It can fit various needs in different application situation.The hardware of the instrument is composed of a MEMS accelerometer,a control processor system,a data-storage system,a wired real-time data transmission system by IP network,a wireless data transmission module by 3G broadband,a GPS calibration module and power supply system with a large-volumn lithium battery in it. Among it,the seismograph's sensor adopted a three-axis with 14-bit high resolution and digital output MEMS accelerometer.Its noise level just reach about 99μg/√Hz and ×2g to ×8g dynamically selectable full-scale.Its output data rates from 1.56Hz to 800Hz. Its maximum current consumption is merely 165μA,and the device is so small that it is available in a 3mm×3mm×1mm QFN package. Furthermore,there is access to both low pass filtered data as well as high pass filtered data,which minimizes the data analysis required for earthquake signal detection. So,the data post-processing can be simplified. Controlling process system adopts a 32-bit low power consumption embedded ARM9 processor-S3C2440 and is based on the Linux operation system.The processor's operating clock at 400MHz.The controlling system's main memory is a 64MB SDRAM with a 256MB flash-memory.Besides,an external high-capacity SD card data memory can be easily added.So the system can meet the requirements for data acquisition,data processing,data transmission,data storage,and so on. Both wired and wireless network can satisfy remote real-time monitoring, data transmission,system maintenance,status monitoring or updating software.Linux was embedded and multi-layer designed conception was used.The code, including sensor hardware driver,the data acquisition,earthquake setting out and so on,was written on medium layer.The hardware driver consist of IIC-Bus interface driver, IO driver and asynchronous notification driver. The

  11. Transport of some strong incompletely dissociated acids through anion-exchange membrane.

    PubMed

    Palatý, Zdenek; Záková, Alena

    2003-12-01

    Nitric and sulfuric acids belong among strong incompletely dissociated acids, so that in the description of their transport through an ion-exchange membrane, ionic equilibria have to be taken into account. The paper presents the determination of ionic mobilities and diffusivity of nondissociated form of these acids. For that purpose, data on the dialysis experiments with nitric and sulfuric acids in a batch mixed cell with an anion-exchange membrane NEOSEPTA-AFN, which have been completed by those on the membrane conductivity, have been used. The dependencies of the ionic mobilities and the diffusivity of nondissociated form of nitric acid upon the acid concentration in the membrane have been approximated by second degree polynomials. Their coefficients have been determined by numerical integration of the partial differential equation describing the concentration fields of the acids in the membrane and liquid films on both sides of the membrane, followed by an optimizing procedure. The model used is based on the Nernst-Planck electrodiffusion equation. Using all the experimental data obtained at various acid concentrations and rotational speeds of the stirrers, it has been found that ionic mobility is strongly affected by the acid concentration in the membrane and decreases in the series H(3)O(+), SO(2-)(4), NO(-)(3), HSO(-)(4).

  12. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  13. Strong hydrogen bonds in 1:1 and 2:1 complexes of pyridine betaine with strong acids

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Zofia; Gdaniec, Maria; Grundwald-Wyspiańska, Monika; Kowalczyk, Iwona; Szafran, Mirosław

    1994-06-01

    The crystal structure of bis(pyridine betaine) hydrochloride- d1 monohydrate- d2 has been determined by X-ray analysis. The carboxylate groups of a pair of pyridine betaine molecules are bridged by a deuteron to form a centro-symmetric dimer featuring a very strong hydrogen bond of length 2.444(4) Å. The geometric mass effect (Δ R ≈ 0.008 Å) is well within the range observed for this type of hydrogen bond. The FT-IR spectra of polycrystalline 1:1 and 2:1 complexes of pyridine betaine with HNO 3, HCl, HBr, HI, HO 3SCF 3, HClO 4, HBF 4, and H 2SO 4 have been investigated in the 4000-200 cm -1 range. In the 1:1 complexes a proton is transferred from the acid to the betaine molecule, C 5H 5N +CH 2COOH · A -, and both the νOH and νCO frequencies vary with the proton acceptor properties of the anion. The spectra of the 2:1 complexes show broad and intense O · H · O stretching absorptions in the 1500-200 cm -1 range which are slightly affected by the anion and are similar to that for type A acid salts of carboxylic acids. The skeletal vibrations of the betaine residue were identified by second derivative spectroscopy. Evidence based on the νCO vibration and deuteration suggests that the hydrogen bonds in [C 5H 5NCH 2COO · H · OOCCH 2NC 5H 5] +A - are described by single minimum potentials; ν H = 940 cm -1, ν H/ν D = 1.2. As betaines are widely distributed in plants and animal tissue and form complexes with strong hydrogen bonds, such bonds should be formed in biological systems.

  14. Carborane acids. New "strong yet gentle" acids for organic and inorganic chemistry.

    PubMed

    Reed, Christopher A

    2005-04-07

    Icosahedral carborane anions such as CHB11Cl11- are amongst the least coordinating, most chemically inert anions known. They are also amongst the least basic, so their conjugate acids, H(carborane), are superacids (i.e. stronger than 100% H2SO4). Acidity scale measurements indicate that H(CHB11Cl11) is the strongest pure Brønsted acid presently known, surpassing triflic and fluorosulfuric acid. Nevertheless, it is also an extremely gentle acid--because its conjugate base engages in so little chemistry. Carborane acids separate protic acidity from anion nucleophilicity and destructive oxidative capacity in the conjugate base, to a degree not previously achieved. As a result, many long-sought, highly acidic, reactive cations such as protonated benzene (C6H7+), protonated C60(HC60+), tertiary carbocations (R3C+), vinyl cations (R2C=C(+)-R), silylium ions (R3Si+) and discrete hydronium ions (H3O+, H5O2+ etc.) can be readily isolated as carborane salts and characterized at room temperature by X-ray crystallography.

  15. Dissociative attachment reactions of electrons with strong acid molecules

    SciTech Connect

    Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.

    1986-06-15

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

  16. Tested Demonstrations: Comparison of Strong Acid and Weak Acid Titration Curves.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    A lecture demonstration is presented for comparing titration curves. A plot of pH vs volume of strong base is produced by connecting the external output of a pH meter to a strip recorder. Thus, pH is recorded as a function of time. (BB)

  17. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  18. 1,2-Diphosphonium dication: a strong P-based Lewis acid in frustrated lewis pair (FLP)-activations of B-H, Si-H, C-H, and H-H bonds.

    PubMed

    Holthausen, Michael H; Bayne, Julia M; Mallov, Ian; Dobrovetsky, Roman; Stephan, Douglas W

    2015-06-17

    A highly Lewis acidic diphosphonium dication [(C10H6)(Ph2P)2](2+) (1), in combination with a Lewis basic phosphine, acts as a purely phosphorus-based frustrated Lewis pair (FLP) and abstracts hydride from [HB(C6F5)3](-) and Et3SiH demonstrating the remarkable hydridophilicity of 1. The P-based FLP is also shown to activate H2 and C-H bonds.

  19. Morphologies Observed in Ultraflexible Microemulsions with and without the Presence of a Strong Acid

    PubMed Central

    2016-01-01

    We show that three different morphologies exist near the two-phase boundary of ternary systems containing a hydrotropic cosolvent. Based on synchrotron small- and wide-angle X-ray scattering combined with molecular dynamics, we rationalize the specific scattering signature of direct, bicontinuous, and reverse mesoscale solubilization. Surprisingly, these mesostructures are resilient toward strong acids, which are required in industrial applications. However, on a macroscopic scale, the phase boundary shifts in salting-in and salting-out in the direct and respectively reverse regime, leading to a crossing of the binodals. PMID:27504493

  20. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean

    2011-01-01

    Two batches of nominally pretreated and augmented urine were prepared with the baseline pretreatment formulation of sulfuric acid and chromium trioxide. The urine was augmented with inorganic salts and organic compounds in order to simulate a urinary ionic concentrations representing the upper 95 percentile on orbit. Three strong mineral acids: phosphoric, hydrochloric, and nitric acid, were substituted for the sulfuric acid for comparison to the baseline sulfuric acid pretreatment formulation. Three concentrations of oxidizer in the pretreatment formulation were also tested. Pretreated urine was distilled to 85% water recovery to determine the effect of each acid and its conjugate base on the precipitation of minerals during distillation. The brines were analyzed for calcium and sulfate ion, total, volatile, and fixed suspended solids. Test results verified that substitution of phosphoric, hydrochloric, or nitric acids for sulfuric acid would prevent the precipitation of gypsum up to 85% recovery from pretreated urine representing the upper 95 percentile calcium concentration on orbit.

  1. One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity

    NASA Astrophysics Data System (ADS)

    Yang, Dongjiang; Xu, Yao; Wu, Dong; Sun, Yuhan

    2008-09-01

    Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N 2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH 3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH 3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH 3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.

  2. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  3. Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications.

    PubMed

    Zhou, Yingjie; Huang, Rongcai; Ding, Fuchuan; Brittain, Alex D; Liu, Jingjing; Zhang, Meng; Xiao, Min; Meng, Yuezhong; Sun, Luyi

    2014-05-28

    Solid acids have received considerable attention as alternatives to traditional corrosive and hazardous homogeneous acids because of their advantages in practical applications, including their low corrosion of equipment and high catalytic activity and recyclability. In this work, a strong solid acid was prepared by anchoring thiol group terminated chains on layered α-zirconium phosphate (ZrP) single-layer nanosheets, followed by oxidation of thiol groups to form sulfonic acid groups. The obtained solid acids were thoroughly characterized and the results proved that sulfonic acid group terminated chains were successfully grafted onto the ZrP nanosheets with a high loading density. Such a strong solid acid based on inorganic nanosheets can be well-dispersed in polar solvents, leading to high accessibility to the acid functional groups. Meanwhile, it can be easily separated from the dispersion system by centrifugation or filtration. The strong solid acid can serve as an effective heterogeneous catalyst for various reactions, including the Bayer-Villiger oxidation of cyclohexanone to ε-caprolactone in the absence of organic solvents.

  4. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  5. Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid.

    PubMed

    Fagnani, E; Melios, C B; Pezza, L; Pezza, H R

    2003-05-28

    The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H(2)SO(4) (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. On the other hand, oxidation through dissolved oxygen takes place when concentrated H(2)SO(4) is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H(2)SO(4) (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H(2)SO(4) was eliminated and advantageously replaced by a less harmful mixture of HCl and H(2)O(2).

  6. Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution.

    PubMed

    Sekiya, S; Ohmori, K; Harii, K

    1997-01-01

    A chronic ulcer with an infection such as methicillin-resistant Staphylococcus aureus is hard to heal. Plastic and reconstructive surgeons often encounter such chronic ulcers that are resistant to surgical or various conservative treatments. We applied conservative treatment using an electrolyzed strong acid aqueous solution and obtained satisfactory results. The lesion was washed with the solution or soaked in a bowl of the solution for approximately 20 min twice a day. Fresh electrolyzed strong acid aqueous solution is unstable and should be stored in a cool, dark site in a sealed bottle. It should be used within a week after it has been produced. Here we report on 15 cases of infectious ulcers that were treated by electrolyzed strong acid aqueous solution. Of these cases, 7 patients were healed, 3 were granulated, and in 5, infection subsided. In most cases the lesion became less reddish and less edematous. Discharge or foul odor from the lesion was decreased. Electrolyzed strong acid aqueous solution was especially effective for treating a chronic refractory ulcer combined with diabetes melitus or peripheral circulatory insufficiency. This clinically applied therapy of electrolyzed strong acid aqueous solution was found to be effective so that this new therapeutic technique for ulcer treatment can now be conveniently utilized.

  7. Extraction of uranium: comparison of stripping with ammonia vs. strong acid

    SciTech Connect

    Moldovan, B.; Grinbaum, B.; Efraim, A.

    2008-07-01

    Following extraction of uranium in the first stage of solvent extraction using a tertiary amine, typically Alamine 336, the stripping of the extracted uranium is accomplished either by use of an aqueous solution of (NH{sub 4}){sub 2}SO{sub 4} /NH{sub 4}OH or by strong-acid stripping using 400-500 g/L H{sub 2}SO{sub 4}. Both processes have their merits and determine the downstream processing. The classical stripping with ammonia is followed by addition of strong base, to precipitate ammonium uranyl sulfate (NH{sub 4}){sub 2}UO{sub 2}(SO{sub 4}){sub 2}, which yields finally the yellow cake. Conversely, stripping with H{sub 2}SO{sub 4}, followed by oxidation with hydrogen peroxide yields uranyl oxide as product. At the Cameco Key Lake operation, both processes were tested on a pilot scale, using a Bateman Pulsed Column (BPC). The BPC proved to be applicable to both processes. It met the process criteria both for extraction and stripping, leaving less than 1 mg/L of U{sub 3}O{sub 8} in the raffinate, and product solution had the required concentration of U{sub 3}O{sub 8} at high flux and reasonable height of transfer unit. In the Key Lake mill, each operation can be carried out in a single column. The main advantages of the strong-acid stripping over ammonia stripping are: (1) 60% higher flux in the extraction, (2) tenfold higher concentration of the uranium in the product solution, and (3) far more robust process, with no need of pH control in the stripping and no need to add acid to the extraction in order to keep the pH above the point of precipitation of iron compounds. The advantages of the ammoniacal process are easier stripping, that is, less stages needed to reach equilibrium and lower concentration of modifier needed to prevent the creation of a third phase. (authors)

  8. Insights into How Students Learn the Difference between a Weak Acid and a Strong Acid from Cartoon Tutorials Employing Visualizations

    ERIC Educational Resources Information Center

    Kelly, Resa M.; Akaygun, Sevil

    2016-01-01

    This article summarizes an investigation into how Flash-based cartoon video tutorials featuring molecular visualizations affect students' mental models of acetic acid and hydrochloric acid solutions and how the acids respond when tested for electrical conductance. Variation theory served as the theoretical framework for examining how students…

  9. Luminol as a fluorescent acid-base indicator.

    PubMed

    Erdey, L; Buzás, I; Vigh, K

    1966-03-01

    The acid and base dissociation constants of luminol are determined at various ionic strengths. The transition interval occurs at pH 7.7-9.0, therefore luminol is a fluorescent indicator for the titration of strong and weak acids and strong bases. Its value as an indicator is established by titrating milk, red wine and cherry juice.

  10. One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer.

    PubMed

    Kajiwara, Takashi; Higuchi, Masakazu; Yuasa, Akihiro; Higashimura, Hideyuki; Kitagawa, Susumu

    2013-11-18

    A new lanthanoid porous coordination polymer, La-BTTc (BTTc = benzene-1,3,5-tris(2-thiophene-5-carboxylate)), was synthesized and structurally characterized to have densely aligned one-dimensional open metal sites, which were found to act as strong Lewis acid sites after the removal of the coordinated solvent.

  11. Phase transition transistors based on strongly-correlated materials

    NASA Astrophysics Data System (ADS)

    Nakano, Masaki

    2013-03-01

    The field-effect transistor (FET) provides electrical switching functions through linear control of the number of charges at a channel surface by external voltage. Controlling electronic phases of condensed matters in a FET geometry has long been a central issue of physical science. In particular, FET based on a strongly correlated material, namely ``Mott transistor,'' has attracted considerable interest, because it potentially provides gigantic and diverse electronic responses due to a strong interplay between charge, spin, orbital and lattice. We have investigated electric-field effects on such materials aiming at novel physical phenomena and electronic functions originating from strong correlation effects. Here we demonstrate electrical switching of bulk state of matter over the first-order metal-insulator transition. We fabricated FETs based on VO2 with use of a recently developed electric-double-layer transistor technique, and found that the electrostatically induced carriers at a channel surface drive all preexisting localized carriers of 1022 cm-3 even inside a bulk to motion, leading to bulk carrier delocalization beyond the electrostatic screening length. This non-local switching of bulk phases is achieved with just around 1 V, and moreover, a novel non-volatile memory like character emerges in a voltage-sweep measurement. These observations are apparently distinct from those of conventional FETs based on band insulators, capturing the essential feature of collective interactions in strongly correlated materials. This work was done in collaboration with K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura. This work was supported by the Japan Society for the Promotion of Science (JSAP) through its ``Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).''

  12. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

    PubMed

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-14

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  13. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  14. Switching the BZ reaction with a strong-acid-free gel.

    PubMed

    Hara, Yusuke; Yamaguchi, Yoshinori; Mayama, Hiroyuki

    2014-01-16

    In the present study, a novel gel with a semi-interpenetrating polymer network (semi-IPN) that undergo the Belousov-Zhabotinsky (BZ) reaction without the addition of a strong acid (HNO3 or H2SO4) was developed. The required concentrations of the BZ substrates, sodium bromate (NaBrO3) and malonic acid (MA), under these conditions were higher than under the normal BZ reaction conditions, involving the addition of a strong acid. The period of the BZ reaction with the novel gel (semi-IPN BZ gel) decreased with increasing concentrations of NaBrO3 and MA. Moreover, the connection of the semi-IPN BZ gel to a conventional BZ gel facilitated the reaction in the latter through the propagation of the intermediates from the former to the latter. The BZ reaction stopped when the conventional BZ gel was disconnected from the semi-IPN BZ gel. These results demonstrate that the BZ reaction in the conventional BZ gel underwent on-off switching, controlled by its attachment to the semi-IPN BZ gel. This on-off switching mechanism would be valuable in controlling actuators and robots without strong acids.

  15. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    PubMed

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  16. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  17. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    SciTech Connect

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; Stack, Andrew G.; van Duin, Adri C. T.; Logan, Bruce E.

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10–5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g–1) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g–1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  18. Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion.

    PubMed

    Hatzell, Marta C; Raju, Muralikrishna; Watson, Valerie J; Stack, Andrew G; van Duin, Adri C T; Logan, Bruce E

    2014-12-02

    The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10(–5)) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g(–1)) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g(–1)) had a negative rise potential (−31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to −6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.

  19. Effect of Strong Acid Functional Groups on Electrode Rise Potential in Capacitive Mixing by Double Layer Expansion

    DOE PAGES

    Hatzell, Marta C.; Raju, Muralikrishna; Watson, Valerie J.; ...

    2014-11-03

    We report that the amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10–5) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g–1) had a positive rise potential of 59 ± 4 mV in themore » LC solution, whereas the carbon with the highest concentration (0.36 mmol g–1) had a negative rise potential (₋31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to ₋6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. In conclusion, these results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.« less

  20. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  1. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds.

    PubMed

    Zhang, Chunyu; Iskandarov, Umidjon; Klotz, Elliott T; Stevens, Robyn L; Cahoon, Rebecca E; Nazarenus, Tara J; Pereira, Suzette L; Cahoon, Edgar B

    2013-08-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45-50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.

  2. Strong reflector-based beamforming in ultrasound medical imaging.

    PubMed

    Szasz, Teodora; Basarab, Adrian; Kouamé, Denis

    2016-03-01

    This paper investigates the use of sparse priors in creating original two-dimensional beamforming methods for ultrasound imaging. The proposed approaches detect the strong reflectors from the scanned medium based on the well known Bayesian Information Criteria used in statistical modeling. Moreover, they allow a parametric selection of the level of speckle in the final beamformed image. These methods are applied on simulated data and on recorded experimental data. Their performance is evaluated considering the standard image quality metrics: contrast ratio (CR), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). A comparison is made with the classical delay-and-sum and minimum variance beamforming methods to confirm the ability of the proposed methods to precisely detect the number and the position of the strong reflectors in a sparse medium and to accurately reduce the speckle and highly enhance the contrast in a non-sparse medium. We confirm that our methods improve the contrast of the final image for both simulated and experimental data. In all experiments, the proposed approaches tend to preserve the speckle, which can be of major interest in clinical examinations, as it can contain useful information. In sparse mediums we achieve a highly improvement in contrast compared with the classical methods.

  3. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    PubMed

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  4. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    DOEpatents

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  5. Water O–H Stretching Raman Signature for Strong Acid Monitoring via Multivariate Analysis

    SciTech Connect

    Casella, Amanda J.; Levitskaia, Tatiana G.; Peterson, James M.; Bryan, Samuel A.

    2013-04-16

    Spectroscopic techniques have been applied extensively for quantification and analysis of solution compositions. In addition to static measurements, these techniques have been implemented in flow systems providing real-time solution information. A distinct need exists for information regarding acid concentration as it affects extraction efficiency and selectivity of many separation processes. Despite of the seeming simplicity of the problem, no practical solution has been offered yet particularly for the large-scale schemes involving toxic streams such as highly radioactive nuclear wastes. Classic potentiometric technique is not amiable for on-line measurements in nuclear fuel reprocessing due to requirements of frequent calibration/maintenance and poor long-term stability in the aggressive chemical and radiation environments. In this work, the potential of using Raman spectroscopic measurements for on-line monitoring of strong acid concentration in the solutions relevant to the dissolved used fuel was investigated. The Raman water signature was monitored and recorded for nitric and hydrochloric acid solution systems of systematically varied chemical composition, ionic strength, and temperature. The generated Raman spectroscopic database was used to develop predictive chemometric models for the quantification of the acid concentration (H+), neodymium concentration (Nd3+), nitrate concentration (NO3-), density, and ionic strength. This approach was validated using a flow solvent extraction system.

  6. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  7. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  8. Providing Climate Policy Makers With a Strong Scientific Base (Invited)

    NASA Astrophysics Data System (ADS)

    Struzik, E.

    2009-12-01

    Scientists can and should inform public policy decisions in the Arctic. But the pace of climate change in the polar world has been occurring far more quickly than most scientists have been able to predict. This creates problems for decision-makers who recognize that difficult management decisions have to be made in matters pertaining to wildlife management, cultural integrity and economic development. With sea ice melting, glaciers receding, permafrost thawing, forest fires intensifying, and disease and invasive species rapidly moving north, the challenge for scientists to provide climate policy makers with a strong scientific base has been daunting. Clashing as this data sometimes does with the “traditional knowledge” of indigenous peoples in the north, it can also become very political. As a result the need to effectively communicate complex data is more imperative now than ever before. Here, the author describes how the work of scientists can often be misinterpreted or exploited in ways that were not intended. Examples include the inappropriate use of scientific data in decision-making on polar bears, caribou and other wildlife populations; the use of scientific data to debunk the fact that greenhouse gases are driving climate change, and the use of scientific data to position one scientist against another when there is no inherent conflict. This work will highlight the need for climate policy makers to increase support for scientists working in the Arctic, as well as illustrate why it is important to find new and more effective ways of communicating scientific data. Strategies that might be considered by granting agencies, scientists and climate policy decision-makers will also be discussed.

  9. Tunable metamaterials based on voltage controlled strong coupling

    SciTech Connect

    Benz, Alexander Brener, Igal; Montaño, Inès; Klem, John F.

    2013-12-23

    We present the design, fabrication, and realization of an electrically tunable metamaterial operating in the mid-infrared spectral range. Our devices combine intersubband transitions in semiconductor quantum-wells with planar metamaterials and operate in the strong light-matter coupling regime. The resonance frequency of the intersubband transition can be controlled by an external bias relative to the fixed metamaterial resonance. This allows us to switch dynamically from an uncoupled to a strongly coupled system and thereby to shift the eigenfrequency of the upper polariton branch by 2.5 THz (corresponding to 8% of the center frequency or one full linewidth) with a bias of 5 V.

  10. The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1991-01-01

    The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

  11. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber.

    PubMed

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution.

  12. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity.

    PubMed

    Sosa-Pagán, Jason O; Iversen, Edwin S; Grandl, Jörg

    2017-04-03

    Several transient receptor potential (TRP) ion channels can be directly activated by hot or cold temperature with high sensitivity. However, the structures and molecular mechanism giving rise to their high temperature sensitivity are not fully understood. One hypothesized mechanism assumes that temperature activation is driven by the exposure of hydrophobic residues to solvent. This mechanism further predicts that residues are exposed to solvent in a coordinated fashion, but without necessarily being located in close proximity to each other. However, there is little experimental evidence supporting this mechanism in TRP channels. Here, we combined high-throughput mutagenesis, functional screening, and deep sequencing to identify mutations from a total of ~7,300 TRPV1 random mutant clones. We found that strong decreases in hydrophobicity of amino acids are better tolerated for activation by capsaicin than for activation by hot temperature, suggesting that strong hydrophobicity might be specifically required for temperature activation. Altogether, our work provides initial correlative support for a previously hypothesized temperature mechanism in TRP ion channels.

  13. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber

    PubMed Central

    Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao

    2015-01-01

    The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265

  14. NMR Spectroscopic Characterization of Charge Assisted Strong Hydrogen Bonds in Brønsted Acid Catalysis

    PubMed Central

    2016-01-01

    Hydrogen bonding plays a crucial role in Brønsted acid catalysis. However, the hydrogen bond properties responsible for the activation of the substrate are still under debate. Here, we report an in depth study of the properties and geometries of the hydrogen bonds in (R)-TRIP imine complexes (TRIP: 3,3′-Bis(2,4,6-triisopropylphenyl)-1,1′-binaphthyl-2,2′-diylhydrogen phosphate). From NMR spectroscopic investigations 1H and 15N chemical shifts, a Steiner–Limbach correlation, a deuterium isotope effect as well as quantitative values of 1JNH,2hJPH and 3hJPN were used to determine atomic distances (rOH, rNH, rNO) and geometry information. Calculations at SCS-MP2/CBS//TPSS-D3/def2-SVP-level of theory provided potential surfaces, atomic distances and angles. In addition, scalar coupling constants were computed at TPSS-D3/IGLO-III. The combined experimental and theoretical data reveal mainly ion pair complexes providing strong hydrogen bonds with an asymmetric single well potential. The geometries of the hydrogen bonds are not affected by varying the steric or electronic properties of the aromatic imines. Hence, the strong hydrogen bond reduces the degree of freedom of the substrate and acts as a structural anchor in the (R)-TRIP imine complex. PMID:27936674

  15. A strong inorganic acid-initiated methacrylate polymerization strategy for room temperature preparation of monolithic columns for capillary electrochromatography.

    PubMed

    Wang, Man-Man; Wang, He-Fang; Jiang, Dong-Qing; Wang, Shan-Wei; Yan, Xiu-Ping

    2010-05-01

    A facile strong inorganic acid-initiated methacrylate polymerization strategy was developed for fabricating monolithic columns at room temperature. The prepared monoliths were characterized by FTIR spectrometry, mercury intrusion porosimeter and SEM, while their performance was evaluated by CEC for the separation of various types of compounds including alkyl benzenes, polycyclic aromatic hydrocarbons, nonsteroidal anti-inflammatory drugs, anilines, and nitrophenol isomers. The column-to-column and batch-to-batch reproducibility for the prepared monoliths in terms of the RSD of EOF flow velocity, retention factor, and the minimum plate height of naphthalene ranged from 3.4 to 12.4%. The fabricated monoliths gave excellent performance for the separation of the test neutral compounds with the theoretical plates of 170,000-232,000 plates per meter for thiourea, and 77,400-112,300 plates per meter for naphthalene. The proposed strong inorganic acid-initiated methacrylate polymerization strategy is a promising alternative for fabricating organic polymer-based monoliths.

  16. Strong vibration nonlinearity in semiconductor-based nanomechanical systems

    NASA Astrophysics Data System (ADS)

    Moskovtsev, Kirill; Dykman, M. I.

    2017-02-01

    We study the effect of the electron-phonon coupling on vibrational eigenmodes of nano- and micromechanical systems made of semiconductors with equivalent energy valleys. We show that the coupling can lead to a strong mode nonlinearity. The mechanism is the lifting of the valley degeneracy by the strain. The redistribution of the electrons between the valleys is controlled by a large ratio of the electron-phonon coupling constant to the electron chemical potential or temperature. We find the quartic in the strain terms in the electron free energy, which determine the amplitude dependence of the mode frequencies. This dependence is calculated for silicon microsystems. It is significantly different for different modes and the crystal orientation, and can vary nonmonotonously with the electron density and temperature.

  17. Nucleic acid based logical systems.

    PubMed

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  18. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-07

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  19. Naturally occurring conjugated octadecatrienoic acids are strong inhibitors of prostaglandin biosynthesis.

    PubMed

    Nugteren, D H; Christ-Hazelhof, E

    1987-03-01

    Fatty acids from natural sources (mostly seed oils) were isolated and assayed for their effect on the bioconversion of arachidonic acid into prostaglandin E2, using sheep vesicular gland microsomes. Homologues and isomers of the naturally occurring fatty acids, obtained by chemical modification and/or organic synthetic methods, were also tested. Two very active cyclooxygenase inhibitors were discovered, namely jacarandic acid (8Z, 10E, 12Z-octadecatrienoic acid), isolated from Jacaranda mimosifolia, the concentration which gives 50% inhibition ([I]50) being 2.4 microM and the synthetic 8Z, 10E, 12E-octadecatrienoic acid, having an [I]50 of 1.0 microM. Under the conditions of the assay (75 microM substrate), earlier described potent inhibitors showed the following [I]50's: indomethacin: 1.3 microM; 9,12-octadecadiynoic acid: 1.3 microM, 8Z, 12E, 14Z-eicosatrienoic acid: 2.7 microM; 5,8,11,14-eicosatetraynoic acid: 4.4 microM. At a concentration of about half that of the substrate, the following naturally occurring fatty acids revealed inhibition ([I]50): columbinic acid (29 microM), calendulic acid (31 microM), liagoric acid (31 microM), ximenynic acid (39 microM), crepenynic acid (40 microM) and timnodonic acid (43 microM). Other fatty acids, and some of the above acids, were converted themselves more or less rapidly, mostly into conjugated monohydroxy fatty acids.

  20. Isolation of a thermostable acid phytase from Aspergillus niger UFV-1 with strong proteolysis resistance.

    PubMed

    Monteiro, Paulo S; Guimarães, Valéria M; de Melo, Ricardo R; de Rezende, Sebastião T

    2015-03-01

    An Aspergillus niger UFV-1 phytase was characterized and made available for industrial application. The enzyme was purified via ultrafiltration followed by acid precipitation, ion exchange and gel filtration chromatography. This protein exhibited a molecular mass of 161 kDa in gel filtration and 81 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), indicating that it may be a dimer. It presented an optimum temperature of 60 °C and optimum pH of 2.0. The K M for sodium phytate hydrolysis was 30.9 mM, while the k cat and k cat / K M were 1.46 ×10 (5) s (-1) and 4.7 × 10 (6) s (-1) .M (-1) , respectively. The purified phytase exhibited broad specificity on a range of phosphorylated compounds, presenting activity on sodium phytate, p-NPP, 2- naphthylphosphate, 1- naphthylphosphate, ATP, phenyl-phosphate, glucose-6-phosphate, calcium phytate and other substrates. Enzymatic activity was slightly inhibited by Mg (2+) , Cd (2+) , K (+) and Ca (2+) , and it was drastically inhibited by F (-) . The enzyme displayed high thermostability, retaining more than 90% activity at 60 °C during 120 h and displayed a t 1/2 of 94.5 h and 6.2 h at 70 °C and 80 °C, respectively. The enzyme demonstrated strong resistance toward pepsin and trypsin, and it retained more than 90% residual activity for both enzymes after 1 h treatment. Additionally, the enzyme efficiently hydrolyzed phytate in livestock feed, liberating 15.3 μmol phosphate/mL after 2.5 h of treatment.

  1. Acid-base properties of adhesive dental polymers.

    PubMed

    Morra, M

    1993-11-01

    The surface energetics of three resins (polymethylmethacrylate, polyhydroxyethylmethacrylate, and Bis-GMA/triethyleneglycoldimethacrylate) commonly used in adhesive interactions with tooth hard tissues were evaluated according to the Fowkes acid-base theory of interfacial interactions. From the measurement of the contact angle of test acidic and basic liquids on the sample surfaces, the acid-base contribution to the work of adhesion was evaluated. Results show that polyhydroxyethylmethacrylate is a comparatively strong Lewis base, a finding that can explain the important role played by this material in the formulation of dentin adhesive.

  2. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  3. Sorption of REE and TPE from HNO{sub 3} solutions on strong-acid sulfonated cation exchanger KU-2

    SciTech Connect

    Chuveleva, E.A.; Kharitonov, O.V.; Firsova, L.A.

    1995-05-01

    Sorption of rare earths (REE) on the strong-acid sulfonated cation exchanger KU-2 is studied as a function of the solution acidity (0.1-2.0 M HNO{sub 3}) and REE concentration. In concentrated nitrate solutions where M(NO{sub 3}){sub 2}{sup +} and M(NO{sub 3}){sub 2}{sup +} can form and be sorbed by the cation exchanger, the capacity of the exchanger seems to increase by 20%.

  4. Photocurable bioadhesive based on lactic acid.

    PubMed

    Marques, D S; Santos, J M C; Ferreira, P; Correia, T R; Correia, I J; Gil, M H; Baptista, C M S G

    2016-01-01

    Novel photocurable and low molecular weight oligomers based on l-lactic acid with proven interest to be used as bioadhesive were successfully manufactured. Preparation of lactic acid oligomers with methacrylic end functionalizations was carried out in the absence of catalyst or solvents by self-esterification in two reaction steps: telechelic lactic acid oligomerization with OH end groups and further functionalization with methacrylic anhydride. The final adhesive composition was achieved by the addition of a reported biocompatible photoinitiator (Irgacure® 2959). Preliminary in vitro biodegradability was investigated by hydrolytic degradation in PBS (pH=7.4) at 37 °C. The adhesion performance was evaluated using glued aminated substrates (gelatine pieces) subjected to pull-to-break test. Surface energy measured by contact angles is lower than the reported values of the skin and blood. The absence of cytoxicity was evaluated using human fibroblasts. A notable antimicrobial behaviour was observed using two bacterial models (Staphylococcus aureus and Escherichia coli). The cured material exhibited a strong thrombogenic character when placed in contact with blood, which can be predicted as a haemostatic effect for bleeding control. This novel material was subjected to an extensive characterization showing great potential for bioadhesive or other biomedical applications where biodegradable and biocompatible photocurable materials are required.

  5. Evaluation of DNA typing as a positive identification method for soft and hard tissues immersed in strong acids.

    PubMed

    Robino, C; Pazzi, M; Di Vella, G; Martinelli, D; Mazzola, L; Ricci, U; Testi, R; Vincenti, M

    2015-11-01

    Identification of human remains can be hindered by several factors (e.g., traumatic mutilation, carbonization or decomposition). Moreover, in some criminal cases, offenders may purposely adopt various expedients to thwart the victim's identification, including the dissolution of body tissues by the use of corrosive reagents, as repeatedly reported in the past for Mafia-related murders. By means of an animal model, namely porcine samples, we evaluated standard DNA typing as a method for identifying soft (muscle) and hard (bone and teeth) tissues immersed in strong acids (hydrochloric, nitric and sulfuric acid) or in mixtures of acids (aqua regia). Samples were tested at different time intervals, ranging between 2 and 6h (soft tissues) and 2-28 days (hard tissues). It was shown that, in every type of acid, complete degradation of the DNA extracted from soft tissues preceded tissue dissolution and could be observed within 4h of immersion. Conversely, high molecular weight DNA amenable to STR analysis could be isolated from hard tissues as long as cortical bone fragments were still present (28 days for sulfuric acid, 7 days for nitric acid, 2 days for hydrochloric acid and aqua regia), or the integrity of the dental pulp chamber was preserved (7 days, in sulfuric acid only). The results indicate that DNA profiling of acid-treated body parts (in particular, cortical bone) is still feasible at advanced stages of corrosion, even when the morphological methods used in forensic anthropology and odontology can no longer be applied for identification purposes.

  6. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    PubMed

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules.

  7. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    SciTech Connect

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusual feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.

  8. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  9. Deprotonation of hydrogen bonded Schiff bases by three strong nitrogen bases

    NASA Astrophysics Data System (ADS)

    Schilf, Wojciech; Cmoch, Piotr; Szady-Chełmieniecka, Anna; Grech, Eugeniusz

    2009-03-01

    Three Schiff bases obtained from substituted salicylaldehydes and 2-hydroxy-1-naphthaldehyde and aliphatic amines were investigated in terms of possible withdrawal of tautomeric proton from intramolecular hydrogen bridge. Three strong nitrogen bases: 1,8-bis(dimethylamino)naphtalene (DMAN), 1,1,3,3-tetramethylguanidine (TMG) and 1,8-bis(tetramethylguanidino)naphthalene (TMGN) were used as deprotonating agents in acetonitrile solution at room temperature. In the specified conditions it was found that only in the case of 5-nitrosalicylaldehyde and isopropyl amine derivative this process could be performed using TMG and TMGN as a base. The other derivatives, where bridged proton is shifted to oxygen or nitrogen atom, do not undergo such reaction. The deprotonation process was monitored by nitrogen and proton NMR measurements.

  10. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  11. Diclofenac removal in urine using strong-base anion exchange polymer resins.

    PubMed

    Landry, Kelly A; Boyer, Treavor H

    2013-11-01

    One of the major sources of pharmaceuticals in the environment is wastewater effluent of which human urine contributes the majority of pharmaceuticals. Urine source separation has the potential to isolate pharmaceuticals at a higher concentration for efficient removal as well as produce a nutrient byproduct. This research investigated the efficacy of using strong-base anion exchange polymer resins to remove the widely detected and abundant pharmaceutical, diclofenac, from synthetic human urine under fresh and ureolyzed conditions. The majority of experiments were conducted using a strong-base, macroporous, polystyrene resin (Purolite A520E). Ion-exchange followed a two-step removal rate with rapid removal in 1 h and equilibrium removal in 24 h. Diclofenac removal was >90% at a resin dose of 8 mL/L in both fresh and ureolyzed urine. Sorption of diclofenac onto A520E resin was concurrent with desorption of an equivalent amount of chloride, which indicates the ion-exchange mechanism is occurring. The presence of competing ions such as phosphate and citrate did not significantly impact diclofenac removal. Comparisons of three polystyrene resins (A520E, Dowex 22, Dowex Marathon 11) as well as one polyacrylic resin (IRA958) were conducted to determine the major interactions between anion exchange resin and diclofenac. The results showed that polystyrene resins provide the highest level of diclofenac removal due to electrostatic interactions between quaternary ammonium functional groups of resin and carboxylic acid of diclofenac and non-electrostatic interactions between resin matrix and benzene rings of diclofenac. Diclofenac was effectively desorbed from A520E resin using a regeneration solution that contained 4.5% (m/m) NaCl in an equal-volume mixture of methanol and water. The greater regeneration efficiency of the NaCl/methanol-water mixture over the aqueous NaCl solution supports the importance of non-electrostatic interactions between resin matrix and benzene rings

  12. Geochemical modelling of EGS fracture stimulation applying weak and strong acid treatments

    NASA Astrophysics Data System (ADS)

    Sigfusson, Bergur; Sif Pind Aradottir, Edda

    2015-04-01

    Engineered Geothermal systems (EGS) provide geothermal power by tapping into the Earth's deep geothermal resources that are otherwise not exploitable due to lack of water and fractures, location or rock type. EGS technologies have the potential to cost effectively produce large amounts of electricity almost anywhere in the world. The EGS technology creates permeability in the rock by hydro-fracturing the reservoir with cold water pumped into the first well (the injection well) at a high pressure. The second well (the production well) intersects the stimulated fracture system and returns the hot water to the surface where electricity can be generated. A significant technological hurdle is ensuring effective connection between the wells and the fracture system and to control the deep-rooted fractures (can exceed 5 000 m depth). A large area for heat transfer and sufficient mass flow needs to be ensured between wells without creating fast flowing paths in the fracture network. Maintaining flow through the fracture system can cause considerable energy penalty to the overall process. Therefore, chemical methods to maintain fractures and prevent scaling can be necessary to prevent excessive pressure build up in the re-injection wells of EGS systems. The effect of different acid treatments on the porosity development of selected rock types was simulated with the aid of the Petrasim interface to the Toughreact simulation code. The thermodynamic and kinetic database of Aradottir et al. (2014) was expanded to include new minerals and the most important fluoride bearing species involved in mineral reactions during acid stimulation of geothermal systems. A series of simulations with injection waters containing fluoric acid, hydrochloric acid and CO2 or mixtures thereof were then carried out and porosity development in the fracture system monitored. The periodic injection of weak acid mixtures into EGS systems may be cost effective in some isolated cases to prevent pressure

  13. Calcium-based Lewis acid catalysts.

    PubMed

    Begouin, Jeanne-Marie; Niggemann, Meike

    2013-06-17

    Recently, Lewis acidic calcium salts bearing weakly coordinating anions such as Ca(NTf₂)₂, Ca(OTf)₂, CaF₂ and Ca[OCH(CF₃)₂]₂ have been discovered as catalysts for the transformation of alcohols, olefins and carbonyl compounds. High stability towards air and moisture, selectivity and high reactivity under mild reaction conditions render these catalysts a sustainable and mild alternative to transition metals, rare-earth metals or strong Brønsted acids.

  14. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-06

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes.

  15. Bifunctional ruthenium(II) hydride complexes with pendant strong Lewis acid moieties: structure, dynamics, and cooperativity.

    PubMed

    Ostapowicz, Thomas G; Merkens, Carina; Hölscher, Markus; Klankermayer, Jürgen; Leitner, Walter

    2013-02-13

    The synthesis of a novel class of bifunctional ruthenium hydride complexes incorporating Lewis acidic BR(2) moieties is reported. Determination of the molecular structures in the solid state and in solution provided evidence for tunable interaction between the two functionalities. Cooperative effects on the reactivity of the complexes were demonstrated including the activation of small Lewis basic molecules by reversible anchoring at the boron center.

  16. Dissociation of a strong acid in neat solvents: diffusion is observed after reversible proton ejection inside the solvent shell.

    PubMed

    Veiga-Gutiérrez, Manoel; Brenlla, Alfonso; Carreira Blanco, Carlos; Fernández, Berta; Kovalenko, Sergey A; Rodríguez-Prieto, Flor; Mosquera, Manuel; Lustres, J Luis Pérez

    2013-11-14

    Strong-acid dissociation was studied in alcohols. Optical excitation of the cationic photoacid N-methyl-6-hydroxyquinolinium triggers proton transfer to the solvent, which was probed by spectral reconstruction of picosecond fluorescence traces. The process fulfills the classical Eigen-Weller mechanism in two stages: (a) solvent-controlled reversible dissociation inside the solvent shell and (b) barrierless splitting of the encounter complex. This can be appreciated only when fluorescence band integrals are used to monitor the time evolution of the reactant and product concentrations. Band integrals are insensitive to solvent dynamics and report relative concentrations directly. This was demonstrated by first measuring the fluorescence decay of the conjugate base across the full emission band, independently of the proton-transfer reaction. Multiexponential decay curves at single wavelengths result from a dynamic red shift of fluorescence in the course of solvent relaxation, whereas clean single exponential decays are obtained if the band integral is monitored instead. The extent of the shift is consistent with previously reported femtosecond transient absorption measurements, continuum theory of solvatochromism, and molecular properties derived from quantum chemical calculations. In turn, band integrals show clean biexponential decay of the photoacid and triexponential evolution of the conjugate base in the course of the proton transfer to solvent reaction. The dissociation step follows the slowest stage of solvation, which was measured here independently by picosecond fluorescence spectroscopy in five aliphatic alcohols. Also, the rate constant of the encounter-complex splitting stage is compatible with proton diffusion. Thus, for this photoacid, both stages reach the highest possible rates: solvation and diffusion control. Under these conditions, the concentration of the encounter complex is substantial during the earliest nanosecond.

  17. Effect of strong acids on red mud structural and fluoride adsorption properties.

    PubMed

    Liang, Wentao; Couperthwaite, Sara J; Kaur, Gurkiran; Yan, Cheng; Johnstone, Dean W; Millar, Graeme J

    2014-06-01

    The removal of fluoride using red mud has been improved by acidifying red mud with hydrochloric, nitric and sulphuric acid. The acidification of red mud causes sodalite and cancrinite phases to dissociate, confirmed by the release of sodium and aluminium into solution as well as the disappearance of sodalite bands and peaks in infrared and X-ray diffraction data. The dissolution of these mineral phases increases the amount of available iron and aluminium oxide/hydroxide sites that are accessible for the adsorption of fluoride. However, concentrated acids have a negative effect on adsorption due to the dissolution of these iron and aluminium oxide/hydroxide sites. The removal of fluoride is dependent on the charge of iron and aluminium oxide/hydroxides on the surface of red mud. Acidifying red mud with hydrochloric, nitric and sulphuric acid resulted in surface sites of the form ≡SOH2(+) and ≡SOH. Optimum removal is obtained when the majority of surface sites are in the form ≡SOH2(+) as the substitution of a fluoride ion does not cause a significant increase in pH. This investigation shows the importance of having a low and consistent pH for the removal of fluoride from aqueous solutions using red mud.

  18. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light.

    PubMed

    Nagao, Raphael; Epstein, Irving R; Dolnik, Milos

    2013-09-26

    We investigate the sensitivity of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction to illumination by strong white light. Intense illumination results in an increase of [I(-)], in contrast to previous studies, which found only decreased [I(-)] for weak and intermediate intensities of illumination. We propose an expanded mechanism to explain the experimental observations. Both experimental and numerical results suggest that [ClO2] is the key parameter that determines whether the high iodide state is obtained under strong illumination. When strong illumination is applied through a spatially periodic mask with black and white stripes, a dark state with high [I(-)] is produced in the illuminated domain and a light state with low [I(-)] forms in the nonilluminated domain. Depending on the black:white ratio of the mask and its wavelength, Turing patterns can coexist with either the light or the dark state in the nonilluminated domain.

  19. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events.

    PubMed Central

    Schmidt, C; Schelle, I; Liao, Y J; Schroeder, J I

    1995-01-01

    Recent evidence suggests that slow anion channels in guard cells need to be activated to trigger stomatal closing and efficiently inactivated during stomatal opening. The patch-clamp technique was employed here to determine mechanisms that produce strong regulation of slow anion channels in guard cells. MgATP in guard cells, serving as a donor for phosphorylation, leads to strong activation of slow anion channels. Slow anion-channel activity was almost completely abolished by removal of cytosolic ATP or by the kinase inhibitors K-252a and H7. Nonhydrolyzable ATP, GTP, and guanosine 5'-[gamma-thio]triphosphate did not replace the ATP requirement for anion-channel activation. In addition, down-regulation of slow anion channels by ATP removal was inhibited by the phosphatase inhibitor okadaic acid. Stomatal closures in leaves induced by the plant hormone abscisic acid (ABA) and malate were abolished by kinase inhibitors and/or enhanced by okadaic acid. These data suggest that ABA signal transduction may proceed by activation of protein kinases and inhibition of an okadaic acid-sensitive phosphatase. This modulation of ABA-induced stomatal closing correlated to the large dynamic range for up- and down-regulation of slow anion channels by opposing phosphorylation and dephosphorylation events in guard cells. The presented opposing regulation by kinase and phosphatase modulators could provide important mechanisms for signal transduction by ABA and other stimuli during stomatal movements. PMID:11607582

  20. Strong electrochemiluminescent interactions between carbon nitride nanosheet-reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid.

    PubMed

    Zhou, Chen; Chen, Yingmei; Shang, Pengxiang; Chi, Yuwu

    2016-05-23

    Graphite-like carbon nitride nanosheets (g-C3N4 NSs) have recently emerged as electrochemiluminescent (ECL) nanomaterials and have attracted more and more attention due to their excellent ECL properties and promising applications in ECL sensing. However, the ECL study of g-C3N4 NSs is still in the early stages. Many studies are required to reveal the exact ECL mechanisms of g-C3N4 NSs and thus boost their sensing applications. In this paper, we have investigated ECL interactions between folic acid (FA) and a g-C3N4 NS/S2O8(2-) ECL system at a g-C3N4 NS-reduced graphene oxide (rGO) nanohybrid/glassy carbon electrode in aqueous solutions. Compared with bare g-C3N4 NSs, the nanohybrids of g-C3N4 NS-rGO give a much stable ECL emission due to the prevention of over electrochemical reduction of g-C3N4 by rGO. The stable ECL emission from the g-C3N4 NS-rGO/S2O8(2-) ECL system can be strongly quenched by FA, even in a very low concentration (pM levels). The ECL quenching mechanisms are investigated and discussed in detail. Based on the strong interactions between FA and g-C3N4 NSs, a novel, sensitive, stable and selective ECL sensor has been constructed for the detection of FA, with a wide linear response range from 0.1 to 90 nM, and an excellent detection limit (62 pM). This work not only further clarifies ECL mechanisms of g-C3N4 NSs, but also suggests a promising application of the newly emerging ECL nanomaterial.

  1. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  2. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  3. Bioavailability of heavy metals in strongly acidic soils treated with exceptional quality biosolids

    SciTech Connect

    Basta, N.T.; Sloan, J.J.

    1999-03-01

    New federal regulations may increase application of exceptional quality (EQ) biosolids to acidic soils, and information on the effect of this practice on bioavailability of heavy metal is limited. The objective of this study was to compare bioavailability of heavy metal in soil treated with nonalkaline or alkaline EQ biosolids with limestone-treated soils. Three acidic soils (pH 3.7--4.3) were treated with three amounts of lime-stabilized biosolids (LS), anaerobic-digested biosolids (AN), or agricultural limestone (L), and incubated at 25 C. Soil solution Cd, Zn, and other chemical constituents were measured at 1, 30, 90, and 180 d incubation. Soil solution Cd and Zn were AN > LS {ge} L, C. Soil solution Cd and Zn increased with AN applied but decreased wit h LS applied. The high application of LS had soil solution Zn dramatically decreased at soil pH > 5.5 and >5.1, respectively. Soil solution Cd and Zn increases were AN > LS with incubation time. Biosolids treatments increased heavy metal in Ca(NO{sub 3}){sub 2} and NaOAc fractions. Except for Cd, most metal from biosolids were in EDTA and HNO{sub 3} fractions. Heavy metal bioavailability, measured using lettuce (Latuca sativa L.), was AN > LS {ge} L, C. Although state regulations prohibiting application of nonalkaline EQ biosolids to acidic soil is a prudent practice, application of EQ alkaline biosolids that achieves soil pH > 5 minimizes risk from soil solution Cd and Zn and plant uptake of heavy metal.

  4. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  5. Students' Alternate Conceptions on Acids and Bases

    ERIC Educational Resources Information Center

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  6. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  7. Aluminum chloride as a solid is not a strong Lewis acid.

    PubMed

    Murthy, J Krishna; Gross, Udo; Rüdiger, Stephan; Rao, V Venkat; Kumar, V Vijaya; Wander, A; Bailey, C L; Harrison, N M; Kemnitz, Erhard

    2006-04-27

    Aluminum chloride is used extensively as Lewis acid catalyst in a variety of industrial processes, including Friedel-Crafts and Cl/F exchange reactions. There is a common misconception that pure AlCl3 is itself a Lewis acid. In the current study, we use experimental and computational methods to investigate the surface structure and catalytic properties of solid AlCl3. The catalytic activity of AlCl3 for two halide isomerization reactions is studied and compared with different AlF3 phases. It is shown that pure solid AlCl3 does not catalyze these reactions. The (001) surface of crystalline AlCl(3) is the natural cleavage plane and its structure is predicted via first principles calculations. The chlorine ions in the outermost layer of the material mask the Al3+ ions from the external gas phase. Hence, the experimentally found catalytic properties of pure solid AlCl3 are supported by the predicted surface structure of AlCl3.

  8. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid

    NASA Astrophysics Data System (ADS)

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30kHz.

  9. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid.

    PubMed

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1 mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30 kHz.

  10. Teaching Brønsted-Lowry Acid-Base Theory in a Direct Comprehensive Way

    NASA Astrophysics Data System (ADS)

    Adcock, Jamie L.

    2001-11-01

    A figure is presented which shows in a comprehensive way the relationships between Brønsted-Lowry acids and their conjugate bases. It shows their interactions with water and quantifies the terms strong, weak, and very weak, showing precisely how these modifiers can be effectively used to indicate the nature of the reaction between any conjugate acid/base and water. It shows that ion hydrolysis is simple acid/base behavior, and it clearly suggests the leveling effect of water on strong acids and bases.

  11. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  12. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  13. Processor-Based Strong Physical Unclonable Functions with Aging-Based Response Tuning (Preprint)

    DTIC Science & Technology

    2013-01-01

    underlying chip. PUFs have been classified into two broad categories: Weak and Strong. Weak PUFs have a limited number of challenge- response pairs ( CRPs ...of CRPs from a limited number of circuit components. Strong PUFs enable a wider range of security and trust protocols by leveraging their huge space of... CRPs . Although the already proposed strong PUFs have shown promising results [4], their application is still limited due to their non-negligible

  14. Acid and base degraded products of ketorolac.

    PubMed

    Salaris, Margherita; Nieddu, Maria; Rubattu, Nicola; Testa, Cecilia; Luongo, Elvira; Rimoli, Maria Grazia; Boatto, Gianpiero

    2010-06-05

    The stability of ketorolac tromethamine was investigated in acid (0.5M HCl) and alkaline conditions (0.5M NaOH), using the same procedure reported by Devarajan et al. [2]. The acid and base degradation products were identified by liquid chromatography-mass spectrometry (LC-MS).

  15. A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide.

    PubMed

    Cui, Wei; Li, Mingzhu; Liu, Jiyang; Wang, Ben; Zhang, Chuck; Jiang, Lei; Cheng, Qunfeng

    2014-09-23

    Demands of the strong integrated materials have substantially increased across various industries. Inspired by the relationship of excellent integration of mechanical properties and hierarchical nano/microscale structure of the natural nacre, we have developed a strategy for fabricating the strong integrated artificial nacre based on graphene oxide (GO) sheets by dopamine cross-linking via evaporation-induced assembly process. The tensile strength and toughness simultaneously show 1.5 and 2 times higher than that of natural nacre. Meanwhile, the artificial nacre shows high electrical conductivity. This type of strong integrated artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  16. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7.

    PubMed

    Huang, Yin-Peng; Cao, Yun-Feng; Fang, Zhong-Ze; Zhang, Yan-Yan; Hu, Cui-Min; Sun, Xiao-Yu; Yu, Zhen-Wen; Zhu, Xu; Hong, Mo; Yang, Lu; Sun, Hong-Zhi

    2013-09-01

    The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors.

  17. Solid Acid Based Fuel Cells

    DTIC Science & Technology

    2007-11-02

    superprotonic solid acids with elements such as P, As, Si and Ge, which have greater affinities to oxygen , we anticipate that the reduction reaction will be...bulk material consisted of an apatite phase (hexagonal symmetry) of variable composition, LixLa10-x(SiO4)6O3-x, with excess lithium residing in the...in Tables 1 and 2, indicate that this compound is a rather conventional apatite with fixed stoichiometry, LiLa9(SiO4)6O2 (x = 1). Such a result is

  18. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  19. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  20. Acid-Base Titration of (S)-Aspartic Acid: A Circular Dichroism Spectrophotometry Experiment

    NASA Astrophysics Data System (ADS)

    Cavaleiro, Ana M. V.; Pedrosa de Jesus, Júlio D.

    2000-09-01

    The magnitude of the circular dichroism of (S)-aspartic acid in aqueous solutions at a fixed wavelength varies with the addition of strong base. This laboratory experiment consists of the circular dichroism spectrophotometric acid-base titration of (S)-aspartic acid in dilute aqueous solutions, and the use of the resulting data to determine the ionization constant of the protonated amino group. The work familiarizes students with circular dichroism and illustrates the possibility of performing titrations using a less usual instrumental method of following the course of a reaction. It shows the use of a chiroptical property in the determination of the concentration in solution of an optically active molecule, and exemplifies the use of a spectrophotometric titration in the determination of an ionization constant.

  1. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  2. Effects of strong and weak hydrogen bond formation on VCD spectra: a case study of 2-chloropropionic acid.

    PubMed

    Góbi, Sándor; Vass, Elemér; Magyarfalvi, Gábor; Tarczay, György

    2011-08-21

    The vibrational circular dichroism (VCD) spectrum of S-(-) and R-(+)-2-chloropropionic acid is thoroughly analyzed. Besides the VCD spectrum of the monomer, the dimers (stabilized by strong hydrogen bonds) and the 2-chloropropionic acid-CHCl(3) complexes (stabilized by a weak hydrogen bond) are studied both experimentally (in solution and in low-temperature Ar matrix) and by quantum chemical computations. It is shown that dimer formation drastically changes, and even weak complex formation can also substantially affect the overall shape of the VCD spectrum. The present and previous results can be generalized for the practice of absolute configuration determination of carboxylic acids by VCD spectroscopy. For these measurements, if bulky groups do not block dimer formation, comparison of the computed spectra of the dimers with the experimental spectra recorded in relatively concentrated (∼0.1 mol dm(-3)) solutions is suggested. Our study also shows that due to the stabilization of monomers and/or the formation of weak complexes, the VCD spectrum recorded in CHCl(3) is more complex and, like in the present case, can have a lower intensity than that of the spectrum recorded in CCl(4). Therefore, if solubility allows, CCl(4) is a much preferred solvent over CHCl(3).

  3. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong alkali in capillary electrophoresis: I. Theory.

    PubMed

    Cao, Chengxi; Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si

    2011-05-15

    The condensation of low abundance zwitterion substance, such as protein and peptide, has great significance to the study on proteomics. This paper develops the theory on design of online stacking conditions of zwitterion by a moving reaction boundary (MRB) in capillary electrophoresis (CE). This concerns the choice of running and sample buffers, velocity design of MRB, and salt effect on the stacking. The theoretical results unveil that: (1) the velocity of MRB formed with weak acidic buffer and strong alkali should be set between zero and the velocity of zwitterion in the alkali phase, or no stacking occurs; (2) if a strong alkali is used to prepare the sample, a much long front plug of strong base must be injected before the alkaline sample plug for complete stacking, whereas no such front plug is needed if a weak alkali with enough high concentration and pH value is used to prepare the sample buffer; (3) the existence of salt in sample matrix has a weak effect on the stacking of zwitterion if sample is prepared with weak alkaline buffer, while has a dramatic effect on the same stacking if with a strong base buffer. In addition, the concentration of weak alkali used for preparation of sample should be set at the point, at which the velocity of MRB is as much as possible close to that of negative zwitterion. The developed theory and its computation are quantitatively proved by the experiments of zwitterion stacking by the MRB as shown in the previous and the accompanying papers. The proposed theoretic results hold obvious significances on-column stacking of low abundance zwitterions, such as amino acid, or peptides or proteins, in CE.

  4. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  5. Eight salts constructed from 4-phenylthiazol-2-amine and carboxylic acid derivatives through combination of strong hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhu, Qiaowang; Wei, ShuaiShuai; Wang, Daqi

    2013-10-01

    Eight crystalline organic salts derived from 4-phenylthiazol-2-amine and carboxylic acid derivatives (2-chloronicotinic acid, 3-hydroxy-2-naphthoic acid, p-nitrobenzoic acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, 5-nitrosalicylic acid, 5-sulfosalicylic acid, oxalic acid, and L-malic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. In all of the salts except 6, 7, and 8, the 4-phenylthiazol-2-amine and carboxylic acid components are held together by two fused heterosynthons: a R22(7) heterosynthon and a R22(8) heterosynthon. All supramolecular architectures of the organic salts 1-8 involve extensive Nsbnd H⋯O hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. The salts displayed 2D/3D framework structure under these weak interactions.

  6. Strong Teens: A School-Based Small Group Experience for African American Males

    ERIC Educational Resources Information Center

    White, Nathan J.; Rayle, Andrea Dixon

    2007-01-01

    This article describes the school-based, small group adaptation of the existing Strong Teens Curriculum (STC) for African American male adolescents in high schools. The STC was created to equip adolescents with skills that promote more effective social interaction and enhance personal emotional and psychological wellness. The authors present a…

  7. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    SciTech Connect

    Rousset, J.-G. Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  8. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  9. Proton exchange in acid-base complexes induced by reaction coordinates with heavy atom motions

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-06-01

    We extend previous work on nitric acid-ammonia and nitric acid-alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid-strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are <400 cm-1. This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm-1. Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  10. Strong and Long-Lasting Antinociceptive and Anti-inflammatory Conjugate of Naturally Occurring Oleanolic Acid and Aspirin

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Wachowiak, Natalia; Szulc, Michal; Kamińska, Ewa; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Zaprutko, Lucjusz; Mikolajczak, Przemyslaw L.

    2016-01-01

    The conjugate 8 was obtained as a result of condensation of 3-hydroxyiminooleanolic acid morfolide (7) and aspirin in dioxane. Analgesic effect of OAO-ASA (8) for the range of doses 0.3–300.0 mg/kg (p.o.) was performed in mice using a hot-plate test. Anti-inflammatory activity was assessed on carrageenan-induced paw edema in rats for the same range of doses. The conjugate OAO-ASA (8) did not significantly change locomotor activity of mice, therefore sedative properties of the compound should be excluded. The compound 8 proved a simple, proportional, dose-dependent analgesic action and expressed strong anti-inflammatory activity showing a reversed U-shaped, dose-dependent relation with its maximum at 30.0 mg/kg. After its combined administration with morphine (MF, 5.0 mg/kg, s.c.) the lowering of antinociceptive activity was found; however, the interaction with naloxone (NL, 3.0 mg/kg, s.c.) did not affect the antinociceptive effect of OAO-ASA (8), therefore its opioid mechanism of action should be rather excluded. After combined administration with acetylsalicylic acid (ASA, 300.0 mg/kg, p.o.) in hot-plate test, the examined compound 8 enhanced the antinociceptive activity in significant way. It also shows that rather the whole molecule is responsible for the antinociceptive and anti-inflammatory effect of the tested compound 8, however, it cannot be excluded that the summarizing effect is produced by ASA released from the compound 8 and the rest of triterpene derivative. The occurrence of tolerance for triterpenic derivative 8 was not observed, since the analgesic and anti-inflammatory effects after chronic administration of the conjugate OAO-ASA (8) was on the same level as after its single treatment. It seemed that the anti-inflammatory mechanism of action of OAO-ASA (8) is not simple, even its chronic administration lowered both blood concentration of IL-6 and mRNA IL-6 expression. However, the effects of the conjugate OAO-ASA (8) on TNF-α level and m

  11. Strong and Long-Lasting Antinociceptive and Anti-inflammatory Conjugate of Naturally Occurring Oleanolic Acid and Aspirin.

    PubMed

    Bednarczyk-Cwynar, Barbara; Wachowiak, Natalia; Szulc, Michal; Kamińska, Ewa; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Zaprutko, Lucjusz; Mikolajczak, Przemyslaw L

    2016-01-01

    The conjugate 8 was obtained as a result of condensation of 3-hydroxyiminooleanolic acid morfolide (7) and aspirin in dioxane. Analgesic effect of OAO-ASA (8) for the range of doses 0.3-300.0 mg/kg (p.o.) was performed in mice using a hot-plate test. Anti-inflammatory activity was assessed on carrageenan-induced paw edema in rats for the same range of doses. The conjugate OAO-ASA (8) did not significantly change locomotor activity of mice, therefore sedative properties of the compound should be excluded. The compound 8 proved a simple, proportional, dose-dependent analgesic action and expressed strong anti-inflammatory activity showing a reversed U-shaped, dose-dependent relation with its maximum at 30.0 mg/kg. After its combined administration with morphine (MF, 5.0 mg/kg, s.c.) the lowering of antinociceptive activity was found; however, the interaction with naloxone (NL, 3.0 mg/kg, s.c.) did not affect the antinociceptive effect of OAO-ASA (8), therefore its opioid mechanism of action should be rather excluded. After combined administration with acetylsalicylic acid (ASA, 300.0 mg/kg, p.o.) in hot-plate test, the examined compound 8 enhanced the antinociceptive activity in significant way. It also shows that rather the whole molecule is responsible for the antinociceptive and anti-inflammatory effect of the tested compound 8, however, it cannot be excluded that the summarizing effect is produced by ASA released from the compound 8 and the rest of triterpene derivative. The occurrence of tolerance for triterpenic derivative 8 was not observed, since the analgesic and anti-inflammatory effects after chronic administration of the conjugate OAO-ASA (8) was on the same level as after its single treatment. It seemed that the anti-inflammatory mechanism of action of OAO-ASA (8) is not simple, even its chronic administration lowered both blood concentration of IL-6 and mRNA IL-6 expression. However, the effects of the conjugate OAO-ASA (8) on TNF-α level and m

  12. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  13. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  14. Linear Titration Curves of Acids and Bases.

    PubMed

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  15. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine.

    PubMed

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A; Montefiori, David C; LaBranche, Celia C; Wrammert, Jens; Keele, Brandon F; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L; Amara, Rama Rao

    2016-01-01

    Background.  In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods.  The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results.  Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions.  The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.

  16. Comparison of the Electrochemical Behavior of Ti and Nanostructured Ti-Coated AISI 304 Stainless Steel in Strongly Acidic Solutions

    NASA Astrophysics Data System (ADS)

    Attarzadeh, Farid Reza; Elmkhah, Hassan; Fattah-Alhosseini, Arash

    2017-02-01

    In this study, the electrochemical behaviors of pure titanium (Ti) and nanostructured (NS) Ti-coated AISI 304 stainless steel (SS) in strongly acidic solutions of H2SO4 were investigated and compared. A type of physical vapor deposition method, cathodic arc evaporation, was applied to deposit NS Ti on 304 SS. Scanning electron microscope and X-ray diffraction were used to characterize surface coating morphology. Potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky (M-S) analysis were used to evaluate the passive behavior of the samples. Electrochemical measurements revealed that the passive behavior of NS Ti coating was better than that of pure Ti in 0.1 and 0.01 M H2SO4 solutions. M-S analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and the deposition method did not affect the semiconducting type of passive films formed on the coated samples. In addition, this analysis showed that the NS Ti coating had lower donor densities. Finally, all electrochemical tests showed that the passive behavior of the Ti-coated samples was superior, mainly due to the formation of thicker, yet less defective passive films.

  17. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine

    PubMed Central

    Chamcha, Venkateswarlu; Kannanganat, Sunil; Gangadhara, Sailaja; Nabi, Rafiq; Kozlowski, Pamela A.; Montefiori, David C.; LaBranche, Celia C.; Wrammert, Jens; Keele, Brandon F.; Balachandran, Harikrishnan; Sahu, Sujata; Lifton, Michelle; Santra, Sampa; Basu, Rahul; Moss, Bernard; Robinson, Harriet L.; Amara, Rama Rao

    2016-01-01

    Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques. PMID:27006959

  18. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes Scott A to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge.

    PubMed

    Chorianopoulos, Nikos; Giaouris, Efstathios; Grigoraki, Ioanna; Skandamis, Panagiotis; Nychas, George-John

    2011-02-28

    The aim of this study was to investigate the potential effect of adaptive stationary phase acid tolerance response (ATR) of Listeria monocytogenes Scott A cells on their attachment to stainless steel (SS) under low pH or/and high salt conditions and on the subsequent resistance of sessile cells to strong acid challenge. Nonadapted or acid-adapted stationary-phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) Brain Heart (BH) broth (pH 7.4, 0.5% w/v NaCl) in test tubes containing vertically placed SS coupons (used as abiotic substrates for bacterial attachment). Incubation was carried out at 16 °C for up to 15 days, without any nutrient refreshment. L. monocytogenes cells, prepared as described above, were also exposed to low pH (4.5; adjusted with HCl) or/and high salt (5.5% w/v NaCl) stresses, during attachment. On the 5th, 10th and 15th day of incubation, cells attached to SS coupons were detached (through bead vortexing) and enumerated (by agar plating). Results revealed that ATR significantly (p<0.05) affected bacterial attachment, when the latter took place under moderate acidic conditions (pH 4.5, 0.5 or 5.5% w/v NaCl), with the acid-adapted cells adhering slightly more than the nonadapted ones. Regardless of acidity/salinity conditions during attachment, ATR also enhanced the resistance of sessile cells to subsequent lethal acid challenge (exposure to pH 2 for 6 min; pH adjusted with either hydrochloric or lactic acid). The trend observed with viable count data agreed well with conductance measurements, used to indirectly quantify remaining attached bacteria (following the strong acid challenge) via their metabolic activity. To sum, this study demonstrates that acid adaptation of L. monocytogenes cells during their planktonic growth enhances their subsequent attachment to SS under extended exposure (at 16 °C for up to 15 days) to mild acidic conditions (pH 4.5), while it also improves the resistance of sessile cells to extreme acid

  19. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    SciTech Connect

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung; Brotopuspito, Kirbani Sri; Kiyono, Junji; Putra, Rusnardi Rahmat

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  20. Alkaline-substituted sepiolites as a new type of strong base catalyst

    SciTech Connect

    Corma, A.; Martin-Aranda, R.M. )

    1991-07-01

    Strong base catalysts have been prepared by substituting a part of the Mg{sup 2+} located at the borders of the channels of sepiolite with alkaline ions. These materials show higher basicity than alkaline X zeolites and are able to catalyze at moderate temperatures the condensation of benzaldehydes with ethyl cyanoacetate, ethyl acetoacetate, and ethyl malonate. The kinetic rate constants obtained indicate that alkaline sepiolites have basic sites with strengths corresponding to pK{sub b} {le} 13.3, with most of the sites showing basicities up to pK{sub b} = 10.7.

  1. Acid-Base Balance in Uremic Rats with Vascular Calcification

    PubMed Central

    Peralta-Ramírez, Alan; Raya, Ana Isabel; Pineda, Carmen; Rodríguez, Mariano; Aguilera-Tejero, Escolástico; López, Ignacio

    2014-01-01

    Background/Aims Vascular calcification (VC), a major complication in humans and animals with chronic kidney disease (CKD), is influenced by changes in acid-base balance. The purpose of this study was to describe the acid-base balance in uremic rats with VC and to correlate the parameters that define acid-base equilibrium with VC. Methods Twenty-two rats with CKD induced by 5/6 nephrectomy (5/6 Nx) and 10 nonuremic control rats were studied. Results The 5/6 Nx rats showed extensive VC as evidenced by a high aortic calcium (9.2 ± 1.7 mg/g of tissue) and phosphorus (20.6 ± 4.9 mg/g of tissue) content. Uremic rats had an increased pH level (7.57 ± 0.03) as a consequence of both respiratory (PaCO2 = 28.4 ± 2.1 mm Hg) and, to a lesser degree, metabolic (base excess = 4.1 ± 1 mmol/l) derangements. A high positive correlation between both anion gap (AG) and strong ion difference (SID) with aortic calcium (AG: r = 0.604, p = 0.02; SID: r = 0.647, p = 0.01) and with aortic phosphorus (AG: r = 0.684, p = 0.007; SID: r = 0.785, p = 0.01) was detected. Conclusions In an experimental model of uremic rats, VC showed high positive correlation with AG and SID. PMID:25177336

  2. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.

  3. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins.

    PubMed

    Gu, Baohua; Ku, Yee-Kyoung; Brown, Gilbert M

    2005-02-01

    This study investigated the sorption affinity and capacity of six strong-base anion-exchange (SBA) resins for both uranium [U(VI)] and perchlorate (ClO4-) in simulated groundwater containing varying concentrations of sulfate (SO4(2-)). Additionally, desorption of U(VI) from spent resins was studied to separate U(VI) from resins with sorbed ClO4- for waste segregation and minimization. Results indicate that all SBA resins investigated in this study strongly sorb U(VI). The gel-type polyacrylic resin (Purolite A850) showed the highest sorption affinity and capacityfor U(VI) butwasthe least effective in sorbing ClO4-. The presence of SO4(2-) had little impact on the sorption of U(VI) but significantly affected the sorption of ClO4-, particularly on monofunctional SBA resins. A dilute acid wash was found to be effective in desorbing U(VI) but ineffective in desorbing ClO4- from bifunctional resins (Purolite A530E and WBR109). A single wash removed approximately 75% of sorbed U(VI) but only approximately 0.1% of sorbed ClO4- from the bifunctional resins. On the other hand, only 21.4% of sorbed U(VI) but approximately 34% of sorbed ClO4- was desorbed from the Purolite A850 resin. This study concludes that bifunctional resins could be used effectively to treatwater contaminated with ClO4- and traces of U(VI), and dilute acid washes could minimize hazardous wastes by separating sorbed U(VI) from ClO4- prior to the regeneration of the spent resin loaded with ClO4-.

  4. Reaction mechanisms of riboflavin triplet state with nucleic acid bases.

    PubMed

    Lin, Weizhen; Lu, Changyuan; Du, Fuqiang; Shao, Zhiyong; Han, Zhenhui; Tu, Tiecheng; Yao, Side; Lin, Nianyun

    2006-04-01

    ESR and laser flash photolysis studies have determined a reasonable order of reactivity of nucleotides with triplet riboflavin (3Rb*) for the first time. ESR detection of triplet state reactivity of Rb with nucleoside, polynucleotide and DNA has been obtained simultaneously. In addition, ESR spin elimination measurement of the reactivity of 3Rb* with nucleotides in good accord with laser flash photolysis determination of the corresponding rate constants offers a simple and reliable method to detect the reactivities of nucleic acids and its components with photoexcited flavins. Kinetic, ESR and thermodynamic studies have demonstrated that Rb should be a strong endogenous photosensitizer capable of oxidizing all nucleic acid bases, and preferentially two purine nucleotides with high rate constants.

  5. Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.

    PubMed

    Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán

    2005-10-22

    Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.

  6. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method.

  7. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  8. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E.

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or ``creep`` failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  9. Tensile properties of thin Au-Ni brazes between strong base materials

    SciTech Connect

    Tolle, M.C.; Kassner, M.E. )

    1991-12-01

    It has long been known that when relatively strong base materials are joined by thin, soft, interlayer metals such as with brazing or various solid state joining processes, the ultimate tensile strength (UTS) of the bond may be several factors higher than the UTS of the bulk, or unconstrained, interlayer metals. However, earlier work reported by the authors confirmed that delayed or creep'' failure of the bond may occur at stresses much less than the UTS. It was found that for thin silver interlayers, prepared by brazing and physical vapor deposition (PVD), joining elastically deforming base materials (i.e. no measurable plastic deformation occurs in the base metal at the applied stresses), the ambient (and near-ambient) temperature time to failure is controlled by the creep rate of the silver interlayer which is determined by the effective stress within the interlayer. The plastic deformation within the interlayer causes cavity nucleation which continues until the concentration of nuclei is sufficiently high to lead to instability and eventual failure. The delayed failure may be accelerated by base material creep resulting from the effective stress in the base material. Plastic deformation in the base metal causes corresponding deformation in the interlayer, and cavities nucleate as with elastic base metal case. The delayed failure phenomenon was confirmed by the authors only for silver interlayers; other compositions were not tested. In this study, maraging steel was joined with an Au-Ni braze alloy with 57.5 at. % Au and 42.5 at. % Ni. The microstructure is expected to be a refined two-phase (spinodal) alloy with higher strength than the PVD silver of our previous investigation.

  10. Structure of six organic acid-base adducts from 6-bromobenzo[d]thiazol-2-amine and acidic compounds

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhang, Jing; Wang, Daqi; Tao, Lin; Zhou, Mengjian; Shen, Yinyan; Chen, Quan; Lin, Zhanghui; Gao, Xingjun

    2014-05-01

    Six anhydrous organic acid-base adducts of 6-bromobenzo[d]thiazol-2-amine were prepared with organic acids as 2,4,6-trinitrophenol, salicylic acid, 3,5-dinitrobenzoic acid, 3,5-dinitrosalicylic acid, malonic acid and sebacic acid. The compounds 1-6 were characterized by X-ray diffraction analysis, IR, and elemental analysis. The melting points of all the adducts were given. Of the six adducts, 1, 3, 4, and 5 are organic salts, while 2, and 6 are cocrystals. The supramolecular arrangement in the crystals 2-6 is based on the R22(8) synthon. Analysis of the crystal packing of 1-6 suggests that there are strong NH⋯O, OH⋯N, and OH⋯O hydrogen bonds (charge assisted or neutral) between acid and base components in the supramolecular assemblies. When the hydroxyl group is present in the ortho position of the carboxy, the intramolecular S6 synthon is present, as expected. Besides the classical hydrogen bonding interactions, other noncovalent interactions also play important roles in structure extension. Due to the synergetic effect of these weak interactions, compounds 1-6 display 1D-3D framework structure.

  11. Acid Base Equilibrium in a Lipid/Water Gel

    NASA Astrophysics Data System (ADS)

    Streb, Kristina K.; Ilich, Predrag-Peter

    2003-12-01

    A new and original experiment in which partition of bromophenol blue dye between water and lipid/water gel causes a shift in the acid base equilibrium of the dye is described. The dye-absorbing material is a monoglyceride food additive of plant origin that mixes freely with water to form a stable cubic phase gel; the nascent gel absorbs the dye from aqueous solution and converts it to the acidic form. There are three concurrent processes taking place in the experiment: (a) formation of the lipid/water gel, (b) absorption of the dye by the gel, and (c) protonation of the dye in the lipid/water gel environment. As the aqueous solution of the dye is a deep purple-blue color at neutral pH and yellow at acidic pH the result of these processes is visually striking: the strongly green-yellow particles of lipid/water gel are suspended in purple-blue aqueous solution. The local acidity of the lipid/water gel is estimated by UV vis spectrophotometry. This experiment is an example of host-guest (lipid/water gel dye) interaction and is suitable for project-type biophysics, physical chemistry, or biochemistry labs. The experiment requires three, 3-hour lab sessions, two of which must not be separated by more than two days.

  12. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  13. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  14. Online Sensor Fault Detection Based on an Improved Strong Tracking Filter

    PubMed Central

    Wang, Lijuan; Wu, Lifeng; Guan, Yong; Wang, Guohui

    2015-01-01

    We propose a method for online sensor fault detection that is based on the evolving Strong Tracking Filter (STCKF). The cubature rule is used to estimate states to improve the accuracy of making estimates in a nonlinear case. A residual is the difference in value between an estimated value and the true value. A residual will be regarded as a signal that includes fault information. The threshold is set at a reasonable level, and will be compared with residuals to determine whether or not the sensor is faulty. The proposed method requires only a nominal plant model and uses STCKF to estimate the original state vector. The effectiveness of the algorithm is verified by simulation on a drum-boiler model. PMID:25690553

  15. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting.

    PubMed

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-12

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  16. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  17. A novel approach of mining strong jumping emerging patterns based on BSC-tree

    NASA Astrophysics Data System (ADS)

    Liu, Quanzhong; Shi, Peng; Hu, Zhengguo; Zhang, Yang

    2014-03-01

    It is a great challenge to discover strong jumping emerging patterns (SJEPs) from a high-dimensional dataset because of the huge pattern space. In this article, we propose a dynamically growing contrast pattern tree (DGCP-tree) structure to store grown patterns and their path codes arrays with 1-bit counts, which are from the constructed bit string compression tree. A method of mining SJEPs based on DGCP-tree is developed. In order to reduce the pattern search space, we introduce a novel pattern pruning method, which dramatically reduces non-minimal jumping emerging patterns (JEPs) during the mining process. Experiments are performed on three real cancer datasets and three datasets from the University of California, Irvine machine-learning repository. Compared with the well-known CP-tree method, the results show that the proposed method is substantially faster, able to handle higher-dimensional datasets and to prune more non-minimal JEPs.

  18. An Introductory Laboratory Exercise for Acids and Bases.

    ERIC Educational Resources Information Center

    Miller, Richard; Silberman, Robert

    1986-01-01

    Discusses an acid-base neutralization exercise requiring groups of students to determine: (1) combinations of solutions giving neutralization; (2) grouping solutions as acids or bases; and (3) ranking groups in order of concentration. (JM)

  19. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  20. Coronavirus phylogeny based on triplets of nucleic acids bases

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Liu, Yanshu; Li, Renfa; Zhu, Wen

    2006-04-01

    We considered the fully overlapping triplets of nucleotide bases and proposed a 2D graphical representation of protein sequences consisting of 20 amino acids and a stop code. Based on this 2D graphical representation, we outlined a new approach to analyze the phylogenetic relationships of coronaviruses by constructing a covariance matrix. The evolutionary distances are obtained through measuring the differences among the two-dimensional curves.

  1. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    PubMed

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  2. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  3. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  4. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  5. A clinical approach to acid-base conundrums.

    PubMed

    Garrubba, Carl; Truscott, Judy

    2016-04-01

    Acid-base disorders can provide essential clues to underlying patient conditions. This article provides a simple, practical approach to identifying simple acid-base disorders and their compensatory mechanisms. Using this stepwise approach, clinicians can quickly identify and appropriately treat acid-base disorders.

  6. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  7. Persistent Scatterer Interferometry based detection of strong subsidence in Semarang, Indonesia

    NASA Astrophysics Data System (ADS)

    Cahyadi Kalia, Andre

    2016-04-01

    The City of Semarang (Indonesia) faces land subsidence since more than 100 years. The impact for the cities approximately 1.3 million inhabitants is severe: strong subsidence (up to several cm per year) affect the living environment, buildings and infrastructure. The main reasons for the subsidence is groundwater extraction, compaction of coastal sediments and construction load. In order to monitor the spatio-temporal variability of the subsidence phenomena the Persistent Scatterer Interferometry (PSI) is used. The presentation will show multiple PSI results and assess their characteristics with respect to PS density and coverage. The PSI analysis is based on SAR data stacks from ERS-1/-2 C-band data (1996-2000), ERS-1/-2 & Envisat-ASAR C-band data (2002-2006) and ALOS-Palsar L-band data (2006-2011). For the assessment of the PSI results thematic data (geological, hydrogeological maps) as well as orthorectified optical images (IKONOS 2005) are used. All three PSI results show an overall pattern of increasing subsidence towards the coastline where the subsurface is built up by unconsolidated coastal sediments. However, the PSI results based on C-band SAR data show a lower PS density (< 100 PS/km2 versus > 500 PS/km2 in urban areas) and PS coverage (no PSs in areas with rural land cover in the PSI results based on C-band) compared to the PSI result based on L-band SAR data. The main reason for this differences is the longer wavelength of the L-band (λ = 23.6 cm) compared to the C-band (λ = 5.6 cm) resulting in less temporal phase decorrelation through an increased penetration depth and higher capability to detect fast displacements.

  8. Nitrosamine, dimethylnitramine, and chloropicrin formation during strong base anion-exchange treatment.

    PubMed

    Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A

    2009-01-15

    Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters

  9. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  10. The standard strong ion difference, standard total titratable base, and their relationship to the Boston compensation rules and the Van Slyke equation for extracellular fluid.

    PubMed

    Wooten, E Wrenn

    2010-06-01

    A general formalism for calculating physiological acid-base balance in multiple compartments is extended to the combined interstitial, plasma, and erythrocyte multicompartment system in humans using the Siggaard-Andersen approximation for interstitial fluid. The resulting equations for total titratable base and strong ion difference reproduce the experimental in vivo carbon dioxide titration curve as well as the experimental strong ion difference value of the interstitial, plasma, and erythrocyte system in normal man. The "Boston rules" for compensation in acute respiratory acidosis and alkalosis are then derived analytically from the model. The Van Slyke equation for the interstitial, plasma, and erythrocyte system is also derived and shown to approximate the Van Slyke equation for standard base excess.

  11. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  12. 1,1,3,3-Tetratriflylpropene (TTP): A Strong, Allylic C-H Acid for Brønsted and Lewis Acid Catalysis.

    PubMed

    Höfler, Denis; van Gemmeren, Manuel; Wedemann, Petra; Kaupmees, Karl; Leito, Ivo; Leutzsch, Markus; Lingnau, Julia B; List, Benjamin

    2017-01-24

    Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C-H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi-Sakurai, and Friedel-Crafts acylation reactions. X-ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.

  13. Polarity based fractionation of fulvic acids.

    PubMed

    Li, Aimin; Hu, Jundong; Li, Wenhui; Zhang, Wei; Wang, Xuejun

    2009-11-01

    Fulvic acids from the soil of Peking University (PF) and a Nordic river (NF) were separated into well defined sub-fractions using sequential elution techniques based on eluent polarity. The chemical properties of the fractions including: PF1 and NF1 (eluted by 0.01 M HCl), PF2 and NF2 (eluted by 0.01 M HCl+20% methanol), PF3 and NF3 (eluted by 0.01 M HCl+40% methanol), and PF4 and NF4 (eluted by 100% methanol), were characterized using UV-Visible spectroscopy, elemental analysis and (13)C NMR. The results showed that the UV absorptions of the elution peaks at 280 nm (A280) increased from PF2 to PF4 and NF2 to NF4. No elution peaks were observed for PF1 and NF1. The carbon contents increased from 43.34% to 51.90% and 43.06% to 53.26% while the oxygen contents decreased from 46.39% to 36.76% and 49.76% to 40.03% for PF1-PF4 and NF1-NF4, respectively. As a polarity indicator, the (O+N)/C ratio for PF1-PF4 and NF1-NF4 decreased from 0.88 to 0.62 and 0.89 to 0.58, respectively. The aromatic carbon content increased from PF1 to PF4 and NF1 to NF4, suggesting an increase of the hydrophobicity of these fractions. The polarity was positively related to the ratio of UV absorption at 250 nm and 365 nm (E2/E3), and negatively related to the aromaticity. A high positive relationship between the aromaticity and E2/E3 of fulvic acid fractions was also obtained. The use of an eluent with a decreasing polarity allowed to providing simpler fractions of soil and aquatic fulvic acids.

  14. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole.

  15. A route for a strong increase of critical current in nanostrained iron-based superconductors

    PubMed Central

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei; Li, Qiang

    2016-01-01

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface. PMID:27708268

  16. Quaternized dimethylaminoethyl methacrylate strong base anion exchange fibers for As(V) adsorption

    NASA Astrophysics Data System (ADS)

    Kavaklı, Cengiz; Akkaş Kavaklı, Pınar; Turan, Burcu Dila; Hamurcu, Aslı; Güven, Olgun

    2014-09-01

    N,N-Dimethylaminoethyl methacrylate (DMAEMA) grafted polyethylene/polypropylene (PE/PP) nonwoven fibers (DMAEMA-g-PE/PP) was prepared by radiation-induced graft polymerization. DMAEMA graft chains on nonwoven fibers were quaternized with dimethyl sulfate solution for the preparation of strong base anion exchange fibers (QDMAEMA-g-PE/PP). Fiber structures were characterized by FTIR, XPS and SEM techniques. The effect of solution pH, contact time, initial As(V) ion concentration and coexisting ions on the As(V) adsorption capacity of the QDMAEMA-g-PE/PP fibers were investigated by performing batch adsorption experiments. The adsorption of As(V) by QDMAEMA-g-PE/PP fibers was found to be independent on solution pH in the range 4.00-10.00. Kinetic experiments show that the As(V) adsorption rate was rapid and As(V) adsorption follows pseudo second-order kinetic model. As(V) adsorption equilibrium data were analyzed using Langmuir and Freundlich adsorption isotherm model equations. Langmuir and Freundlich adsorption isotherm models fitted the experimental data well. The maximum adsorption capacity (qmax) calculated from Langmuir isotherm was found to be 83.33 mg As(V)/g polymer at pH 7.00. The adsorbent was used for three cycles without significant loss of adsorption capacity. The adsorbed As(V) ions were desorbed effectively by a 0.1 M NaOH solution.

  17. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    SciTech Connect

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; Dobrynin, Andrey V.; Adamson, Douglas H.

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boiling solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.

  18. A route for a strong increase of critical current in nanostrained iron-based superconductors.

    PubMed

    Ozaki, Toshinori; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei; Li, Qiang

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.

  19. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  20. A route for a strong increase of critical current in nanostrained iron-based superconductors

    SciTech Connect

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; Zhang, Cheng; Jaroszynski, Jan; Si, Weidong; Zhou, Juan; Zhu, Yimei

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.

  1. A route for a strong increase of critical current in nanostrained iron-based superconductors

    DOE PAGES

    Ozaki, Toshinori; Li, Qiang; Wu, Lijun; ...

    2016-10-06

    The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereasmore » Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.« less

  2. Polymer/Pristine Graphene Based Composites: From Emulsions to Strong, Electrically Conducting Foams

    NASA Astrophysics Data System (ADS)

    Woltornist, Steven; Carrillo, Jan-Michael; Xu, Thomas; Dobrynin, Andrey; Adamson, Douglas

    2015-03-01

    The unique electrical, thermal and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water, common organic solvents, and polymer solutions and melts have limited its practical utilization. Here we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by a graphitic skin consisting of overlapping pristine graphene sheets that enables the synthesis of open cell foams containing a continuous graphitic skin network. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. These emulsions are used as templates for the synthesis of the open cell foams with densities below 0.35 g/cm3 and exhibiting remarkable mechanical and electrical properties including compressive moduli up to ~ 100 MPa, compressive strengths of over 8.3 MPa, and bulk conductivities approaching 7 S/m.

  3. A PCA-based automated finder for galaxy-scale strong lenses

    NASA Astrophysics Data System (ADS)

    Joseph, R.; Courbin, F.; Metcalf, R. B.; Giocoli, C.; Hartley, P.; Jackson, N.; Bellagamba, F.; Kneib, J.-P.; Koopmans, L.; Lemson, G.; Meneghetti, M.; Meylan, G.; Petkova, M.; Pires, S.

    2014-06-01

    We present an algorithm using principal component analysis (PCA) to subtract galaxies from imaging data and also two algorithms to find strong, galaxy-scale gravitational lenses in the resulting residual image. The combined method is optimised to find full or partial Einstein rings. Starting from a pre-selection of potential massive galaxies, we first perform a PCA to build a set of basis vectors. The galaxy images are reconstructed using the PCA basis and subtracted from the data. We then filter the residual image with two different methods. The first uses a curvelet (curved wavelets) filter of the residual images to enhance any curved/ring feature. The resulting image is transformed in polar coordinates, centred on the lens galaxy. In these coordinates, a ring is turned into a line, allowing us to detect very faint rings by taking advantage of the integrated signal-to-noise in the ring (a line in polar coordinates). The second way of analysing the PCA-subtracted images identifies structures in the residual images and assesses whether they are lensed images according to their orientation, multiplicity, and elongation. We applied the two methods to a sample of simulated Einstein rings as they would be observed with the ESA Euclid satellite in the VIS band. The polar coordinate transform allowed us to reach a completeness of 90% for a purity of 86%, as soon as the signal-to-noise integrated in the ring was higher than 30 and almost independent of the size of the Einstein ring. Finally, we show with real data that our PCA-based galaxy subtraction scheme performs better than traditional subtraction based on model fitting to the data. Our algorithm can be developed and improved further using machine learning and dictionary learning methods, which would extend the capabilities of the method to more complex and diverse galaxy shapes.

  4. Flow injection spectrophotometric determination of sub-mg dm(-3) silver(I) in a strongly acidic solution containing concentrated copper(II) using a pyridylazo reagent.

    PubMed

    Fujimura, Kazuyoshi; Odake, Tamao; Takiguchi, Hiromi; Watanabe, Noriyuki; Sawada, Tsuguo

    2011-01-01

    A novel spectrophotometric flow injection method for determination of silver(I) in a strongly acidic solution containing concentrated copper(II) was developed using a coloring ligand, 4-(3,5-dibromo-2-pyridylazo)-N-ethyl-N-(3-sulfopropyl)aniline (3,5-diBr-PAESA). The method was first investigated by batch method. The interference from copper(II) chelate could be eliminated by the masking effect of EDTA. By utilizing the large formation constant (K = 12.3) of AgBr, one could determine silver(I) as a decrease of absorption by silver(I) chelate due to formation of AgBr by addition of KBr. Based on the results of batch experiments, two types of flow injection analysis (FIA) systems were constructed. Sub-mg dm(-3) determination of silver(I) was attained without interference from excess copper(II). The proposed method was successfully applied to determination of silver in a copper plating solution used in a plant to manufacture copper printed circuit boards, where the concentration of silver was critically important in the process control.

  5. Strong Effects of Vs30 Heterogeneity on Physics-Based Scenario Ground-Shaking Computations

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Pullammanappallil, S. K.

    2014-12-01

    Hazard mapping and building codes worldwide use the vertically time-averaged shear-wave velocity between the surface and 30 meters depth, Vs30, as one predictor of earthquake ground shaking. Intensive field campaigns a decade ago in Reno, Los Angeles, and Las Vegas measured urban Vs30 transects with 0.3-km spacing. The Clark County, Nevada, Parcel Map includes urban Las Vegas and comprises over 10,000 site measurements over 1500 km2, completed in 2010. All of these data demonstrate fractal spatial statistics, with a fractal dimension of 1.5-1.8 at scale lengths from 0.5 km to 50 km. Vs measurements in boreholes up to 400 m deep show very similar statistics at 1 m to 200 m lengths. When included in physics-based earthquake-scenario ground-shaking computations, the highly heterogeneous Vs30 maps exhibit unexpectedly strong influence. In sensitivity tests (image below), low-frequency computations at 0.1 Hz display amplifications (as well as de-amplifications) of 20% due solely to Vs30. In 0.5-1.0 Hz computations, the amplifications are a factor of two or more. At 0.5 Hz and higher frequencies the amplifications can be larger than what the 1-d Building Code equations would predict from the Vs30 variations. Vs30 heterogeneities at one location have strong influence on amplifications at other locations, stretching out in the predominant direction of wave propagation for that scenario. The sensitivity tests show that shaking and amplifications are highly scenario-dependent. Animations of computed ground motions and how they evolve with time suggest that the fractal Vs30 variance acts to trap wave energy and increases the duration of shaking. Validations of the computations against recorded ground motions, possible in Las Vegas Valley due to the measurements of the Clark County Parcel Map, show that ground motion levels and amplifications match, while recorded shaking has longer duration than computed shaking. Several mechanisms may explain the amplification and increased

  6. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  7. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from photoelectron X-ray spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from N1s binding energy shifts of HNO3(aq) as a function of concentration, and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO3(aq) and dissociated NO3-(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO3 interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO3 and water. We suggest that the driving force behind the more structured solvent configuration of HNO3 is the overlap of nitric acid solvent shells that sets in around 4 M concentration. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water.

    PubMed

    Lewis, Tanza; Winter, Bernd; Stern, Abraham C; Baer, Marcel D; Mundy, Christopher J; Tobias, Douglas J; Hemminger, John C

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from X-ray photoelectron spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from shifts of the N1s binding energy of HNO(3)(aq) as a function of concentration and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO(3)(aq) and dissociated NO(3)(-)(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO(3) interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO(3) and water. We suggest that the driving force behind the more structured solvent configuration of HNO(3) is the overlap of nitric acid solvent shells that sets in around 4 M concentration.

  9. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  10. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide*♦

    PubMed Central

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E. Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R.; Alvarez, Beatriz

    2015-01-01

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS−, is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS− toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS− is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. PMID:26269587

  11. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  12. Strong linkage of polar cod (Boreogadus saida) to sea ice algae-produced carbon: Evidence from stomach content, fatty acid and stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Kohlbach, Doreen; Schaafsma, Fokje L.; Graeve, Martin; Lebreton, Benoit; Lange, Benjamin Allen; David, Carmen; Vortkamp, Martina; Flores, Hauke

    2017-03-01

    The polar cod (Boreogadus saida) is considered an ecological key species, because it reaches high stock biomasses and constitutes an important carbon source for seabirds and marine mammals in high-Arctic ecosystems. Young polar cod (1-2 years) are often associated with the underside of sea ice. To evaluate the impact of changing Arctic sea ice habitats on polar cod, we examined the diet composition and quantified the contribution of ice algae-produced carbon (αIce) to the carbon budget of polar cod. Young polar cod were sampled in the ice-water interface layer in the central Arctic Ocean during late summer 2012. Diets and carbon sources of these fish were examined using 4 approaches: (1) stomach content analysis, (2) fatty acid (FA) analysis, (3) bulk nitrogen and carbon stable isotope analysis (BSIA) and (4) compound-specific stable isotope analysis (CSIA) of FAs. The ice-associated (sympagic) amphipod Apherusa glacialis dominated the stomach contents by mass, indicating a high importance of sympagic fauna in young polar cod diets. The biomass of food measured in stomachs implied constant feeding at daily rates of ∼1.2% body mass per fish, indicating the potential for positive growth. FA profiles of polar cod indicated that diatoms were the primary carbon source, indirectly obtained via amphipods and copepods. The αIce using bulk isotope data from muscle was estimated to be >90%. In comparison, αIce based on CSIA ranged from 34 to 65%, with the highest estimates from muscle and the lowest from liver tissue. Overall, our results indicate a strong dependency of polar cod on ice-algae produced carbon. This suggests that young polar cod may be particularly vulnerable to changes in the distribution and structure of sea ice habitats. Due to the ecological key role of polar cod, changes at the base of the sea ice-associated food web are likely to affect the higher trophic levels of high-Arctic ecosystems.

  13. Effects of strong inter-hydrogen bond dynamical couplings in the polarized IR spectra of adipic acid crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena

    2009-10-01

    This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.

  14. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    SciTech Connect

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  15. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  16. Simple but Strong: A Mussel-Inspired Hot Curing Adhesive Based on Polyvinyl Alcohol Backbone.

    PubMed

    Mu, Youbing; Wan, Xiaobo

    2016-03-01

    The strong adhesion ability of mussel foot-byssal proteins (Mfps) has inspired scientists to develop novel materials for strong and reversible adhesion, coating, antifouling, and many other applications. However, in many cases, the high costs and the tedious preparation steps of such bioinspired materials hamper the process to push them into practical application. Here a simple but effective way (one step) is presented to synthesize a mussel-inspired glue from two cheap commercially available materials: polyvinyl alcohol (PVA) and 3,4-dihydroxybenzaldehyde (DBA). This bioinspired hot curing adhesive exhibits a strong bonding ability as high as 17.3 MPa on stainless steel surfaces, which surpasses most of the commercially available adhesives.

  17. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  18. Sulphonic acid strong cation-exchange restricted access columns in sample cleanup for profiling of endogenous peptides in multidimensional liquid chromatography. Structure and function of strong cation-exchange restricted access materials.

    PubMed

    Machtejevas, E; Denoyel, R; Meneses, J M; Kudirkaite, V; Grimes, B A; Lubda, D; Unger, K K

    2006-08-04

    In this work, the pore structural parameters and size exclusion properties of LiChrospher strong cation-exchange and reverse phase restricted access materials (RAM) are analysed. The molecular weight size exclusion limit for polystyrenes was found to be about 17.7 kDa, while for standard proteins, the molecular weight size exclusion limit was higher, at approximately 25 kDa. The average pore diameter on a volume basis calculated from the pore network model changes from 8.5 nm (native LiChrospher) to 8.6 nm (diol derivative) to 8.2 nm (sulphonic acid derivative) to 6.9 nm (n-octadecyl derivative). Additional characterisations were performed on restricted access materials with nitrogen sorption at 77 K, water adsorption at 25 degrees C, intrusion-extrusion of water (in order to evaluate the hydrophobic properties of the pores of the hydrophobic RAM), and zeta potential measurements by microelectrophoresis. For peptide analysis out of the biofluids, the strong cation-exchange functionality seems to be particularly suitable mainly because of the high loadability of the strong cation-exchange restricted access material (SCX-RAM) and the fact that one can work under non-denaturing conditions to perform effective chromatographic separations. For bacitracin, the dynamic capacity of the SCX-RAM columns does not reach its maximum value in the analysed range. For lysozyme, the dynamic capacity reaches a value of 0.08 mg/ml of column volume before column is overloaded. Additionally, the proper column operating conditions that lead to the total effective working time of the RAM column to be equal to approximately 500 injections (depending on the type of sample), is comprehensively described. The SCX-RAM column was used in the same system analysing urine samples for the period of 1 month (approximately 150 injections) with run-to-run reproducibility below 5% RSD and below 10% RSD for the relative fractions.

  19. Data-based Modeling of the Dynamical Inner Magnetosphere During Strong Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Tsyganenko, N.; Sitnov, M.

    2004-12-01

    This work builds on and extends our previous effort [Tsyganenko et al., 2003] to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996--2000 and concurrent observations of the solar wind and IMF. The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, Birkeland currents) is controlled by a separate driving variable that includes a combination of geoeffective parameters in the form Nλ Vβ Bsγ , where N, V, and Bs are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. Each source was also assumed to have an individual relaxation timescale and residual quiet-time strength, so that its partial contribution to the total field was calculated for any moment as a time integral, taking into account the entire history of the external driving of the magnetosphere during each storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds were treated as free variables, to be derived from the data by the least squares. The relaxation timescales of the individual magnetospheric field sources were found to largely differ between each other, from as large as ˜30 hours for the symmetrical ring current to only ˜50 min for the region~1 Birkeland current. The total magnitudes of the currents were also found to dramatically vary in the course of major storms

  20. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  1. Essentials in the diagnosis of acid-base disorders and their high altitude application.

    PubMed

    Paulev, P E; Zubieta-Calleja, G R

    2005-09-01

    This report describes the historical development in the clinical application of chemical variables for the interpretation of acid-base disturbances. The pH concept was already introduced in 1909. Following World War II, disagreements concerning the definition of acids and bases occurred, and since then two strategies have been competing. Danish scientists in 1923 defined an acid as a substance able to give off a proton at a given pH, and a base as a substance that could bind a proton, whereas the North American Singer-Hasting school in 1948 defined acids as strong non-buffer anions and bases as non-buffer cations. As a consequence of this last definition, electrolyte disturbances were mixed up with real acid-base disorders and the variable, strong ion difference (SID), was introduced as a measure of non-respiratory acid-base disturbances. However, the SID concept is only an empirical approximation. In contrast, the Astrup/Siggaard-Andersen school of scientists, using computer strategies and the Acid-base Chart, has made diagnosis of acid-base disorders possible at a glance on the Chart, when the data are considered in context with the clinical development. Siggaard-Andersen introduced Base Excess (BE) or Standard Base Excess (SBE) in the extracellular fluid volume (ECF), extended to include the red cell volume (eECF), as a measure of metabolic acid-base disturbances and recently replaced it by the term Concentration of Titratable Hydrogen Ion (ctH). These two concepts (SBE and ctH) represent the same concentration difference, but with opposite signs. Three charts modified from the Siggaard-Andersen Acid-Base Chart are presented for use at low, medium and high altitudes of 2500 m, 3500 m, and 4000 m, respectively. In this context, the authors suggest the use of Titratable Hydrogen Ion concentration Difference (THID) in the extended extracellular fluid volume, finding it efficient and better than any other determination of the metabolic component in acid-base

  2. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  3. Determination of acidity constants of acid-base indicators by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Kara, Derya; Alkan, Mahir

    2000-12-01

    A method for calculation of acid-base dissociation constants of monoprotic weak organic acids whose acid and base species have overlapping spectra from absorptiometric and pH measurements is described. It has been shown that the second-derivative spectrophotometry can effectively be used for determining the dissociation constants, when dissociation constants obtained for methyl orange and bromothymol blue were compared with the values given in the literature.

  4. Strong positive selection and habitat-specific amino acid substitution patterns in MHC from an estuarine fish under intense pollution stress.

    PubMed

    Cohen, Sarah

    2002-11-01

    Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and the power to detect disease association is low. A novel use of Mhc population surveys involves mapping allelic substitutions onto the inferred structural molecular model to show functional differentiation related to local selective pressures. In the estuarine fish Fundulus heteroclitus, populations experiencing strong differences in antigenic challenges show significant differences in amino acid substitution patterns that are reflected as variation in the structural location of changes between populations. Fish from a population genetically adapted to severe chemical pollution also show novel patterns of DNA substitution at a highly variable Mhc class II B locus including strong signals of positive selection at inferred antigen-binding sites and population-specific signatures of amino acid substitution. Heavily parasitized fish from an extreme PCB-contaminated (U.S. Environmental Protection Agency Superfund) site show enhanced population-specific substitutions in the a-helix portion of the inferred antigen-binding region. In contrast, fish from an unpolluted site show a significantly different pattern focused on the first strand of the B-pleated sheet. Whether Mhc population profile differences represent the direct effects of chemical toxicants or indirect parasite-mediated selection, the result is a composite habitat-specific signature of strong selection and evolution affecting the genetic repertoire of the major histocompatibility complex.

  5. Ground-based observations of ULF transients excited by strong lightning discharges producing elves and sprites

    NASA Astrophysics Data System (ADS)

    Fukunishi, H.; Takahashi, Y.; Sato, M.; Shono, A.; Fujito, M.; Watanabe, Y.

    Optical and search coil magnetometer data obtained from the SPRITES'96 campaign carried out at Yucca Ridge Field Station, Colorado in July 1996 have presented clear evidence for the excitation of ULF transients with their dominant power at 1-2 Hz by strong lightning discharges producing elves and sprites. The most striking feature is that the ULF transients exhibit different wave forms in the case of sprites without preceding elves and the case of sprites with preceding elves. In the former case damped, quasi-sinusoidal oscillations commence impulsively at the onset of sprites, while in the latter case quasi-sinusoidal wavelets with a duration of ˜3 s are excited, and elves and sprites occur within each wavelet. It is likely that these ULF transients are due to the nonlinear excitation of the ionospheric Alfvén resonator by strong lightning discharge, as proposed by Sukhorukov and Stubbe [1997].

  6. Correlation-based virtual source imaging in strongly scattering random media

    NASA Astrophysics Data System (ADS)

    Garnier, Josselin; Papanicolaou, George

    2012-07-01

    Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.

  7. Chip-based sequencing nucleic acids

    DOEpatents

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  8. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-02-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga.

  9. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling.

    PubMed

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-02-04

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga.

  10. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    PubMed Central

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-01-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga. PMID:26843035

  11. [Microspeciation of amphoteric molecules of unusual acid-base properties].

    PubMed

    Kóczián, Kristóf

    2007-01-01

    The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.

  12. Assessment of acid-base balance. Stewart's approach.

    PubMed

    Fores-Novales, B; Diez-Fores, P; Aguilera-Celorrio, L J

    2016-04-01

    The study of acid-base equilibrium, its regulation and its interpretation have been a source of debate since the beginning of 20th century. Most accepted and commonly used analyses are based on pH, a notion first introduced by Sorensen in 1909, and on the Henderson-Hasselbalch equation (1916). Since then new concepts have been development in order to complete and make easier the understanding of acid-base disorders. In the early 1980's Peter Stewart brought the traditional interpretation of acid-base disturbances into question and proposed a new method. This innovative approach seems more suitable for studying acid-base abnormalities in critically ill patients. The aim of this paper is to update acid-base concepts, methods, limitations and applications.

  13. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties.

    PubMed

    Jayaram, Vinay B; Cuyvers, Sven; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2014-05-15

    Succinic acid (SA) was recently shown to be the major pH determining metabolite produced by yeast during straight-dough fermentation (Jayaram et al., 2013), reaching levels as high as 1.6 mmol/100 g of flour. Here, the impact of such levels of SA (0.8, 1.6 and 2.4 mmol/100 g flour) on yeastless dough properties was investigated. SA decreased the development time and stability of dough significantly. Uniaxial extension tests showed a consistent decrease in dough extensibility upon increasing SA addition. Upon biaxial extension in the presence of 2.4 mmol SA/100 g flour, a dough extensibility decrease of 47-65% and a dough strength increase of 25-40% were seen. While the SA solvent retention capacity of flour increased with increasing SA concentration in the solvent, gluten agglomeration decreased with gluten yield reductions of over 50%. The results suggest that SA leads to swelling and unfolding of gluten proteins, thereby increasing their interaction potential and dough strength, but simultaneously increasing intermolecular electrostatic repulsive forces. These phenomena lead to the reported changes in dough properties. Together, our results establish SA as an important yeast metabolite for dough rheology.

  14. Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Pumera, Martin

    2016-08-07

    In recent years, the application of transition metal dichalcogenides for the development of biosensors has been receiving widespread attention from researchers, as demonstrated by the surge in studies present in the field. While different transition metal dichalcogenide materials have been employed for the fabrication of fluorescent biosensors with superior performance, no research has been conducted to draw comparisons across materials containing different transition metals. Herein, the performance of MoS2 and WS2 nanoflakes for the fluorescence detection of nucleic acids is assessed. It is discovered that, at the optimal amount, MoS2 and WS2 nanoflakes exhibit a similar degree of fluorescence quenching, at 75% and 71% respectively. However, MoS2 nanoflakes have better performance in the areas of detection range and selectivity than WS2 nanoflakes. The detection range achieved with MoS2 nanoflakes is 9.60-366 nM while 13.3-143 nM with WS2 nanoflakes. In the context of selectivity, MoS2 nanoflakes display a signal difference of 97.8% between complementary and non-complementary DNA targets, whereas WS2 nanoflakes only exhibit 44.3%. Such research is highly beneficial as it delivers vital insights on how the performance of a fluorescent biosensor can be affected by the transition metal present. Furthermore, these insights can assist in the selection of suitable transition metal dichalcogenide materials for utilization in biosensor development.

  15. Thermodynamic studies and loading of 7-ethyl-10-hydroxycamptothecin into mesoporous silica particles MCM-41 in strongly acidic solutions.

    PubMed

    Thakur, Rishi; Sivakumar, Balasubramanian; Savva, Michalakis

    2010-05-06

    A major limitation of the clinical efficacy of the 7-ethyl-10-hydroxycamptothecin (SN38) therapy is its facile conversion of the active lactone form into a less active carboxylate species at physiological pH and limited aqueous solubility. The present manuscript embodies a detailed description of several physicochemical properties of SN38 and further details the thermodynamic basis for its poor aqueous solubility. The ionization and increased solubility of the drug in highly acidic media were subsequently employed to efficiently load the positively charged drug in its biologically active lactone form into mesoporous silica material of type MCM-41, achieving a maximum loading of 250 mg of SN38 per gram of silicate. It was also found that the equilibrium association constant K(A) varies with the extent of drug adsorption. At low and high drug load, corresponding to one SN38 molecule bound for every 70 and 13 -SiO(2)-, K(A) was determined to be 1253.5 and 127.39 M(-1), respectively.

  16. Hybrid organic/inorganic copolymers with strongly hydrogen-bond acidic properties for acoustic wave and optical sensors

    SciTech Connect

    Grate, J.W.; Kaganove, S.N.; Patrash, S.J.

    1997-05-01

    Hybrid organic/inorganic polymers have been prepared incorporating fluoroalkyl-substituted bisphenol groups linked using oligosiloxane spacers. These hydrogen-bond acidic materials have glass-to-rubber transition temperatures below room temperature and are excellent sorbents for basic vapors. The physical properties such as viscosity and refractive index can be tuned by varying the length of the oligosiloxane spacers and the molecular weight. In addition, the materials are easily cross-linked to yield solid elastomers. The potential use of these materials for chemical sensing has been demonstrated by applying them to surface acoustic wave devices as thin films and detecting the hydrogen-bond basic vapor dimethyl methylphosphonate with high sensitivity. It has also been demonstrated that one of these materials with suitable viscosity and refractive index can be used to clad silica optical fibers; the cladding was applied to freshly drawn fiber using a fiber drawing tower. These fibers have potential as evanescent wave optical fiber sensors. 38 refs., 2 figs.

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  18. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  20. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  1. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  2. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  3. Proton defect solvation and dynamics in aqueous acid and base.

    PubMed

    Kale, Seyit; Herzfeld, Judith

    2012-10-29

    Easy come, easy go: LEWIS, a new model of reactive and polarizable water that enables the simulation of a statistically reliable number of proton hopping events in aqueous acid and base at concentrations of practical interest, is used to evaluate proton transfer intermediates in aqueous acid and base (picture, left and right, respectively).

  4. Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression.

    PubMed

    Coelho, Lúcia H G; Gutz, Ivano G R

    2006-03-15

    A chemometric method for analysis of conductometric titration data was introduced to extend its applicability to lower concentrations and more complex acid-base systems. Auxiliary pH measurements were made during the titration to assist the calculation of the distribution of protonable species on base of known or guessed equilibrium constants. Conductivity values of each ionized or ionizable species possibly present in the sample were introduced in a general equation where the only unknown parameters were the total concentrations of (conjugated) bases and of strong electrolytes not involved in acid-base equilibria. All these concentrations were adjusted by a multiparametric nonlinear regression (NLR) method, based on the Levenberg-Marquardt algorithm. This first conductometric titration method with NLR analysis (CT-NLR) was successfully applied to simulated conductometric titration data and to synthetic samples with multiple components at concentrations as low as those found in rainwater (approximately 10 micromol L(-1)). It was possible to resolve and quantify mixtures containing a strong acid, formic acid, acetic acid, ammonium ion, bicarbonate and inert electrolyte with accuracy of 5% or better.

  5. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    ERIC Educational Resources Information Center

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  6. Unprecedented strong Lewis bases--synthesis and methyl cation affinities of dimethylamino-substituted terpyridines.

    PubMed

    Hommes, Paul; Fischer, Christina; Lindner, Christoph; Zipse, Hendrik; Reissig, Hans-Ulrich

    2014-07-14

    A versatile method for the synthesis of functionalized 2,2':6',2''-terpyridines by assembly of the terminal pyridine rings is presented. The cyclization precursors-bis-β-ketoenamides-are prepared from 4-substituted 2,6-pyridinedicarboxylic acids and acetylacetone or its corresponding enamino ketone. Treatment with trimethylsilyl trifluoromethanesulfonate induces a twofold intramolecular condensation providing an efficient access to 4,4''-di- and 4,4',4''-trifunctionalized 6,6''-dimethyl-2,2':6',2''-terpyridines. Using this method, hitherto unknown 4,4''-bis(dimethylamino)- and 4,4',4''-tris(dimethylamino)terpyridines have been prepared that show remarkably high calculated Lewis basicities.

  7. TREATMENT FOR IMPROVING THE OPERATION OF STRONG BASE ANION EXCHANGE RESINS

    DOEpatents

    Stevenson, P.C.

    1960-11-29

    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  8. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  9. Ammonia Transporters and Their Role in Acid-Base Balance.

    PubMed

    Weiner, I David; Verlander, Jill W

    2017-04-01

    Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4(+), are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.

  10. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  11. Nucleic Acid Duplexes Incorporating a Dissociable Covalent Base Pair

    NASA Astrophysics Data System (ADS)

    Gao, Kui; Orgel, Leslie E.

    1999-12-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  12. Chromatographic multivariate quality control of pharmaceuticals giving strongly overlapped peaks based on the chromatogram profile.

    PubMed

    Escuder-Gilabert, L; Ruiz-Roch, D; Villanueva-Camañas, R M; Medina-Hernández, M J; Sagrado, S

    2004-03-12

    In the present paper, the simultaneous quantification of two analytes showing strongly overlapped chromatographic peaks (alpha = 1.02), under the assumption that both available equipment and training of the laboratory staff are basic, is studied. A pharmaceutical preparation (Mutabase) containing two drugs of similar physicochemical properties (amitriptyline and perphenazine) is selected as case of study. The assays are carried out under realistic working conditions (i.e. routine testing laboratories). Uncertainty considerations are introduced in the study. A partial least squares model is directly applied to the chromatographic data (with no previous signal transformation) to perform quality control of the pharmaceutical formulation. Under the adequate protocol, the relative error in prediction of analytes is within the tolerances found in the pharmacopeia (10%). For spiked samples simulating formulation mistakes, the errors found have the same magnitude and sign to those provoked.

  13. Strong nonlocal coupling stabilizes localized structures: an analysis based on front dynamics.

    PubMed

    Fernandez-Oto, C; Clerc, M G; Escaff, D; Tlidi, M

    2013-04-26

    We investigate the effect of strong nonlocal coupling in bistable spatially extended systems by using a Lorentzian-like kernel. This effect through front interaction drastically alters the space-time dynamics of bistable systems by stabilizing localized structures in one and two dimensions, and by affecting the kinetics law governing their behavior with respect to weak nonlocal and local coupling. We derive an analytical formula for the front interaction law and show that the kinetics governing the formation of localized structures obeys a law inversely proportional to their size to some power. To illustrate this mechanism, we consider two systems, the Nagumo model describing population dynamics and nonlinear optics model describing a ring cavity filled with a left-handed material. Numerical solutions of the governing equations are in close agreement with analytical predictions.

  14. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    PubMed Central

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic “wine” especially adapted for testing. PMID:22566762

  15. Acid-base chemistry of white wine: analytical characterisation and chemical modelling.

    PubMed

    Prenesti, Enrico; Berto, Silvia; Toso, Simona; Daniele, Pier Giuseppe

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of carboxylic acids and of other acid-base active substances was used as input, with the total acidity, for the chemical modelling step of the study based on the contemporary treatment of overlapped protonation equilibria. New protonation constants were refined (L-lactic and succinic acids) with respect to our previous investigation on red wines. Attention was paid for mixed solvent (ethanol-water mixture), ionic strength, and temperature to ensure a thermodynamic level to the study. Validation of the chemical model optimized is achieved by way of conductometric measurements and using a synthetic "wine" especially adapted for testing.

  16. Acid-base properties of 2-phenethyldithiocarbamoylacetic acid, an antitumor agent

    NASA Astrophysics Data System (ADS)

    Novozhilova, N. E.; Kutina, N. N.; Petukhova, O. A.; Kharitonov, Yu. Ya.

    2013-07-01

    The acid-base properties of the 2-phenethyldithiocarbamoylacetic acid (PET) substance belonging to the class of isothiocyanates and capable of inhibiting the development of tumors on many experimental models were studied. The acidity and hydrolysis constants of the PET substance in ethanol, acetone, aqueous ethanol, and aqueous acetone solutions were determined from the data of potentiometric (pH-metric) titration of ethanol and acetone solutions of PET with aqueous solidum hydroxide at room temperature.

  17. Calculation of physiological acid-base parameters in multicompartment systems with application to human blood.

    PubMed

    Wooten, E Wrenn

    2003-12-01

    A general formalism for calculating parameters describing physiological acid-base balance in single compartments is extended to multicompartment systems and demonstrated for the multicompartment example of human whole blood. Expressions for total titratable base, strong ion difference, change in total titratable base, change in strong ion difference, and change in Van Slyke standard bicarbonate are derived, giving calculated values in agreement with experimental data. The equations for multicompartment systems are found to have the same mathematical interrelationships as those for single compartments, and the relationship of the present formalism to the traditional form of the Van Slyke equation is also demonstrated. The multicompartment model brings the strong ion difference theory to the same quantitative level as the base excess method.

  18. Strong forward-backward asymmetry of stimulated Raman scattering in lithium-niobate-based whispering gallery resonators.

    PubMed

    Leidinger, M; Sturman, B; Buse, K; Breunig, I

    2016-06-15

    We show experimentally and prove theoretically that the pump-power thresholds of stimulated Raman scattering (SRS) in lithium-niobate-based whispering gallery resonators (WGRs) are strongly different for the signal waves propagating in the backward and forward directions with respect to the pump wave. This feature is due to a strong polaritonic effect. It leads to a cascade of alternating forward-backward Raman lines with increasing pump power. The measured polarization and spectral properties of SRS are in good agreement with theory. Similar properties have to be inherent in other WGRs made of polar crystals.

  19. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  20. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    PubMed

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  1. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  2. Ultra-strong surface plasmon amplification characteristic of a spaser based on gold-silver core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Jun; Zhang, Haopeng; Jiang, Tao; Lou, Cibo

    2015-03-01

    We proposed an efficient spaser based on gold-silver core-shell nanorods (NRs) encapsulated by an outer silica shell doped with a gain medium. The optical characteristics of the spaser were numerically simulated based on the finite element method (FEM). The results showed that the localized surface plasmon resonance (LSPR) amplification characteristics of the spaser strongly depend on the thickness of silver shell, the aspect ratio of the inner gold NRs, and the polarization direction of the incident light. And, the maximum absolute value of optical cross-section of the spaser can reach 21,824 μm2, which is about 1115, 523, and 18 times higher than that of spasers based on the gold NRs, the silver NRs, and the silver-gold core-shell NRs, respectively. The ultra-strong surface plasmon amplification characteristics of the spaser have potential applications in optical information storage, high sensitivity biochemical sensing, and medical engineering.

  3. Strong Lewis acid air-stable cationic titanocene perfluoroalkyl(aryl)sulfonate complexes as highly efficient and recyclable catalysts for C-C bond forming reactions.

    PubMed

    Li, Ningbo; Wang, Jinying; Zhang, Xiaohong; Qiu, Renhua; Wang, Xie; Chen, Jinyang; Yin, Shuang-Feng; Xu, Xinhua

    2014-08-14

    A series of strong Lewis acid air-stable titanocene perfluoroalkyl(aryl)sulfonate complexes Cp2Ti(OH2)2(OSO2X)2·THF (X = C8F17, 1·THF; X = C4F9, 2·H2O·THF; X = C6F5, 3) were successfully synthesized by the treatment of Cp2TiCl2 with C8F17SO3Ag, C4F9SO3Ag and C6F5SO3Ag, respectively. In contrast to well-known titanocene bis(triflate), these complexes showed no change in open air over three months. TG-DSC analysis showed that 1·THF, 2·H2O·THF and 3 were thermally stable at 230 °C, 220 °C and 280 °C, respectively. Conductivity measurements showed that these complexes underwent ionic dissociation in CH3CN solution. X-ray analysis results confirmed that 2·H2O·THF and 3 were cationic. ESR spectra showed that the Lewis acidity of 1·THF (1.06 eV) was higher than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2·H2O·THF. Fluorescence spectra showed that the Lewis acidity of 2 (λ(em) = 477 nm) was higher than that of Sc(3+) (λ(em) = 474 nm). These complexes showed high catalytic ability in various carbon-carbon bond forming reactions. Moreover, they show good reusability. Compared with 1·THF, 2·H2O·THF and 3 exhibit higher solubility and better catalytic activity, and will find broad applications in organic synthesis.

  4. Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.

    PubMed

    Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang

    2015-02-14

    Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.

  5. Experimental study of permanent displacement estimate method based on strong-motion earthquake accelerograms

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Hu, Guorui

    2016-04-01

    In the engineering seismology studies, the seismic permanent displacement of the near-fault site is often obtained by the process of the ground motion accelerogram recorded by the instrument on the station. Because of the selection differences of the estimate methods and the algorithm parameters, the strongly different results of the permanent displacement is gotten often. And the reliability of the methods has not only been proved in fact, but also the selection of the algorithm parameters has to be carefully considered. In order to solve this problem, the experimental study on the permanent displacement according to the accelerogram was carried out with the experiment program of using the large shaking table and the sliding mechanism in the earthquake engineering laboratory. In the experiments,the large shaking table genarated the dynamincs excitation without the permanent displacement,the sliding mechanism fixed on the shaking table genarated the permanent displacement, and the accelerogram including the permant information had been recorded by the instrument on the sliding mechanism.Then the permanent displacement value had been obtained according to the accelerogram, and been compared with the displacement value gotten by the displacement meter and the digital close range photogrammetry. The experimental study showed that the reliable permanent displacement could be obtained by the existing processing method under the simple laboratory conditions with the preconditions of the algorithm parameters selection carefully.

  6. An asymptotic preserving method for strongly anisotropic diffusion equations based on field line integration

    NASA Astrophysics Data System (ADS)

    Tang, Min; Wang, Yihong

    2017-02-01

    In magnetized plasma, the magnetic field confines the particles around the field lines. The anisotropy intensity in the viscosity and heat conduction may reach the order of 1012. When the boundary conditions are periodic or Neumann, the strong diffusion leads to an ill-posed limiting problem. To remove the ill-conditionedness in the highly anisotropic diffusion equations, we introduce a simple but very efficient asymptotic preserving reformulation in this paper. The key idea is that, instead of discretizing the Neumann boundary conditions locally, we replace one of the Neumann boundary condition by the integration of the original problem along the field line, the singular 1 / ɛ terms can be replaced by O (1) terms after the integration, which yields a well-posed problem. Small modifications to the original code are required and no change of coordinates nor mesh adaptation are needed. Uniform convergence with respect to the anisotropy strength 1 / ɛ can be observed numerically and the condition number does not scale with the anisotropy.

  7. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions.

    PubMed

    Qiu, Renhua; Xu, Xinhua; Peng, Lifeng; Zhao, Yalei; Li, Ningbo; Yin, Shuangfeng

    2012-05-14

    Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)⋅nH(2)O⋅THF (M = Zr (2 a⋅3 H(2)O⋅THF), M = Ti (2 b⋅2 H(2)O⋅THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1 a), M = Ti (1 b)) with nBuLi and C(8)F(17)SO(3)H (2 equiv) or with C(8)F(17)SO(3)Ag (2 equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2 a and 2 b were thermally stable at 300 and 180 °C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2 a and 2 b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2 a⋅3 H(2)O⋅THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2 a. Fluorescence spectra showed that the Lewis acidity of 2 a fell between those of Sc(3+) (λ(em)=474 nm) and Fe(3+) (λ(em)=478 nm). ESR spectra showed the Lewis acidity of 2 a (0.91 eV) was at the same level as that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV), while the Lewis acidity of 2 b (1.06 eV) was larger than that of Sc(3+) (1.00 eV) and Y(3+) (0.85 eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis.

  8. Vinylbenzyl quaternary ammonium-based polymeric monolith with hydrophilic interaction/strong anion exchange mixed-mode for pressurized capillary electrochromatography.

    PubMed

    Lin, Xucong; Feng, Shuhui; Jia, Wenchao; Ding, Kang; Xie, Zenghong

    2013-11-05

    A novel polymeric monolith with hydrophilic interaction and strong anion-exchange mixed-mode has been fabricated for pressurized capillary electrochromatography by an in situ copolymerization of vinylbenzyl trimethylammonium chloride (VBTA) and bisphenol A glycerolate dimethacrylate (BisGMA). The optimization of the polymerization mixture composition has been investigated, and column characteristics in terms of mechanical stability, permeability and reproducibility have been studied in detail. Linear responses between back pressure and flow rate have been achieved in different solvents. The absolute value of swelling propensity (SP) factor for poly(VBTA-co-BisGMA) monolith is 0.41, and the degree of permeability drop from pure ACN to water is about 45%. An acceptable mechanical stability of the column is obtained. The suitable reproducibility is also measured with the RSD for day-to-day (n=3) of retention time and column efficiency less than 3.3%, and the RSD for batch-to-batch (n=3) less than 5.3%, respectively. Under the optimum conditions, the mixed-mode of hydrophilic interaction and strong anion-exchange has been carried out, and efficient electrochromatography profiling of various polar compounds including neutral phenols, negatively charged benzoic acids and positively charged nucleic acid bases and nucleosides are achieved, respectively.

  9. A Web-Based Borehole Strong-motion Data Dissemination Portal

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Seale, S.; Ratzesberger, H.; Civilini, F.; Vaughan, N.

    2009-12-01

    Accelerometric and pore pressure data from instrumented boreholes in southern California are producing very interesting observations from a large data set that includes 100’s of earthquake observations each month. While the majority of these are very small events, they provide the control data that represents the linear behavior of the site. In addition, the largest motions recorded to date, ~10%g, are getting to the regime where nonlinear soil behavior effects become important. In order to make these data more accessible to the seismology and earthquake engineering research community, software development of a web-based data dissemination portal has taken place under the George E. Brown Jr., Network for Earthquake Engineering (NEES) program. This development includes processing and analysis tools, and web-based data dissemination available through the NEES@UCSB website [http://nees.ucsb.edu]. Of interest to the research community are the tools developed to provide search, waveform viewing, and download capabilities for access to data acquired through the various borehole-monitoring programs at UC Santa Barbara. Researchers interested in obtaining data recorded at the various field sites can use the map-based search tool to select a particular station and instrument(s). The user is then provided another map-based interface that allows the user to select events with choice of magnitude, distance, and time period. Once the user has selected an event of interest, the ability to view the data is provided, along with some waveform parameters like peak velocity and acceleration. The records can then be downloaded in a number of common formats, including MSEED, SAC, and an ASCII text-based real-time data viewer (RDV) format. The last format allows the data to be viewed in the NEES RDV tool, a platform independent JAVA program developed to display both real-time streaming data, or playback data that has been downloaded through the web-based event search tool.

  10. Polymerization of amino acids containing nucleotide bases

    NASA Technical Reports Server (NTRS)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  11. Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification

    PubMed Central

    Sinclair, Robert M.; Ravantti, Janne J.

    2017-01-01

    ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids

  12. Building a Strong Relationship between Competency-Based Pathways and Career Technical Education

    ERIC Educational Resources Information Center

    Kreamer, Kate Blosveren; Zimmermann, Andrea

    2015-01-01

    Competency-based pathways (CBP) have the potential to open new opportunities for students to learn and demonstrate their learning in meaningful ways that are grounded in application and relevant to their career goals. This brief argues that states can and should leverage CTE when considering how to move K-12 education toward a system marked by…

  13. Differential titration of bases in glacial acetic acid.

    PubMed

    Castellano, T; Medwick, T; Shinkai, J H; Bailey, L

    1981-01-01

    A study of bases in acetic acid and their differential titration was carried out. The overall basicity constants for 20 bases were measured in acetic acid, and the differential titration of five binary mixtures of variable delta pKb values in acetic acid was followed using a glass electrode-modified calomel electrode system. Agreement with literature values was good. A leveling diagram was constructed that indicated that bases stronger than aqueous pKb 10 are leveled to an acetous pKb 5.69, whereas weaker bases are not leveled but instead exhibit their own intrinsic basicity, with the acetous pKb to aqueous pKb values being linearly related (slope 1.18, correlation coefficient 0.962). A minimum acetous delta pKb of four units is required for the satisfactory differential titration of two bases in acetic acid.

  14. The acid-base titration of montmorillonite

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.; Sposito, G.; Bourg, A. C.

    2003-12-01

    Proton binding to clay minerals plays an important role in the chemical reactivity of soils (e.g., acidification, retention of nutrients or pollutants). If should also affect the performance of clay barriers for waste disposal. The surface acidity of clay minerals is commonly modelled empirically by assuming generic amphoteric surface sites (>SOH) on a flat surface, with fitted site densities and acidity constant. Current advances in experimental methods (notably spectroscopy) are rapidly improving our understanding of the structure and reactivity of the surface of clay minerals (arrangement of the particles, nature of the reactive surface sites, adsorption mechanisms). These developments are motivated by the difficulty of modelling the surface chemistry of mineral surfaces at the macro-scale (e.g., adsorption or titration) without a detailed (molecular-scale) picture of the mechanisms, and should be progressively incorporated into surface complexation models. In this view, we have combined recent estimates of montmorillonite surface properties (surface site density and structure, edge surface area, surface electrostatic potential) with surface site acidities obtained from the titration of alpha-Al2O3 and SiO2, and a novel method of accounting for the unknown initial net proton surface charge of the solid. The model predictions were compared to experimental titrations of SWy-1 montmorillonite and purified MX-80 bentonite in 0.1-0.5 mol/L NaClO4 and 0.005-0.5 mol/L NaNO3 background electrolytes, respectively. Most of the experimental data were appropriately described by the model after we adjusted a single parameter (silanol sites on the surface of montmorillonite were made to be slightly more acidic than those of silica). At low ionic strength and acidic pH the model underestimated the buffering capacity of the montmorillonite, perhaps due to clay swelling or to the interlayer adsorption of dissolved aluminum. The agreement between our model and the experimental

  15. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  16. Arsenic Exposure and Cancer Mortality in a US-based Prospective Cohort: the Strong Heart Study

    PubMed Central

    García-Esquinas, Esther; Pollán, Marina; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Guallar, Eliseo; Howard, Barbara; Farley, John; Yeh, Jeunliang; Best, Lyle G.; Navas-Acien, Ana

    2013-01-01

    Background Inorganic arsenic, a carcinogen at high exposure levels, is a major global health problem. Prospective studies on carcinogenic effects at low-moderate arsenic levels are lacking. Methods We evaluated the association between baseline arsenic exposure and cancer mortality in 3,932 American Indians 45–74 years from Arizona, Oklahoma and North/South Dakota who participated in the Strong Heart Study in 1989–1991 and were followed through 2008. We estimated inorganic arsenic exposure as the sum of inorganic and methylated species in urine. Cancer deaths (386 overall, 78 lung, 34 liver, 18 prostate, 26 kidney, 24 esophagus/stomach, 25 pancreas, 32 colon/rectal, 26 breast, 40 lymphatic/hematopoietic) were assessed by mortality surveillance reviews. We hypothesized an association with lung, liver, prostate and kidney cancer. Results Median (interquartile range) urine concentration for inorganic plus methylated arsenic species was 9.7 (5.8–15.6) μg/g creatinine. The adjusted hazard ratios (95% CI) comparing the 80th versus 20th percentiles of arsenic were 1.14 (0.92–1.41) for overall cancer, 1.56 (1.02–2.39) for lung cancer, 1.34 (0.66, 2.72) for liver cancer, 3.30 (1.28–8.48) for prostate cancer, and 0.44 (0.14, 1.14) for kidney cancer. The corresponding hazard ratios were 2.46 (1.09–5.58) for pancreatic cancer, and 0.46 (0.22–0.96) for lymphatic and hematopoietic cancers. Arsenic was not associated with cancers of the esophagus and stomach, colon and rectum, and breast. Conclusions Low to moderate exposure to inorganic arsenic was prospectively associated with increased mortality for cancers of the lung, prostate and pancreas. Impact These findings support the role of low-moderate arsenic exposure in lung, prostate and pancreas cancer development and can inform arsenic risk assessment. PMID:23800676

  17. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    PubMed

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-02-16

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  18. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    PubMed Central

    Borzacchiello, Assunta; Russo, Luisa; Malle, Birgitte M.; Schwach-Abdellaoui, Khadija; Ambrosio, Luigi

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests. PMID:26090451

  19. Nationwide registry-based analysis of cancer clustering detects strong familial occurrence of Kaposi sarcoma.

    PubMed

    Kaasinen, Eevi; Aavikko, Mervi; Vahteristo, Pia; Patama, Toni; Li, Yilong; Saarinen, Silva; Kilpivaara, Outi; Pitkänen, Esa; Knekt, Paul; Laaksonen, Maarit; Artama, Miia; Lehtonen, Rainer; Aaltonen, Lauri A; Pukkala, Eero

    2013-01-01

    Many cancer predisposition syndromes are rare or have incomplete penetrance, and traditional epidemiological tools are not well suited for their detection. Here we have used an approach that employs the entire population based data in the Finnish Cancer Registry (FCR) for analyzing familial aggregation of all types of cancer, in order to find evidence for previously unrecognized cancer susceptibility conditions. We performed a systematic clustering of 878,593 patients in FCR based on family name at birth, municipality of birth, and tumor type, diagnosed between years 1952 and 2011. We also estimated the familial occurrence of the tumor types using cluster score that reflects the proportion of patients belonging to the most significant clusters compared to all patients in Finland. The clustering effort identified 25,910 birth name-municipality based clusters representing 183 different tumor types characterized by topography and morphology. We produced information about familial occurrence of hundreds of tumor types, and many of the tumor types with high cluster score represented known cancer syndromes. Unexpectedly, Kaposi sarcoma (KS) also produced a very high score (cluster score 1.91, p-value <0.0001). We verified from population records that many of the KS patients forming the clusters were indeed close relatives, and identified one family with five affected individuals in two generations and several families with two first degree relatives. Our approach is unique in enabling systematic examination of a national epidemiological database to derive evidence of aberrant familial aggregation of all tumor types, both common and rare. It allowed effortless identification of families displaying features of both known as well as potentially novel cancer predisposition conditions, including striking familial aggregation of KS. Further work with high-throughput methods should elucidate the molecular basis of the potentially novel predisposition conditions found in this

  20. Acid-base titration curves for acids with very small ratios of successive dissociation constants.

    PubMed

    Campbell, B H; Meites, L

    1974-02-01

    The shapes of the potentiometric acid-base titration curves obtained in the neutralizations of polyfunctional acids or bases for which each successive dissociation constant is smaller than the following one are examined. In the region 0 < < 1 (where is the fraction of the equivalent volume of reagent that has been added) the slope of the titration curve decreases as the number j of acidic or basic sites increases. The difference between the pH-values at = 0.75 and = 0.25 has (1 j)log 9 as the lower limit of its maximum value.

  1. Renal acidification responses to respiratory acid-base disorders.

    PubMed

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  2. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  3. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    NASA Astrophysics Data System (ADS)

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

  4. Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites

    PubMed Central

    Dusoe, Keith J.; Vijayan, Sriram; Bissell, Thomas R.; Chen, Jie; Morley, Jack E.; Valencia, Leopolodo; Dongare, Avinash M.; Aindow, Mark; Lee, Seok-Woo

    2017-01-01

    Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed. PMID:28067334

  5. Efficient plant-based production of chicken interleukin-12 yields a strong immunostimulatory cytokine.

    PubMed

    Medrano, Giuliana; Dolan, Maureen C; Stephens, Nathan T; McMickle, Anthony; Erf, Gisela; Radin, David; Cramer, Carole L

    2010-03-01

    Interleukin-12 (IL-12), an important immunomodulator for cell-mediated immunity, shows significant potential as a vaccine adjuvant and anticancer therapeutic in mammals. Therapeutic strategies to develop mammalian IL-12 as a vaccine adjuvant/immunomodulator for promoting cellular immunity and establishing a Th1-biased immune response further support the potential value of ChIL-12. Transgenic plants show promise as scalable bioproduction platforms for challenging biopharmaceutical proteins. We have expressed, characterized, and purified biologically active ChIL-12 in plants using a rapid Agrobacterium-mediated tobacco plant-based transient expression system. To ensure the stoichiometric expression and assembly of p35 and p40, we expressed a single-chain version of chicken IL-12 (ChIL-12). A histidine 6x tag was used for identity and purification of ChIL-12(His) protein. Our results demonstrated precise cleavage of the endogenous chicken p40 signal peptide in plants as well as addition of N-linked glycans. Biological activity was confirmed in vitro by interferon-gamma secretion of ChIL-12-treated chicken splenocytes. In addition, splenocytes treated with ChIL-12 expressed with or without the His tag demonstrated comparable ChIFN-gamma induction. These studies indicate that plant-based platforms for bioproduction of complex pharmaceutical proteins produce functional ChIL-12 and provide key advantages in safety, scale, and cost-effective platform for veterinary vaccine and therapeutic applications.

  6. Development of tough, strong, iron-base alloy for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1983-01-01

    The development of an iron-base alloy that combines the normally divergent properties of high toughness and high strength at cryogenic temperatures is discussed. Specifically, alloy properties were sought which at -196 C would exhibit a fracture toughness of 220 MPa-m(1/2) with a corresponding yield strength of 1.4 GPa (200 ksi). Early work showed that high toughness could be achieved in Fe-12Ni alloys containing reactive metal additions such as Al, Nb, Ti, and V. Further research emphasized strengthening of these tough alloys by thermomechanical processing and the addition of Cu. Results showed that high strength and high toughness could be achieved in a single alloy at temperatures as low as -196 C. An alloy with composition Fe-12Ni-9.5Al-2Cu exhibited a yield strength of 1.65 GPa with a corresponding fracture toughness of 220 MPa-m(1/2) at -196 C. Strengthening due to Cu additions to the Fe-12Ni base alloys results primarily from precipitation of Cu-rich epsilon particles approximately 20 nm in diameter. Strengthening mechanisms are discussed in terms of an elastic modulus hardening model and are supported by transimission electron microscopy examinations of selected test specimens.

  7. Extraction of Carbon Dioxide From Seawater by Ion Exchange Resin. Part 2. Using Strong Base Anion Exchange Resin

    DTIC Science & Technology

    2009-09-29

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--09-9211 Extraction of Carbon Dioxide from Sea water by Ion Exchange Resin Part...STRONG BASE ANION EXCHANGE RESIN 1.0 BACKGROUND The Ocean Thermal Energy Conversion (OTEC) process converts solar thermal energy absorbed by the ocean...into electrical power [1,2]. During the OTEC process dissolved carbon dioxide (CO2) in ocean water is liberated as a gas. Since CO2 is implicated in

  8. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  9. The central role of chloride in the metabolic acid-base changes in canine parvoviral enteritis.

    PubMed

    Burchell, Richard K; Schoeman, Johan P; Leisewitz, Andrew L

    2014-04-01

    The acid-base disturbances in canine parvoviral (CPV) enteritis are not well described. In addition, the mechanisms causing these perturbations have not been fully elucidated. The purpose of the present study was to assess acid-base changes in puppies suffering from CPV enteritis, using a modified strong ion model (SIM). The hypothesis of the study was that severe acid-base disturbances would be present and that the SIM would provide insights into pathological mechanisms, which have not been fully appreciated by the Henderson-Hasselbalch model. The study analysed retrospective data, obtained from 42 puppies with confirmed CPV enteritis and 10 healthy control dogs. The CPV-enteritis group had been allocated a clinical score, to allow classification of the data according to clinical severity. The effects of changes in free water, chloride, l-lactate, albumin and phosphate were calculated, using a modification of the base excess algorithm. When the data were summated for each patient, and correlated to each individual component, the most important contributor to the metabolic acid-base changes, according to the SIM, was chloride (P<0.001). Severely-affected animals tended to demonstrate hypochloraemic alkalosis, whereas mildly-affected puppies had a hyperchloraemic acidosis (P=0.007). In conclusion, the acid-base disturbances in CPV enteritis are multifactorial and complex, with the SIM providing information in terms of the origin of these changes.

  10. Light-driven strong spin valve effects in an azobenzene-based spin optoelectronic device

    NASA Astrophysics Data System (ADS)

    Zeng, Jing; Chen, Ke-Qiu; Deng, Xiaohui; Long, Mengqiu

    2016-10-01

    A photoswitched single-molecule junction, a stable and reversible single-molecule electrical switch, has been successfully prepared by means of molecular engineering (2016 Science 352 1443). In this work we use a first-principles computational approach to investigate the spin valve effect of an azobenzene-based spin optoelectronic device. Our results demonstrate that the magnetoresistive ratio of the spin optoelectronic device is only about 65% when the azobenzene is in cis configuration, which is a low performance for practical applications. However, the magnetoresistive ratio of the device can be enhanced to about 2775% when the cis configuration of the azobenzene is changed into the trans configuration by applying a pulse of light. As a consequence, photoexcitation provides an effective way to obtain a high-performance spin optoelectronic device.

  11. Towards lactic acid bacteria-based biorefineries.

    PubMed

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  12. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    NASA Astrophysics Data System (ADS)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  13. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  14. Comparative quantitative acid-base analysis in coronary artery bypass, severe sepsis, and diabetic ketoacidosis.

    PubMed

    Omron, Edward M

    2005-01-01

    The main objective of this study was to assess the relationship of standard base excess (SBE) to delta strong ion difference effective (DeltaSIDe) in critical illness. Critical illness is characterized by variable plasma nonvolatile weak acid components (DeltaA(-)), and SBE becomes discordant with DeltaSIDe. The author hypothesized that both acid-base models are equivalent when SBE and DeltaSIDe are corrected for DeltaA(-). A retrospective chart review was performed to assess this hypothesis by looking at changes in SBE, DeltaSIDe, and DeltaA(-) in 30 coronary artery bypass graft surgery patients, 30 severe sepsis patients, and 15 diabetic ketoacidosis patients. SBE equals the sum of the DeltaSIDe and DeltaA(-). The SBE quantifies the magnitude of the metabolic acid-base derangement, the DeltaSIDe quantifies the plasma strong cation/anion imbalance, and the DeltaA(-) quantifies the magnitude of the hypoalbuminemic alkalosis. The partitioning of SBE into physicochemical components can facilitate analyses of complex acid-base disorders in critical illness.

  15. Effect of Multi-pass Friction Stir Processing on the Electrochemical and Corrosion Behavior of Pure Titanium in Strongly Acidic Solutions

    NASA Astrophysics Data System (ADS)

    Fattah-Alhosseini, Arash; Attarzadeh, Farid Reza; Vakili-Azghandi, Mojtaba

    2017-01-01

    The corrosion behavior of multi-pass friction stir processed (FSP) pure titanium was studied in 0.5 M H2SO4 solutions. Microstructures of treated and untreated samples were characterized using scanning electron microscopy. It was found that the grain size decreased with increasing the number of applied passes of FSP. Electrochemical tests including potentiodynamic polarization measurements and electrochemical impedance spectroscopy showed that three passes of FSP treatments resulted in a Ti sample which exhibited the best passive behavior and had the highest corrosion resistance among all samples in strongly acidic solutions of 0.5 M H2SO4. These improvements can be attributed to the emergence of diverse structural defects and grain refinement induced by FSP treatments. Moreover, Mott-Schottky analysis was performed to investigate the semiconducting properties of passive films. It was found that the semiconducting behavior remained the same after FSP treatments but it reduced donor densities and surprisingly introduced an additional donor level.

  16. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  17. Acid Base Titrations in Nonaqueous Solvents and Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Barcza, Lajos; Buvári-Barcza, Ágnes

    2003-07-01

    The acid base determination of different substances by nonaqueous titrations is highly preferred in pharmaceutical analyses since the method is quantitative, exact, and reproducible. The modern interpretation of the reactions in nonaqueous solvents started in the last century, but several inconsistencies and unsolved problems can be found in the literature. The acid base theories of Brønsted Lowry and Lewis as well as the so-called solvent theory are outlined first, then the promoting (and leveling) and the differentiating effects are discussed on the basis of the hydrogen-bond concept. Emphasis is put on the properties of formic acid and acetic anhydride since their importance is increasing.

  18. Mechanically strong triple network hydrogels based on hyaluronan and poly(N,N-dimethylacrylamide).

    PubMed

    Tavsanli, Burak; Can, Volkan; Okay, Oguz

    2015-11-21

    Hyaluronan (HA) is a natural polyelectrolyte with distinctive biological functions. Cross-linking of HA to generate less degradable hydrogels for use in biomedical applications has attracted interest over many years. One limitation of HA hydrogels is that they are very brittle and/or easily dissolve in physiological environments, which limit their use in load-bearing applications. Herein, we describe the preparation of triple-network (TN) hydrogels based on HA and poly(N,N-dimethylacrylamide) (PDMA) of high mechanical strength by sequential gelation reactions. TN hydrogels containing 81-91% water sustain compressive stresses above 20 MPa and exhibit Young's moduli of up to 1 MPa. HA of various degrees of methacrylation was used as a multifunctional macromer for the synthesis of the brittle first-network component, while loosely cross-linked PDMA was used as the ductile, second and third network components of TN hydrogels. By tuning the methacrylation degree of HA, double-network hydrogels with a fracture stress above 10 MPa and a fracture strain of 96% were obtained. Increasing the ratio of ductile-to-brittle components via the TN approach further increases the fracture stress above 20 MPa. Cyclic mechanical tests show that, although TN hydrogels internally fracture even under small strain, the ductile components hinder macroscopic crack propagation by keeping the macroscopic gel samples together.

  19. Stability of polydopamine and poly(DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions.

    PubMed

    Wei, Houliang; Ren, Jun; Han, Bo; Xu, Li; Han, Lulu; Jia, Lingyun

    2013-10-01

    This study investigated the stability of polydopamine and poly(3,4-dihydroxyphenylalanine) (poly(DOPA)) melanin-like films on the surface of polymer substrates. Three polymer membranes, polypropylene (PP), poly(vinylidenefluoride) (PVDF) and nylon, were modified with polydopamine or poly(DOPA), and then immersed in 0.1M HCl or NaOH, followed by UV-vis spectrometry analysis to detect the presence of film detachment. The results showed that the outer parts of both polydopamine and poly(DOPA) films were detached, probably due to electrostatic repulsion between the polymers within the film, when the modified membranes were washed in HCl or NaOH solution. These two films were more stable in strongly acidic solution, but the stability of poly(DOPA) film was better than that of polydopamine film. Compared to the films on the surface of PVDF or nylon membrane, films on PP surface showed the lowest stability, possibly because of the hydrophobic property of PP. The process of film detachment was analyzed by GPC, which showed that unreacted dopamine or DOPA monomers were still present in the freshly formed films. The unreacted monomers, as well as polydopamine or poly(DOPA) that were incorporated in the film via noncovalent interactions, became detached when the film was exposed to strongly acidic or alkaline solution. Oxidation of freshly formed films could significantly enhance their stability. The results therefore provide us with a better understanding of the stability of melanin-like films, and allow us to develop an effective strategy for constructing stable films.

  20. Composition of exchangeable bases and acidity in soils of the Crimean Mountains

    NASA Astrophysics Data System (ADS)

    Kostenko, I. V.

    2015-08-01

    Acid forest and mountainous meadow soils of the Crimean Mountains were studied. The amount of hydrogen and aluminum ions extracted from these soils depended on the pH of extracting agents. The maximum values of the soil acidity were obtained upon the extraction with a strongly alkaline solution of sodium acetate in 0.05 N NaOH. The application of this extractant made it possible to determine the total exchange acidity, the total amount of extractable aluminum, and the total cation exchange capacity of the soils after the extraction of all the acidic components from them. The values of these characteristics were significantly higher than the values of the potential acidity and cation exchange capacity obtained by the routine analytical methods. Hydrogen predominated among the acidic components of the exchange acidity in the humus horizons, whereas aluminum predominated among them in the underlying mineral horizons. Hydrothermic conditions and the character of vegetation and parent materials were the major factors affecting the relationships between bases and acidic components in the soil adsorption complex.

  1. Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge.

    PubMed

    Bai, Mindong; Zheng, Qilin; Tian, Yiping; Zhang, Zhitao; Chen, Cao; Cheng, Chao; Meng, Xiangying

    2016-06-01

    In this paper, invasive marine species in medium-salinity ballast water were inactivated using OH generated from a strong ionization discharge. The OH is determined by the concentration of oxygen active species combined with the effects of water jet cavitation. The results indicated that the OH concentration reached 7.62 μM, within 1 s, which is faster and higher than in conventional AOP methods. In a pilot-scale OH ballast water system with a capacity of 10 m(3)/h, algae were inactivated when CT value was 0.1 mg min/L with a contact time only 6 s. The viable and nonviable cells were determined using SYTOX Green nucleic acid stain and Flow cytometry. As a result, the OH treatment could be completed during the process of conveying the ballast water. In addition, the concentrations of relevant disinfection by-products (DBPs), such as trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, were less than that required by the World Health Organization's drinking water standards, which suggest that the discharged ballast water posed no risks to the oceanic environment. Nevertheless, for conventional ozonation and electrolysis methods, the ballast water should be treated only in the treated tanks during the ship's voyage and form higher level DBPs.

  2. Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association

    PubMed Central

    La Reau, Alex J.; Meier-Kolthoff, Jan P.

    2016-01-01

    It has become increasingly clear that the composition of mammalian gut microbial communities is substantially diet driven. These microbiota form intricate mutualisms with their hosts, which have profound implications on overall health. For example, many gut microbes are involved in the conversion of host-ingested dietary polysaccharides into host-usable nutrients. One group of important gut microbial symbionts are bacteria in the genus Ruminococcus. Originally isolated from the bovine rumen, ruminococci have been found in numerous mammalian hosts, including other ruminants, and non-ruminants such as horses, pigs and humans. All ruminococci require fermentable carbohydrates for growth, and their substrate preferences appear to be based on the diet of their particular host. Most ruminococci that have been studied are those capable of degrading cellulose, much less is known about non-cellulolytic non-ruminant-associated species, and even less is known about the environmental distribution of ruminococci as a whole. Here, we capitalized on the wealth of publicly available 16S rRNA gene sequences, genomes and large-scale microbiota studies to both resolve the phylogenetic placement of described species in the genus Ruminococcus, and further demonstrate that this genus has largely unexplored diversity and a staggering host distribution. We present evidence that ruminococci are predominantly associated with herbivores and omnivores, and our data supports the hypothesis that very few ruminococci are found consistently in non-host-associated environments. This study not only helps to resolve the phylogeny of this important genus, but also provides a framework for understanding its distribution in natural systems. PMID:28348838

  3. Statistical weighting of model-based optoacoustic reconstruction for minimizing artefacts caused by strong acoustic mismatch

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís; Razansky, Daniel; Ntziachristos, Vasilis

    2011-03-01

    A modified quantitative inversion algorithm is presented that minimizes the effects of internal acoustic reflections or scattering in tomographic optoacoustic images. The inversion procedure in our model-based algorithm consists in solving a linear system of equations in which each individual equation corresponds to a given position of the acoustic transducer and to a given time instant. Thus, the modification that we propose in this work consists in weighting each equation of the linear system with the probability that the measured wave is not distorted by reflection or scattering phenomena. We show that the probability that a reflected or scattered wave is detected at a given position and at a given instant is approximately proportional to the size of the area in which the original wave could have been generated, which is dependent on the position of the transducer and on the time instant, so that such probability can be used to weight each equation of the linear system. Thereby, the contribution of the waves that propagate directly to the transducer to the reconstructed images is emphasized. We experimentally test the proposed inversion algorithm with tissue-mimicking agar phantoms in which air-gaps are included to cause reflections of the acoustic waves. The tomographic reconstructions obtained with the modification proposed herein show a clear reduction of the artefacts due to these acoustic phenomena with respect to the reconstructions yielded with the original algorithm. This performance is directly related to in-vivo small animal imaging applications involving imaging in the presence of bones, lungs, and other highly mismatched organs.

  4. When Military Parents Come Home: Building "Strong Families Strong Forces," a Home-Based Intervention for Military Families with Very Young Children

    ERIC Educational Resources Information Center

    Paris, Ruth; Acker, Michelle L.; Ross, Abigail M.; DeVoe, Ellen R.

    2011-01-01

    The long wars in Afghanistan and Iraq have presented unique challenges to military-connected families with very young children, yet few evidence-based services are available to support these families through deployment and reintegration. Although many military families have shown remarkable resilience throughout the intense demands of the wars,…

  5. An Acid-Base Chemistry Example: Conversion of Nicotine

    NASA Astrophysics Data System (ADS)

    Summerfield, John H.

    1999-10-01

    The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry. In particular, the conversion by ammonia of the +1 form of nicotine to the easier-to-assimilate free-base form illustrates the effect of pH on acid-base equilibrium. The part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is "free-based".

  6. HF acid blends based on formation conditions eliminate precipitation problems

    SciTech Connect

    Gdanski, R.; Shuchart, C.

    1997-03-01

    Formulating HCl-HF acid blends based on the mineralogy and temperature of a formation can increase the success of hydrofluoric acid (HF) treatments. Sodium and potassium in the structures of formation minerals can cause precipitation and matrix plugging problems during acidizing. Slight modifications of the acid blend used in the treatment can help eliminate fluosilicate precipitation. Researchers recently conducted tests to determine how acid blends react in different formations under varying temperatures. The results of the tests indicate that the minimum HCl:HF ratio in an acid blend is 6-to-1, and the optimum ratio is 9-to-1. Regular mud acid (12% HCl-3% HF) has been used successfully for years to enhance production in sandstone formations. By the 1980s, operators began to vary the concentration of HF and HCl acids to solve excessive sanding problems in sandstone. The paper discusses treatment problems, formation characteristics, alumino-silicate scaling, research results, brine compatibility, optimum treatment, and acid volume guidelines.

  7. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan.

    PubMed

    Wan, Sijie; Peng, Jingsong; Li, Yuchen; Hu, Han; Jiang, Lei; Cheng, Qunfeng

    2015-10-27

    Graphene is the strongest and stiffest material, leading to the development of promising applications in many fields. However, the assembly of graphene nanosheets into macrosized nanocomposites for practical applications remains a challenge. Nacre in its natural form sets the "gold standard" for toughness and strength, which serves as a guide to the assembly of graphene nanosheets into high-performance nanocomposites. Here we show the strong, tough, conductive artificial nacre based on graphene oxide through synergistic interactions of hydrogen and covalent bonding. Tensile strength and toughness was 4 and 10 times higher, respectively, than that of natural nacre. The exceptional integrated strong and tough artificial nacre has promising applications in aerospace, artificial muscle, and tissue engineering, especially for flexible supercapacitor electrodes due to its high electrical conductivity. The use of synergistic interactions is a strategy for the development of high-performance nanocomposites.

  8. Equivalence-point electromigration acid-base titration via moving neutralization boundary electrophoresis.

    PubMed

    Yang, Qing; Fan, Liu-Yin; Huang, Shan-Sheng; Zhang, Wei; Cao, Cheng-Xi

    2011-04-01

    In this paper, we developed a novel method of acid-base titration, viz. the electromigration acid-base titration (EABT), via a moving neutralization boundary (MNR). With HCl and NaOH as the model strong acid and base, respectively, we conducted the experiments on the EABT via the method of moving neutralization boundary for the first time. The experiments revealed that (i) the concentration of agarose gel, the voltage used and the content of background electrolyte (KCl) had evident influence on the boundary movement; (ii) the movement length was a function of the running time under the constant acid and base concentrations; and (iii) there was a good linearity between the length and natural logarithmic concentration of HCl under the optimized conditions, and the linearity could be used to detect the concentration of acid. The experiments further manifested that (i) the RSD values of intra-day and inter-day runs were less than 1.59 and 3.76%, respectively, indicating similar precision and stability in capillary electrophoresis or HPLC; (ii) the indicators with different pK(a) values had no obvious effect on EABT, distinguishing strong influence on the judgment of equivalence-point titration in the classic one; and (iii) the constant equivalence-point titration always existed in the EABT, rather than the classic volumetric analysis. Additionally, the EABT could be put to good use for the determination of actual acid concentrations. The experimental results achieved herein showed a new general guidance for the development of classic volumetric analysis and element (e.g. nitrogen) content analysis in protein chemistry.

  9. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    NASA Astrophysics Data System (ADS)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  10. The role of acid-base imbalance in statin-induced myotoxicity.

    PubMed

    Taha, Dhiaa A; De Moor, Cornelia H; Barrett, David A; Lee, Jong Bong; Gandhi, Raj D; Hoo, Chee Wei; Gershkovich, Pavel

    2016-08-01

    Disturbances in acid-base balance, such as acidosis and alkalosis, have potential to alter the pharmacologic and toxicologic outcomes of statin therapy. Statins are commonly prescribed for elderly patients who have multiple comorbidities such as diabetes mellitus, cardiovascular, and renal diseases. These patients are at risk of developing acid-base imbalance. In the present study, the effect of disturbances in acid-base balance on the interconversion of simvastatin and pravastatin between lactone and hydroxy acid forms have been investigated in physiological buffers, human plasma, and cell culture medium over pH ranging from 6.8-7.8. The effects of such interconversion on cellular uptake and myotoxicity of statins were assessed in vitro using C2C12 skeletal muscle cells under conditions relevant to acidosis, alkalosis, and physiological pH. Results indicate that the conversion of the lactone forms of simvastatin and pravastatin to the corresponding hydroxy acid is strongly pH dependent. At physiological and alkaline pH, substantial proportions of simvastatin lactone (SVL; ∼87% and 99%, respectively) and pravastatin lactone (PVL; ∼98% and 99%, respectively) were converted to the active hydroxy acid forms after 24 hours of incubation at 37°C. At acidic pH, conversion occurs to a lower extent, resulting in greater proportion of statin remaining in the more lipophilic lactone form. However, pH alteration did not influence the conversion of the hydroxy acid forms of simvastatin and pravastatin to the corresponding lactones. Furthermore, acidosis has been shown to hinder the metabolism of the lactone form of statins by inhibiting hepatic microsomal enzyme activities. Lipophilic SVL was found to be more cytotoxic to undifferentiated and differentiated skeletal muscle cells compared with more hydrophilic simvastatin hydroxy acid, PVL, and pravastatin hydroxy acid. Enhanced cytotoxicity of statins was observed under acidic conditions and is attributed to increased

  11. Amino acid profile of milk-based infant formulas.

    PubMed

    Viadel, B; Alegriá, A; Farré, R; Abellán, P; Romero, F

    2000-09-01

    The protein content and amino acid profile of three milk-based infant formulas, two of which were powdered (adapted and follow-on) and the third liquid, were determined to check their compliance with the EU directive and to evaluate whether or not they fulfil an infant's nutritional needs. To obtain the amino acid profile proteins were subjected to acid hydrolysis, prior to which the sulfur-containing amino acids were oxidized with performic acid. The amino acids were derivatized with phenylisothiocyanate (PITC) and then determined by ion-pair reverse phase high performance liquid chromatography (HPLC) In the case of tryptophan a basic hydrolysis was applied and there was no need of derivatization. The protein contents of the analysed formulas were in the ranges established by the EU directive for these products and the amino acid contents were in the ranges reported by other authors for these types of formulas. In all cases the tryptophan content determined the value of the chemical score, which was always lower than 80% of the reference protein but in the ranges reported by other authors. The analysed adapted infant formula provides amino acids in amounts higher than the established nutritional requirements.

  12. Poly (ricinoleic acid) based novel thermosetting elastomer.

    PubMed

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.

  13. Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs.

    PubMed

    Gerakis, A M; Koupparis, M A; Efstathiou, C E

    1993-01-01

    The effect of various surfactants [the cationics cetyl trimethyl ammonium bromide (CTAB) and cetyl pyridinium chloride (CPC), the anionic sodium dodecyl sulphate (SDS), and the nonionic polysorbate 80 (Tween 80)] on the solubility and ionization constant of some sparingly soluble weak acids of pharmaceutical interest was studied. Benzoic acid (and its 3-methyl-, 3-nitro-, and 4-tert-butyl-derivatives), acetylsalicylic acid, naproxen and iopanoic acid were chosen as model examples. Precise and accurate acid-base titrations in micellar systems were made feasible using a microcomputer-controlled titrator. The response curve, response time and potential drift of the glass electrode in the micellar systems were examined. The cationics CTAB and CPC were found to increase considerably the ionization constant of the weak acids (delta pKa ranged from -0.21 to -3.57), while the anionic SDS showed negligible effect and the nonionic Tween 80 generally decreased the ionization constants. The solubility of the acids in aqueous micellar and acidified micellar solutions was studied spectrophotometrically and it was found increased in all cases. Acetylsalicylic acid, naproxen, benzoic acid and iopanoic acid could be easily determined in raw material and some of them in pharmaceutical preparations by direct titration in CTAB-micellar system instead of using the traditional non-aqueous or back titrimetry. Precisions of 0.3-4.3% RSD and good correlation with the official tedious methods were obtained. The interference study of some excipients showed that a preliminary test should be carried out before the assay of formulations.

  14. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  15. High School Students' Concepts of Acids and Bases.

    ERIC Educational Resources Information Center

    Ross, Bertram H. B.

    An investigation of Ontario high school students' understanding of acids and bases with quantitative and qualitative methods revealed misconceptions. A concept map, based on the objectives of the Chemistry Curriculum Guideline, generated multiple-choice items and interview questions. The multiple-choice test was administered to 34 grade 12…

  16. Hard and soft acids and bases: atoms and atomic ions.

    PubMed

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  17. The glmS ribozyme cofactor is a general acid-base catalyst.

    PubMed

    Viladoms, Júlia; Fedor, Martha J

    2012-11-21

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The d-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities, the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst.

  18. The glmS Ribozyme Cofactor is a General Acid-Base Catalyst

    PubMed Central

    Viladoms, Julia; Fedor, Martha J.

    2012-01-01

    The glmS ribozyme is the first natural self-cleaving ribozyme known to require a cofactor. The D-glucosamine-6-phosphate (GlcN6P) cofactor has been proposed to serve as a general acid, but its role in the catalytic mechanism has not been established conclusively. We surveyed GlcN6P-like molecules for their ability to support self-cleavage of the glmS ribozyme and found a strong correlation between the pH dependence of the cleavage reaction and the intrinsic acidity of the cofactors. For cofactors with low binding affinities the contribution to rate enhancement was proportional to their intrinsic acidity. This linear free-energy relationship between cofactor efficiency and acid dissociation constants is consistent with a mechanism in which the cofactors participate directly in the reaction as general acid-base catalysts. A high value for the Brønsted coefficient (β ~ 0.7) indicates that a significant amount of proton transfer has already occurred in the transition state. The glmS ribozyme is the first self-cleaving RNA to use an exogenous acid-base catalyst. PMID:23113700

  19. Ionic liquid supported acid/base-catalyzed production of biodiesel.

    PubMed

    Lapis, Alexandre A M; de Oliveira, Luciane F; Neto, Brenno A D; Dupont, Jairton

    2008-01-01

    The transesterification (alcoholysis) reaction was successfully applied to synthesize biodiesel from vegetable oils using imidazolium-based ionic liquids under multiphase acidic and basic conditions. Under basic conditions, the combination of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMINTf2), alcohols, and K2CO3 (40 mol %) results in the production of biodiesel from soybean oil in high yields (>98%) and purity. H2SO4 immobilized in BMINTf2 efficiently promotes the transesterification reaction of soybean oil and various primary and secondary alcohols. In this multiphase process the acid is almost completely retained in the ionic liquid phase, while the biodiesel forms a separate phase. The recovered ionic liquid containing the acid could be reused at least six times without any significant loss in the biodiesel yield or selectivity. In both catalytic processes (acid and base), the reactions proceed as typical multiphasic systems in which the formed biodiesel accumulates as the upper phase and the glycerol by-product is selectively captured by the alcohol-ionic liquid-acid/base phase. Classical ionic liquids such as 1-n-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate are not stable under these acidic or basic conditions and decompose.

  20. Acid-base behavior in hydrothermal processing of wastes. 1997 annual progress report

    SciTech Connect

    1997-01-01

    'A major obstacle to the development of hydrothermal technology for treating DOE wastes has been a lack of scientific knowledge of solution chemistry, thermodynamics and transport phenomena. The progress over the last year is highlighted in the following four abstracts from manuscripts which have been submitted to journals. The authors also have made considerable progress on a spectroscopic study of the acid-base equilibria of Cr(VI). They have utilized novel spectroscopic indicators to study acid-base equilibria up to 380 C. Until now, very few systems have been studied at such high temperatures, although this information is vital for hydrothermal processing of wastes. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant Kb-l for the reaction B(OH)3 + OH{sup -} = B(OH){sup -4} was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 t 0.25. submitted to Ind. Eng. Chem. Res. Acetic Acid and HCl Acid-base titrations for the KOH-acetic acid or NH{sub 3} -acetic acid systems were monitored with the optical indicator 2-naphthoic acid at 350 C and 34 MPa, and those for the HCl;Cl- system with acridine at 380 C and up to 34 MPa (5,000 psia ). KOH remains a much stronger base than NH,OH at high temperature. From 298 K to the critical temperature of water, the dissociation constant for HCl decreases by 13 orders of magnitude, and thus, the basicity of Cl{sup -} becomes significant. Consequently, the addition of NaCl to HCl raises the pH. The pH titration curves may be predicted with reasonable accuracy from the relevant equilibrium constants and Pitzer''s formulation of the Debye- Htickel equation for the activity coefficients.'

  1. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model

    NASA Astrophysics Data System (ADS)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-01

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Brønsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa≅1) as a model for excited-state HPTS∗ (pKa≅1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  2. Hydrogen Isotopes of N-Alkanoic Acids from Lake Sediments Reveal Strong Amount-Effect Influence over the Past 5,000 Years, Adak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Vaillencourt, D.; Kaufman, D. S.; D'Andrea, W. J.; Anderson, R. S.

    2012-12-01

    The Aleutian Low (AL) pressure system is a major feature of North Pacific climate, especially during the winter. The AL is associated with a precipitation dipole, which features increased precipitation and storminess over the western North Pacific region and decreased precipitation and storminess in the east when the AL is weak, and the opposite pattern when it is strong. Changes in the amount of storminess at any site might therefore be associated with changes in the strength of the AL, or in its position, or both. Reconstructing the strength and position of the AL requires proxy records from both sides of the dipole, yet Holocene paleoclimate records are largely limited to sites in the eastern North Pacific. Our study site, Andrew Lake on Adak Island, Alaska (51.93° N 176.63° W, 5 m a.s.l) is in the central Aleutian Islands, in the western North Pacific region of the AL center of action. Sediment cores recovered from Andrew Lake were radiometrically dated using ten 14C ages, the peak in 240Pu activity representing 1963 AD, and a 210Pb profile. The 456-cm-long sedimentary sequence represents nearly 7200 years. A total of 76 samples were analyzed for hydrogen isotopes (δD) of long-chain n-alkanoic acids (fatty acids), organic compounds produced primarily by terrestrial vegetation. Each sample spans an average of 140 years, with higher resolution during the instrumental period. A calibration-in-time analysis shows that δD of the C28 fatty acid and October-May storminess (number of days with >19 mm (0.75 in) of precipitation) are inversely correlated (r2 = 0.58, p < 0.02, n = 19) at multi-annual scale during the instrumental record. This result is consistent with the amount effect, whereby intense storms produce precipitation with lower δD values relative to weaker storms. This period of strongest correlation (October-May) also coincides with the period of increased AL activity, when >75% of large storms pass over Adak Island. During the past 5 ka, δD of fatty

  3. Acid/base properties and phenylphosphonic acid complexation at the aged {gamma}-Al{sub 2}O{sub 3}/water interface

    SciTech Connect

    Laiti, E.; Oehman, L.O.; Nordin, J.; Sjoeberg, S.

    1995-10-01

    Acid/base properties and phenylphosphonic acid (H{sub 2}L) complexation at the water-suspended-and-aged {gamma}-Al{sub 2}O{sub 3}/water interface have been studied in 0.1 M Na(Cl) medium at 25.0C in the range 5.0 < {minus}log[H{sup +}] < 9.5. Equilibrium measurements were performed as a series of potentiometric titrations supplemented with spectrophotometric phosphorus analyses. In the evaluation of the experimental data, the contribution from electrostatic forces was accounted for by using the constant-capacitance model. The adsorption of phenylphosphonic acid onto the studied phase was found to be strong at {minus}log[H{sup +}] < 7. Desorption was observed when {minus}log[H{sup +}] was increased toward 9.5. The specific capacitance was evaluated from data collected in the absence of phenylphosphonic acid. The model describing the acid/base reactions and phenylphosphonic acid binding onto the studied alumina surface is given in the paper. In a series of modeling calculations, the complexation features of phenylphosphonic acid are compared to those of orthophosphoric acid.

  4. Deoxyribonucleic acid base compositions of dermatophytes.

    PubMed

    Davison, F D; Mackenzie, D W; Owen, R J

    1980-06-01

    DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.

  5. Image-Based Refocusing of Dual-Mode Ultrasound Arrays (DMUAs) in the Presence of Strongly Scattering Objects

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Casper, Andrew J.; Wan, Yayun; Ebbini, Emad S.

    2009-04-01

    An advantage of imaging with DMUAs is the potential for identifying target and critical regions in the treatment field for avoidance. Refocusing of the therapeutic beam in the presence of strongly scattering objects, such as the ribs, while targeting liver tumors is of particular importance due to limited access and distortion of the HIFU beam. An image-based refocusing algorithm utilizing gray-scaled images obtained with single-transmit focus imaging allows for selection of control points to be taken from the visible target and ribs in the image. Using a two-step virtual array method to take advantage of the intercostal spacing of the ribs, the algorithm minimizes the power deposition over the critical regions while maintaining or improving the power deposition at the target location. The algorithm is verified experimentally with a 64-element 1MHz array, in an attenuating tissue mimicking phantom ( .5 dB/cm/MHz) with Plexiglas ribs. Thermocouples are used to measure sub-therapeutic temperatures across the ribs and at the target location. An increase of temperature at the target location of 20% is measured, with a decrease of 30% across the ribs. In addition, the intensity of the gray-scaled images showed an improvement of 5 dB at the focus with a reduction of 2dB across the ribs. Image-based refocusing is shown to improve distortions of the HIFU beam experienced by strongly scattering objects that partially obstruct the target.

  6. Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases.

    PubMed

    Xu, Yongxiang; Han, Jianmin; Lin, Hong

    2017-01-20

    Self-crosslinking chitosan hydrogels are a highly suitable material for biomedical applications owing to their biodegradability and biocompatibility. However, strong bases, such as sodium hydroxide, which are often used in the preparation of such hydrogels, are known to affect biocompatibility and even destroy the bioactive factors or drug payload of the hydrogel. In the present study, strong bases were replaced by sodium chloride (NaCl) and phosphate buffer saline (PBS, pH=7.4), which were used as gelling solutions for hydrogel fabrication via the freeze-melting-neutralization method. Non-cytotoxicity was showed in MTT assay for hydrogel. Our findings suggest that hydrogel microstructure and physical properties may be adjusted by modifying parameters, such as concentration, temperature, and pH, during the gelling process. Furthermore, the present hydrogel was found to exhibit pH-and ionic strength-responsive properties and may be utilized as a stimulus-responsive material for biomedical applications such as controlled drug release.

  7. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging.

    PubMed

    Xie, Lan; Xu, Huan; Niu, Ben; Ji, Xu; Chen, Jun; Li, Zhong-Ming; Hsiao, Benjamin S; Zhong, Gan-Ji

    2014-11-10

    The notion of toughening poly(lactic acid) (PLA) by adding flexible biopolymers has generated enormous interest but has yielded few desirable advances, mainly blocked by the sacrifice of strength and stiffness due to uncontrollable phase morphology and poor interfacial interactions. Here the phase control methodology, that is, intense extrusion compounding followed by "slit die extrusion-hot stretching-quenching" technique, was proposed to construct well-aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first time. We show that generating nanosized discrete droplets of PBS phase during extrusion compounding is key to enable the development of in situ nanofibrillar PBS assisted by the shearing/stretching field. The size of PBS nanofibrils strongly dependent on the PBS content, showing an increased average diameter from 83 to 116 and 236 nm for the composites containing 10, 20, and 40 wt % nanofibrils, respectively. More importantly, hybrid shish-kebab superstructure anchoring ordered PLA kebabs were induced by the PBS nanofibrils serving as the central shish, conferring the creation of tenacious interfacial crystalline ligaments. The exceptional combination of strength, modulus, and ductility for the composites loaded 40 wt % PBS nanofibrils were demonstrated, outperforming pure PLA with the increments of 31, 51, and 72% in strength, modulus, and elongation at break (56.4 MPa, 1702 MPa, and 92.4%), respectively. The high strength, modulus, and ductility are unprecedented for PLA and are in great potential need for packaging applications.

  8. Strong Acid Mixture and Sequential Geochemical Arsenic Extractions in Surface Sediments from the Santa Maria La Reforma Coastal Lagoon, Mexico: A Bioavailability Assessment.

    PubMed

    Rivera-Hernández, José R; Green-Ruiz, Carlos

    2016-02-01

    Thirty-three sediment samples were collected from the Santa Maria La Reforma coastal lagoon and digested by way of a strong acid mixture and sequential arsenic (As)-extraction method to determine the arsenic (As) content and bioavailability. The As content was determined by atomic fluorescence spectrometry. In addition, grain-size analyses were performed, and organic carbon, carbonate, and iron (Fe) and manganese (Mn) concentrations were determined. Fe and Mn determination was performed by atomic absorption spectroscopy. A Pearson correlation matrix and As enrichment factors were calculated. Sediment concentrations from Santa Maria La Reforma ranged from 3.6 to 25 µg As g(-1) with an average of 13.4 ± 7.6 µg As g(-1). The highest values were observed in the northern (Playa Colorada), north-central (Mocorito River discharge zone), and southern zones ("El Tule" agricultural drain). Most samples were classified as exhibiting no or minor As enrichment and were lower than the threshold effect level (TEL; 7.24 µg g(-1)) for biota (MacDonald et al. in Ecotoxicology 5:253-278, 1996). Low bioavailable As values (<3 %) were measured in the majority of the sediment. The highest As percentages were associated with the oxyhydroxide fraction (F5). The results indicate that As bioavailability is negligible.

  9. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    PubMed

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  10. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method.

  11. Strong Evidence for a Genetic Contribution to Late-Onset Alzheimer’s Disease Mortality: A Population-Based Study

    PubMed Central

    Kauwe, John S. K.; Ridge, Perry G.; Foster, Norman L.; Cannon-Albright, Lisa A.

    2013-01-01

    Background Alzheimer’s disease (AD) is an international health concern that has a devastating effect on patients and families. While several genetic risk factors for AD have been identified much of the genetic variance in AD remains unexplained. There are limited published assessments of the familiality of Alzheimer’s disease. Here we present the largest genealogy-based analysis of AD to date. Methods We assessed the familiality of AD in The Utah Population Database (UPDB), a population-based resource linking electronic health data repositories for the state with the computerized genealogy of the Utah settlers and their descendants. We searched UPDB for significant familial clustering of AD to evaluate the genetic contribution to disease. We compared the Genealogical Index of Familiality (GIF) between AD individuals and randomly selected controls and estimated the Relative Risk (RR) for a range of family relationships. Finally, we identified pedigrees with a significant excess of AD deaths. Results The GIF analysis showed that pairs of individuals dying from AD were significantly more related than expected. This excess of relatedness was observed for both close and distant relationships. RRs for death from AD among relatives of individuals dying from AD were significantly increased for both close and more distant relatives. Multiple pedigrees had a significant excess of AD deaths. Conclusions These data strongly support a genetic contribution to the observed clustering of individuals dying from AD. This report is the first large population-based assessment of the familiality of AD mortality and provides the only reported estimates of relative risk of AD mortality in extended relatives to date. The high-risk pedigrees identified show a true excess of AD mortality (not just multiple cases) and are greater in depth and width than published AD pedigrees. The presence of these high-risk pedigrees strongly supports the possibility of rare predisposition variants not

  12. Nucleic acid-based nanoengineering: novel structures for biomedical applications

    PubMed Central

    Li, Hanying; LaBean, Thomas H.; Leong, Kam W.

    2011-01-01

    Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson–Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular recognition capability can give rise to interesting nanostructures that are only limited by our imagination. Over the past years, creative assembly of nucleic acids has fashioned a plethora of two-dimensional and three-dimensional nanostructures with precisely controlled size, shape and spatial functionalization. These nanostructures have been precisely patterned with molecules, proteins and gold nanoparticles for the observation of chemical reactions at the single molecule level, activation of enzymatic cascade and novel modality of photonic detection, respectively. Recently, they have also been engineered to encapsulate and release bioactive agents in a stimulus-responsive manner for therapeutic applications. The future of nucleic acid-based nanoengineering is bright and exciting. In this review, we will discuss the strategies to control the assembly of nucleic acids and highlight the recent efforts to build functional nucleic acid nanodevices for nanomedicine. PMID:23050076

  13. Acid-Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Nie, Haichen; Su, Ziyang; Fang, Ke; Yang, Xinghao; Smith, Daniel; Byrn, Stephen; Lubach, Joseph W

    2016-02-01

    This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.

  14. α-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism

    PubMed Central

    Tokonami, Natsuko; Morla, Luciana; Centeno, Gabriel; Mordasini, David; Ramakrishnan, Suresh Krishna; Nikolaeva, Svetlana; Wagner, Carsten A.; Bonny, Olivier; Houillier, Pascal; Doucet, Alain; Firsov, Dmitri

    2013-01-01

    Paracrine communication between different parts of the renal tubule is increasingly recognized as an important determinant of renal function. Previous studies have shown that changes in dietary acid-base load can reverse the direction of apical α-ketoglutarate (αKG) transport in the proximal tubule and Henle’s loop from reabsorption (acid load) to secretion (base load). Here we show that the resulting changes in the luminal concentrations of αKG are sensed by the αKG receptor OXGR1 expressed in the type B and non-A–non-B intercalated cells of the connecting tubule (CNT) and the cortical collecting duct (CCD). The addition of 1 mM αKG to the tubular lumen strongly stimulated Cl–-dependent HCO3– secretion and electroneutral transepithelial NaCl reabsorption in microperfused CCDs of wild-type mice but not Oxgr1–/– mice. Analysis of alkali-loaded mice revealed a significantly reduced ability of Oxgr1–/– mice to maintain acid-base balance. Collectively, these results demonstrate that OXGR1 is involved in the adaptive regulation of HCO3– secretion and NaCl reabsorption in the CNT/CCD under acid-base stress and establish αKG as a paracrine mediator involved in the functional coordination of the proximal and the distal parts of the renal tubule. PMID:23934124

  15. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.

    PubMed

    Ansari, Farhan; Salajková, Michaela; Zhou, Qi; Berglund, Lars A

    2015-12-14

    In this work, the problem to disperse cellulose nanocrystals (CNC) in hydrophobic polymer matrices has been addressed through application of an environmentally friendly chemical modification approach inspired by clay chemistry. The objective is to compare the effects of unmodified CNC and modified CNC (modCNC) reinforcement, where degree of CNC dispersion is of interest. Hydrophobic functionalization made it possible to disperse wood-based modCNC in organic solvent and cast well-dispersed nanocomposite films of poly(vinyl acetate) (PVAc) with 1-20 wt % CNC. Composite films were studied by infrared spectroscopy (FT-IR), UV-vis spectroscopy, dynamic mechanical thermal analysis (DMTA), tensile testing, and field-emission scanning electron microscopy (FE-SEM). Strongly increased mechanical properties were observed for modCNC nanocomposites. The reinforcement efficiency was much lower in unmodified CNC composites, and specific mechanisms causing the differences are discussed.

  16. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre

    PubMed Central

    Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.; Voronin, A. A.; Zheltikov, A. M.; Gerome, F.; Paulus, G. G.; Baltuska, A.; Benabid, F.

    2015-01-01

    Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length. PMID:25625549

  17. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre.

    PubMed

    Balciunas, T; Fourcade-Dutin, C; Fan, G; Witting, T; Voronin, A A; Zheltikov, A M; Gerome, F; Paulus, G G; Baltuska, A; Benabid, F

    2015-01-27

    Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression-a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length.

  18. Acid-base metabolism: implications for kidney stones formation.

    PubMed

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ <--> NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  19. Evolution of Acid-Base Concept (1917-1984).

    ERIC Educational Resources Information Center

    Gamble, James L., Jr.

    1984-01-01

    Evaluates the accuracy and usefulness of a simpler rationale for teaching acid-base physiology as compared to more complex approaches frequently taught in physiology courses. Also reviews problems of terminology, giving emphasis to the significant effects that the choice of words can have on students' concepts. (JN)

  20. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  1. Linear titration plots for polyfunctional weak acids and bases.

    PubMed

    Midgley, D; McCallum, C

    1976-04-01

    Procedures are derived for obtaining the equivalence volumes in the potentiometric titrations of polyfunctional weak acids and weak bases by a linear titration plot method. The effect of errors in the equilibrium constants on the accuracy is considered. A Fortran program is available to do the calculations.

  2. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  3. Acid-Base Disorders--A Computer Simulation.

    ERIC Educational Resources Information Center

    Maude, David L.

    1985-01-01

    Describes and lists a program for Apple Pascal Version 1.1 which investigates the behavior of the bicarbonate-carbon dioxide buffer system in acid-base disorders. Designed specifically for the preclinical medical student, the program has proven easy to use and enables students to use blood gas parameters to arrive at diagnoses. (DH)

  4. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  5. Turkish Prospective Chemistry Teachers' Alternative Conceptions about Acids and Bases

    ERIC Educational Resources Information Center

    Boz, Yezdan

    2009-01-01

    The purpose of this study was to obtain prospective chemistry teachers' conceptions about acids and bases concepts. Thirty-eight prospective chemistry teachers were the participants. Data were collected by means of an open-ended questionnaire and semi-structured interviews. Analysis of data indicated that most prospective teachers did not have…

  6. Hard and soft acids and bases: small molecules.

    PubMed

    Reed, James L

    2009-08-03

    The operational chemical hardness has been determined for the hydride, chloride, and fluoride derivatives of the anionic atomic bases of the second period. Of interest is the identification of the structure and associated processes that give rise to hard-soft behavior in small molecules. The Pearson Principle of Hard and Soft Acids and Bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. Similar to the case for atoms, the molecule's responding electrons have been identified as the structure giving rise to hard-soft behavior, and a relaxation described by a modified Slater model has been identified as the associated process. The responding electrons are the molecule's valence electrons that are not undergoing electron transfer in an acid-base interaction. However, it has been demonstrated that chemical hardness is a local property, and only those responding electrons that are associated with the base's binding atom directly impact chemical hardness.

  7. Strong fiber Bragg grating based asymmetric Fabry-Perot sensor system with multiple reflections for high sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hu, Zhengliang; Ma, Mingxiang; Lin, Huizu; Hu, Yongming

    2014-03-01

    A fiber Bragg grating based (FBG-based) Fabry-Perot (FP) sensor system utilizing multiple reflections between two strong FBGs with different reflectiveties to enhance the sensitivity is proposed. The different interference signals are obtained by using different multiple-path-matched Michelson interferometers (MIs). The system is lighted by the ultra-narrow line width erbium-doped fiber ring laser and the signal is demodulated by phase-generated carrier (PGC) scheme. The method to choose the optimal parameters of the FBG-based asymmetric FP sensor and the different matching MIs is analyzed. The experimental results show that each matching MI can steadily enhance the sensitivity of the demodulated signal in the bandwidth of 80-8000 Hz. The sensitivity of the system can be enhanced about 19.1 dB when the light reflects nine times between the two FBGs. Further more, this system can be used to extend the dynamic range and the effective working bandwidth and so on.

  8. New Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Inhibitors, Nalidixic Acid Linked to Isatin Schiff Bases via Certain l-Amino Acid Bridges.

    PubMed

    Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef

    2016-04-15

    A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.

  9. The FKBP-rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid.

    PubMed

    Rodriguez Camargo, Diana C; Link, Nina M; Dames, Sonja A

    2012-06-19

    The Ser/Thr kinase target of rapamycin (TOR) is a central controller of cellular growth and metabolism. Misregulation of TOR signaling is involved in metabolic and neurological disorders and tumor formation. TOR can be inhibited by association of a complex of rapamycin and FKBP12 to the FKBP12-rapamycin binding (FRB) domain. This domain was further proposed to interact with phosphatidic acid (PA), a lipid second messenger present in cellular membranes. Because mammalian TOR has been localized at various cellular membranes and in the nucleus, the output of TOR signaling may depend on its localization, which is expected to be influenced by the interaction with complex partners and regulators in response to cellular signals. Here, we present a detailed characterization of the interaction of the FRB domain with PA and how it is influenced by the surrounding membrane environment. On the basis of nuclear magnetic resonance- and circular dichroism-monitored binding studies using different neutral and negatively charged lipids as well as different membrane mimetics (micelles, bicelles, and liposomes), the FRB domain may function as a conditional peripheral membrane protein. However, the data for the isolated domain just indicate an increased affinity for negatively charged lipids and membrane patches but no specific preference for PA or PA-enriched regions. The membrane-mimetic environment induces strong conformational changes that largely maintain the α-helical secondary structure content but presumably disperse the helices in the lipidic environment. Consistent with overlapping binding surfaces for different lipids and the FKBP12-rapamycin complex, binding of the inhibitor complex protects the FRB domain from interactions with membrane mimetics at lower lipid concentrations.

  10. [Antimicrobial effects and efficacy on habitually hand-washing of strong acidic electrolyzed water--a comparative study of alcoholic antiseptics and soap and tap water].

    PubMed

    Sakashita, Mikako; Iwasawa, Atsuo; Nakamura, Yoshiko

    2002-05-01

    The rate of bacterial elimination for the stamp method was compared with regular hand-washing (using soap and tap water), hygienic hand-washing (using alcoholic antiseptics), and hand-washing using strong acidic electrolyzed water (the SAEW method) in routine work. After routine work, the average number of bacteria remaining on the nurse's hands with using the SAEW-method, rubbing method and tap water method, were: 54 +/- 63, 89 +/- 190, 128 +/- 194 CFU/agar plate, respectively (n = 81). In this study. It was clarified that a much larger number of Bacillus sp. were detected for the rubbing method than for the other methods. After further nurse work, the most number of absorbed bacteria on a nurse's hands were counted after cleaning a patient's body. The rate of bacteria elimination for hand-washing with soap and tap water after taking care of a patient was insufficient, especially when before care was provided the number of bacteria on the nurse's hands were less than 100 CFU/agar plate. From these results, the following manual for sanitary hand washing is recommended: 1. At first, dirty hands should be cleaned and the number of bacteria should be reduced using soap and tap water or by scrubbing with disinfectants. 2. After the number of bacteria has been reduced, use the SAEW method routinely. 3. For care requiring a high level of cleanliness or if no tap water facilities are available, use the rubbing method. Finally, routine use of the SAEW method in ICU could be recommended with conventional disinfectants and soap and tap water on a case by case basis for less than adverse reactions, such as in the case of rough-hands or keeping a low level of bacteria on hands.

  11. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    PubMed

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  12. Acid-base transport in pancreas—new challenges

    PubMed Central

    Novak, Ivana; Haanes, Kristian A.; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO−3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO−3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H+-K+-ATPases), as well as the calcium-activated K+ and Cl− channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. PMID:24391597

  13. Coulometric titration of bases in acetic acid and acetonitrile media.

    PubMed

    Vajgand, V J; Mihajlović, R

    1969-09-01

    The working conditions and the results for coulometric titration of milligram amounts of some bases in 0.1M sodium perchlorate in a mixture of acetic acid and acetic anhydride (1:6), are given. Determinations were made both by coulometric back-titration or direct titration at the platinum anode. Back-titration was done in the catholyte, by coulometric titration of the excess of added perchloric acid. The titration end-point was detected photometrically with Crystal Violet as indicator. The direct titration of bases was done at the platinum anode, in the same electrolyte, to which hydroquinone was added as anode depolarizer and as the source of hydrogen ions, Malachite Green being used as indicator. Similarly, bases can be determined in acetonitrile if sodium perchlorate, hydroquinone and Malachite Green are added to the solvent. Errors are below 1 %, and the precision is satisfactory.

  14. Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores.

    PubMed

    Kiwull-Schöne, Heidrun; Kiwull, Peter; Manz, Friedrich; Kalhoff, Hermann

    2008-02-01

    Alkali-enriched diets are recommended for humans to diminish the net acid load of their usual diet. In contrast, herbivores have to deal with a high dietary alkali impact on acid-base balance. Here we explore the role of nutritional alkali in experimentally induced chronic metabolic acidosis. Data were collected from healthy male adult rabbits kept in metabolism cages to obtain 24-h urine and arterial blood samples. Randomized groups consumed rabbit diets ad libitum, providing sufficient energy but variable alkali load. One subgroup (n = 10) received high-alkali food and approximately 15 mEq/kg ammonium chloride (NH4Cl) with its drinking water for 5 d. Another group (n = 14) was fed low-alkali food for 5 d and given approximately 4 mEq/kg NH4Cl daily for the last 2 d. The wide range of alimentary acid-base load was significantly reflected by renal base excretion, but normal acid-base conditions were maintained in the arterial blood. In rabbits fed a high-alkali diet, the excreted alkaline urine (pH(u) > 8.0) typically contained a large amount of precipitated carbonate, whereas in rabbits fed a low-alkali diet, both pH(u) and precipitate decreased considerably. During high-alkali feeding, application of NH4Cl likewise decreased pH(u), but arterial pH was still maintained with no indication of metabolic acidosis. During low-alkali feeding, a comparably small amount of added NH4Cl further lowered pH(u) and was accompanied by a significant systemic metabolic acidosis. We conclude that exhausted renal base-saving function by dietary alkali depletion is a prerequisite for growing susceptibility to NH4Cl-induced chronic metabolic acidosis in the herbivore rabbit.

  15. Fault Diagnosis for the Heat Exchanger of the Aircraft Environmental Control System Based on the Strong Tracking Filter

    PubMed Central

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system’s efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger. PMID:25823010

  16. Fault diagnosis for the heat exchanger of the aircraft environmental control system based on the strong tracking filter.

    PubMed

    Ma, Jian; Lu, Chen; Liu, Hongmei

    2015-01-01

    The aircraft environmental control system (ECS) is a critical aircraft system, which provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have received increasing attention in recent years. The heat exchanger is a particularly significant component of the ECS, because its failure decreases the system's efficiency, which can lead to catastrophic consequences. Fault diagnosis of the heat exchanger is necessary to prevent risks. However, two problems hinder the implementation of the heat exchanger fault diagnosis in practice. First, the actual measured parameter of the heat exchanger cannot effectively reflect the fault occurrence, whereas the heat exchanger faults are usually depicted by utilizing the corresponding fault-related state parameters that cannot be measured directly. Second, both the traditional Extended Kalman Filter (EKF) and the EKF-based Double Model Filter have certain disadvantages, such as sensitivity to modeling errors and difficulties in selection of initialization values. To solve the aforementioned problems, this paper presents a fault-related parameter adaptive estimation method based on strong tracking filter (STF) and Modified Bayes classification algorithm for fault detection and failure mode classification of the heat exchanger, respectively. Heat exchanger fault simulation is conducted to generate fault data, through which the proposed methods are validated. The results demonstrate that the proposed methods are capable of providing accurate, stable, and rapid fault diagnosis of the heat exchanger.

  17. Acid-base titrations by stepwise addition of equal volumes of titrant with special reference to automatic titrations-II Theory of titration of mixtures of acids, polyprotic acids, acids in mixture with weak bases, and ampholytes.

    PubMed

    Pehrsson, L; Ingman, F; Johansson, S

    A general method for evaluating titration data for mixtures of acids and for acids in mixture with weak bases is presented. Procedures are given that do not require absolute [H]-data, i.e., relative [H]-data may be used. In most cases a very rough calibration of the electrode system is enough. Further, for simple systems, very approximate values of the stability constants are sufficient. As examples, the titration of the following are treated in some detail: a mixture of two acids, a diprotic acid, an acid in presence of its conjugate base, and an ampholyte.

  18. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  19. Hard and soft acids and bases: structure and process.

    PubMed

    Reed, James L

    2012-07-05

    Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.

  20. Brønsted acid sites based on penta-coordinated aluminum species

    NASA Astrophysics Data System (ADS)

    Wang, Zichun; Jiang, Yijiao; Lafon, Olivier; Trébosc, Julien; Duk Kim, Kyung; Stampfl, Catherine; Baiker, Alfons; Amoureux, Jean-Paul; Huang, Jun

    2016-12-01

    Zeolites and amorphous silica-alumina (ASA), which both provide Brønsted acid sites (BASs), are the most extensively used solid acid catalysts in the chemical industry. It is widely believed that BASs consist only of tetra-coordinated aluminum sites (AlIV) with bridging OH groups in zeolites or nearby silanols on ASA surfaces. Here we report the direct observation in ASA of a new type of BAS based on penta-coordinated aluminum species (AlV) by 27Al-{1H} dipolar-mediated correlation two-dimensional NMR experiments at high magnetic field under magic-angle spinning. Both BAS-AlIV and -AlV show a similar acidity to protonate probe molecular ammonia. The quantitative evaluation of 1H and 27Al sites demonstrates that BAS-AlV co-exists with BAS-AlIV rather than replaces it, which opens new avenues for strongly enhancing the acidity of these popular solid acids.

  1. Brønsted acid sites based on penta-coordinated aluminum species

    PubMed Central

    Wang, Zichun; Jiang, Yijiao; Lafon, Olivier; Trébosc, Julien; Duk Kim, Kyung; Stampfl, Catherine; Baiker, Alfons; Amoureux, Jean-Paul; Huang, Jun

    2016-01-01

    Zeolites and amorphous silica-alumina (ASA), which both provide Brønsted acid sites (BASs), are the most extensively used solid acid catalysts in the chemical industry. It is widely believed that BASs consist only of tetra-coordinated aluminum sites (AlIV) with bridging OH groups in zeolites or nearby silanols on ASA surfaces. Here we report the direct observation in ASA of a new type of BAS based on penta-coordinated aluminum species (AlV) by 27Al-{1H} dipolar-mediated correlation two-dimensional NMR experiments at high magnetic field under magic-angle spinning. Both BAS-AlIV and -AlV show a similar acidity to protonate probe molecular ammonia. The quantitative evaluation of 1H and 27Al sites demonstrates that BAS-AlV co-exists with BAS-AlIV rather than replaces it, which opens new avenues for strongly enhancing the acidity of these popular solid acids. PMID:27976673

  2. Bio-based production of organic acids with Corynebacterium glutamicum.

    PubMed

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-03-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, L- and D-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.

  3. Developing nucleic acid-based electrical detection systems

    PubMed Central

    Gabig-Ciminska, Magdalena

    2006-01-01

    Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical

  4. Hydrogen bonded supramolecular structures of eight organic salts based on 2,6-diaminopyridine, and organic acids

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Zhao, Ying; Liu, Bin; Jin, Xiunan; Zhang, Huan; Wen, Xianhong; Liu, Hui; Jin, Li; Wang, Daqi

    2015-11-01

    Here anhydrous and hydrated multi-component organic acid-base salts of 2,6-diaminopyridine have been prepared with the organic acids as trichloroacetic acid, 3,5-dinitrobenzoic acid, 5-nitrosalicylic acid, 3,5-dihydroxybenzoic acid, 5-sulfosalicylic acid, m-phthalic acid, naphthalene-1,5-disulfonic acid, and glutaric acid. The eight crystalline compounds were characterized by X-ray diffraction analysis, infrared (IR), melting point (mp), and elemental analysis. Except salt 4, all structures adopted the hetero R22(8) supramolecular synthon. There were extensive N-H···O/O-H···O/N-H···N/N-H···S hydrogen bonds as well as CH···O, CH-N, CH-π, NH-π, π-π, C-π, Cl-O, and O-O interactions in the supramolecular architectures. The combination of these weak and strong hydrogen bonding associations in the crystal packing led to the formation of the 2D/3D structures.

  5. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients?

    PubMed

    Masevicius, Fabio D; Dubin, Arnaldo

    2015-02-04

    The Stewart approach-the application of basic physical-chemical principles of aqueous solutions to blood-is an appealing method for analyzing acid-base disorders. These principles mainly dictate that pH is determined by three independent variables, which change primarily and independently of one other. In blood plasma in vivo these variables are: (1) the PCO2; (2) the strong ion difference (SID)-the difference between the sums of all the strong (i.e., fully dissociated, chemically nonreacting) cations and all the strong anions; and (3) the nonvolatile weak acids (Atot). Accordingly, the pH and the bicarbonate levels (dependent variables) are only altered when one or more of the independent variables change. Moreover, the source of H(+) is the dissociation of water to maintain electroneutrality when the independent variables are modified. The basic principles of the Stewart approach in blood, however, have been challenged in different ways. First, the presumed independent variables are actually interdependent as occurs in situations such as: (1) the Hamburger effect (a chloride shift when CO2 is added to venous blood from the tissues); (2) the loss of Donnan equilibrium (a chloride shift from the interstitium to the intravascular compartment to balance the decrease of Atot secondary to capillary leak; and (3) the compensatory response to a primary disturbance in either independent variable. Second, the concept of water dissociation in response to changes in SID is controversial and lacks experimental evidence. In addition, the Stewart approach is not better than the conventional method for understanding acid-base disorders such as hyperchloremic metabolic acidosis secondary to a chloride-rich-fluid load. Finally, several attempts were performed to demonstrate the clinical superiority of the Stewart approach. These studies, however, have severe methodological drawbacks. In contrast, the largest study on this issue indicated the interchangeability of the Stewart and

  6. The physiological assessment of acid-base balance.

    PubMed

    Howorth, P J

    1975-04-01

    Acid-base terminology including the sue of SI units is reviewed. The historical reasons why nomograms have been particularly used in acid-base work are discussed. The theoretical basis of the Henderson-Hasselbalch equation is considered. It is emphasized that the solubility of CO2 in plasma and the apparent first dissociation constant of carbonic acid are not chemical constants when applied to media of uncertain and varying composition such as blood plasma. The use of the Henderson-Hasselbalch equation in making hypothermia corrections for PCO2 is discussed. The Astrup system for the in vitro determination of blood gases and derived parameters is described and the theoretical weakness of the base excess concept stressed. A more clinically-oriented approach to the assessment of acid-base problems is presented. Measurement of blood [H+] and PCO2 are considered to be primary data which should be recorded on a chart with in vivo CO2-titration lines (see below). Clinical information and results of other laboratory investigations such as plasma bicarbonate, PO2,P50 are then to be considered together with the primary data. In order to interpret this combined information it is essential to take into account the known ventilatory response to metabolic acidosis and alkalosis, and the renal response to respiratory acidosis and alkalosis. The use is recommended of a chart showing the whole-body CO2-titration points obtained when patients with different initial levels of non-respiratory [H+] are ventilated. A number of examples are given of the use of this [H+] and PCO2 in vivo chart in the interpretation of acid-base data. The aetiology, prognosis and treatment of metabolic alkalosis is briefly reviewed. Treatment with intravenous acid is recommended for established cases. Attention is drawn to the possibility of iatrogenic production of metabolic alkalosis. Caution is expressed over the use of intravenous alkali in all but the severest cases of metabolic acidosis. The role of

  7. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    PubMed

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived <15%. Cells grown at pH 9.0 survived 40 to 100% at pH 10, whereas cells grown at pH 7.0 survived <5%. Thus, growth in a moderate acid or base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  8. Acid-base properties of bentonite rocks with different origins.

    PubMed

    Nagy, Noémi M; Kónya, József

    2006-03-01

    Five bentonite samples (35-47% montmorillonite) from a Sarmatian sediment series with bentonite sites around Sajóbábony (Hungary) is studied. Some of these samples were tuffogenic bentonite (sedimentary), the others were bentonitized tuff with volcano sedimentary origin. The acid-base properties of the edge sites were studied by potentiometric titrations and surface complexation modeling. It was found that the number and the ratio of silanol and aluminol sites as well as the intrinsic stability constants are different for the sedimentary bentonite and bentonitized tuff. The characteristic properties of the edges sites depend on the origins. The acid-base properties are compared to other commercial and standard bentonites.

  9. Synthesis and characterization of copolyanhydrides of carbohydrate-based galactaric acid and adipic acid.

    PubMed

    Mehtiö, Tuomas; Nurmi, Leena; Rämö, Virpi; Mikkonen, Hannu; Harlin, Ali

    2015-01-30

    A series of copolyanhydrides, consisting of 2,3,4,5-tetra-O-acetylgalactaric acid (AGA) and adipic acid (AA) as monomer units, was polymerized. Synthesis of AGA monomer consisted of two steps. First, O-acetylation of galactaric acid secondary hydroxyl groups was performed using acetic anhydride as a reagent. Acetic anhydride was then further used as a reagent in the synthesis of diacetyl mixed anhydride of AGA. Polymerizations were conducted as bulk condensation polymerization at 150 °C. Thermal properties of the copolymers varied depending on monomer composition. Increase in the AGA content had a clear increasing effect on the Tg. A similar increasing effect was observed in Tm. The degree of crystallinity decreased as AGA content increased. There was a slightly lowering tendency in the molecular weights of the obtained polymers when the AGA content in the polymerization mixtures increased. The described synthesis route shows that bio-based aldaric acid monomers are potential candidates for the adjustment of thermal properties of polyanhydrides.

  10. Tank-Treading of Erythrocytes in Strong Shear Flows via a Nonstiff Cytoskeleton-Based Continuum Computational Modeling

    PubMed Central

    Dodson, W.R.; Dimitrakopoulos, P.

    2010-01-01

    We develop a computationally efficient cytoskeleton-based continuum erythrocyte algorithm. The cytoskeleton is modeled as a two-dimensional elastic solid with comparable shearing and area-dilatation resistance that follows a material law (Skalak, R., A. Tozeren, R. P. Zarda, and S. Chien. 1973. Strain energy function of red blood cell membranes. Biophys. J. 13:245–264). Our modeling enforces the global area-incompressibility of the spectrin skeleton (being enclosed beneath the lipid bilayer in the erythrocyte membrane) via a nonstiff, and thus efficient, adaptive prestress procedure which accounts for the (locally) isotropic stress imposed by the lipid bilayer on the cytoskeleton. In addition, we investigate the dynamics of healthy human erythrocytes in strong shear flows with capillary number Ca = O(1) and small-to-moderate viscosity ratios 0.001 ≤ λ ≤ 1.5. These conditions correspond to a wide range of surrounding medium viscosities (4–600 mPa s) and shear flow rates (0.02–440 s−1), and match those used in ektacytometry systems. Our computational results on the cell deformability and tank-treading frequency are compared with ektacytometry findings. The tank-treading period is shown to be inversely proportional to the shear rate and to increase linearly with the ratio of the cytoplasm viscosity to that of the suspending medium. Our modeling also predicts that the cytoskeleton undergoes measurable local area dilatation and compression during the tank-treading of the cells. PMID:21044588

  11. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone).

    PubMed

    Jiang, Jinhong; Zhu, Liping; Zhu, Lijing; Zhang, Hongtao; Zhu, Baoku; Xu, Youyi

    2013-12-26

    A facile and versatile approach for the preparation of antifouling and antimicrobial polymer membranes has been developed on the basis of bioinspired polydopamine (PDA) in this work. It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone) (PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. The strategy of material surface modification reported here is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional coatings based on the mussel-inspired surface chemistry.

  12. Interpretation of pH-activity profiles for acid-base catalysis from molecular simulations.

    PubMed

    Dissanayake, Thakshila; Swails, Jason M; Harris, Michael E; Roitberg, Adrian E; York, Darrin M

    2015-02-17

    The measurement of reaction rate as a function of pH provides essential information about mechanism. These rates are sensitive to the pK(a) values of amino acids directly involved in catalysis that are often shifted by the enzyme active site environment. Experimentally observed pH-rate profiles are usually interpreted using simple kinetic models that allow estimation of "apparent pK(a)" values of presumed general acid and base catalysts. One of the underlying assumptions in these models is that the protonation states are uncorrelated. In this work, we introduce the use of constant pH molecular dynamics simulations in explicit solvent (CpHMD) with replica exchange in the pH-dimension (pH-REMD) as a tool to aid in the interpretation of pH-activity data of enzymes and to test the validity of different kinetic models. We apply the methods to RNase A, a prototype acid-base catalyst, to predict the macroscopic and microscopic pK(a) values, as well as the shape of the pH-rate profile. Results for apo and cCMP-bound RNase A agree well with available experimental data and suggest that deprotonation of the general acid and protonation of the general base are not strongly coupled in transphosphorylation and hydrolysis steps. Stronger coupling, however, is predicted for the Lys41 and His119 protonation states in apo RNase A, leading to the requirement for a microscopic kinetic model. This type of analysis may be important for other catalytic systems where the active forms of the implicated general acid and base are oppositely charged and more highly correlated. These results suggest a new way for CpHMD/pH-REMD simulations to bridge the gap with experiments to provide a molecular-level interpretation of pH-activity data in studies of enzyme mechanisms.

  13. Acid-base thermochemistry of gaseous aliphatic α-aminoacids.

    PubMed

    Bouchoux, Guy; Huang, Sihua; Inda, Bhawani Singh

    2011-01-14

    Acid-base thermochemistry of isolated aliphatic amino acids (denoted AAA): glycine, alanine, valine, leucine, isoleucine and proline has been examined theoretically by quantum chemical computations at the G3MP2B3 level. Conformational analysis on neutral, protonated and deprotonated species has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. Comparison of the G3MP2B3 theoretical proton affinities, PA, and ΔH(acid) with experimental results is shown to be correct if experimental thermochemistry is re-evaluated and adapted to the most recent acidity-basicity scales. From this point of view, a set of evaluated proton affinities of 887, 902, 915, 916, 919 and 941 kJ mol(-1), and a set of evaluated ΔH(acid) of 1433, 1430, 1423, 1423, 1422 and 1426 kJ mol(-1), is proposed for glycine, alanine, valine, leucine, isoleucine and proline, respectively. Correlations with structural parameters (Taft's σ(α) polarizability parameter and molecular size) suggest that polarizability of the side chain is the major origin of the increase in PA and decrease in ΔH(acid) along the homologous series glycine, alanine, valine and leucine/isoleucine. Heats of formation of gaseous species AAA, AAAH(+) and [AAA-H](-) were computed at the G3MP2B3 level. The present study provides previously unavailable Δ(f)H°(298) for the ionized species AAAH(+) and [AAA-H](-). Comparison with Benson's estimate, and correlation with molecular size, show that several experimental Δ(f)H°(298) values of neutral or gaseous AAA might be erroneous.

  14. [Injuries caused by acids and bases - emergency treatment].

    PubMed

    Reifferscheid, Florian; Stuhr, Markus; Kaiser, Guido; Freudenberg, Matthias; Kerner, Thoralf

    2014-06-01

    Emergency medical care for injuries caused by acids and bases is challenging for rescue services. They have to deal with operational safety, detection of the toxic agent, emergency medical care of the patient and handling of the rescue mission. Because of the rareness of such situations experience and routine are largely missing. This article highlights some basic points for the therapy and provides support for such rescue missions.

  15. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    PubMed

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate.

  16. Strong dissimilarities between the gas-phase acidities of saturated and alpha,beta-unsaturated boranes and the corresponding alanes and gallanes.

    PubMed

    Gámez, José A; Guillemin, Jean-Claude; Mó, Otilia; Yáñez, Manuel

    2008-01-01

    The effect that unsaturation has on the intrinsic acidity of boranes, alanes, and gallanes, was analyzed by B3 LYP and CCSD(T)/6-311+G(3df,2p) calculations on methyl-, ethyl-, vinyl-, and ethynylboranes, -alanes and -gallanes, and on the corresponding hydrides XH3. Quite unexpectedly, methylborane, which behaves as a carbon acid, is predicted to have an intrinsic acidity almost 200 kJ mol(-1) stronger than BH3, reflecting the large reinforcement of the C--B bond, which upon deprotonation becomes a double bond through the donation of the lone pair created on the carbon atom into the empty p orbital of the boron. Also unexpectedly, and for the same reason, the saturated and alpha,beta-unsaturated boranes are much stronger acids than the corresponding hydrocarbons, in spite of being carbon acids as well. The Al derivatives also behave as carbon acids, but in this case the most favorable deprotonation process occurs at C beta, leading to the formation of rather stable three-membered rings, again through the donation of the C beta lone pair into the empty p orbital of Al. For Ga-containing compounds the deprotonation of the GaH2 group is the most favorable process. Therefore only Ga derivatives behave similarly to the analogues of Groups 14, 15, and 16 of the periodic table, and the saturated derivatives exhibit a weaker acidity than the unsaturated ones. Within Group 13, boranes are stronger acids than alanes and gallanes. For ethyl and vinyl derivatives, alanes are stronger acids than gallanes. We have shown, for the first time, that acidity enhancement for primary heterocompounds is not only dictated by the position of the heteroatom in the periodic table and the nature of the substituent, but also by the bonding rearrangements triggered by the deprotonation of the neutral acid.

  17. The normal acid-base status of mice.

    PubMed

    Iversen, Nina K; Malte, Hans; Baatrup, Erik; Wang, Tobias

    2012-03-15

    Rodent models are commonly used for various physiological studies including acid-base regulation. Despite the widespread use of especially genetic modified mice, little attention have been made to characterise the normal acid-base status in these animals in order to reveal proper control values. Furthermore, several studies report blood gas values obtained in anaesthetised animals. We, therefore, decided to characterise blood CO(2) binding characteristic of mouse blood in vitro and to characterise normal acid-base status in conscious BALBc mice. In vitro CO(2) dissociation curves, performed on whole blood equilibrated to various PCO₂ levels in rotating tonometers, revealed a typical mammalian pK' (pK'=7.816-0.234 × pH (r=0.34)) and a non-bicarbonate buffer capacity (16.1 ± 2.6 slyke). To measure arterial acid-base status, small blood samples were taken from undisturbed mice with indwelling catheters in the carotid artery. In these animals, pH was 7.391 ± 0.026, plasma [HCO(3)(-)] 18.4 ± 0.83 mM, PCO₂ 30.3 ± 2.1 mm Hg and lactate concentration 4.6 ± 0.7 mM. Our study, therefore, shows that mice have an arterial pH that resembles other mammals, although arterial PCO₂ tends to be lower than in larger mammals. However, pH from arterial blood sampled from mice anaesthetised with isoflurane was significantly lower (pH 7.239 ± 0.021), while plasma [HCO(3)(-)] was 18.5 ± 1.4 mM, PCO₂ 41.9 ± 2.9 mm Hg and lactate concentration 4.48 ± 0.67 mM. Furthermore, we measured metabolism and ventilation (V(E)) in order to determine the ventilation requirements (VE/VO₂) to answer whether small mammals tend to hyperventilate. We recommend, therefore, that studies on acid-base regulation in mice should be based on samples taken for indwelling catheters rather than cardiac puncture of terminally anaesthetised mice.

  18. NCEER strong-motion data base: A user manual for the geobase release (version 1.0 for the SUN3)

    NASA Astrophysics Data System (ADS)

    Friberg, P.; Jacob, K.

    1990-03-01

    The purpose of the report is to describe the initial implementation of a strong-motion data base developed by Lamont-Doherty Geological Observatory (Lamont) under the auspices of the National Center for Earthquake Engineering Research (NCEER). The report details how to install Lamont's data base access tool, GeoBase, and how to obtain strong-motion data. NCEER's strong-motion data base combines features never before available for a single strong-motion database. These are: (1) both parametric and time-series data are accessible over a computer network; (2) the parametric data are maintained in a relational format; (3) the time-series data are stored on-line; and (4) the time-series are stored in a consistent format.

  19. Lewis base activation of Lewis acids: development of a Lewis base catalyzed selenolactonization.

    PubMed

    Denmark, Scott E; Collins, William R

    2007-09-13

    The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Brønsted acid promoter.

  20. Phosphoric acid loaded azo (-N═N-) based covalent organic framework for proton conduction.

    PubMed

    Chandra, Suman; Kundu, Tanay; Kandambeth, Sharath; Babarao, Ravichandar; Marathe, Yogesh; Kunjir, Shrikant M; Banerjee, Rahul

    2014-05-07

    Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4'-azodianiline (Azo) or 4,4'-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (σ = 9.9 × 10(-4) S cm(-1)) and anhydrous state (σ = 6.7 × 10(-5) S cm(-1)). This report constitutes the first emergence of COFs as proton conducting materials.

  1. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    PubMed

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb(3+) ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H(+) is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb(3+). The long luminescence lifetime of Tb(3+) allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H(+) in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands.

  2. [Sb(C₆F₅)₄][B(C₆F₅)₄]: an air stable, Lewis acidic stibonium salt that activates strong element-fluorine bonds.

    PubMed

    Pan, Baofei; Gabbaï, François P

    2014-07-09

    As part of our ongoing interest in main group Lewis acids for fluoride anion complexation and element-fluorine bond activation, we have synthesized the stibonium borate salt [Sb(C6F5)4][B(C6F5)4] (3). The perfluorinated stibonium cation [Sb(C6F5)4](+) present in this salt is a potent Lewis acid which abstracts a fluoride anion from [SbF6](-) and [BF(C6F5)3](-) indicating that it is a stronger Lewis acid than SbF5 and B(C6F5)3. The unusual Lewis acidic properties of 3 are further reflected by its ability to polymerize THF or to promote the hydrodefluorination of fluoroalkanes in the presence of Et3SiH. While highly reactive in solution, 3 is a perfectly air stable salt, making it a convenient Lewis acidic reagent.

  3. [Nutrition, acid-base metabolism, cation-anion difference and total base balance in humans].

    PubMed

    Mioni, R; Sala, P; Mioni, G

    2008-01-01

    The relationship between dietary intake and acid-base metabolism has been investigated in the past by means of the inorganic cation-anion difference (C(+)(nm)-A(-)(nm)) method based on dietary ash-acidity titration after the oxidative combustion of food samples. Besides the inorganic components of TA (A(-)(nm)-C(+)(nm)), which are under renal control, there are also metabolizable components (A(-)(nm)-C(+)(nm)) of TA, which are under the control of the intermediate metabolism. The whole body base balance, NBb(W), is obtained only by the application of C(+)(nm)-A(-)(nm) to food, feces and urine, while the metabolizable component (A(-)(nm)-C(+)(nm)) is disregarded. A novel method has been subsequently suggested to calculate the net balance of fixed acid, made up by the difference between the input of net endogenous acid production: NEAP = SO(4)(2-)+A(-)(m)-(C(+)(nm)-A(-)(nm)), and the output of net acid excretion: NAE = TA + NH(4)(+) - HCO(3)(-). This approach has been criticized because 1) it includes metabolizable acids, whose production cannot be measured independently; 2) the specific control of metabolizable acid and base has been incorrectly attributed to the kidney; 3) the inclusion of A-m in the balance input generates an acid overload; 4) the object of measurement in making up a balance has to be the same, a condition not fulfilled as NEAP is different from NAE. Lastly, by rearranging the net balance of the acid equation, the balance of nonmetabolizable acid equation is obtained. Therefore, any discrepancy between these two equations is due to the inaccuracy in the urine measurement of metabolizable cations and/or anions.

  4. Acid-base chemistry of frustrated water at protein interfaces.

    PubMed

    Fernández, Ariel

    2016-01-01

    Water molecules at a protein interface are often frustrated in hydrogen-bonding opportunities due to subnanoscale confinement. As shown, this condition makes them behave as a general base that may titrate side-chain ammonium and guanidinium cations. Frustration-based chemistry is captured by a quantum mechanical treatment of proton transference and shown to remove same-charge uncompensated anticontacts at the interface found in the crystallographic record and in other spectroscopic information on the aqueous interface. Such observations are untenable within classical arguments, as hydronium is a stronger acid than ammonium or guanidinium. Frustration enables a directed Grotthuss mechanism for proton transference stabilizing same-charge anticontacts.

  5. Nutrition, acid-base status and growth in early childhood.

    PubMed

    Kalhoff, H; Manz, F

    2001-10-01

    Optimal growth is only possible in a well-balanced "inner milieu". Premature infants are especially vulnerable for disturbances of acid-base metabolism with a predisposition to metabolic acidosis due to a transient disproportion between age-related low renal capacity for net acid excretion (NAE) and an unphysiologically high actual renal NAE on nutrition with standard formulas. During a 50 month period, 452 low birth-weight infants were screened for spontaneous development of incipient late metabolic acidosis (ILMA), an early stage during the development of retention acidosis, characterized by maximum renal acid stimulation (MRAS, urine-pH < 5.4) on two consecutive days but still compensated systemic acid-base status. Compared with controls, patients with ILMA showed higher serum creatinine values, an increased urinary excretion of sodium, aldosterone and nitrogen, but only slightly lower blood pH (7.38 vs 7.41) and base excess (-2.8 vs. 0.2 mmol/l) with respiratory compensation (PCO2 35 vs 37 mm Hg). Patients with altogether 149 episodes of ILMA were subsequently randomly allocated to either treatment with NaHCO3 2 mmol/kg/d for 7 days or no special therapy in protocol I, or NaHCO3 vs NaCl each 2 mmol/kg/d for 7 days in protocol II. Patients of protocol I with persistent MRAS for 7 days showed lowest weight gain and a tendency for a further increase in urinary aldosterone and nitrogen excretion. NaCl supplementation (protocol II) seemed to promote weight gain without affecting either impaired mineralization or suboptimal nitrogen retention. Patients with alkali therapy under both protocols showed normal weight gain and normalization of hormonal stimulation, mineralization (protocol II) and nitrogen assimilation. Modification of the mineral content of a standard preterm formula decreased renal NAE to the low level seen on alimentation with human milk and reduced the incidence of ILMA in preterm and small-for-gestational-age infants to 1%. The data show that ILMA is

  6. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    PubMed

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  7. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.

    PubMed

    Fujita, Etsuko; Muckerman, James T; Himeda, Yuichiro

    2013-01-01

    Recent investigations of the interconversion of CO2 and formic acid using Ru, Ir and Fe complexes are summarized in this review. During the past several years, both the reaction rates and catalyst stabilities have been significantly improved. Remarkably, the interconversion (i.e., reversibility) has also been achieved under mild conditions in environmentally benign water solvent by slightly changing the pH of the aqueous solution. Only a few catalysts seem to reflect a bio-inspired design such as the use of proton responsive ligands, ligands with pendent bases or acids for a second-coordination-sphere interaction, electroresponsive ligands, and/or ligands having a hydrogen bonding function with a solvent molecule or an added reagent. The most successful of these is an iridium dinuclear complex catalyst that at least has the first three of these characteristics associated with its bridging ligand. By utilizing an acid/base equilibrium for proton removal, the ligand becomes a strong electron donor, resulting in Ir(I) character with a vacant coordination site at each metal center in slightly basic solution. Complemented by DFT calculations, kinetic studies of the rates of formate production using a related family of Ir complexes with and without such functions on the ligand reveal that the rate-determining step for the CO2 hydrogenation is likely to be H2 addition through heterolytic cleavage involving a "proton relay" through the pendent base. The dehydrogenation of formic acid, owing to the proton responsive ligands changing character under slightly acidic pH conditions, is likely to occur by a mechanism with a different rate-determining step. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.

  8. Acid-base catalysis of N-[(morpholine)methylene]daunorubicin.

    PubMed

    Krause, Anna; Jelińska, Anna; Cielecka-Piontek, Judyta; Klawitter, Maria; Zalewski, Przemysław; Oszczapowicz, Irena; Wąsowska, Małgorzata

    2012-08-01

    The stability of N-[(morpholine)methylene]-daunorubicin hydrochloride (MMD) was investigated in the pH range 0.44-13.54, at 313, 308, 303 and 298 K. The degradation of MMD as a result of hydrolysis is a pseudo-first-order reaction described by the following equation: ln c = ln c(0) - k(obs)• t. In the solutions of hydrochloric acid, sodium hydroxide, borate, acetate and phosphate buffers, k(obs) = k(pH) because general acid-base catalysis was not observed. Specific acid-base catalysis of MMD comprises the following reactions: hydrolysis of the protonated molecules of MMD catalyzed by hydrogen ions (k(1)) and spontaneous hydrolysis of MMD molecules other than the protonated ones (k(2)) under the influence of water. The total rate of the reaction is equal to the sum of partial reactions: k(pH) = k(1) • a(H)+ • f(1) + k(2) • f(2) where: k(1) is the second-order rate constant (mol(-1) l s(-1)) of the specific hydrogen ion-catalyzed degradation of the protonated molecules of MMD; k(2) is the pseudo-first-order rate constant (s(-1)) of the water-catalyzed degradation of MMD molecules other than the protonated ones, f(1) - f(2) are fractions of the compound. MMD is the most stable at approx. pH 2.5.

  9. A microarray-based method to perform nucleic acid selections.

    PubMed

    Aminova, Olga; Disney, Matthew D

    2010-01-01

    This method describes a microarray-based platform to perform nucleic acid selections. Chemical ligands to which a nucleic acid binder is desired are immobilized onto an agarose microarray surface; the array is then incubated with an RNA library. Bound RNA library members are harvested directly from the array surface via gel excision at the position on the array where a ligand was immobilized. The RNA is then amplified via RT-PCR, cloned, and sequenced. This method has the following advantages over traditional resin-based Systematic Evolution of Ligands by Exponential Enrichment (SELEX): (1) multiple selections can be completed in parallel on a single microarray surface; (2) kinetic biases in the selections are mitigated since all RNA binders are harvested from an array via gel excision; (3) the amount of chemical ligand needed to perform a selection is minimized; (4) selections do not require expensive resins or equipment; and (5) the matrix used for selections is inexpensive and easy to prepare. Although this protocol was demonstrated for RNA selections, it should be applicable for any nucleic acid selection.

  10. Age estimation based on aspartic acid racemization in human sclera.

    PubMed

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  11. How Do Undergraduate Students Conceptualize Acid-Base Chemistry? Measurement of a Concept Progression

    ERIC Educational Resources Information Center

    Romine, William L.; Todd, Amber N.; Clark, Travis B.

    2016-01-01

    We developed and validated a new instrument, called "Measuring Concept progressions in Acid-Base chemistry" (MCAB) and used it to better understand the progression of undergraduate students' understandings about acid-base chemistry. Items were developed based on an existing learning progression for acid-base chemistry. We used the Rasch…

  12. Urea biosensors based on PVC membrane containing palmitic acid.

    PubMed

    Karakuş, Emine; Pekyardimci, Sule; Esma, Kiliç

    2005-01-01

    A new urea biosensor was prepared by immobilizing urease with four different procedures on poly(vinylchloride) (PVC) ammonium membrane electrode containing palmitic acid by using nonactine as an ammonium-ionophore. The analytical characteristics were investigated and were compared those of the biosensor prepared by using carboxylated PVC. The effect of pH, buffer concentration, temperature, urease concentration, stirring rate and enzyme immobilization procedures on the response to urea of the enzyme electrode were investigated. The linear working range and sensitivity of the biosensor were also determined. The urea biosensor prepared by using the PVC membranes containing palmitic acid showed more effective performance than those of the carboxylated PVC based biosensors. Additionally, urea assay in serum was successfully carried out by using the standard addition method.

  13. Ground-based observations during the period between two strong November 2004 storms attributed to steady magnetospheric convection

    NASA Astrophysics Data System (ADS)

    Manninen, J.; Kleimenova, N. G.; Kozyreva, O. V.; Ranta, A.; Kauristie, K.; MäKinen, S.; Kornilova, T. A.

    2008-03-01

    Strong geomagnetic storms are of great scientific interest because they drive the magnetosphere to an extreme state and result in nontypical magnetosphere-ionosphere coupling. The present study examines the ground-based signatures of the magnetosphere-ionosphere disturbances during the recovery phase of the very intense storm on 7-8 November 2004. The recovery phase took place under steady and slightly negative (˜-5 nT) values of the IMF Bz. We compare this event with previously documented storm recovery phases occurring under positive IMF Bz and accompanied by morning Pc5 geomagnetic pulsations. During the period studied in this article the strongest pulsation activity was recorded in the evening and midnight sectors of the Earth. We analyze observations from the Scandinavian multipoint ground-based instrumentation: (1) geomagnetic variations and pulsations, (2) auroras in visual wavelengths, and (3) energetic particle precipitation (riometer data). We show that several enhancements in electrojet, auroral, and energetic precipitation activity were recorded at auroral latitudes. The activations lasted 0.5-2 hours, and the associated negative magnetic field deviations were often more than 1000 nT. Only one of these activations shows typical substorm behavior (poleward expansion and geostationary particle injection). We demonstrate remarkably good correlation between the magnetic variations and cosmic noise absorption variations (in pulsations and slower variations) as well as between the optical auroras and cosmic noise absorption (Imaging Riometer for Ionospheric Studies riometer system) both in time and in space. Thus the auroral precipitation revealed a very coherent behavior over a wide energy range (˜1-40 keV) during the analyzed period. The images acquired by the network of MIRACLE all-sky cameras show that the auroral distribution exhibited double oval configuration during our event. Double oval is often observed during so-called Steady Magnetospheric

  14. Bio-based production of organic acids with Corynebacterium glutamicum

    PubMed Central

    Wieschalka, Stefan; Blombach, Bastian; Bott, Michael; Eikmanns, Bernhard J

    2013-01-01

    The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers. Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG. PMID

  15. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  16. General analytical procedure for determination of acidity parameters of weak acids and bases.

    PubMed

    Pilarski, Bogusław; Kaliszan, Roman; Wyrzykowski, Dariusz; Młodzianowski, Janusz; Balińska, Agata

    2015-01-01

    The paper presents a new convenient, inexpensive, and reagent-saving general methodology for the determination of pK a values for components of the mixture of diverse chemical classes weak organic acids and bases in water solution, without the need to separate individual analytes. The data obtained from simple pH-metric microtitrations are numerically processed into reliable pK a values for each component of the mixture. Excellent agreement has been obtained between the determined pK a values and the reference literature data for compounds studied.

  17. Determination of the Acid-Base Dissociation Constant of Acid-Degradable Hexamethylenetetramine by Capillary Zone Electrophoresis.

    PubMed

    Takayanagi, Toshio; Shimakami, Natsumi; Kurashina, Masashi; Mizuguchi, Hitoshi; Yabutani, Tomoki

    2016-01-01

    The acid-base equilibrium of hexamethylenetetramine (hexamine) was analyzed with its effective electrophoretic mobility by capillary zone electrophoresis. Although hexamine is degradable in a weakly acidic aqueous solution, and the degraded products of ammonia and formaldehyde can be formed, the effective electrophoretic mobility of hexamine was measured in the pH range between 2.8 and 6.9. An acid-base dissociation equilibrium of the protonated hexamine was analyzed based on the mobility change, and an acid dissociation constant of pKa = 4.93 ± 0.01 (mean ± standard error, ionic strength: 0.020 mol dm(-3)) was determined. The monoprotic acid-base equilibrium of hexamine was confirmed through comparisons of its electrophoretic mobility with the N-ethylquinolinium ion and with the monocationic N-ethyl derivative of hexamine, as well as a slope analysis of the dissociation equilibrium.

  18. Functional nucleic-acid-based sensors for environmental monitoring.

    PubMed

    Sett, Arghya; Das, Suradip; Bora, Utpal

    2014-10-01

    Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental

  19. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  20. A one-step colorimetric acid-base titration sensor using a complementary color changing coordination system.

    PubMed

    Cho, Hui Hun; Kim, Si Hyun; Heo, Jun Hyuk; Moon, Young Eel; Choi, Young Hun; Lim, Dong Cheol; Han, Kwon-Hoon; Lee, Jung Heon

    2016-06-21

    We report the development of a colorimetric sensor that allows for the quantitative measurement of the acid content via acid-base titration in a single-step. In order to create the sensor, we used a cobalt coordination system (Co-complex sensor) that changes from greenish blue colored Co(H2O)4(OH)2 to pink colored Co(H2O)6(2+) after neutralization. Greenish blue and pink are two complementary colors with a strong contrast. As a certain amount of acid is introduced to the Co-complex sensor, a portion of greenish blue colored Co(H2O)4(OH)2 changes to pink colored Co(H2O)6(2+), producing a different color. As the ratio of greenish blue and pink in the Co-complex sensor is determined by the amount of neutralization reaction occurring between Co(H2O)4(OH)2 and an acid, the sensor produced a spectrum of green, yellow green, brown, orange, and pink colors depending on the acid content. In contrast, the color change appeared only beyond the end point for normal acid-base titration. When we mixed this Co-complex sensor with different concentrations of citric acid, tartaric acid, and malic acid, three representative organic acids in fruits, we observed distinct color changes for each sample. This color change could also be observed in real fruit juice. When we treated the Co-complex sensor with real tangerine juice, it generated diverse colors depending on the concentration of citric acid in each sample. These results provide a new angle on simple but quantitative measurements of analytes for on-site usage in various applications, such as in food, farms, and the drug industry.

  1. A fully automatic system for acid-base coulometric titrations

    PubMed Central

    Cladera, A.; Caro, A.; Estela, J. M.; Cerdà, V.

    1990-01-01

    An automatic system for acid-base titrations by electrogeneration of H+ and OH- ions, with potentiometric end-point detection, was developed. The system includes a PC-compatible computer for instrumental control, data acquisition and processing, which allows up to 13 samples to be analysed sequentially with no human intervention. The system performance was tested on the titration of standard solutions, which it carried out with low errors and RSD. It was subsequently applied to the analysis of various samples of environmental and nutritional interest, specifically waters, soft drinks and wines. PMID:18925283

  2. Novel impedimetric dopamine biosensor based on boronic acid functional polythiophene modified electrodes.

    PubMed

    Dervisevic, Muamer; Senel, Mehmet; Cevik, Emre

    2017-03-01

    In this study we report a new, simple and first impedimetric biosensor based on 3-Thienyl boronic acid for dopamine detection. Biosensor electrode preparation is 1min long by simple electro-polymerization of 3-Thienyl boronic acid and copolymer Thiophene P(TBA0.50Th0.50). Strong interaction between dopamine and thin layer of boronic acid has provided bio-sensing electrode high selectivity and stability, linear range of 7.8 to 125μM, and detection limit of 0.3μM. Characterization and optimization studies were conducted using electrochemical impedance spectroscopy (EIS) and cyclic voltammogram (CV). In order to test reliability of proposed biosensor real sample application study has been conducted using non-diluted human urine and it has been found that biosensor selectivity and recovery is excellent. As well P(TBA0.50Th0.50) based electrode and dopamine interaction has been proven by single frequency impedance measurements. Biosensors acquired good reproducibility, stability, selectivity and very low interference.

  3. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  4. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification

    NASA Astrophysics Data System (ADS)

    Chiaramello, M.; Amiranoff, F.; Riconda, C.; Weber, S.

    2016-12-01

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  5. Uric Acid Is More Strongly Associated with Impaired Glucose Regulation in Women than in Men from the General Population: The KORA F4-Study

    PubMed Central

    Meisinger, Christa; Döring, Angela; Stöckl, Doris; Thorand, Barbara; Kowall, Bernd; Rathmann, Wolfgang

    2012-01-01

    Objective High serum uric acid (UA) levels are associated with the metabolic syndrome, type 2 diabetes and cardiovascular disease. It is largely unknown whether there are gender-specific differences regarding the association between UA and prediabetic states. We examined the possible association between UA levels and known as well as newly diagnosed diabetes (NDD), isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), and combined IFG/IGT in a population-based sample of 32-to-81-year-old men and women. Research Design and Methods An oral glucose tolerance test was carried out in all 2,740 participants without known diabetes of the Cooperative Health Research in the Region of Augsburg (KORA) F4 Study conducted between 2006 and 2008 in Southern Germany. Serum UA was analysed by the uricase method. Results In women after multivariable adjustment the associations between UA and i-IFG (OR 1.57, 95% CI 1.15–2.14), IFG/IGT (OR 1.52, 1.07–2.16), NDD (OR 1.67, 95% CI 1.28–2.17), and known diabetes (OR 1.47, 95% CI 1.18–1.82) remained significant, but the association with i-IGT (OR 1.14, 95% CI 0.95–1.36) lost significance. In contrast in men, after multivariable adjustment there was only a significant association between UA levels and i-IFG (OR 1.49, 95% CI 1.21–1.84), all other associations were non-significant (i-IGT: OR 1.09, IFG/IGT: OR 1.06, NDD: OR 0.91, known diabetes: OR 1.04; all p-values>0.05). Conclusions Serum UA concentrations were associated with different categories of impaired glucose regulation in individuals from the general population, particularly in women. Further studies investigating the role of UA in the development of derangements in glucose metabolism are needed. PMID:22615932

  6. Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid-Based Resins

    DTIC Science & Technology

    2005-12-01

    The sample was titrated with the perchloric acid / peracetic acid solution (Aldrich) until the indicator, 0.1% crystal violet in acetic acid (Aldrich...Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid -Based Resins by John J. La Scala, Amutha Jeyarajasingam, Cherise Winston...Aberdeen Proving Ground, MD 21005-5069 ARL-TR-3681 December 2005 Predicting the Viscosity of Low VOC Vinyl Ester and Fatty Acid -Based

  7. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells.

    PubMed

    García-Rivera, Dagmar; Delgado, René; Bougarne, Nadia; Haegeman, Guy; Berghe, Wim Vanden

    2011-06-01

    Vimang is a standardized extract derived from Mango bark (Mangifera Indica L.), commonly used as anti-inflammatory phytomedicine, which has recently been used to complement cancer therapies in cancer patients. We have further investigated potential anti-tumour effects of glucosylxanthone mangiferin and indanone gallic acid, which are both present in Vimang extract. We observed significant anti-tumour effects of both Vimang constituents in the highly aggressive and metastatic breast cancer cell type MDA-MB231. At the molecular level, mangiferin and gallic acid both inhibit classical NFκB activation by IKKα/β kinases, which results in impaired IκB degradation, NFκB translocation and NFκB/DNA binding. In contrast to the xanthone mangiferin, gallic acid further inhibits additional NFκB pathways involved in cancer cell survival and therapy resistance, such as MEK1, JNK1/2, MSK1, and p90RSK. This results in combinatorial inhibition of NFκB activity by gallic acid, which results in potent inhibition of NFκB target genes involved in inflammation, metastasis, anti-apoptosis and angiogenesis, such as IL-6, IL-8, COX2, CXCR4, XIAP, bcl2, VEGF. The cumulative NFκB inhibition by gallic acid, but not mangiferin, is also reflected at the level of cell survival, which reveals significant tumour cytotoxic effects in MDA-MB231 cells. Altogether, we identify gallic acid, besides mangiferin, as an essential anti-cancer component in Vimang extract, which demonstrates multifocal inhibition of NFκB activity in the cancer-inflammation network.

  8. Sorption of REE and TPE on sulfonated strong-acid cation exchanger KU-2 from multicomponent HNO{sub 3} solutions

    SciTech Connect

    Chuveleva, E.A.; Kharitonov, O.V.; Firsova, L.A.

    1995-05-01

    Sorption of rare earths (REE) from multicomponent systems is studied as a function of solution acidity (0.1-2.0 M) and temperature (20-70{degrees}C). The elution curves for REE and transplutonium-element (TPE) sorption pass through a maximum, the value of which increases with decreasing solution acidity. The selectivity order changes for Y. This phenomenon is explained. The separation coefficients Nd-M are determined for various [HNO{sub 3}]. In the range [H{sup +}] = 0.5-2.01 M, the separation coefficients become <1. The optimal conditions for REE and TPE sorption are determined.

  9. Equivalence of Computer-Based and Paper-Pencil Administrations of the Strong-Campbell Interest Inventory.

    ERIC Educational Resources Information Center

    Vansickle, Timothy R.; Kapes, Jerome T.

    First-, second-, and third-year students enrolled in an introductory educational psychology class at Texas A&M University in College Station were administered either a pencil-and-paper or computerized version of the Strong-Campbell Interest Inventory. The same or other version of the test was administered after 2 weeks. Focus is on equivalence…

  10. A protocol analysis of the influence of technology on students' actions, verbal commentary, and thought processes during the performance of acid-base titrations

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated students' initial and final understanding of acid-base concepts and their concurrent thought processes and actions during the process of acid-base titrations. Here we report students' actions and thought processes while titrating. Different levels of information were presented by three technologies: chemical indicators, pH meters, and microcomputer-based laboratories. We speculated that the level of information would influence students' actions and thought processes, as expressed in verbal commentary. Data were collected from 14 secondary chemistry students. Each student used one technology to titrate a strong acid, a weak acid, and a polyprotic acid with a strong base. They verbalized their thoughts while titrating. Students then graphed pH versus volume of base and discussed the titration with the investigator. Verbal commentaries were coded and analyzed for patterns in actions and for frequency of statement categories. Drawings were analyzed for shape, scale, and direction; discussions were analyzed for understanding of acid-base neutralization. We found that the technology's level of information affected the focus of students' observations. The microcomputer group focused primarily on the graph; other groups exhibited multiple foci. We speculate the screen display functions as an auxiliary short-term memory. The discussion data also reveal that students held three main ideas about how acids and bases behave when mixed. Implications for instruction are discussed.

  11. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    PubMed

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes.

  12. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    PubMed

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology.

  13. Effects of intravenous solutions on acid-base equilibrium: from crystalloids to colloids and blood components.

    PubMed

    Langer, Thomas; Ferrari, Michele; Zazzeron, Luca; Gattinoni, Luciano; Caironi, Pietro

    2014-01-01

    Intravenous fluid administration is a medical intervention performed worldwide on a daily basis. Nevertheless, only a few physicians are aware of the characteristics of intravenous fluids and their possible effects on plasma acid-base equilibrium. According to Stewart's theory, pH is independently regulated by three variables: partial pressure of carbon dioxide, strong ion difference (SID), and total amount of weak acids (ATOT). When fluids are infused, plasma SID and ATOT tend toward the SID and ATOT of the administered fluid. Depending on their composition, fluids can therefore lower, increase, or leave pH unchanged. As a general rule, crystalloids having a SID greater than plasma bicarbonate concentration (HCO₃-) cause an increase in plasma pH (alkalosis), those having a SID lower than HCO₃- cause a decrease in plasma pH (acidosis), while crystalloids with a SID equal to HCO₃- leave pH unchanged, regardless of the extent of the dilution. Colloids and blood components are composed of a crystalloid solution as solvent, and the abovementioned rules partially hold true also for these fluids. The scenario is however complicated by the possible presence of weak anions (albumin, phosphates and gelatins) and their effect on plasma pH. The present manuscript summarises the characteristics of crystalloids, colloids, buffer solutions and blood components and reviews their effect on acid-base equilibrium. Understanding the composition of intravenous fluids, along with the application of simple physicochemical rules best described by Stewart's approach, are pivotal steps to fully elucidate and predict alterations of plasma acid-base equilibrium induced by fluid therapy.

  14. Soil microbes compete strongly with plants for soil inorganic and amino acid nitrogen in a semiarid grassland exposed to elevated CO2 and warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Free amino acids (FAAs) in soil are an important N source for plants, and abundances are predicted to shift under altered climate conditions such as elevated atmospheric CO2. Composition, plant uptake capacity and plant and microbial use of FAAs relative to inorganic N forms were investigated in a t...

  15. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  16. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials.

    PubMed

    Wu, Peiwen; Yu, Yang; McGhee, Claire E; Tan, Li Huey; Lu, Yi

    2014-12-10

    In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.

  17. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    SciTech Connect

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey; Lu, Yi

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.

  18. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  19. The effects of borate minerals on the synthesis of nucleic acid bases, amino acids and biogenic carboxylic acids from formamide.

    PubMed

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; Di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  20. Effect of temperature on the acid-base properties of the alumina surface: microcalorimetry and acid-base titration experiments.

    PubMed

    Morel, Jean-Pierre; Marmier, Nicolas; Hurel, Charlotte; Morel-Desrosiers, Nicole

    2006-06-15

    Sorption reactions on natural or synthetic materials that can attenuate the migration of pollutants in the geosphere could be affected by temperature variations. Nevertheless, most of the theoretical models describing sorption reactions are at 25 degrees C. To check these models at different temperatures, experimental data such as the enthalpies of sorption are thus required. Highly sensitive microcalorimeters can now be used to determine the heat effects accompanying the sorption of radionuclides on oxide-water interfaces, but enthalpies of sorption cannot be extracted from microcalorimetric data without a clear knowledge of the thermodynamics of protonation and deprotonation of the oxide surface. However, the values reported in the literature show large discrepancies and one must conclude that, amazingly, this fundamental problem of proton binding is not yet resolved. We have thus undertaken to measure by titration microcalorimetry the heat effects accompanying proton exchange at the alumina-water interface at 25 degrees C. Based on (i) the surface sites speciation provided by a surface complexation model (built from acid-base titrations at 25 degrees C) and (ii) results of the microcalorimetric experiments, calculations have been made to extract the enthalpic variations associated respectively to first and second deprotonation of the alumina surface. Values obtained are deltaH1 = 80+/-10 kJ mol(-1) and deltaH2 = 5+/-3 kJ mol(-1). In a second step, these enthalpy values were used to calculate the alumina surface acidity constants at 50 degrees C via the van't Hoff equation. Then a theoretical titration curve at 50 degrees C was calculated and compared to the experimental alumina surface titration curve. Good agreement between the predicted acid-base titration curve and the experimental one was observed.

  1. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  2. Method of Identifying a Base in a Nucleic Acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    1999-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  3. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  4. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  5. The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids.

    PubMed

    Barbé, Florence; Ménard, Olivia; Le Gouar, Yann; Buffière, Caroline; Famelart, Marie-Hélène; Laroche, Béatrice; Le Feunteun, Steven; Dupont, Didier; Rémond, Didier

    2013-02-15

    This study aimed to determine the kinetics of milk protein digestion and amino acid absorption after ingestion of four dairy matrices by six minipigs: unheated or heated skim milk and corresponding rennet gels. Digestive contents and plasma samples were collected over a 7 h-period after meal ingestion. Gelation of milk slowed down the outflow of the meal from the stomach and the subsequent absorption of amino acids, and decreased their bioavailability in peripheral blood. The gelled rennet matrices also led to low levels of milk proteins at the duodenum. Caseins and β-lactoglobulin, respectively, were sensitive and resistant to hydrolysis in the stomach with the unheated matrices, but showed similar digestion with the heated matrices, with a heat-induced susceptibility to hydrolysis for β-lactoglobulin. These results suggest a significant influence of the meal microstructure (resulting from heat treatment) and macrostructure (resulting from gelation process) on the different steps of milk proteins digestion.

  6. Tin film sensor with on-chip three-electrode configuration for voltammetric determination of trace Tl(I) in strong acidic media.

    PubMed

    Kokkinos, Christos; Economou, Anastasios

    2014-07-01

    The present work describes the trace analysis of Tl(I) in acidic medium (0.05 mol L(-1) nitric acid) by square wave anodic stripping voltammetry (SWASV) at a tin film sensor with novel configuration. This "green" electroanalytical device features on-chip metal film electrodes (a Sn-film working electrode, a Ag-film reference electrode and a Pt-film counter electrode), fabricated by sputtering the respective metals on a silicon chip. The effect of preconcentration time, preconcentration potential and SW stripping parameters on the Tl(I) detection was studied in detail. The limit of detection for Tl(I) was 1.1 μg L(-1), while the % relative standard deviation at the same sensor was 5.2% at the 10 μg L(-1) level. Finally, the sensors were successfully applied to the direct determination of Tl(I) in an acidified certified lake water sample.

  7. Increase in the number of extremely strong fronts over Europe? A study based on ERA-Interim reanalysis (1979-2014)

    NASA Astrophysics Data System (ADS)

    Schemm, S.; Sprenger, M.; Martius, O.; Wernli, H.; Zimmer, M.

    2017-01-01

    Evidence is presented that the frequency of extremely strong fronts, which occur mainly in summer, has increased over Europe in ERA-Interim reanalyses data (1979-2014). Fronts are defined using a common detection scheme based on gradients of equivalent potential temperature (θe) at 850 hPa. The frequency increase is due to increasing atmospheric humidity, which in turn is reported as statistically significant over Europe in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). There is no trend in the frequency of extremely strong fronts in North America where humidity trends are, according to the IPCC AR5, close to zero. Because frontal precipitation increases with frontal strength, measured by the θe gradient, the increase in the number of extremely strong fronts may help explain regional patterns of longer-term trends in strong precipitation events.

  8. Nutrient based estimation of acid-base balance in vegetarians and non-vegetarians.

    PubMed

    Deriemaeker, Peter; Aerenhouts, Dirk; Hebbelinck, Marcel; Clarys, Peter

    2010-03-01

    A first objective of the present study was to estimate the acid-base balance of the food intake in vegetarians and non-vegetarians. A second objective was to evaluate if additional input of specific food items on the existing potential renal acid load (PRAL) list was necessary for the comparison of the two dietary patterns. Thirty vegetarians between the age of 18 and 30 years were matched for sex, age and BMI with 30 non-vegetarians. Based on the 3-days food diaries the acid-base status of the food intake was estimated using the PRAL method. Mean PRAL values as estimated with the standard table yielded an alkaline load of -5.4 +/- 14.4 mEq/d in the vegetarians compared to an acid load of 10.3 +/- 14.4 mEq/d in the nonvegetarians (p<0.001). Mean PRAL values as estimated with the extended table yielded an alkaline load of -10.9 +/-19.7 mEq/d in the vegetarians compared to an acid load of 13.8 +/- 17.1 mEq/d for the non-vegetarians (p<0.001). The findings of this study indicate that vegetarian food intake produces more alkaline outcomes compared to non-vegetarian diets. The use of the standard PRAL table was sufficient for discrimination between the two diets.

  9. Acid-base titrations using microfluidic paper-based analytical devices.

    PubMed

    Karita, Shingo; Kaneta, Takashi

    2014-12-16

    Rapid and simple acid-base titration was accomplished using a novel microfluidic paper-based analytical device (μPAD). The μPAD was fabricated by wax printing and consisted of ten reservoirs for reaction and detection. The reaction reservoirs contained various amounts of a primary standard substance, potassium hydrogen phthalate (KHPth), whereas a constant amount of phenolphthalein was added to all the detection reservoirs. A sample solution containing NaOH was dropped onto the center of the μPAD and was allowed to spread to the reaction reservoirs where the KHPth neutralized it. When the amount of NaOH exceeded that of the KHPth in the reaction reservoirs, unneutralized hydroxide ion penetrated the detection reservoirs, resulting in a color reaction from the phenolphthalein. Therefore, the number of the detection reservoirs with no color change determined the concentration of the NaOH in the sample solution. The titration was completed within 1 min by visually determining the end point, which required neither instrumentation nor software. The volumes of the KHPth and phenolphthalein solutions added to the corresponding reservoirs were optimized to obtain reproducible and accurate results for the concentration of NaOH. The μPADs determined the concentration of NaOH at orders of magnitude ranging from 0.01 to 1 M. An acid sample, HCl, was also determined using Na2CO3 as a primary standard substance instead of KHPth. Furthermore, the μPAD was applicable to the titrations of nitric acid, sulfuric acid, acetic acid, and ammonia solutions. The μPADs were stable for more than 1 month when stored in darkness at room temperature, although this was reduced to only 5 days under daylight conditions. The analysis of acidic hot spring water was also demonstrated in the field using the μPAD, and the results agreed well with those obtained by classic acid-base titration.

  10. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings.

    PubMed

    Busolo, Maria A; Fernandez, Patricia; Ocio, Maria J; Lagaron, Jose M

    2010-11-01

    This paper presents a comprehensive performance study of polylactic acid (PLA) biocomposites, obtained by solvent casting, containing a novel silver-based antimicrobial layered silicate additive for use in active food packaging applications. The silver-based nanoclay showed strong antimicrobial activity against Gram-negative Salmonella spp. Despite the fact that no exfoliation of the silver-based nanoclay in PLA was observed, as suggested by transmission electron microscopy (TEM) and wide angle X-ray scattering (WAXS) experiments, the additive dispersed nicely throughout the PLA matrix to a nanoscale, yielding nanobiocomposites. The films were highly transparent with enhanced water barrier and strong biocidal properties. Silver migration from the films to a slightly acidified water medium, considered an aggressive food simulant, was measured by stripping voltammetry. Silver migration accelerated after 6 days of exposure. Nevertheless, the study suggests that migration levels of silver, within the specific migration levels referenced by the European Food Safety Agency (EFSA), exhibit antimicrobial activity, supporting the potential application of this biocidal additive in active food-packaging applications to improve food quality and safety.

  11. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.

    PubMed

    Wang, Bingyu; Lee, Linda S; Wei, Chenhui; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs.

  12. Application of locked nucleic acid-based probes in fluorescence in situ hybridization.

    PubMed

    Fontenete, Sílvia; Carvalho, Daniel; Guimarães, Nuno; Madureira, Pedro; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-07-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms.

  13. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.

    PubMed

    Fuguet, Elisabet; Ràfols, Clara; Bosch, Elisabeth; Rosés, Martí

    2009-04-24

    A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pK(a), obtaining a mean deviation of 0.05 pH units compared to the literature values.

  14. Acid-base and bio-energetics during balanced versus unbalanced normovolaemic haemodilution.

    PubMed

    Morgan, T J; Venkatesh, B; Beindorf, A; Andrew, I; Hall, J

    2007-04-01

    Fluids balanced to avoid acid-base disturbances may be preferable to saline, which causes metabolic acidosis in high volume. We evaluated acid-base and bio-energetic effects of haemodilution with a crystalloid balanced on physical chemical principles, versus crystalloids causing metabolic acidosis or metabolic alkalosis. Anaesthetised, mechanically ventilated Sprague-Dawley rats (n=32, allocated to four groups) underwent six exchanges of 9 ml crystalloid for 3 ml blood. Exchange was with one of three crystalloids with strong ion difference (SID) values of 0, 24 (balanced) and 40 mEq/l. Controls did not undergo haemodilution. Mean haemoglobin concentration fell to approximately 50 g/l after haemodilution. With SID 24 mEq/l fluid, metabolic acid-base remained unchanged. Dilution with SID 0 mEq/l and 40 mEq/l fluids caused a progressive metabolic acidosis and alkalosis respectively. Standard base excess (SBE) and haemoglobin concentration were directly correlated in the SID 0 mEq/l group (R2 = 0.61), indirectly correlated in the SBE 40 mEq/l group (R2 = 0.48) and showed no correlation in the SID 24 mEq/l group (R2 = 0.003). There were no significant differences between final ileal values of CO2 gap, nucleotides concentration, energy charge, or luminal lactate concentration. SID 40 mEq/l crystalloid dilution caused a significant rise in subcutaneous lactate. In this group mean kidney ATP concentration was significantly less than controls and renal energy charge significantly lower than SID 0 mEq/l and control groups. We conclude that a crystalloid SID of 24 mEq/l provides balanced haemodilution. Bio-energetic perturbations with higher SID haemodilution may be more severe and need further investigation.

  15. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil.

    PubMed

    Jain, Siddharth; Sharma, M P

    2010-10-01

    Out of various non-edible oil resources, Jatropha curcas oil (JCO) is considered as future feedstock for biodiesel production in India. Limited work is reported on the kinetics of transesterification of high free fatty acids containing oil. The present study reports the results of kinetic study of two-step acid base catalyzed transesterification process carried out at an optimum temperature of 65 °C and 50 °C for esterification and transesterification respectively under the optimum methanol to oil ratio of 3:7 (v/v), catalyst concentration 1% (w/w) for H₂SO₄ and NaOH. The yield of methyl ester (ME) has been used to study the effect of different parameters. The results indicate that both esterification and transesterification reaction are of first order with reaction rate constant of 0.0031 min⁻¹ and 0.008 min⁻¹ respectively. The maximum yield of 21.2% of ME during esterification and 90.1% from transesterification of pretreated JCO has been obtained.

  16. Dynamical Approach to Multiequilibria Problems for Mixtures of Acids and Their Conjugated Bases

    ERIC Educational Resources Information Center

    Glaser, Rainer E.; Delarosa, Marco A.; Salau, Ahmed Olasunkanmi; Chicone, Carmen

    2014-01-01

    Mathematical methods are described for the determination of steady-state concentrations of all species in multiequilibria systems consisting of several acids and their conjugated bases in aqueous solutions. The main example consists of a mixture of a diprotic acid H[subscript 2]A, a monoprotic acid HB, and their conjugate bases. The reaction…

  17. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  18. Selectivity Control in the Tandem Aromatization of Bio-Based Furanics Catalyzed by Solid Acids and Palladium.

    PubMed

    Genuino, Homer C; Thiyagarajan, Shanmugam; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; van Es, Daan S; Weckhuysen, Bert M; Bruijnincx, Pieter C A

    2017-01-10

    Bio-based furanics can be aromatized efficiently by sequential Diels-Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H-Y and Pd/C, the hydrogenated DA adduct of 2-methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3-methylphthalic anhydride and o- and m-toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3-methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H-Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite-to-Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3-methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H-Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations.

  19. Selectivity Control in the Tandem Aromatization of Bio‐Based Furanics Catalyzed by Solid Acids and Palladium

    PubMed Central

    Genuino, Homer C.; Thiyagarajan, Shanmugam; van der Waal, Jan C.; van Haveren, Jacco; Weckhuysen, Bert M.

    2016-01-01

    Abstract Bio‐based furanics can be aromatized efficiently by sequential Diels–Alder (DA) addition and hydrogenation steps followed by tandem catalytic aromatization. With a combination of zeolite H‐Y and Pd/C, the hydrogenated DA adduct of 2‐methylfuran and maleic anhydride can thus be aromatized in the liquid phase and, to a certain extent, decarboxylated to give high yields of the aromatic products 3‐methylphthalic anhydride and o‐ and m‐toluic acid. Here, it is shown that a variation in the acidity and textural properties of the solid acid as well as bifunctionality offers a handle on selectivity toward aromatic products. The zeolite component was found to dominate selectivity. Indeed, a linear correlation is found between 3‐methylphthalic anhydride yield and the product of (strong acid/total acidity) and mesopore volume of H‐Y, highlighting the need for balanced catalyst acidity and porosity. The efficient coupling of the dehydration and dehydrogenation steps by varying the zeolite‐to‐Pd/C ratio allowed the competitive decarboxylation reaction to be effectively suppressed, which led to an improved 3‐methylphthalic anhydride/total aromatics selectivity ratio of 80 % (89 % total aromatics yield). The incorporation of Pd nanoparticles in close proximity to the acid sites in bifunctional Pd/H‐Y catalysts also afforded a flexible means to control aromatic products selectivity, as further demonstrated in the aromatization of hydrogenated DA adducts from other diene/dienophile combinations. PMID:27557889

  20. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    PubMed

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L(-1)) in all cultures. Xylose fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  1. Drug delivery systems based on nucleic acid nanostructures.

    PubMed

    de Vries, Jan Willem; Zhang, Feng; Herrmann, Andreas

    2013-12-10

    The field of DNA nanotechnology has progressed rapidly in recent years and hence a large variety of 1D-, 2D- and 3D DNA nanostructures with various sizes, geometries and shapes is readily accessible. DNA-based nanoobjects are fabricated by straight forward design and self-assembly processes allowing the exact positioning of functional moieties and the integration of other materials. At the same time some of these nanosystems are characterized by a low toxicity profile. As a consequence, the use of these architectures in a biomedical context has been explored. In this review the progress and possibilities of pristine nucleic acid nanostructures and DNA hybrid materials for drug delivery will be discussed. For the latter class of structures, a distinction is made between carriers with an inorganic core composed of gold or silica and amphiphilic DNA block copolymers that exhibit a soft hydrophobic interior.

  2. The Significance of Acid/Base Properties in Drug Discovery

    PubMed Central

    Manallack, David T.; Prankerd, Richard J.; Yuriev, Elizabeth; Oprea, Tudor I.; Chalmers, David K.

    2013-01-01

    While drug discovery scientists take heed of various guidelines concerning drug-like character, the influence of acid/base properties often remains under-scrutinised. Ionisation constants (pKa values) are fundamental to the variability of the biopharmaceutical characteristics of drugs and to underlying parameters such as logD and solubility. pKa values affect physicochemical properties such as aqueous solubility, which in turn influences drug formulation approaches. More importantly, absorption, distribution, metabolism, excretion and toxicity (ADMET) are profoundly affected by the charge state of compounds under varying pH conditions. Consideration of pKa values in conjunction with other molecular properties is of great significance and has the potential to be used to further improve the efficiency of drug discovery. Given the recent low annual output of new drugs from pharmaceutical companies, this review will provide a timely reminder of an important molecular property that influences clinical success. PMID:23099561

  3. Nucleic Acid-Based Therapy Approaches for Huntington's Disease

    PubMed Central

    Vagner, Tatyana; Young, Deborah; Mouravlev, Alexandre

    2012-01-01

    Huntington's disease (HD) is caused by a dominant mutation that results in an unstable expansion of a CAG repeat in the huntingtin gene leading to a toxic gain of function in huntingtin protein which causes massive neurodegeneration mainly in the striatum and clinical symptoms associated with the disease. Since the mutation has multiple effects in the cell and the precise mechanism of the disease remains to be elucidated, gene therapy approaches have been developed that intervene in different aspects of the condition. These approaches include increasing expression of growth factors, decreasing levels of mutant huntingtin, and restoring cell metabolism and transcriptional balance. The aim of this paper is to outline the nucleic acid-based therapeutic strategies that have been tested to date. PMID:22288011

  4. Ultrasonic and densimetric titration applied for acid-base reactions.

    PubMed

    Burakowski, Andrzej; Gliński, Jacek

    2014-01-01

    Classical acoustic acid-base titration was monitored using sound speed and density measurements. Plots of these parameters, as well as of the adiabatic compressibility coefficient calculated from them, exhibit changes with the volume of added titrant. Compressibility changes can be explained and quantitatively predicted theoretically in terms of Pasynski theory of non-compressible hydrates combined with that of the additivity of the hydration numbers with the amount and type of ions and molecules present in solution. It also seems that this development could be applied in chemical engineering for monitoring the course of chemical processes, since the applied experimental methods can be carried out almost independently on the medium under test (harmful, aggressive, etc.).

  5. Dynamics of a two-level system under strong driving: Quantum-gate optimization based on Floquet theory

    NASA Astrophysics Data System (ADS)

    Deng, Chunqing; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian

    2016-09-01

    We consider the dynamics of a two-level system (qubit) driven by strong and short resonant pulses in the framework of Floquet theory. First we derive analytical expressions for the quasienergies and Floquet states of the driven system. If the pulse amplitude varies very slowly, the system adiabatically follows the instantaneous Floquet states, which acquire dynamical phases that depend on the evolution of the quasienergies over time. The difference between the phases acquired by the two Floquet states corresponds to a qubit state rotation, generalizing the notion of Rabi oscillations to the case of large driving amplitudes. If the pulse amplitude changes very fast, the evolution is nonadiabatic, with transitions taking place between the Floquet states. We quantify and analyze the nonadiabatic transitions during the pulse by employing adiabatic perturbation theory and exact numerical simulations. We find that, for certain combinations of pulse rise and fall times and maximum driving amplitude, a destructive interference effect leads to a remarkably strong suppression of transitions between the Floquet states. This effect provides the basis of a quantum control protocol, which we name Floquet interference efficient suppression of transitions in the adiabatic basis (FIESTA), that can be used to design ultrafast high-fidelity single-qubit quantum gates.

  6. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  7. Microgel Tethering For Microarray-Based Nucleic Acid Diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoguang

    Molecular diagnostics (MDx) have radically changed the process of clinical microbial identification based on identifying genetic information, MDx approaches are both specific and fast. They can identify microbes to the species and strain level over a time scale that can be as short as one hour. With such information clinicians can administer the most effective and appropriate antimicrobial treatment at an early time point with substantial implications both for patient well-being and for easing the burden on the health-care system. Among the different MDx approaches, such as fluorescence in-situ hybridization, microarrays, next-generation sequencing, and mass spectrometry, point-of-care MDx platforms are drawing particular interest due to their low cost, robustness, and wide application. This dissertation develops a novel MDx technology platform capable of high target amplification and detection performance. For nucleic acid target detection, we fabricate an array of electron-beam-patterned microgels on a standard glass microscope slide. The microgels can be as small as a few hundred nanometers. The unique way of energy deposition during electron-beam lithography provides the microgels with a very diffuse water -gel interface that enables them to not only serve as substrates to immobilize DNA probes but do so while preserving them in a highly hydrated environment that optimizes their performance. Benefiting from the high spatial resolution provided by such techniques as position-sensitive microspotting and dip-pen nanolithography, multiple oligonucleotide probes known as molecular beacons (MBs) can be patterned on microgels. Furthermore, nucleic acid target amplification can be conducted in direct contact with the microgel-tethered detection array. Specifically, we use an isothermal RNA amplification reaction - nucleic acid sequence-based amplification (NASBA). ssRNA amplicons of from the NASBA reaction can directly hybridize with microgel-tethered MBs, and the

  8. Mechanism of sorption sulpho-derivative organic chelating agents on strong base anion exchanger Amberlite IRA-402 by FT-IR/PAS and DRS methods

    NASA Astrophysics Data System (ADS)

    Wronski, G.; Pasieczna-Patkowska, S.; Hubicki, Z.

    2008-02-01

    In the paper, strong base anion exchanger Amberlite IRA-402 was modified by using sulpho-derivative organic chelating agents as: Brilliant Yellow, Xylenol Orange, Bromophenyl Blue. The investigations exhibited, that anion exchanger Amberlite IRA-402 is modified very simply by organic chelating agents (working capacity 0.25 0.5 g/cm3).

  9. Nanoconstructions Based on Spatially Ordered Nucleic Acid Molecules

    NASA Astrophysics Data System (ADS)

    Yevdokimov, Yu. M.

    Different strategies for the design of nanoconstructions whose building blocks are both linear molecules of double-stranded nucleic acids and nucleic acid molecules fixed in the spatial structure of particles of liquid-crystalline dispersions are described.

  10. Acid-base transport by the renal proximal tubule

    PubMed Central

    Skelton, Lara A.; Boron, Walter F.; Zhou, Yuehan

    2015-01-01

    Each day, the kidneys filter 180 L of blood plasma, equating to some 4,300 mmol of the major blood buffer, bicarbonate (HCO3−). The glomerular filtrate enters the lumen of the proximal tubule (PT), and the majority of filtered HCO3− is reclaimed along the early (S1) and convoluted (S2) portions of the PT in a manner coupled to the secretion of H+ into the lumen. The PT also uses the secreted H+ to titrate non-HCO3− buffers in the lumen, in the process creating “new HCO3−” for transport into the blood. Thus, the PT – along with more distal renal segments – is largely responsible for regulating plasma [HCO3−]. In this review we first focus on the milestone discoveries over the past 50+ years that define the mechanism and regulation of acid-base transport by the proximal tubule. Further on in the review, we will summarize research still in progress from our laboratory, work that addresses the problem of how the PT is able to finely adapt to acid–base disturbances by rapidly sensing changes in basolateral levels of HCO3− and CO2 (but not pH), and thereby to exert tight control over the acid–base composition of the blood plasma. PMID:21170887

  11. Modeling uranium transport in acidic contaminated groundwater with base addition.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO(3)(-), SO(4)(2-), U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  12. Thermal and electrochemical C-X activation (X = Cl, Br, I) by the strong Lewis acid Pd3(dppm)3(CO)2+ cluster and its catalytic applications.

    PubMed

    Lemaître, Frédéric; Lucas, Dominique; Groison, Katherine; Richard, Philippe; Mugnier, Yves; Harvey, Pierre D

    2003-05-07

    The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl

  13. A comparison of traditional and quantitative analysis of acid-base and electrolyte imbalances in horses with gastrointestinal disorders.

    PubMed

    Navarro, Marga; Monreal, Luis; Segura, Dídac; Armengou, Lara; Añor, Sònia

    2005-01-01

    The purpose of this study was to compare traditional and quantitative approaches in analysis of the acid-base and electrolyte imbalances in horses with acute gastrointestinal disorders. Venous blood samples were collected from 115 colic horses, and from 45 control animals. Horses with colic were grouped according to the clinical diagnosis into 4 categories: obstructive, ischemic, inflammatory, and diarrheic problems. Plasma electrolytes, total protein, albumin, pH, pCO2, tCO2, HCO3-, base excess, anion gap, measured strong ion difference (SIDm), nonvolatile weak buffers (A(tot)), and strong ion gap were determined in all samples. All colic horses revealed a mild but statistically significant decrease in iCa2+ concentration. Potassium levels were mildly but significantly decreased in horses with colic, except in those within the inflammatory group. Additionally, the diarrheic group revealed a mild but significant decrease in Na+, tCa, tMg, total protein, albumin, SIDm, and A(tot). Although pH was not severely altered in any colic group, 26% of the horses in the obstructive group, 74% in the ischemic group, 87% in the inflammatory group, and 22% in the diarrheic group had a metabolic imbalance. In contrast, when using the quantitative approach, 78% of the diarrheic horses revealed a metabolic imbalance consisting mainly of a strong ion acidosis and nonvolatile buffer ion alkalosis. In conclusion, mild acid-base and electrolyte disturbances were observed in horses with gastrointestinal disorders. However, the quantitative approach should be used in these animals, especially when strong ion imbalances and hypoproteinemia are detected, so that abnormalities in acid-base status are evident.

  14. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    PubMed

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  15. Acid-base and copper-binding properties of three organic matter fractions isolated from a forest floor soil solution

    NASA Astrophysics Data System (ADS)

    van Schaik, Joris W. J.; Kleja, Dan B.; Gustafsson, Jon Petter

    2010-02-01

    Vast amounts of knowledge about the proton- and metal-binding properties of dissolved organic matter (DOM) in natural waters have been obtained in studies on isolated humic and fulvic (hydrophobic) acids. Although macromolecular hydrophilic acids normally make up about one-third of DOM, their proton- and metal-binding properties are poorly known. Here, we investigated the acid-base and Cu-binding properties of the hydrophobic (fulvic) acid fraction and two hydrophilic fractions isolated from a soil solution. Proton titrations revealed a higher total charge for the hydrophilic acid fractions than for the hydrophobic acid fraction. The most hydrophilic fraction appeared to be dominated by weak acid sites, as evidenced by increased slope of the curve of surface charge versus pH at pH values above 6. The titration curves were poorly predicted by both Stockholm Humic Model (SHM) and NICA-Donnan model calculations using generic parameter values, but could be modelled accurately after optimisation of the proton-binding parameters (pH ⩽ 9). Cu-binding isotherms for the three fractions were determined at pH values of 4, 6 and 9. With the optimised proton-binding parameters, the SHM model predictions for Cu binding improved, whereas the NICA-Donnan predictions deteriorated. After optimisation of Cu-binding parameters, both models described the experimental data satisfactorily. Iron(III) and aluminium competed strongly with Cu for binding sites at both pH 4 and pH 6. The SHM model predicted this competition reasonably well, but the NICA-Donnan model underestimated the effects significantly at pH 6. Overall, the Cu-binding behaviour of the two hydrophilic acid fractions was very similar to that of the hydrophobic acid fraction, despite the differences observed in proton-binding characteristics. These results show that for modelling purposes, it is essential to include the hydrophilic acid fraction in the pool of 'active' humic substances.

  16. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links.

    PubMed

    Teramae, Jun-nosuke; Tsubo, Yasuhiro; Fukai, Tomoki

    2012-01-01

    The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.

  17. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links

    NASA Astrophysics Data System (ADS)

    Teramae, Jun-Nosuke; Tsubo, Yasuhiro; Fukai, Tomoki

    2012-07-01

    The connectivity of complex networks and functional implications has been attracting much interest in many physical, biological and social systems. However, the significance of the weight distributions of network links remains largely unknown except for uniformly- or Gaussian-weighted links. Here, we show analytically and numerically, that recurrent neural networks can robustly generate internal noise optimal for spike transmission between neurons with the help of a long-tailed distribution in the weights of recurrent connections. The structure of spontaneous activity in such networks involves weak-dense connections that redistribute excitatory activity over the network as noise sources to optimally enhance the responses of individual neurons to input at sparse-strong connections, thus opening multiple signal transmission pathways. Electrophysiological experiments confirm the importance of a highly broad connectivity spectrum supported by the model. Our results identify a simple network mechanism for internal noise generation by highly inhomogeneous connection strengths supporting both stability and optimal communication.

  18. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO{sub 3}-based ceramics

    SciTech Connect

    Huan, Yu; Wang, Xiaohui Li, Longtu; Koruza, Jurij

    2015-11-16

    The nonlinear dielectric response in (Na{sub 0.52}K{sub 0.4425}Li{sub 0.0375})(Nb{sub 0.92−x}Ta{sub x}Sb{sub 0.08})O{sub 3} ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  19. Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures

    NASA Astrophysics Data System (ADS)

    Bayindir, M.; Tanriseven, S.; Aydinli, A.; Ozbay, E.

    We investigated photoluminescence (PL) from one-dimensional photonic band gap structures. The photonic crystals, a Fabry-Perot (FP) resonator and a coupled-microcavity (CMC) structure, were fabricated by using alternating hydrogenated amorphous-silicon-nitride and hydrogenated amorphous-silicon-oxide layers. It was observed that these structures strongly modify the PL spectra from optically active amorphous-silicon-nitride thin films. Narrow-band and wide-band PL spectra were achieved in the FP microcavity and the CMC structure, respectively. The angle dependence of PL peak of the FP resonator was also investigated. We also observed that the spontaneous emission increased drastically at the coupled-cavity band edge of the CMC structure due to extremely low group velocity and long photon lifetime. The measurements agree well with the transfer-matrix method results and the prediction of the tight-binding approximation.

  20. Dengue E Protein Domain III-Based DNA Immunisation Induces Strong Antibody Responses to All Four Viral Serotypes

    PubMed Central

    Chan, Kuan Rong; Tan, Hwee Cheng; Bestagno, Marco; Ooi, Eng Eong; Burrone, Oscar R.

    2015-01-01

    Dengue virus (DENV) infection is a major emerging disease widely distributed throughout the tropical and subtropical regions of the world affecting several millions of people. Despite constants efforts, no specific treatment or effective vaccine is yet available. Here we show a novel design of a DNA immunisation strategy that resulted in the induction of strong antibody responses with high neutralisation titres in mice against all four viral serotypes. The immunogenic molecule is an engineered version of the domain III (DIII) of the virus E protein fused to the dimerising CH3 domain of the IgG immunoglobulin H chain. The DIII sequences were also codon-optimised for expression in mammalian cells. While DIII alone is very poorly secreted, the codon-optimised fusion protein is rightly expressed, folded and secreted at high levels, thus inducing strong antibody responses. Mice were immunised using gene-gun technology, an efficient way of intradermal delivery of the plasmid DNA, and the vaccine was able to induce neutralising titres against all serotypes. Additionally, all sera showed reactivity to a recombinant DIII version and the recombinant E protein produced and secreted from mammalian cells in a mono-biotinylated form when tested in a conformational ELISA. Sera were also highly reactive to infective viral particles in a virus-capture ELISA and specific for each serotype as revealed by the low cross-reactive and cross-neutralising activities. The serotype specific sera did not induce antibody dependent enhancement of infection (ADE) in non-homologous virus serotypes. A tetravalent immunisation protocol in mice showed induction of neutralising antibodies against all four dengue serotypes as well. PMID:26218926

  1. Science review: quantitative acid-base physiology using the Stewart model.

    PubMed

    Wooten, E Wrenn

    2004-12-01

    There has been renewed interest in quantifying acid-base disorders in the intensive care unit. One of the methods that has become increasingly used to calculate acid-base balance is the Stewart model. This model is briefly discussed in terms of its origin, its relationship to other methods such as the base excess approach, and the information it provides for the assessment and treatment of acid-base disorders in critically ill patients.

  2. Identification of gallic acid based glycoconjugates as a novel tubulin polymerization inhibitors.

    PubMed

    Upadhyaya, Kapil; Hamidullah; Singh, Kartikey; Arun, Ashutosh; Shukla, Mahendra; Srivastava, Neetika; Ashraf, Raghib; Sharma, Abhisheak; Mahar, Rohit; Shukla, Sanjeev K; Sarkar, Jayanta; Ramachandran, Ravishankar; Lal, Jawahar; Konwar, Rituraj; Tripathi, Rama Pati

    2016-01-28

    A novel class of gallic acid based glycoconjugates were designed and synthesized as potential anticancer agents. Among all the compounds screened, compound 2a showed potent anticancer activity against breast cancer cells. The latter resulted in tubulin polymerization inhibition and induced G2/M cell cycle arrest, generation of reactive oxygen species, mitochondrial depolarization and subsequent apoptosis in breast cancer cells. In addition, ultraviolet-visible spectroscopy and fluorescence quenching studies of the compound with tubulin confirmed direct interaction of compounds with tubulin. Molecular modeling studies revealed that it binds at the colchicine binding site in tubulin. Further, 2a also exhibited potent in vivo anticancer activity in LA-7 syngeneic rat mammary tumor model. Current data projects its strong candidature to be developed as anticancer agent.

  3. Monomeric metal aqua complexes in the interlayer space of montmorillonites as strong Lewis acid catalysts for heterogeneous carbon-carbon bond-forming reactions.

    PubMed

    Kawabata, Tomonori; Kato, Masaki; Mizugaki, Tomoo; Ebitani, Kohki; Kaneda, Kiyotomi

    2004-12-17

    Montmorillonite-enwrapped copper and scandium catalysts (Cu(2+)- and Sc(3+)-monts) were easily prepared by treating Na(+)-mont with the aqueous solution of the copper nitrate and scandium triflate, respectively. The resulting Cu(2+)- and Sc(3+)-monts showed outstanding catalytic activities for a variety of carbon-carbon bond-forming reactions, such as the Michael reaction, the Sakurai-Hosomi allylation, and the Diels-Alder reaction, under solvent-free or aqueous conditions. The remarkable activity of the mont catalysts is attributable to the negatively charged silicate layers that are capable of stabilizing metal cations. Furthermore, these catalysts were reusable without any appreciable loss in activity and selectivity. The Cu(2+)-mont-catalyzed Michael reaction proceeds via a ternary complex in which both the 1,3-dicarbonyl compound and the enone are coordinated to a Lewis acid Cu(2+) center.

  4. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    PubMed

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  5. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  6. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tuân

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5′–5′ manner based on different accessible tetrad stacking modes at the stacking interfaces of 5′–5′ and 3′–3′ stacked G-quadruplexes. PMID:23268444

  7. Acid-Base Electronic Properties in the Gas Phase: Permanent Electric Dipole Moments of a Photoacidic Substrate.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Morgan, Philip J.; Pratt, David W.

    2009-06-01

    The permanent electric dipole moments of two conformers of 2-naphthol (2HN) in their ground and electronically excited states have been experimentally determined by Stark-effect measurements in a molecular beam. When in solution, 2HN is a weak base in the S{_0} state and a strong acid in the S{_1} state. Using sequential solvation of the cis-2HN photoacid with the base ammonia, we have begun to approach condensed phase acid-base interactions with gas phase rotational resolution. Our study, void of bulk solvent perturbations, is of importance to the larger community currently describing aromatic biomolecule and "super" photoacid behavior via theoretical modeling and condensed phase solvatochromism. [2] A. Weller. Prog. React. Kinet. 5, 273 (1970). [3] D. F. Plusquellic, X. -Q. Tan, and D. W. Pratt. J. Chem. Phys. 96, 8026 (1992).

  8. Strong Password-Based Authentication in TLS Using the Three-PartyGroup Diffie-Hellman Protocol

    SciTech Connect

    Abdalla, Michel; Bresson, Emmanuel; Chevassut, Olivier; Moeller,Bodo; Pointcheval, David

    2006-08-26

    The Internet has evolved into a very hostile ecosystem where"phishing'' attacks are common practice. This paper shows that thethree-party group Diffie-Hellman key exchange can help protect againstthese attacks. We have developed a suite of password-based cipher suitesfor the Transport Layer Security (TLS) protocol that are not onlyprovably secure but also assumed to be free from patent and licensingrestrictions based on an analysis of relevant patents in thearea.

  9. Thermochemical study of the reactions of acid-base interaction in an aqueous solution of α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2017-01-01

    The heat effects of the interaction between a solution of α-aminobutyric acid and solutions of HNO3 and KOH are measured by means of calorimetry in different ranges of pH at 298.15 K and values of ionic strength of 0.25, 0.5, and 0.75 (KNO3). The heat effects of the stepwise dissociation of the amino acid are determined. Standard thermodynamic characteristics (Δr H 0, Δr G 0, and Δr S 0) of the reactions of acid-base interaction in aqueous solutions of α-aminobutyric acid are calculated. The connection between the thermodynamic characteristics of the dissociation of the amino acid and the structure of this compound is considered.

  10. Design of Lewis acid-base complex: enhancing the stability and first hyperpolarizability of large excess electron compound.

    PubMed

    Ma, Fang; Miao, Tifang; Zhou, Zhongjun; Sun, Dengming

    2013-11-01

    In the present paper, a new type of Lewis acid-base complex BX3...Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid-base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid-base complex BF3...Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4  ×  106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3...Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3...Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO-LUMO gap of BX3...Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid-base NLO complex possesses not only a large nonlinear optical response but also higher stability.

  11. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  12. Ligation with nucleic acid sequence-based amplification.

    PubMed

    Ong, Carmichael; Tai, Warren; Sarma, Aartik; Opal, Steven M; Artenstein, Andrew W; Tripathi, Anubhav

    2012-01-01

    This work presents a novel method for detecting nucleic acid targets using a ligation step along with an isothermal, exponential amplification step. We use an engineered ssDNA with two variable regions on the ends, allowing us to design the probe for optimal reaction kinetics and primer binding. This two-part probe is ligated by T4 DNA Ligase only when both parts bind adjacently to the target. The assay demonstrates that the expected 72-nt RNA product appears only when the synthetic target, T4 ligase, and both probe fragments are present during the ligation step. An extraneous 38-nt RNA product also appears due to linear amplification of unligated probe (P3), but its presence does not cause a false-positive result. In addition, 40 mmol/L KCl in the final amplification mix was found to be optimal. It was also found that increasing P5 in excess of P3 helped with ligation and reduced the extraneous 38-nt RNA product. The assay was also tested with a single nucleotide polymorphism target, changing one base at the ligation site. The assay was able to yield a negative signal despite only a single-base change. Finally, using P3 and P5 with longer binding sites results in increased overall sensitivity of the reaction, showing that increasing ligation efficiency can improve the assay overall. We believe that this method can be used effectively for a number of diagnostic assays.

  13. Simulation of Strong Ground Motion Based on Conventional Empirical Green s Functions In the Michoacán State, Mexico

    NASA Astrophysics Data System (ADS)

    Vazquez Rosas, R.; Aguirre Gonzalez, J. J.; Mijares Arellano, H. H.

    2012-12-01

    In the present work, we study the state of Michoacán, one of the most important seimogenic zones in Mexico. Three kinds of sources exist in the state, producing tectonic earthquakes, volcanic earthquakes, and events due to local faults in the region. For this reason, it is of vital importance the study of source parameters in the Michoacán state. In this work in particular we applied the simulation of strong ground motions by the conventional empirical Green s functions proposed by Irikura (1986). We installed a temporary network consisting of 6 accelerograph stations across the state, at the following locations: Faro de Brucerías, Aguililla, Apatzingán, Pátzcuaro, Morelia, and Maravatío. The stations form a line that is perpendicular to the coastline and has a total length of 366 km, while the distance between neighboring stations varies from 60 to 80 km. Among all the seismic events recorded at this temporary network, we select 2 events originated along the coastline of Michoacán (May the 2007), with moment magnitudes of 4.3 and 5.1 Mw. In order to calibrate the model, the earthquake of May 31, 2007 (M 5.1) was simulated using the aftershock of May 27 of that year (M 4.3) with satisfactory results, following the same method and considering the ω2 spectral model with constant stress drop. Later, we calculated six scenarios for a postulate earthquake of M 7.4. From the six scenarios the largest peak ground accelerations for each station were, 83 cm/s2 in Faro de Brucerías , 15.4 cm/s2 in Apatzingán, 23 cm/s2 in Pátzcuaro, 3.7 cm/s2 in Morelia and Maravatio con 3.0 cm/s2 . One limitation of this study is that we used relatively small-magnitude earthquakes. This was a consequence of the relatively short operation period of the temporary network, which had to be limited to 3 months. To improve these simulations it is necessary to have more information about rupture processes of the recorded earthquakes. And likewise, information of future earthquakes in the

  14. Secretion of acid and base equivalents by intact distal airways.

    PubMed

    Inglis, S K; Wilson, S M; Olver, R E

    2003-05-01

    Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.

  15. Electrospun poly(lactic acid) based conducting nanofibrous networks

    NASA Astrophysics Data System (ADS)

    Patra, S. N.; Bhattacharyya, D.; Ray, S.; Easteal, A. J.

    2009-08-01

    Multi-functionalised micro/nanostructures of conducting polymers in neat or blended forms have received much attention because of their unique properties and technological applications in electrical, magnetic and biomedical devices. Biopolymer-based conducting fibrous mats are of special interest for tissue engineering because they not only physically support tissue growth but also are electrically conductive, and thus are able to stimulate specific cell functions or trigger cell responses. They are effective for carrying current in biological environments and can thus be considered for delivering local electrical stimuli at the site of damaged tissue to promote wound healing. Electrospinning is an established way to process polymer solutions or melts into continuous fibres with diameter often in the nanometre range. This process primarily depends on a number of parameters, including the type of polymer, solution viscosity, polarity and surface tension of the solvent, electric field strength and the distance between the spinneret and the collector. The present research has included polyaniline (PANi) as the conducting polymer and poly(L-lactic acid) (PLLA) as the biopolymer. Dodecylbenzene sulphonic acid (DBSA) doped PANi and PLLA have been dissolved in a common solvent (mixtures of chloroform and dimethyl formamide (DMF)), and the solutions successfully electrospun. DMF enhanced the dielectric constant of the solvent, and tetra butyl ammonium bromide (TBAB) was used as an additive to increase the conductivity of the solution. DBSA-doped PANi/PLLA mat exhibits an almost bead-free network of nanofibres that have extraordinarily smooth surface and diameters in the range 75 to 100 nm.

  16. Integrated Microfluidic System Based on Electrowetting and its Application to Amino Acid Sensing Based on Electrochemiluminescence

    NASA Astrophysics Data System (ADS)

    Hosono, Hiroki; Satoh, Wataru; Suzuki, Hiroaki

    A microfluidic system to transport and mix solutions was fabricated and used for the detection of amino acids. A solution filled in the injection port was transported through a space between an elongated gold working electrode and a protruding structure of polydimethylsiloxane (PDMS). The transport was possible because the electrode surface was made hydrophilic by changing the potential of the gold working electrode. The same principle was used to mix two solutions. To demonstrate the system's applicability, optical biosensing based on electrochemiluminescence (ECL) was conducted on the chip. A necessary reagent solution (Ru(bpy)32+) and a sample solution (amino acid) were transported and mixed. ECL was observed on a platinum working electrode by applying a positive potential. Linear relationships were observed between the ECL intensity and the amino acid concentration.

  17. Design, Synthesis, and Photophysical Properties of Pyrroloquinoline-Based Compounds Showing Strong Blue Fluorescence as Potential Dyes for Biomedical Applications.

    PubMed

    Carta, Davide; Balasso, Anna; Caliceti, Paolo; Ferlin, Maria Grazia

    2015-11-01

    A small library of 3-ethylpyrrolo[3,2-f]quinoline derivatives was synthesized to identify a novel class of dyes for use in biological studies. According to the spectroscopic analyses performed to evaluate the fluorimetric parameters of quantum yield and brightness, 7-methyl- and 6,7-dimethylpyrroloquinolin(9)one derivatives were found to be the best blue luminescent dyes for biological applications. To enhance the luminescence profiles and to obtain probes that could be conjugated to functional groups of supramolecular drug delivery systems, these compounds were further modified at position 3 to obtain 3-heptanoic acid and 3-aminohexylpyrroloquinolin(9)one methylated derivatives. The most brilliant 6,7-dimethyl-3-aminohexylpyrroloquinolinone hydrochloride was conjugated to pullulan, a biocompatible polysaccharide used to produce colloidal systems for drug delivery. Comparative studies showed that this compound can be properly exploited as a blue fluorescent label in biological investigations, namely cell trafficking and pharmacokinetics/biodistribution studies. These molecules possess higher fluorescence efficiency than commercial dyes in biological media, making them suitable alternatives to commercially available products in current use.

  18. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns

    PubMed Central

    Ryu, Jiwoo; Kim, Ko Keun; Mandic, Danilo P.

    2016-01-01

    Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power difference information between the two rhythms. The extracted features using SUTCCSP that maximize the interclass variances are classified using various classification algorithms for the separation of the left- and right-hand motor imagery EEG acquired from the Physionet database. This paper shows that the supplementary information of the power difference between mu and beta rhythms obtained using SUTCCSP provides an important feature for the classification of the left- and right-hand motor imagery tasks. In addition, MEMD is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional IIR filtering. Finally, the random forest classifier yielded a high performance for the classification of the motor imagery tasks. PMID:27795702

  19. Motor Imagery Classification Using Mu and Beta Rhythms of EEG with Strong Uncorrelating Transform Based Complex Common Spatial Patterns.

    PubMed

    Kim, Youngjoo; Ryu, Jiwoo; Kim, Ko Keun; Took, Clive C; Mandic, Danilo P; Park, Cheolsoo

    2016-01-01

    Recent studies have demonstrated the disassociation between the mu and beta rhythms of electroencephalogram (EEG) during motor imagery tasks. The proposed algorithm in this paper uses a fully data-driven multivariate empirical mode decomposition (MEMD) in order to obtain the mu and beta rhythms from the nonlinear EEG signals. Then, the strong uncorrelating transform complex common spatial patterns (SUTCCSP) algorithm is applied to the rhythms so that the complex data, constructed with the mu and beta rhythms, becomes uncorrelated and its pseudocovariance provides supplementary power difference information between the two rhythms. The extracted features using SUTCCSP that maximize the interclass variances are classified using various classification algorithms for the separation of the left- and right-hand motor imagery EEG acquired from the Physionet database. This paper shows that the supplementary information of the power difference between mu and beta rhythms obtained using SUTCCSP provides an important feature for the classification of the left- and right-hand motor imagery tasks. In addition, MEMD is proved to be a preferred preprocessing method for the nonlinear and nonstationary EEG signals compared to the conventional IIR filtering. Finally, the random forest classifier yielded a high performance for the classification of the motor imagery tasks.

  20. Constructing a High-Efficiency MoO3/Polyimide Hybrid Photocatalyst Based on Strong Interfacial Interaction.

    PubMed

    Ma, Chenghai; Zhou, Jun; Zhu, Haoyue; Yang, Weiwei; Liu, Jianguo; Wang, Ying; Zou, Zhigang

    2015-07-15

    A novel two-dimensional hybrid polymer photocatalyst black-MoO3/polyimide was synthesized by one-pot thermopolymerization of monomers, ammonium molybdate, and thiourea at mild temperatures. Thiourea and ammonium molybdate as fluxing agents promote the formation of black molybdenum oxide (BMO) on polyimide (PI) and enhance the crystallinity of PI. It is confirmed by X-ray photoelectron spectroscopy, electron paramagnetic resonance, and Fourier transform infrared that the strong interaction between BMO and PI leads to the formation of a Mo-N coordination bond through the coordination of N atoms of heptazine units to the unsaturated Mo atoms of BMO and results in a large number of Mo5+ cations in BMO/PI. UV-vis and photoluminescence reveal that the visible light absorption of BMO/PI was increased and the separation efficiency of photogenerated electron/hole obviously was significantly enhanced, which facilitates the improvement of the photocatalytic activity of BMO/PI. This work provides a new approach to synthesizing efficient inorganic-organic hybrid semiconductor photocatalysts.

  1. Effect of casein-based semi-synthetic food on renal acid excretion and acid-base state of blood in dogs.

    PubMed

    Zijlstra, W G; Langbroek, A J; Kraan, J; Rispens, P; Nijmeijer, A

    1995-01-01

    Urinary acid excretion and blood acid-base state were determined in dogs fed a casein-based semi-synthetic food (SSF), to which different amounts of salts had been added, in comparison with feeding normal dog food. Net acid excretion (NAE) and inorganic acid excretion (IAE) increased during SSF feeding. IAE was higher than the acid load calculated from the sulphur and phosphorus content of the casein. This higher IAE appeared to be due to the presence of calcium and magnesium phosphate in the diet, because calcium and magnesium may be in part precipitated as carbonate, leaving phosphate to be absorbed as phosphoric acid. Acid excretion decreased by addition of CaO. When no neutral Na+ and K+ salts were added, the increase in NAE was accompanied by a metabolic acidosis. K+ was more effective in attenuating the acidosis than Na+. On the basis of these findings a diet can be made which imposes a known acid load, and provides stable baseline values. Hence, any additions that influence the acid-base balance can be properly studied. The data obtained in these and future studies utilising this diet may be of help in optimising the composition of nutrient solutions to be used in the care of critically ill patients.

  2. Strong Inhibition of O-Atom Transfer Reactivity for Mn(IV)(O)(π-Radical-Cation)(Lewis Acid) versus Mn(V)(O) Porphyrinoid Complexes.

    PubMed

    Zaragoza, Jan Paulo T; Baglia, Regina A; Siegler, Maxime A; Goldberg, David P

    2015-05-27

    The oxygen atom transfer (OAT) reactivity of two valence tautomers of a Mn(V)(O) porphyrinoid complex was compared. The OAT kinetics of Mn(V)(O)(TBP8Cz) (TBP8Cz = octakis(p-tert-butylphenyl)corrolazinato(3-)) reacting with a series of triarylphosphine (PAr3) substrates were monitored by stopped-flow UV-vis spectroscopy, and revealed second-order rate constants ranging from 16(1) to 1.43(6) × 10(4) M(-1) s(-1). Characterization of the OAT transition state analogues Mn(III)(OPPh3)(TBP8Cz) and Mn(III)(OP(o-tolyl)3)(TBP8Cz) was carried out by single-crystal X-ray diffraction (XRD). A valence tautomer of the closed-shell Mn(V)(O)(TBP8Cz) can be stabilized by the addition of Lewis and Brønsted acids, resulting in the open-shell Mn(IV)(O)(TBP8Cz(•+)):LA (LA = Zn(II), B(C6F5)3, H(+)) complexes. These Mn(IV)(O)(π-radical-cation) derivatives exhibit dramatically inhibited rates of OAT with the PAr3 substrates (k = 8.5(2) × 10(-3) - 8.7 M(-1) s(-1)), contrasting the previously observed rate increase of H-atom transfer (HAT) for Mn(IV)(O)(TBP8Cz(•+)):LA with phenols. A Hammett analysis showed that the OAT reactivity for Mn(IV)(O)(TBP8Cz(•+)):LA is influenced by the Lewis acid strength. Spectral redox titration of Mn(IV)(O)(TBP8Cz(•+)):Zn(II) gives Ered = 0.69 V vs SCE, which is nearly +700 mV above its valence tautomer Mn(V)(O)(TBP8Cz) (Ered = -0.05 V). These data suggest that the two-electron electrophilicity of the Mn(O) valence tautomers dominate OAT reactivity and do not follow the trend in one-electron redox potentials, which appear to dominate HAT reactivity. This study provides new fundamental insights regarding the relative OAT and HAT reactivity of valence tautomers such as M(V)(O)(porph) versus M(IV)(O)(porph(•+)) (M = Mn or Fe) found in heme enzymes.

  3. An elementary derivation of the hard/soft-acid/base principle.

    PubMed

    Ayers, Paul W

    2005-04-08

    The hard/soft-acid/base (HSAB) principle indicates that hard acids prefer binding to hard bases (often forming bonds with substantial ionic character) while soft acids prefer binding to soft bases (often forming bonds with substantial covalent character). Though the HSAB principle is a foundational concept of the modern theory of acids and bases, the theoretical underpinnings of the HSAB principle remain murky. This paper examines the exchange reaction, wherein two molecules, one the product of reacting a hard acid and a soft base and the other the product of reacting a soft acid with a hard base, exchange substituents to form the preferred hard-hard and soft-soft product. A simple derivation shows that this reaction is exothermic, proving the validity of the HSAB principle. The analysis leads to the simple and conceptually appealing conclusion that the HSAB principle is a driven by simple electron transfer effects.

  4. Ultrastructural observation of the acid-base resistant zone of all-in-one adhesives using three different acid-base challenges.

    PubMed

    Tsujimoto, Miho; Nikaido, Toru; Inoue, Go; Sadr, Alireza; Tagami, Junji

    2010-11-01

    The aim of this study was to analyze the ultrastructure of the dentin-adhesive interface using two all-in-one adhesive systems (Clearfil Tri-S Bond, TB; Tokuyama Bond Force, BF) after different acid-base challenges. Three solutions were used as acidic solutions for the acid-base challenges: a demineralizing solution (DS), a phosphoric acid solution (PA), and a hydrochloric acid solution (HCl). After the acid-base challenges, the bonded interfaces were examined by scanning electron microscopy. Thickness of the acid-base resistant zone (ABRZ) created in PA and HCl was thinner than in DS for both adhesive systems. For BF adhesive, an eroded area was observed beneath the ABRZ after immersion in PA and HCl, but not in DS. Conversely for TB adhesive, the eroded area was observed only after immersion in PA. In conclusion, although the ABRZ was observed for both all-in-one adhesive systems, its morphological features were influenced by the ingredients of both the adhesive material and acidic solution.

  5. Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives.

    PubMed

    Wu, Tao; Yang, Chunyan; Ding, Baoxu; Feng, Zhiming; Wang, Qian; He, Jun; Tong, Jianhua; Xiao, Langtao; Jiang, Ling; Wan, Jianmin

    2016-02-01

    Seed dormancy in rice is an important trait related to the pre-harvest sprouting resistance. In order to understand the molecular mechanisms of seed dormancy, gene expression was investigated by transcriptome analysis using seeds of the strongly dormant cultivar N22 and its less dormant mutants Q4359 and Q4646 at 24 days after heading (DAH). Microarray data revealed more differentially expressed genes in Q4359 than in Q4646 compared to N22. Most genes differing between Q4646 and N22 also differed between Q4359 and N22. GO analysis of genes differentially expressed in both Q4359 and Q4646 revealed that some genes such as those for starch biosynthesis were repressed, whereas metabolic genes such as those for carbohydrate metabolism were enhanced in Q4359 and Q4646 seeds relative to N22. Expression of some genes involved in cell redox homeostasis and chromatin remodeling differed significantly only between Q4359 and N22. The results suggested a close correlation between cell redox homeostasis, chromatin remodeling and seed dormancy. In addition, some genes involved in ABA signaling were down-regulated, and several genes involved in GA biosynthesis and signaling were up-regulated. These observations suggest that reduced seed dormancy in Q4359 was regulated by ABA-GA antagonism. A few differentially expressed genes were located in the regions containing qSdn-1 and qSdn-5 suggesting that they could be candidate genes underlying seed dormancy. Our work provides useful leads to further determine the underling mechanisms of seed dormancy and for cloning seed dormancy genes from N22.

  6. ACID-BASE ACCOUNT EFFECTIVENESS FOR DETERMINATION OF MINE WASTE POTENTIAL ACIDITY. (R825549C048)

    EPA Science Inventory

    The oxidation of sulfide minerals in mine waste is a widespread source of resource degradation, often resulting in the generation of acidic water and mobilization of heavy metals. The quantity of acid forming minerals present in mine waste, dominantly as pyrite (FeS2

  7. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  8. [Detection of amino acids based on terahertz spectroscopy].

    PubMed

    Tang, Zhong-feng; Lin, Hai-tao; Chen, Xiao-wei; Zhang, Zeng-fang

    2009-09-01

    Terahertz (THz) is the frequency region ranging from 0.1 to 2.0 THz, which lies in the far-infrared region. Compared to Fourier transform infrared spectra (FTIR), terahertz time-domain spectra (THz-TDS) has low energy, high signal-to-noise ratio (SNR) and is non-ionizing radiation. Low-frequency vibrational modes of some amino acids, such as torsional and collective vibrational modes and hydrogen-bond modes, exist in the THz region. Amino acids are important organic compounds and are the fundamental components of proteins. Amino acids can exist with a highly ordered crystal structure linked by hydrogen intermolecular bonds in the solid phase. The absorption spectra of amino acids in the THz region show marked differences while mid-infrared absorption spectra usually show very little difference. Up to now, absorption spectra of twenty kinds of amino acids have been studied by many researchers using THz technique; the quantitative analysis of amino acids by THZ-TDS is also included. Investigation of THz spectra of amino acids are of fundamental interests, and will lead to further understanding of low-frequency vibrations of protein/DNA and relevant biological reactions and activities. In the present paper, the latest progress in absorption spectra of amino acids determined by THz spectroscopy is reviewed and a database is built. Some brief remarks on future developments in and prospects for THz application in amino acids are also provided.

  9. A peptide nucleic acid-aminosugar conjugate targeting transactivation response element of HIV-1 RNA genome shows a high bioavailability in human cells and strongly inhibits tat-mediated transactivation of HIV-1 transcription.

    PubMed

    Das, Indrajit; Désiré, Jérôme; Manvar, Dinesh; Baussanne, Isabelle; Pandey, Virendra N; Décout, Jean-Luc

    2012-07-12

    The 6-aminoglucosamine ring of the aminoglycoside antibiotic neomycin B (ring II) was conjugated to a 16-mer peptide nucleic acid (PNA) targeting HIV-1 TAR RNA. For this purpose, we prepared the aminoglucosamine monomer 15 and attached it to the protected PNA prior to its cleavage from the solid support. We found that the resulting PNA-aminoglucosamine conjugate is stable under acidic conditions, efficiently taken up by the human cells and fairly distributed in both cytosol and nucleus without endosomal entrapment because cotreatment with endosome-disrupting agent had no effect on its cellular distribution. The conjugate displayed very high target specificity in vitro and strongly inhibited Tat mediated transactivation of HIV-1 LTR transcription in a cell culture system. The unique properties of this new class of PNA conjugate suggest it to be a potential candidate for therapeutic application.

  10. Large mixing ratios of atmospheric nitrous acid (HONO) at Concordia (East Antarctic Plateau) in summer: a strong source from surface snow?

    NASA Astrophysics Data System (ADS)

    Legrand, M.; Preunkert, S.; Frey, M.; Bartels-Rausch, Th.; Kukui, A.; King, M. D.; Savarino, J.; Kerbrat, M.; Jourdain, B.

    2014-09-01

    During the austral summer 2011/2012 atmospheric nitrous acid (HONO) was investigated for the second time at the Concordia site (75°06' S, 123°33' E), located on the East Antarctic Plateau, by deploying a long-path absorption photometer (LOPAP). Hourly mixing ratios of HONO measured in December 2011/January 2012 (35 ± 5.0 pptv) were similar to those measured in December 2010/January 2011 (30.4 ± 3.5 pptv). The large value of the HONO mixing ratio at the remote Concordia site suggests a local source of HONO in addition to weak production from oxidation of NO by the OH radical. Laboratory experiments demonstrate that surface snow removed from Concordia can produce gas-phase HONO at mixing ratios half that of the NOx mixing ratio produced in the same experiment at typical temperatures encountered at Concordia in summer. Using these lab data and the emission flux of NOx from snow estimated from the vertical gradient of atmospheric concentrations measured during the campaign, a mean diurnal HONO snow emission ranging between 0.5 and 0.8 × 109 molecules cm-2 s-1 is calculated. Model calculations indicate that, in addition to around 1.2 pptv of HONO produced by the NO oxidation, these HONO snow emissions can only explain 6.5 to 10.5 pptv of HONO in the atmosphere at Concordia. To explain the difference between observed and simulated HONO mixing ratios, tests were done both in the field and at lab to explore the possibility that the presence of HNO4 had biased the measurements of HONO.

  11. A Novel Polymyxin Derivative That Lacks the Fatty Acid Tail and Carries Only Three Positive Charges Has Strong Synergism with Agents Excluded by the Intact Outer Membrane▿

    PubMed Central

    Vaara, Martti; Siikanen, Osmo; Apajalahti, Juha; Fox, John; Frimodt-Møller, Niels; He, Hui; Poudyal, Anima; Li, Jian; Nation, Roger L.; Vaara, Timo

    2010-01-01

    Polymyxins are cationic lipopeptides (five cationic charges) and the last resort for the treatment of serious Gram-negative infections caused by multiresistant strains. NAB741 has a cyclic peptide portion identical to that of polymyxin B but carries in the linear peptide portion a threonyl-d-serinyl residue (no cationic charges) instead of the diaminobutyryl-threonyl-diaminobutyryl residue (two cationic charges). At the N terminus of the peptide, NAB741 carries an acetyl group instead of a mixture of methyl octanoyl and methyl heptanoyl residues. NAB741 sensitized Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, and Acinetobacter baumannii to antibiotics against which the intact outer membrane is an effective permeability barrier. When tested by using Etest strips on plates containing increasing concentrations of NAB741, the fractional inhibition concentration index (FICI) of the combination of NAB741 with rifampin ranged from ≤0.111 to 0.158 and that with clarithromycin from ≤0.094 to 0.292. When tested by the checkerboard method, the corresponding FICI values against E. coli ATCC 25922 were ≤0.141 to ≤0.155 with rifampin and 0.094 with clarithromycin. In addition, at 4 μg/ml, NAB741 decreased the MICs of azithromycin, mupirocin, fusidic acid, and vancomycin for E. coli strains and E. cloacae by factors ranging from 8 to 200. A sister peptide, NAB752, carrying a threonyl-aminobutyryl residue as the linear peptide portion, was inactive. Furthermore, NAB741 sensitized E. coli to the bactericidal activity of fresh guinea pig serum. The renal clearance of NAB741 was approximately 400-fold, 16-fold, and 8-fold higher than those measured for colistin, NAB7061, and NAB739, respectively. PMID:20479195

  12. Binding of fullerenes to cadmium sulfide and cadmium selenide surfaces, photoluminescence as a probe of strong, lewis acidity-driven, surface adduct formation

    SciTech Connect

    Zhang, J.Z.; Geselbracht, M.J.; Ellis, A.B.

    1993-08-25

    The C{sub 60} and C{sub 70} fullerenes can be adsorbed from toluene solution onto the surfaces of etched, single-crystal n-CdS and n-CdSe [n-CdS(e)] semiconductors. These fullerene adsorbates act as Lewis acids toward the CdS(e) surface, causing quenching of the solids` band-edge photoluminescence (PL) intensity relative to the intensity in a reference ambient of pure toluene. For C{sub 60} adsorbed onto CdSe, the quenching of PL intensity is well fit by a dead-layer model that permits estimation of the adduct-induced expansion in depletion width as being as large as approximately 300 A. The degree of quenching is somewhat larger for C{sub 70} at a wavelength where the two fullerenes can be directly compared. PL quenching by both fullerenes is concentration dependent and can be fit to the Langmuir adsorption isotherm model to yield large equilibrium binding constants in the range of 10{sup 5} to 10{sup 6} M{sup -1}; the fullerenes can be detected by this PL method at submicromolar concentrations. Use of the polar Cd-rich (0001) and Se-rich (0001O) faces of a n-CdSe sample reveals similar binding constants for C{sub 60} and C{sub 70} on the two faces but larger expansions of the dead-layer thickness from adsorption of either fullerene on the Cd-rich face. 15 refs., 7 figs.

  13. Using problem based learning and guided inquiry in a high school acid-base chemistry unit

    NASA Astrophysics Data System (ADS)

    McKinley, Katie

    The purpose of this investigation was to determine if incorporating problem based learning and guided inquiry would improve student achievement in an acid base unit for high school chemistry. The activities and labs in the unit were modified to be centered around the problem of a fish kill that students investigated. Students also participated in guided inquiry labs to increase the amount of critical thinking and problem solving being done in the classroom. The hypothesis was that the implementation of problem based learning and guided inquiry would foster student learning. Students took a pre-test and post-test on questions covering the objectives of the acid base unit. These assessments were compared to determine the effectiveness of the unit. The results indicate that the unit was effective in increasing student performance on the unit test. This study also analyzed the process of problem based learning. Problem based learning can be an effective method of engaging students in inquiry. However, designing an effective problem based learning unit requires careful design of the problem and enough structure to assure students learn the intended content.

  14. Hands-On Science: Is It an Acid or a Base? These Colorful Tests Tell All!

    ERIC Educational Resources Information Center

    VanCleave, Janice

    1998-01-01

    Two hands-on science activities for K-6 students teach them how to determine if something is an acid or a base. The activities require acid/base indicator juice, testing strips, and a base solution. A recipe for making them in the classroom using red cabbage and baking soda is provided. (SM)

  15. A Comparison of Different Teaching Designs of "Acids and Bases" Subject

    ERIC Educational Resources Information Center

    Ültay, Neslihan; Çalik, Muammer

    2016-01-01

    Inability to link the acid-base concepts with daily life phenomena (as contexts) highlights the need for further research on the context-based acid-base chemistry. In this vein, the aim of this study is to investigate the effects of different teaching designs (REACT strategy, 5Es learning model and traditional (existing) instruction) relevant with…

  16. Robust chaotic map-based authentication and key agreement scheme with strong anonymity for telecare medicine information systems.

    PubMed

    Jiang, Qi; Ma, Jianfeng; Lu, Xiang; Tian, Youliang

    2014-02-01

    To ensure only authorized access to medical services, several authentication schemes for telecare medicine information systems (TMIS) have been proposed in the literature. Due to its better performance than traditional cryptography, Hao et al. proposed an authentication scheme for TMIS using chaotic map based cryptography. They claimed that their scheme could resist various attacks, including the smart card stolen attack. However, we identify that their scheme is vulnerable to the stolen smart card attack. The reason causing the stolen smart card attack is that the scheme is designed based on the assumption that the scheme itself achieves user untraceability. Then, we propose a robust authentication and key agreement scheme. Compared with the previous schemes, our scheme not only enjoys more security features, but also has better efficiency. Our analysis indicates that designing a two-factor authentication scheme based on the assumption that privacy protection is achieved in the scheme itself may pose potential security risks. The lesson learned is that, we should avoid this situation in the future design of two-factor authentication schemes.

  17. Evaluation of the number of ionogenic groups of inulinase by acid-base titration.

    PubMed

    Kovaleva, T A; Holyavka, M G; Rezvan, S G; Kozhedub, S V

    2008-06-01

    Acid base titration showed that Aspergillus awamori inulinase includes 178 asparaginic and glutamic acid residues, 20 histidine, 10 serine, and 34 lysine and tyrosine residues. Denaturation temperature for this enzyme was calculated using analysis of the proportion of stabilizing and destabilizing amino acids in the molecule.

  18. Old and new approaches to the interpretation of acid-base metabolism, starting from historical data applied to diabetic acidosis.

    PubMed

    Mioni, Roberto; Marega, Alessandra; Lo Cicero, Marco; Montanaro, Domenico

    2016-11-01

    The approach to acid-base chemistry in medicine includes several methods. Currently, the two most popular procedures are derived from Stewart's studies and from the bicarbonate/BE-based classical formulation. Another method, unfortunately little known, follows the Kildeberg theory applied to acid-base titration. By using the data produced by Dana Atchley in 1933, regarding electrolytes and blood gas analysis applied to diabetes, we compared the three aforementioned methods, in order to highlight their strengths and their weaknesses. The results obtained, by reprocessing the data of Atchley, have shown that Kildeberg's approach, unlike the other two methods, is consistent, rational and complete for describing the organ-physiological behavior of the hydrogen ion turnover in human organism. In contrast, the data obtained using the Stewart approach and the bicarbonate-based classical formulation are misleading and fail to specify which organs or systems are involved in causing or maintaining the diabetic acidosis. Stewart's approach, despite being considered 'quantitative', does not propose in any way the concept of 'an amount of acid' and becomes even more confusing, because it is not clear how to distinguish between 'strong' and 'weak' ions. As for Stewart's approach, the classical method makes no distinction between hydrogen ions managed by the intermediate metabolism and hydroxyl ions handled by the kidney, but, at least, it is based on the concept of titration (base-excess) and indirectly defines the concept of 'an amount of acid'. In conclusion, only Kildeberg's approach offers a complete understanding of the causes and remedies against any type of acid-base disturbance.

  19. Improving pharmacy students' understanding and long-term retention of acid-base chemistry.

    PubMed

    Roche, Victoria F

    2007-12-15

    Despite repeated exposure to the principles underlying the behavior of organic acids and bases in aqueous solution, some pharmacy students remain confused about the topic of acid-base chemistry. Since a majority of organic drug molecules have acid-base character, the ability to predict their reactivity and the extent to which they will ionize in a given medium is paramount to students' understanding of essentially all aspects of drug action in vivo and in vitro. This manuscript presents a medicinal chemistry lesson in the fundamentals of acid-base chemistry that many pharmacy students have found enlightening and clarifying.

  20. Improving Pharmacy Students' Understanding and Long-term Retention of Acid-Base Chemistry

    PubMed Central

    2007-01-01

    Despite repeated exposure to the principles underlying the behavior of organic acids and bases in aqueous solution, some pharmacy students remain confused about the topic of acid-base chemistry. Since a majority of organic drug molecules have acid-base character, the ability to predict their reactivity and the extent to which they will ionize in a given medium is paramount to students' understanding of essentially all aspects of drug action in vivo and in vitro. This manuscript presents a medicinal chemistry lesson in the fundamentals of acid-base chemistry that many pharmacy students have found enlightening and clarifying PMID:19503706

  1. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing.

    PubMed

    Basiruddin, S K; Swain, Sarat K

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO-PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV-visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH7.4.

  2. [Development of Nucleic Acid-Based Adjuvant for Cancer Immunotherapy].

    PubMed

    Kobiyama, Kouji; Ishii, Ken J

    2015-09-01

    Since the discovery of the human T cell-defined tumor antigen, the cancer immunotherapy field has rapidly progressed, with the research and development of cancer immunotherapy, including cancer vaccines, being conducted actively. However, the disadvantages of most cancer vaccines include relatively weak immunogenicity and immune escape or exhaustion. Adjuvants with innate immunostimulatory activities have been used to overcome these issues, and these agents have been shown to enhance the immunogenicity of cancer vaccines and to act as mono-therapeutic anti-tumor agents. CpG ODN, an agonist for TLR9, is one of the promising nucleic acid-based adjuvants, and it is a potent inducer of innate immune effector functions. CpG ODN suppresses tumor growth in the absence of tumor antigens and peptide administration. Therefore, CpG ODN is expected to be useful as a cancer vaccine adjuvant as well as a cancer immunotherapy agent. In this review, we discuss the potential therapeutic applications and mechanisms of CpG ODN for cancer immunotherapy.

  3. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    PubMed

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pKa values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pKa values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  4. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01.

    PubMed

    Kimura, Kotohiko; Huang, Ru Chih C

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments.

  5. Tetra-O-Methyl Nordihydroguaiaretic Acid Broadly Suppresses Cancer Metabolism and Synergistically Induces Strong Anticancer Activity in Combination with Etoposide, Rapamycin and UCN-01

    PubMed Central

    Kimura, Kotohiko; Huang, Ru Chih C.

    2016-01-01

    The ability of Tetra-O-methyl nordihydroguaiaretic acid (M4N) to induce rapid cell death in combination with Etoposide, Rapamycin, or UCN-01 was examined in LNCaP cells, both in cell culture and animal experiments. Mice treated with M4N drug combinations with either Etoposide or Rapamycin showed no evidence of tumor and had a 100% survival rate 100 days after tumor implantation. By comparison all other vehicles or single drug treated mice failed to survive longer than 30 days after implantation. This synergistic improvement of anticancer effect was also confirmed in more than 20 cancer cell lines. In LNCaP cells, M4N was found to reduce cellular ATP content, and suppress NDUFS1 expression while inducing hyperpolarization of mitochondrial membrane potential. M4N-treated cells lacked autophagy with reduced expression of BNIP3 and ATG5. To understand the mechanisms of this anticancer activity of M4N, the effect of this drug on three cancer cell lines (LNCaP, AsPC-1, and L428 cells) was further examined via transcriptome and metabolomics analyses. Metabolomic results showed that there were reductions of 26 metabolites essential for energy generation and/or production of cellular components in common with these three cell lines following 8 hours of M4N treatment. Deep RNA sequencing analysis demonstrated that there were sixteen genes whose expressions were found to be modulated following 6 hours of M4N treatment similarly in these three cell lines. Six out of these 16 genes were functionally related to the 26 metabolites described above. One of these up-regulated genes encodes for CHAC1, a key enzyme affecting the stress pathways through its degradation of glutathione. In fact M4N was found to suppress glutathione content and induce reactive oxygen species production. The data overall indicate that M4N has profound specific negative impacts on a wide range of cancer metabolisms supporting the use of M4N combination for cancer treatments. PMID:26886430

  6. Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy.

    PubMed

    Song, Yang; Zemlyanov, Dmitry; Chen, Xin; Su, Ziyang; Nie, Haichen; Lubach, Joseph W; Smith, Daniel; Byrn, Stephen; Pinal, Rodolfo

    2016-12-05

    This study investigates drug-excipient interactions in amorphous solid dispersions (ASDs) of the model basic compound lumefantrine (LMN), with five acidic polymers. X-ray photoelectron spectroscopy (XPS) was used to measure the extent of the protonation of the tertiary amine in LMN by the five acidic polymers. The extent/efficiency of protonation of the ASDs was assessed a function of polymer type, manufacturing process (hot-melt extrusion vs. spray drying), and drug loading (DL). The most strongly acidic polymer, polystyrene sulfonic acid (PSSA) was found to be the most efficient polymer in protonating LMN, independently of manufacturing method and DL. The rank order for the protonation extent of LMN by each polymer is roughtly the same for both manufacturing processes. However, protonation efficiency of polymers of similar acidic strength ranged from ∼0% to 75% (HPMCAS and Eudragit L100-55, respectively), suggesting an important role of molecular/mixing effects. For some polymers, including Eudragit L100 55 and HPMCP, spray-drying resulted in higher protonation efficiency compared to hot-melt extrusion. This result is attributable to a more favorable encounter between acid and base groups, when exposed to each other in solution phase. Increasing DL led to decreased protonation efficiency in most cases, particularly for polyacrylic acid, despite having the highest content of acidic groups per unit mass. These results indicate that the combined effects of acid strength and mixing phenomena regulate the efficiency of acid-base interactions in the ASDs.

  7. Regulation of Connexin-Based Channels by Fatty Acids.

    PubMed

    Puebla, Carlos; Retamal, Mauricio A; Acuña, Rodrigo; Sáez, Juan C

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.

  8. Regulation of Connexin-Based Channels by Fatty Acids

    PubMed Central

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  9. Gas-phase acid-base properties of melamine and cyanuric acid.

    PubMed

    Mukherjee, Sumit; Ren, Jianhua

    2010-10-01

    The thermochemical properties of melamine and cyanuric acid were characterized using mass spectrometry measurements along with computational studies. A triple-quadrupole mass spectrometer was employed with the application of the extended Cooks kinetic method. The proton affinity (PA), gas-phase basicity (GB), and protonation entropy (Δ(p)S) of melamine were determined to be 226.2 ± 2.0 kcal/mol, 218.4 ± 2.0 kcal/mol, and 26.2 ± 2.0 cal/mol K, respectively. The deprotonation enthalpy (Δ(acid)H), gas-phase acidity (Δ(acid)G), and deprotonation entropy (Δ(acid)S) of cyanuric acid were determined to be 330.7 ± 2.0 kcal/mol, 322.9 ± 2.0 kcal/mol, and 26.1 ± 2.0 cal/mol K, respectively. The geometries and energetics of melamine, cyanuric acid, and related ionic species were calculated at the B3LYP/6-31+G(d) level of theory. The computationally predicted proton affinity of melamine (225.9 kcal/mol) and gas-phase deprotonation enthalpy of cyanuric acid (328.4 kcal/mol) agree well with the experimental results. Melamine is best represented as the imide-like triazine-triamine form and the triazine nitrogen is more basic than the amino group nitrogen. Cyanuric acid is best represented as the keto-like tautomer and the N-H group is the most probable proton donor.

  10. Polyol and Amino Acid-Based Biosurfactants, Builders, and Hydrogels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter reviews different detergent materials which have been synthesized from natural agricultural commodities. Background information, which gives reasons why the use of biobased materials may be advantageous, is presented. Detergent builders from L-aspartic acid, citric acid and D-sorbitol...

  11. Wheat flour based propionic acid fermentation: an economic approach.

    PubMed

    Kagliwal, Lalit D; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2013-02-01

    A process for the fermentative production of propionic acid from whole wheat flour using starch and gluten as nutrients is presented. Hydrolysis of wheat flour starch using amylases was optimized. A batch fermentation of hydrolysate supplemented with various nitrogen sources using Propionibacterium acidipropionici NRRL B 3569 was performed. The maximum production of 48.61, 9.40, and 11.06 g of propionic acid, acetic acid and succinic acid, respectively, was found with wheat flour hydrolysate equivalent to 90 g/l glucose and supplemented with 15 g/l yeast extract. Further, replacement of yeast extract with wheat gluten hydrolysate showed utilization of gluten hydrolysate without compromising the yields and also improving the economics of the process. The process so developed could be useful for production of animal feed from whole wheat with in situ production of preservatives, and also suggest utilization of sprouted or germinated wheat for the production of organic acids.

  12. High Performance Fatty Acid-Based Vinyl Ester Resin for Liquid Molding

    DTIC Science & Technology

    2007-07-01

    Diglycidyl ether of bisphenol-A ( DGEBA ) Methacrylic Acid Figure 1: The reaction of DGEBA and methacrylic acid to produce the vinyl ester 2.3...High Performance Fatty Acid -Based Vinyl Ester Resin for Liquid Molding by Xing Geng, John J. La Scala, James M. Sands, and Giuseppe R...it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5069 ARL-RP-184 July 2007 High Performance Fatty Acid

  13. Optical Sensing Properties of Pyrene-Schiff Bases toward Different Acids.

    PubMed

    Babgi, Bandar A; Alzahrani, Asma

    2016-07-01

    A set of (4-substituted-phenyl)-pyren-1-ylmethylene-amine (PMA) was prepared by the reaction of pyrene-1-carboxaldehyde and the corresponding 4-substituted aniline. The structure of the PMA compounds were confirmed by spectroscopic data (IR, (1)HNMR, (13)CNMR, ISI-MS and elemental analysis. The structure of (4-bromo-phenyl)-pyren-1-ylmethylene-amine (BrPMA) was further confirmed by the single X-ray crystallography. The absorption and emission spectroscopic behaviors were investigated in variant acids. The compounds showed dramatic spectroscopic changes upon acidifying with strong acids and negligible effects when weak acids are used in the acidifications. Hence, the PMA compounds can be used as sensors to distinguish between weak and strong acids.

  14. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.

    PubMed

    Mi, Le; Qin, Dandan; Cheng, Jie; Wang, Dan; Li, Sha; Wei, Xuetuan

    2017-03-01

    Two engineered Escherichia coli strains, DQ101 (MG1655 fadD (-))/pDQTES and DQ101 (MG1655 fadD (-))/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD (-))-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD (-))/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD (-))/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.

  15. Nanocomposite polymer electrolyte based on Poly(ethylene oxide) and solid super acid for lithium polymer battery

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Tang, Xiaozhen

    2004-07-01

    This Letter reports a novel PEO-based nanocomposite polymer electrolyte by using solid super acid SO 42-/ZrO 2 as filler. XRD, DSC, and FT-IR results prove the strong Lewis acid-base interactions between SO 42-/ZrO 2 and PEO chains. The addition of SO 42-/ZrO 2 can enhance the ionic conductivity and the lithium ion transference number of the electrolyte. The highest room temperature ionic conductivity of 2.1 × 10 -5 S cm -1 is obtained for the sample PEO 12-LiClO 4-7%SO 42-/ZrO 2. The excellent performances such as good compatibility with lithium electrode, and broad electrochemical stability window suggest that PEO-LiClO 4-SO 42-/ZrO 2 nanocomposite electrolyte can be used as electrolyte materials for lithium polymer batteries.

  16. Ammonia Catalyzed Formation of Sulfuric Acid in Troposphere: The Curious Case of A Base Promoting Acid Rain.

    PubMed

    Bandyopadhyay, Biman; Kumar, Pradeep; Biswas, Partha

    2017-04-03

    Electronic structure calculations have been performed to investigate the role of ammonia in catalyzing the formation of sulfuric acid through hydrolysis of SO3 in Earth's atmosphere. The uncatalyzed process involves a high activation barrier and, till date, is mainly known to occur in Earth's atmosphere only when catalyzed by water and acids. Here we show that hydrolysis of SO3 can be very efficiently catalyzed by ammonia, the most abundant basic component in Earth's atmosphere. It was found, based on magnitude of relative potential energies as well as rate coefficients, that ammonia is the best among all the catalysts studied until now (water and acids) and could be a considerable factor in formation of sulfuric acid in troposphere. The calculated rate coefficient (at 298 K) of ammonia catalyzed reaction has been found to be ~10^5 - 10^7 times greater than that for water catalyzed ones. It was found, based on relative rates of ammonia and water catalyzed processes that in troposphere ammonia, together with water, could be the key factor in determining the rate of formation of sulfuric acid. In fact ammonia could surpass water in catalyzing formation of sulfuric acid via hydrolysis of SO3 at various altitudes in troposphere depending upon their relative concentrations.

  17. Nitric acid: modeling osmotic coefficients and acid-base dissociation using the BIMSA theory.

    PubMed

    Ruas, Alexandre; Pochon, Patrick; Simonin, Jean-Pierre; Moisy, Philippe

    2010-11-14

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of nitric acid salts at 25 °C within the binding mean spherical approximation (BIMSA) theory. The predictive capability of this model was examined. First, Raman spectroscopy was used to study the proportion of associated nitric acid as a function of concentration. The corresponding apparent association constant values were compared with literature values. Besides, the BIMSA model, taking into account complex formation, was used to represent literature experimental osmotic coefficient variation with concentration. This theoretical description led to an assessment of the degree of association. The so calculated amount of associated nitric acid coincides accurately with our Raman experimental results up to a high concentration of acid.

  18. Long-term feeding a plant-based diet devoid of marine ingredients strongly affects certain key metabolic enzymes in the rainbow trout liver.

    PubMed

    Véron, Vincent; Panserat, Stéphane; Le Boucher, Richard; Labbé, Laurent; Quillet, Edwige; Dupont-Nivet, Mathilde; Médale, Françoise

    2016-04-01

    Incorporation of a plant blend in the diet can affect growth parameters and metabolism in carnivorous fish. We studied for the first time the long-term (1 year) metabolic response of rainbow trout fed from first feeding with a plant-based diet totally devoid of marine ingredients. Hepatic enzymes were analyzed at enzymatic and molecular levels, at 3, 8 and 24 h after the last meal to study both the short-term effects of the last meal and long-term effects of the diet. The results were compared with those of fish fed a control diet of fish meal and fish oil. Growth, feed intake, feed efficiency and protein retention were lower in the group fed the plant-based diet. Glucokinase and pyruvate kinase activity were lower in the livers of trout fed the plant-based diet which the proportion of starch was lower than in the control diet. Glutamate dehydrogenase was induced by the plant-based diet, suggesting an imbalance of amino acids and a possible link with the lower protein retention observed. Gene expression of delta 6 desaturase was higher in fish fed the plant-based diet, probably linked to a high dietary level of linolenic acid and the absence of long-chain polyunsaturated fatty acids in vegetable oils. Hydroxymethylglutaryl-CoA synthase expression was also induced by plant-based diet because of the low rate of cholesterol in the diet. Changes in regulation mechanisms already identified through short-term nutritional experiments (<12 weeks) suggest that metabolic responses are implemented at short term and remain in the long term.

  19. Visual, base-specific detection of nucleic acid hybridization using polymerization-based amplification.

    PubMed

    Hansen, Ryan R; Johnson, Leah M; Bowman, Christopher N

    2009-03-15

    Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.

  20. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.